Self-Adjusting Quorum Systems For
Byzantine Fault Tolerance
by

Evelyn Tumlin Pierce, B.A., M.Sc.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2000

To Dai

Acknowledgments

First, I would like to thank my advisor, Lorenzo Alvisi, for helping me find my path
and keep my enthusiasm up when that path seemed very long. I would also like to
thank Dahlia Malkhi of the Hebrew University of Jerusalem and Michael Reiter of
Lucent Technologies for their cooperation and guidance in this work, and for the
pioneering research that inspired it.

Thanks also to Edsger W. Dijkstra, for teaching me a new standard of beauty
and elegance in reasoning; all that is best and clearest in this thesis owes something
to his moral influence. In addition, I would like to thank Allen and Leisa Emer-
son, Ben Kuipers, Jay Misra, and Rebecca Wright, as well as the members of my
dissertation committee and a host of other mentors, colleagues, friends and family
without whose support this work might never have reached fruition.

Last and foremost, I would like to thank my husband, love, colleague and
best friend David Pierce, for being there for me throughout the long journey and
beyond.

EVELYN TUMLIN PIERCE

The University of Texas at Austin
December 2000

iii

Self-Adjusting Quorum Systems For

Byzantine Fault Tolerance

Publication No.

Evelyn Tumlin Pierce, Ph.D.
The University of Texas at Austin, 2000

Supervisor: Lorenzo Alvisi

The purpose of this work has been to design protocols for a data service that
tolerates Byzantine server faults by shifting between multiple tolerance modes at
run time, monitoring itself for faulty server behavior and dynamically adjusting its
own tolerance capabilities accordingly. Our goal is a system that runs in an efficient
low-fault mode most of the time, but can adjust itself to cope with new faults as
they occur.

Our approach is based on the masking quorum systems of Malkhi and Re-
iter. Like the protocols originally proposed for these systems, our techniques are
relatively economical in that updates and reads need to be performed only at a sub-
set (“quorum”) of data servers, thus decreasing the workload on individual servers
and simplifying the recovery process when failures occur. However, our protocols
implement the following additional capabilities:

1. Strengthened read and write protocols for serializability of completed opera-
tions.

2. Protocols for dynamically adjusting the threshold (and thus quorum size) of
threshold masking quorum systems in response to information about the num-
ber and/or probability of faults in the system.

3. Protocols for detecting Byzantine server behavior in threshold masking quo-
rum systems.

v

As a subsidiary goal, we have sought to make our methods not only effective
against random faulty server behavior, but also resistant to sabotage by a deliberate
adversary. To this end, we have limited our use of standard assumptions, such as
independence of failures and a priori limits on the number of faults, that restrict the
applicability of many Byzantine fault tolerance techniques to questions of security.

Contents

Acknowledgments

Abstract

Chapter 1 Introduction

1.1
1.2
1.3

Contributions of This Thesis
Related Work oo
Structure of Thesis oo

Chapter 2 System Model and Definitions

2.1
2.2

System Model
Definitions: Byzantine Quorum Systems
2.2.1 Masking quorum systems
2.2.2 Dissemination quorum systems

Chapter 3 On Atomic Semantics for Masking Quorum Systems

3.1

3.2

3.3

3.4
3.5

Introduction L
3.1.1 Related work oL,
Definitions: T'S-Variables and Data Semantics
3.2.1 Formalizing masking quorum system variables: TS-variables .
3.2.2 Formalizing data semantics for T'S-variables
Reducing the Atomic Semantics Problem
3.3.1 Defining the atomic protocol
3.3.2 A total order over operations on Ugtom « « + « . . 0 .. 0. . .
3.3.3 Proving vgeom atomico oo
Implementing Pseudo-Regular Semantics
On the Necessity of Aborted Operations
3.5.1 Definitions
3.5.2 Nonliveness of classic b-masking protocols
3.5.3 Non-liveness of classic protocols with bounded history

vi

iii

iv

W W N -

0 3 o O

11

13
13
14
14

18
20
20
21
23
25
27
28
28
29

3.5.4 Generalizing to non-size-based systems
3.6 Conclusion

Chapter 4 Dynamic Quorum Adjustment
4.1 Introduction.
411 Relatedwork oL
4.2 Threshold Adjustment: Problem Description
4.3 Threshold Variable Protocol,
4.3.1 Correctness
4.4 Ordinary Variable Protocols Under a Dynamic Threshold
4.4.1 Write protocol
4.4.2 Safe read protocol oL
4.4.3 Pseudo-regular/Pseudo-atomic read protocol
4.5 Performance and Optimizations
4.5.1 Comparison to static quorums
4.6 Conclusion

Chapter 5 Detecting Byzantine Faults in Quorum Systems
5.1 Introduction.
5.1.1 Related Work o oL
5.2 Preliminaries
5.2.1 System Model. oL
5.2.2 Statistical building blocks
5.3 Diagnosis Using Voucher Set Sizes
5.4 Diagnosis Using Quorum Markers
5.4.1 The write marker protocol,
5.4.2 Statistical fault detection
5.4.3 Fault identification oo
5.4.4 A note on very large systems
5.5 Conclusion

Chapter 6 Conclusions and Future Work
6.1 Summary of Results
6.2 Future Work
6.2.1 Semantics e e e
6.2.2 Dynamic quorum thresholds
6.2.3 Fault detection,

vil

32
32
34
35
36
37
38
39
40
41
43
43
44

45
45
47
48
48
48
50
55
95
56
60
60
60

Appendix A Additional Discussions
A.1 Dynamic Thresholds for Other b-Masking Quorum Systems
A.11 BoostFPP quorum system,

A12 M-grid quorum system
A .2 Fault Detection for Non-Threshold Failure Assumptions
A 2.1 Generalizing the alarm condition
A.2.2 Detection for a BoostFPP system
A.3 Detection: Choosing Alarm Lines for Large Systems

A.3.1 Martingales

A.3.2 Deriving the Bound
Bibliography

Vita

viii

64
64
64
65
66
66
67
68
69
69

71

76

Chapter 1

Introduction

As the world grows more and more interconnected, distributed data services are
becoming simultaneously more necessary and more problematic. They are neces-
sary in that a growing number of users are conducting business transactions and
research online, thus increasing the demand for a variety of data that must be ac-
cessible from a variety of locations. They are problematic in that such data must be
protected from accidental or malicious corruption while maintaining this high level
of availability.

At minimum, a reliable data service ought to tolerate (i.e., store and retrieve
data correctly in spite of) server crashes and network partitions. If the stored infor-
mation is particularly critical, or if servers are particularly vulnerable to corruption
or sabotage, it may also be necessary for the service to tolerate actual incorrect or
misleading information from a subset of its servers.

This assortment of possible misbehaviors is modeled by the Byzantine fault
model. Under this model, a faulty data server may respond to queries incorrectly
(corruption), be unresponsive (crash or partition), or even sometimes respond cor-
rectly. In short, there are no real restrictions on its behavior. A data service that
can tolerate server faults of this type is likely to be extremely robust. Unfortunately,
Byzantine fault tolerance techniques typically require numerous up-to-date copies
of each data item at various locations, i.e., replication. Such techniques are apt
to be expensive, and are thus often dismissed as too impractical to be used as a
precaution against a relatively rare, if potentially devastating, condition.

