Computing Undirected Shortest Paths
with Comparisons and Additions*

Seth Pettie and Vijaya Ramachandran
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

seth@cs.utexas.edu, vlr@cs.utexas.edu

TR-01-12
May 2, 2001

Abstract

We study undirected shortest paths problems in a natural model of computation, namely one
which gives us two numerical operations: comparisons and additions. This is the model assumed
by such standards as Dijkstra’s algorithm, the Bellman-Ford algorithm, and the Floyd-Warshall
algorithm, and is the usual model for proving lower bounds on shortest path problems.

We present an algorithm for undirected single source shortest paths (SSSP) with arbitrary
real edge weights which performs O(SSSP(m,n)+ mloga(m,n)+nloglogr) comparisons and
additions. Here SSSP is the comparison-addition complexity of the problem, r the ratio of
the maximum-to-minimum edge length, and a Tarjan’s inverse-Ackermann function. By the
usual convention, m and n are the number of edges and vertices respectively. Our algorithm
is implementable on a pointer machine with time complexity O(ma(m,n) + nloglogr). This

represents an improvement over Dijkstra’s algorithm so long as r < n” ™

For the undirected all pairs shortest paths (APSP) problem we present an algorithm that runs
in time O(mna(m,n)) time while performing O(mnloga(m,n)) comparisons and additions.
This time bound improves on the best results known for this problem when the input graph is
sparse, i.e., when m = o(nlogn).

Our algorithms make extensive use of the graph’s minimum spanning tree in order to compute
SSSP quickly, and our approach is based on a refinement of Thorup’s component hierarchy data
structure, which was developed under the more powerful RAM model.

*This work was supported by Texas Advanced Research Program Grant 003658-0029-1999 and NSF Grant CCR-
9988160. Seth Pettie was also supported by an MCD Fellowship.

1 Introduction

The computation of shortest paths, either single-source (SSSP) or all-pairs (APSP), is one of the
oldest and most basic graph optimization problems studied in computer science. It is then a
testament to the solid foundations of our field that the standard textbook algorithms of Dijkstra
[Dij59] and Bellman-Ford [CLRI0] are still the best algorithms for the positively weighted and
general SSSP problem, resp. For the all pairs shortest paths problem, the method of repeatedly
applying Dijkstra’s algorithm starting from each vertex has stood the test of time for sparse graphs
with positive edge weights. Aside from their good asymptotic and real performance these algorithms
are particularly appealing for their simplicity. They make no extra assumptions on the graph
or edge weights, and they require only two operations to act on edge weights: comparisons and
additions. Nearly all recent advances in the SSSP and APSP problems have come by either assuming
integral edge weights, possibly bounded in magnitude, or a powerful random access machine. As
an intellectual pursuit, if not a practical one, we believe that shortest paths problems are properly
studied under the comparison-addition model.

Let us review some developments on the SSSP problem. For arbitrary edge weights the Bellman-
Ford algorithm runs in O(mn) time, where m and n are the number of edges and vertices, respec-
tively. For arbitrary integral edge weights, Gabow and Tarjan [GT89] (see also [G85b]) gave an
SSSP algorithm running in time O(m+/nlog(nU)), where the magnitude of all edge weights is
bounded by U. For reasonable U, say polynomial, this is a substantial improvement over the
Bellman-Ford algorithm. For the case of positively weighted directed graphs, Dijkstra’s algorithm
[Dij59] can be implemented using Fibonacci heaps [FT87] in O(m + nlogn) time. As Dijkstra’s
algorithm sorts the vertices by distance from the source, it can be shown that no implementation
of Dijkstra’s algorithm in the comparison-addition model can do better. (For graphs that are not
very sparse — i.e., when m = Q(nlogn) — Dijktra’s algorithm runs optimally in O(m) time.)

One way around the nlogn sorting bottleneck for sparse graphs is to increase the power of
the model. Beginning with the algorithm in [AM+-90], there has been a concerted effort to obtain
faster SSSP algorithms in the RAM model. The current fastest algorithms in this model are
due to Thorup [Tho96], running in time O(mloglogn), and Raman [Ram97], running in time
O(m—+n(log n)%"'e). Other RAM algorithms can match or improve these bounds when the machine
word size is polylogarithmic or if the maximum edge weight is not too large [Tho96, Ram96, Ram97,
CGS97, Hag00].

