
A Framework for Semanti ReasoningaboutByzantine Quorum SystemsEvelyn Piere� Lorenzo AlvisiyMarh 1, 2001AbstratWe present a set of de�nitions and theorems that allow us to reason about the semantis of quo-rum system variables, inluding Byzantine quorum system variables, as a lass. Using these tools, wepresent a formal proof that the problem of atomi semantis for suh variables an be redued to thesimpler problem of regular semantis for suh systems. Spei�ally, any regular masking quorum sys-tem protool an be ombined with a writebak mehanism to produe an atomi protool. We thendesribe a sublass of TS-variables for whih the latter problem is not solvable by traditional approahesin an asynhronous environment. Finally, for suh variables we de�ne the notion of pseudoregular andpseudoatomi semantis, and show briey that the same redution holds for these onepts.keywords: atomi variable semantis, byzantine fault tolerane, quorum systems, large-sale data servies, alulational proofsContat Author: Evelyn Piere (tumlin�s.utexas.edu, Department of Computer Sienes, Universityof Texas at Austin, Austin, TX 78712 FAX: (512)471-8885)

�Department of Computer Sienes, University of Texas, Austin, Texas; tumlin�s.utexas.edu.yDepartment of Computer Sienes, University of Texas, Austin, Texas; lorenzo�s.utexas.edu.1

1 IntrodutionByzantine quorum systems [MR98a℄ are a promising approah to the problem of eÆiently implementingByzantine fault-tolerant data servies. There are several variations on this approah [Baz97, MRWr97,MRW97, MR98a℄, but the basi onept is the same for all of them: data are maintained simultaneouslyat multiple sites, and eah read or write operation is proessed at a subset (alled a quorum) of thosesites. Quorums are de�ned in suh a way that the intersetion of any two quorums ontains enough serversto allow a query to determine and return aurate and up-to-date information even in the presene of alimited set of arbitrarily faulty servers. Furthermore, beause only a subset of the servers is onerned withany given operation, suh a system an also remain available in spite of limited server rashes or networkpartitions. Finally, the fat that the servie is designed to tolerate out-of-date servers (e.g., those whihwere not part of the most reent write quorum) greatly simpli�es the task of reovering from failures; aslong as a quorum of servers is up to date, others may be brought bak online without any need to reovertheir most reent state.Analyzing the semantis of shared variables implemented by these quorum systems an be quite hal-lenging. Heretofore, suh analysis has been limited to individual protools; there has been no framework forreasoning about the semantis of quorum variables as a family. For example, while there exist ompellingarguments to the e�et that fully serializable operations have been ahieved for some types of quorumsystems (notably the dissemination quorum systems of [MR98b℄) and remain an open problem for others(e.g., masking quorum systems, [MR98a℄), these arguments do not tell us why these disrepanies exist, orthe degree to whih individual solutions an be generalized.One of the primary ontributions of this paper is to address this need. We present a set of de�nitionsand theorems that allow us to reason about the lass of shared variables implemented by quorum systems,inluding the various Byzantine quorum systems; we all suh variables TS-variables beause of the im-portant role of timestamps in their protools.1 Further, we give an adapted version of Lamport's formalde�nitions of the onepts of safe, regular, and atomi semantis [Lam86℄. These onepts have tradition-ally been used to desribe the semantis of Byzantine quorum systems, but their use has neessarily hadto be somewhat informal, as Lamport's formal de�nitions and theorems were based on the assumptionthat variable writes were never onurrent with one another. Our adaptation is not dependent on thisassumption, and so an be applied diretly to the variables of interest in a fully alulational proof style.As far as we know, this is the �rst paper to apply alulational proofs to quorum system variables.We use these formalisms to prove that the atomiity result of [MR98b℄ generalizes to an importanttheorem about TS-variables: the writebak mehanism used in that partiular protool in fat redues theproblem of atomi variable semantis for any TS-variable to the simpler problem of regular semantis. Theorretness of the atomi protool of [MR98b℄ an in fat be viewed as a orollary of this result, as theryptographi framework of dissemination quorum systems (sans writebak) enfores regular semantis.As a follow-up, we show why the problem of atomi semantis (fully serializable operations) has beenstraightforwardly solved for some types of quorum system while remaining unsolved for others. Spei�ally,we show that for a signi�ant sublass of TS-variables, traditional approahes to protool design will alwayshave some danger of failed read queries (aborted, retried or inorret) in an asynhronous environment.(In fat, the masking quorum systems of [MR98a℄, for whih atomi semantis have proved stubbornlyelusive, fall into this ategory.) Finally, we propose and briey disuss the somewhat weaker notions ofpseudoregular and pseudoatomi semantis for suh systems.The struture of this paper is as follows. In Setion 2, we de�ne TS-variables and a number of relatedonepts and theorems, inluding our adapted version of Lamport's semanti ategories. In Setion 3 we use1In fat, our de�nition of TS-variables is not spei� to quorum system variables; it simply aptures those properties thatare ommon to suh variables and are relevant to our analysis. Our theorems therefore also hold for any other variable typesthat may share these properties. 2