The purpose of this work has been to design asynchronous data service pro-
tocols that address this concern by allowing the service to shift between multiple
tolerance modes at run time, monitoring itself for faulty server behavior and dy-
namically adjusting its own tolerance capabilities accordingly. Our goal is a system
that runs in an efficient low-fault mode most of the time, but can adjust itself to

cope with new faults as they occur.

As a subsidiary goal, we have striven to make our methods not only effective
against random faulty server behavior, but also resistant to sabotage by a deliberate
adversary. To this end, it is necessary to limit the use of standard assumptions, such
as independence of failures and a prior: limits on the number of faults, that would
limit the applicability of our techniques to questions of security. While it may be
impossible to eliminate such assumptions altogether (see note at the end of this
chapter), we rely less heavily on them than do many traditional solutions to the
problem of Byzantine fault tolerance.

1.1 Contributions of This Thesis

Our approach is based on masking quorum systems, first proposed by Malkhi and
Reiter [MR98]. Masking quorum systems are an attractive alternative to earlier
approaches to Byzantine fault tolerance in that read and write operations need
to be performed only at a subset (“quorum”) of the servers, thus decreasing the
workload on individual servers and simplifying the recovery process when failures
occur.

Using masking quorum systems as an economical alternative for Byzantine
fault tolerance requires a number of enhancements to the original approach, however.
For one thing, the original read and write protocols of [MR98] do not guarantee the
integrity of read operations that are concurrent with one or more write operations.
Furthermore, such systems may still be expensive in that tolerating multiple faults

requires large quorums.

The results presented in this document fall into three main categories:

1. Strengthening of the read and write protocols for masking quorum systems for
serializability of completed operations

2. Protocols for dynamically adjusting the threshold (and thus quorum size) of
threshold masking quorum systems in response to information about the num-
ber and/or probability of faults in the system

3. Protocols for detecting Byzantine server behavior in threshold masking quo-

rum systems.

1.2 Related Work

The foremost established approach to Byzantine fault-tolerant data services is that
of state machine replication, which is surveyed in detail in [Sch93]. In this approach,
as in ours, each data item is stored by all members of a set of n data servers. In
state machine replication, however, all copies must be kept current, and special
algorithms are needed to ensure that all read and write operations on a given data
item are performed in the same order. A client of such a service reads a variable
value by sending a request to all n servers, and accepting a response if and only if it
is returned by a sufficient number of them, e.g., b+ 1 for a fault tolerance threshold
of b. In spite of the overhead required to ensure the consistent ordering of operations
as well as of recovering failed servers to the current system state, the state machine
approach has been implemented numerous times, e.g., in Rampart [Rei95], usually
with a fault-tolerance limit of |2z].

Castro and Liskov have recently developed a less costly variant of state ma-
chine replication, using checkpointing and view changes with occasional garbage
collection [CL99]. They have further strengthened their approach by means of var-
ious features including efficient and proactive state recovery for servers that may
have failed [CL00]. However, keeping the server states consistent across the system
remains a necessity.

In this work we take a sharply constrasting approach to those described above
by eliminating the need for all servers to maintain identical states or to process
identical sequences of operations. Instead, our protocols specify that each read
and write operation is performed on a subset (quorum) of the server set; the set
of possible quorums is defined to have specific intersection properties that enable
clients to determine the current value of any given data item. A correct system
state thus inherently includes some out-of-date servers, thus simplifying recovery —
provided a quorum of servers is up to date, additional failed servers may be brought
back online without state update.

We summarize work related to each of our specific results in the correspond-
ing chapters.

1.3 Structure of Thesis

Chapter 2 contains the system model and definitions that will be used throughout
this thesis, including the original masking quorum system definitions and protocols
from [MR9S].

In Chapter 3 we give an abstract definition of a class of variables called
TS-variables, to which masking quorum system variables belong. We give rigor-

ous definitions of Lamport’s semantic properties of safeness, reqularity, and atomic-
ity [Lam86] for these variables, where safeness describes the semantics of the original
protocols of [MR98] and atomicity describes the semantics of full serializability. We
show how the problem of an atomic read and write protocol for masking quorum
systems can be solved given a solution to the weaker problem of a regular protocol
for such systems, and present a non-live solution to the latter problem, i.e., one in
which certain read operations may abort. Finally, we give a simple set of defin-
ing properties that are common to the protocols we have studied, and show that
any regular protocol with these properties is inherently non-live in an asynchronous
environment without concurrency control.

In Chapter 4, we present protocols to change the size of the quorums of a
threshold masking quorum system so that the system’s degree of fault tolerance (i.e.,
threshold) can be adjusted between a set minimum and maximum without blocking
ordinary read and write operations. We show how to modify the read/write pro-
tocols for threshold masking quorum systems, including both the original protocols
of [MR98] and the enhanced protocols presented in Chapter 3, to use the dynami-
cally defined quorums. We show that each of the new dynamic protocols maintains
the semantics of its static counterpart. This chapter is adapted from [AMPRWO0O].

As a complement to these protocols, in Chapter 5 we present statistical
methods for monitoring the approximate number of faults in threshold masking
quorum systems, as well as specifically identifying some of the faulty servers. A
version of this chapter appears in published form as [AMPRO0].

Chapter 6 consists of concluding remarks and directions for future work.

The appendix to this document contains additional material that is closely
related to the results presented in Chapters 4 and 5 and appears in the papers from
which those chapters are adapted. It is included for completeness, but is primarily
the work of other co-authors of these papers.

A note on security

Some researchers (e.g. [DR86]) have suggested that Byzantine fault tolerance
is applicable to problems of security. Such applicability would provide a powerful
motivation for the use and further exploration of techniques such as those presented
in this thesis.

Unfortunately, Byzantine fault-tolerant protocols that depend on variations
of a voting algorithm, such as those in this thesis as well as those of the more
established approach of state machine replication are vulnerable to the worst-case
scenario of Byzantine server failure: simultaneous unanimous corruption of most
or all of the set of replicated servers. This vulnerability leads to one of the most

cogent objections to applying the Byzantine fault model to security: the presence
of a malign agent may make this worst-case scenario into an intelligently pursued
goal rather than a vanishingly unlikely statistical phenomenon.

In our view, however, this objection is not fatal; although such techniques
should probably not be regarded as a preventative against security breaches, they
can be designed to make such breaches considerably more difficult than they would
otherwise be, and may thus be considered a deterrent. One of the goals of this work
has been to keep our techniques as free as possible from assumptions that would
be questionable in the presence of an intelligent adversary, such as independence of
failures. This is, in fact, an additional motivation for the elimination of static fault
tolerance thresholds (Chapter 4).

Chapter 2

System Model and Definitions

In this chapter we describe our system model and give some of the historical defini-
tions on which the results described in this thesis are based.

2.1 System Model

Our system consists of a set S of n server processes and an unspecified number of
client processes. Server processes maintain values for a set of variables, serving and
updating them in response to read and write requests received from client processes.
Every server maintains a value for every variable in the system. Each client is
connected asynchronously to each server via a two-way FIFO channel; no other
channels are required or used by our protocols.

Each server s € S stores and updates the value of each variable V in con-
junction with an associated timestamp; thus, at each server, the variable state at
the time a read or write request is received can be expressed as a pair (val,ts); we
call this pair an image of V.

