
Co-lustering douments and words using Bipartite SpetralGraph PartitioningUT CS Tehnial Report # TR 2001-05Inderjit S. Dhilloninderjit�s.utexas.eduhttp://www.s.utexas.edu/users/inderjitDepartment of Computer Sienes, University of Texas,Austin, TX 78712-1188, USA.Marh 2, 2001AbstratBoth doument lustering and word lustering are important and well-studied prob-lems. By using the vetor spae model, a doument olletion may be represented as aword-doument matrix. In this paper, we present the novel idea of modeling the dou-ment olletion as a bipartite graph between douments and words. Using this model,we pose the lustering problem as a graph partitioning problem and give a new spetralalgorithm that simultaneously yields a lustering of douments and words. This o-lustering algorithm uses the seond left and right singular vetors of an appropriatelysaled word-doument matrix to yield good bipartitionings. In fat, it an be shownthat these singular vetors give a real relaxation to the optimal solution of the graphbipartitioning problem. We present several experimental results to verify that the re-sulting o-lustering algorithm works well in pratie and is robust in the presene ofnoise.1 IntrodutionClustering is the grouping together of similar objets[18℄. Given a olletion of unlabeleddouments, doument lustering an help in organizing the olletion thereby failitatingfuture navigation and searh. Doument lustering is a widely studied problem and manyalgorithms have been proposed for this task.A starting point for applying lustering algorithms to doument olletions is to reatea vetor spae model, alternatively known as a bag-of-words model [32℄. The basi idea is(a) to extrat unique ontent-bearing words from the set of douments treating these wordsas features and (b) to then represent eah doument as a vetor of ertain weighted wordfrequenies in this feature spae. Thus the entire doument olletion may be treated as aword-by-doument matrix A whose rows orrespond to words and olumns to douments.A non-zero entry in A, say Aij indiates the presene of word i in doument j, while a zeroentry indiates an absene. Typially, a large number of words exist in even a moderately1



2sized set of douments, for example, in one of our test ases we use 4303 words in 3893douments. However, eah doument typially ontains only a small number of words andhene, A is typially very sparse with almost 99% of the matrix entries being zero.Using suh a basi representation where words are features, many doument lusteringalgorithms have been proposed. The various algorithms di�er in the mathematial modelsthey use and in their eÆieny and salability. The size of the olletion to be lusteredis an important variable. Clustering a large portion of the entire World Wide Web (suhas in www.yahoo.om) is a muh di�erent proposition than lustering the smaller doumentolletion returned by a web searh engine (www.northernlight.om).Existing doument lustering methods inlude agglomerative lustering[40, 39, 29℄, thepartitional k-means algorithm[8℄, projetion based methods inluding LSA[2, 33℄, self-organizing maps[25, 21℄ and multidimensional saling[27, 22℄. For omputational eÆienyrequired in on-line lustering, hybrid approahes have been onsidered in[7, 19℄. Reentlythere has been a urry of ativity in doument lustering[3, 8, 30, 42℄. Graph-theoretitehniques have also been onsidered for lustering; many earlier hierarhial agglomerativelustering algorithms[10℄ and some reent work[4, 37℄ model the similarity between dou-ments by a graph whose verties orrespond to douments and weighted edges or hyperedgesgive the similarity between the verties. A major drawbak of these methods is that thework required just to form the graph is quadrati in the number of douments; thus thesemethods are omputationally prohibitive for large doument olletions.Words may be lustered on the basis of the douments in whih they o-our; suhlustering has been used in the automati onstrution of a statistial thesaurus and inthe enhanement of queries[6℄. The underlying assumption is that words that typiallyappear together should be assoiated with similar onepts. Word lustering has also beenpro�tably used in the automati lassi�ation of douments, see [1℄. A detailed treatmentof some word lustering tehniques is given in [38℄.In this paper, we onsider the problem of simultaneous or o-lustering of doumentsand words. Most of the existing work is on one-way lustering, i.e., either doument orword lustering. A ommon theme among existing algorithms is to luster doumentsbased upon their word distributions while word lustering is determined by o-ourrenein douments. This points to a duality between doument and term lustering. We posethis dual lustering problem in terms of �nding minimum ut vertex partitions in a bipartitegraph between douments and words. Finding a globally optimal solution to suh a graphpartitioning problem is NP-omplete; however, we show that the seond left and rightsingular vetors of a suitably normalized word-doument matrix give an optimal solutionto the real relaxation of this disrete optimization problem. Based upon this observation,we present a spetral algorithm that simultaneously partitions douments and words, anddemonstrate that the algorithm gives good global solutions.We now give a brief outline of the paper. Setion 2 introdues the bipartite graph modelthat we use for representing a doument olletion, and poses the o-lustering problem asone of �nding the minimum ut in the bipartite graph. Constraints on the sizes of thelusters make this a graph partitioning problem whih is known to be NP-omplete. InSetion 3, we introdue the spetral graph partitioning heuristi and show that the seondeigenvetor of a generalized eigenvalue problem gives the optimal solution to a real relaxationof the graph bipartitioning objetive. In Setion 4, we show that for the bipartite ase, the



