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tBoth do
ument 
lustering and word 
lustering are important and well-studied prob-lems. By using the ve
tor spa
e model, a do
ument 
olle
tion may be represented as aword-do
ument matrix. In this paper, we present the novel idea of modeling the do
u-ment 
olle
tion as a bipartite graph between do
uments and words. Using this model,we pose the 
lustering problem as a graph partitioning problem and give a new spe
tralalgorithm that simultaneously yields a 
lustering of do
uments and words. This 
o-
lustering algorithm uses the se
ond left and right singular ve
tors of an appropriatelys
aled word-do
ument matrix to yield good bipartitionings. In fa
t, it 
an be shownthat these singular ve
tors give a real relaxation to the optimal solution of the graphbipartitioning problem. We present several experimental results to verify that the re-sulting 
o-
lustering algorithm works well in pra
ti
e and is robust in the presen
e ofnoise.1 Introdu
tionClustering is the grouping together of similar obje
ts[18℄. Given a 
olle
tion of unlabeleddo
uments, do
ument 
lustering 
an help in organizing the 
olle
tion thereby fa
ilitatingfuture navigation and sear
h. Do
ument 
lustering is a widely studied problem and manyalgorithms have been proposed for this task.A starting point for applying 
lustering algorithms to do
ument 
olle
tions is to 
reatea ve
tor spa
e model, alternatively known as a bag-of-words model [32℄. The basi
 idea is(a) to extra
t unique 
ontent-bearing words from the set of do
uments treating these wordsas features and (b) to then represent ea
h do
ument as a ve
tor of 
ertain weighted wordfrequen
ies in this feature spa
e. Thus the entire do
ument 
olle
tion may be treated as aword-by-do
ument matrix A whose rows 
orrespond to words and 
olumns to do
uments.A non-zero entry in A, say Aij indi
ates the presen
e of word i in do
ument j, while a zeroentry indi
ates an absen
e. Typi
ally, a large number of words exist in even a moderately1



2sized set of do
uments, for example, in one of our test 
ases we use 4303 words in 3893do
uments. However, ea
h do
ument typi
ally 
ontains only a small number of words andhen
e, A is typi
ally very sparse with almost 99% of the matrix entries being zero.Using su
h a basi
 representation where words are features, many do
ument 
lusteringalgorithms have been proposed. The various algorithms di�er in the mathemati
al modelsthey use and in their eÆ
ien
y and s
alability. The size of the 
olle
tion to be 
lusteredis an important variable. Clustering a large portion of the entire World Wide Web (su
has in www.yahoo.
om) is a mu
h di�erent proposition than 
lustering the smaller do
ument
olle
tion returned by a web sear
h engine (www.northernlight.
om).Existing do
ument 
lustering methods in
lude agglomerative 
lustering[40, 39, 29℄, thepartitional k-means algorithm[8℄, proje
tion based methods in
luding LSA[2, 33℄, self-organizing maps[25, 21℄ and multidimensional s
aling[27, 22℄. For 
omputational eÆ
ien
yrequired in on-line 
lustering, hybrid approa
hes have been 
onsidered in[7, 19℄. Re
entlythere has been a 
urry of a
tivity in do
ument 
lustering[3, 8, 30, 42℄. Graph-theoreti
te
hniques have also been 
onsidered for 
lustering; many earlier hierar
hi
al agglomerative
lustering algorithms[10℄ and some re
ent work[4, 37℄ model the similarity between do
u-ments by a graph whose verti
es 
orrespond to do
uments and weighted edges or hyperedgesgive the similarity between the verti
es. A major drawba
k of these methods is that thework required just to form the graph is quadrati
 in the number of do
uments; thus thesemethods are 
omputationally prohibitive for large do
ument 
olle
tions.Words may be 
lustered on the basis of the do
uments in whi
h they 
o-o

ur; su
h
lustering has been used in the automati
 
onstru
tion of a statisti
al thesaurus and inthe enhan
ement of queries[6℄. The underlying assumption is that words that typi
allyappear together should be asso
iated with similar 
on
epts. Word 
lustering has also beenpro�tably used in the automati
 
lassi�
ation of do
uments, see [1℄. A detailed treatmentof some word 
lustering te
hniques is given in [38℄.In this paper, we 
onsider the problem of simultaneous or 
o-
lustering of do
umentsand words. Most of the existing work is on one-way 
lustering, i.e., either do
ument orword 
lustering. A 
ommon theme among existing algorithms is to 
luster do
umentsbased upon their word distributions while word 
lustering is determined by 
o-o

urren
ein do
uments. This points to a duality between do
ument and term 
lustering. We posethis dual 
lustering problem in terms of �nding minimum 
ut vertex partitions in a bipartitegraph between do
uments and words. Finding a globally optimal solution to su
h a graphpartitioning problem is NP-
omplete; however, we show that the se
ond left and rightsingular ve
tors of a suitably normalized word-do
ument matrix give an optimal solutionto the real relaxation of this dis
rete optimization problem. Based upon this observation,we present a spe
tral algorithm that simultaneously partitions do
uments and words, anddemonstrate that the algorithm gives good global solutions.We now give a brief outline of the paper. Se
tion 2 introdu
es the bipartite graph modelthat we use for representing a do
ument 
olle
tion, and poses the 
o-
lustering problem asone of �nding the minimum 
ut in the bipartite graph. Constraints on the sizes of the
lusters make this a graph partitioning problem whi
h is known to be NP-
omplete. InSe
tion 3, we introdu
e the spe
tral graph partitioning heuristi
 and show that the se
ondeigenve
tor of a generalized eigenvalue problem gives the optimal solution to a real relaxationof the graph bipartitioning obje
tive. In Se
tion 4, we show that for the bipartite 
ase, the