We stipulate that timestamps have the following properties, which justify
the use of the word “timestamp” in this asynchronous context. These properties are
implemented by the read and write protocols, which we will describe later.

e Each client selects the timestamp values associated with updates to a partic-

ular variable in a monotonically increasing fashion.

e The timestamp field of the image of a particular variable is monotonically

nondecreasing at each server.

Servers may be either correct or faulty. A correct server behaves according
to its specification, i.e., it returns its current image of a given variable upon request.

In contrast, a faulty server may behave in a Byzantine (arbitrary) fashion, e.g., by
serving incorrect or outdated data or by failing to respond to queries. Clients and
channels are assumed to be reliable for the scope of this work.

2.2 Definitions: Byzantine Quorum Systems
Mathematically, a quorum system is a set of pairwise intersecting sets:

Definition 1 A quorum system on a set X is a set @ C 2% such that

VQ1,Q2€ Q:Q1NQ2#0

A member of Q is known as a quorum.

A data service based on the server set S can be designed as a quorum system
as follows: let Q@ C 2° be a quorum system, and let each read and write operation
be issued to and performed on some quorum) of Q. Hereafter we use the term
“quorum system” and the label @ to refer both to the mathematical construct as
defined above and to a data service based on the construct. This slight overloading
is straightforward, and should not result in confusion.

If the set of servers is subject only to crash failures (i.e., unresponsive servers),
the intersection property of Q ensures that each read operation has access to the
value of the “most recently completed” write operation in some serialization of write
operations.

A note on operations and concurrency

A read or write operation is performed by a client on a quorum of servers according
to a specification called a protocol. We will present several read and write protocols
in this document, all of which share the same basic structure: an operation is
initiated when a client issues a corresponding request to the servers in a quorum,
and is completed when the steps of the protocol have all been executed.

As indicated above, each read and write operation in a quorum system is
performed on multiple servers. As we are assuming an asynchronous environment
without concurrency control mechanisms, it is possible for two or more such opera-
tions to be concurrent:

Definition 2 Operations op, and opy are said to be concurrent of there exists a pair

of servers s1,s2 € S such that s1 processes op, before opy while server sy processes
opp before opg.

In proving the semantic properties of variables maintained by quorum systems,
we must take such concurrency into account; we handle this problem in detail in
Chapter 3.

A note on data semantics

To analyze the correctness of our protocols, we will follow the example of [MR98]
by using Lamport’s notions of safe, regular, and atomic data semantics [Lam86],
adapted to allow for the possibility of concurrent write operations. We give specific
technical definitions of these concepts in Chapter 3, but the basic intuitions are as
follows:

e safe: A read/write protocol for a variable is considered safe if it ensures that
any read operation that is not concurrent with any write operation on the
same variable returns the value of the most recent write to that variable.!

e regular: A protocol is regular if it is safe and ensures that any read operation
that is concurrent with one or more write operations on the same variable
returns either the value of the most recent write or the value of one of the
concurrent writes to that variable.

e atomic: A protocol is atomic if it ensures that all read and write operations
on a given variable are serializable, i.e., that they behave as though they were
performed sequentially in some order that is compatible with the partial order
in which they are actually performed.

Note that under a regular protocol, one read may occur later than another,
yet return the value of an earlier write; thus regularity does not imply atomicity.

Our use of these terms may appear to differ from that of [Lam86] in that we
treat these properties as belonging to protocols rather than to data objects. This
difference is illusory, however; a data object has a given semantic property if and
only if the protocol used to access it has that property.

2.2.1 Masking quorum systems

If servers may be subject to arbitrary (Byzantine) failures, the minimal intersection
guaranteed by a quorum system as defined in Definition 1 is not enough to guarantee
data consistency: two quorums might intersect in a single server that returned a
faulty response, so that a read operation does not receive the correct up-to-date

!The monotonicity of timestamps at each server ensures that writes are serializable by times-
tamp; thus we may refer to the write with the highest timestamp as the “most recent” write.

value. For such services, masking quorum systems [MR98] have been proposed. We
summarize the definition of these systems here.

During any given read or write operation, a server set that is subject to
Byzantine failures may be partitioned into two subsets: those that behave according
to their specification throughout the operation, and those that do not. Members of
the latter set, which we will usually call F, may fail to respond to requests, or may
respond with out-of-date or arbitrary data. We refer to such a set F' as a failure
configuration.

A masking quorum system is defined in terms of a failure pattern, which is a
set B C 29 such that

VB1,B € B,B1 ¢ B>

In operational terms, the failure pattern defines the set of failure configurations that
the system is designed to tolerate. Specifically, the system is expected to behave
correctly as long as its failure configuration is contained in some element of B, i.e.,
if:

dBeB:FCB

The definition of a masking quorum system is as follows:

Definition 3 A masking quorum system on a server set S and failure pattern B is
a quorum system Q C 2° such that:

* VQ1,Q2 € Q,VB1,B2 € B: (Q1NQ2)\B1 £ B>
e VBeB,I3QE€Q:BNQR =10
If the set F' of faulty servers during any given operation is contained in some

element of B, and all read and write operations are performed on elements of Q,
then the two bullets above ensure that:

e the intersection of any pair of quorums (e.g., a read quorum and the previous
write quorum) contains a set of nonfaulty servers whose response, if unani-
mous, can be identified as correct.

e at least one quorum is always available even if faulty servers are nonresponsive.

In this work we will be concerned primarily with a family of masking quorum systems
called b-masking quorum systems, defined below. Here and for the remainder of this
dissertation, we will use the notation #(X) to denote the size of a set X.

Definition 4 A b-masking quorum system on a server set S is any masking quorum
system defined on the failure pattern

B={BcC2%:#(B) =10}

This failure pattern encodes the assumption that all server faults are con-
tained within some set of size b, i.e., that there are no more than b faults in the
system during a given operation. (This is the standard “threshold” assumption
common to many techniques for Byzantine fault tolerance.) In such systems, the
requirement that

VQ1,Q2 € Q,VB1,By € B: (Q1NQ2)\B1 € B

means simply that the minimum intersection size between quorums is 2b+ 1 servers.
A b-masking quorum system of particular interest to this work is the Uniform
quorum system [MR98],2 whose definition is elegantly parameterized in terms of b:

Definition 5 The Uniform quorum system for a server set S (#(S) = n) with
threshold b (n > 4b + 1) is the set Q, where

n+2b+1
Q=1{QCs:#(Q =121}
It is easily seen that this definition satisfies Definition 3. For simplicity in our
discussions, we will assume hereafter that n is odd, so that we may eliminate the
ceiling operator || from our formulae and calculations.

Read and write protocols

The basic read and write protocols for masking quorum systems, as originally pro-
posed in [MR98], consist of the following steps:

Write: For a client to write value v to variable V| it performs the following steps:

1. For some Q € Q and B € B, query all servers in the set @ \ B to obtain the

set A of images of V at those servers.3

2. Select a new timestamp t greater than the largest timestamp appearing in any
element of A and greater than any timestamp previously chosen by the client.
(To avoid timestamp collisions, every client ¢ chooses its timestamps from a
unique set T;, where c £ ¢ = T.N Ty =0.)

3. Send each server in some quorum @' a write request containing an identifier
for V and the new image (v, t).

A server that receives such a write request performs the update if and only if the
timestamp of new image is greater than the timestamp of the current image of V.
The timestamp of V' at any correct server is therefore monotonically nondecreasing.

