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Abstract

Both document clustering and word clustering are important and well-studied prob-
lems. By using the vector space model, a document collection may be represented as a
word-document matrix. In this paper, we present the novel idea of modeling the docu-
ment collection as a bipartite graph between documents and words. Using this model,
we pose the clustering problem as a graph partitioning problem and give a new spectral
algorithm that simultaneously yields a clustering of documents and words. This co-
clustering algorithm uses the second left and right singular vectors of an appropriately
scaled word-document matrix to yield good bipartitionings. In fact, it can be shown
that these singular vectors give a real relaxation to the optimal solution of the graph
bipartitioning problem. We present several experimental results to verify that the re-
sulting co-clustering algorithm works well in practice and is robust in the presence of
noise.

1 Introduction

Clustering is the grouping together of similar objects[18]. Given a collection of unlabeled
documents, document clustering can help in organizing the collection thereby facilitating
future navigation and search. Document clustering is a widely studied problem and many
algorithms have been proposed for this task.

A starting point for applying clustering algorithms to document collections is to create
a vector space model, alternatively known as a bag-of-words model [32]. The basic idea is
(a) to extract unique content-bearing words from the set of documents treating these words
as features and (b) to then represent each document as a vector of certain weighted word
frequencies in this feature space. Thus the entire document collection may be treated as a
word-by-document matriz A whose rows correspond to words and columns to documents.
A non-zero entry in A, say A;; indicates the presence of word ¢ in document j, while a zero
entry indicates an absence. Typically, a large number of words exist in even a moderately



sized set of documents, for example, in one of our test cases we use 4303 words in 3893
documents. However, each document typically contains only a small number of words and
hence, A is typically very sparse with almost 99% of the matrix entries being zero.

Using such a basic representation where words are features, many document clustering
algorithms have been proposed. The various algorithms differ in the mathematical models
they use and in their efficiency and scalability. The size of the collection to be clustered
is an important variable. Clustering a large portion of the entire World Wide Web (such
as in www.yahoo.com) is a much different proposition than clustering the smaller document
collection returned by a web search engine (www.northernlight.com).

Existing document clustering methods include agglomerative clustering[40, 39, 29], the
partitional k-means algorithm[8], projection based methods including LSA[2, 33], self-
organizing maps[25, 21| and multidimensional scaling[27, 22]. For computational efficiency
required in on-line clustering, hybrid approaches have been considered in[7, 19]. Recently
there has been a flurry of activity in document clustering[3, 8, 30, 42]. Graph-theoretic
techniques have also been considered for clustering; many earlier hierarchical agglomerative
clustering algorithms[10] and some recent work[4, 37] model the similarity between docu-
ments by a graph whose vertices correspond to documents and weighted edges or hyperedges
give the similarity between the vertices. A major drawback of these methods is that the
work required just to form the graph is quadratic in the number of documents; thus these
methods are computationally prohibitive for large document collections.

Words may be clustered on the basis of the documents in which they co-occur; such
clustering has been used in the automatic construction of a statistical thesaurus and in
the enhancement of queries[6]. The underlying assumption is that words that typically
appear together should be associated with similar concepts. Word clustering has also been
profitably used in the automatic classification of documents, see [1]. A detailed treatment
of some word clustering techniques is given in [38].

In this paper, we consider the problem of simultaneous or co-clustering of documents
and words. Most of the existing work is on one-way clustering, i.e., either document or
word clustering. A common theme among existing algorithms is to cluster documents
based upon their word distributions while word clustering is determined by co-occurrence
in documents. This points to a duality between document and term clustering. We pose
this dual clustering problem in terms of finding minimum cut vertex partitions in a bipartite
graph between documents and words. Finding a globally optimal solution to such a graph
partitioning problem is NP-complete; however, we show that the second left and right
singular vectors of a suitably normalized word-document matrix give an optimal solution
to the real relaxation of this discrete optimization problem. Based upon this observation,
we present a spectral algorithm that simultaneously partitions documents and words, and
demonstrate that the algorithm gives good global solutions.

We now give a brief outline of the paper. Section 2 introduces the bipartite graph model
that we use for representing a document collection, and poses the co-clustering problem as
one of finding the minimum cut in the bipartite graph. Constraints on the sizes of the
clusters make this a graph partitioning problem which is known to be NP-complete. In
Section 3, we introduce the spectral graph partitioning heuristic and show that the second
eigenvector of a generalized eigenvalue problem gives the optimal solution to a real relaxation
of the graph bipartitioning objective. In Section 4, we show that for the bipartite case, the



dual clustering can be obtained from the second left and right singular vectors of a suitably
normalized word-document matrix. Section 4.2 gives an algorithm that uses additional
singular vectors to directly yield multiple document and word clusters. In Section 5, we
present detailed experimental results and demonstrate that our co-clustering algorithm gives
good solutions in practice. We discuss related work in Section 6. Finally, in Section 7 we
present our conclusions and discuss future work.

