
Self-Adjusting Quorum Systems ForByzantine Fault Toleran
ebyEvelyn Tumlin Pier
e, B.A., M.S
.
DissertationPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDo
tor of Philosophy

The University of Texas at AustinDe
ember 2000

To Dai

A
knowledgmentsFirst, I would like to thank my advisor, Lorenzo Alvisi, for helping me �nd my pathand keep my enthusiasm up when that path seemed very long. I would also like tothank Dahlia Malkhi of the Hebrew University of Jerusalem and Mi
hael Reiter ofLu
ent Te
hnologies for their
ooperation and guidan
e in this work, and for thepioneering resear
h that inspired it.Thanks also to Edsger W. Dijkstra, for tea
hing me a new standard of beautyand elegan
e in reasoning; all that is best and
learest in this thesis owes somethingto his moral in
uen
e. In addition, I would like to thank Allen and Leisa Emer-son, Ben Kuipers, Jay Misra, and Rebe

a Wright, as well as the members of mydissertation
ommittee and a host of other mentors,
olleagues, friends and familywithout whose support this work might never have rea
hed fruition.Last and foremost, I would like to thank my husband, love,
olleague andbest friend David Pier
e, for being there for me throughout the long journey andbeyond.
Evelyn Tumlin Pier
eThe University of Texas at AustinDe
ember 2000

iii

Self-Adjusting Quorum Systems ForByzantine Fault Toleran
ePubli
ation No.Evelyn Tumlin Pier
e, Ph.D.The University of Texas at Austin, 2000Supervisor: Lorenzo AlvisiThe purpose of this work has been to design proto
ols for a data servi
e thattolerates Byzantine server faults by shifting between multiple toleran
e modes atrun time, monitoring itself for faulty server behavior and dynami
ally adjusting itsown toleran
e
apabilities a

ordingly. Our goal is a system that runs in an eÆ
ientlow-fault mode most of the time, but
an adjust itself to
ope with new faults asthey o

ur.Our approa
h is based on the masking quorum systems of Malkhi and Re-iter. Like the proto
ols originally proposed for these systems, our te
hniques arerelatively e
onomi
al in that updates and reads need to be performed only at a sub-set (\quorum") of data servers, thus de
reasing the workload on individual serversand simplifying the re
overy pro
ess when failures o

ur. However, our proto
olsimplement the following additional
apabilities:1. Strengthened read and write proto
ols for serializability of
ompleted opera-tions.2. Proto
ols for dynami
ally adjusting the threshold (and thus quorum size) ofthreshold masking quorum systems in response to information about the num-ber and/or probability of faults in the system.3. Proto
ols for dete
ting Byzantine server behavior in threshold masking quo-rum systems. iv

As a subsidiary goal, we have sought to make our methods not only e�e
tiveagainst random faulty server behavior, but also resistant to sabotage by a deliberateadversary. To this end, we have limited our use of standard assumptions, su
h asindependen
e of failures and a priori limits on the number of faults, that restri
t theappli
ability of many Byzantine fault toleran
e te
hniques to questions of se
urity.

v

Contents
A
knowledgments iiiAbstra
t ivChapter 1 Introdu
tion 11.1 Contributions of This Thesis . 21.2 Related Work . 31.3 Stru
ture of Thesis . 3Chapter 2 System Model and De�nitions 62.1 System Model . 62.2 De�nitions: Byzantine Quorum Systems 72.2.1 Masking quorum systems . 82.2.2 Dissemination quorum systems 11Chapter 3 On Atomi
 Semanti
s for Masking Quorum Systems 133.1 Introdu
tion . 133.1.1 Related work . 143.2 De�nitions: TS-Variables and Data Semanti
s 143.2.1 Formalizing masking quorum system variables: TS-variables . 143.2.2 Formalizing data semanti
s for TS-variables 183.3 Redu
ing the Atomi
 Semanti
s Problem 203.3.1 De�ning the atomi
 proto
ol 203.3.2 A total order over operations on vatom 213.3.3 Proving vatom atomi
 . 233.4 Implementing Pseudo-Regular Semanti
s 253.5 On the Ne
essity of Aborted Operations 273.5.1 De�nitions . 283.5.2 Nonliveness of
lassi
 b-masking proto
ols 283.5.3 Non-liveness of
lassi
 proto
ols with bounded history 29vi

3.5.4 Generalizing to non-size-based systems 303.6 Con
lusion . 31Chapter 4 Dynami
 Quorum Adjustment 324.1 Introdu
tion . 324.1.1 Related work . 344.2 Threshold Adjustment: Problem Des
ription 354.3 Threshold Variable Proto
ol . 364.3.1 Corre
tness . 374.4 Ordinary Variable Proto
ols Under a Dynami
 Threshold 384.4.1 Write proto
ol . 394.4.2 Safe read proto
ol . 404.4.3 Pseudo-regular/Pseudo-atomi
 read proto
ol 414.5 Performan
e and Optimizations . 434.5.1 Comparison to stati
 quorums 434.6 Con
lusion . 44Chapter 5 Dete
ting Byzantine Faults in Quorum Systems 455.1 Introdu
tion . 455.1.1 Related Work . 475.2 Preliminaries . 485.2.1 System Model . 485.2.2 Statisti
al building blo
ks . 485.3 Diagnosis Using Vou
her Set Sizes 505.4 Diagnosis Using Quorum Markers . 555.4.1 The write marker proto
ol . 555.4.2 Statisti
al fault dete
tion . 565.4.3 Fault identi�
ation . 605.4.4 A note on very large systems 605.5 Con
lusion . 60Chapter 6 Con
lusions and Future Work 616.1 Summary of Results . 616.2 Future Work . 626.2.1 Semanti
s . 626.2.2 Dynami
 quorum thresholds 626.2.3 Fault dete
tion . 63
vii

Appendix A Additional Dis
ussions 64A.1 Dynami
 Thresholds for Other b-Masking Quorum Systems 64A.1.1 BoostFPP quorum system . 64A.1.2 M-grid quorum system . 65A.2 Fault Dete
tion for Non-Threshold Failure Assumptions 66A.2.1 Generalizing the alarm
ondition 66A.2.2 Dete
tion for a BoostFPP system 67A.3 Dete
tion: Choosing Alarm Lines for Large Systems 68A.3.1 Martingales . 69A.3.2 Deriving the Bound . 69Bibliography 71Vita 76

viii

Chapter 1Introdu
tionAs the world grows more and more inter
onne
ted, distributed data servi
es arebe
oming simultaneously more ne
essary and more problemati
. They are ne
es-sary in that a growing number of users are
ondu
ting business transa
tions andresear
h online, thus in
reasing the demand for a variety of data that must be a
-
essible from a variety of lo
ations. They are problemati
 in that su
h data must beprote
ted from a

idental or mali
ious
orruption while maintaining this high levelof availability.At minimum, a reliable data servi
e ought to tolerate (i.e., store and retrievedata
orre
tly in spite of) server
rashes and network partitions. If the stored infor-mation is parti
ularly
riti
al, or if servers are parti
ularly vulnerable to
orruptionor sabotage, it may also be ne
essary for the servi
e to tolerate a
tual in
orre
t ormisleading information from a subset of its servers.This assortment of possible misbehaviors is modeled by the Byzantine faultmodel. Under this model, a faulty data server may respond to queries in
orre
tly(
orruption), be unresponsive (
rash or partition), or even sometimes respond
or-re
tly. In short, there are no real restri
tions on its behavior. A data servi
e that
an tolerate server faults of this type is likely to be extremely robust. Unfortunately,Byzantine fault toleran
e te
hniques typi
ally require numerous up-to-date
opiesof ea
h data item at various lo
ations, i.e., repli
ation. Su
h te
hniques are aptto be expensive, and are thus often dismissed as too impra
ti
al to be used as apre
aution against a relatively rare, if potentially devastating,
ondition.The purpose of this work has been to design asyn
hronous data servi
e pro-to
ols that address this
on
ern by allowing the servi
e to shift between multipletoleran
e modes at run time, monitoring itself for faulty server behavior and dy-nami
ally adjusting its own toleran
e
apabilities a

ordingly. Our goal is a systemthat runs in an eÆ
ient low-fault mode most of the time, but
an adjust itself to1