3dual lustering an be obtained from the seond left and right singular vetors of a suitablynormalized word-doument matrix. Setion 4.2 gives an algorithm that uses additionalsingular vetors to diretly yield multiple doument and word lusters. In Setion 5, wepresent detailed experimental results and demonstrate that our o-lustering algorithm givesgood solutions in pratie. We disuss related work in Setion 6. Finally, in Setion 7 wepresent our onlusions and disuss future work.A word about notation: small-bold letters suh as x, u, p will denote olumn vetors,apital-bold letters suh asA,M , B will denote matries, and sript letters suh as V;D;Wwill usually denote vertex sets.2 Bipartite Graph ModelFirst we introdue some relevant terminology about graphs. A graph G = (V ; E) is a setof verties V = f1; 2; : : : ; jVjg and a set of edges fi; jg eah with edge weight Eij . Theadjaeny matrix of a graph M is de�ned asM = � Eij; if there is an edge fi; jg;0; otherwise:Given a partitioning of the vertex set V into two subsets V1 and V2, the ut betweenthem will play an important role in this paper. Formally,ut(V1;V2) = Xi2V1;j2V2Mij: (2.1)The de�nition of ut is easily extended to k vertex subsets,ut(V1;V2; : : : ;Vk) = Xi<j ut(V i;Vj): (2.2)We now introdue our bipartite graph model for representing a doument olletion.An undireted bipartite graph is a triple G = (D;W ; E) where W = fw1; w2; : : : ; wmg andD = fd1; d2; : : : ; dng are two sets of verties and E is the set of edges ffwi; djg : wi 2W; dj 2 Dg. In our ase, D orresponds to the set of douments and W orresponds tothe set of words ontained in the douments. There is an edge fwi; djg if word wi oursin doument dj ; note that the edges are undireted. In this bipartite model, there are noedges between words or between douments.An edge signi�es an assoiation between a doument and a word. By putting positiveweights on the edges, we an apture the degree of this assoiation. One possibility isto have edge-weights equal term frequenies, i.e., the number of times a word ours ina doument. In fat, most of the term-weighting formulae used in information retrievalmay be used as edge-weights, see [31, 32, 26℄ for more details. One popular term-weightingsheme is to have the edge-weight Eij assoiated with the edge fwi; djg beEij = tij � log� jDjjDij�;



4where tij is the number of times word wi ours in doument dj , jDj = n is the total numberof douments and jDij is the number of douments that ontain word wi.Consider them�nword-by-doument matrixA suh that Aij equals the edge-weight Eij .Then it an easily be seen that the adjaeny matrix of the bipartite graph may be writtenas M = � 0 AAT 0 � ;where we have ordered the verties suh that the �rst m verties index the words while thelast n index the douments.We now show that the ut between di�erent vertex subsets, as de�ned in (2.1) and (2.2),emerges naturally from our formulation of word and doument lustering.2.1 Simultaneous ClusteringA basi premise behind our algorithm is the following observation.Duality of word & doument lustering: Word lustering indues doument lusteringwhile doument lustering indues word lustering.Given the doument lusters D1;D2; : : : ;Dk ([iDi = D and Di \ Dj = �; i 6= j), theorresponding word lustersW1;W2; : : : ;Wk ([iWi =W andWi\Wj = �; i 6= j) may bedetermined as follows. A given word wi belongs to the word luster Wm if its assoiationwith the doument luster Dm is greater than its assoiation with any other doumentluster. Using our graph model, a natural measure of the assoiation of a word with adoument luster is the sum of the edge-weights to all douments in the luster. Thus,Wm = 8<:wi : Xj2DmAij � Xj2DlAij ; for all l = 1; 2; : : : ; k9=; :Thus eah of the word lusters is determined by the doument lustering. Similarly givena word lustering W1;W2; : : : ;Wk, the indued doument lustering is given byDm = 8<:dj : Xi2WmAij � Xi2W lAij; for all l = 1; 2; : : : ; k9=; :Note that this haraterization is reursive in nature sine a given doument lusteringdetermines a word lustering, whih in turn determines a (better) doument lustering.Clearly the \best" word and doument lustering would orrespond to a partitioning ofthe graph suh that the rossing edges between partitions have minimum weight. This isahieved whenut(W1 [ D1;W2 [ D2; : : : ;Wk [ Dk) = minV1;V2;::: ;Vk ut(V1;V2; : : : ;Vk)where V1;V2; : : : ;Vk is any partitioning of the bipartite graph into k vertex subsets.



