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Abstract

We present a set of definitions and theorems that allow us to reason about the semantics of quo-
rum system variables, including Byzantine quorum system variables, as a class. Using these tools, we
present a formal proof that the problem of atomic semantics for such variables can be reduced to the
simpler problem of regular semantics for such systems. Specifically, any regular masking quorum sys-
tem protocol can be combined with a writeback mechanism to produce an atomic protocol. We then
describe a subclass of TS-variables for which the latter problem is not solvable by traditional approaches
in an asynchronous environment. Finally, for such variables we define the notion of pseudoregular and
pseudoatomic semantics, and show briefly that the same reduction holds for these concepts.
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1 Introduction

Byzantine quorum systems [MR98a] are a promising approach to the problem of efficiently implementing
Byzantine fault-tolerant data services. There are several variations on this approach [Baz97, MRWr97,
MRW97, MR98a], but the basic concept is the same for all of them: data are maintained simultaneously
at multiple sites, and each read or write operation is processed at a subset (called a quorum) of those
sites. Quorums are defined in such a way that the intersection of any two quorums contains enough servers
to allow a query to determine and return accurate and up-to-date information even in the presence of a
limited set of arbitrarily faulty servers. Furthermore, because only a subset of the servers is concerned with
any given operation, such a system can also remain available in spite of limited server crashes or network
partitions. Finally, the fact that the service is designed to tolerate out-of-date servers (e.g., those which
were not part of the most recent write quorum) greatly simplifies the task of recovering from failures; as
long as a quorum of servers is up to date, others may be brought back online without any need to recover
their most recent state.

Analyzing the semantics of shared variables implemented by these quorum systems can be quite chal-
lenging. Heretofore, such analysis has been limited to individual protocols; there has been no framework for
reasoning about the semantics of quorum variables as a family. For example, while there exist compelling
arguments to the effect that fully serializable operations have been achieved for some types of quorum
systems (notably the dissemination quorum systems of [MR98b]) and remain an open problem for others
(e.g., masking quorum systems, [MR98a]), these arguments do not tell us why these discrepancies exist, or
the degree to which individual solutions can be generalized.

One of the primary contributions of this paper is to address this need. We present a set of definitions
and theorems that allow us to reason about the class of shared variables implemented by quorum systems,
including the various Byzantine quorum systems; we call such variables T'S-variables because of the im-
portant role of timestamps in their protocols.! Further, we give an adapted version of Lamport’s formal
definitions of the concepts of safe, reqular, and atomic semantics [Lam86]. These concepts have tradition-
ally been used to describe the semantics of Byzantine quorum systems, but their use has necessarily had
to be somewhat informal, as Lamport’s formal definitions and theorems were based on the assumption
that variable writes were never concurrent with one another. Our adaptation is not dependent on this
assumption, and so can be applied directly to the variables of interest in a fully calculational proof style.
As far as we know, this is the first paper to apply calculational proofs to quorum system variables.

We use these formalisms to prove that the atomicity result of [MR98b] generalizes to an important
theorem about T'S-variables: the writeback mechanism used in that particular protocol in fact reduces the
problem of atomic variable semantics for any T'S-variable to the simpler problem of reqular semantics. The
correctness of the atomic protocol of [MR98b] can in fact be viewed as a corollary of this result, as the
cryptographic framework of dissemination quorum systems (sans writeback) enforces regular semantics.

As a follow-up, we show why the problem of atomic semantics (fully serializable operations) has been
straightforwardly solved for some types of quorum system while remaining unsolved for others. Specifically,
we show that for a significant subclass of T'S-variables, traditional approaches to protocol design will always
have some danger of failed read queries (aborted, retried or incorrect) in an asynchronous environment.
(In fact, the masking quorum systems of [MR98a], for which atomic semantics have proved stubbornly
elusive, fall into this category.) Finally, we propose and briefly discuss the somewhat weaker notions of
pseudoreqular and pseudoatomic semantics for such systems.

The structure of this paper is as follows. In Section 2, we define T'S-variables and a number of related
concepts and theorems, including our adapted version of Lamport’s semantic categories. In Section 3 we use

'In fact, our definition of TS-variables is not specific to quorum system variables; it simply captures those properties that
are common to such variables and are relevant to our analysis. Our theorems therefore also hold for any other variable types
that may share these properties.



these formalisms to give a fully calculational proof that any regular read/write protocol that satisfies the
definition of a T'S-variable protocol can be used to implement a corresponding atomic read/write protocol.
In Section 4 we show that for an important class of possible protocols, traditional approaches to protocol
design always result in a danger of unresolvable queries in an asynchronous system; we then define the
weaker notions of pseudoregular and pseudoatomic semantics, which can be implemented in spite of such
queries. We conclude in Section 5. (An example of a pseudoregular protocol for masking quorum systems
is included in the appendix.)