’In [MR98], this type of system was called a threshold quorum system; the name was changed
for clarity in [AMPROO].
3Note that such a set necessarily intersects all quorums in at least one correct server.

10

Read: For a client to read variable V, it performs the following steps:

1. Query all servers in some quorum) to obtain the set A of images of V' at
those servers.

2. Determine the set A" C A of images that are vouched for according to the
definition below.

3. Select the member of A’ with the highest timestamp, and return the corre-
sponding value. If A’ is empty, return L (a null value).

Definition 6 A set BT of servers is called a voucher set for failure pattern B if
VBeB:B"¢ZB

An image is vouched for during a variable read if it is returned by all members of
some voucher set. A value is vouched for if it appears in an image that is vouched

for.

Essentially, a voucher set is any set of servers that cannot all be faulty. If a voucher
set agrees on an image, that image is not fabricated, though it may be out-of-date.

Example: For a b-masking quorum system, a voucher set is any set of b+ 1 or
more servers.

Remark: In our discussions of various protocols, we will sometimes refer to the
voucher set for a successful read operation; by this we mean the voucher set con-
taining all servers that return the image accepted by the read.

The read/write protocol above has safe semantics (Section 2.2). As it does not
specify the behavior of read operations that are concurrent with writes, however,
safeness is a relatively weak semantic property. For systems that have access to re-
liable third-party authentication protocols, stronger properties can be implemented
by means of dissemination quorum systems [MR98|.

2.2.2 Dissemination quorum systems

Like masking quorum systems, dissemination quorum systems are defined in terms of
a failure pattern B. They are very similar to masking quorum systems in structure
as well, except that the intersection between each pair of quorums only needs to
contain at least one correct server:

11

Definition 7 A dissemination quorum system on a server set S and failure pattern
B is a set @ C 25 such that:

e VQ1,Q2€ QVBEB:Q1NQ2Z B
e VBEB,IQEQ:BNQ =0

Again, the following special case is worth separate mention:

Definition 8 A Uniform dissemination quorum system on a server set S and failure

pattern B ={B C S : #(B) = b} is the set:

0=1{Qc s #Q ="

The smaller intersection property of dissemination quorum systems is suffi-
cient because of the existence of authentication protocols: if every variable image
written to a server is verifiable by means of, say, a digital signature, then even
a Byzantine server cannot convincingly forge data; it must serve either correct or
out-of-date data if it responds at all. Thus a read operation can accept the highest-
timestamped response it receives as being both correct and up-to-date.

The read and write protocols originally proposed for dissemination quorum
systems are almost identical to those for masking quorum systems, except that a
value is vouched for even if it is returned by only a single server. The resulting
protocol still provides safe semantics, with the additional property that a read that
is concurrent with one or more writes returns either the value of the most recently
completed write or one of the values being written; in other words, it has regular
semantics (Section 2.2).

In [MR98], the protocol for dissemination quorum systems was upgraded to
one with atomic semantics (Section 2.2) by the simple expedient of adding a fourth
step to the end of each read operation:

4. Write the accepted image (v,t) back to a quorum of servers.

This final step ensures that a read that follows another read does not return an
earlier value, even if both are concurrent with the same set of write operations.

Unfortunately, the type of authentication needed for dissemination quorum
systems requires every client to be able to authenticate every other client, e.g., by
means of public keys. Such a scheme may be impractical for systems with large
numbers of clients, as it would require every client to keep track of a long and
perhaps frequently changing list of keys. In the next chapter we study the problem
of atomic semantics for non-authenticated masking quorum systems.

12

Chapter 3

On Atomic Semantics for
Masking Quorum Systems

3.1 Introduction

As indicated in the previous chapter, an important limitation of masking quorum
systems as originally proposed is the lack of an atomic read and write protocol for
such systems. Although Malkhi and Reiter have shown how this problem can be
solved for dissemination quorum systems by adding a simple writeback command to
the end of the read protocol [Ph98], the implementation of atomic reads and writes
for masking quorum systems has remained an open problem.

As the primary result of this chapter, we generalize the atomicity result
of [Ph98] by proving that the writeback mechanism in fact reduces the problem
of atomic variable semantics for masking quorum system variables to the simpler
problem of regular semantics. Our result provides a “recipe” for atomic semantics
in masking quorum systems without such cryptographic authentication tools; any
solution to the problem of regular semantics for such systems can be upgraded to an
atomic solution by simply adding a writeback step to the end of the read protocol. In
fact, the correctness of the atomic protocol of [Ph98] can be viewed as a corollary of
our result, as the cryptographic framework of dissemination quorum systems (sans
writeback) enforces regular semantics.

In proving this result, we introduce the application of the calculational proof
style [DS90, GS95, Ra095] to quorum systems. Although such proofs are often more
difficult to read than prose proofs, they have two distinct advantages. First, they
are readily verifiable, as the steps are neatly laid out and justified. Secondly, they
are accessible to the general computer scientist who may not have the area-specific
knowledge necessary to follow intuitive leaps.

13

As a follow-up to the result described, we present a read/write protocol that
provides what we call pseudo-regular semantics (regular semantics with a possibility
of aborted operations) for masking quorum systems without resorting to authen-
tication protocols. We then show that this protocol can be combined with the
writeback mechanism to provide pseudo-atomic semantics (analogously defined) for
such systems.

Finally, we prove the slightly startling fact that there is a very simple set of
characteristics, shared by the non-dissemination protocols we have studied thus far,
that makes regularity incompatible with liveness in an asynchronous environment
without concurrency control. Some form of pseudo-atomic semantics are thus the
most that can be implemented by such protocols in such an environment.

3.1.1 Related work

The concepts of safe, regular and atomic were presented in [Lam86] as semantic prop-
erties of hardware registers. In that paper, Lamport also gave several algorithms
for constructing stronger registers from weaker ones, including one for constructing
an atomic single-reader register from regular registers (which could in turn be con-
structed from safe registers). The problem of constructing a multi-reader atomic
register was left open, but has since been solved by various researchers includ-
ing [KKV87, SAGY4].

These algorithms are designed in the specific context of hardware registers,
and are unsuitable for large-scale distributed data services in two ways. First, they
require an a priori limit on the number of users that may access a particular data
element at any given time. Second, they are polynomial in this number, leading to
undesirably expensive operations.

Fortunately, although these limitations are inescapable in the context of hard-
ware registers (the solution presented in [SAG94] is asymptotically optimal), we are
able to avoid them in our application by means of the convenient abstraction of un-
bounded timestamps. Using this mechanism, we are able to simply strengthen the
read/write protocols for quorum system variables so as to provide pseudo-atomicity
directly.

3.2 Definitions: TS-Variables and Data Semantics

3.2.1 Formalizing masking quorum system variables: TS-variables

In order to reason formally about Byzantine quorum system variables as a class, we
need an abstraction that defines the important features of such variables indepen-

14

dently of operational details. To this end, in this section we introduce the concept
of TS-variables. We begin by defining the more general concept of “timestamped
variables” as well as a number of useful functions on such variables:

Definition 9 A timestamped variable is a variable of any type whose value is read
and updated in conjunction with an associated timestamp, where timestamps are
drawn from some unbounded totally ordered set T .

