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Self-Adjusting Quorum Systems ForByzantine Fault ToleranePubliation No.Evelyn Tumlin Piere, Ph.D.The University of Texas at Austin, 2000Supervisor: Lorenzo AlvisiThe purpose of this work has been to design protools for a data servie thattolerates Byzantine server faults by shifting between multiple tolerane modes atrun time, monitoring itself for faulty server behavior and dynamially adjusting itsown tolerane apabilities aordingly. Our goal is a system that runs in an eÆientlow-fault mode most of the time, but an adjust itself to ope with new faults asthey our.Our approah is based on the masking quorum systems of Malkhi and Re-iter. Like the protools originally proposed for these systems, our tehniques arerelatively eonomial in that updates and reads need to be performed only at a sub-set (\quorum") of data servers, thus dereasing the workload on individual serversand simplifying the reovery proess when failures our. However, our protoolsimplement the following additional apabilities:1. Strengthened read and write protools for serializability of ompleted opera-tions.2. Protools for dynamially adjusting the threshold (and thus quorum size) ofthreshold masking quorum systems in response to information about the num-ber and/or probability of faults in the system.3. Protools for deteting Byzantine server behavior in threshold masking quo-rum systems. iv



As a subsidiary goal, we have sought to make our methods not only e�etiveagainst random faulty server behavior, but also resistant to sabotage by a deliberateadversary. To this end, we have limited our use of standard assumptions, suh asindependene of failures and a priori limits on the number of faults, that restrit theappliability of many Byzantine fault tolerane tehniques to questions of seurity.
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Chapter 1IntrodutionAs the world grows more and more interonneted, distributed data servies arebeoming simultaneously more neessary and more problemati. They are nees-sary in that a growing number of users are onduting business transations andresearh online, thus inreasing the demand for a variety of data that must be a-essible from a variety of loations. They are problemati in that suh data must beproteted from aidental or maliious orruption while maintaining this high levelof availability.At minimum, a reliable data servie ought to tolerate (i.e., store and retrievedata orretly in spite of) server rashes and network partitions. If the stored infor-mation is partiularly ritial, or if servers are partiularly vulnerable to orruptionor sabotage, it may also be neessary for the servie to tolerate atual inorret ormisleading information from a subset of its servers.This assortment of possible misbehaviors is modeled by the Byzantine faultmodel. Under this model, a faulty data server may respond to queries inorretly(orruption), be unresponsive (rash or partition), or even sometimes respond or-retly. In short, there are no real restritions on its behavior. A data servie thatan tolerate server faults of this type is likely to be extremely robust. Unfortunately,Byzantine fault tolerane tehniques typially require numerous up-to-date opiesof eah data item at various loations, i.e., repliation. Suh tehniques are aptto be expensive, and are thus often dismissed as too impratial to be used as apreaution against a relatively rare, if potentially devastating, ondition.The purpose of this work has been to design asynhronous data servie pro-tools that address this onern by allowing the servie to shift between multipletolerane modes at run time, monitoring itself for faulty server behavior and dy-namially adjusting its own tolerane apabilities aordingly. Our goal is a systemthat runs in an eÆient low-fault mode most of the time, but an adjust itself to1



ope with new faults as they our.As a subsidiary goal, we have striven to make our methods not only e�etiveagainst random faulty server behavior, but also resistant to sabotage by a deliberateadversary. To this end, it is neessary to limit the use of standard assumptions, suhas independene of failures and a priori limits on the number of faults, that wouldlimit the appliability of our tehniques to questions of seurity. While it may beimpossible to eliminate suh assumptions altogether (see note at the end of thishapter), we rely less heavily on them than do many traditional solutions to theproblem of Byzantine fault tolerane.1.1 Contributions of This ThesisOur approah is based on masking quorum systems, �rst proposed by Malkhi andReiter [MR98℄. Masking quorum systems are an attrative alternative to earlierapproahes to Byzantine fault tolerane in that read and write operations needto be performed only at a subset (\quorum") of the servers, thus dereasing theworkload on individual servers and simplifying the reovery proess when failuresour. Using masking quorum systems as an eonomial alternative for Byzantinefault tolerane requires a number of enhanements to the original approah, however.For one thing, the original read and write protools of [MR98℄ do not guarantee theintegrity of read operations that are onurrent with one or more write operations.Furthermore, suh systems may still be expensive in that tolerating multiple faultsrequires large quorums.The results presented in this doument fall into three main ategories:1. Strengthening of the read and write protools for masking quorum systems forserializability of ompleted operations2. Protools for dynamially adjusting the threshold (and thus quorum size) ofthreshold masking quorum systems in response to information about the num-ber and/or probability of faults in the system3. Protools for deteting Byzantine server behavior in threshold masking quo-rum systems.
2



1.2 Related WorkThe foremost established approah to Byzantine fault-tolerant data servies is thatof state mahine repliation, whih is surveyed in detail in [Sh93℄. In this approah,as in ours, eah data item is stored by all members of a set of n data servers. Instate mahine repliation, however, all opies must be kept urrent, and speialalgorithms are needed to ensure that all read and write operations on a given dataitem are performed in the same order. A lient of suh a servie reads a variablevalue by sending a request to all n servers, and aepting a response if and only if itis returned by a suÆient number of them, e.g., b+1 for a fault tolerane thresholdof b. In spite of the overhead required to ensure the onsistent ordering of operationsas well as of reovering failed servers to the urrent system state, the state mahineapproah has been implemented numerous times, e.g., in Rampart [Rei95℄, usuallywith a fault-tolerane limit of bn�13 .Castro and Liskov have reently developed a less ostly variant of state ma-hine repliation, using hekpointing and view hanges with oasional garbageolletion [CL99℄. They have further strengthened their approah by means of var-ious features inluding eÆient and proative state reovery for servers that mayhave failed [CL00℄. However, keeping the server states onsistent aross the systemremains a neessity.In this work we take a sharply onstrasting approah to those desribed aboveby eliminating the need for all servers to maintain idential states or to proessidential sequenes of operations. Instead, our protools speify that eah readand write operation is performed on a subset (quorum) of the server set; the setof possible quorums is de�ned to have spei� intersetion properties that enablelients to determine the urrent value of any given data item. A orret systemstate thus inherently inludes some out-of-date servers, thus simplifying reovery {provided a quorum of servers is up to date, additional failed servers may be broughtbak online without state update.We summarize work related to eah of our spei� results in the orrespond-ing hapters.1.3 Struture of ThesisChapter 2 ontains the system model and de�nitions that will be used throughoutthis thesis, inluding the original masking quorum system de�nitions and protoolsfrom [MR98℄.In Chapter 3 we give an abstrat de�nition of a lass of variables alledTS-variables, to whih masking quorum system variables belong. We give rigor-3