2 Preliminaries

2.1 Formalizing masking quorum system variables: TS-variables

In order to reason formally about Byzantine quorum system variables as a class, we need an abstraction
that defines the important features of such variables independently of operational details. To this end, in
this section we introduce the concept of T'S-variables. We begin by defining the more general concept of
“timestamped variables” as well as a number of useful functions on such variables:

Definition 1 A timestamped variable s a variable of any type whose value is read and updated in con-
junction with an associated timestamp, where timestamps are drawn from some unbounded totally ordered
set.

Let RW be a set of read and write operations on some timestamped variable with a given read/write
protocol; let R C RW be the set of reads, and let W C RW be the set of writes. Then the following
function definitions hold (R and B represent the set of reals and the set of booleans, respectively):

value: For op € RW , if op is a read, then value(op) is the value returned by the read; if op is a write, then
value(op) is the value written.

ts: For op € RW, if op is a read, then ts(op) is the timestamp of the value returned by the read; if op is a
write, then ts(op) is the timestamp assigned to the value written.

readsfrom: For r € R, w € W, readsfrom(r,w) = true iff r reads the result of write w. For timestamped
variables, we define this to be equivalent to:

readsfrom (r, w) = value(r) = value(w) A ts(r) = ts(w)

For the purposes of the next two functions, we postulate a real-valued global “clock” (e.g., the age of the
universe in milliseconds) that provides an absolute timescale for system events. As the systems we discuss
are asynchronous, individual processes do not have access to global clock values or to these functions,
which are used only for reasoning purposes.

start: The start time of the operation in global time.
end: The end time of the operation in global time.

The purpose of these functions is to give us a convenient shorthand for reasoning about the possibil-
ity of concurrency between operations without being specific about the actual (nondeterministic, in an
asynchronous environment) order in which servers process requests. Essentially, if

end(opl) < start(op2) V end(op2) < start(opl)



then op2 is not concurrent with opl, whereas if
start(op2) < end(opl) A start(opl) < end(op2)

such concurrency may exist and thus needs to be resolved in any proposed serialization of opl and op2.
For simplicity, we will therefore treat the latter expression as our definition of concurrency hereafter.?
In keeping with their hypothetical meaning, we stipulate that the start and end functions meet the
following restriction:
Yop € RW : start(op) < end(op)

2.1.1 TS-variables

A variable consists of a type, a memory address, and a specification of the operations that may be performed
on it, including at least read and write.®> We refer to such a specification as a variable protocol. Read and
write activity on a variable is described in terms of a run of its protocol:

Definition 2 A run of a variable v is a set of operations performed on v, all of which meet the specification
of v’s protocol. We call a run RW complete if, for all read operations r € RW , there exists a write operation
w € RW such that readsfrom(r, w).

It is useful to have a separate term for the run consisting of all operations performed on a variable during
its lifetime:

Definition 3 The history of a variable is the run consisting of all operations performed on that variable
during its lifetime.

In this chapter we will continue to use the label RW to represent a variable run; subscripts will be used
to distinguish between runs when the context is not otherwise clear. The projection of a run RW onto its
read operations will be denoted R; the corresponding projection onto write operations will be denoted W'.

Although some researchers use the terms “run” and “execution” interchangeably, in this work we find
it useful to follow the example of [Lam86], which gives them distinct technical meanings. Specifically, an
execution associates a run with a precedence relation on the operations of that run, i.e.:

Definition 4 An execution of a variable v is a pair (RW,—), where RW is a run of v and — is a
precedence relation (irreflexive partial order) on the operations in RW .

We now define two specific types of execution that are of special importance to this work:
Definition 5 An ezecution (RW, —) is said to be real-time consistent uf
Vopl,op2 € RW : end(opl) < start(op2) = opl — op2
Definition 6 An execution (RW, —) is said to be write-ordered if it satisfies the following:
1. Ywi,w; € W w; # wj : w; — wj V wj — w;

2. (W, —) is real-time consistent.