ope with new faults as they o

ur.As a subsidiary goal, we have striven to make our methods not only e�e
tiveagainst random faulty server behavior, but also resistant to sabotage by a deliberateadversary. To this end, it is ne
essary to limit the use of standard assumptions, su
has independen
e of failures and a priori limits on the number of faults, that wouldlimit the appli
ability of our te
hniques to questions of se
urity. While it may beimpossible to eliminate su
h assumptions altogether (see note at the end of this
hapter), we rely less heavily on them than do many traditional solutions to theproblem of Byzantine fault toleran
e.1.1 Contributions of This ThesisOur approa
h is based on masking quorum systems, �rst proposed by Malkhi andReiter [MR98℄. Masking quorum systems are an attra
tive alternative to earlierapproa
hes to Byzantine fault toleran
e in that read and write operations needto be performed only at a subset (\quorum") of the servers, thus de
reasing theworkload on individual servers and simplifying the re
overy pro
ess when failureso

ur. Using masking quorum systems as an e
onomi
al alternative for Byzantinefault toleran
e requires a number of enhan
ements to the original approa
h, however.For one thing, the original read and write proto
ols of [MR98℄ do not guarantee theintegrity of read operations that are
on
urrent with one or more write operations.Furthermore, su
h systems may still be expensive in that tolerating multiple faultsrequires large quorums.The results presented in this do
ument fall into three main
ategories:1. Strengthening of the read and write proto
ols for masking quorum systems forserializability of
ompleted operations2. Proto
ols for dynami
ally adjusting the threshold (and thus quorum size) ofthreshold masking quorum systems in response to information about the num-ber and/or probability of faults in the system3. Proto
ols for dete
ting Byzantine server behavior in threshold masking quo-rum systems.
2

1.2 Related WorkThe foremost established approa
h to Byzantine fault-tolerant data servi
es is thatof state ma
hine repli
ation, whi
h is surveyed in detail in [S
h93℄. In this approa
h,as in ours, ea
h data item is stored by all members of a set of n data servers. Instate ma
hine repli
ation, however, all
opies must be kept
urrent, and spe
ialalgorithms are needed to ensure that all read and write operations on a given dataitem are performed in the same order. A
lient of su
h a servi
e reads a variablevalue by sending a request to all n servers, and a

epting a response if and only if itis returned by a suÆ
ient number of them, e.g., b+1 for a fault toleran
e thresholdof b. In spite of the overhead required to ensure the
onsistent ordering of operationsas well as of re
overing failed servers to the
urrent system state, the state ma
hineapproa
h has been implemented numerous times, e.g., in Rampart [Rei95℄, usuallywith a fault-toleran
e limit of bn�13
.Castro and Liskov have re
ently developed a less
ostly variant of state ma-
hine repli
ation, using
he
kpointing and view
hanges with o

asional garbage
olle
tion [CL99℄. They have further strengthened their approa
h by means of var-ious features in
luding eÆ
ient and proa
tive state re
overy for servers that mayhave failed [CL00℄. However, keeping the server states
onsistent a
ross the systemremains a ne
essity.In this work we take a sharply
onstrasting approa
h to those des
ribed aboveby eliminating the need for all servers to maintain identi
al states or to pro
essidenti
al sequen
es of operations. Instead, our proto
ols spe
ify that ea
h readand write operation is performed on a subset (quorum) of the server set; the setof possible quorums is de�ned to have spe
i�
 interse
tion properties that enable
lients to determine the
urrent value of any given data item. A
orre
t systemstate thus inherently in
ludes some out-of-date servers, thus simplifying re
overy {provided a quorum of servers is up to date, additional failed servers may be broughtba
k online without state update.We summarize work related to ea
h of our spe
i�
 results in the
orrespond-ing
hapters.1.3 Stru
ture of ThesisChapter 2
ontains the system model and de�nitions that will be used throughoutthis thesis, in
luding the original masking quorum system de�nitions and proto
olsfrom [MR98℄.In Chapter 3 we give an abstra
t de�nition of a
lass of variables
alledTS-variables, to whi
h masking quorum system variables belong. We give rigor-3

ous de�nitions of Lamport's semanti
 properties of safeness, regularity, and atomi
-ity [Lam86℄ for these variables, where safeness des
ribes the semanti
s of the originalproto
ols of [MR98℄ and atomi
ity des
ribes the semanti
s of full serializability. Weshow how the problem of an atomi
 read and write proto
ol for masking quorumsystems
an be solved given a solution to the weaker problem of a regular proto
olfor su
h systems, and present a non-live solution to the latter problem, i.e., one inwhi
h
ertain read operations may abort. Finally, we give a simple set of de�n-ing properties that are
ommon to the proto
ols we have studied, and show thatany regular proto
ol with these properties is inherently non-live in an asyn
hronousenvironment without
on
urren
y
ontrol.In Chapter 4, we present proto
ols to
hange the size of the quorums of athreshold masking quorum system so that the system's degree of fault toleran
e (i.e.,threshold)
an be adjusted between a set minimum and maximum without blo
kingordinary read and write operations. We show how to modify the read/write pro-to
ols for threshold masking quorum systems, in
luding both the original proto
olsof [MR98℄ and the enhan
ed proto
ols presented in Chapter 3, to use the dynami-
ally de�ned quorums. We show that ea
h of the new dynami
 proto
ols maintainsthe semanti
s of its stati

ounterpart. This
hapter is adapted from [AMPRW00℄.As a
omplement to these proto
ols, in Chapter 5 we present statisti
almethods for monitoring the approximate number of faults in threshold maskingquorum systems, as well as spe
i�
ally identifying some of the faulty servers. Aversion of this
hapter appears in published form as [AMPR00℄.Chapter 6
onsists of
on
luding remarks and dire
tions for future work.The appendix to this do
ument
ontains additional material that is
loselyrelated to the results presented in Chapters 4 and 5 and appears in the papers fromwhi
h those
hapters are adapted. It is in
luded for
ompleteness, but is primarilythe work of other
o-authors of these papers.A note on se
uritySome resear
hers (e.g. [DR86℄) have suggested that Byzantine fault toleran
eis appli
able to problems of se
urity. Su
h appli
ability would provide a powerfulmotivation for the use and further exploration of te
hniques su
h as those presentedin this thesis.Unfortunately, Byzantine fault-tolerant proto
ols that depend on variationsof a voting algorithm, su
h as those in this thesis as well as those of the moreestablished approa
h of state ma
hine repli
ation are vulnerable to the worst-
ases
enario of Byzantine server failure: simultaneous unanimous
orruption of mostor all of the set of repli
ated servers. This vulnerability leads to one of the most4

ogent obje
tions to applying the Byzantine fault model to se
urity: the presen
eof a malign agent may make this worst-
ase s
enario into an intelligently pursuedgoal rather than a vanishingly unlikely statisti
al phenomenon.In our view, however, this obje
tion is not fatal; although su
h te
hniquesshould probably not be regarded as a preventative against se
urity brea
hes, they
an be designed to make su
h brea
hes
onsiderably more diÆ
ult than they wouldotherwise be, and may thus be
onsidered a deterrent. One of the goals of this workhas been to keep our te
hniques as free as possible from assumptions that wouldbe questionable in the presen
e of an intelligent adversary, su
h as independen
e offailures. This is, in fa
t, an additional motivation for the elimination of stati
 faulttoleran
e thresholds (Chapter 4).