5Note that the above paragraph also hints at an \alternating partitioning" algorithm.However, suh a formulation is too naive and typially leads to unbalaned luster sizes.Indeed, the minimum ut of zero is obtained when all the verties belong to one partitionor luster. Thus we need a mehanism to onstrain the size of eah luster. In the nextsetion, we pose an objetive funtion whih favors lusters that are \balaned" in additionto being \well-separated".3 Graph PartitioningGiven a graph G = (V ; E), the lassial graph bipartitioning or bisetion problem is to �ndnearly equally-sized vertex subsets V�1;V�2 of V suh thatut(V�1;V�2) = minV1;V2 ut(V1;V2):The graph partitioning problem is very important and arises in various appliations, suh asiruit partitioning and VLSI layout, telephone network design, load balaning in parallelomputation, reordering sparse matries, et. However it is well known that this problem isNP-omplete[13℄. But many heuristi methods exist that are able to �nd a loal minimum tothis problem. Most e�etive among the earlier heuristis are the Kernighan-Lin(KL)[23℄ andthe Fiduia-Mattheyses(FM)[11℄ algorithms. However, these algorithms employ heurististhat searh in the loal viinity of given initial partitionings and hene, have a tendeny toget stuk in loal minima.3.1 Spetral Graph BipartitioningSpetral graph partitioning is another e�etive heuristi that was introdued by Hall[16℄,Donath & Hofmann[9℄ and Fiedler in the early 1970s[12℄, and popularized in 1990 by Pothen,Simon and Liou[28℄. The spetral partitioning heuristi uses the seond eigenvetor of anassoiated matrix for bipartitioning the graph and has been found to give good globalsolutions that are better than the solutions obtained by the KL and FM algorithms.We now introdue the spetral partitioning heuristi. Suppose the graph G = (V ; E)has n verties and m edges. The inidene matrix of G, denoted by IG is an n�m matrixthat has one row for eah vertex and one olumn for eah edge. The olumn orrespondingto edge fi; jg of IG is zero exept for the i-th and j-th entries, whih are pEij and �pEijrespetively, where Eij is the orresponding edge weight. Note that there is some ambiguityin this de�nition, sine the positions of the positive and negative entries seem arbitrary.However this ambiguity will not be important to us.De�nition 1 The Laplaian matrix L = LG of G is an n�n symmetri matrix, with onerow and olumn for eah vertex, suh thatLij = 8<: Pk Eik; i = j�Eij; i 6= j and there is an edge fi; jg0 otherwise: (3.3)Theorem 1 The Laplaian matrix L = LG of the graph G has the following properties.



61. L =D�M , whereM is the adjaeny matrix and D is the diagonal \degree" matrixwith Dii =Pk Eik.2. L = IGIGT ,3. L is a symmetri positive semi-de�nite matrix. Thus all eigenvalues of L are real andnon-negative, and L has a full set of n real and orthogonal eigenvetors.4. Let e be the vetor of all ones, i.e., e = [1; 1; : : : ; 1℄T . Then Le = 0. Thus 0 is aneigenvalue of L and e is the orresponding eigenvetor.5. If the graph G has  onneted omponents then L has  eigenvalues that equal 0.6. For any vetor x, xTLx = Xfi;jg2EEij(xi � xj)2:7. For any vetor x, and salars � and �(�x+ �e)TL(�x+ �e) = �2xTLx: (3.4)Proof.1. Part 1 follows from the de�nition of L.2. This is easily seen by multiplying IG and IGT .3. Sine L = IGIGT , xTLx = xT IGITGx = yTy � 0; for all x:This implies that L is symmetri positive semi-de�nite. All suh matries have non-negative real eigenvalues and a full set of n orthogonal eigenvetors[14℄.4. Given any vetor x, Lx = IG(IGTx). Let k be the row of IGTx that orresponds tothe edge fi; jg, then it is easy to see that(IGTx)k = pEij(xi � xj); (3.5)and so when x = e, Le = 0.5. See [12℄.6. This follows from equation (3.5).7. This follows from part 4 above. tu



7For the rest of the paper, we will assume that the graph G onsists of exatly oneonneted omponent, i.e., the seond smallest eigenvalue of the Laplaian is nonzero (seepart 5 of the above theorem). We now see how the eigenvalues and eigenvetors of L giveus information about partitioning of the graph. Given a bipartitioning of V into V1 and V2(V1 [ V2 = V), let us de�ne the partition vetor p that aptures this division,pi = � +1; i 2 V1;�1; i 2 V2: (3.6)The following theorem shows that the Rayleigh Quotient of p with L is proportional to theut indued by the partition vetor p.Theorem 2 Given the Laplaian matrix L of G and a partition vetor p, the RayleighQuotient pTLppTp = 1n � 4 ut(V1;V2):Proof. Clearly pTp = n. By part 6 of Theorem 1,pTLp = Xfi;jg2EEij(pi � pj)2:Thus edges within V1 or V2 do not ontribute to the above sum, while eah edge betweenV1 and V2 ontributes a value of 4 times the edge-weight. tu3.2 Eigenvetors as real-valued optimal partition vetorsClearly, by Theorem 2, the ut is minimized by the trivial solution when all pi are either-1 or +1. Informally, the ut aptures the strength of the assoiation between di�erentpartitions. We need an objetive funtion that in addition to the need for small ut valuesalso aptures the need for more \balaned" lusters.We now present suh an objetive funtion. Let eah vertex i be assoiated with apositive weight, denoted by weight(i), and let W be the diagonal matrix of suh weights,Wij = � weight(i); i = j;0; i 6= j: (3.7)For any subset of verties, V l, de�ne its weight to beweight(V l) = Xi2V lweight(i) = Xi2V lWii:We will onsider two subsets V1 and V2 to be \balaned" if their respetive weights arenearly equal. The following objetive funtion favors balaned lusters,Q(V1;V2) = ut(V1;V2)weight(V1) + ut(V1;V2)weight(V2) : (3.8)