A word about notation: small-bold letters such as @, w, p will denote column vectors,
capital-bold letters such as A, M, B will denote matrices, and script letters such as V, D, W
will usually denote vertex sets.

2 Bipartite Graph Model

First we introduce some relevant terminology about graphs. A graph G = (V, E) is a set
of vertices V = {1,2,... ,|V|} and a set of edges {i,j} each with edge weight E;;. The
adjacency matrix of a graph M is defined as

ar — { By, if thereis an edge {i,j},
10, otherwise.

Given a partitioning of the vertex set V into two subsets V; and Vs, the cut between
them will play an important role in this paper. Formally,

Cut(Vl,V2) = Z Mij. (2.1)

The definition of cut is easily extended to k vertex subsets,

cut(Vy,Va, ..., Vi) = Y _ cut(Vy, Vj). (2.2)

1<J

We now introduce our bipartite graph model for representing a document collection.
An undirected bipartite graph is a triple G = (D, W, E) where W = {w;,wa, ... ,wp} and
D = {di,dy,... ,d,} are two sets of vertices and E is the set of edges {{w;,d;} : w; €
W,d; € D}. In our case, D corresponds to the set of documents and W corresponds to
the set of words contained in the documents. There is an edge {wj;,d;} if word w; occurs
in document d;; note that the edges are undirected. In this bipartite model, there are no
edges between words or between documents.

An edge signifies an association between a document and a word. By putting positive
weights on the edges, we can capture the degree of this association. One possibility is
to have edge-weights equal term frequencies, i.e., the number of times a word occurs in
a document. In fact, most of the term-weighting formulae used in information retrieval
may be used as edge-weights, see [31, 32, 26] for more details. One popular term-weighting
scheme is to have the edge-weight E;; associated with the edge {w;,d;} be

D
Eij = tij X IOg <||,1)||>,
[




where t;; is the number of times word w; occurs in document d;, |D| = n is the total number
of documents and |D;| is the number of documents that contain word w;.

Consider the m xn word-by-document matrix A such that A;; equals the edge-weight E;;.
Then it can easily be seen that the adjacency matrix of the bipartite graph may be written
as

M- o]

AT o
where we have ordered the vertices such that the first m vertices index the words while the
last n index the documents.

We now show that the cut between different vertex subsets, as defined in (2.1) and (2.2),
emerges naturally from our formulation of word and document clustering.

2.1 Simultaneous Clustering

A basic premise behind our algorithm is the following observation.

Duality of word & document clustering: Word clustering induces document clustering
while document clustering induces word clustering.

Given the document clusters Dy, Ds, ..., Dy (U;D; = D and D; N D; = ¢,i # j), the
corresponding word clusters Wi, Wa,... , Wy (UiW; = W and W;NW; = ¢,i # j) may be
determined as follows. A given word w; belongs to the word cluster W,, if its association
with the document cluster D,, is greater than its association with any other document
cluster. Using our graph model, a natural measure of the association of a word with a
document cluster is the sum of the edge-weights to all documents in the cluster. Thus,

Wm: w;j : ZA”Z EAU’ for all l:1,2,...,k
§€Dm i€Dy

Thus each of the word clusters is determined by the document clustering. Similarly given
a word clustering Wi, Wa, ... , W, the induced document clustering is given by

D = (dj: > Ay > Y Aij, forall [=12,...k
icWnm ieW,

Note that this characterization is recursive in nature since a given document clustering
determines a word clustering, which in turn determines a (better) document clustering.
Clearly the “best” word and document clustering would correspond to a partitioning of
the graph such that the crossing edges between partitions have minimum weight. This is
achieved when

cutW1 UD1, Wa UDg, ... WrUDy) = min cut(V1,Va, ..., Vg)

1,Vz,... ,Vk

where V1, Vs, ..., Vi is any partitioning of the bipartite graph into k£ vertex subsets.



Note that the above paragraph also hints at an “alternating partitioning” algorithm.
However, such a formulation is too naive and typically leads to unbalanced cluster sizes.
Indeed, the minimum cut of zero is obtained when all the vertices belong to one partition
or cluster. Thus we need a mechanism to constrain the size of each cluster. In the next
section, we pose an objective function which favors clusters that are “balanced” in addition
to being “well-separated”.

3 Graph Partitioning

Given a graph G = (V, E), the classical graph bipartitioning or bisection problem is to find
nearly equally-sized vertex subsets V3, V5 of V such that

cut(V],V5) = min cut(V1, V).

1,V2

The graph partitioning problem is very important and arises in various applications, such as
circuit partitioning and VLSI layout, telephone network design, load balancing in parallel
computation, reordering sparse matrices, etc. However it is well known that this problem is
NP-complete[13]. But many heuristic methods exist that are able to find a local minimum to
this problem. Most effective among the earlier heuristics are the Kernighan-Lin(KL)[23] and
the Fiduccia-Mattheyses(FM)[11] algorithms. However, these algorithms employ heuristics
that search in the local vicinity of given initial partitionings and hence, have a tendency to
get stuck in local minima.