Let RW be a set of read and write operations on some timestamped variable
with a given read/write protocol and a domain set D; let R C RW be the set of
reads, and let W C RW be the set of writes. Then the following function definitions
hold (R and B represent the set of reals and the set of booleans, respectively):

value : RW — D: For op € RW , if op is a read, then value(op) is the value returned
by the read; if op is a write, then value(op) is the value written.

ts: RW — T: For op € RW, if op is a read, then ts(op) is the timestamp of the
value returned by the read; if op is a write, then ts(op) is the timestamp assigned
to the value written.

readsfrom: R x W — B: for r € R, w € W, readsfrom(r,w) = true iff r reads the
result of write w. For timestamped variables, we define this to be equivalent to:

readsfrom (r, w) = value(r) = value(w) A ts(r) = ts(w)

For the purposes of the next two functions, we postulate a global “clock” (e.g., the
age of the universe in milliseconds) that provides an absolute timescale for system
events. As the systems we discuss are asynchronous, individual processes do not
have access to global clock values or to these functions, which are used only for

reasoning purposes.
start : RW — R.: The start time of the operation in global time.
end : RW — R: The end time of the operation in global time.

The purpose of these functions is to give us a convenient shorthand for reasoning
about the possibility of concurrency between operations as defined in Chapter 2,
without being specific about the actual (nondeterministic, in an asynchronous envi-
ronment) order in which servers process requests. Essentially, if

end(opl) < start(op2) V end(op2) < start(opl)

15

then op2 is not concurrent with opl, whereas if
start(op2) < end(opl) A start(opl) < end(op2)

such concurrency may exist and thus needs to be resolved in any proposed serial-
ization of opl and op2. For simplicity, we will therefore treat the latter expression
as our definition of concurrency hereafter.

In keeping with their hypothetical meaning, we stipulate that the start and
end functions meet the following restriction:

Yop € RW : start(op) < end(op)

TS-variables

Ignoring issues of type and address, we consider a variable to be defined by the
specification of the operations that may be performed on it, including at least read
and write.! We refer to such a specification as a wariable protocol. Read and write
activity on a variable is described in terms of a run of its protocol:

Definition 10 A run of a variable V is a set of operations on V, all of which meet
the specification of V ’s protocol. We call a run RW complete if, for all read opera-
tions 1 € RW, there exists a write operation w € RW such that readsfrom(r, w).

In this chapter we will continue to use the label RW to represent a variable
run; subscripts will be used to distinguish between runs when the context is not
otherwise clear. The projection of a run RW onto its read operations will be denoted
R; the corresponding projection onto write operations will be denoted W'.

Although some researchers use the terms “run” and “execution” interchange-
ably, in this work we find it useful to follow the example of [Lam86], which gives
them distinct technical meanings. Specifically, an execution associates a run with a
precedence relation on the operations of that run, i.e.:

Definition 11 An execution of a variable v is a pair (RW,—»), where RW is a
run of v and — is a precedence relation (irreflezive partial order) on the operations

m RW.

We now define two specific types of execution that are of special importance to this
work:

'We do not concern ourselves with read-only variables in the context of this work.

16

Definition 12 An ezecution (RW, —) is said to be real-time consistent if
Vopl,op2 € RW : end(opl) < start(op2) = opl — op2

Definition 13 An ezecution (RW,—) is said to be write-ordered if it satisfies the
following:
1. Vwi,wj EW:wi#wj:wiﬁijwj—»wi

2. (W,—) is real-time consistent.

In other words, (1) in a write-ordered execution, the write operations are totally or-
dered by —, and (2) the order is consistent with the partial order of write operations
in real time.

Definition 14 For all runs RW of a timestamped variable v, the relation 5 is

defined by:
1. Yop € RW,Yw € W : op 1 w = ts(op) < ts(w)
2. Yw € W,¥r € R:w & r =ts(w) < ts(r)
3. Vra,my € R :1q 5 1y = ts(rg) < ts(ry)

It is easy to see that - is irreflexive, antisymmetric and transitive. It is therefore
an irreflexive partial order. (Note that operations with identical timestamps are not
necessarily ordered by —.)

We now define T'S-variables as follows:

Definition 15 A TS-variable is a timestamped variable v such that, for all complete
runs RW of v, (RW,-%) is write-ordered.

Note that Definitions 14 and 15 imply that writes are uniquely identified
by timestamp; thus for any given read, there is at most one write with the same
timestamp. We can therefore make the following observation, which provides a
simplified form of the definition of readsfrom() for T'S-variables:

Observation 1 For any read operation v and write operation w of a complete TS-
variable Tun,

readsfrom (r,w) = ts(r) = ts(w)

17

3.2.2 Formalizing data semantics for TS-variables

We now define what it means for a write-ordered execution to be safe, regular or
atomic. The definitions of safe and regular are based on the following concept,
adapted from [Lam86]:2

Definition 16 For a write-ordered execution (RW,—), let wy,ws,... be the or-
dered list of write operations from RW as defined by —. Furthermore, for a
given read operation T, let i be the index of the last write that precedes r, i.e.,
i = maz{k : end(wy) < start(r)}. Then we say that r sees W' C W, where:

W' = {w;} U {wy : start(r) < end(wy,) A start(wg) < end(r)}
We express this relationship in predicate form as sees(r, W' —).

The definition of the predicate sees is based on the idea that once a write to
a variable has completed, previous values of that variable should not be read. Thus
the values that a read sees are those that might be legitimately returned by that
read, i.e., the value of the most recently completed write w; and the values of any
concurrent writes. The fact that (RW, —) is write-ordered implies that all writes
seen by r fall within a well-defined range:

Observation 2 For a given read r, let i be defined as in Definition 16, and let
j = maz{k : start(w;) < end(r)}. Then:?

sees(r,W',—) = (Vw € W' 11 < k < j)
We now define a safe execution as follows, continuing to use w; to denote the 7t*

write in the order defined by —:

Definition 17 An ezecution (RW, —) is safe if:
e it is write-ordered, and

o sees(r,{w;}, —) = readsfrom(r, w;)

?[Lam86] defined this concept for a single-writer register, whose write operations are thus nec-
essarily serial. We relax this requirement, defining our version of “sees” in terms of serializable,
rather than serial, writes. Thus our definition can be applied to variables with multiple writers.

3Note that the reverse is not true. It is possible for a write to fall within the given range without
being seen if the “invisible” write occurs after read r, but concurrently with w;.

18

In other words, an execution is safe if any read that sees only one write
returns the value of that write. In operational terms, a read that is concurrent with
no writes returns the result of the “most recent” write according to the serialization
defined by the write-ordering.

A regular execution is defined as follows:

Definition 18 An ezecution (RW, —) is regular if:

e it is write-ordered, and
e Vr € R : sees(r,W' —) = (3w :we W': readsfrom(r,w))

In other words, a write-ordered execution is regular if every read returns some value
that it sees. Note that a regular execution is necessarily safe.

For TS-variables, this definition has a useful consequence:
Lemma 1 Let (RW, %) be reqular. Then
Vr € RVw € W : end(w) < start(r) = ts(w) < ts(r)

The proof of this lemma consists of showing that any arbitrary write that precedes
a given read has a timestamp less than or equal to that of the read. Let r be an
arbitrary read, let w; be the i** write in the total order imposed by % for some
arbitrary i, let W' be the set of writes such that sees(r, W', *%), and let w; be the
write such that readsfrom(r,w;). Then:

end(w;) < start(r)
= {definition of maz, write-ordering of T'S-variables}
i < max{k : end(wg) < start(r)}
= {Definition 13, Observation 2}
i <min{k:w, € W'}
= {j € W', Observation 2}
i<
= {write-ordering of TS-variables}
ts(w;) < ts(wj)
= {definition of ts() for reads}
ts(w;) < ts(r)

Finally, we define an atomic execution as an execution that behaves as though
the operations were totally ordered in a real-time consistent way, that is:

19

Definition 19 An ezecution (RW, —) is atomic if:
e — s a total order on RW,
e Vr € R, readsfrom(r,w;) = i = max{k : wy — 1}, and
e (RW,) is real-time consistent.