3dual 
lustering 
an be obtained from the se
ond left and right singular ve
tors of a suitablynormalized word-do
ument matrix. Se
tion 4.2 gives an algorithm that uses additionalsingular ve
tors to dire
tly yield multiple do
ument and word 
lusters. In Se
tion 5, wepresent detailed experimental results and demonstrate that our 
o-
lustering algorithm givesgood solutions in pra
ti
e. We dis
uss related work in Se
tion 6. Finally, in Se
tion 7 wepresent our 
on
lusions and dis
uss future work.A word about notation: small-bold letters su
h as x, u, p will denote 
olumn ve
tors,
apital-bold letters su
h asA,M , B will denote matri
es, and s
ript letters su
h as V;D;Wwill usually denote vertex sets.2 Bipartite Graph ModelFirst we introdu
e some relevant terminology about graphs. A graph G = (V ; E) is a setof verti
es V = f1; 2; : : : ; jVjg and a set of edges fi; jg ea
h with edge weight Eij . Theadja
en
y matrix of a graph M is de�ned asM = � Eij; if there is an edge fi; jg;0; otherwise:Given a partitioning of the vertex set V into two subsets V1 and V2, the 
ut betweenthem will play an important role in this paper. Formally,
ut(V1;V2) = Xi2V1;j2V2Mij: (2.1)The de�nition of 
ut is easily extended to k vertex subsets,
ut(V1;V2; : : : ;Vk) = Xi<j 
ut(V i;Vj): (2.2)We now introdu
e our bipartite graph model for representing a do
ument 
olle
tion.An undire
ted bipartite graph is a triple G = (D;W ; E) where W = fw1; w2; : : : ; wmg andD = fd1; d2; : : : ; dng are two sets of verti
es and E is the set of edges ffwi; djg : wi 2W; dj 2 Dg. In our 
ase, D 
orresponds to the set of do
uments and W 
orresponds tothe set of words 
ontained in the do
uments. There is an edge fwi; djg if word wi o

ursin do
ument dj ; note that the edges are undire
ted. In this bipartite model, there are noedges between words or between do
uments.An edge signi�es an asso
iation between a do
ument and a word. By putting positiveweights on the edges, we 
an 
apture the degree of this asso
iation. One possibility isto have edge-weights equal term frequen
ies, i.e., the number of times a word o

urs ina do
ument. In fa
t, most of the term-weighting formulae used in information retrievalmay be used as edge-weights, see [31, 32, 26℄ for more details. One popular term-weightings
heme is to have the edge-weight Eij asso
iated with the edge fwi; djg beEij = tij � log� jDjjDij�;



4where tij is the number of times word wi o

urs in do
ument dj , jDj = n is the total numberof do
uments and jDij is the number of do
uments that 
ontain word wi.Consider them�nword-by-do
ument matrixA su
h that Aij equals the edge-weight Eij .Then it 
an easily be seen that the adja
en
y matrix of the bipartite graph may be writtenas M = � 0 AAT 0 � ;where we have ordered the verti
es su
h that the �rst m verti
es index the words while thelast n index the do
uments.We now show that the 
ut between di�erent vertex subsets, as de�ned in (2.1) and (2.2),emerges naturally from our formulation of word and do
ument 
lustering.2.1 Simultaneous ClusteringA basi
 premise behind our algorithm is the following observation.Duality of word & do
ument 
lustering: Word 
lustering indu
es do
ument 
lusteringwhile do
ument 
lustering indu
es word 
lustering.Given the do
ument 
lusters D1;D2; : : : ;Dk ([iDi = D and Di \ Dj = �; i 6= j), the
orresponding word 
lustersW1;W2; : : : ;Wk ([iWi =W andWi\Wj = �; i 6= j) may bedetermined as follows. A given word wi belongs to the word 
luster Wm if its asso
iationwith the do
ument 
luster Dm is greater than its asso
iation with any other do
ument
luster. Using our graph model, a natural measure of the asso
iation of a word with ado
ument 
luster is the sum of the edge-weights to all do
uments in the 
luster. Thus,Wm = 8<:wi : Xj2DmAij � Xj2DlAij ; for all l = 1; 2; : : : ; k9=; :Thus ea
h of the word 
lusters is determined by the do
ument 
lustering. Similarly givena word 
lustering W1;W2; : : : ;Wk, the indu
ed do
ument 
lustering is given byDm = 8<:dj : Xi2WmAij � Xi2W lAij; for all l = 1; 2; : : : ; k9=; :Note that this 
hara
terization is re
ursive in nature sin
e a given do
ument 
lusteringdetermines a word 
lustering, whi
h in turn determines a (better) do
ument 
lustering.Clearly the \best" word and do
ument 
lustering would 
orrespond to a partitioning ofthe graph su
h that the 
rossing edges between partitions have minimum weight. This isa
hieved when
ut(W1 [ D1;W2 [ D2; : : : ;Wk [ Dk) = minV1;V2;::: ;Vk 
ut(V1;V2; : : : ;Vk)where V1;V2; : : : ;Vk is any partitioning of the bipartite graph into k vertex subsets.