3.1 Spectral Graph Bipartitioning

Spectral graph partitioning is another effective heuristic that was introduced by Hall[16],
Donath & Hofmann[9] and Fiedler in the early 1970s[12], and popularized in 1990 by Pothen,
Simon and Liou[28]. The spectral partitioning heuristic uses the second eigenvector of an
associated matrix for bipartitioning the graph and has been found to give good global
solutions that are better than the solutions obtained by the KL and FM algorithms.

We now introduce the spectral partitioning heuristic. Suppose the graph G = (V, E)
has n vertices and m edges. The incidence matriz of G, denoted by Ig is an n X m matrix
that has one row for each vertex and one column for each edge. The column corresponding
to edge {7, j} of I is zero except for the i-th and j-th entries, which are \/E_” and —\/ET]-
respectively, where E;; is the corresponding edge weight. Note that there is some ambiguity
in this definition, since the positions of the positive and negative entries seem arbitrary.
However this ambiguity will not be important to us.

Definition 1 The Laplacian matrizc L = Lg of G is an n X n symmetric matric, with one
row and column for each vertex, such that

>k Bik, =7
Lij = —Eij, i # j and there is an edge {i,j} (3.3)
0 otherwise.

Theorem 1 The Laplacian matrizx L = Lg of the graph G has the following properties.



. L =D— M, where M is the adjacency matriz and D is the diagonal “degree” matric

with Di; = >, By
L= IgIgT,

L is a symmetric positive semi-definite matric. Thus all eigenvalues of L are real and
non-negative, and L has a full set of n real and orthogonal eigenvectors.

Let e be the vector of all ones, i.e., e = [1,1,... ,1]7. Then Le = 0. Thus 0 is an
eigenvalue of L and e is the corresponding eigenvector.

If the graph G has ¢ connected components then L has c eigenvalues that equal 0.
For any vector x,
o Z Ejij(z; — ;)%
{i,j}cE
For any vector x, and scalars o and 3

(az + Be)' L(ax + Be) = o*z” L. (3.4)

Proof.

1.

2.

Part 1 follows from the definition of L.

This is easily seen by multiplying Ig and Ig?.

. Since L = IgIa”,

!l L = chIgIgaz =yly >0, forall x.

This implies that L is symmetric positive semi-definite. All such matrices have non-
negative real eigenvalues and a full set of n orthogonal eigenvectors[14].

. Given any vector ¢, Lz = Ig(IgTx). Let k be the row of IgT x that corresponds to

the edge {i,7}, then it is easy to see that

(Ic"x)r = Eij(xi — ;) (3.5)

and so when = e, Le = 0.

. See [12].
. This follows from equation (3.5).

. This follows from part 4 above. ad



For the rest of the paper, we will assume that the graph G consists of exactly one
connected component, i.e., the second smallest eigenvalue of the Laplacian is nonzero (see
part 5 of the above theorem). We now see how the eigenvalues and eigenvectors of L give
us information about partitioning of the graph. Given a bipartitioning of V into V; and Va
(V1 UVs =V), let us define the partition vector p that captures this division,

o +1, ©€Vq,
n={ 10w @0

The following theorem shows that the Rayleigh Quotient of p with L is proportional to the
cut induced by the partition vector p.

Theorem 2 Given the Laplacian matrix L of G and a partition vector p, the Rayleigh
Quotient

p'Lp
pi'p

1
= — -4 cut(Vq,V2).
n

Proof. Clearly p’p = n. By part 6 of Theorem 1,

p'Lp= > Eyjpi—p;)°
{i.i}eE

Thus edges within V; or Vs, do not contribute to the above sum, while each edge between
V1 and Vy contributes a value of 4 times the edge-weight. O

3.2 Eigenvectors as real-valued optimal partition vectors

Clearly, by Theorem 2, the cut is minimized by the trivial solution when all p; are either
-1 or +1. Informally, the cut captures the strength of the association between different
partitions. We need an objective function that in addition to the need for small cut values
also captures the need for more “balanced” clusters.

We now present such an objective function. Let each vertex i be associated with a
positive weight, denoted by weight(i), and let W be the diagonal matrix of such weights,

| weight(i), i=j,

For any subset of vertices, V;, define its weight to be
weight (V) = ) weight(i) = Y Wi
ieV; ieV;

We will consider two subsets V; and Vs to be “balanced” if their respective weights are
nearly equal. The following objective function favors balanced clusters,

cut(V1,Vs2) = cut(V1,Vs)

QW1 V) = weight(V1)  weight(Va)

(3.8)



Given two different partitionings with the same cut value, the above objective function value
is smaller for the more balanced partitioning. Thus minimizing Q(V1,V3) favors partitions
that are balanced in addition to having a small cut value.