ous de�nitions of Lamport's semanti properties of safeness, regularity, and atomi-ity [Lam86℄ for these variables, where safeness desribes the semantis of the originalprotools of [MR98℄ and atomiity desribes the semantis of full serializability. Weshow how the problem of an atomi read and write protool for masking quorumsystems an be solved given a solution to the weaker problem of a regular protoolfor suh systems, and present a non-live solution to the latter problem, i.e., one inwhih ertain read operations may abort. Finally, we give a simple set of de�n-ing properties that are ommon to the protools we have studied, and show thatany regular protool with these properties is inherently non-live in an asynhronousenvironment without onurreny ontrol.In Chapter 4, we present protools to hange the size of the quorums of athreshold masking quorum system so that the system's degree of fault tolerane (i.e.,threshold) an be adjusted between a set minimum and maximum without blokingordinary read and write operations. We show how to modify the read/write pro-tools for threshold masking quorum systems, inluding both the original protoolsof [MR98℄ and the enhaned protools presented in Chapter 3, to use the dynami-ally de�ned quorums. We show that eah of the new dynami protools maintainsthe semantis of its stati ounterpart. This hapter is adapted from [AMPRW00℄.As a omplement to these protools, in Chapter 5 we present statistialmethods for monitoring the approximate number of faults in threshold maskingquorum systems, as well as spei�ally identifying some of the faulty servers. Aversion of this hapter appears in published form as [AMPR00℄.Chapter 6 onsists of onluding remarks and diretions for future work.The appendix to this doument ontains additional material that is loselyrelated to the results presented in Chapters 4 and 5 and appears in the papers fromwhih those hapters are adapted. It is inluded for ompleteness, but is primarilythe work of other o-authors of these papers.A note on seuritySome researhers (e.g. [DR86℄) have suggested that Byzantine fault toleraneis appliable to problems of seurity. Suh appliability would provide a powerfulmotivation for the use and further exploration of tehniques suh as those presentedin this thesis.Unfortunately, Byzantine fault-tolerant protools that depend on variationsof a voting algorithm, suh as those in this thesis as well as those of the moreestablished approah of state mahine repliation are vulnerable to the worst-asesenario of Byzantine server failure: simultaneous unanimous orruption of mostor all of the set of repliated servers. This vulnerability leads to one of the most4



ogent objetions to applying the Byzantine fault model to seurity: the preseneof a malign agent may make this worst-ase senario into an intelligently pursuedgoal rather than a vanishingly unlikely statistial phenomenon.In our view, however, this objetion is not fatal; although suh tehniquesshould probably not be regarded as a preventative against seurity breahes, theyan be designed to make suh breahes onsiderably more diÆult than they wouldotherwise be, and may thus be onsidered a deterrent. One of the goals of this workhas been to keep our tehniques as free as possible from assumptions that wouldbe questionable in the presene of an intelligent adversary, suh as independene offailures. This is, in fat, an additional motivation for the elimination of stati faulttolerane thresholds (Chapter 4).
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Chapter 2System Model and De�nitionsIn this hapter we desribe our system model and give some of the historial de�ni-tions on whih the results desribed in this thesis are based.2.1 System ModelOur system onsists of a set S of n server proesses and an unspei�ed number oflient proesses. Server proesses maintain values for a set of variables, serving andupdating them in response to read and write requests reeived from lient proesses.Every server maintains a value for every variable in the system. Eah lient isonneted asynhronously to eah server via a two-way FIFO hannel; no otherhannels are required or used by our protools.Eah server s 2 S stores and updates the value of eah variable V in on-juntion with an assoiated timestamp; thus, at eah server, the variable state atthe time a read or write request is reeived an be expressed as a pair hval; tsi; weall this pair an image of V .We stipulate that timestamps have the following properties, whih justifythe use of the word \timestamp" in this asynhronous ontext. These properties areimplemented by the read and write protools, whih we will desribe later.� Eah lient selets the timestamp values assoiated with updates to a parti-ular variable in a monotonially inreasing fashion.� The timestamp �eld of the image of a partiular variable is monotoniallynondereasing at eah server.Servers may be either orret or faulty. A orret server behaves aordingto its spei�ation, i.e., it returns its urrent image of a given variable upon request.6



In ontrast, a faulty server may behave in a Byzantine (arbitrary) fashion, e.g., byserving inorret or outdated data or by failing to respond to queries. Clients andhannels are assumed to be reliable for the sope of this work.2.2 De�nitions: Byzantine Quorum SystemsMathematially, a quorum system is a set of pairwise interseting sets:De�nition 1 A quorum system on a set X is a set Q � 2X suh that8Q1; Q2 2 Q : Q1 \Q2 6= ;A member of Q is known as a quorum.A data servie based on the server set S an be designed as a quorum systemas follows: let Q � 2S be a quorum system, and let eah read and write operationbe issued to and performed on some quorum Q of Q. Hereafter we use the term\quorum system" and the label Q to refer both to the mathematial onstrut asde�ned above and to a data servie based on the onstrut. This slight overloadingis straightforward, and should not result in onfusion.If the set of servers is subjet only to rash failures (i.e., unresponsive servers),the intersetion property of Q ensures that eah read operation has aess to thevalue of the \most reently ompleted" write operation in some serialization of writeoperations.A note on operations and onurrenyA read or write operation is performed by a lient on a quorum of servers aordingto a spei�ation alled a protool. We will present several read and write protoolsin this doument, all of whih share the same basi struture: an operation isinitiated when a lient issues a orresponding request to the servers in a quorum,and is ompleted when the steps of the protool have all been exeuted.As indiated above, eah read and write operation in a quorum system isperformed on multiple servers. As we are assuming an asynhronous environmentwithout onurreny ontrol mehanisms, it is possible for two or more suh opera-tions to be onurrent:De�nition 2 Operations opa and opb are said to be onurrent if there exists a pairof servers s1; s2 2 S suh that s1 proesses opa before opb while server s2 proessesopb before opa. 7



In proving the semanti properties of variables maintained by quorum systems,we must take suh onurreny into aount; we handle this problem in detail inChapter 3.A note on data semantisTo analyze the orretness of our protools, we will follow the example of [MR98℄by using Lamport's notions of safe, regular, and atomi data semantis [Lam86℄,adapted to allow for the possibility of onurrent write operations. We give spei�tehnial de�nitions of these onepts in Chapter 3, but the basi intuitions are asfollows:� safe: A read/write protool for a variable is onsidered safe if it ensures thatany read operation that is not onurrent with any write operation on thesame variable returns the value of the most reent write to that variable.1� regular: A protool is regular if it is safe and ensures that any read operationthat is onurrent with one or more write operations on the same variablereturns either the value of the most reent write or the value of one of theonurrent writes to that variable.� atomi: A protool is atomi if it ensures that all read and write operationson a given variable are serializable, i.e., that they behave as though they wereperformed sequentially in some order that is ompatible with the partial orderin whih they are atually performed.Note that under a regular protool, one read may our later than another,yet return the value of an earlier write; thus regularity does not imply atomiity.Our use of these terms may appear to di�er from that of [Lam86℄ in that wetreat these properties as belonging to protools rather than to data objets. Thisdi�erene is illusory, however; a data objet has a given semanti property if andonly if the protool used to aess it has that property.2.2.1 Masking quorum systemsIf servers may be subjet to arbitrary (Byzantine) failures, the minimal intersetionguaranteed by a quorum system as de�ned in De�nition 1 is not enough to guaranteedata onsisteny: two quorums might interset in a single server that returned afaulty response, so that a read operation does not reeive the orret up-to-date1The monotoniity of timestamps at eah server ensures that writes are serializable by times-tamp; thus we may refer to the write with the highest timestamp as the \most reent" write.8