For the APSP problem with arbitrary positive edge weights, Dijkstra’s algorithm can be applied
n time to obtain an O(mn + n?logn) time algorithm. An algorithm running in time O(m*n +
n?logn) time is given in Karger et al. [KKP93], where m* is the number of edges that appear in
some shortest path. The Floyd-Warshall and ‘min-plus’ matrix multiplication algorithms run in
O(n3) time [AHUT74, CLR90], and these give good performance for dense graphs. Fredman [F76]
presented an elegant, though difficult to implement min-plus matrix multiplication algorithm which
makes O(n?®) comparisons and additions. The best implementations of Fredman’s algorithm [F76,
Tak92] are only marginally better than n3. There is a large body of work on fast APSP algorithms
for dense graphs that restrict the range of values allowed for edge weights (see [S95, GM97] for
undirected graphs and [AGM97, Z98] for directed graphs).

In this paper we study undirected shortest paths problems. Since these problems are only
interesting on positive edge lengths®, Dijkstra’s algorithm may be used with its usual time bounds.
Until recently no SSSP techniques specific to undirected graphs were known. Then, Thorup [Tho99]

'If a negative length edge appears in the source’s connected component, the shortest distance to all vertices in
that component is —oco if, as is usual, edges may be repeated. If we disallow repeated edges on a shortest path the
problem then becomes NP-hard.

showed that by assuming integral edge weights and a random access machine, undirected SSSP
could be solved in linear time. His algorithm, based on traversing the graph’s component hierarchy
(C.H.), is a departure from Dijkstra’s approach in that it is non-greedy. Vertices are visited one by
one, as in Dijkstra’s algorithm, though not necessarily in increasing distance from the source. Since
Thorup’s C.H. relies on the RAM’s power for its efficiency?, it was unclear whether this approach
to SSSP was limited to the RAM, or if it represented a technique of more fundamental value.

In this paper we demonstrate that the component hierarchy approach can indeed be adapted
to the comparison-addition model; in particular we give the following two results:

e An undirected SSSP algorithm which makes in the vicinity of mloga(m,n) + nloglogr
comparisons and additions, where r bounds the ratio of any two edge weights. The algorithm
runs on a pointer machine in O(ma(m,n) +nloglogr) time. This gives a better time bound
than Dijkstra’s if r < 2"0(1); in particular, if » < n(lo8 n)o)
nloglogn).

, the running time is O(m +

e An undirected APSP algorithms that performs O(mn loga(m,n)) comparisons and additions
and runs in O(mna(m,n)) time on a pointer machine. This result improves on Dijkstra’s
algorithm and Karger at al. [KKP93] when m = o(nlogn).

The main results we prove are stated below.

Theorem 1.1 The undirected single source shortest path problem can be solved using O(SSSP(m,n)+
mlog a(m,n)+nloglogr) comparisons and additions, where m and n are the number of edges and
vertices, a the inverse-Ackermann function, SSSP(m,n) the comparison-addition complexity of
undirected SSSP, and r the ratio of the mazimum to minimum edge length.

Corollary 1.1 Undirected SSSP can be solved in O(ma(m,n) + nloglogr) time on a pointer
machine using the same number of comparisons & additions claimed in Theorem 1.1.

Theorem 1.2 The undirected all pairs shortest path problem can be solved with O(mnlog a(m,n))
comparisons and additions in O(mna(m,n)) time.

Our method for constructing the C.H. differs from [Tho99, Hag00] in that it depends heavily on
knowing the structure and edge lengths of the graph’s minimum spanning tree. Additionally, we
show that the comparison-addition complexity of SSSP is at least as large as the comparisons-only
complexity of MST.

2 Preliminaries

2.1 The Model

When the solution to a numerical problem is defined by a set of linear inequalities (e.g. all shortest
path problems), the comparison-addition model presents itself as the most fundamental computa-
tional model. In this model the input consists, among other things, of m real numbers, initially

2Thorup’s algorithm seems to require RAM-based priority queues to achieve linear time. Thorup noted that
a simplified algorithm runs in O(logU + ma(m,n)) time where U is the largest edge weight, using the following
operations: comparisons, additions, most significant bit, and bucketing. In terms of information gained, one bucketing
operation amounts to a branch with up to max{n,logU} outcomes; it is therefore not surprising that an SSSP
algorithm faster than Dijkstra’s could be developed using these operations.

stored in the variables vy,...,v,. Each variable v;, 0 < ¢ < 0o, can hold one real number and
may only be manipulated® by additions, of the form v; := v; 4+ vg, and comparisons, of the form

v; < vj. An algorithm then chooses which operations to perform based on the outcome of previous
comparisons. We are primarily interested in the number of numerical operations. Any overhead
required to examine the non-numerical input or decide which comparisons and additions to make
is ignored for simplicity.