We now show that the Rayleigh Quotient of the following generalized partition vector q
equals the above objective function value.

Lemma 1 Giwven a graph G, let L and W be its Laplacian and vertex weight matrices
respectively. Let m; = weight(V1) and gy = weight(Va). Then the generalized partition
vector q with elements

+ Z—i, 1 €V,

Z—;, 1 € Vo,

qi =

satisfies
qg*We = 0, and ¢"Wq = weight(V).
Proof. Let y = We, then y; = weight(i) = W;;. Then

dWe = q'y = quy,

(3
= / e Z weight (i) — , / Z weight(7)
zEV

zeVz
= \/@771—\/@772 =0
m 2
Similarly we can show that ¢TWq = Y1 | Wiiq2 = m1 + n2 = weight()). O

Theorem 3 Using the notation of Lemma 1,

q'Lq cut(V1,V2) = cut(Vy,V2)

qg"Wq  weight(V1)  weight(Vs)

Proof. It is easy to show that the generalized partition vector ¢ may be written as

_ 771+772p M2 — M o
2y/mn2 2\/mne2

where p is the partition vector of (3.6). Using part 7 of Theorem 1, we see that

(m + 772)2

qg"Lg = 1
7172

plLp.

Substituting the values of p? Lp and q¥ Wq, from Theorem 2 and Lemma, 1 respectively,

proves the result. O
Thus to find the globally minimum solution of the objective function (3.8), we can

restrict our attention to generalized partition vectors of the form in Lemma 1. Even though

this problem is still NP-complete, it is possible to find a real relaxation to this discrete

optimization problem.



Theorem 4 The problem

T

L
min qT q , subject to g We =0,
q#0 ¢ Wq

ts solved when q is the eigenvector corresponding to the second smallest eigenvalue Aa of the
generalized eigenvalue problem,

Lz = \Wz. (3.9)

Proof. Thisis a standard result from linear algebra[14]. Note that e is the first eigenvector
(corresponding to A = 0) of (3.9) and thus the condition g7 We = 0 constrains the search
for the optimal g to be over all vectors that are W-orthogonal to the first eigenvector. 0O

Theorems 3 and 4 imply that the second eigenvector of (3.9) provides a real approxima-
tion to the optimal generalized partition vector. Thus the following corollary follows.

Corollary 1 The second smallest eigenvalue of (3.9), A2, gives a lower bound on the ob-
jective function value in (3.8), i.e.,

cut(V1,Vs2) = cut(V1,Vs)
weight(V1) = weight(Vs)

OV, V2) = > Ao

3.3 Ratio-cut and Normalized-cut objectives

Thus far we have not specified the particular choice of vertex weights in (3.7). A simple
choice is to have weight(7) = 1 for all vertices i. This leads to the ratio-cut objective which
has been considered in [5, 15] (for circuit partitioning),

cut(V1,V2) = cut(Vy,Vs)
V1l Vol

Ratio-cut(V1,Vs2) =

An interesting choice is to make the weight of each vertex equal to the sum of the weights
of edges that are incident on it, i.e.,

Welght(l) = ZEzk
k

This leads to the normalized-cut criterion that was used in [34] for image segmentation.
Note that for this choice of vertex weights, the vertex weight matrix W equals the degree
matrix D, and

weight(V;) = cut(V1, V) + within(V;), ¢ =1,2,

where within();) is the sum of the weights of edges that have both end-points in V;. Then
the normalized-cut objective function may be expressed as

cut(V1,Vs) n cut(V1,V2)
Dievy 2k Bk ey, 2k B
= 2-8V1,V2),
within(Vy)  within(Vs)
weight(V1) * weight(Vs)

N(Vi,V2) =

where S(V1,V2) =




10

Note that S(V1,V2) measures the strengths of associations within each partition. Thus
minimizing the normalized-cut is equivalent to maximizing the proportion of edge weights
that lie within each partition.

4 Spectral Bipartite Graph Partitioning with the SVD

In the previous section, we saw that the second eigenvector of the generalized eigenvalue
problem,

Lz = ADz, (4.10)

provides a real relaxation to the discrete optimization problem of finding the minimum
normalized cut. In this section, we present algorithms to find document and word clusterings
using our bipartite graph model.

In the bipartite case,

[ Dy -A [Dy o0
b [ B Al wan-[2 2]
where Dy and D32 are diagonal matrices such that
Dy (i,i) = Z A;j  (sum of edge-weights incident on word i),
J
Dy(j,5) = Z A;j  (sum of edge-weights incident on document j).
i
Thus (4.10) may be written as
D1 —A r . D1 0 xTr
S MR 1)

= Dixz— Ay = M\D;z,
and — ATz + Dy = ADay.