value. For suh servies, masking quorum systems [MR98℄ have been proposed. Wesummarize the de�nition of these systems here.During any given read or write operation, a server set that is subjet toByzantine failures may be partitioned into two subsets: those that behave aordingto their spei�ation throughout the operation, and those that do not. Members ofthe latter set, whih we will usually all F , may fail to respond to requests, or mayrespond with out-of-date or arbitrary data. We refer to suh a set F as a failureon�guration.A masking quorum system is de�ned in terms of a failure pattern, whih is aset B � 2S suh that 8B1; B2 2 B; B1 6� B2In operational terms, the failure pattern de�nes the set of failure on�gurations thatthe system is designed to tolerate. Spei�ally, the system is expeted to behaveorretly as long as its failure on�guration is ontained in some element of B, i.e.,if: 9B 2 B : F � BThe de�nition of a masking quorum system is as follows:De�nition 3 A masking quorum system on a server set S and failure pattern B isa quorum system Q � 2S suh that:� 8Q1; Q2 2 Q;8B1; B2 2 B : (Q1 \Q2)nB1 6� B2� 8B 2 B, 9Q 2 Q : B \Q = ;If the set F of faulty servers during any given operation is ontained in someelement of B, and all read and write operations are performed on elements of Q,then the two bullets above ensure that:� the intersetion of any pair of quorums (e.g., a read quorum and the previouswrite quorum) ontains a set of nonfaulty servers whose response, if unani-mous, an be identi�ed as orret.� at least one quorum is always available even if faulty servers are nonresponsive.In this work we will be onerned primarily with a family of masking quorum systemsalled b-masking quorum systems, de�ned below. Here and for the remainder of thisdissertation, we will use the notation #(X) to denote the size of a set X.De�nition 4 A b-masking quorum system on a server set S is any masking quorumsystem de�ned on the failure patternB = fB � 2S : #(B) = bg9



This failure pattern enodes the assumption that all server faults are on-tained within some set of size b, i.e., that there are no more than b faults in thesystem during a given operation. (This is the standard \threshold" assumptionommon to many tehniques for Byzantine fault tolerane.) In suh systems, therequirement that 8Q1; Q2 2 Q;8B1; B2 2 B : (Q1 \Q2)nB1 6� B2means simply that the minimum intersetion size between quorums is 2b+1 servers.A b-masking quorum system of partiular interest to this work is the Uniformquorum system [MR98℄,2 whose de�nition is elegantly parameterized in terms of b:De�nition 5 The Uniform quorum system for a server set S (#(S) = n) withthreshold b (n � 4b+ 1) is the set Q, whereQ = fQ � S : #(Q) = dn+ 2b+ 12 egIt is easily seen that this de�nition satis�es De�nition 3. For simpliity in ourdisussions, we will assume hereafter that n is odd, so that we may eliminate theeiling operator de from our formulae and alulations.Read and write protoolsThe basi read and write protools for masking quorum systems, as originally pro-posed in [MR98℄, onsist of the following steps:Write: For a lient to write value v to variable V , it performs the following steps:1. For some Q 2 Q and B 2 B, query all servers in the set Q n B to obtain theset A of images of V at those servers.32. Selet a new timestamp t greater than the largest timestamp appearing in anyelement of A and greater than any timestamp previously hosen by the lient.(To avoid timestamp ollisions, every lient  hooses its timestamps from aunique set T, where  6= 0 ) T \ T0 = ;.)3. Send eah server in some quorum Q0 a write request ontaining an identi�erfor V and the new image hv; ti.A server that reeives suh a write request performs the update if and only if thetimestamp of new image is greater than the timestamp of the urrent image of V .The timestamp of V at any orret server is therefore monotonially nondereasing.2In [MR98℄, this type of system was alled a threshold quorum system; the name was hangedfor larity in [AMPR00℄.3Note that suh a set neessarily intersets all quorums in at least one orret server.10



Read: For a lient to read variable V , it performs the following steps:1. Query all servers in some quorum Q to obtain the set A of images of V atthose servers.2. Determine the set A0 � A of images that are vouhed for aording to thede�nition below.3. Selet the member of A0 with the highest timestamp, and return the orre-sponding value. If A0 is empty, return ? (a null value).De�nition 6 A set B+ of servers is alled a vouher set for failure pattern B if8B 2 B : B+ 6� BAn image is vouhed for during a variable read if it is returned by all members ofsome vouher set. A value is vouhed for if it appears in an image that is vouhedfor.Essentially, a vouher set is any set of servers that annot all be faulty. If a vouherset agrees on an image, that image is not fabriated, though it may be out-of-date.Example: For a b-masking quorum system, a vouher set is any set of b + 1 ormore servers.Remark: In our disussions of various protools, we will sometimes refer to thevouher set for a suessful read operation; by this we mean the vouher set on-taining all servers that return the image aepted by the read.The read/write protool above has safe semantis (Setion 2.2). As it does notspeify the behavior of read operations that are onurrent with writes, however,safeness is a relatively weak semanti property. For systems that have aess to re-liable third-party authentiation protools, stronger properties an be implementedby means of dissemination quorum systems [MR98℄.2.2.2 Dissemination quorum systemsLike masking quorum systems, dissemination quorum systems are de�ned in terms ofa failure pattern B. They are very similar to masking quorum systems in strutureas well, exept that the intersetion between eah pair of quorums only needs toontain at least one orret server: 11



De�nition 7 A dissemination quorum system on a server set S and failure patternB is a set Q � 2S suh that:� 8Q1; Q2 2 Q;8B 2 B : Q1 \Q2 6� B� 8B 2 B, 9Q 2 Q : B \Q = ;Again, the following speial ase is worth separate mention:De�nition 8 A Uniform dissemination quorum system on a server set S and failurepattern B = fB � S : #(B) = bg is the set:Q = fQ � S : #(Q) = dn+ b+ 12 egThe smaller intersetion property of dissemination quorum systems is suÆ-ient beause of the existene of authentiation protools: if every variable imagewritten to a server is veri�able by means of, say, a digital signature, then evena Byzantine server annot onviningly forge data; it must serve either orret orout-of-date data if it responds at all. Thus a read operation an aept the highest-timestamped response it reeives as being both orret and up-to-date.The read and write protools originally proposed for dissemination quorumsystems are almost idential to those for masking quorum systems, exept that avalue is vouhed for even if it is returned by only a single server. The resultingprotool still provides safe semantis, with the additional property that a read thatis onurrent with one or more writes returns either the value of the most reentlyompleted write or one of the values being written; in other words, it has regularsemantis (Setion 2.2).In [MR98℄, the protool for dissemination quorum systems was upgraded toone with atomi semantis (Setion 2.2) by the simple expedient of adding a fourthstep to the end of eah read operation:4. Write the aepted image hv; ti bak to a quorum of servers.This �nal step ensures that a read that follows another read does not return anearlier value, even if both are onurrent with the same set of write operations.Unfortunately, the type of authentiation needed for dissemination quorumsystems requires every lient to be able to authentiate every other lient, e.g., bymeans of publi keys. Suh a sheme may be impratial for systems with largenumbers of lients, as it would require every lient to keep trak of a long andperhaps frequently hanging list of keys. In the next hapter we study the problemof atomi semantis for non-authentiated masking quorum systems.12