8Given two di�erent partitionings with the same ut value, the above objetive funtion valueis smaller for the more balaned partitioning. Thus minimizing Q(V1;V2) favors partitionsthat are balaned in addition to having a small ut value.We now show that the Rayleigh Quotient of the following generalized partition vetor qequals the above objetive funtion value.Lemma 1 Given a graph G, let L and W be its Laplaian and vertex weight matriesrespetively. Let �1 = weight(V1) and �2 = weight(V2). Then the generalized partitionvetor q with elements qi = 8<: +q�2�1 ; i 2 V1;�q�1�2 ; i 2 V2;satis�es qTWe = 0; and qTWq = weight(V):Proof. Let y =We, then yi = weight(i) =Wii. ThenqTWe = qTy = Xi qiyi;= r�2�1 Xi2V1 weight(i)�r�1�2 Xi2V2 weight(i);= r�2�1 �1 �r�1�2 �2 = 0:Similarly we an show that qTWq =Pni=1Wiiq2i = �1 + �2 = weight(V). tuTheorem 3 Using the notation of Lemma 1,qTLqqTWq = ut(V1;V2)weight(V1) + ut(V1;V2)weight(V2) :Proof. It is easy to show that the generalized partition vetor q may be written asq = �1 + �22p�1�2 p+ �2 � �12p�1�2 e;where p is the partition vetor of (3.6). Using part 7 of Theorem 1, we see thatqTLq = (�1 + �2)24�1�2 pTLp:Substituting the values of pTLp and qTWq, from Theorem 2 and Lemma 1 respetively,proves the result. tuThus to �nd the globally minimum solution of the objetive funtion (3.8), we anrestrit our attention to generalized partition vetors of the form in Lemma 1. Even thoughthis problem is still NP-omplete, it is possible to �nd a real relaxation to this disreteoptimization problem.



9Theorem 4 The problemminq 6=0 qTLqqTWq ; subjet to qTWe = 0;is solved when q is the eigenvetor orresponding to the seond smallest eigenvalue �2 of thegeneralized eigenvalue problem, Lz = �Wz: (3.9)Proof. This is a standard result from linear algebra[14℄. Note that e is the �rst eigenvetor(orresponding to � = 0) of (3.9) and thus the ondition qTWe = 0 onstrains the searhfor the optimal q to be over all vetors that are W -orthogonal to the �rst eigenvetor. tuTheorems 3 and 4 imply that the seond eigenvetor of (3.9) provides a real approxima-tion to the optimal generalized partition vetor. Thus the following orollary follows.Corollary 1 The seond smallest eigenvalue of (3.9), �2, gives a lower bound on the ob-jetive funtion value in (3.8), i.e.,Q(V1;V2) = ut(V1;V2)weight(V1) + ut(V1;V2)weight(V2) � �2:3.3 Ratio-ut and Normalized-ut objetivesThus far we have not spei�ed the partiular hoie of vertex weights in (3.7). A simplehoie is to have weight(i) = 1 for all verties i. This leads to the ratio-ut objetive whihhas been onsidered in [5, 15℄ (for iruit partitioning),Ratio-ut(V1;V2) = ut(V1;V2)jV1j + ut(V1;V2)jV2j :An interesting hoie is to make the weight of eah vertex equal to the sum of the weightsof edges that are inident on it, i.e.,weight(i) = Xk Eik:This leads to the normalized-ut riterion that was used in [34℄ for image segmentation.Note that for this hoie of vertex weights, the vertex weight matrix W equals the degreematrix D, and weight(V i) = ut(V1;V2) + within(Vi); i = 1; 2;where within(V i) is the sum of the weights of edges that have both end-points in Vi. Thenthe normalized-ut objetive funtion may be expressed asN (V1;V2) = ut(V1;V2)Pi2V1Pk Eik + ut(V1;V2)Pi2V2Pk Eik ;= 2� S(V1;V2);where S(V1;V2) = within(V1)weight(V1) + within(V2)weight(V2) :