5Note that the above paragraph also hints at an \alternating partitioning" algorithm.However, su
h a formulation is too naive and typi
ally leads to unbalan
ed 
luster sizes.Indeed, the minimum 
ut of zero is obtained when all the verti
es belong to one partitionor 
luster. Thus we need a me
hanism to 
onstrain the size of ea
h 
luster. In the nextse
tion, we pose an obje
tive fun
tion whi
h favors 
lusters that are \balan
ed" in additionto being \well-separated".3 Graph PartitioningGiven a graph G = (V ; E), the 
lassi
al graph bipartitioning or bise
tion problem is to �ndnearly equally-sized vertex subsets V�1;V�2 of V su
h that
ut(V�1;V�2) = minV1;V2 
ut(V1;V2):The graph partitioning problem is very important and arises in various appli
ations, su
h as
ir
uit partitioning and VLSI layout, telephone network design, load balan
ing in parallel
omputation, reordering sparse matri
es, et
. However it is well known that this problem isNP-
omplete[13℄. But many heuristi
 methods exist that are able to �nd a lo
al minimum tothis problem. Most e�e
tive among the earlier heuristi
s are the Kernighan-Lin(KL)[23℄ andthe Fidu

ia-Mattheyses(FM)[11℄ algorithms. However, these algorithms employ heuristi
sthat sear
h in the lo
al vi
inity of given initial partitionings and hen
e, have a tenden
y toget stu
k in lo
al minima.3.1 Spe
tral Graph BipartitioningSpe
tral graph partitioning is another e�e
tive heuristi
 that was introdu
ed by Hall[16℄,Donath & Hofmann[9℄ and Fiedler in the early 1970s[12℄, and popularized in 1990 by Pothen,Simon and Liou[28℄. The spe
tral partitioning heuristi
 uses the se
ond eigenve
tor of anasso
iated matrix for bipartitioning the graph and has been found to give good globalsolutions that are better than the solutions obtained by the KL and FM algorithms.We now introdu
e the spe
tral partitioning heuristi
. Suppose the graph G = (V ; E)has n verti
es and m edges. The in
iden
e matrix of G, denoted by IG is an n�m matrixthat has one row for ea
h vertex and one 
olumn for ea
h edge. The 
olumn 
orrespondingto edge fi; jg of IG is zero ex
ept for the i-th and j-th entries, whi
h are pEij and �pEijrespe
tively, where Eij is the 
orresponding edge weight. Note that there is some ambiguityin this de�nition, sin
e the positions of the positive and negative entries seem arbitrary.However this ambiguity will not be important to us.De�nition 1 The Lapla
ian matrix L = LG of G is an n�n symmetri
 matrix, with onerow and 
olumn for ea
h vertex, su
h thatLij = 8<: Pk Eik; i = j�Eij; i 6= j and there is an edge fi; jg0 otherwise: (3.3)Theorem 1 The Lapla
ian matrix L = LG of the graph G has the following properties.



61. L =D�M , whereM is the adja
en
y matrix and D is the diagonal \degree" matrixwith Dii =Pk Eik.2. L = IGIGT ,3. L is a symmetri
 positive semi-de�nite matrix. Thus all eigenvalues of L are real andnon-negative, and L has a full set of n real and orthogonal eigenve
tors.4. Let e be the ve
tor of all ones, i.e., e = [1; 1; : : : ; 1℄T . Then Le = 0. Thus 0 is aneigenvalue of L and e is the 
orresponding eigenve
tor.5. If the graph G has 
 
onne
ted 
omponents then L has 
 eigenvalues that equal 0.6. For any ve
tor x, xTLx = Xfi;jg2EEij(xi � xj)2:7. For any ve
tor x, and s
alars � and �(�x+ �e)TL(�x+ �e) = �2xTLx: (3.4)Proof.1. Part 1 follows from the de�nition of L.2. This is easily seen by multiplying IG and IGT .3. Sin
e L = IGIGT , xTLx = xT IGITGx = yTy � 0; for all x:This implies that L is symmetri
 positive semi-de�nite. All su
h matri
es have non-negative real eigenvalues and a full set of n orthogonal eigenve
tors[14℄.4. Given any ve
tor x, Lx = IG(IGTx). Let k be the row of IGTx that 
orresponds tothe edge fi; jg, then it is easy to see that(IGTx)k = pEij(xi � xj); (3.5)and so when x = e, Le = 0.5. See [12℄.6. This follows from equation (3.5).7. This follows from part 4 above. tu



7For the rest of the paper, we will assume that the graph G 
onsists of exa
tly one
onne
ted 
omponent, i.e., the se
ond smallest eigenvalue of the Lapla
ian is nonzero (seepart 5 of the above theorem). We now see how the eigenvalues and eigenve
tors of L giveus information about partitioning of the graph. Given a bipartitioning of V into V1 and V2(V1 [ V2 = V), let us de�ne the partition ve
tor p that 
aptures this division,pi = � +1; i 2 V1;�1; i 2 V2: (3.6)The following theorem shows that the Rayleigh Quotient of p with L is proportional to the
ut indu
ed by the partition ve
tor p.Theorem 2 Given the Lapla
ian matrix L of G and a partition ve
tor p, the RayleighQuotient pTLppTp = 1n � 4 
ut(V1;V2):Proof. Clearly pTp = n. By part 6 of Theorem 1,pTLp = Xfi;jg2EEij(pi � pj)2:Thus edges within V1 or V2 do not 
ontribute to the above sum, while ea
h edge betweenV1 and V2 
ontributes a value of 4 times the edge-weight. tu3.2 Eigenve
tors as real-valued optimal partition ve
torsClearly, by Theorem 2, the 
ut is minimized by the trivial solution when all pi are either-1 or +1. Informally, the 
ut 
aptures the strength of the asso
iation between di�erentpartitions. We need an obje
tive fun
tion that in addition to the need for small 
ut valuesalso 
aptures the need for more \balan
ed" 
lusters.We now present su
h an obje
tive fun
tion. Let ea
h vertex i be asso
iated with apositive weight, denoted by weight(i), and let W be the diagonal matrix of su
h weights,Wij = � weight(i); i = j;0; i 6= j: (3.7)For any subset of verti
es, V l, de�ne its weight to beweight(V l) = Xi2V lweight(i) = Xi2V lWii:We will 
onsider two subsets V1 and V2 to be \balan
ed" if their respe
tive weights arenearly equal. The following obje
tive fun
tion favors balan
ed 
lusters,Q(V1;V2) = 
ut(V1;V2)weight(V1) + 
ut(V1;V2)weight(V2) : (3.8)