We assume that each document contains at least one word and each word is contained in at
least one document. Thus both D; and D2 are nonsingular and we can rewrite the above
equations as

D11/2.’L' — D171/2Ay = )\D11/2.’L',
—D, 2ATz + D%y = AD,Y%y.

Letting u = D12z and v = D21/2y, and after a little algebraic manipulation, we get
D; Y2AD; Y20 = (1 = Au, and Dy Y2ATD; V24 = (1 - Mw.

These are precisely the equations that define the singular value decomposition (SVD) of
the normalized matrix A, = D; Y2ADy /2. In particular, 4 and v are the left and
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right singular vectors respectively, while (1 — A) is the corresponding singular value. Thus
instead of computing the eigenvector of the second (smallest) eigenvalue of (4.11), we can
compute the left and right singular vectors corresponding to the second (largest) singular
value of Ay,

Apva =oous,  ApTus = 09, (4.12)

where g9 = 1 — \2. Computationally, working on A,, is superior since A, is of size w X d
while the matrix L is of the larger size (w 4+ d) x (w + d).

The right singular vector vo will give us a bipartitioning of documents while the left sin-
gular vector uy will give us a bipartitioning of the words. By examining the relations (4.12)
it is clear that this solution agrees with our intuition that a partitioning of documents should
induce a partitioning of words, while a partitioning of words should imply a partitioning of
documents.

4.1 The Bipartitioning Algorithm

The singular vectors us and vy of A,, give a real approximation to the discrete optimization
problem of minimizing the normalized cut. Given us and v» the key task is to extract the
optimal partition from these vectors.

The optimal generalized partition vector of Lemma 1 is two-valued. Thus our strategy
is to look for a bi-modal distribution in the values of us and vs. Let mq and mo denote the
bi-modal values that we are looking for. From the previous section, the second eigenvector

of L is given by
D1—1/2u2
zy = . 4.13
2 [ D2_1/2v2 ( )
One way to approximate the optimal bipartitioning is by the assignment of z2(i) to the
bi-modal values m; (j = 1,2) such that the following sum-of-squares criterion is minimized,

2
Yo > (=) —my)*
j=1 Zz(i)emj
The above is exactly the objective function that the classical k-means algorithm tries to

minimize[10]. Thus we can use the following algorithm to co-cluster words and documents
into two clusters:

Algorithm Bipartition

1. Given A, form A,, = D; Y2AD, 12,

2. Compute the second singular vectors of A, uz and vs
and form the vector z3 as in (4.13).

3. Run the k-means algorithm on the 1-dimensional data z3 to obtain
the desired bipartitioning.

The surprising aspect of the above algorithm is that we run k-means simultaneously
on the reduced dimensional representations of both words and documents to get the co-
clustering. In Section 5.1 we see that this algorithm yields good results in practice.
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4.2 The Multipartitioning Algorithm

We can adapt our bipartitioning algorithm for the more general problem of finding k word
and document clusters. One possible way to solve this multipartitioning problem is to use
Algorithm Bipartition in a recursive manner. However, we favor a more direct approach.
Just as the second singular vectors contain bi-modal information, we have observed that the
collection of the ¢ = [log, k| singular vectors us, us, ... ,ups 1, and va,vs,... ,vepy oOften
contain k-modal information about the data set. Thus we can form the /-dimensional data
set

D, VU
Z = [ D;_1/2V ] (4.14)

where
U = [u,us3,... ,up11], and V = [vg,v3,...,v041], €= [logyk].

From this reduced-dimensional data set, we can look for the best k-modal fit to the /-
dimensional points my, ... ,m}, by assigning each /-dimensional row, Z(7), to m; such that
the sum-of-squares

k
o> Nz —my)?
J=1 Za(i)em;

is minimized. This can again be done by the classical k-means algorithm. Thus we obtain
the following algorithm.

Algorithm Multipartition(k)

1. Given A, form A,, = D1_1/2AD2_1/2.

2. Compute ¢ = [log, k] singular vectors of Ay, w2, us, ... us11 and vy, v3,... V41
and form the matrix Z as in (4.14).

3. Run the k-means algorithm on the /-dimensional data Z to obtain
the desired k-way multipartitioning.

5 Experimental Results

For some of our experimental results, we have used the popular MEDLINE, Ci1sI, and CRAN-
FIELD document sets. MEDLINE consists of 1033 abstracts from medical journals, Cis1
consists of 1460 abstracts from information retrieval papers, while CRANFIELD consists
of 1400 abstracts from aeronautical systems papers. These document collections can be
downloaded from ftp://ftp.cs.cornell.edu/pub/smart.