10Note that S(V1;V2) measures the strengths of assoiations within eah partition. Thusminimizing the normalized-ut is equivalent to maximizing the proportion of edge weightsthat lie within eah partition.4 Spetral Bipartite Graph Partitioning with the SVDIn the previous setion, we saw that the seond eigenvetor of the generalized eigenvalueproblem, Lz = �Dz; (4.10)provides a real relaxation to the disrete optimization problem of �nding the minimumnormalized ut. In this setion, we present algorithms to �nd doument and word lusteringsusing our bipartite graph model.In the bipartite ase,L = � D1 �A�AT D2 � ; and D = � D1 00 D2 �where D1 and D2 are diagonal matries suh thatD1(i; i) = Xj Aij (sum of edge-weights inident on word i);D2(j; j) = Xi Aij (sum of edge-weights inident on doument j):Thus (4.10) may be written as� D1 �A�AT D2 � � xy � = � � D1 00 D2 � � xy � (4.11)) D1x�Ay = �D1x;and �ATx+D2y = �D2y:We assume that eah doument ontains at least one word and eah word is ontained in atleast one doument. Thus both D1 and D2 are nonsingular and we an rewrite the aboveequations as D11=2x�D1�1=2Ay = �D11=2x;�D2�1=2ATx+D21=2y = �D21=2y:Letting u =D11=2x and v =D21=2y, and after a little algebrai manipulation, we getD1�1=2AD2�1=2v = (1� �)u; and D2�1=2ATD1�1=2u = (1� �)v:These are preisely the equations that de�ne the singular value deomposition (SVD) ofthe normalized matrix An = D1�1=2AD2�1=2. In partiular, u and v are the left and



11right singular vetors respetively, while (1� �) is the orresponding singular value. Thusinstead of omputing the eigenvetor of the seond (smallest) eigenvalue of (4.11), we anompute the left and right singular vetors orresponding to the seond (largest) singularvalue of An, Anv2 = �2u2; AnTu2 = �2v2; (4.12)where �2 = 1� �2. Computationally, working on An is superior sine An is of size w � dwhile the matrix L is of the larger size (w + d)� (w + d).The right singular vetor v2 will give us a bipartitioning of douments while the left sin-gular vetor u2 will give us a bipartitioning of the words. By examining the relations (4.12)it is lear that this solution agrees with our intuition that a partitioning of douments shouldindue a partitioning of words, while a partitioning of words should imply a partitioning ofdouments.4.1 The Bipartitioning AlgorithmThe singular vetors u2 and v2 of An give a real approximation to the disrete optimizationproblem of minimizing the normalized ut. Given u2 and v2 the key task is to extrat theoptimal partition from these vetors.The optimal generalized partition vetor of Lemma 1 is two-valued. Thus our strategyis to look for a bi-modal distribution in the values of u2 and v2. Let m1 and m2 denote thebi-modal values that we are looking for. From the previous setion, the seond eigenvetorof L is given by z2 = � D1�1=2u2D2�1=2v2 � : (4.13)One way to approximate the optimal bipartitioning is by the assignment of z2(i) to thebi-modal values mj (j = 1; 2) suh that the following sum-of-squares riterion is minimized,2Xj=1 Xz2(i)2mj(z2(i)�mj)2:The above is exatly the objetive funtion that the lassial k-means algorithm tries tominimize[10℄. Thus we an use the following algorithm to o-luster words and doumentsinto two lusters:Algorithm Bipartition1. Given A, form An =D1�1=2AD2�1=2.2. Compute the seond singular vetors of An, u2 and v2and form the vetor z2 as in (4.13).3. Run the k-means algorithm on the 1-dimensional data z2 to obtainthe desired bipartitioning.The surprising aspet of the above algorithm is that we run k-means simultaneouslyon the redued dimensional representations of both words and douments to get the o-lustering. In Setion 5.1 we see that this algorithm yields good results in pratie.