8Given two di�erent partitionings with the same 
ut value, the above obje
tive fun
tion valueis smaller for the more balan
ed partitioning. Thus minimizing Q(V1;V2) favors partitionsthat are balan
ed in addition to having a small 
ut value.We now show that the Rayleigh Quotient of the following generalized partition ve
tor qequals the above obje
tive fun
tion value.Lemma 1 Given a graph G, let L and W be its Lapla
ian and vertex weight matri
esrespe
tively. Let �1 = weight(V1) and �2 = weight(V2). Then the generalized partitionve
tor q with elements qi = 8<: +q�2�1 ; i 2 V1;�q�1�2 ; i 2 V2;satis�es qTWe = 0; and qTWq = weight(V):Proof. Let y =We, then yi = weight(i) =Wii. ThenqTWe = qTy = Xi qiyi;= r�2�1 Xi2V1 weight(i)�r�1�2 Xi2V2 weight(i);= r�2�1 �1 �r�1�2 �2 = 0:Similarly we 
an show that qTWq =Pni=1Wiiq2i = �1 + �2 = weight(V). tuTheorem 3 Using the notation of Lemma 1,qTLqqTWq = 
ut(V1;V2)weight(V1) + 
ut(V1;V2)weight(V2) :Proof. It is easy to show that the generalized partition ve
tor q may be written asq = �1 + �22p�1�2 p+ �2 � �12p�1�2 e;where p is the partition ve
tor of (3.6). Using part 7 of Theorem 1, we see thatqTLq = (�1 + �2)24�1�2 pTLp:Substituting the values of pTLp and qTWq, from Theorem 2 and Lemma 1 respe
tively,proves the result. tuThus to �nd the globally minimum solution of the obje
tive fun
tion (3.8), we 
anrestri
t our attention to generalized partition ve
tors of the form in Lemma 1. Even thoughthis problem is still NP-
omplete, it is possible to �nd a real relaxation to this dis
reteoptimization problem.



9Theorem 4 The problemminq 6=0 qTLqqTWq ; subje
t to qTWe = 0;is solved when q is the eigenve
tor 
orresponding to the se
ond smallest eigenvalue �2 of thegeneralized eigenvalue problem, Lz = �Wz: (3.9)Proof. This is a standard result from linear algebra[14℄. Note that e is the �rst eigenve
tor(
orresponding to � = 0) of (3.9) and thus the 
ondition qTWe = 0 
onstrains the sear
hfor the optimal q to be over all ve
tors that are W -orthogonal to the �rst eigenve
tor. tuTheorems 3 and 4 imply that the se
ond eigenve
tor of (3.9) provides a real approxima-tion to the optimal generalized partition ve
tor. Thus the following 
orollary follows.Corollary 1 The se
ond smallest eigenvalue of (3.9), �2, gives a lower bound on the ob-je
tive fun
tion value in (3.8), i.e.,Q(V1;V2) = 
ut(V1;V2)weight(V1) + 
ut(V1;V2)weight(V2) � �2:3.3 Ratio-
ut and Normalized-
ut obje
tivesThus far we have not spe
i�ed the parti
ular 
hoi
e of vertex weights in (3.7). A simple
hoi
e is to have weight(i) = 1 for all verti
es i. This leads to the ratio-
ut obje
tive whi
hhas been 
onsidered in [5, 15℄ (for 
ir
uit partitioning),Ratio-
ut(V1;V2) = 
ut(V1;V2)jV1j + 
ut(V1;V2)jV2j :An interesting 
hoi
e is to make the weight of ea
h vertex equal to the sum of the weightsof edges that are in
ident on it, i.e.,weight(i) = Xk Eik:This leads to the normalized-
ut 
riterion that was used in [34℄ for image segmentation.Note that for this 
hoi
e of vertex weights, the vertex weight matrix W equals the degreematrix D, and weight(V i) = 
ut(V1;V2) + within(Vi); i = 1; 2;where within(V i) is the sum of the weights of edges that have both end-points in Vi. Thenthe normalized-
ut obje
tive fun
tion may be expressed asN (V1;V2) = 
ut(V1;V2)Pi2V1Pk Eik + 
ut(V1;V2)Pi2V2Pk Eik ;= 2� S(V1;V2);where S(V1;V2) = within(V1)weight(V1) + within(V2)weight(V2) :