Chapter 3On Atomi Semantis forMasking Quorum Systems3.1 IntrodutionAs indiated in the previous hapter, an important limitation of masking quorumsystems as originally proposed is the lak of an atomi read and write protool forsuh systems. Although Malkhi and Reiter have shown how this problem an besolved for dissemination quorum systems by adding a simple writebak ommand tothe end of the read protool [Ph98℄, the implementation of atomi reads and writesfor masking quorum systems has remained an open problem.As the primary result of this hapter, we generalize the atomiity resultof [Ph98℄ by proving that the writebak mehanism in fat redues the problemof atomi variable semantis for masking quorum system variables to the simplerproblem of regular semantis. Our result provides a \reipe" for atomi semantisin masking quorum systems without suh ryptographi authentiation tools; anysolution to the problem of regular semantis for suh systems an be upgraded to anatomi solution by simply adding a writebak step to the end of the read protool. Infat, the orretness of the atomi protool of [Ph98℄ an be viewed as a orollary ofour result, as the ryptographi framework of dissemination quorum systems (sanswritebak) enfores regular semantis.In proving this result, we introdue the appliation of the alulational proofstyle [DS90, GS95, Rao95℄ to quorum systems. Although suh proofs are often morediÆult to read than prose proofs, they have two distint advantages. First, theyare readily veri�able, as the steps are neatly laid out and justi�ed. Seondly, theyare aessible to the general omputer sientist who may not have the area-spei�knowledge neessary to follow intuitive leaps.13



As a follow-up to the result desribed, we present a read/write protool thatprovides what we all pseudo-regular semantis (regular semantis with a possibilityof aborted operations) for masking quorum systems without resorting to authen-tiation protools. We then show that this protool an be ombined with thewritebak mehanism to provide pseudo-atomi semantis (analogously de�ned) forsuh systems.Finally, we prove the slightly startling fat that there is a very simple set ofharateristis, shared by the non-dissemination protools we have studied thus far,that makes regularity inompatible with liveness in an asynhronous environmentwithout onurreny ontrol. Some form of pseudo-atomi semantis are thus themost that an be implemented by suh protools in suh an environment.3.1.1 Related workThe onepts of safe, regular and atomi were presented in [Lam86℄ as semanti prop-erties of hardware registers. In that paper, Lamport also gave several algorithmsfor onstruting stronger registers from weaker ones, inluding one for onstrutingan atomi single-reader register from regular registers (whih ould in turn be on-struted from safe registers). The problem of onstruting a multi-reader atomiregister was left open, but has sine been solved by various researhers inlud-ing [KKV87, SAG94℄.These algorithms are designed in the spei� ontext of hardware registers,and are unsuitable for large-sale distributed data servies in two ways. First, theyrequire an a priori limit on the number of users that may aess a partiular dataelement at any given time. Seond, they are polynomial in this number, leading toundesirably expensive operations.Fortunately, although these limitations are inesapable in the ontext of hard-ware registers (the solution presented in [SAG94℄ is asymptotially optimal), we areable to avoid them in our appliation by means of the onvenient abstration of un-bounded timestamps. Using this mehanism, we are able to simply strengthen theread/write protools for quorum system variables so as to provide pseudo-atomiitydiretly.3.2 De�nitions: TS-Variables and Data Semantis3.2.1 Formalizing masking quorum system variables: TS-variablesIn order to reason formally about Byzantine quorum system variables as a lass, weneed an abstration that de�nes the important features of suh variables indepen-14



dently of operational details. To this end, in this setion we introdue the oneptof TS-variables. We begin by de�ning the more general onept of \timestampedvariables" as well as a number of useful funtions on suh variables:De�nition 9 A timestamped variable is a variable of any type whose value is readand updated in onjuntion with an assoiated timestamp, where timestamps aredrawn from some unbounded totally ordered set T .Let RW be a set of read and write operations on some timestamped variablewith a given read/write protool and a domain set D; let R � RW be the set ofreads, and letW � RW be the set of writes. Then the following funtion de�nitionshold (R and B represent the set of reals and the set of booleans, respetively):value : RW ! D: For op 2 RW , if op is a read, then value(op) is the value returnedby the read; if op is a write, then value(op) is the value written.ts : RW ! T : For op 2 RW , if op is a read, then ts(op) is the timestamp of thevalue returned by the read; if op is a write, then ts(op) is the timestamp assignedto the value written.readsfrom: R �W ! B: for r 2 R, w 2 W , readsfrom(r; w) � true i� r reads theresult of write w. For timestamped variables, we de�ne this to be equivalent to:readsfrom(r; w) � value(r) = value(w) ^ ts(r) = ts(w)For the purposes of the next two funtions, we postulate a global \lok" (e.g., theage of the universe in milliseonds) that provides an absolute timesale for systemevents. As the systems we disuss are asynhronous, individual proesses do nothave aess to global lok values or to these funtions, whih are used only forreasoning purposes.start : RW ! R: The start time of the operation in global time.end : RW ! R: The end time of the operation in global time.The purpose of these funtions is to give us a onvenient shorthand for reasoningabout the possibility of onurreny between operations as de�ned in Chapter 2,without being spei� about the atual (nondeterministi, in an asynhronous envi-ronment) order in whih servers proess requests. Essentially, ifend(op1) < start(op2) _ end(op2) < start(op1)15



then op2 is not onurrent with op1, whereas ifstart(op2) � end(op1) ^ start(op1) � end(op2)suh onurreny may exist and thus needs to be resolved in any proposed serial-ization of op1 and op2. For simpliity, we will therefore treat the latter expressionas our de�nition of onurreny hereafter.In keeping with their hypothetial meaning, we stipulate that the start andend funtions meet the following restrition:8op 2 RW : start(op) < end(op)TS-variablesIgnoring issues of type and address, we onsider a variable to be de�ned by thespei�ation of the operations that may be performed on it, inluding at least readand write.1 We refer to suh a spei�ation as a variable protool. Read and writeativity on a variable is desribed in terms of a run of its protool:De�nition 10 A run of a variable V is a set of operations on V , all of whih meetthe spei�ation of V 's protool. We all a run RW omplete if, for all read opera-tions r 2 RW , there exists a write operation w 2 RW suh that readsfrom(r; w).In this hapter we will ontinue to use the label RW to represent a variablerun; subsripts will be used to distinguish between runs when the ontext is nototherwise lear. The projetion of a run RW onto its read operations will be denotedR; the orresponding projetion onto write operations will be denoted W .Although some researhers use the terms \run" and \exeution" interhange-ably, in this work we �nd it useful to follow the example of [Lam86℄, whih givesthem distint tehnial meanings. Spei�ally, an exeution assoiates a run with apreedene relation on the operations of that run, i.e.:De�nition 11 An exeution of a variable v is a pair hRW; -i, where RW is arun of v and - is a preedene relation (irreexive partial order) on the operationsin RW .We now de�ne two spei� types of exeution that are of speial importane to thiswork:1We do not onern ourselves with read-only variables in the ontext of this work.16