124.2 The Multipartitioning AlgorithmWe an adapt our bipartitioning algorithm for the more general problem of �nding k wordand doument lusters. One possible way to solve this multipartitioning problem is to useAlgorithm Bipartition in a reursive manner. However, we favor a more diret approah.Just as the seond singular vetors ontain bi-modal information, we have observed that theolletion of the ` = dlog2 ke singular vetors u2;u3; : : : ;u`+1, and v2;v3; : : : ;v`+1 oftenontain k-modal information about the data set. Thus we an form the `-dimensional dataset Z = � D1�1=2UD2�1=2V � ; (4.14)where U = [u2;u3; : : : ;u`+1℄; and V = [v2;v3; : : : ;v`+1℄; ` = dlog2 ke:From this redued-dimensional data set, we an look for the best k-modal �t to the `-dimensional pointsm1; : : : ;mk by assigning eah `-dimensional row, Z(i), tomj suh thatthe sum-of-squares kXj=1 Xz2(i)2mj kZ(i)�mjk2is minimized. This an again be done by the lassial k-means algorithm. Thus we obtainthe following algorithm.Algorithm Multipartition(k)1. Given A, form An =D1�1=2AD2�1=2.2. Compute ` = dlog2 ke singular vetors of An, u2;u3; : : :u`+1 and v2;v3; : : : v`+1and form the matrix Z as in (4.14).3. Run the k-means algorithm on the `-dimensional data Z to obtainthe desired k-way multipartitioning.5 Experimental ResultsFor some of our experimental results, we have used the popularMedline, Cisi, and Cran-field doument sets. Medline onsists of 1033 abstrats from medial journals, Cisionsists of 1460 abstrats from information retrieval papers, while Cranfield onsistsof 1400 abstrats from aeronautial systems papers. These doument olletions an bedownloaded from ftp://ftp.s.ornell.edu/pub/smart.For testing Algorithm Bipartition, we reated data sets that are a mixture of two ofthese three olletions. For example, we reated MedCran whih ontains all doumentsin the Medline and Cranfield olletions. In reating the word-doument matries forthese data sets, we typially removed stop words, and words ourring in less than 0:2%



13Name DesriptionMedCran Medline & Cranfield: words ourring in < :2% and > 15%of douments are removedMedCran All Medline & Cranfield: all words (inluding stop words) are inludedMedCisi Medline & Cisi: words ourring in < :2% and > 15%of douments are removedMedCisi All Medline & Cisi: all words (inluding stop words) are inludedCranCisi Cranfield & Cisi: words ourring in < :2% and > 15%of douments are removedCranCisi All Cranfield & Cisi: all words (inluding stop words) are inludedClassi3 Medline, Cranfield & Cisi: words ourring in < :2% and > 15%of douments are removedClassi3 30dos Medline, Cranfield & Cisi: words ourring in < :2% and > 15%of douments are removedClassi3 150dos Medline, Cranfield & Cisi: words ourring in < :2% and > 15%of douments are removedClassi3 300dos Medline, Cranfield & Cisi: words ourring in < :2% and > 15%of douments are removedYahoo K5 Reuters News Artiles from Yahoo: words are stemmed and heavilyprunedYahoo K1 Reuters News Artiles from Yahoo: words are stemmed and only stopwords are prunedTable 1: Desription of the data setsand greater than 15% of the douments. Most words our very infrequently and so, thispruning step drastially redues the number of words. For example, in MedCran ourpruning strategy removes 12120 out of a total of 17162 words. To show that our algorithmsare robust in the presene of large number of words and noise words, we also used word-doument matries obtained by inluding all words, even stop words. Details on all our testolletions are given in Tables 1 and 2.For testing Algorithm Multipartition, we reated the Classi3 data set by mixing to-gether Medline, Cranfield and Cisi whih gives a total of 3893 douments. To showthat our algorithm works well on small data sets, we also reated subsets of Classi3 with30, 150 and 300 douments respetively.Our �nal data set was used in [3℄ and is a olletion of 2340 Reuters news artilesdownloaded from Yahoo in Otober 1997. The news artiles are from 6 ategories: 142 fromBusiness, 1384 from Entertainment, 494 from Health, 114 from Politis, 141 from Sportsand 60 news artiles from Tehnology. Both data sets were preproessed by eliminating stopwords and HTML tags and words were stemmed using Porter's algorithm[3℄. The data setYahoo K5 ontains 1458 words while Yahoo K1 inludes all 21839 words obtained afterremoving stop words. See Tables 1 and 2 for more details.



14Name # Douments # Words # Nonzeros in AMedCran 2463 5042 117987MedCran All 2463 17162 224325MedCisi 2493 5447 109119MedCisi All 2493 19194 213453CranCisi 2860 4292 132989CranCisi All 2860 14977 257762Classi3 3893 4303 176347Classi3 All 3893 22628 347770Classi3 30dos 30 1073 1585Classi3 150dos 150 3652 7960Classi3 300dos 300 5577 16077Yahoo K5 2340 1458 237969Yahoo K1 2340 21839 349792Table 2: Details of the word-doument matries5.1 Bipartitioning ResultsIn this setion, we present bipartitioning results on theMedCran,MedCisi and CisiCranolletions. Sine we know the \true" lass label for eah doument, the onfusion matrix isone way to apture the goodness of doument lustering. In addition, we use the measuresof purity and entropy. Suppose we are given  lasses (true lass labels) while the lusteringalgorithm produes k lusters. Cluster Dj 's purity an be de�ned asP (Dj) = 1nj maxi (n(i)j );where nj = jDj j and n(i)j is the number of douments in Dj that belong to lass i, i =1; : : : ; . Eah luster may ontain samples from di�erent lasses. Purity gives the ratioof the dominant lass size in the luster to the luster size itself. High purity means thatthe luster is a \pure" subset of the dominant lass. Additionally, we also use entropy as aquality measure, whih is de�ned as follows:H(Dj) = � 1log  Xi=1 n(i)jnj log n(i)jnj !:Entropy is a more omprehensive measure than purity. It onsiders the distribution oflasses in a luster. Note that we have normalized entropy to take values between 0 and 1.An entropy value near 0 means the luster is omprised entirely of 1 lass, while an entropyvalue near 1 is bad sine it implies that the luster ontains a uniform mixture of lasses.Table 3 gives the results of applying Algorithm Bipartition to the MedCran data set.The onfusion matrix at the top left of this table shows that the the doument luster D0onsists entirely of the Medline olletion, while D1 an learly be identi�ed with Cran-field. As a result, the purities of these lusters are nearly 1 while the entropies are lose