Note that the second and third bullets of the definition above imply that any atomic
execution is also regular, while the reverse is not necessarily true.

We now define what it means for a variable to be safe, regular or atomic.

Definition 20 A variable protocol is safe (regular, atomic) with respect to a prece-
dence relation — if, for all complete runs RW of the protocol, the execution (RW, —)
is safe (regular, atomic). A protocol is safe (reqular, atomic) if it is safe (regular,
atomic) with respect to some precedence relation. A variable is safe (regular, atomic)
if its protocol is safe (regular, atomic).

3.3 Reducing the Atomic Semantics Problem

In this section we show how to construct an atomic T'S-variable v,tom given a regular
TS-variable v,ey. We accomplish this by means of the following steps:

1. Add a new operation to the protocol for vq, specify the operations of vgsom
in terms of this expanded regular protocol, and show that the resulting vgtom
is a T'S-variable.

2. Define a total order > on operations of vetom, that extends ﬁ», ie.,

OPa 5 Opp = OPq 15, OPb
3. Use Definition 20 to prove that vgtom, is atomic with respect to s,

3.3.1 Defining the atomic protocol

Let v,y be a regular TS-variable. We expand the protocol of v..4 by defining a
third operation in addition to read and write: writeback. The writeback opera-
tion is similar to the write operation of v, except that whereas write operations
calculate their own timestamps, a writeback takes its timestamp as an argument;
thus writebacks are not necessarily ordered by ~. We stipulate, however, that all
runs RWezp of the expanded protocol continue to satisfy Lemma 1, as well as the
following additional property:

20

Property 1 For all read operations r, write operations w and writeback operations

b in RWegp,
e end(b) < start(r) = ts(b) < ts(r)
e end(b) < start(w) = ts(b) < ts(w)

(In masking quorum systems, as in dissemination quorum systems, both Lemma 1
and Property 1 are implemented by having a write/writeback perform a null oper-
ation at any server whose current timestamp for the variable is higher than that of
the write/writeback; thus monotonicity of timestamps is enforced at each server.)

We now define our proposed atomic variable protocol vgtom as follows, where
readreg and write,ey are the read and write protocols of v,e4, and val, ts are the
value and timestamp respectively of the read,e, operation:

Writegiom: writereq
Readytom: readyeq; writeback(val,ts)

In other words, a write operation of v4om consists of a single write operation of v;.g,
while a read operation of vg¢om consists of a read operation of v,y followed by a
writeback of the resulting value and timestamp. The timestamp of each Readgiom
or Writegsom operation is identical to the timestamp of the underlying read;ey or
writereg Operation. Because each write operation of v4¢0m consists exactly of one
write operation of vyeq, it follows that vgem is also a TS-variable. (For clarity,
we will hereafter follow the convention that operations of v4iom are represented in
boldface, while operations of v,¢q are represented in italics.)

3.3.2 A total order over operations on v,

In preparation for proving vetom atomic, we specify a precedence relation that totally
orders all runs RWaiom Of Vatom- The 2 relation that we have already defined is
not sufficient, as it does not order read operations that share the same timestamp.
We therefore propose to define an extension 5, of 15 using the following additional
function of type O, where O is some totally ordered set:

gtf:* RW — O: An arbitrary function with the following three properties:
o Sequentiality: Yop,,opy, € RW : end(op,) < start(opy) = gtf(ops) < gtf (ops).
e Uniqueness: Yopg,opy € RW : gtf(op,) = gtf (opy) = ops = opy.

e Read Promotion: Vr € R,w € W : start(w) < end(r) = gtf(w) < gtf(r)

4«gtf” stands for “global time function”.

21

(An example of such a function is a mapping from op € RW to the pair (time(op), id),
where ¢d is a unique, real-valued operation identifier whose first bit is 1 for a read
or 0 for a write, and time(op) = end(op) for op € R and time(op) = start(op) for
ope W.)

The purpose of function gt f is to act as a supplement to timestamps when
we define a serialization of the operations. Sequentiality ensures that the order
imposed by gtf is compatible with the partial order of the operations in real-time,
Uniqueness ensures that the function can act as a “tie-breaker” for operations with
the same timestamp, and Read Promotion ensures that any given read operation
has a higher gtf than any write that might affect it.?

We now define 5+ as follows:

Definition 21 For any given run RWaiom Of Vatom,
Vopa, opy € RWatom -

opa 2 opy, = ts(opa) < ts(opy) V (ts(opa) = ts(opy) A gtf (0pa) < gtf (ops))

In other words, 15, s the lexicographic ordering on the pair (¢ts(op), gtf (op)). It is
therefore a total order by virtue of the Uniqueness property of gtf and the fact that
ts and gtf have totally ordered codomains.

As a consequence of this definition, we have the following lemma and corol-
lary, which allow us to use Definition 19 to prove atomicity:

Lemma 2 Vopg,, op, € RWatom © 0Pg 15, opp = 0pg s, opy.

Proof: If op, is a read or opy is a write, the property follows immediately from
Definitions 14 and 21. Otherwise (op, is a write and opy is a read) it follows from
these two definitions and the Read Promotion property of gtf.

Corollary 1 All executions (RWaiom, ﬁl»} of Vatom are write-ordered.

Proof: Write operations of vstom have unique timestamps by virtue of the fact that
Ureg is @ T'S-variable. Thus, by Definition 21 and Lemma 2, we have:

ts' _ t
Vwi, Wj € Watom : Wi > Wj = Wi —> Wj

Therefore, since (RWatom,ﬁ»> is write-ordered (again by virtue of the fact that
Vatom 18 @ T'S-variable), it follows that (RWgtom, El») is also write-ordered.

SIn fact, these properties are sufficient to allow us to define a total order strictly in terms of
gtf. However, gtf alone does not specify the behavior of timestamps, and so does not allow us to
reason directly about the behavior of reads via the readsfrom function. We will therefore use gtf
as indicated above.

22

3.3.3 Proving v, atomic

Our remaining goal is to prove that (RWgtom, EI»} is atomic for all runs RWsopm, of
Vatom, thus proving that vgeem is an atomic variable:

Theorem 1 For all runs RWaiom 0f Vatom, the execution (RWaiom, EI») is atomic.