De�nition 12 An exeution hRW; -i is said to be real-time onsistent if8op1; op2 2 RW : end(op1) < start(op2)) op1 - op2De�nition 13 An exeution hRW; -i is said to be write-ordered if it satis�es thefollowing:1. 8wi; wj 2W : wi 6= wj : wi - wj _ wj - wi2. hW; -i is real-time onsistent.In other words, (1) in a write-ordered exeution, the write operations are totally or-dered by -, and (2) the order is onsistent with the partial order of write operationsin real time.De�nition 14 For all runs RW of a timestamped variable v, the relation ts- isde�ned by:1. 8op 2 RW;8w 2W : op ts- w � ts(op) < ts(w)2. 8w 2W;8r 2 R : w ts- r � ts(w) � ts(r)3. 8ra; rb 2 R : ra ts- rb � ts(ra) < ts(rb)It is easy to see that ts- is irreexive, antisymmetri and transitive. It is thereforean irreexive partial order. (Note that operations with idential timestamps are notneessarily ordered by ts-.)We now de�ne TS-variables as follows:De�nition 15 A TS-variable is a timestamped variable v suh that, for all ompleteruns RW of v, hRW; ts-i is write-ordered.Note that De�nitions 14 and 15 imply that writes are uniquely identi�edby timestamp; thus for any given read, there is at most one write with the sametimestamp. We an therefore make the following observation, whih provides asimpli�ed form of the de�nition of readsfrom() for TS-variables:Observation 1 For any read operation r and write operation w of a omplete TS-variable run, readsfrom (r; w) � ts(r) = ts(w)
17



3.2.2 Formalizing data semantis for TS-variablesWe now de�ne what it means for a write-ordered exeution to be safe, regular oratomi. The de�nitions of safe and regular are based on the following onept,adapted from [Lam86℄:2De�nition 16 For a write-ordered exeution hRW; -i, let w0; w1; : : : be the or-dered list of write operations from RW as de�ned by -. Furthermore, for agiven read operation r, let i be the index of the last write that preedes r, i.e.,i = maxfk : end(wk) < start(r)g. Then we say that r sees W 0 �W , where:W 0 = fwig [ fwk : start(r) � end(wk) ^ start(wk) � end(r)gWe express this relationship in prediate form as sees(r;W 0; -).The de�nition of the prediate sees is based on the idea that one a write toa variable has ompleted, previous values of that variable should not be read. Thusthe values that a read sees are those that might be legitimately returned by thatread, i.e., the value of the most reently ompleted write wi and the values of anyonurrent writes. The fat that hRW; -i is write-ordered implies that all writesseen by r fall within a well-de�ned range:Observation 2 For a given read r, let i be de�ned as in De�nition 16, and letj = maxfk : start(wk) < end(r)g. Then:3sees(r;W 0; -)) h8wk 2W 0 : i � k � jiWe now de�ne a safe exeution as follows, ontinuing to use wi to denote the ithwrite in the order de�ned by -:De�nition 17 An exeution hRW; -i is safe if:� it is write-ordered, and� sees(r; fwig; -)) readsfrom(r; wi)2[Lam86℄ de�ned this onept for a single-writer register, whose write operations are thus ne-essarily serial. We relax this requirement, de�ning our version of \sees" in terms of serializable,rather than serial, writes. Thus our de�nition an be applied to variables with multiple writers.3Note that the reverse is not true. It is possible for a write to fall within the given range withoutbeing seen if the \invisible" write ours after read r, but onurrently with wj .
18



In other words, an exeution is safe if any read that sees only one writereturns the value of that write. In operational terms, a read that is onurrent withno writes returns the result of the \most reent" write aording to the serializationde�ned by the write-ordering.A regular exeution is de�ned as follows:De�nition 18 An exeution hRW; -i is regular if:� it is write-ordered, and� 8r 2 R : sees(r;W 0; -)) h9w : w 2W 0 : readsfrom(r; w)iIn other words, a write-ordered exeution is regular if every read returns some valuethat it sees. Note that a regular exeution is neessarily safe.For TS-variables, this de�nition has a useful onsequene:Lemma 1 Let hRW; ts-i be regular. Then8r 2 R;8w 2W : end(w) < start(r)) ts(w) � ts(r)The proof of this lemma onsists of showing that any arbitrary write that preedesa given read has a timestamp less than or equal to that of the read. Let r be anarbitrary read, let wi be the ith write in the total order imposed by ts- for somearbitrary i, let W 0 be the set of writes suh that sees(r;W 0; ts-), and let wj be thewrite suh that readsfrom(r; wj). Then:end(wi) < start(r)) fde�nition of max, write-ordering of TS-variablesgi � maxfk : end(wk) < start(r)g� fDe�nition 13, Observation 2gi � minfk : wk 2W 0g) fj 2W 0, Observation 2gi � j) fwrite-ordering of TS-variablesgts(wi) � ts(wj)) fde�nition of ts() for readsgts(wi) � ts(r)Finally, we de�ne an atomi exeution as an exeution that behaves as thoughthe operations were totally ordered in a real-time onsistent way, that is:19



De�nition 19 An exeution hRW; -i is atomi if:� - is a total order on RW ,� 8r 2 R, readsfrom(r; wi)) i = maxfk : wk - rg, and� hRW; -i is real-time onsistent.Note that the seond and third bullets of the de�nition above imply that any atomiexeution is also regular, while the reverse is not neessarily true.We now de�ne what it means for a variable to be safe, regular or atomi.De�nition 20 A variable protool is safe (regular, atomi) with respet to a pree-dene relation - if, for all omplete runs RW of the protool, the exeution hRW; -iis safe (regular, atomi). A protool is safe (regular, atomi) if it is safe (regular,atomi) with respet to some preedene relation. A variable is safe (regular, atomi)if its protool is safe (regular, atomi).3.3 Reduing the Atomi Semantis ProblemIn this setion we show how to onstrut an atomi TS-variable vatom given a regularTS-variable vreg. We aomplish this by means of the following steps:1. Add a new operation to the protool for vreg, speify the operations of vatomin terms of this expanded regular protool, and show that the resulting vatomis a TS-variable.2. De�ne a total order ts0- on operations of vatom that extends ts-, i.e.,opa ts- opb ) opa ts0- opb3. Use De�nition 20 to prove that vatom is atomi with respet to ts0-.3.3.1 De�ning the atomi protoolLet vreg be a regular TS-variable. We expand the protool of vreg by de�ning athird operation in addition to read and write: writebak. The writebak opera-tion is similar to the write operation of vreg exept that whereas write operationsalulate their own timestamps, a writebak takes its timestamp as an argument;thus writebaks are not neessarily ordered by ts-. We stipulate, however, that allruns RWexp of the expanded protool ontinue to satisfy Lemma 1, as well as thefollowing additional property: 20