2A more literal definition would be that two operations are concurrent if and only if there exist two servers that process
them in different order. However, it will be readily seen that if end(opl) < start(op2), then every server processes opl before
op2; hence they are not concurrent.

3We do not concern ourselves with read-only variables in the context of this work.



In other words, (1) in a write-ordered execution, the write operations are totally ordered by —, and (2)
the order is consistent with the partial order of write operations in real time.

Definition 7 For all runs RW of a timestamped variable v, the relation 5 is defined by:

1. Yop € RW,Yw € W : op 2% w = ts(op) < ts(w)

2. Yw € W,Vr € R:w - r = ts(w) < ts(r)

3. Vra,mp € R:1q B 1y = ts(rg) < ts(rp)
It is easy to see that % is irreflexive, antisymmetric and transitive. It is therefore an irreflexive partial
order. (Note that operations with identical timestamps are not necessarily ordered by ﬁ»)

We now define T'S-variables as follows:

Definition 8 A TS-variable is a timestamped variable v such that, for all histories RW of v, (RW,-5)
18 write-ordered.

Note that Definitions 7 and 8 imply that T'S-variable writes are uniquely identified by timestamp; thus
for any given read, there is at most one write with the same timestamp. We can therefore make the
following observation, which provides a simplified form of the definition of readsfrom() for TS-variables:

Observation 1 For any read operation r and write operation w of a complete TS-variable run,

readsfrom (r,w) = ts(r) = ts(w)

2.2 Formalizing data semantics for TS-variables

We now define what it means for a write-ordered execution to be safe, regular or atomic. The definitions
of safe and regular are based on the idea that once a write to a variable has completed, previous values of
that variable should not be read. This concept is expressed in [Lam86] in terms of the set of writes that

a given read “sees”:*

Definition 9 For a write-ordered execution (RW,—), let wy, w1, ... be the ordered list of write operations

from RW as defined by —. Furthermore, for a given read operation r, let i be the index of the last write
that precedes r, i.e., i = max{k : end(wy) < start(r)}. Then we say that r sees W' C W, where:

W' = {w;} U {wy, : start(r) < end(wy,) A start(wg) < end(r)}
We express this relationship in predicate form as sees(r, W', —).

Thus the values that a read sees are those that might be legitimately returned by that read, i.e., the
value of the most recently completed write w; and the values of any concurrent writes.

The above definition is difficult to use directly. Fortunately, the fact that (RW, —) is write-ordered
implies that all writes seen by r fall within a well-defined range — no such write is earlier than the last
write (in terms of the write order) to precede r or later than the last write that is concurrent with r:

*[Lam86] defined this concept for a single-writer register, whose write operations are thus necessarily serial. We relax this
requirement, defining our version of “sees” in terms of serializable, rather than serial, writes. Thus our definition can be
applied to variables with multiple writers.



Observation 2 For a given read r, let i be defined as in Definition 9, and let j = maz{k : start(wy) < end(r)}.
Then:®
sees(r,W',—) = (Vw € W' 11 < k < j)

We are now ready to give our definitions of safe, reqular, and atomic executions.

2.2.1 Safe executions

In informal terms, an execution is safe if any read that sees only one write returns the value of that write.
Operationally, this means that a read that is concurrent with no writes returns the result of the “most
recent” write according to the serialization defined by the write-ordering. Formally, continuing to use w;
to denote the i*" write in the order defined by — we say:

Definition 10 An ezecution (RW, —) is safe if:
e it 1s write-ordered, and

o sees(r,{w;}, —) = readsfrom(r,w;)
2.2.2 Regular executions

A write-ordered execution is regular if every read returns some value that it sees, i.e., the result of the
most recently completed write or a concurrent one. Formally:

Definition 11 An ezecution (RW, —) is regular if:

e it 1s write-ordered, and

e Vr € R : sees(r,W',—) = (Gw: w € W' : readsfrom(r,w))
Note that a regular execution is necessarily safe.

For TS-variables, this definition has a useful consequence: the timestamp of any given read is at least the
timestamp of the most recently completed write. Formally:

Lemma 1 Let (RW,-'%) be regular. Then
Vr € RVw € W : end(w) < start(r) = ts(w) < ts(r)

A calculational proof of this lemma is given in Figure 1; it consists of showing that any arbitrary write
that precedes a given read has a timestamp less than or equal to that of the read.

®Note that the reverse is not true. It is possible for a write to fall within the given range without being seen if the “invisible”
write occurs after read r, but concurrently with w;.