For testing Algorithm Bipartition, we created data sets that are a mixture of two of
these three collections. For example, we created MEDCRAN which contains all documents
in the MEDLINE and CRANFIELD collections. In creating the word-document matrices for
these data sets, we typically removed stop words, and words occurring in less than 0.2%



13

Name Description
MEDCRAN MEDLINE & CRANFIELD: words occurring in < .2% and > 15%

of documents are removed
MEDCRAN_ALL MEDLINE & CRANFIELD: all words (including stop words) are included
MEDCIsI MEDLINE & CisI: words occurring in < .2% and > 15%

of documents are removed
MEDCISI_ALL MEDLINE & Cisl: all words (including stop words) are included
CRrANCisI CRANFIELD & CisI: words occurring in < .2% and > 15%

of documents are removed
CRANCISI_ALL CRANFIELD & CisI: all words (including stop words) are included
CLAssiCc3 MEDLINE, CRANFIELD & Cis1: words occurring in < .2% and > 15%

of documents are removed
Crassic3_30pocs | MEDLINE, CRANFIELD & CisI: words occurring in < .2% and > 15%
of documents are removed
Crassic3_150p0cs | MEDLINE, CRANFIELD & CisI: words occurring in < .2% and > 15%
of documents are removed
Crassic3_300pocs | MEDLINE, CRANFIELD & CisI: words occurring in < .2% and > 15%
of documents are removed

YAHOO_K5H Reuters News Articles from Yahoo: words are stemmed and heavily
pruned
YAHOO K1 Reuters News Articles from Yahoo: words are stemmed and only stop

words are pruned

Table 1: Description of the data sets

and greater than 15% of the documents. Most words occur very infrequently and so, this
pruning step drastically reduces the number of words. For example, in MEDCRAN our
pruning strategy removes 12120 out of a total of 17162 words. To show that our algorithms
are robust in the presence of large number of words and noise words, we also used word-
document matrices obtained by including all words, even stop words. Details on all our test
collections are given in Tables 1 and 2.

For testing Algorithm Multipartition, we created the CLASSIC3 data set by mixing to-
gether MEDLINE, CRANFIELD and CISI which gives a total of 3893 documents. To show
that our algorithm works well on small data sets, we also created subsets of CLASSIC3 with
30, 150 and 300 documents respectively.

Our final data set was used in [3] and is a collection of 2340 Reuters news articles
downloaded from Yahoo in October 1997. The news articles are from 6 categories: 142 from
Business, 1384 from Entertainment, 494 from Health, 114 from Politics, 141 from Sports
and 60 news articles from Technology. Both data sets were preprocessed by eliminating stop
words and HTML tags and words were stemmed using Porter’s algorithm[3]. The data set
YAHOO_K5 contains 1458 words while YAHOO_K1 includes all 21839 words obtained after
removing stop words. See Tables 1 and 2 for more details.
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Name # Documents | # Words | # Nonzeros in A
MEDCRAN 2463 5042 117987
MEDCRAN_ALL 2463 17162 224325
MEDCISI 2493 5447 109119
MEDCISI_ALL 2493 19194 213453
CrANCIsI 2860 4292 132989
CRANCISI_ALL 2860 14977 257762
CLAssIC3 3893 4303 176347
CLASSIC3_ALL 3893 22628 347770
CrAssic3_30D0Cs 30 1073 1585
CLAssic3_150D0ocs 150 3652 7960
CrAssic3_300Docs 300 9b77 16077
YAHOO_K5H 2340 1458 237969
YAaHOO K1 2340 21839 349792

Table 2: Details of the word-document matrices

5.1 Bipartitioning Results

In this section, we present bipartitioning results on the MEDCRAN, MEDCISI and CISICRAN
collections. Since we know the “true” class label for each document, the confusion matrix is
one way to capture the goodness of document clustering. In addition, we use the measures
of purity and entropy. Suppose we are given c classes (true class labels) while the clustering
algorithm produces k clusters. Cluster D;’s purity can be defined as

1 .
P(D;) = —max(n]”),
J

where n; = |D;| and ng-z) is the number of documents in D; that belong to class ¢, i =
1,...,c. Each cluster may contain samples from different classes. Purity gives the ratio
of the dominant class size in the cluster to the cluster size itself. High purity means that
the cluster is a “pure” subset of the dominant class. Additionally, we also use entropy as a
quality measure, which is defined as follows:

Entropy is a more comprehensive measure than purity. It considers the distribution of
classes in a cluster. Note that we have normalized entropy to take values between 0 and 1.
An entropy value near 0 means the cluster is comprised entirely of 1 class, while an entropy
value near 1 is bad since it implies that the cluster contains a uniform mixture of classes.
Table 3 gives the results of applying Algorithm Bipartition to the MEDCRAN data set.
The confusion matrix at the top left of this table shows that the the document cluster Dy
consists entirely of the MEDLINE collection, while D; can clearly be identified with CRAN-
FIELD. As a result, the purities of these clusters are nearly 1 while the entropies are close
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MEDLINE CRANFIELD Purity Entropy
Dy: 1026 0 1 0
Ds: 7 1400 995 .045

