
A Framework for Semanti
 ReasoningaboutByzantine Quorum SystemsEvelyn Pier
e� Lorenzo AlvisiyMar
h 1, 2001Abstra
tWe present a set of de�nitions and theorems that allow us to reason about the semanti
s of quo-rum system variables, in
luding Byzantine quorum system variables, as a
lass. Using these tools, wepresent a formal proof that the problem of atomi
 semanti
s for su
h variables
an be redu
ed to thesimpler problem of regular semanti
s for su
h systems. Spe
i�
ally, any regular masking quorum sys-tem proto
ol
an be
ombined with a writeba
k me
hanism to produ
e an atomi
 proto
ol. We thendes
ribe a sub
lass of TS-variables for whi
h the latter problem is not solvable by traditional approa
hesin an asyn
hronous environment. Finally, for su
h variables we de�ne the notion of pseudoregular andpseudoatomi
 semanti
s, and show brie
y that the same redu
tion holds for these
on
epts.keywords: atomi
 variable semanti
s, byzantine fault toleran
e, quorum systems, large-s
ale data servi
es,
al
ulational proofsConta
t Author: Evelyn Pier
e (tumlin�
s.utexas.edu, Department of Computer S
ien
es, Universityof Texas at Austin, Austin, TX 78712 FAX: (512)471-8885)

�Department of Computer S
ien
es, University of Texas, Austin, Texas; tumlin�
s.utexas.edu.yDepartment of Computer S
ien
es, University of Texas, Austin, Texas; lorenzo�
s.utexas.edu.1

1 Introdu
tionByzantine quorum systems [MR98a℄ are a promising approa
h to the problem of eÆ
iently implementingByzantine fault-tolerant data servi
es. There are several variations on this approa
h [Baz97, MRWr97,MRW97, MR98a℄, but the basi

on
ept is the same for all of them: data are maintained simultaneouslyat multiple sites, and ea
h read or write operation is pro
essed at a subset (
alled a quorum) of thosesites. Quorums are de�ned in su
h a way that the interse
tion of any two quorums
ontains enough serversto allow a query to determine and return a

urate and up-to-date information even in the presen
e of alimited set of arbitrarily faulty servers. Furthermore, be
ause only a subset of the servers is
on
erned withany given operation, su
h a system
an also remain available in spite of limited server
rashes or networkpartitions. Finally, the fa
t that the servi
e is designed to tolerate out-of-date servers (e.g., those whi
hwere not part of the most re
ent write quorum) greatly simpli�es the task of re
overing from failures; aslong as a quorum of servers is up to date, others may be brought ba
k online without any need to re
overtheir most re
ent state.Analyzing the semanti
s of shared variables implemented by these quorum systems
an be quite
hal-lenging. Heretofore, su
h analysis has been limited to individual proto
ols; there has been no framework forreasoning about the semanti
s of quorum variables as a family. For example, while there exist
ompellingarguments to the e�e
t that fully serializable operations have been a
hieved for some types of quorumsystems (notably the dissemination quorum systems of [MR98b℄) and remain an open problem for others(e.g., masking quorum systems, [MR98a℄), these arguments do not tell us why these dis
repan
ies exist, orthe degree to whi
h individual solutions
an be generalized.One of the primary
ontributions of this paper is to address this need. We present a set of de�nitionsand theorems that allow us to reason about the
lass of shared variables implemented by quorum systems,in
luding the various Byzantine quorum systems; we
all su
h variables TS-variables be
ause of the im-portant role of timestamps in their proto
ols.1 Further, we give an adapted version of Lamport's formalde�nitions of the
on
epts of safe, regular, and atomi
 semanti
s [Lam86℄. These
on
epts have tradition-ally been used to des
ribe the semanti
s of Byzantine quorum systems, but their use has ne
essarily hadto be somewhat informal, as Lamport's formal de�nitions and theorems were based on the assumptionthat variable writes were never
on
urrent with one another. Our adaptation is not dependent on thisassumption, and so
an be applied dire
tly to the variables of interest in a fully
al
ulational proof style.As far as we know, this is the �rst paper to apply
al
ulational proofs to quorum system variables.We use these formalisms to prove that the atomi
ity result of [MR98b℄ generalizes to an importanttheorem about TS-variables: the writeba
k me
hanism used in that parti
ular proto
ol in fa
t redu
es theproblem of atomi
 variable semanti
s for any TS-variable to the simpler problem of regular semanti
s. The
orre
tness of the atomi
 proto
ol of [MR98b℄
an in fa
t be viewed as a
orollary of this result, as the
ryptographi
 framework of dissemination quorum systems (sans writeba
k) enfor
es regular semanti
s.As a follow-up, we show why the problem of atomi
 semanti
s (fully serializable operations) has beenstraightforwardly solved for some types of quorum system while remaining unsolved for others. Spe
i�
ally,we show that for a signi�
ant sub
lass of TS-variables, traditional approa
hes to proto
ol design will alwayshave some danger of failed read queries (aborted, retried or in
orre
t) in an asyn
hronous environment.(In fa
t, the masking quorum systems of [MR98a℄, for whi
h atomi
 semanti
s have proved stubbornlyelusive, fall into this
ategory.) Finally, we propose and brie
y dis
uss the somewhat weaker notions ofpseudoregular and pseudoatomi
 semanti
s for su
h systems.The stru
ture of this paper is as follows. In Se
tion 2, we de�ne TS-variables and a number of related
on
epts and theorems, in
luding our adapted version of Lamport's semanti