As we have already shown that 15, write-orders RW tom, our remaining obliga-

tions are to prove:
. !
® V7 € Ratom, readsfrom (r,w;) = i = maz{k : wy, *~ r},% and

o (RW,) is real-time consistent.
Proof that ¥r € Rgtom, readsfrom(r,w;) = i = max{k : wy ts, r}:

readsfrom (r, w;)
= {Observation 1}
ts(w;) = ts(r)
= {write-ordering}
ts(w;) =ts(r) AV{k: k <i:wg LA w; }
= {definition of £~
ts(w;) =ts(r) AV{k: k <i:ts(wg) <ts(w;)}
= {Definition 13}
ts(w;) =ts(r) AV{k: k <i:ts(wg) < ts(w;)}
= {definition of maz, definition of <}
i = mazi{k : ts(wg) < ts(r)}
= {Lemma 2 , definition of £
i = max{k : wy 27}
a

Proof that (RW, EI») is real-time consistent: Our obligation is to prove that:

Yopa, opy € RWaiom : end(opg) < start(opy) = opa 2> opy

We prove this separately for each of the four possible cases: two writes, a write
followed by a read, a read followed by a write, and two reads. For simplicity, we
will use the convention that r and w (with possible subscripts) refer to operations

6According to the convention we adopted earlier, Ratom is the set of read operations from
RWatom-

23

of RWatom, while 7, w, and b denote the corresponding read, write and writeback
operations of the expanded regular protocol:

Case 1: two writes

end(w;) < start(w;)
= {definition of vgsom }
end(w;) < start(w;)
= {write-ordering of TS-variables}
w; > w;
= {definition of vgsom }
wi 2 Wj
= {Lemma 2}

ts'
Wi — Wj

Case 2: write, then read

end(w) < start(r)
= {definition of vgsom }
end(w) < start(r)
= {Lemma 1}
t5(w) < t5(r)
= {definition of -
w is» T
= {definition of vgsom }
W E» r
= {Lemma 2}

!
w B r

Case 3: read, then write

end(r) < start(w)

= {definition of vgtom }
end(b) < start(w)

= {Property 1 of writeback}
ts(b) < ts(w)

= {definition of vgtom }
ts(r) < ts(w)

= {definition of -

r 5w

24

= {definition of vgsom }
r -5 w
= {Lemma 2}

!
r B w

Case 4: two reads

end(ry) < start(rp)
= {Sequentiality property of gtf}

end(ry) < start(ry) A gtf (ra) < gtf(rp)
= {definition of vatom }

end(bg) < start(ry) A gtf (rq) < gtf(rp)
= {Property 1 of writeback}

ts(ba) < ts(rp) A gtf (ra) < gtf (rp)
= {definition of vgtom }

ts(ra) < ts(rp) A gtf (ra) < gtf (rp)
= {definition of vgtom }

ts(rq) < ts(rp) A gtf (ra) < gtf (rs)
= {definition of ts'()}

!
raﬂrb

This completes the proof of the theorem. O

Thus we have reduced the open problem of atomic semantics for T'S-variables,
including those implemented by masking quorum systems, to that of regular seman-
tics. Although the problem of regular semantics for masking quorum systems also
remains open, it is less difficult in that all atomic protocols are also regular (a direct
implication of Definition 19). In the next section we present a non-cryptographic
regular protocol for systems that can tolerate occasional aborted reads.

3.4 Implementing Pseudo-Regular Semantics

We improve the semantics of masking quorum systems as defined in [MR98] (see
Section 2.2.1) to pseudo-regular by enhancing the read protocol so that read oper-
ations abort when no seen value is vouched for. (Note that our protocol need not —
and does not — always abort when a read is concurrent with a write.)

Read: For a client to read the current value of a variable V, it queries each server
in some quorum @) to obtain the set A of images of V, i.e., A = {vy, ty }ucg. Of the

25

images that are vouched for, it selects the image (v,¢) with the highest timestamp
t. If there is no such image, or if (v,t) is countermanded as defined below, it sets v
to L (i.e., it aborts).

Definition 22 A wvariable image (v,t) is countermanded for a given read if all
members of some voucher set return images with timestamps greater than t. A
variable value v is countermanded if all the vouched-for images in which it appears
are countermanded.

This protocol provides pseudo-regular semantics by virtue of the fact that any value
that is vouched for but not seen is countermanded. The full statement and proof of
the theorem follow:

Theorem 2 For all runs RW consisting of non-aborted operations of the above
protocol, (RW, %) is regular.

Proof:” Let W' C W be the set such that sees(r, W', %) is true for read r.
Because r did not abort, there exists some w, such that readsfrom(r,wg). As it is
not possible for an image to be vouched for before the write that writes it begins,
we have start(w,) < end(r).

Now, let ¢ = maxz{k : end(wy) < start(r)}. By the safeness of the protocol
and the monotonicity of image timestamps, the values of all wy, such that k < ¢ are
countermanded in all reads that follow w;, therefore = > i, i.e.:

z = maz{k : end(wy) < start(r)} V end(wg) > start(r)
By Boolean algebra, this and the result of our first paragraph imply:
z = maz{k : end(wy) < start(r)} V (start(wg) < end(r) A end(wg) > start(r))

Therefore, by Definition 16, w, € W’'. The monotonicity of timestamps ensures
write-ordering, so Definition 18 is satisfied.O

Corollary 2 There exists a pseudo-atomic protocol for masking quorum systems.

Proof: The protocol is constructed from the pseudo-regular one as described in
Section 3.3, except that read operations aborted in the regular protocol are also
aborted in the atomic one. O

"Because this proof is based on inspection of the protocol rather than on formal definitions and
lemmata, we do not employ the calculational proof style in this case.

26

3.5 On the Necessity of Aborted Operations

In the previous section, we have shown how to implement pseudo-atomic seman-
tics in an asynchronous system in which little or no concurrency control has been
established. Specifically:

e Any client may send a write request to a quorum of servers at any time, using
its choice of timestamp; i.e., writes are always enabled.

e No additional ordering or scheduling is imposed on read and write requests.

e Read and write requests are processed by servers in the order received, where
“processing” a write request with a sufficiently high timestamp changes the
state of the variable image at the server.

We describe such a system in the ensuing arguments as a nonrestricted system.

All the quorum system protocols that we have studied here, including the pseudo-
atomic protocol, share the following characteristics:

1. Each server maintains a single version of the variable image at any given time.

2. A read returns a non-_l value only if some appropriately defined voucher set
of servers responds to its query with identical images.

For the remainder of this discussion, we refer to such a protocol as a classic quorum
protocol. We then define:

Definition 23 A classic b-masking protocol is a classic quorum protocol whose
voucher set is defined as any set of b+ 1 or more servers.

In this section, we show that there is no way to implement a classic b-masking
protocol that is fully regular® in a nonrestricted system. We do this by showing that
certain possible server responses to a read query in such a system are unresolvable;
i.e., the corresponding operation must either return a possibly faulty value, abort,
or retry the query (leaving open the possiblity of non-termination).

We then show that the same is true even if each server maintains a bounded
history of the variable images it has received.

8We use the term “fully regular” in this section to emphasize the distinction from pseudo-regular
semantics: in a (fully) regular protocol, every read returns some seen value; therefore it terminates
successfully rather than aborting or failing to terminate.

27

3.5.1 Definitions

We begin with a number of useful definitions. Let P be a classic quorum protocol,
and let r and w be operations under P such that r is a read operation and w is the
most recently completed (as determined by timestamp) write operation as of the
beginning of r. Let @, and @, be the quorums on which r and w respectively are
performed.

Definition 24 The intersection set for r is the set Q. N Q.
Let F C Q, be the set of servers that return faulty responses during read r.
Definition 25 The informed set for r is the set Q, N Qy \ F'.