10Note that S(V1;V2) measures the strengths of asso
iations within ea
h partition. Thusminimizing the normalized-
ut is equivalent to maximizing the proportion of edge weightsthat lie within ea
h partition.4 Spe
tral Bipartite Graph Partitioning with the SVDIn the previous se
tion, we saw that the se
ond eigenve
tor of the generalized eigenvalueproblem, Lz = �Dz; (4.10)provides a real relaxation to the dis
rete optimization problem of �nding the minimumnormalized 
ut. In this se
tion, we present algorithms to �nd do
ument and word 
lusteringsusing our bipartite graph model.In the bipartite 
ase,L = � D1 �A�AT D2 � ; and D = � D1 00 D2 �where D1 and D2 are diagonal matri
es su
h thatD1(i; i) = Xj Aij (sum of edge-weights in
ident on word i);D2(j; j) = Xi Aij (sum of edge-weights in
ident on do
ument j):Thus (4.10) may be written as� D1 �A�AT D2 � � xy � = � � D1 00 D2 � � xy � (4.11)) D1x�Ay = �D1x;and �ATx+D2y = �D2y:We assume that ea
h do
ument 
ontains at least one word and ea
h word is 
ontained in atleast one do
ument. Thus both D1 and D2 are nonsingular and we 
an rewrite the aboveequations as D11=2x�D1�1=2Ay = �D11=2x;�D2�1=2ATx+D21=2y = �D21=2y:Letting u =D11=2x and v =D21=2y, and after a little algebrai
 manipulation, we getD1�1=2AD2�1=2v = (1� �)u; and D2�1=2ATD1�1=2u = (1� �)v:These are pre
isely the equations that de�ne the singular value de
omposition (SVD) ofthe normalized matrix An = D1�1=2AD2�1=2. In parti
ular, u and v are the left and



11right singular ve
tors respe
tively, while (1� �) is the 
orresponding singular value. Thusinstead of 
omputing the eigenve
tor of the se
ond (smallest) eigenvalue of (4.11), we 
an
ompute the left and right singular ve
tors 
orresponding to the se
ond (largest) singularvalue of An, Anv2 = �2u2; AnTu2 = �2v2; (4.12)where �2 = 1� �2. Computationally, working on An is superior sin
e An is of size w � dwhile the matrix L is of the larger size (w + d)� (w + d).The right singular ve
tor v2 will give us a bipartitioning of do
uments while the left sin-gular ve
tor u2 will give us a bipartitioning of the words. By examining the relations (4.12)it is 
lear that this solution agrees with our intuition that a partitioning of do
uments shouldindu
e a partitioning of words, while a partitioning of words should imply a partitioning ofdo
uments.4.1 The Bipartitioning AlgorithmThe singular ve
tors u2 and v2 of An give a real approximation to the dis
rete optimizationproblem of minimizing the normalized 
ut. Given u2 and v2 the key task is to extra
t theoptimal partition from these ve
tors.The optimal generalized partition ve
tor of Lemma 1 is two-valued. Thus our strategyis to look for a bi-modal distribution in the values of u2 and v2. Let m1 and m2 denote thebi-modal values that we are looking for. From the previous se
tion, the se
ond eigenve
torof L is given by z2 = � D1�1=2u2D2�1=2v2 � : (4.13)One way to approximate the optimal bipartitioning is by the assignment of z2(i) to thebi-modal values mj (j = 1; 2) su
h that the following sum-of-squares 
riterion is minimized,2Xj=1 Xz2(i)2mj(z2(i)�mj)2:The above is exa
tly the obje
tive fun
tion that the 
lassi
al k-means algorithm tries tominimize[10℄. Thus we 
an use the following algorithm to 
o-
luster words and do
umentsinto two 
lusters:Algorithm Bipartition1. Given A, form An =D1�1=2AD2�1=2.2. Compute the se
ond singular ve
tors of An, u2 and v2and form the ve
tor z2 as in (4.13).3. Run the k-means algorithm on the 1-dimensional data z2 to obtainthe desired bipartitioning.The surprising aspe
t of the above algorithm is that we run k-means simultaneouslyon the redu
ed dimensional representations of both words and do
uments to get the 
o-
lustering. In Se
tion 5.1 we see that this algorithm yields good results in pra
ti
e.



124.2 The Multipartitioning AlgorithmWe 
an adapt our bipartitioning algorithm for the more general problem of �nding k wordand do
ument 
lusters. One possible way to solve this multipartitioning problem is to useAlgorithm Bipartition in a re
ursive manner. However, we favor a more dire
t approa
h.Just as the se
ond singular ve
tors 
ontain bi-modal information, we have observed that the
olle
tion of the ` = dlog2 ke singular ve
tors u2;u3; : : : ;u`+1, and v2;v3; : : : ;v`+1 often
ontain k-modal information about the data set. Thus we 
an form the `-dimensional dataset Z = � D1�1=2UD2�1=2V � ; (4.14)where U = [u2;u3; : : : ;u`+1℄; and V = [v2;v3; : : : ;v`+1℄; ` = dlog2 ke:From this redu
ed-dimensional data set, we 
an look for the best k-modal �t to the `-dimensional pointsm1; : : : ;mk by assigning ea
h `-dimensional row, Z(i), tomj su
h thatthe sum-of-squares kXj=1 Xz2(i)2mj kZ(i)�mjk2is minimized. This 
an again be done by the 
lassi
al k-means algorithm. Thus we obtainthe following algorithm.Algorithm Multipartition(k)1. Given A, form An =D1�1=2AD2�1=2.2. Compute ` = dlog2 ke singular ve
tors of An, u2;u3; : : :u`+1 and v2;v3; : : : v`+1and form the matrix Z as in (4.14).3. Run the k-means algorithm on the `-dimensional data Z to obtainthe desired k-way multipartitioning.5 Experimental ResultsFor some of our experimental results, we have used the popularMedline, Cisi, and Cran-field do
ument sets. Medline 
onsists of 1033 abstra
ts from medi
al journals, Cisi
onsists of 1460 abstra
ts from information retrieval papers, while Cranfield 
onsistsof 1400 abstra
ts from aeronauti
al systems papers. These do
ument 
olle
tions 
an bedownloaded from ftp://ftp.
s.
ornell.edu/pub/smart.For testing Algorithm Bipartition, we 
reated data sets that are a mixture of two ofthese three 
olle
tions. For example, we 
reated MedCran whi
h 
ontains all do
umentsin the Medline and Cranfield 
olle
tions. In 
reating the word-do
ument matri
es forthese data sets, we typi
ally removed stop words, and words o