ategories. In Se
tion 3 we use1In fa
t, our de�nition of TS-variables is not spe
i�
 to quorum system variables; it simply
aptures those properties thatare
ommon to su
h variables and are relevant to our analysis. Our theorems therefore also hold for any other variable typesthat may share these properties. 2

these formalisms to give a fully
al
ulational proof that any regular read/write proto
ol that satis�es thede�nition of a TS-variable proto
ol
an be used to implement a
orresponding atomi
 read/write proto
ol.In Se
tion 4 we show that for an important
lass of possible proto
ols, traditional approa
hes to proto
oldesign always result in a danger of unresolvable queries in an asyn
hronous system; we then de�ne theweaker notions of pseudoregular and pseudoatomi
 semanti
s, whi
h
an be implemented in spite of su
hqueries. We
on
lude in Se
tion 5. (An example of a pseudoregular proto
ol for masking quorum systemsis in
luded in the appendix.)2 Preliminaries2.1 Formalizing masking quorum system variables: TS-variablesIn order to reason formally about Byzantine quorum system variables as a
lass, we need an abstra
tionthat de�nes the important features of su
h variables independently of operational details. To this end, inthis se
tion we introdu
e the
on
ept of TS-variables. We begin by de�ning the more general
on
ept of\timestamped variables" as well as a number of useful fun
tions on su
h variables:De�nition 1 A timestamped variable is a variable of any type whose value is read and updated in
on-jun
tion with an asso
iated timestamp, where timestamps are drawn from some unbounded totally orderedset.Let RW be a set of read and write operations on some timestamped variable with a given read/writeproto
ol; let R � RW be the set of reads, and let W � RW be the set of writes. Then the followingfun
tion de�nitions hold (R and B represent the set of reals and the set of booleans, respe
tively):value: For op 2 RW , if op is a read, then value(op) is the value returned by the read; if op is a write, thenvalue(op) is the value written.ts: For op 2 RW , if op is a read, then ts(op) is the timestamp of the value returned by the read; if op is awrite, then ts(op) is the timestamp assigned to the value written.readsfrom: For r 2 R, w 2 W , readsfrom(r; w) � true i� r reads the result of write w. For timestampedvariables, we de�ne this to be equivalent to:readsfrom (r; w) � value(r) = value(w) ^ ts(r) = ts(w)For the purposes of the next two fun
tions, we postulate a real-valued global \
lo
k" (e.g., the age of theuniverse in millise
onds) that provides an absolute times
ale for system events. As the systems we dis
ussare asyn
hronous, individual pro
esses do not have a