5

Chapter 2System Model and De�nitionsIn this
hapter we des
ribe our system model and give some of the histori
al de�ni-tions on whi
h the results des
ribed in this thesis are based.2.1 System ModelOur system
onsists of a set S of n server pro
esses and an unspe
i�ed number of
lient pro
esses. Server pro
esses maintain values for a set of variables, serving andupdating them in response to read and write requests re
eived from
lient pro
esses.Every server maintains a value for every variable in the system. Ea
h
lient is
onne
ted asyn
hronously to ea
h server via a two-way FIFO
hannel; no other
hannels are required or used by our proto
ols.Ea
h server s 2 S stores and updates the value of ea
h variable V in
on-jun
tion with an asso
iated timestamp; thus, at ea
h server, the variable state atthe time a read or write request is re
eived
an be expressed as a pair hval; tsi; we
all this pair an image of V .We stipulate that timestamps have the following properties, whi
h justifythe use of the word \timestamp" in this asyn
hronous
ontext. These properties areimplemented by the read and write proto
ols, whi
h we will des
ribe later.� Ea
h
lient sele
ts the timestamp values asso
iated with updates to a parti
-ular variable in a monotoni
ally in
reasing fashion.� The timestamp �eld of the image of a parti
ular variable is monotoni
allynonde
reasing at ea
h server.Servers may be either
orre
t or faulty. A
orre
t server behaves a

ordingto its spe
i�
ation, i.e., it returns its
urrent image of a given variable upon request.6

In
ontrast, a faulty server may behave in a Byzantine (arbitrary) fashion, e.g., byserving in
orre
t or outdated data or by failing to respond to queries. Clients and
hannels are assumed to be reliable for the s
ope of this work.2.2 De�nitions: Byzantine Quorum SystemsMathemati
ally, a quorum system is a set of pairwise interse
ting sets:De�nition 1 A quorum system on a set X is a set Q � 2X su
h that8Q1; Q2 2 Q : Q1 \Q2 6= ;A member of Q is known as a quorum.A data servi
e based on the server set S
an be designed as a quorum systemas follows: let Q � 2S be a quorum system, and let ea
h read and write operationbe issued to and performed on some quorum Q of Q. Hereafter we use the term\quorum system" and the label Q to refer both to the mathemati
al
onstru
t asde�ned above and to a data servi
e based on the
onstru
t. This slight overloadingis straightforward, and should not result in
onfusion.If the set of servers is subje
t only to
rash failures (i.e., unresponsive servers),the interse
tion property of Q ensures that ea
h read operation has a

ess to thevalue of the \most re
ently
ompleted" write operation in some serialization of writeoperations.A note on operations and
on
urren
yA read or write operation is performed by a
lient on a quorum of servers a

ordingto a spe
i�
ation
alled a proto
ol. We will present several read and write proto
olsin this do
ument, all of whi
h share the same basi
 stru
ture: an operation isinitiated when a
lient issues a
orresponding request to the servers in a quorum,and is
ompleted when the steps of the proto
ol have all been exe
uted.As indi
ated above, ea
h read and write operation in a quorum system isperformed on multiple servers. As we are assuming an asyn
hronous environmentwithout
on
urren
y
ontrol me
hanisms, it is possible for two or more su
h opera-tions to be
on
urrent:De�nition 2 Operations opa and opb are said to be
on
urrent if there exists a pairof servers s1; s2 2 S su
h that s1 pro
esses opa before opb while server s2 pro
essesopb before opa. 7

In proving the semanti
 properties of variables maintained by quorum systems,we must take su
h
on
urren
y into a

ount; we handle this problem in detail inChapter 3.A note on data semanti
sTo analyze the
orre
tness of our proto
ols, we will follow the example of [MR98℄by using Lamport's notions of safe, regular, and atomi
 data semanti
s [Lam86℄,adapted to allow for the possibility of
on
urrent write operations. We give spe
i�
te
hni
al de�nitions of these
on
epts in Chapter 3, but the basi
 intuitions are asfollows:� safe: A read/write proto
ol for a variable is
onsidered safe if it ensures thatany read operation that is not
on
urrent with any write operation on thesame variable returns the value of the most re
ent write to that variable.1� regular: A proto
ol is regular if it is safe and ensures that any read operationthat is
on
urrent with one or more write operations on the same variablereturns either the value of the most re
ent write or the value of one of the
on
urrent writes to that variable.� atomi
: A proto
ol is atomi
 if it ensures that all read and write operationson a given variable are serializable, i.e., that they behave as though they wereperformed sequentially in some order that is
ompatible with the partial orderin whi
h they are a
tually performed.Note that under a regular proto
ol, one read may o

ur later than another,yet return the value of an earlier write; thus regularity does not imply atomi
ity.Our use of these terms may appear to di�er from that of [Lam86℄ in that wetreat these properties as belonging to proto
ols rather than to data obje
ts. Thisdi�eren
e is illusory, however; a data obje
t has a given semanti
 property if andonly if the proto
ol used to a

ess it has that property.2.2.1 Masking quorum systemsIf servers may be subje
t to arbitrary (Byzantine) failures, the minimal interse
tionguaranteed by a quorum system as de�ned in De�nition 1 is not enough to guaranteedata
onsisten
y: two quorums might interse
t in a single server that returned afaulty response, so that a read operation does not re
eive the
orre
t up-to-date1The monotoni
ity of timestamps at ea
h server ensures that writes are serializable by times-tamp; thus we may refer to the write with the highest timestamp as the \most re
ent" write.8

value. For su
h servi
es, masking quorum systems [MR98℄ have been proposed. Wesummarize the de�nition of these systems here.During any given read or write operation, a server set that is subje
t toByzantine failures may be partitioned into two subsets: those that behave a

ordingto their spe
i�
ation throughout the operation, and those that do not. Members ofthe latter set, whi
h we will usually
all F , may fail to respond to requests, or mayrespond with out-of-date or arbitrary data. We refer to su
h a set F as a failure
on�guration.A masking quorum system is de�ned in terms of a failure pattern, whi
h is aset B � 2S su
h that 8B1; B2 2 B; B1 6� B2In operational terms, the failure pattern de�nes the set of failure
on�gurations thatthe system is designed to tolerate. Spe
i�
ally, the system is expe
ted to behave
orre
tly as long as its failure
on�guration is
ontained in some element of B, i.e.,if: 9B 2 B : F � BThe de�nition of a masking quorum system is as follows:De�nition 3 A masking quorum system on a server set S and failure pattern B isa quorum system Q � 2S su
h that:� 8Q1; Q2 2 Q;8B1; B2 2 B : (Q1 \Q2)nB1 6� B2� 8B 2 B, 9Q 2 Q : B \Q = ;If the set F of faulty servers during any given operation is
ontained in someelement of B, and all read and write operations are performed on elements of Q,then the two bullets above ensure that:� the interse
tion of any pair of quorums (e.g., a read quorum and the previouswrite quorum)
ontains a set of nonfaulty servers whose response, if unani-mous,
an be identi�ed as
orre
t.� at least one quorum is always available even if faulty servers are nonresponsive.In this work we will be
on
erned primarily with a family of masking quorum systems
alled b-masking quorum systems, de�ned below. Here and for the remainder of thisdissertation, we will use the notation #(X) to denote the size of a set X.De�nition 4 A b-masking quorum system on a server set S is any masking quorumsystem de�ned on the failure patternB = fB � 2S : #(B) = bg9

This failure pattern en
odes the assumption that all server faults are
on-tained within some set of size b, i.e., that there are no more than b faults in thesystem during a given operation. (This is the standard \threshold" assumption
ommon to many te
hniques for Byzantine fault toleran
e.) In su
h systems, therequirement that 8Q1; Q2 2 Q;8B1; B2 2 B : (Q1 \Q2)nB1 6� B2means simply that the minimum interse
tion size between quorums is 2b+1 servers.A b-masking quorum system of parti
ular interest to this work is the Uniformquorum system [MR98℄,2 whose de�nition is elegantly parameterized in terms of b:De�nition 5 The Uniform quorum system for a server set S (#(S) = n) withthreshold b (n � 4b+ 1) is the set Q, whereQ = fQ � S : #(Q) = dn+ 2b+ 12 egIt is easily seen that this de�nition satis�es De�nition 3. For simpli
ity in ourdis
ussions, we will assume hereafter that n is odd, so that we may eliminate the
eiling operator de from our formulae and
al
ulations.Read and write proto
olsThe basi
 read and write proto
ols for masking quorum systems, as originally pro-posed in [MR98℄,
onsist of the following steps:Write: For a
lient to write value v to variable V , it performs the following steps:1. For some Q 2 Q and B 2 B, query all servers in the set Q n B to obtain theset A of images of V at those servers.32. Sele
t a new timestamp t greater than the largest timestamp appearing in anyelement of A and greater than any timestamp previously
hosen by the
lient.(To avoid timestamp
ollisions, every
lient

hooses its timestamps from aunique set T
, where
 6=
0) T
 \ T
0 = ;.)3. Send ea
h server in some quorum Q0 a write request
ontaining an identi�erfor V and the new image hv; ti.A server that re
eives su
h a write request performs the update if and only if thetimestamp of new image is greater than the timestamp of the
urrent image of V .The timestamp of V at any
orre
t server is therefore monotoni
ally nonde
reasing.2In [MR98℄, this type of system was
alled a threshold quorum system; the name was
hangedfor
larity in [AMPR00℄.3Note that su
h a set ne
essarily interse
ts all quorums in at least one
orre
t server.10