urring in less than 0:2%



13Name Des
riptionMedCran Medline & Cranfield: words o

urring in < :2% and > 15%of do
uments are removedMedCran All Medline & Cranfield: all words (in
luding stop words) are in
ludedMedCisi Medline & Cisi: words o

urring in < :2% and > 15%of do
uments are removedMedCisi All Medline & Cisi: all words (in
luding stop words) are in
ludedCranCisi Cranfield & Cisi: words o

urring in < :2% and > 15%of do
uments are removedCranCisi All Cranfield & Cisi: all words (in
luding stop words) are in
ludedClassi
3 Medline, Cranfield & Cisi: words o

urring in < :2% and > 15%of do
uments are removedClassi
3 30do
s Medline, Cranfield & Cisi: words o

urring in < :2% and > 15%of do
uments are removedClassi
3 150do
s Medline, Cranfield & Cisi: words o

urring in < :2% and > 15%of do
uments are removedClassi
3 300do
s Medline, Cranfield & Cisi: words o

urring in < :2% and > 15%of do
uments are removedYahoo K5 Reuters News Arti
les from Yahoo: words are stemmed and heavilyprunedYahoo K1 Reuters News Arti
les from Yahoo: words are stemmed and only stopwords are prunedTable 1: Des
ription of the data setsand greater than 15% of the do
uments. Most words o

ur very infrequently and so, thispruning step drasti
ally redu
es the number of words. For example, in MedCran ourpruning strategy removes 12120 out of a total of 17162 words. To show that our algorithmsare robust in the presen
e of large number of words and noise words, we also used word-do
ument matri
es obtained by in
luding all words, even stop words. Details on all our test
olle
tions are given in Tables 1 and 2.For testing Algorithm Multipartition, we 
reated the Classi
3 data set by mixing to-gether Medline, Cranfield and Cisi whi
h gives a total of 3893 do
uments. To showthat our algorithm works well on small data sets, we also 
reated subsets of Classi
3 with30, 150 and 300 do
uments respe
tively.Our �nal data set was used in [3℄ and is a 
olle
tion of 2340 Reuters news arti
lesdownloaded from Yahoo in O
tober 1997. The news arti
les are from 6 
ategories: 142 fromBusiness, 1384 from Entertainment, 494 from Health, 114 from Politi
s, 141 from Sportsand 60 news arti
les from Te
hnology. Both data sets were prepro
essed by eliminating stopwords and HTML tags and words were stemmed using Porter's algorithm[3℄. The data setYahoo K5 
ontains 1458 words while Yahoo K1 in
ludes all 21839 words obtained afterremoving stop words. See Tables 1 and 2 for more details.



14Name # Do
uments # Words # Nonzeros in AMedCran 2463 5042 117987MedCran All 2463 17162 224325MedCisi 2493 5447 109119MedCisi All 2493 19194 213453CranCisi 2860 4292 132989CranCisi All 2860 14977 257762Classi
3 3893 4303 176347Classi
3 All 3893 22628 347770Classi
3 30do
s 30 1073 1585Classi
3 150do
s 150 3652 7960Classi
3 300do
s 300 5577 16077Yahoo K5 2340 1458 237969Yahoo K1 2340 21839 349792Table 2: Details of the word-do
ument matri
es5.1 Bipartitioning ResultsIn this se
tion, we present bipartitioning results on theMedCran,MedCisi and CisiCran
olle
tions. Sin
e we know the \true" 
lass label for ea
h do
ument, the 
onfusion matrix isone way to 
apture the goodness of do
ument 
lustering. In addition, we use the measuresof purity and entropy. Suppose we are given 
 
lasses (true 
lass labels) while the 
lusteringalgorithm produ
es k 
lusters. Cluster Dj 's purity 
an be de�ned asP (Dj) = 1nj maxi (n(i)j );where nj = jDj j and n(i)j is the number of do
uments in Dj that belong to 
lass i, i =1; : : : ; 
. Ea
h 
luster may 
ontain samples from di�erent 
lasses. Purity gives the ratioof the dominant 
lass size in the 
luster to the 
luster size itself. High purity means thatthe 
luster is a \pure" subset of the dominant 
lass. Additionally, we also use entropy as aquality measure, whi
h is de�ned as follows:H(Dj) = � 1log 
 
Xi=1 n(i)jnj log n(i)jnj !:Entropy is a more 
omprehensive measure than purity. It 
onsiders the distribution of
lasses in a 
luster. Note that we have normalized entropy to take values between 0 and 1.An entropy value near 0 means the 
luster is 
omprised entirely of 1 
lass, while an entropyvalue near 1 is bad sin
e it implies that the 
luster 
ontains a uniform mixture of 
lasses.Table 3 gives the results of applying Algorithm Bipartition to the MedCran data set.The 
onfusion matrix at the top left of this table shows that the the do
ument 
luster D0
onsists entirely of the Medline 
olle
tion, while D1 
an 
learly be identi�ed with Cran-field. As a result, the purities of these 
lusters are nearly 1 while the entropies are 
lose