Property 1 For all read operations r, write operations w and writebak operationsb in RWexp,� end(b) < start(r)) ts(b) � ts(r)� end(b) < start(w)) ts(b) < ts(w)(In masking quorum systems, as in dissemination quorum systems, both Lemma 1and Property 1 are implemented by having a write/writebak perform a null oper-ation at any server whose urrent timestamp for the variable is higher than that ofthe write/writebak; thus monotoniity of timestamps is enfored at eah server.)We now de�ne our proposed atomi variable protool vatom as follows, wherereadreg and writereg are the read and write protools of vreg, and val, ts are thevalue and timestamp respetively of the readreg operation:Writeatom: writeregReadatom: readreg; writebak(val; ts)In other words, a write operation of vatom onsists of a single write operation of vreg,while a read operation of vatom onsists of a read operation of vreg followed by awritebak of the resulting value and timestamp. The timestamp of eah Readatomor Writeatom operation is idential to the timestamp of the underlying readreg orwritereg operation. Beause eah write operation of vatom onsists exatly of onewrite operation of vreg, it follows that vatom is also a TS-variable. (For larity,we will hereafter follow the onvention that operations of vatom are represented inboldfae, while operations of vreg are represented in italis.)3.3.2 A total order over operations on vatomIn preparation for proving vatom atomi, we speify a preedene relation that totallyorders all runs RWatom of vatom. The ts- relation that we have already de�ned isnot suÆient, as it does not order read operations that share the same timestamp.We therefore propose to de�ne an extension ts0- of ts- using the following additionalfuntion of type O, where O is some totally ordered set:gtf:4 RW ! O: An arbitrary funtion with the following three properties:� Sequentiality: 8opa; opb 2 RW : end(opa) < start(opb)) gtf (opa) < gtf (opb).� Uniqueness: 8opa; opb 2 RW : gtf (opa) = gtf (opb) � opa = opb.� Read Promotion: 8r 2 R;w 2W : start(w) � end(r) � gtf (w) < gtf (r)4\gtf" stands for \global time funtion". 21



(An example of suh a funtion is a mapping from op 2 RW to the pair (time(op); id),where id is a unique, real-valued operation identi�er whose �rst bit is 1 for a reador 0 for a write, and time(op) = end(op) for op 2 R and time(op) = start(op) forop 2W .)The purpose of funtion gtf is to at as a supplement to timestamps whenwe de�ne a serialization of the operations. Sequentiality ensures that the orderimposed by gtf is ompatible with the partial order of the operations in real-time,Uniqueness ensures that the funtion an at as a \tie-breaker" for operations withthe same timestamp, and Read Promotion ensures that any given read operationhas a higher gtf than any write that might a�et it.5We now de�ne ts0- as follows:De�nition 21 For any given run RWatom of vatom,8opa; opb 2 RWatom :opa ts0- opb � ts(opa) < ts(opb) _ (ts(opa) = ts(opb) ^ gtf (opa) < gtf (opb))In other words, ts0- is the lexiographi ordering on the pair (ts(op); gtf (op)). It istherefore a total order by virtue of the Uniqueness property of gtf and the fat thatts and gtf have totally ordered odomains.As a onsequene of this de�nition, we have the following lemma and orol-lary, whih allow us to use De�nition 19 to prove atomiity:Lemma 2 8opa; opb 2 RWatom : opa ts- opb ) opa ts0- opb.Proof: If opa is a read or opb is a write, the property follows immediately fromDe�nitions 14 and 21. Otherwise (opa is a write and opb is a read) it follows fromthese two de�nitions and the Read Promotion property of gtf.Corollary 1 All exeutions hRWatom; ts0-i of vatom are write-ordered.Proof: Write operations of vatom have unique timestamps by virtue of the fat thatvreg is a TS-variable. Thus, by De�nition 21 and Lemma 2, we have:8wi;wj 2Watom : wi ts0- wj � wi ts- wjTherefore, sine hRWatom; ts-i is write-ordered (again by virtue of the fat thatvatom is a TS-variable), it follows that hRWatom; ts0-i is also write-ordered.5In fat, these properties are suÆient to allow us to de�ne a total order stritly in terms ofgtf . However, gtf alone does not speify the behavior of timestamps, and so does not allow us toreason diretly about the behavior of reads via the readsfrom funtion. We will therefore use gtfas indiated above. 22



3.3.3 Proving vatom atomiOur remaining goal is to prove that hRWatom; ts0-i is atomi for all runs RWatom ofvatom, thus proving that vatom is an atomi variable:Theorem 1 For all runs RWatom of vatom, the exeution hRWatom; ts0-i is atomi.As we have already shown that ts0- write-orders RWatom, our remaining obliga-tions are to prove:� 8r 2 Ratom, readsfrom(r; wi)) i = maxfk : wk ts0- rg,6 and� hRW; ts0-i is real-time onsistent.Proof that 8r 2 Ratom, readsfrom(r; wi)) i = maxfk : wk ts0- rg:readsfrom(r; wi)� fObservation 1gts(wi) = ts(r)� fwrite-orderinggts(wi) = ts(r) ^ 8fk : k < i : wk ts0- wig� fde�nition of ts0-gts(wi) = ts(r) ^ 8fk : k < i : ts(wk) � ts(wi)g� fDe�nition 13gts(wi) = ts(r) ^ 8fk : k < i : ts(wk) < ts(wi)g� fde�nition of max, de�nition of �gi = maxfk : ts(wk) � ts(r)g) fLemma 2 , de�nition of ts0-gi = maxfk : wk ts0- rg2Proof that hRW; ts0-i is real-time onsistent: Our obligation is to prove that:8opa; opb 2 RWatom : end(opa) < start(opb)) opa ts0- opbWe prove this separately for eah of the four possible ases: two writes, a writefollowed by a read, a read followed by a write, and two reads. For simpliity, wewill use the onvention that r and w (with possible subsripts) refer to operations6Aording to the onvention we adopted earlier, Ratom is the set of read operations fromRWatom. 23



of RWatom, while r, w, and b denote the orresponding read, write and writebakoperations of the expanded regular protool:Case 1: two writes end(wi) < start(wj)� fde�nition of vatomgend(wi) < start(wj)) fwrite-ordering of TS-variablesgwi ts- wj� fde�nition of vatomgwi ts- wj) fLemma 2gwi ts0- wjCase 2: write, then readend(w) < start(r)� fde�nition of vatomgend(w) < start(r)) fLemma 1gts(w) � ts(r)� fde�nition of ts-gw ts- r� fde�nition of vatomgw ts- r) fLemma 2gw ts0- rCase 3: read, then writeend(r) < start(w)� fde�nition of vatomgend(b) < start(w)) fProperty 1 of writebakgts(b) < ts(w)) fde�nition of vatomgts(r) < ts(w)� fde�nition of ts-gr ts- w 24