Wy: patients cells blood children hormone cancer renal rats cell growth
Wi: shock heat supersonic wing transfer buckling laminar plate hypersonic jet

Table 3: Bipartitioning result for MEDCRAN

MEDLINE Cist  Purity Entropy
Dy: 970 0 1 0
Dy: 63 1460 .959 .248

Wy: cells patients blood hormone renal rats cancer cell lens dna

Wi: libraries retrieval scientific research science systems book computer indexing journals

Table 4: Bipartitioning result for MEDCISI

to 0. The bottom of Table 3 displays the “top” 10 words in each of the word clusters W
and W;. The top words are those whose internal edge weights are the greatest. Note that
since Algorithm Bipartition co-clusters the documents and words, W; is the word cluster
associated with the document cluster D;. It should be observed that the top 10 words
clearly convey the “concept” of the associated document cluster.

Similarly, Tables 4 and 5 show that good bipartitions are obtained using our spectral
algorithm on the MEDCISI and CISICRAN data sets. Algorithm BIPARTITION uses the
global spectral heuristic of using singular vectors which makes it robust in the presence
of “noise” words. To show this, we ran the algorithm on the data sets obtained without
removing even the stop words. The confusion matrices of Table 6 show that the algorithm
is able to recover the original classes despite the presence of stop words. Note that the
MEDLINE clusters are 100% pure in all cases.

Cisi CRAN  Purity Entropy
Dy: 1457 12 992 .068
Dy: 3 1388 .998 .022

Wo: libraries retrieval scientific science book systems indexing research literature journa

Wi: layer heat shock mach supersonic wing buckling plate laminar hypersonic

Is

Table 5: Bipartitioning result for CISICRAN
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MEDLINE CRANFIELD MEDLINE CIsI Cisti CRAN
Dy: 1014 0 Dy: 925 0 Dy: 1453 2
Dq: 19 1400 Dq: 108 1460 Dq: 7 1398

Table 6: Confusion Matrices for MEDCRAN_ALL, MEDCISI_ALL and CISICRAN_ALL

Mep Cisti CrRAN  Purity Entropy

Dy: 966 0 0 1 0
Dy: 66 1458 15 947 211
Dsy: 1 2 1385 998 015

Wy: patients cells blood hormone renal cancer rats cell disease lens
Wi: library libraries retrieval scientific science book systems system research indexing
Wa: boundary layer heat shock mach supersonic wing pressure buckling laminar

Table 7: Multipartitioning result for CLASSIC3

5.2 Multipartitioning Results

In this section, we show that Algorithm Multipartition gives us good results when multiple
word and clusters are required. Table 7 gives the confusion matrix, purities, entropies
of the document clusters and the top 10 words of the associated word clusters. Note that
since k = 3 in this case, the algorithm uses ¢ = [log, k| = 2 singular vectors for co-clustering.

The YAHOO_K1 and YAHOO_Kb5 data sets contain 6 classes of news articles: Business,
Entertainment, Health, Politics, Sports and Technology. Entertainment is the dominant
class containing 1384 documents while Technology contains only 60 articles. Hence the sizes
of the various classes are rather varied. Table 8 gives the multipartitioning result obtained
by using £ = [log, k| = 3 singular vectors. It is clearly difficult to recover the original classes.
However, the presence of many zeroes in the confusion matrix is encouraging. Table 8 shows
that clusters D1 and Dy can be identified with the Entertainment class, while D4 and Ds
are “purely” from Health and Sports respectively. The word clusters show the underlying
concepts in the associated document clusters (recall that the words are stemmed in this
example). Table 9 shows that similar document clustering is obtained when fewer words
are used.

Finally, Algorithm Multipartition does well on small collections also. Table 10 shows
that even when mixing small (and random) subsets of MEDLINE, C1sI and CRANFIELD our
algorithm is able to recover these classes. This is in stark contrast to the spherical k-means
algorithm that gives poor results on small document collections[§].