Note that if there are no writes concurrent with r, so that no servers in the inter-
section set have been overwritten since w, then the informed set for r is the voucher
set for . In any case, all servers in the informed set return the results of writes that
r sees (Definition 16), and in the worst case these are the only servers that do so.
We can therefore observe:

Observation 3 Protocol P is fully reqular iff all possible sets of responses to a read
by informed sets contain identical responses from at least one voucher set.
3.5.2 Nonliveness of classic b-masking protocols

Let @ be a quorum system with classic quorum protocol P defined for a fault
threshold b, and let minint be the size of the smallest intersection set for @. Then
the following lemma is a straightforward consequence of the definitions above:

Lemma 3 The smallest possible informed set for a read operation on Q is minint — b.

In such a system, the smallest informed set represents the worst-case scenario
for a successful read. Let v be the minimum voucher set size for P.° Suppose for
a moment that any read operation under P is concurrent with at most k write
operations. Then:

Theorem 3 P is fully regular for quorum system Q iff

[(minint —b)/(k+1)] > v

°For example, v = b + 1 for b-masking quorum systems, and v = 1 for b-dissemination quorum
systems.

28

Proof: For an arbitrary read operation r let Z, = {Iy, ..., I;} be the partitioning of
the informed set such that Iy contains the servers that return the result of the most
recently completed write operation and each I; contains the servers that return the
result of the i*" write that is concurrent with 7. In a nonrestricted system, any or
all of the sets I; may be nonempty, depending on the order in which concurrent
operation requests are received at individual servers. We prove the “if” and “only
if” portions of the theorem separately.

If: If [(minint —b) /(k+1)] > v, then for any read r, some I; € Z, contains a voucher
set by the Extended Pigeonhole Principle, which states that at least one member of
a partition contains at least the average number of elements for the partition.

Only if: Suppose [(minint — b)/(k + 1)] < v. Let r be a read operation with the
smallest possible informed set, and suppose that r is concurrent with exactly k
writes. Furthermore, let Z, be an even partition, i.e., a partition in which every set
contains either the ceiling or the floor of the average number of elements. Z, does
not contain a voucher set, so r is unable to return a seen value. Since this scenario
is unpreventable in a system such as that described above, the protocol is not live.O

Lemma 4 P is fully regular in a nonrestricted system'® iff its minimum voucher
set size v is 1.

Thus, if a quorum system read protocol requires agreement between multiple
servers in order to determine a correct result then it is not fully regular in an
unrestricted system. Since classic b-masking protocols have this requirement by
definition, we have:

Corollary 3 No classic b-masking protocol is fully regular in a nonrestricted sys-
tem.

It is worth noting that benign quorum systems and dissemination quorum
systems, which do not require agreement between multiple servers, are already
known to be fully regular for their appropriate failure models (benign, Byzantine-
limited-by-authenticated-data respectively).

3.5.3 Non-liveness of classic protocols with bounded history

We define a classic b-masking protocol with bounded history as a b-masking protocol
with the following characteristics:

0By definition, such a system allows arbitrary values of k

29

1. Each server maintains a bounded history of its images for a given variable,
i.e., a list of the last m images received.

2. A read returns a non-_l value only if it receives identical images from at least
b+ 1 servers, for a specified b > 0.

Even if each server responds to every query with its entire history of m images, it
remains possible for a read query to be unresolvable in a nonrestricted system, i.e.:

Lemma 5 No classic b-masking protocol with bounded history s fully reqular in a
nonrestricted system.

Proof: In a nonrestricted system, any given read operation may be concurrent
with an unbounded number of writes. Suppose some read operation r is concurrent
with m-s write operations, where m is the size of the bounded history and s is the
size of the informed set for ». For 1 < ¢ < s, suppose server S; receives the first
m-¢ write requests before receiving the request for . Then the history of S; will
contain the images of the first m writes, the history of Sy will contain the images of
the next m writes (which displace the first m because the history is bounded), and
so forth. In response to its query, r therefore receives m-s different variable images,
each from exactly one server. It is therefore unable to resolve the query.O

3.5.4 Generalizing to non-size-based systems

In systems where the failure pattern is not defined by size, minimal voucher sets
may not have a single well-defined size either. For example, for a masking quorum
system on server set S such that the full set B is required to define the set of possible
failure configurations, the set V of minimal voucher sets is defined by:

V={BU{s}:BeB,seS\B}

We define a generalization on classic b-masking protocols, which we will call
classic masking protocols as follows:

1. Each server maintains a single version of the variable image at any given time.

2. A read can only return a non-l value if all servers in some member of V
respond to its query with identical images.

In this more general case, members of V may vary in size. A slightly looser
version of Lemma 4 can be therefore formulated for the more general case.

30

Lemma 6 A classic masking protocol for a quorum system Q with failure pattern
B is fully reqular in a nonrestricted system iff every possible informed set under Q,
B contains some singleton voucher set.

In most practical systems, this loosening is not likely to be particularly help-
ful, as it is not clear how to take advantage of it without postulating a trusted subset
of servers. However, we include it for the sake of completeness.

3.6 Conclusion

In this chapter we have presented a reduction that allows us to promote a regu-
lar Byzantine quorum system protocol to an atomic one. This reduction has the
considerable advantage of being based on an entire class of protocols, i.e., those
described by our definition of T'S-variables, rather than on any specific algorithm.
Thus our result can be used both as a recipe for improving the semantics of mask-
ing quorum systems and as a formal correctness proof of the atomic protocol for
dissemination quorum systems [Ph98]. We have also shown how to construct a
pseudo-atomic protocol for masking quorum systems using this reduction. Such a
protocol provides the safety properties! of an atomic protocol, though it does not
guarantee liveness. While such a protocol is probably not suitable for applications
where variables are frequently overwritten, as it may render them often unreadable,
it should be of practical value for systems with few writes and a tolerance for oc-
casionally retrying reads. Finally, we have proven that there is a general approach
behind these protocols that makes them inherently non-live in an uncontrolledly
concurrent asynchronous environment.

1'Not to be confused with the “safeness” used in Section 3.4

31

Chapter 4

Dynamic Quorum Adjustment

4.1 Introduction

In this chapter, we present a method of dynamically raising and lowering the fault
tolerance limit of a Uniform masking quorum system in response to estimates of the
number of server failures. (For some initial failure detection methods, see Chapter 5.)
The goal of this work is to design protocols that allow a quorum system to respond
without blocking to the presence or absence of detected faults. This flexibility comes
at a cost: tolerating a given maximum number of faults requires more servers in
our approach than in a static system. However, with a fixed number of servers, our
protocols allow a system to operate in low-threshold mode with smaller quorums
than a static approach would require for the same worst-case threshold. A natural
way of using a dynamic quorum system is to increase the threshold when faults
are detected, and decrease it again when the failures have been dealt with. The
threshold could also be raised or lowered based on external evidence that the threat
of an attack has increased or decreased, such as information in server logs or new
information about the value of the data being stored.

The problem of dynamically adjusting a Uniform masking quorum system is
not trivial. The primary difficulty can be illustrated by the following example:

Example: Consider a system consisting of n = 9 replicated servers with quorums
consisting of all sets of 6 servers. This configuration ensures that every pair of
quorums intersects in 3 servers or more, and can tolerate a threshold b6 = 1 of
Byzantine server failures while still guaranteeing that the majority of every quorum
intersection is correct. Now, suppose that some client, detecting a possible failure in
the system, wishes to reconfigure the quorum system to raise the resilience threshold
to b = 2. This can be accomplished by making every set of 7 servers a quorum,

32