� fde�nition of vatomgr ts- w) fLemma 2gr ts0- wCase 4: two reads end(ra) < start(rb)� fSequentiality property of gtf gend(ra) < start(rb) ^ gtf (ra) < gtf (rb)� fde�nition of vatomgend(ba) < start(rb) ^ gtf (ra ) < gtf (rb)) fProperty 1 of writebakgts(ba) � ts(rb) ^ gtf (ra ) < gtf (rb)� fde�nition of vatomgts(ra) � ts(rb) ^ gtf (ra ) < gtf (rb)� fde�nition of vatomgts(ra) � ts(rb) ^ gtf (ra ) < gtf (rb)� fde�nition of ts0()gra ts0- rbThis ompletes the proof of the theorem. 2Thus we have redued the open problem of atomi semantis for TS-variables,inluding those implemented by masking quorum systems, to that of regular seman-tis. Although the problem of regular semantis for masking quorum systems alsoremains open, it is less diÆult in that all atomi protools are also regular (a diretimpliation of De�nition 19). In the next setion we present a non-ryptographiregular protool for systems that an tolerate oasional aborted reads.3.4 Implementing Pseudo-Regular SemantisWe improve the semantis of masking quorum systems as de�ned in [MR98℄ (seeSetion 2.2.1) to pseudo-regular by enhaning the read protool so that read oper-ations abort when no seen value is vouhed for. (Note that our protool need not {and does not { always abort when a read is onurrent with a write.)Read: For a lient to read the urrent value of a variable V , it queries eah serverin some quorum Q to obtain the set A of images of V , i.e., A = fvu; tugu2Q. Of the25



images that are vouhed for, it selets the image hv; ti with the highest timestampt. If there is no suh image, or if hv; ti is ountermanded as de�ned below, it sets vto ? (i.e., it aborts).De�nition 22 A variable image hv; ti is ountermanded for a given read if allmembers of some vouher set return images with timestamps greater than t. Avariable value v is ountermanded if all the vouhed-for images in whih it appearsare ountermanded.This protool provides pseudo-regular semantis by virtue of the fat that any valuethat is vouhed for but not seen is ountermanded. The full statement and proof ofthe theorem follow:Theorem 2 For all runs RW onsisting of non-aborted operations of the aboveprotool, hRW; ts-i is regular.Proof:7 Let W 0 � W be the set suh that sees(r;W 0; ts-) is true for read r.Beause r did not abort, there exists some wx suh that readsfrom(r; wx). As it isnot possible for an image to be vouhed for before the write that writes it begins,we have start(wx) � end(r).Now, let i = maxfk : end(wk) < start(r)g. By the safeness of the protooland the monotoniity of image timestamps, the values of all wk suh that k < i areountermanded in all reads that follow wi, therefore x � i, i.e.:x = maxfk : end(wk) < start(r)g _ end(wx) � start(r)By Boolean algebra, this and the result of our �rst paragraph imply:x = maxfk : end(wk) < start(r)g _ (start(wx) � end(r) ^ end(wx) � start(r))Therefore, by De�nition 16, wx 2 W 0. The monotoniity of timestamps ensureswrite-ordering, so De�nition 18 is satis�ed.2Corollary 2 There exists a pseudo-atomi protool for masking quorum systems.Proof: The protool is onstruted from the pseudo-regular one as desribed inSetion 3.3, exept that read operations aborted in the regular protool are alsoaborted in the atomi one. 27Beause this proof is based on inspetion of the protool rather than on formal de�nitions andlemmata, we do not employ the alulational proof style in this ase.26



3.5 On the Neessity of Aborted OperationsIn the previous setion, we have shown how to implement pseudo-atomi seman-tis in an asynhronous system in whih little or no onurreny ontrol has beenestablished. Spei�ally:� Any lient may send a write request to a quorum of servers at any time, usingits hoie of timestamp; i.e., writes are always enabled.� No additional ordering or sheduling is imposed on read and write requests.� Read and write requests are proessed by servers in the order reeived, where\proessing" a write request with a suÆiently high timestamp hanges thestate of the variable image at the server.We desribe suh a system in the ensuing arguments as a nonrestrited system.All the quorum system protools that we have studied here, inluding the pseudo-atomi protool, share the following harateristis:1. Eah server maintains a single version of the variable image at any given time.2. A read returns a non-? value only if some appropriately de�ned vouher setof servers responds to its query with idential images.For the remainder of this disussion, we refer to suh a protool as a lassi quorumprotool. We then de�ne:De�nition 23 A lassi b-masking protool is a lassi quorum protool whosevouher set is de�ned as any set of b+ 1 or more servers.In this setion, we show that there is no way to implement a lassi b-maskingprotool that is fully regular8 in a nonrestrited system. We do this by showing thatertain possible server responses to a read query in suh a system are unresolvable;i.e., the orresponding operation must either return a possibly faulty value, abort,or retry the query (leaving open the possiblity of non-termination).We then show that the same is true even if eah server maintains a boundedhistory of the variable images it has reeived.8We use the term \fully regular" in this setion to emphasize the distintion from pseudo-regularsemantis: in a (fully) regular protool, every read returns some seen value; therefore it terminatessuessfully rather than aborting or failing to terminate.
27



3.5.1 De�nitionsWe begin with a number of useful de�nitions. Let P be a lassi quorum protool,and let r and w be operations under P suh that r is a read operation and w is themost reently ompleted (as determined by timestamp) write operation as of thebeginning of r. Let Qr and Qw be the quorums on whih r and w respetively areperformed.De�nition 24 The intersetion set for r is the set Qr \Qw.Let F � Qr be the set of servers that return faulty responses during read r.De�nition 25 The informed set for r is the set Qr \Qw n F .Note that if there are no writes onurrent with r, so that no servers in the inter-setion set have been overwritten sine w, then the informed set for r is the vouherset for r. In any ase, all servers in the informed set return the results of writes thatr sees (De�nition 16), and in the worst ase these are the only servers that do so.We an therefore observe:Observation 3 Protool P is fully regular i� all possible sets of responses to a readby informed sets ontain idential responses from at least one vouher set.3.5.2 Nonliveness of lassi b-masking protoolsLet Q be a quorum system with lassi quorum protool P de�ned for a faultthreshold b, and let minint be the size of the smallest intersetion set for Q. Thenthe following lemma is a straightforward onsequene of the de�nitions above:Lemma 3 The smallest possible informed set for a read operation on Q is minint � b.In suh a system, the smallest informed set represents the worst-ase senariofor a suessful read. Let v be the minimum vouher set size for P.9 Suppose fora moment that any read operation under P is onurrent with at most k writeoperations. Then:Theorem 3 P is fully regular for quorum system Q i�d(minint � b)=(k + 1)e � v9For example, v = b+ 1 for b-masking quorum systems, and v = 1 for b-dissemination quorumsystems. 28