15Medline CranfieldD0: 1026 0D1: 7 1400 Purity Entropy1 0.995 .045W0: patients ells blood hildren hormone aner renal rats ell growthW1: shok heat supersoni wing transfer bukling laminar plate hypersoni jetTable 3: Bipartitioning result for MedCranMedline CisiD0: 970 0D1: 63 1460 Purity Entropy1 0.959 .248W0: ells patients blood hormone renal rats aner ell lens dnaW1: libraries retrieval sienti� researh siene systems book omputer indexing journalsTable 4: Bipartitioning result for MedCisito 0. The bottom of Table 3 displays the \top" 10 words in eah of the word lusters W0and W1. The top words are those whose internal edge weights are the greatest. Note thatsine Algorithm Bipartition o-lusters the douments and words, Wi is the word lusterassoiated with the doument luster Di. It should be observed that the top 10 wordslearly onvey the \onept" of the assoiated doument luster.Similarly, Tables 4 and 5 show that good bipartitions are obtained using our spetralalgorithm on the MedCisi and CisiCran data sets. Algorithm Bipartition uses theglobal spetral heuristi of using singular vetors whih makes it robust in the preseneof \noise" words. To show this, we ran the algorithm on the data sets obtained withoutremoving even the stop words. The onfusion matries of Table 6 show that the algorithmis able to reover the original lasses despite the presene of stop words. Note that theMedline lusters are 100% pure in all ases.Cisi CranD0: 1457 12D1: 3 1388 Purity Entropy.992 .068.998 .022W0: libraries retrieval sienti� siene book systems indexing researh literature journalsW1: layer heat shok mah supersoni wing bukling plate laminar hypersoniTable 5: Bipartitioning result for CisiCran



16Medline CranfieldD0: 1014 0D1: 19 1400 Medline CisiD0: 925 0D1: 108 1460 Cisi CranD0: 1453 2D1: 7 1398Table 6: Confusion Matries for MedCran All, MedCisi All and CisiCran AllMed Cisi CranD0: 966 0 0D1: 66 1458 15D2: 1 2 1385 Purity Entropy1 0.947 .211.998 .015W0: patients ells blood hormone renal aner rats ell disease lensW1: library libraries retrieval sienti� siene book systems system researh indexingW2: boundary layer heat shok mah supersoni wing pressure bukling laminarTable 7: Multipartitioning result for Classi35.2 Multipartitioning ResultsIn this setion, we show that Algorithm Multipartition gives us good results when multipleword and lusters are required. Table 7 gives the onfusion matrix, purities, entropiesof the doument lusters and the top 10 words of the assoiated word lusters. Note thatsine k = 3 in this ase, the algorithm uses ` = dlog2 ke = 2 singular vetors for o-lustering.The Yahoo K1 and Yahoo K5 data sets ontain 6 lasses of news artiles: Business,Entertainment, Health, Politis, Sports and Tehnology. Entertainment is the dominantlass ontaining 1384 douments while Tehnology ontains only 60 artiles. Hene the sizesof the various lasses are rather varied. Table 8 gives the multipartitioning result obtainedby using ` = dlog2 ke = 3 singular vetors. It is learly diÆult to reover the original lasses.However, the presene of many zeroes in the onfusion matrix is enouraging. Table 8 showsthat lusters D1 and D2 an be identi�ed with the Entertainment lass, while D4 and D5are \purely" from Health and Sports respetively. The word lusters show the underlyingonepts in the assoiated doument lusters (reall that the words are stemmed in thisexample). Table 9 shows that similar doument lustering is obtained when fewer wordsare used.Finally, Algorithm Multipartition does well on small olletions also. Table 10 showsthat even when mixing small (and random) subsets of Medline, Cisi and Cranfield ouralgorithm is able to reover these lasses. This is in stark ontrast to the spherial k-meansalgorithm that gives poor results on small doument olletions[8℄.6 Related WorkAs mentioned in Setion 1 both word and doument lustering are well-studied problems.Our work addresses the duality between doument lustering and word lustering. To thebest of our knowledge, this o-lustering problem has not been studied previously. For