Although this model does not include subtraction as a primitive operation it may be simulated
with a constant factor loss in efficiency. We may represent a real q; = a; — by as two reals
(kept in separate variables). An addition, ¢ + g2 = (a1 + a2) — (b1 + b2), or a subtraction,
q1 — q2 = (a1 + ba) — (a2 + b1), may be accomplished with two actual additions. A comparison,
say qi 2 @ = a1+ b ; as + by, may be accomplished with two actual additions and one
comparison. The power of these simple algebraic transformations was explored by Fredman [F76]
who demonstrated that all-pairs shortest paths could be solved with O(n?®) comparisons and
additions, though the required overhead of Fredman’s algorithm is considerably larger. We use this
simulation of subtraction in Section 4.

In our algorithms it will also be necessary to approximate the ratio of certain input variables.
Suppose that v; and v, are known to be the smallest and largest input variables. Then the
ratios {{* : 1 < < m} can be approximated to within a 1 + € factor using oL + log(%2) +
m(log log “m + log %)) comparisons and additions. Consider first the case e = 1. We generate the
set D = {v1,2v1,4vq,... ’2[log(';—“11)] v1} using addition for simple doubling, then perform a binary
search over D for each variable v;, thus approximating the desired ratios to within a factor of two.
For smaller ¢ we simply continue the binary search until the lower and upper bounds on v; are
sufficiently close. Each comparison in this binary search is either of the form a - v; < v; where a is
the sum of at most log(%) elements from D, or of the form b-v;/c < v;, where 1 < b,¢ < % and
¢ is a power of two. The first kind of comparison is simple to handle. The second kind becomes
simpler if reduced to a comparison without division: b-v; e v;. There are % possible terms which

can appear on the left side of the S and m log(%) terms on the right side, all of which can be easily
computed in advance.

There are some rather weak lower bounds in the comparison-addition model for shortest paths
problems. Spira and Pan [SP73] showed that regardless of additions, Q(n?) comparisons are nec-
essary to solve SSSP on the complete graph. Karger et al. [KKP93] proved that all-pairs shortest
paths requires Q(mn) comparisons if all summations correspond to paths in the graph. In straight-
line computation (using operations of the form v; := min{v;, vy} in lieu of comparisons) Kerr [K70]
proved a lower bound of (n3) on the all-pairs shortest path problem. Graham et al. [G-+80]
showed that for the all pairs shortest distance problem, any information-theoretic argument (in
the comparison-addition model) could yield only 2(n?) bounds on the number of comparisons.
Similarly, no information-theoretic superlinear lower bound on SSSP can be obtained as this is
tantamount to computing the log of the number of spanning trees.

One interesting aspect of our SSSP algorithm is that for certain ranges of m, n, and r (e.g.,
m = 0(n), r = 220(a(m’n))) its comparison-addition complexity is unknown: it depends upon the
decision-tree complexity of the minimum spanning tree problem. To date the best upper bound on
MST, due to Chazelle [Chaz00], is O(ma(m,n)). The following Lemma says that computing the
MST will never be a bottleneck for an SSSP algorithm.

®Depending on the problem at hand one may also wish to allow addition and multiplication of constants.

Lemma 2.1 The comparison-only complexity of MST is no more than the comparison-addition
complezity of SSSP.

Proof: Consider only undirected graphs with edge weights of the form 20en” for distinct i. It is
easily shown that the MST and shortest paths tree for these graphs are identical, regardless of
the source. Moreover, in k steps no SSSP algorithm can generate a number which is the sum of
more than 2* edge lengths. Since no SSSP (or MST) algorithm takes more than cn? steps, every
comparison made by the SSSP algorithm is immediately reducible to a comparison between two
edge lengths; hence a SSSP algorithm may be reduced to an addition-free MST algorithm. O

2.2 Notation

The input is a weighted undirected graph G = (V, E,{) and a distinguished source vertex s € V.
Here ¢ : E — R assigns a positive length to each edge and the length of a path < vg,vy,...,v; >
is defined as Zfz_ol L(vi,vi11). We let £inin denote the minimum length edge. For R C V let dr(v) be
the length of a shortest path from s to v in the subgraph induced by RU {v}, and let d(v) = dy (v).
Using this notation the SSSP problem is to find d(v) for all v € V. By convention |V| = n and
|E| = m. We use the term verter to mean an element of V' and node to mean a vertex of any
other graph we construct during the course of our algorithm. All data structures required of our
algorithm may be implemented in the stated time bounds using just a pointer machine [Tar79].

2.3 Dijkstra’s Algorithm.

A tentative distance D(v) > d(v) is maintained for all v, as well as a set S of visited vertices whose
distance from s has been determined. One invariant is maintained.

Invariant 0. For allv € S, D(v) =d(v), and for allv & S, D(v) = dg(v).