Proof: For an arbitrary read operation r let Ir = fI0; : : : ; Ikg be the partitioning ofthe informed set suh that I0 ontains the servers that return the result of the mostreently ompleted write operation and eah Ii ontains the servers that return theresult of the ith write that is onurrent with r. In a nonrestrited system, any orall of the sets Ii may be nonempty, depending on the order in whih onurrentoperation requests are reeived at individual servers. We prove the \if" and \onlyif" portions of the theorem separately.If: If d(minint�b)=(k+1)e � v, then for any read r, some Ii 2 Ir ontains a vouherset by the Extended Pigeonhole Priniple, whih states that at least one member ofa partition ontains at least the average number of elements for the partition.Only if: Suppose d(minint � b)=(k + 1)e < v. Let r be a read operation with thesmallest possible informed set, and suppose that r is onurrent with exatly kwrites. Furthermore, let Ir be an even partition, i.e., a partition in whih every setontains either the eiling or the oor of the average number of elements. Ir doesnot ontain a vouher set, so r is unable to return a seen value. Sine this senariois unpreventable in a system suh as that desribed above, the protool is not live.2Lemma 4 P is fully regular in a nonrestrited system10 i� its minimum vouherset size v is 1.Thus, if a quorum system read protool requires agreement between multipleservers in order to determine a orret result then it is not fully regular in anunrestrited system. Sine lassi b-masking protools have this requirement byde�nition, we have:Corollary 3 No lassi b-masking protool is fully regular in a nonrestrited sys-tem. It is worth noting that benign quorum systems and dissemination quorumsystems, whih do not require agreement between multiple servers, are alreadyknown to be fully regular for their appropriate failure models (benign, Byzantine-limited-by-authentiated-data respetively).3.5.3 Non-liveness of lassi protools with bounded historyWe de�ne a lassi b-masking protool with bounded history as a b-masking protoolwith the following harateristis:10By de�nition, suh a system allows arbitrary values of k29



1. Eah server maintains a bounded history of its images for a given variable,i.e., a list of the last m images reeived.2. A read returns a non-? value only if it reeives idential images from at leastb+ 1 servers, for a spei�ed b > 0.Even if eah server responds to every query with its entire history of m images, itremains possible for a read query to be unresolvable in a nonrestrited system, i.e.:Lemma 5 No lassi b-masking protool with bounded history is fully regular in anonrestrited system.Proof: In a nonrestrited system, any given read operation may be onurrentwith an unbounded number of writes. Suppose some read operation r is onurrentwith m�s write operations, where m is the size of the bounded history and s is thesize of the informed set for r. For 1 � i � s, suppose server Si reeives the �rstm�i write requests before reeiving the request for r. Then the history of S1 willontain the images of the �rst m writes, the history of S2 will ontain the images ofthe next m writes (whih displae the �rst m beause the history is bounded), andso forth. In response to its query, r therefore reeives m�s di�erent variable images,eah from exatly one server. It is therefore unable to resolve the query.23.5.4 Generalizing to non-size-based systemsIn systems where the failure pattern is not de�ned by size, minimal vouher setsmay not have a single well-de�ned size either. For example, for a masking quorumsystem on server set S suh that the full set B is required to de�ne the set of possiblefailure on�gurations, the set V of minimal vouher sets is de�ned by:V = fB [ fsg : B 2 B; s 2 S nBgWe de�ne a generalization on lassi b-masking protools, whih we will alllassi masking protools as follows:1. Eah server maintains a single version of the variable image at any given time.2. A read an only return a non-? value if all servers in some member of Vrespond to its query with idential images.In this more general ase, members of V may vary in size. A slightly looserversion of Lemma 4 an be therefore formulated for the more general ase.30



Lemma 6 A lassi masking protool for a quorum system Q with failure patternB is fully regular in a nonrestrited system i� every possible informed set under Q,B ontains some singleton vouher set.In most pratial systems, this loosening is not likely to be partiularly help-ful, as it is not lear how to take advantage of it without postulating a trusted subsetof servers. However, we inlude it for the sake of ompleteness.3.6 ConlusionIn this hapter we have presented a redution that allows us to promote a regu-lar Byzantine quorum system protool to an atomi one. This redution has theonsiderable advantage of being based on an entire lass of protools, i.e., thosedesribed by our de�nition of TS-variables, rather than on any spei� algorithm.Thus our result an be used both as a reipe for improving the semantis of mask-ing quorum systems and as a formal orretness proof of the atomi protool fordissemination quorum systems [Ph98℄. We have also shown how to onstrut apseudo-atomi protool for masking quorum systems using this redution. Suh aprotool provides the safety properties11 of an atomi protool, though it does notguarantee liveness. While suh a protool is probably not suitable for appliationswhere variables are frequently overwritten, as it may render them often unreadable,it should be of pratial value for systems with few writes and a tolerane for o-asionally retrying reads. Finally, we have proven that there is a general approahbehind these protools that makes them inherently non-live in an unontrolledlyonurrent asynhronous environment.

11Not to be onfused with the \safeness" used in Setion 3.431



Chapter 4Dynami Quorum Adjustment4.1 IntrodutionIn this hapter, we present a method of dynamially raising and lowering the faulttolerane limit of a Uniform masking quorum system in response to estimates of thenumber of server failures. (For some initial failure detetion methods, see Chapter 5.)The goal of this work is to design protools that allow a quorum system to respondwithout bloking to the presene or absene of deteted faults. This exibility omesat a ost: tolerating a given maximum number of faults requires more servers inour approah than in a stati system. However, with a �xed number of servers, ourprotools allow a system to operate in low-threshold mode with smaller quorumsthan a stati approah would require for the same worst-ase threshold. A naturalway of using a dynami quorum system is to inrease the threshold when faultsare deteted, and derease it again when the failures have been dealt with. Thethreshold ould also be raised or lowered based on external evidene that the threatof an attak has inreased or dereased, suh as information in server logs or newinformation about the value of the data being stored.The problem of dynamially adjusting a Uniform masking quorum system isnot trivial. The primary diÆulty an be illustrated by the following example:Example: Consider a system onsisting of n = 9 repliated servers with quorumsonsisting of all sets of 6 servers. This on�guration ensures that every pair ofquorums intersets in 3 servers or more, and an tolerate a threshold b = 1 ofByzantine server failures while still guaranteeing that the majority of every quorumintersetion is orret. Now, suppose that some lient, deteting a possible failure inthe system, wishes to reon�gure the quorum system to raise the resiliene thresholdto b = 2. This an be aomplished by making every set of 7 servers a quorum,32