6 Related Work

As mentioned in Section 1 both word and document clustering are well-studied problems.
Our work addresses the duality between document clustering and word clustering. To the
best of our knowledge, this co-clustering problem has not been studied previously. For
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Bus Entertain Health Politics Sports Tech Purity Entropy
Dy: 120 82 0 52 0 57 .386 741
Di: 0 833 0 1 100 0 .892 194
Dsy: 0 259 0 0 0 0 1 0
Ds: 22 215 102 61 1 3 532 .657
Dy: 0 0 392 0 0 0 1 0
Ds: 0 0 0 0 40 0 1 0
Wp: clinton campaign senat house court financ white compani reform stock
Wi: septemb tv am week music set top fridai record debut
Ws: film emmi star hollywood award comedi fienne henderson semler keener
Ws:  world health new polit entertain tech sport scoreboard index bize
Wy: surgeri injuri undergo hospit england accord recommend twice headach heart
Ws:  republi advanc wildcard match
Table 8: Multipartitioning result for YAHOO_K1
Bus Entertain Health Politics Sports Tech  Purity Entropy
Do: 120 113 0 1 0 59 410 .600
Di: 0 1175 0 0 136 0 .896 .186
Dsy: 19 95 4 73 5 1 482 .638
Ds: 1 6 217 0 0 0 .969 .084
Dy: 0 0 273 0 0 0 1 0
Ds: 2 0 0 40 0 0 .953 .085
Wy: compani stock financi pr busi wire quote percent industri gain
Wi:  film tv emmi comedi hollywood previou entertain adult albert debut
Wa: presid washington bill court militari octob violat trade appeal secretari
Wgs: health help pm death famili rate lead look driver people
Wy: surgeri injuri undergo hospit england recommend discov accord heart caus
Ws:  senat clinton campaign house white financ republicn vote committee
Table 9: Multipartitioning results for YAHOO_K5
Mep Cist CRAN Mep Cist CRAN Mep Cist CRAN
Dy: 9 0 0 || Deo: 49 0 0 || Do: 94 0 0
Dy: 0 10 01| Dy 0 50 01| Dy: 2 100 0
Ds: 1 0 10 | | Do: 1 0 50 || Da: 4 0 100
Table 10: Confusion matrices for CLASSIC3_30D0CS, CLASSIC3_150D0Cs and CLAS-

sic3_150Dpocs
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general data matrices, there is some earlier work in [17] but this appears to be limited to
matrices with small dimensions.

Our particular method of using spectral bipartite partitioning for clustering words or
documents also appears to be new. The normalized cut criterion has been previously used
in [34] for image segmentation. Eigenvectors and singular vectors have been used for doc-
ument clustering previously, for example, the LSA-based approaches|2, 33|, and the recent
PDDP algorithm(3]. However, the LSA methods project document vectors onto much higher
dimensional subspaces (100-300) and hence are computationally prohibitive. The PDDP
algorithm is intimately related to inertial partitioning[41, 35] and uses the first principal
component (PCA) to cluster documents. We believe that our normalization scheme that
naturally arises from the normalized cut criterion enables us to use just the second left and
right singular vectors for bipartitioning. When we used a different normalization scheme,
such as the ones used in LSA and PDDP, our results were not as good, for example, we
obtained poorer confusion matrices than in Table 6. We point out that it may be possible
to show the optimality of our spectral partitioning scheme — a variant of our technique has
been theoretically shown to give partitions that are close to optimal for a special class of
graphs, such as planar graphs[36].

Recently there has been some work in obtaining document clusters by using graph
partitioning[37]. However, this work uses a similarity graph model, where the vertices
correspond to documents and edges correspond to document similarities obtained from a
similarity measure such as cosine or generalized Jaccard similarity. However, these methods
can be prohibitively expensive since just forming the similarity graph requires work that is
quadratic in the number of documents.

7 Future Work and Conclusions

In this paper, we have introduced the novel idea of modeling a document collection as a
bipartite graph between words and documents. Using this model, we pose the problem of
co-clustering words and documents as a vertex partitioning problem in the bipartite graph.
To solve this graph partitioning problem, we have used the spectral partitioning heuristic.
We have shown that the second left and right singular vectors of a suitably normalized
word-document matrix give a real relaxation to the discrete optimization problem. Mul-
tiple document and word clusters may be obtained from additional singular vectors. Our
experimental results indicate that our spectral algorithm gives globally good solutions that
are robust in the presence of noise words.

The results presented in this paper are for a new algorithm. In future work, we will con-
duct more detailed experiments on larger document collections and compare the efficiency
and effectiveness of our co-clustering with other document and word clustering algorithms.
To improve our spectral partitioning heuristic we plan to add the Kernighan-Lin or the
Fiduccia-Mattheyses “smoothing”[23, 11]. Another avenue to explore would be multivelel
methods for bipartite graph partitioning that minimize the normalized-cut criterion. The
current Metis software[20] has important drawbacks: (i) it returns almost equal sized clus-
ters, (ii) it optimizes a different objective function and (iii) it seems to accept only integer
edge-weights. For web documents, bipartite graphs based on links have been used to en-
hance web search results[24]. As future work, we plan to combine words and links in a
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uniform manner for clustering web documents.

Our main contribution in this paper is the bipartite graph model for text collections
which we have successfully applied to co-clustering. In the future, we will apply this bipartite
model to other text mining problems, such as, text classification, better query retrieval,
etc. Some fascinating aspects of this bipartite graph are that the vertex degrees for the
words follow the Zipf distribution[43], and subgraphs appear to have a self-similar or fractal
nature[8]. As future work, we intend to study various properties of these graphs. In addition,
we feel that our co-clustering algorithm will be useful in many other applications, such as, in
co-clustering DNA microarray and gene expression data, partitioning rectangular matrices
for load balancing, etc.
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