17Bus Entertain Health Politis Sports TehD0: 120 82 0 52 0 57D1: 0 833 0 1 100 0D2: 0 259 0 0 0 0D3: 22 215 102 61 1 3D4: 0 0 392 0 0 0D5: 0 0 0 0 40 0
Purity Entropy.386 .741.892 .1941 0.532 .6571 01 0W0: linton ampaign senat house ourt �nan white ompani reform stokW1: septemb tv am week musi set top fridai reord debutW2: �lm emmi star hollywood award omedi �enne henderson semler keenerW3: world health new polit entertain teh sport soreboard index bizeW4: surgeri injuri undergo hospit england aord reommend twie headah heartW5: republi advan wildard mathTable 8: Multipartitioning result for Yahoo K1Bus Entertain Health Politis Sports TehD0: 120 113 0 1 0 59D1: 0 1175 0 0 136 0D2: 19 95 4 73 5 1D3: 1 6 217 0 0 0D4: 0 0 273 0 0 0D5: 2 0 0 40 0 0

Purity Entropy.410 .600.896 .186.482 .638.969 .0841 0.953 .085W0: ompani stok �nani pr busi wire quote perent industri gainW1: �lm tv emmi omedi hollywood previou entertain adult albert debutW2: presid washington bill ourt militari otob violat trade appeal seretariW3: health help pm death famili rate lead look driver peopleW4: surgeri injuri undergo hospit england reommend disov aord heart ausW5: senat linton ampaign house white �nan republin vote ommitteeTable 9: Multipartitioning results for Yahoo K5Med Cisi CranD0: 9 0 0D1: 0 10 0D2: 1 0 10 Med Cisi CranD0: 49 0 0D1: 0 50 0D2: 1 0 50 Med Cisi CranD0: 94 0 0D1: 2 100 0D2: 4 0 100Table 10: Confusion matries for Classi3 30dos, Classi3 150dos and Clas-si3 150dos



18general data matries, there is some earlier work in [17℄ but this appears to be limited tomatries with small dimensions.Our partiular method of using spetral bipartite partitioning for lustering words ordouments also appears to be new. The normalized ut riterion has been previously usedin [34℄ for image segmentation. Eigenvetors and singular vetors have been used for do-ument lustering previously, for example, the LSA-based approahes[2, 33℄, and the reentPDDP algorithm[3℄. However, the LSA methods projet doument vetors onto muh higherdimensional subspaes (100-300) and hene are omputationally prohibitive. The PDDPalgorithm is intimately related to inertial partitioning[41, 35℄ and uses the �rst prinipalomponent (PCA) to luster douments. We believe that our normalization sheme thatnaturally arises from the normalized ut riterion enables us to use just the seond left andright singular vetors for bipartitioning. When we used a di�erent normalization sheme,suh as the ones used in LSA and PDDP, our results were not as good, for example, weobtained poorer onfusion matries than in Table 6. We point out that it may be possibleto show the optimality of our spetral partitioning sheme | a variant of our tehnique hasbeen theoretially shown to give partitions that are lose to optimal for a speial lass ofgraphs, suh as planar graphs[36℄.Reently there has been some work in obtaining doument lusters by using graphpartitioning[37℄. However, this work uses a similarity graph model, where the vertiesorrespond to douments and edges orrespond to doument similarities obtained from asimilarity measure suh as osine or generalized Jaard similarity. However, these methodsan be prohibitively expensive sine just forming the similarity graph requires work that isquadrati in the number of douments.7 Future Work and ConlusionsIn this paper, we have introdued the novel idea of modeling a doument olletion as abipartite graph between words and douments. Using this model, we pose the problem ofo-lustering words and douments as a vertex partitioning problem in the bipartite graph.To solve this graph partitioning problem, we have used the spetral partitioning heuristi.We have shown that the seond left and right singular vetors of a suitably normalizedword-doument matrix give a real relaxation to the disrete optimization problem. Mul-tiple doument and word lusters may be obtained from additional singular vetors. Ourexperimental results indiate that our spetral algorithm gives globally good solutions thatare robust in the presene of noise words.The results presented in this paper are for a new algorithm. In future work, we will on-dut more detailed experiments on larger doument olletions and ompare the eÆienyand e�etiveness of our o-lustering with other doument and word lustering algorithms.To improve our spetral partitioning heuristi we plan to add the Kernighan-Lin or theFiduia-Mattheyses \smoothing"[23, 11℄. Another avenue to explore would be multivelelmethods for bipartite graph partitioning that minimize the normalized-ut riterion. Theurrent Metis software[20℄ has important drawbaks: (i) it returns almost equal sized lus-ters, (ii) it optimizes a di�erent objetive funtion and (iii) it seems to aept only integeredge-weights. For web douments, bipartite graphs based on links have been used to en-hane web searh results[24℄. As future work, we plan to ombine words and links in a
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