ess to global
lo
k values or to these fun
tions,whi
h are used only for reasoning purposes.start: The start time of the operation in global time.end: The end time of the operation in global time.The purpose of these fun
tions is to give us a
onvenient shorthand for reasoning about the possibil-ity of
on
urren
y between operations without being spe
i�
 about the a
tual (nondeterministi
, in anasyn
hronous environment) order in whi
h servers pro
ess requests. Essentially, ifend(op1) < start(op2) _ end(op2) < start(op1)3

then op2 is not
on
urrent with op1, whereas ifstart(op2) � end(op1) ^ start(op1) � end(op2)su
h
on
urren
y may exist and thus needs to be resolved in any proposed serialization of op1 and op2.For simpli
ity, we will therefore treat the latter expression as our de�nition of
on
urren
y hereafter.2In keeping with their hypotheti
al meaning, we stipulate that the start and end fun
tions meet thefollowing restri
tion: 8op 2 RW : start(op) < end(op)2.1.1 TS-variablesA variable
onsists of a type, a memory address, and a spe
i�
ation of the operations that may be performedon it, in
luding at least read and write.3 We refer to su
h a spe
i�
ation as a variable proto
ol. Read andwrite a
tivity on a variable is des
ribed in terms of a run of its proto
ol:De�nition 2 A run of a variable v is a set of operations performed on v, all of whi
h meet the spe
i�
ationof v's proto
ol. We
all a run RW
omplete if, for all read operations r 2 RW , there exists a write operationw 2 RW su
h that readsfrom (r; w).It is useful to have a separate term for the run
onsisting of all operations performed on a variable duringits lifetime:De�nition 3 The history of a variable is the run
onsisting of all operations performed on that variableduring its lifetime.In this
hapter we will
ontinue to use the label RW to represent a variable run; subs
ripts will be usedto distinguish between runs when the
ontext is not otherwise
lear. The proje
tion of a run RW onto itsread operations will be denoted R; the
orresponding proje
tion onto write operations will be denoted W .Although some resear
hers use the terms \run" and \exe
ution" inter
hangeably, in this work we �ndit useful to follow the example of [Lam86℄, whi
h gives them distin
t te
hni
al meanings. Spe
i�
ally, anexe
ution asso
iates a run with a pre
eden
e relation on the operations of that run, i.e.:De�nition 4 An exe
ution of a variable v is a pair hRW; -i, where RW is a run of v and - is apre
eden
e relation (irre
exive partial order) on the operations in RW .We now de�ne two spe
i�
 types of exe
ution that are of spe
ial importan
e to this work:De�nition 5 An exe
ution hRW; -i is said to be real-time
onsistent if8op1; op2 2 RW : end(op1) < start(op2)) op1 - op2De�nition 6 An exe
ution hRW; -i is said to be write-ordered if it satis�es the following:1. 8wi; wj 2W : wi 6= wj : wi - wj _ wj - wi2. hW; -i is real-time
onsistent.2A more literal de�nition would be that two operations are
on
urrent if and only if there exist two servers that pro
essthem in di�erent order. However, it will be readily seen that if end(op1) < start(op2), then every server pro
esses op1 beforeop2; hen
e they are not
on
urrent.3We do not
on
ern ourselves with read-only variables in the
ontext of this work.4