Initially S = 0, D(s) = 0, and D(v) = oo for v # s. In each step of Dijkstra’s algorithm an
unvisited vertex with minimum tentative distance is visited, set S is augmented with this vertex
and tentative distances updated appropriately. It is simple to prove that Invariant 0 is maintained.
Eventually S = V, and therefore D(v) = d(v) for all v. An unfortunate aspect of Dijkstra’s
algorithm is that its complexity is inherently as bad as sorting the d-values of all vertices. Notice
that Dijkstra’s algorithm remains perfectly correct if any vertex v is visited for which D(v) is
provably equal to d(v). Although this modified algorithm is not inherently as difficult as sorting,
it does not suggest an efficient implementation.

The recent algorithms of Thorup [Tho99] (for undirected graphs) and Hagerup (for directed
graphs) [Hag00] are implementations of this non-greedy version of Dijkstra’s algorithm. Each uses
the notion of a component hierarchy — a structure based on classifying edges by length — to decide
when vertices are ready to be visited.

2.4 Thorup’s Algorithm.

Thorup’s algorithm [Tho99] maintains Invariant 0 but might not visit vertices greedily. It works
by simulating Dijkstra’s algorithm in a piecemeal fashion, identifying parts of the problem which
can be solved independently of one another.

Definition 2.1 A subgraph H is safe over interval I w.r.t. vertex set X if for all v € H with
d(v) € I, dxum(v) = d(v).

In other words, if X = § is the set of visited vertices, a subgraph is safe over I if one can
correctly solve the shortest path problem for v € H s.t. d(v) € I, without looking at parts of the
graph outside of H U S.

The following Lemmas are not difficult to prove. See [Tho99] for proofs of similar claims.

Lemma 2.2 Suppose H is safe over [a,b) w.r.t. X, H' is the subgraph of H induced by edges of
length less than t, and H' is the set of connected components of H'. Then all members of H' are
safe over [a,min{a + ¢,b}) w.r.t. X.

Lemma 2.3 If H is safe over [a,b) w.r.t. X, then fora+t <band X' D X U{v € H :d(v) €
[a,a +t)}, H is also safe over [a + t,b) w.r.t. X .

Lemma 2.2 says that a subgraph which is safe over some interval can be decomposed into smaller
subgraphs, each of which is safe over a shorter interval. Lemma 2.3 says that if a subgraph H is
safe over [a,b), then once all vertices in H whose d-values lie in [a, a + t) are visited, H will be safe
over [a +t,b). Used together, Lemmas 2.2 and 2.3 form the basis of a recursive SSSP algorithm
which is parameterized only by choices of t. In the case of Thorup’s algorithm, edge lengths are
assumed to be integers and ¢ is always chosen to be the largest power of two which disconnects
H. Given this system for choosing the ¢ parameter, Thorup precomputes a component hierarchy to
assist the recursive invocations of his algorithm. A node z at level j of the component hierarchy
represents a maximal connected subgraph C,, induced by edges with length less than 27. Its children
are those nodes {z;} whose associated {Cy, } are maximal connected subgraphs of C; restricted to
edges with length < 2/~1. Leaves of the hierarchy correspond to vertices of the graph so we do
not differentiate between the two in our notation. Below we give the main recursive procedure of
Thorup’s algorithm, called Visit. It takes a component hierarchy node x and an interval I with
the guarantee that C is safe over I w.r.t. the current set of visited vertices S. If z is a leaf (i.e. a
vertex of G), it follows that D(z) = d(z). Extending the D-value notation to component hierarchy
nodes, we let D(x) denote the minimum D-value over all descendant leaves of z. Initially S := 0
and Visit(root, [0,00)) is called on the root of the component hierarchy.

Visit(z,|a,b))
1. If b<a or Cp, CS return.
If = is a leaf, set S:=SU{z}, update D-values and return.
Let t:= 2level(w)fl
For each child y of z s.t. D(y) € [a,a+1),
Visit(y,[a,a + 1))
Visit(z,[a +t,b))

O O WD

Making Thorup’s algorithm efficient amounts to solving three interrelated problems: building
the component hierarchy, updating D-values for component hierarchy nodes when leaves are visited
(line 2), and quickly deciding which recursive calls to make (line 4).

To build the component hierarchy and update D-values Thorup resorts to RAM priority queues;
deciding which recursive calls to make is accomplished by word shifts and bucketing. In other words,
new techniques are needed to adapt the component hierarchy approach to the comparison-addition
model. In Section 3 we describe the properties of a component hierarchy which is particularly suited
to the comparison-addition model. The construction of this hierarchy, which is closely linked to
the structure and weighting of the graph’s minimum spanning tree, is described in Sections 4 and
5. It takes O(M ST(m,n) + nloglogr) time to construct our hierarchy, where M ST (m,n) is the
comparison complexity of MST. In Section 6 we describe our algorithm, deferring its analysis,