Read: For a
lient to read variable V , it performs the following steps:1. Query all servers in some quorum Q to obtain the set A of images of V atthose servers.2. Determine the set A0 � A of images that are vou
hed for a

ording to thede�nition below.3. Sele
t the member of A0 with the highest timestamp, and return the
orre-sponding value. If A0 is empty, return ? (a null value).De�nition 6 A set B+ of servers is
alled a vou
her set for failure pattern B if8B 2 B : B+ 6� BAn image is vou
hed for during a variable read if it is returned by all members ofsome vou
her set. A value is vou
hed for if it appears in an image that is vou
hedfor.Essentially, a vou
her set is any set of servers that
annot all be faulty. If a vou
herset agrees on an image, that image is not fabri
ated, though it may be out-of-date.Example: For a b-masking quorum system, a vou
her set is any set of b + 1 ormore servers.Remark: In our dis
ussions of various proto
ols, we will sometimes refer to thevou
her set for a su

essful read operation; by this we mean the vou
her set
on-taining all servers that return the image a

epted by the read.The read/write proto
ol above has safe semanti
s (Se
tion 2.2). As it does notspe
ify the behavior of read operations that are
on
urrent with writes, however,safeness is a relatively weak semanti
 property. For systems that have a

ess to re-liable third-party authenti
ation proto
ols, stronger properties
an be implementedby means of dissemination quorum systems [MR98℄.2.2.2 Dissemination quorum systemsLike masking quorum systems, dissemination quorum systems are de�ned in terms ofa failure pattern B. They are very similar to masking quorum systems in stru
tureas well, ex
ept that the interse
tion between ea
h pair of quorums only needs to
ontain at least one
orre
t server: 11

De�nition 7 A dissemination quorum system on a server set S and failure patternB is a set Q � 2S su
h that:� 8Q1; Q2 2 Q;8B 2 B : Q1 \Q2 6� B� 8B 2 B, 9Q 2 Q : B \Q = ;Again, the following spe
ial
ase is worth separate mention:De�nition 8 A Uniform dissemination quorum system on a server set S and failurepattern B = fB � S : #(B) = bg is the set:Q = fQ � S : #(Q) = dn+ b+ 12 egThe smaller interse
tion property of dissemination quorum systems is suÆ-
ient be
ause of the existen
e of authenti
ation proto
ols: if every variable imagewritten to a server is veri�able by means of, say, a digital signature, then evena Byzantine server
annot
onvin
ingly forge data; it must serve either
orre
t orout-of-date data if it responds at all. Thus a read operation
an a

ept the highest-timestamped response it re
eives as being both
orre
t and up-to-date.The read and write proto
ols originally proposed for dissemination quorumsystems are almost identi
al to those for masking quorum systems, ex
ept that avalue is vou
hed for even if it is returned by only a single server. The resultingproto
ol still provides safe semanti
s, with the additional property that a read thatis
on
urrent with one or more writes returns either the value of the most re
ently
ompleted write or one of the values being written; in other words, it has regularsemanti
s (Se
tion 2.2).In [MR98℄, the proto
ol for dissemination quorum systems was upgraded toone with atomi
 semanti
s (Se
tion 2.2) by the simple expedient of adding a fourthstep to the end of ea
h read operation:4. Write the a

epted image hv; ti ba
k to a quorum of servers.This �nal step ensures that a read that follows another read does not return anearlier value, even if both are
on
urrent with the same set of write operations.Unfortunately, the type of authenti
ation needed for dissemination quorumsystems requires every
lient to be able to authenti
ate every other
lient, e.g., bymeans of publi
 keys. Su
h a s
heme may be impra
ti
al for systems with largenumbers of
lients, as it would require every
lient to keep tra
k of a long andperhaps frequently
hanging list of keys. In the next
hapter we study the problemof atomi
 semanti
s for non-authenti
ated masking quorum systems.12

Chapter 3On Atomi
 Semanti
s forMasking Quorum Systems3.1 Introdu
tionAs indi
ated in the previous
hapter, an important limitation of masking quorumsystems as originally proposed is the la
k of an atomi
 read and write proto
ol forsu
h systems. Although Malkhi and Reiter have shown how this problem
an besolved for dissemination quorum systems by adding a simple writeba
k
ommand tothe end of the read proto
ol [Ph98℄, the implementation of atomi
 reads and writesfor masking quorum systems has remained an open problem.As the primary result of this
hapter, we generalize the atomi
ity resultof [Ph98℄ by proving that the writeba
k me
hanism in fa
t redu
es the problemof atomi
 variable semanti
s for masking quorum system variables to the simplerproblem of regular semanti
s. Our result provides a \re
ipe" for atomi
 semanti
sin masking quorum systems without su
h
ryptographi
 authenti
ation tools; anysolution to the problem of regular semanti
s for su
h systems
an be upgraded to anatomi
 solution by simply adding a writeba
k step to the end of the read proto
ol. Infa
t, the
orre
tness of the atomi
 proto
ol of [Ph98℄
an be viewed as a
orollary ofour result, as the
ryptographi
 framework of dissemination quorum systems (sanswriteba
k) enfor
es regular semanti
s.In proving this result, we introdu
e the appli
ation of the
al
ulational proofstyle [DS90, GS95, Rao95℄ to quorum systems. Although su
h proofs are often morediÆ
ult to read than prose proofs, they have two distin
t advantages. First, theyare readily veri�able, as the steps are neatly laid out and justi�ed. Se
ondly, theyare a

essible to the general
omputer s
ientist who may not have the area-spe
i�
knowledge ne
essary to follow intuitive leaps.13

As a follow-up to the result des
ribed, we present a read/write proto
ol thatprovides what we
all pseudo-regular semanti
s (regular semanti
s with a possibilityof aborted operations) for masking quorum systems without resorting to authen-ti
ation proto
ols. We then show that this proto
ol
an be
ombined with thewriteba
k me
hanism to provide pseudo-atomi
 semanti
s (analogously de�ned) forsu
h systems.Finally, we prove the slightly startling fa
t that there is a very simple set of
hara
teristi
s, shared by the non-dissemination proto
ols we have studied thus far,that makes regularity in
ompatible with liveness in an asyn
hronous environmentwithout
on
urren
y
ontrol. Some form of pseudo-atomi
 semanti
s are thus themost that
an be implemented by su
h proto
ols in su
h an environment.3.1.1 Related workThe
on
epts of safe, regular and atomi
 were presented in [Lam86℄ as semanti
 prop-erties of hardware registers. In that paper, Lamport also gave several algorithmsfor
onstru
ting stronger registers from weaker ones, in
luding one for
onstru
tingan atomi
 single-reader register from regular registers (whi
h
ould in turn be
on-stru
ted from safe registers). The problem of
onstru
ting a multi-reader atomi
register was left open, but has sin
e been solved by various resear
hers in
lud-ing [KKV87, SAG94℄.These algorithms are designed in the spe
i�

ontext of hardware registers,and are unsuitable for large-s
ale distributed data servi
es in two ways. First, theyrequire an a priori limit on the number of users that may a

ess a parti
ular dataelement at any given time. Se
ond, they are polynomial in this number, leading toundesirably expensive operations.Fortunately, although these limitations are ines
apable in the
ontext of hard-ware registers (the solution presented in [SAG94℄ is asymptoti
ally optimal), we areable to avoid them in our appli
ation by means of the
onvenient abstra
tion of un-bounded timestamps. Using this me
hanism, we are able to simply strengthen theread/write proto
ols for quorum system variables so as to provide pseudo-atomi
itydire
tly.3.2 De�nitions: TS-Variables and Data Semanti
s3.2.1 Formalizing masking quorum system variables: TS-variablesIn order to reason formally about Byzantine quorum system variables as a
lass, weneed an abstra
tion that de�nes the important features of su
h variables indepen-14