15Medline CranfieldD0: 1026 0D1: 7 1400 Purity Entropy1 0.995 .045W0: patients 
ells blood 
hildren hormone 
an
er renal rats 
ell growthW1: sho
k heat supersoni
 wing transfer bu
kling laminar plate hypersoni
 jetTable 3: Bipartitioning result for MedCranMedline CisiD0: 970 0D1: 63 1460 Purity Entropy1 0.959 .248W0: 
ells patients blood hormone renal rats 
an
er 
ell lens dnaW1: libraries retrieval s
ienti�
 resear
h s
ien
e systems book 
omputer indexing journalsTable 4: Bipartitioning result for MedCisito 0. The bottom of Table 3 displays the \top" 10 words in ea
h of the word 
lusters W0and W1. The top words are those whose internal edge weights are the greatest. Note thatsin
e Algorithm Bipartition 
o-
lusters the do
uments and words, Wi is the word 
lusterasso
iated with the do
ument 
luster Di. It should be observed that the top 10 words
learly 
onvey the \
on
ept" of the asso
iated do
ument 
luster.Similarly, Tables 4 and 5 show that good bipartitions are obtained using our spe
tralalgorithm on the MedCisi and CisiCran data sets. Algorithm Bipartition uses theglobal spe
tral heuristi
 of using singular ve
tors whi
h makes it robust in the presen
eof \noise" words. To show this, we ran the algorithm on the data sets obtained withoutremoving even the stop words. The 
onfusion matri
es of Table 6 show that the algorithmis able to re
over the original 
lasses despite the presen
e of stop words. Note that theMedline 
lusters are 100% pure in all 
ases.Cisi CranD0: 1457 12D1: 3 1388 Purity Entropy.992 .068.998 .022W0: libraries retrieval s
ienti�
 s
ien
e book systems indexing resear
h literature journalsW1: layer heat sho
k ma
h supersoni
 wing bu
kling plate laminar hypersoni
Table 5: Bipartitioning result for CisiCran



16Medline CranfieldD0: 1014 0D1: 19 1400 Medline CisiD0: 925 0D1: 108 1460 Cisi CranD0: 1453 2D1: 7 1398Table 6: Confusion Matri
es for MedCran All, MedCisi All and CisiCran AllMed Cisi CranD0: 966 0 0D1: 66 1458 15D2: 1 2 1385 Purity Entropy1 0.947 .211.998 .015W0: patients 
ells blood hormone renal 
an
er rats 
ell disease lensW1: library libraries retrieval s
ienti�
 s
ien
e book systems system resear
h indexingW2: boundary layer heat sho
k ma
h supersoni
 wing pressure bu
kling laminarTable 7: Multipartitioning result for Classi
35.2 Multipartitioning ResultsIn this se
tion, we show that Algorithm Multipartition gives us good results when multipleword and 
lusters are required. Table 7 gives the 
onfusion matrix, purities, entropiesof the do
ument 
lusters and the top 10 words of the asso
iated word 
lusters. Note thatsin
e k = 3 in this 
ase, the algorithm uses ` = dlog2 ke = 2 singular ve
tors for 
o-
lustering.The Yahoo K1 and Yahoo K5 data sets 
ontain 6 
lasses of news arti
les: Business,Entertainment, Health, Politi
s, Sports and Te
hnology. Entertainment is the dominant
lass 
ontaining 1384 do
uments while Te
hnology 
ontains only 60 arti
les. Hen
e the sizesof the various 
lasses are rather varied. Table 8 gives the multipartitioning result obtainedby using ` = dlog2 ke = 3 singular ve
tors. It is 
learly diÆ
ult to re
over the original 
lasses.However, the presen
e of many zeroes in the 
onfusion matrix is en
ouraging. Table 8 showsthat 
lusters D1 and D2 
an be identi�ed with the Entertainment 
lass, while D4 and D5are \purely" from Health and Sports respe
tively. The word 
lusters show the underlying
on
epts in the asso
iated do
ument 
lusters (re
all that the words are stemmed in thisexample). Table 9 shows that similar do
ument 
lustering is obtained when fewer wordsare used.Finally, Algorithm Multipartition does well on small 
olle
tions also. Table 10 showsthat even when mixing small (and random) subsets of Medline, Cisi and Cranfield ouralgorithm is able to re
over these 
lasses. This is in stark 
ontrast to the spheri
al k-meansalgorithm that gives poor results on small do
ument 
olle
tions[8℄.6 Related WorkAs mentioned in Se
tion 1 both word and do
ument 
lustering are well-studied problems.Our work addresses the duality between do
ument 
lustering and word 
lustering. To thebest of our knowledge, this 
o-
lustering problem has not been studied previously. For



17Bus Entertain Health Politi
s Sports Te
hD0: 120 82 0 52 0 57D1: 0 833 0 1 100 0D2: 0 259 0 0 0 0D3: 22 215 102 61 1 3D4: 0 0 392 0 0 0D5: 0 0 0 0 40 0
Purity Entropy.386 .741.892 .1941 0.532 .6571 01 0W0: 
linton 
ampaign senat house 
ourt �nan
 white 
ompani reform sto
kW1: septemb tv am week musi
 set top fridai re
ord debutW2: �lm emmi star hollywood award 
omedi �enne henderson semler keenerW3: world health new polit entertain te
h sport s
oreboard index bizeW4: surgeri injuri undergo hospit england a

ord re
ommend twi
e heada
h heartW5: republi advan
 wild
ard mat
hTable 8: Multipartitioning result for Yahoo K1Bus Entertain Health Politi
s Sports Te
hD0: 120 113 0 1 0 59D1: 0 1175 0 0 136 0D2: 19 95 4 73 5 1D3: 1 6 217 0 0 0D4: 0 0 273 0 0 0D5: 2 0 0 40 0 0