In other words, (1) in a write-ordered exe
ution, the write operations are totally ordered by -, and (2)the order is
onsistent with the partial order of write operations in real time.De�nition 7 For all runs RW of a timestamped variable v, the relation ts- is de�ned by:1. 8op 2 RW;8w 2W : op ts- w � ts(op) < ts(w)2. 8w 2W;8r 2 R : w ts- r � ts(w) � ts(r)3. 8ra; rb 2 R : ra ts- rb � ts(ra) < ts(rb)It is easy to see that ts- is irre
exive, antisymmetri
 and transitive. It is therefore an irre
exive partialorder. (Note that operations with identi
al timestamps are not ne
essarily ordered by ts-.)We now de�ne TS-variables as follows:De�nition 8 A TS-variable is a timestamped variable v su
h that, for all histories RW of v, hRW; ts-iis write-ordered.Note that De�nitions 7 and 8 imply that TS-variable writes are uniquely identi�ed by timestamp; thusfor any given read, there is at most one write with the same timestamp. We
an therefore make thefollowing observation, whi
h provides a simpli�ed form of the de�nition of readsfrom() for TS-variables:Observation 1 For any read operation r and write operation w of a
omplete TS-variable run,readsfrom(r; w) � ts(r) = ts(w)2.2 Formalizing data semanti
s for TS-variablesWe now de�ne what it means for a write-ordered exe
ution to be safe, regular or atomi
. The de�nitionsof safe and regular are based on the idea that on
e a write to a variable has
ompleted, previous values ofthat variable should not be read. This
on
ept is expressed in [Lam86℄ in terms of the set of writes thata given read \sees":4De�nition 9 For a write-ordered exe
ution hRW; -i, let w0; w1; : : : be the ordered list of write operationsfrom RW as de�ned by -. Furthermore, for a given read operation r, let i be the index of the last writethat pre
edes r, i.e., i = maxfk : end(wk) < start(r)g. Then we say that r sees W 0 �W , where:W 0 = fwig [fwk : start(r) � end(wk) ^ start(wk) � end(r)gWe express this relationship in predi
ate form as sees(r;W 0; -).Thus the values that a read sees are those that might be legitimately returned by that read, i.e., thevalue of the most re
ently
ompleted write wi and the values of any
on
urrent writes.The above de�nition is diÆ
ult to use dire
tly. Fortunately, the fa
t that hRW; -i is write-orderedimplies that all writes seen by r fall within a well-de�ned range { no su
h write is earlier than the lastwrite (in terms of the write order) to pre
ede r or later than the last write that is
on
urrent with r:4[Lam86℄ de�ned this
on
ept for a single-writer register, whose write operations are thus ne
essarily serial. We relax thisrequirement, de�ning our version of \sees" in terms of serializable, rather than serial, writes. Thus our de�nition
an beapplied to variables with multiple writers. 5

Observation 2 For a given read r, let i be de�ned as in De�nition 9, and let j = maxfk : start(wk) < end(r)g.Then:5 sees(r;W 0; -)) h8wk 2W 0 : i � k � jiWe are now ready to give our de�nitions of safe, regular, and atomi
 exe
utions.2.2.1 Safe exe
utionsIn informal terms, an exe
ution is safe if any read that sees only one write returns the value of that write.Operationally, this means that a read that is
on
urrent with no writes returns the result of the \mostre
ent" write a

ording to the serialization de�ned by the write-ordering. Formally,
ontinuing to use wito denote the ith write in the order de�ned by - we say:De�nition 10 An exe
ution hRW; -i is safe if:� it is write-ordered, and� sees(r; fwig; -)) readsfrom(r; wi)2.2.2 Regular exe
utionsA write-ordered exe
ution is regular if every read returns some value that it sees, i.e., the result of themost re
ently
ompleted write or a
on
urrent one. Formally:De�nition 11 An exe
ution hRW; -i is regular if:� it is write-ordered, and� 8r 2 R : sees(r;W 0; -)) h9w : w 2W 0 : readsfrom(r; w)iNote that a regular exe
ution is ne
essarily safe.For TS-variables, this de�nition has a useful
onsequen
e: the timestamp of any given read is at least thetimestamp of the most re
ently
ompleted write. Formally:Lemma 1 Let hRW; ts-i be regular. Then8r 2 R;8w 2W : end(w) < start(r)) ts(w) � ts(r)A
al
ulational proof of this lemma is given in Figure 1; it
onsists of showing that any arbitrary writethat pre
edes a given read has a timestamp less than or equal to that of the read.5Note that the reverse is not true. It is possible for a write to fall within the given range without being seen if the \invisible"write o

urs after read r, but
on
urrently with wj .
6