dently of operational details. To this end, in this se
tion we introdu
e the
on
eptof TS-variables. We begin by de�ning the more general
on
ept of \timestampedvariables" as well as a number of useful fun
tions on su
h variables:De�nition 9 A timestamped variable is a variable of any type whose value is readand updated in
onjun
tion with an asso
iated timestamp, where timestamps aredrawn from some unbounded totally ordered set T .Let RW be a set of read and write operations on some timestamped variablewith a given read/write proto
ol and a domain set D; let R � RW be the set ofreads, and letW � RW be the set of writes. Then the following fun
tion de�nitionshold (R and B represent the set of reals and the set of booleans, respe
tively):value : RW ! D: For op 2 RW , if op is a read, then value(op) is the value returnedby the read; if op is a write, then value(op) is the value written.ts : RW ! T : For op 2 RW , if op is a read, then ts(op) is the timestamp of thevalue returned by the read; if op is a write, then ts(op) is the timestamp assignedto the value written.readsfrom: R �W ! B: for r 2 R, w 2 W , readsfrom(r; w) � true i� r reads theresult of write w. For timestamped variables, we de�ne this to be equivalent to:readsfrom(r; w) � value(r) = value(w) ^ ts(r) = ts(w)For the purposes of the next two fun
tions, we postulate a global \
lo
k" (e.g., theage of the universe in millise
onds) that provides an absolute times
ale for systemevents. As the systems we dis
uss are asyn
hronous, individual pro
esses do nothave a

ess to global
lo
k values or to these fun
tions, whi
h are used only forreasoning purposes.start : RW ! R: The start time of the operation in global time.end : RW ! R: The end time of the operation in global time.The purpose of these fun
tions is to give us a
onvenient shorthand for reasoningabout the possibility of
on
urren
y between operations as de�ned in Chapter 2,without being spe
i�
 about the a
tual (nondeterministi
, in an asyn
hronous envi-ronment) order in whi
h servers pro
ess requests. Essentially, ifend(op1) < start(op2) _ end(op2) < start(op1)15

then op2 is not
on
urrent with op1, whereas ifstart(op2) � end(op1) ^ start(op1) � end(op2)su
h
on
urren
y may exist and thus needs to be resolved in any proposed serial-ization of op1 and op2. For simpli
ity, we will therefore treat the latter expressionas our de�nition of
on
urren
y hereafter.In keeping with their hypotheti
al meaning, we stipulate that the start andend fun
tions meet the following restri
tion:8op 2 RW : start(op) < end(op)TS-variablesIgnoring issues of type and address, we
onsider a variable to be de�ned by thespe
i�
ation of the operations that may be performed on it, in
luding at least readand write.1 We refer to su
h a spe
i�
ation as a variable proto
ol. Read and writea
tivity on a variable is des
ribed in terms of a run of its proto
ol:De�nition 10 A run of a variable V is a set of operations on V , all of whi
h meetthe spe
i�
ation of V 's proto
ol. We
all a run RW
omplete if, for all read opera-tions r 2 RW , there exists a write operation w 2 RW su
h that readsfrom(r; w).In this
hapter we will
ontinue to use the label RW to represent a variablerun; subs
ripts will be used to distinguish between runs when the
ontext is nototherwise
lear. The proje
tion of a run RW onto its read operations will be denotedR; the
orresponding proje
tion onto write operations will be denoted W .Although some resear
hers use the terms \run" and \exe
ution" inter
hange-ably, in this work we �nd it useful to follow the example of [Lam86℄, whi
h givesthem distin
t te
hni
al meanings. Spe
i�
ally, an exe
ution asso
iates a run with apre
eden
e relation on the operations of that run, i.e.:De�nition 11 An exe
ution of a variable v is a pair hRW; -i, where RW is arun of v and - is a pre
eden
e relation (irre
exive partial order) on the operationsin RW .We now de�ne two spe
i�
 types of exe
ution that are of spe
ial importan
e to thiswork:1We do not
on
ern ourselves with read-only variables in the
ontext of this work.16

De�nition 12 An exe
ution hRW; -i is said to be real-time
onsistent if8op1; op2 2 RW : end(op1) < start(op2)) op1 - op2De�nition 13 An exe
ution hRW; -i is said to be write-ordered if it satis�es thefollowing:1. 8wi; wj 2W : wi 6= wj : wi - wj _ wj - wi2. hW; -i is real-time
onsistent.In other words, (1) in a write-ordered exe
ution, the write operations are totally or-dered by -, and (2) the order is
onsistent with the partial order of write operationsin real time.De�nition 14 For all runs RW of a timestamped variable v, the relation ts- isde�ned by:1. 8op 2 RW;8w 2W : op ts- w � ts(op) < ts(w)2. 8w 2W;8r 2 R : w ts- r � ts(w) � ts(r)3. 8ra; rb 2 R : ra ts- rb � ts(ra) < ts(rb)It is easy to see that ts- is irre
exive, antisymmetri
 and transitive. It is thereforean irre
exive partial order. (Note that operations with identi
al timestamps are notne
essarily ordered by ts-.)We now de�ne TS-variables as follows:De�nition 15 A TS-variable is a timestamped variable v su
h that, for all
ompleteruns RW of v, hRW; ts-i is write-ordered.Note that De�nitions 14 and 15 imply that writes are uniquely identi�edby timestamp; thus for any given read, there is at most one write with the sametimestamp. We
an therefore make the following observation, whi
h provides asimpli�ed form of the de�nition of readsfrom() for TS-variables:Observation 1 For any read operation r and write operation w of a
omplete TS-variable run, readsfrom (r; w) � ts(r) = ts(w)
17

3.2.2 Formalizing data semanti
s for TS-variablesWe now de�ne what it means for a write-ordered exe
ution to be safe, regular oratomi
. The de�nitions of safe and regular are based on the following
on
ept,adapted from [Lam86℄:2De�nition 16 For a write-ordered exe
ution hRW; -i, let w0; w1; : : : be the or-dered list of write operations from RW as de�ned by -. Furthermore, for agiven read operation r, let i be the index of the last write that pre
edes r, i.e.,i = maxfk : end(wk) < start(r)g. Then we say that r sees W 0 �W , where:W 0 = fwig [fwk : start(r) � end(wk) ^ start(wk) � end(r)gWe express this relationship in predi
ate form as sees(r;W 0; -).The de�nition of the predi
ate sees is based on the idea that on
e a write toa variable has
ompleted, previous values of that variable should not be read. Thusthe values that a read sees are those that might be legitimately returned by thatread, i.e., the value of the most re
ently
ompleted write wi and the values of any
on
urrent writes. The fa
t that hRW; -i is write-ordered implies that all writesseen by r fall within a well-de�ned range:Observation 2 For a given read r, let i be de�ned as in De�nition 16, and letj = maxfk : start(wk) < end(r)g. Then:3sees(r;W 0; -)) h8wk 2W 0 : i � k � jiWe now de�ne a safe exe
ution as follows,
ontinuing to use wi to denote the ithwrite in the order de�ned by -:De�nition 17 An exe
ution hRW; -i is safe if:� it is write-ordered, and� sees(r; fwig; -)) readsfrom(r; wi)2[Lam86℄ de�ned this
on
ept for a single-writer register, whose write operations are thus ne
-essarily serial. We relax this requirement, de�ning our version of \sees" in terms of serializable,rather than serial, writes. Thus our de�nition
an be applied to variables with multiple writers.3Note that the reverse is not true. It is possible for a write to fall within the given range withoutbeing seen if the \invisible" write o

urs after read r, but
on
urrently with wj .
18

In other words, an exe
ution is safe if any read that sees only one writereturns the value of that write. In operational terms, a read that is
on
urrent withno writes returns the result of the \most re
ent" write a

ording to the serializationde�ned by the write-ordering.A regular exe
ution is de�ned as follows:De�nition 18 An exe
ution hRW; -i is regular if:� it is write-ordered, and� 8r 2 R : sees(r;W 0; -)) h9w : w 2W 0 : readsfrom(r; w)iIn other words, a write-ordered exe
ution is regular if every read returns some valuethat it sees. Note that a regular exe
ution is ne
essarily safe.For TS-variables, this de�nition has a useful
onsequen
e:Lemma 1 Let hRW; ts-i be regular. Then8r 2 R;8w 2W : end(w) < start(r)) ts(w) � ts(r)The proof of this lemma
onsists of showing that any arbitrary write that pre
edesa given read has a timestamp less than or equal to that of the read. Let r be anarbitrary read, let wi be the ith write in the total order imposed by ts- for somearbitrary i, let W 0 be the set of writes su
h that sees(r;W 0; ts-), and let wj be thewrite su
h that readsfrom(r; wj). Then:end(wi) < start(r)) fde�nition of max, write-ordering of TS-variablesgi � maxfk : end(wk) < start(r)g� fDe�nition 13, Observation 2gi � minfk : wk 2W 0g) fj 2W 0, Observation 2gi � j) fwrite-ordering of TS-variablesgts(wi) � ts(wj)) fde�nition of ts() for readsgts(wi) � ts(r)Finally, we de�ne an atomi
 exe
ution as an exe
ution that behaves as thoughthe operations were totally ordered in a real-time
onsistent way, that is:19