these formalisms to give a fully alulational proof that any regular read/write protool that satis�es thede�nition of a TS-variable protool an be used to implement a orresponding atomi read/write protool.In Setion 4 we show that for an important lass of possible protools, traditional approahes to protooldesign always result in a danger of unresolvable queries in an asynhronous system; we then de�ne theweaker notions of pseudoregular and pseudoatomi semantis, whih an be implemented in spite of suhqueries. We onlude in Setion 5. (An example of a pseudoregular protool for masking quorum systemsis inluded in the appendix.)2 Preliminaries2.1 Formalizing masking quorum system variables: TS-variablesIn order to reason formally about Byzantine quorum system variables as a lass, we need an abstrationthat de�nes the important features of suh variables independently of operational details. To this end, inthis setion we introdue the onept of TS-variables. We begin by de�ning the more general onept of\timestamped variables" as well as a number of useful funtions on suh variables:De�nition 1 A timestamped variable is a variable of any type whose value is read and updated in on-juntion with an assoiated timestamp, where timestamps are drawn from some unbounded totally orderedset.Let RW be a set of read and write operations on some timestamped variable with a given read/writeprotool; let R � RW be the set of reads, and let W � RW be the set of writes. Then the followingfuntion de�nitions hold (R and B represent the set of reals and the set of booleans, respetively):value: For op 2 RW , if op is a read, then value(op) is the value returned by the read; if op is a write, thenvalue(op) is the value written.ts: For op 2 RW , if op is a read, then ts(op) is the timestamp of the value returned by the read; if op is awrite, then ts(op) is the timestamp assigned to the value written.readsfrom: For r 2 R, w 2 W , readsfrom(r; w) � true i� r reads the result of write w. For timestampedvariables, we de�ne this to be equivalent to:readsfrom (r; w) � value(r) = value(w) ^ ts(r) = ts(w)For the purposes of the next two funtions, we postulate a real-valued global \lok" (e.g., the age of theuniverse in milliseonds) that provides an absolute timesale for system events. As the systems we disussare asynhronous, individual proesses do not have aess to global lok values or to these funtions,whih are used only for reasoning purposes.start: The start time of the operation in global time.end: The end time of the operation in global time.The purpose of these funtions is to give us a onvenient shorthand for reasoning about the possibil-ity of onurreny between operations without being spei� about the atual (nondeterministi, in anasynhronous environment) order in whih servers proess requests. Essentially, ifend(op1) < start(op2) _ end(op2) < start(op1)3

then op2 is not onurrent with op1, whereas ifstart(op2) � end(op1) ^ start(op1) � end(op2)suh onurreny may exist and thus needs to be resolved in any proposed serialization of op1 and op2.For simpliity, we will therefore treat the latter expression as our de�nition of onurreny hereafter.2In keeping with their hypothetial meaning, we stipulate that the start and end funtions meet thefollowing restrition: 8op 2 RW : start(op) < end(op)2.1.1 TS-variablesA variable onsists of a type, a memory address, and a spei�ation of the operations that may be performedon it, inluding at least read and write.3 We refer to suh a spei�ation as a variable protool. Read andwrite ativity on a variable is desribed in terms of a run of its protool:De�nition 2 A run of a variable v is a set of operations performed on v, all of whih meet the spei�ationof v's protool. We all a run RW omplete if, for all read operations r 2 RW , there exists a write operationw 2 RW suh that readsfrom (r; w).It is useful to have a separate term for the run onsisting of all operations performed on a variable duringits lifetime:De�nition 3 The history of a variable is the run onsisting of all operations performed on that variableduring its lifetime.In this hapter we will ontinue to use the label RW to represent a variable run; subsripts will be usedto distinguish between runs when the ontext is not otherwise lear. The projetion of a run RW onto itsread operations will be denoted R; the orresponding projetion onto write operations will be denoted W .Although some researhers use the terms \run" and \exeution" interhangeably, in this work we �ndit useful to follow the example of [Lam86℄, whih gives them distint tehnial meanings. Spei�ally, anexeution assoiates a run with a preedene relation on the operations of that run, i.e.:De�nition 4 An exeution of a variable v is a pair hRW; -i, where RW is a run of v and - is apreedene relation (irreexive partial order) on the operations in RW .We now de�ne two spei� types of exeution that are of speial importane to this work:De�nition 5 An exeution hRW; -i is said to be real-time onsistent if8op1; op2 2 RW : end(op1) < start(op2)) op1 - op2De�nition 6 An exeution hRW; -i is said to be write-ordered if it satis�es the following:1. 8wi; wj 2W : wi 6= wj : wi - wj _ wj - wi2. hW; -i is real-time onsistent.2A more literal de�nition would be that two operations are onurrent if and only if there exist two servers that proessthem in di�erent order. However, it will be readily seen that if end(op1) < start(op2), then every server proesses op1 beforeop2; hene they are not onurrent.3We do not onern ourselves with read-only variables in the ontext of this work.4