Purity Entropy.410 .600.896 .186.482 .638.969 .0841 0.953 .085W0: 
ompani sto
k �nan
i pr busi wire quote per
ent industri gainW1: �lm tv emmi 
omedi hollywood previou entertain adult albert debutW2: presid washington bill 
ourt militari o
tob violat trade appeal se
retariW3: health help pm death famili rate lead look driver peopleW4: surgeri injuri undergo hospit england re
ommend dis
ov a

ord heart 
ausW5: senat 
linton 
ampaign house white �nan
 republi
n vote 
ommitteeTable 9: Multipartitioning results for Yahoo K5Med Cisi CranD0: 9 0 0D1: 0 10 0D2: 1 0 10 Med Cisi CranD0: 49 0 0D1: 0 50 0D2: 1 0 50 Med Cisi CranD0: 94 0 0D1: 2 100 0D2: 4 0 100Table 10: Confusion matri
es for Classi
3 30do
s, Classi
3 150do
s and Clas-si
3 150do
s



18general data matri
es, there is some earlier work in [17℄ but this appears to be limited tomatri
es with small dimensions.Our parti
ular method of using spe
tral bipartite partitioning for 
lustering words ordo
uments also appears to be new. The normalized 
ut 
riterion has been previously usedin [34℄ for image segmentation. Eigenve
tors and singular ve
tors have been used for do
-ument 
lustering previously, for example, the LSA-based approa
hes[2, 33℄, and the re
entPDDP algorithm[3℄. However, the LSA methods proje
t do
ument ve
tors onto mu
h higherdimensional subspa
es (100-300) and hen
e are 
omputationally prohibitive. The PDDPalgorithm is intimately related to inertial partitioning[41, 35℄ and uses the �rst prin
ipal
omponent (PCA) to 
luster do
uments. We believe that our normalization s
heme thatnaturally arises from the normalized 
ut 
riterion enables us to use just the se
ond left andright singular ve
tors for bipartitioning. When we used a di�erent normalization s
heme,su
h as the ones used in LSA and PDDP, our results were not as good, for example, weobtained poorer 
onfusion matri
es than in Table 6. We point out that it may be possibleto show the optimality of our spe
tral partitioning s
heme | a variant of our te
hnique hasbeen theoreti
ally shown to give partitions that are 
lose to optimal for a spe
ial 
lass ofgraphs, su
h as planar graphs[36℄.Re
ently there has been some work in obtaining do
ument 
lusters by using graphpartitioning[37℄. However, this work uses a similarity graph model, where the verti
es
orrespond to do
uments and edges 
orrespond to do
ument similarities obtained from asimilarity measure su
h as 
osine or generalized Ja

ard similarity. However, these methods
an be prohibitively expensive sin
e just forming the similarity graph requires work that isquadrati
 in the number of do
uments.7 Future Work and Con
lusionsIn this paper, we have introdu
ed the novel idea of modeling a do
ument 
olle
tion as abipartite graph between words and do
uments. Using this model, we pose the problem of
o-
lustering words and do
uments as a vertex partitioning problem in the bipartite graph.To solve this graph partitioning problem, we have used the spe
tral partitioning heuristi
.We have shown that the se
ond left and right singular ve
tors of a suitably normalizedword-do
ument matrix give a real relaxation to the dis
rete optimization problem. Mul-tiple do
ument and word 
lusters may be obtained from additional singular ve
tors. Ourexperimental results indi
ate that our spe
tral algorithm gives globally good solutions thatare robust in the presen
e of noise words.The results presented in this paper are for a new algorithm. In future work, we will 
on-du
t more detailed experiments on larger do
ument 
olle
tions and 
ompare the eÆ
ien
yand e�e
tiveness of our 
o-
lustering with other do
ument and word 
lustering algorithms.To improve our spe
tral partitioning heuristi
 we plan to add the Kernighan-Lin or theFidu

ia-Mattheyses \smoothing"[23, 11℄. Another avenue to explore would be multivelelmethods for bipartite graph partitioning that minimize the normalized-
ut 
riterion. The
urrent Metis software[20℄ has important drawba
ks: (i) it returns almost equal sized 
lus-ters, (ii) it optimizes a di�erent obje
tive fun
tion and (iii) it seems to a

ept only integeredge-weights. For web do
uments, bipartite graphs based on links have been used to en-han
e web sear
h results[24℄. As future work, we plan to 
ombine words and links in a



19uniform manner for 
lustering web do
uments.Our main 
ontribution in this paper is the bipartite graph model for text 
olle
tionswhi
h we have su

essfully applied to 
o-
lustering. In the future, we will apply this bipartitemodel to other text mining problems, su
h as, text 
lassi�
ation, better query retrieval,et
. Some fas
inating aspe
ts of this bipartite graph are that the vertex degrees for thewords follow the Zipf distribution[43℄, and subgraphs appear to have a self-similar or fra
talnature[8℄. As future work, we intend to study various properties of these graphs. In addition,we feel that our 
o-
lustering algorithm will be useful in many other appli
ations, su
h as, in
o-
lustering DNA mi
roarray and gene expression data, partitioning re
tangular matri
esfor load balan
ing, et
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