De�nition 19 An exe
ution hRW; -i is atomi
 if:� - is a total order on RW ,� 8r 2 R, readsfrom(r; wi)) i = maxfk : wk - rg, and� hRW; -i is real-time
onsistent.Note that the se
ond and third bullets of the de�nition above imply that any atomi
exe
ution is also regular, while the reverse is not ne
essarily true.We now de�ne what it means for a variable to be safe, regular or atomi
.De�nition 20 A variable proto
ol is safe (regular, atomi
) with respe
t to a pre
e-den
e relation - if, for all
omplete runs RW of the proto
ol, the exe
ution hRW; -iis safe (regular, atomi
). A proto
ol is safe (regular, atomi
) if it is safe (regular,atomi
) with respe
t to some pre
eden
e relation. A variable is safe (regular, atomi
)if its proto
ol is safe (regular, atomi
).3.3 Redu
ing the Atomi
 Semanti
s ProblemIn this se
tion we show how to
onstru
t an atomi
 TS-variable vatom given a regularTS-variable vreg. We a

omplish this by means of the following steps:1. Add a new operation to the proto
ol for vreg, spe
ify the operations of vatomin terms of this expanded regular proto
ol, and show that the resulting vatomis a TS-variable.2. De�ne a total order ts0- on operations of vatom that extends ts-, i.e.,opa ts- opb) opa ts0- opb3. Use De�nition 20 to prove that vatom is atomi
 with respe
t to ts0-.3.3.1 De�ning the atomi
 proto
olLet vreg be a regular TS-variable. We expand the proto
ol of vreg by de�ning athird operation in addition to read and write: writeba
k. The writeba
k opera-tion is similar to the write operation of vreg ex
ept that whereas write operations
al
ulate their own timestamps, a writeba
k takes its timestamp as an argument;thus writeba
ks are not ne
essarily ordered by ts-. We stipulate, however, that allruns RWexp of the expanded proto
ol
ontinue to satisfy Lemma 1, as well as thefollowing additional property: 20

Property 1 For all read operations r, write operations w and writeba
k operationsb in RWexp,� end(b) < start(r)) ts(b) � ts(r)� end(b) < start(w)) ts(b) < ts(w)(In masking quorum systems, as in dissemination quorum systems, both Lemma 1and Property 1 are implemented by having a write/writeba
k perform a null oper-ation at any server whose
urrent timestamp for the variable is higher than that ofthe write/writeba
k; thus monotoni
ity of timestamps is enfor
ed at ea
h server.)We now de�ne our proposed atomi
 variable proto
ol vatom as follows, wherereadreg and writereg are the read and write proto
ols of vreg, and val, ts are thevalue and timestamp respe
tively of the readreg operation:Writeatom: writeregReadatom: readreg; writeba
k(val; ts)In other words, a write operation of vatom
onsists of a single write operation of vreg,while a read operation of vatom
onsists of a read operation of vreg followed by awriteba
k of the resulting value and timestamp. The timestamp of ea
h Readatomor Writeatom operation is identi
al to the timestamp of the underlying readreg orwritereg operation. Be
ause ea
h write operation of vatom
onsists exa
tly of onewrite operation of vreg, it follows that vatom is also a TS-variable. (For
larity,we will hereafter follow the
onvention that operations of vatom are represented inboldfa
e, while operations of vreg are represented in itali
s.)3.3.2 A total order over operations on vatomIn preparation for proving vatom atomi
, we spe
ify a pre
eden
e relation that totallyorders all runs RWatom of vatom. The ts- relation that we have already de�ned isnot suÆ
ient, as it does not order read operations that share the same timestamp.We therefore propose to de�ne an extension ts0- of ts- using the following additionalfun
tion of type O, where O is some totally ordered set:gtf:4 RW ! O: An arbitrary fun
tion with the following three properties:� Sequentiality: 8opa; opb 2 RW : end(opa) < start(opb)) gtf (opa) < gtf (opb).� Uniqueness: 8opa; opb 2 RW : gtf (opa) = gtf (opb) � opa = opb.� Read Promotion: 8r 2 R;w 2W : start(w) � end(r) � gtf (w) < gtf (r)4\gtf" stands for \global time fun
tion". 21

(An example of su
h a fun
tion is a mapping from op 2 RW to the pair (time(op); id),where id is a unique, real-valued operation identi�er whose �rst bit is 1 for a reador 0 for a write, and time(op) = end(op) for op 2 R and time(op) = start(op) forop 2W .)The purpose of fun
tion gtf is to a
t as a supplement to timestamps whenwe de�ne a serialization of the operations. Sequentiality ensures that the orderimposed by gtf is
ompatible with the partial order of the operations in real-time,Uniqueness ensures that the fun
tion
an a
t as a \tie-breaker" for operations withthe same timestamp, and Read Promotion ensures that any given read operationhas a higher gtf than any write that might a�e
t it.5We now de�ne ts0- as follows:De�nition 21 For any given run RWatom of vatom,8opa; opb 2 RWatom :opa ts0- opb � ts(opa) < ts(opb) _ (ts(opa) = ts(opb) ^ gtf (opa) < gtf (opb))In other words, ts0- is the lexi
ographi
 ordering on the pair (ts(op); gtf (op)). It istherefore a total order by virtue of the Uniqueness property of gtf and the fa
t thatts and gtf have totally ordered
odomains.As a
onsequen
e of this de�nition, we have the following lemma and
orol-lary, whi
h allow us to use De�nition 19 to prove atomi
ity:Lemma 2 8opa; opb 2 RWatom : opa ts- opb) opa ts0- opb.Proof: If opa is a read or opb is a write, the property follows immediately fromDe�nitions 14 and 21. Otherwise (opa is a write and opb is a read) it follows fromthese two de�nitions and the Read Promotion property of gtf.Corollary 1 All exe
utions hRWatom; ts0-i of vatom are write-ordered.Proof: Write operations of vatom have unique timestamps by virtue of the fa
t thatvreg is a TS-variable. Thus, by De�nition 21 and Lemma 2, we have:8wi;wj 2Watom : wi ts0- wj � wi ts- wjTherefore, sin
e hRWatom; ts-i is write-ordered (again by virtue of the fa
t thatvatom is a TS-variable), it follows that hRWatom; ts0-i is also write-ordered.5In fa
t, these properties are suÆ
ient to allow us to de�ne a total order stri
tly in terms ofgtf . However, gtf alone does not spe
ify the behavior of timestamps, and so does not allow us toreason dire
tly about the behavior of reads via the readsfrom fun
tion. We will therefore use gtfas indi
ated above. 22