In other words, (1) in a write-ordered exeution, the write operations are totally ordered by -, and (2)the order is onsistent with the partial order of write operations in real time.De�nition 7 For all runs RW of a timestamped variable v, the relation ts- is de�ned by:1. 8op 2 RW;8w 2W : op ts- w � ts(op) < ts(w)2. 8w 2W;8r 2 R : w ts- r � ts(w) � ts(r)3. 8ra; rb 2 R : ra ts- rb � ts(ra) < ts(rb)It is easy to see that ts- is irreexive, antisymmetri and transitive. It is therefore an irreexive partialorder. (Note that operations with idential timestamps are not neessarily ordered by ts-.)We now de�ne TS-variables as follows:De�nition 8 A TS-variable is a timestamped variable v suh that, for all histories RW of v, hRW; ts-iis write-ordered.Note that De�nitions 7 and 8 imply that TS-variable writes are uniquely identi�ed by timestamp; thusfor any given read, there is at most one write with the same timestamp. We an therefore make thefollowing observation, whih provides a simpli�ed form of the de�nition of readsfrom() for TS-variables:Observation 1 For any read operation r and write operation w of a omplete TS-variable run,readsfrom(r; w) � ts(r) = ts(w)2.2 Formalizing data semantis for TS-variablesWe now de�ne what it means for a write-ordered exeution to be safe, regular or atomi. The de�nitionsof safe and regular are based on the idea that one a write to a variable has ompleted, previous values ofthat variable should not be read. This onept is expressed in [Lam86℄ in terms of the set of writes thata given read \sees":4De�nition 9 For a write-ordered exeution hRW; -i, let w0; w1; : : : be the ordered list of write operationsfrom RW as de�ned by -. Furthermore, for a given read operation r, let i be the index of the last writethat preedes r, i.e., i = maxfk : end(wk) < start(r)g. Then we say that r sees W 0 �W , where:W 0 = fwig [fwk : start(r) � end(wk) ^ start(wk) � end(r)gWe express this relationship in prediate form as sees(r;W 0; -).Thus the values that a read sees are those that might be legitimately returned by that read, i.e., thevalue of the most reently ompleted write wi and the values of any onurrent writes.The above de�nition is diÆult to use diretly. Fortunately, the fat that hRW; -i is write-orderedimplies that all writes seen by r fall within a well-de�ned range { no suh write is earlier than the lastwrite (in terms of the write order) to preede r or later than the last write that is onurrent with r:4[Lam86℄ de�ned this onept for a single-writer register, whose write operations are thus neessarily serial. We relax thisrequirement, de�ning our version of \sees" in terms of serializable, rather than serial, writes. Thus our de�nition an beapplied to variables with multiple writers. 5

Observation 2 For a given read r, let i be de�ned as in De�nition 9, and let j = maxfk : start(wk) < end(r)g.Then:5 sees(r;W 0; -)) h8wk 2W 0 : i � k � jiWe are now ready to give our de�nitions of safe, regular, and atomi exeutions.2.2.1 Safe exeutionsIn informal terms, an exeution is safe if any read that sees only one write returns the value of that write.Operationally, this means that a read that is onurrent with no writes returns the result of the \mostreent" write aording to the serialization de�ned by the write-ordering. Formally, ontinuing to use wito denote the ith write in the order de�ned by - we say:De�nition 10 An exeution hRW; -i is safe if:� it is write-ordered, and� sees(r; fwig; -)) readsfrom(r; wi)2.2.2 Regular exeutionsA write-ordered exeution is regular if every read returns some value that it sees, i.e., the result of themost reently ompleted write or a onurrent one. Formally:De�nition 11 An exeution hRW; -i is regular if:� it is write-ordered, and� 8r 2 R : sees(r;W 0; -)) h9w : w 2W 0 : readsfrom(r; w)iNote that a regular exeution is neessarily safe.For TS-variables, this de�nition has a useful onsequene: the timestamp of any given read is at least thetimestamp of the most reently ompleted write. Formally:Lemma 1 Let hRW; ts-i be regular. Then8r 2 R;8w 2W : end(w) < start(r)) ts(w) � ts(r)A alulational proof of this lemma is given in Figure 1; it onsists of showing that any arbitrary writethat preedes a given read has a timestamp less than or equal to that of the read.5Note that the reverse is not true. It is possible for a write to fall within the given range without being seen if the \invisible"write ours after read r, but onurrently with wj .
6

