
Scalable Isosurface Visualization of Massive Datasets on COTS� Clusters

Xiaoyu Zhangy Chandrajit Bajajy William Blankez Donald Fussellyy Department of Computer Science,z Department of Electrical and Computer Engineering,
University of Texas at Austin

Abstract

Our scalable isosurface visualization solution on a COTS cluster
is an end-to-end parallel and progressive platform, from the ini-
tial data access to the final display. In this paper we focus onthe
back end scalability by introducing a fully parallel and out-of-core
isosurface extraction algorithm. It partitions the volumedata ac-
cording to its workload spectrum for load balancing and creates an
I/O-optimal external interval tree to minimize the number of I/O
operations of loading large data from disk. It achieves scalabil-
ity by using both parallel processing and parallel disks. Interactive
browsing of extracted isosurfaces is made possible by usingparallel
isosurface extraction and rendering in conjunction with a new spe-
cialized piece of image compositing hardware called Metabuffer.
We also describe an isosurface compression scheme that is efficient
for isosurface transmission.

Keywords: Parallel Rendering, Metabuffer, Multi-resolution, Pro-
gressive mesh, Parallel and Out-of-core Isocontouring

1 Introduction and Related Works

Today’s real time visualization applications increasingly are deal-
ing with larger and larger data streams. In order to find the critical
areas of interest within these datasets and understand the underlying
physics, it is necessary that the application allows the user to navi-
gate quickly and easily around the object space to explore different
views. Given a Scalar Field,w(x), defined over ad-dimensional
bounded volume mesh (x 2 Rd), we often visualize the data by
rendering(d � 1)-dimensional surfaces satisfyingw(x) =const.
This visualization technique is popularly known as Isocontouring
and is widely used method for volume data visualization.

Isocontour visualization for extremely large datasets poses chal-
lenging problems for both computation and rendering with guar-
anteed frame rates. To achieve scalable isosurface visualization in
a time critical manner, we decompose the time-critical isosurface
extraction and rendering into three pipeline stages2.

First, isosurfaces are to be extracted efficiently from those large
datasets. As the size of the input data increases, isocontouring al-
gorithms need to be executed out-of-core and/or on parallelma-
chines for both efficiency and data accessibility. Hansen and Hinker
describe parallel methods for isosurface extraction on SIMD ma-
chines [17]. Ellsiepen describes a parallel isosurfacing method for
FEM data by dynamically distributing working blocks to a number
of connected workstations [13]. Shen, Hansen, Livnat and John-
son implement a parallel algorithm by partitioning load in the span
space [31]. Parker et al. present a parallel isosurface rendering
algorithm using ray tracing [26]. Chiang and Silva give an imple-
mentation of out-of-core isocontouring using the I/O optimal exter-
nal interval tree on a single processor [7, 8]. Bajaj et al. use range�Common of the shelf

partition to reduce the size of data that are loaded for giveniso-
contour queries and balance the load within a range partition [3].
In this paper, we propose and implement a parallel and out-of-core
isocontouring algorithm using parallel processors and parallel I/O,
which would be fully scalable to arbitrarily large datasets.

Second, The interactive aspect of the application demands that
the scene is rendered quickly in order to provide responsivefeed-
back to the user. At the same time, if an interesting area is found
within the dataset, it is imperative that the application show the
scene at the highest level of detail possible. In some cases,the
detail allowed by a single high performance monitor may not be
adequate for the resolution required. An even more common prob-
lem is that the dataset itself may be too large to store and render on
a single machine.

Many research groups have studied the problem of parallel ren-
dering [6, 12, 18, 20, 22, 28–30]. Schneider analyzes the suitability
of PCs for parallel rendering for four parallel polygon rendering
scenarios: rendering of single and multiple frames on symmetric
multiprocessors and clusters [30]. Samanta et al. discuss vari-
ous load balancing schemes for a multi-projector renderingsystem
driven by multiple PCs [29]. Heirich and Moll demonstrate how
to build a scalable image composition system using off-the-shelf
components [18]. In general, most parallel rendering methods can
be classified based on where data is sorted from object-spaceto
image-space [23].

In the sort-first approach, the display space is broken into anum-
ber of non-overlapping display regions, which can vary in size and
shape. Because polygons are assigned to the rendering process
before geometric processing, sort-first methods may sufferfrom
load imbalance in both the geometric processing and rasterization
if polygons are not evenly distributed across the screen partitions.
Crocket [10] describes various considerations to build a parallel
graphics library using the sort-first method. The PrincetonUni-
versity SHRIMP project [29] uses the sort-first approach to balance
the load of multiple PC graphical workstations.

The sort-last approach is also known as image composition.
Each rendering process performs both geometric processingand
rasterization independent of all other rendering processes. Local
images rendered on the rendering processes are composited to-
gether to form the final image. The sort-last method makes the
load balancing problem easier since screen space constraints are
removed. However, compositing hardware is needed to combine
the output of the various processors into a single correct picture.
Such approaches have been used since the 60’s in single-display
systems [15,24,25], and more recent work includes [14,18].

Our solution to image compositing problem is the Metabuffer,
whose architecture is shown in figure 1. This is a sort-last multi-
display image compositing system with several unique features
such as multi-resolution and antialiasing [5]. A very similar project,
though currently without stressing multi-resolution support, ex-
ists at Stanford University and is called Lightening-2 [19]. The
Metabuffer hardware supports a scalable number of PCs and anin-
dependently scalable number of displays–there is noa priori cor-