3.3.3 Proving vatom atomi
Our remaining goal is to prove that hRWatom; ts0-i is atomi
 for all runs RWatom ofvatom, thus proving that vatom is an atomi
 variable:Theorem 1 For all runs RWatom of vatom, the exe
ution hRWatom; ts0-i is atomi
.As we have already shown that ts0- write-orders RWatom, our remaining obliga-tions are to prove:� 8r 2 Ratom, readsfrom(r; wi)) i = maxfk : wk ts0- rg,6 and� hRW; ts0-i is real-time
onsistent.Proof that 8r 2 Ratom, readsfrom(r; wi)) i = maxfk : wk ts0- rg:readsfrom(r; wi)� fObservation 1gts(wi) = ts(r)� fwrite-orderinggts(wi) = ts(r) ^ 8fk : k < i : wk ts0- wig� fde�nition of ts0-gts(wi) = ts(r) ^ 8fk : k < i : ts(wk) � ts(wi)g� fDe�nition 13gts(wi) = ts(r) ^ 8fk : k < i : ts(wk) < ts(wi)g� fde�nition of max, de�nition of �gi = maxfk : ts(wk) � ts(r)g) fLemma 2 , de�nition of ts0-gi = maxfk : wk ts0- rg2Proof that hRW; ts0-i is real-time
onsistent: Our obligation is to prove that:8opa; opb 2 RWatom : end(opa) < start(opb)) opa ts0- opbWe prove this separately for ea
h of the four possible
ases: two writes, a writefollowed by a read, a read followed by a write, and two reads. For simpli
ity, wewill use the
onvention that r and w (with possible subs
ripts) refer to operations6A

ording to the
onvention we adopted earlier, Ratom is the set of read operations fromRWatom. 23

of RWatom, while r, w, and b denote the
orresponding read, write and writeba
koperations of the expanded regular proto
ol:Case 1: two writes end(wi) < start(wj)� fde�nition of vatomgend(wi) < start(wj)) fwrite-ordering of TS-variablesgwi ts- wj� fde�nition of vatomgwi ts- wj) fLemma 2gwi ts0- wjCase 2: write, then readend(w) < start(r)� fde�nition of vatomgend(w) < start(r)) fLemma 1gts(w) � ts(r)� fde�nition of ts-gw ts- r� fde�nition of vatomgw ts- r) fLemma 2gw ts0- rCase 3: read, then writeend(r) < start(w)� fde�nition of vatomgend(b) < start(w)) fProperty 1 of writeba
kgts(b) < ts(w)) fde�nition of vatomgts(r) < ts(w)� fde�nition of ts-gr ts- w 24

� fde�nition of vatomgr ts- w) fLemma 2gr ts0- wCase 4: two reads end(ra) < start(rb)� fSequentiality property of gtf gend(ra) < start(rb) ^ gtf (ra) < gtf (rb)� fde�nition of vatomgend(ba) < start(rb) ^ gtf (ra) < gtf (rb)) fProperty 1 of writeba
kgts(ba) � ts(rb) ^ gtf (ra) < gtf (rb)� fde�nition of vatomgts(ra) � ts(rb) ^ gtf (ra) < gtf (rb)� fde�nition of vatomgts(ra) � ts(rb) ^ gtf (ra) < gtf (rb)� fde�nition of ts0()gra ts0- rbThis
ompletes the proof of the theorem. 2Thus we have redu
ed the open problem of atomi
 semanti
s for TS-variables,in
luding those implemented by masking quorum systems, to that of regular seman-ti
s. Although the problem of regular semanti
s for masking quorum systems alsoremains open, it is less diÆ
ult in that all atomi
 proto
ols are also regular (a dire
timpli
ation of De�nition 19). In the next se
tion we present a non-
ryptographi
regular proto
ol for systems that
an tolerate o

asional aborted reads.3.4 Implementing Pseudo-Regular Semanti
sWe improve the semanti
s of masking quorum systems as de�ned in [MR98℄ (seeSe
tion 2.2.1) to pseudo-regular by enhan
ing the read proto
ol so that read oper-ations abort when no seen value is vou
hed for. (Note that our proto
ol need not {and does not { always abort when a read is
on
urrent with a write.)Read: For a
lient to read the
urrent value of a variable V , it queries ea
h serverin some quorum Q to obtain the set A of images of V , i.e., A = fvu; tugu2Q. Of the25

images that are vou
hed for, it sele
ts the image hv; ti with the highest timestampt. If there is no su
h image, or if hv; ti is
ountermanded as de�ned below, it sets vto ? (i.e., it aborts).De�nition 22 A variable image hv; ti is
ountermanded for a given read if allmembers of some vou
her set return images with timestamps greater than t. Avariable value v is
ountermanded if all the vou
hed-for images in whi
h it appearsare
ountermanded.This proto
ol provides pseudo-regular semanti
s by virtue of the fa
t that any valuethat is vou
hed for but not seen is
ountermanded. The full statement and proof ofthe theorem follow:Theorem 2 For all runs RW
onsisting of non-aborted operations of the aboveproto
ol, hRW; ts-i is regular.Proof:7 Let W 0 � W be the set su
h that sees(r;W 0; ts-) is true for read r.Be
ause r did not abort, there exists some wx su
h that readsfrom(r; wx). As it isnot possible for an image to be vou
hed for before the write that writes it begins,we have start(wx) � end(r).Now, let i = maxfk : end(wk) < start(r)g. By the safeness of the proto
oland the monotoni
ity of image timestamps, the values of all wk su
h that k < i are
ountermanded in all reads that follow wi, therefore x � i, i.e.:x = maxfk : end(wk) < start(r)g _ end(wx) � start(r)By Boolean algebra, this and the result of our �rst paragraph imply:x = maxfk : end(wk) < start(r)g _ (start(wx) � end(r) ^ end(wx) � start(r))Therefore, by De�nition 16, wx 2 W 0. The monotoni
ity of timestamps ensureswrite-ordering, so De�nition 18 is satis�ed.2Corollary 2 There exists a pseudo-atomi
 proto
ol for masking quorum systems.Proof: The proto
ol is
onstru
ted from the pseudo-regular one as des
ribed inSe
tion 3.3, ex
ept that read operations aborted in the regular proto
ol are alsoaborted in the atomi
 one. 27Be
ause this proof is based on inspe
tion of the proto
ol rather than on formal de�nitions andlemmata, we do not employ the
al
ulational proof style in this
ase.26

3.5 On the Ne
essity of Aborted OperationsIn the previous se
tion, we have shown how to implement pseudo-atomi
 seman-ti
s in an asyn
hronous system in whi
h little or no
on
urren
y
ontrol has beenestablished. Spe
i�
ally:� Any
lient may send a write request to a quorum of servers at any time, usingits
hoi
e of timestamp; i.e., writes are always enabled.� No additional ordering or s
heduling is imposed on read and write requests.� Read and write requests are pro
essed by servers in the order re
eived, where\pro
essing" a write request with a suÆ
iently high timestamp
hanges thestate of the variable image at the server.We des
ribe su
h a system in the ensuing arguments as a nonrestri
ted system.All the quorum system proto
ols that we have studied here, in
luding the pseudo-atomi
 proto
ol, share the following
hara
teristi
s:1. Ea
h server maintains a single version of the variable image at any given time.2. A read returns a non-? value only if some appropriately de�ned vou
her setof servers responds to its query with identi
al images.For the remainder of this dis
ussion, we refer to su
h a proto
ol as a
lassi
 quorumproto
ol. We then de�ne:De�nition 23 A
lassi
 b-masking proto
ol is a
lassi
 quorum proto
ol whosevou
her set is de�ned as any set of b+ 1 or more servers.In this se
tion, we show that there is no way to implement a
lassi
 b-maskingproto
ol that is fully regular8 in a nonrestri
ted system. We do this by showing that
ertain possible server responses to a read query in su
h a system are unresolvable;i.e., the
orresponding operation must either return a possibly faulty value, abort,or retry the query (leaving open the possiblity of non-termination).We then show that the same is true even if ea
h server maintains a boundedhistory of the variable images it has re
eived.8We use the term \fully regular" in this se
tion to emphasize the distin
tion from pseudo-regularsemanti
s: in a (fully) regular proto
ol, every read returns some seen value; therefore it terminatessu

essfully rather than aborting or failing to terminate.
27

3.5.1 De�nitionsWe begin with a number of useful de�nitions. Let P be a
lassi
 quorum proto
ol,and let r and w be operations under P su
h that r is a read operation and w is themost re
ently
ompleted (as determined by timestamp) write operation as of thebeginning of r. Let Qr and Qw be the quorums on whi
h r and w respe
tively areperformed.De�nition 24 The interse
tion set for r is the set Qr \Qw.Let F � Qr be the set of servers that return faulty responses during read r.De�nition 25 The informed set for r is the set Qr \Qw n F .Note that if there are no writes
on
urrent with r, so that no servers in the inter-se
tion set have been overwritten sin
e w, then the informed set for r is the vou
herset for r. In any
ase, all servers in the informed set return the results of writes thatr sees (De�nition 16), and in the worst
ase these are the only servers that do so.We
an therefore observe:Observation 3 Proto
ol P is fully regular i� all possible sets of responses to a readby informed sets
ontain identi
al responses from at least one vou
her set.3.5.2 Nonliveness of
lassi
 b-masking proto
olsLet Q be a quorum system with
lassi
 quorum proto
ol P de�ned for a faultthreshold b, and let minint be the size of the smallest interse
tion set for Q. Thenthe following lemma is a straightforward
onsequen
e of the de�nitions above:Lemma 3 The smallest possible informed set for a read operation on Q is minint � b.In su
h a system, the smallest informed set represents the worst-
ase s
enariofor a su

essful read. Let v be the minimum vou
her set size for P.9 Suppose fora moment that any read operation under P is
on
urrent with at most k writeoperations. Then:Theorem 3 P is fully regular for quorum system Q i�d(minint � b)=(k + 1)e � v9For example, v = b+ 1 for b-masking quorum systems, and v = 1 for b-dissemination quorumsystems. 28

Proof: For an arbitrary read operation r let Ir = fI0; : : : ; Ikg be the partitioning ofthe informed set su
h that I0
ontains the servers that return the result of the mostre
ently
ompleted write operation and ea
h Ii
ontains the servers that return theresult of the ith write that is
on
urrent with r. In a nonrestri
ted system, any orall of the sets Ii may be nonempty, depending on the order in whi
h
on
urrentoperation requests are re
eived at individual servers. We prove the \if" and \onlyif" portions of the theorem separately.If: If d(minint�b)=(k+1)e � v, then for any read r, some Ii 2 Ir
ontains a vou
herset by the Extended Pigeonhole Prin
iple, whi
h states that at least one member ofa partition
ontains at least the average number of elements for the partition.Only if: Suppose d(minint � b)=(k + 1)e < v. Let r be a read operation with thesmallest possible informed set, and suppose that r is
on
urrent with exa
tly kwrites. Furthermore, let Ir be an even partition, i.e., a partition in whi
h every set
ontains either the
eiling or the
oor of the average number of elements. Ir doesnot
ontain a vou
her set, so r is unable to return a seen value. Sin
e this s
enariois unpreventable in a system su
h as that des
ribed above, the proto
ol is not live.2Lemma 4 P is fully regular in a nonrestri
ted system10 i� its minimum vou
herset size v is 1.Thus, if a quorum system read proto
ol requires agreement between multipleservers in order to determine a
orre
t result then it is not fully regular in anunrestri
ted system. Sin
e
lassi
 b-masking proto
ols have this requirement byde�nition, we have:Corollary 3 No
lassi
 b-masking proto
ol is fully regular in a nonrestri
ted sys-tem. It is worth noting that benign quorum systems and dissemination quorumsystems, whi
h do not require agreement between multiple servers, are alreadyknown to be fully regular for their appropriate failure models (benign, Byzantine-limited-by-authenti
ated-data respe
tively).3.5.3 Non-liveness of
lassi
 proto
ols with bounded historyWe de�ne a
lassi
 b-masking proto
ol with bounded history as a b-masking proto
olwith the following
hara
teristi
s:10By de�nition, su
h a system allows arbitrary values of k29

1. Ea
h server maintains a bounded history of its images for a given variable,i.e., a list of the last m images re
eived.2. A read returns a non-? value only if it re
eives identi
al images from at leastb+ 1 servers, for a spe
i�ed b > 0.Even if ea
h server responds to every query with its entire history of m images, itremains possible for a read query to be unresolvable in a nonrestri
ted system, i.e.:Lemma 5 No
lassi
 b-masking proto
ol with bounded history is fully regular in anonrestri
ted system.Proof: In a nonrestri
ted system, any given read operation may be
on
urrentwith an unbounded number of writes. Suppose some read operation r is
on
urrentwith m�s write operations, where m is the size of the bounded history and s is thesize of the informed set for r. For 1 � i � s, suppose server Si re
eives the �rstm�i write requests before re
eiving the request for r. Then the history of S1 will
ontain the images of the �rst m writes, the history of S2 will
ontain the images ofthe next m writes (whi
h displa
e the �rst m be
ause the history is bounded), andso forth. In response to its query, r therefore re
eives m�s di�erent variable images,ea
h from exa
tly one server. It is therefore unable to resolve the query.23.5.4 Generalizing to non-size-based systemsIn systems where the failure pattern is not de�ned by size, minimal vou
her setsmay not have a single well-de�ned size either. For example, for a masking quorumsystem on server set S su
h that the full set B is required to de�ne the set of possiblefailure
on�gurations, the set V of minimal vou
her sets is de�ned by:V = fB [fsg : B 2 B; s 2 S nBgWe de�ne a generalization on
lassi
 b-masking proto
ols, whi
h we will
all
lassi
 masking proto
ols as follows:1. Ea
h server maintains a single version of the variable image at any given time.2. A read
an only return a non-? value if all servers in some member of Vrespond to its query with identi
al images.In this more general
ase, members of V may vary in size. A slightly looserversion of Lemma 4
an be therefore formulated for the more general
ase.30

Lemma 6 A
lassi
 masking proto
ol for a quorum system Q with failure patternB is fully regular in a nonrestri
ted system i� every possible informed set under Q,B
ontains some singleton vou
her set.In most pra
ti
al systems, this loosening is not likely to be parti
ularly help-ful, as it is not
lear how to take advantage of it without postulating a trusted subsetof servers. However, we in
lude it for the sake of
ompleteness.3.6 Con
lusionIn this
hapter we have presented a redu
tion that allows us to promote a regu-lar Byzantine quorum system proto
ol to an atomi
 one. This redu
tion has the
onsiderable advantage of being based on an entire
lass of proto
ols, i.e., thosedes
ribed by our de�nition of TS-variables, rather than on any spe
i�
 algorithm.Thus our result
an be used both as a re
ipe for improving the semanti
s of mask-ing quorum systems and as a formal
orre
tness proof of the atomi
 proto
ol fordissemination quorum systems [Ph98℄. We have also shown how to
onstru
t apseudo-atomi
 proto
ol for masking quorum systems using this redu
tion. Su
h aproto
ol provides the safety properties11 of an atomi
 proto
ol, though it does notguarantee liveness. While su
h a proto
ol is probably not suitable for appli
ationswhere variables are frequently overwritten, as it may render them often unreadable,it should be of pra
ti
al value for systems with few writes and a toleran
e for o
-
asionally retrying reads. Finally, we have proven that there is a general approa
hbehind these proto
ols that makes them inherently non-live in an un
ontrolledly
on
urrent asyn
hronous environment.

11Not to be
onfused with the \safeness" used in Se
tion 3.431

Chapter 4Dynami
 Quorum Adjustment4.1 Introdu
tionIn this
hapter, we present a method of dynami
ally raising and lowering the faulttoleran
e limit of a Uniform masking quorum system in response to estimates of thenumber of server failures. (For some initial failure dete
tion methods, see Chapter 5.)The goal of this work is to design proto
ols that allow a quorum system to respondwithout blo
king to the presen
e or absen
e of dete
ted faults. This
exibility
omesat a
ost: tolerating a given maximum number of faults requires more servers inour approa
h than in a stati
 system. However, with a �xed number of servers, ourproto
ols allow a system to operate in low-threshold mode with smaller quorumsthan a stati
 approa
h would require for the same worst-
ase threshold. A naturalway of using a dynami
 quorum system is to in
rease the threshold when faultsare dete
ted, and de
rease it again when the failures have been dealt with. Thethreshold
ould also be raised or lowered based on external eviden
e that the threatof an atta
k has in
reased or de
reased, su
h as information in server logs or newinformation about the value of the data being stored.The problem of dynami
ally adjusting a Uniform masking quorum system isnot trivial. The primary diÆ
ulty
an be illustrated by the following example:Example: Consider a system
onsisting of n = 9 repli
ated servers with quorums
onsisting of all sets of 6 servers. This
on�guration ensures that every pair ofquorums interse
ts in 3 servers or more, and
an tolerate a threshold b = 1 ofByzantine server failures while still guaranteeing that the majority of every quoruminterse
tion is
orre
t. Now, suppose that some
lient, dete
ting a possible failure inthe system, wishes to re
on�gure the quorum system to raise the resilien
e thresholdto b = 2. This
an be a

omplished by making every set of 7 servers a quorum,32

