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1 Introdu
tionThe 
omputation of shortest paths, either single-sour
e (SSSP) or all-pairs (APSP), is one of theoldest and most basi
 graph optimization problems studied in 
omputer s
ien
e. It is then atestament to the solid foundations of our �eld that the standard textbook algorithms of Dijkstra[Dij59℄ and Bellman-Ford [CLR90℄ are still the best algorithms for the positively weighted andgeneral SSSP problem, resp. For the all pairs shortest paths problem, the method of repeatedlyapplying Dijkstra's algorithm starting from ea
h vertex has stood the test of time for sparse graphswith positive edge weights. Aside from their good asymptoti
 and real performan
e these algorithmsare parti
ularly appealing for their simpli
ity. They make no extra assumptions on the graphor edge weights, and they require only two operations to a
t on edge weights: 
omparisons andadditions. Nearly all re
ent advan
es in the SSSP and APSP problems have 
ome by either assumingintegral edge weights, possibly bounded in magnitude, or a powerful random a

ess ma
hine. Asan intelle
tual pursuit, if not a pra
ti
al one, we believe that shortest paths problems are properlystudied under the 
omparison-addition model.Let us review some developments on the SSSP problem. For arbitrary edge weights the Bellman-Ford algorithm runs in O(mn) time, where m and n are the number of edges and verti
es, respe
-tively. For arbitrary integral edge weights, Gabow and Tarjan [GT89℄ (see also [G85b℄) gave anSSSP algorithm running in time O(mpn log(nU)), where the magnitude of all edge weights isbounded by U . For reasonable U , say polynomial, this is a substantial improvement over theBellman-Ford algorithm. For the 
ase of positively weighted dire
ted graphs, Dijkstra's algorithm[Dij59℄ 
an be implemented using Fibona

i heaps [FT87℄ in O(m + n log n) time. As Dijkstra'salgorithm sorts the verti
es by distan
e from the sour
e, it 
an be shown that no implementationof Dijkstra's algorithm in the 
omparison-addition model 
an do better. (For graphs that are notvery sparse { i.e., when m = 
(n logn) { Dijktra's algorithm runs optimally in O(m) time.)One way around the n logn sorting bottlene
k for sparse graphs is to in
rease the power ofthe model. Beginning with the algorithm in [AM+90℄, there has been a 
on
erted e�ort to obtainfaster SSSP algorithms in the RAM model. The 
urrent fastest algorithms in this model aredue to Thorup [Tho96℄, running in time O(m log log n), and Raman [Ram97℄, running in timeO(m+n(logn) 13+�). Other RAM algorithms 
an mat
h or improve these bounds when the ma
hineword size is polylogarithmi
 or if the maximum edge weight is not too large [Tho96, Ram96, Ram97,CGS97, Hag00℄.For the APSP problem with arbitrary positive edge weights, Dijkstra's algorithm 
an be appliedn time to obtain an O(mn + n2 log n) time algorithm. An algorithm running in time O(m�n +n2 log n) time is given in Karger et al. [KKP93℄, where m� is the number of edges that appear insome shortest path. The Floyd-Warshall and `min-plus' matrix multipli
ation algorithms run inO(n3) time [AHU74, CLR90℄, and these give good performan
e for dense graphs. Fredman [F76℄presented an elegant, though diÆ
ult to implement min-plus matrix multipli
ation algorithm whi
hmakes O(n2:5) 
omparisons and additions. The best implementations of Fredman's algorithm [F76,Tak92℄ are only marginally better than n3. There is a large body of work on fast APSP algorithmsfor dense graphs that restri
t the range of values allowed for edge weights (see [S95, GM97℄ forundire
ted graphs and [AGM97, Z98℄ for dire
ted graphs).In this paper we study undire
ted shortest paths problems. Sin
e these problems are onlyinteresting on positive edge lengths1, Dijkstra's algorithm may be used with its usual time bounds.Until re
ently no SSSP te
hniques spe
i�
 to undire
ted graphs were known. Then, Thorup [Tho99℄1If a negative length edge appears in the sour
e's 
onne
ted 
omponent, the shortest distan
e to all verti
es inthat 
omponent is �1 if, as is usual, edges may be repeated. If we disallow repeated edges on a shortest path theproblem then be
omes NP-hard. 1



showed that by assuming integral edge weights and a random a

ess ma
hine, undire
ted SSSP
ould be solved in linear time. His algorithm, based on traversing the graph's 
omponent hierar
hy(C.H.), is a departure from Dijkstra's approa
h in that it is non-greedy. Verti
es are visited one byone, as in Dijkstra's algorithm, though not ne
essarily in in
reasing distan
e from the sour
e. Sin
eThorup's C.H. relies on the RAM's power for its eÆ
ien
y2, it was un
lear whether this approa
hto SSSP was limited to the RAM, or if it represented a te
hnique of more fundamental value.In this paper we demonstrate that the 
omponent hierar
hy approa
h 
an indeed be adaptedto the 
omparison-addition model; in parti
ular we give the following two results:� An undire
ted SSSP algorithm whi
h makes in the vi
inity of m log�(m;n) + n log log r
omparisons and additions, where r bounds the ratio of any two edge weights. The algorithmruns on a pointer ma
hine in O(m�(m;n) +n log log r) time. This gives a better time boundthan Dijkstra's if r � 2no(1) ; in parti
ular, if r � n(log n)O(1) , the running time is O(m +n log logn).� An undire
ted APSP algorithms that performs O(mn log�(m;n)) 
omparisons and additionsand runs in O(mn�(m;n)) time on a pointer ma
hine. This result improves on Dijkstra'salgorithm and Karger at al. [KKP93℄ when m = o(n log n).The main results we prove are stated below.Theorem 1.1 The undire
ted single sour
e shortest path problem 
an be solved using O(SSSP (m;n)+m log�(m;n)+n log log r) 
omparisons and additions, where m and n are the number of edges andverti
es, � the inverse-A
kermann fun
tion, SSSP (m;n) the 
omparison-addition 
omplexity ofundire
ted SSSP, and r the ratio of the maximum to minimum edge length.Corollary 1.1 Undire
ted SSSP 
an be solved in O(m�(m;n) + n log log r) time on a pointerma
hine using the same number of 
omparisons & additions 
laimed in Theorem 1.1.Theorem 1.2 The undire
ted all pairs shortest path problem 
an be solved with O(mn log�(m;n))
omparisons and additions in O(mn�(m;n)) time.Our method for 
onstru
ting the C.H. di�ers from [Tho99, Hag00℄ in that it depends heavily onknowing the stru
ture and edge lengths of the graph's minimum spanning tree. Additionally, weshow that the 
omparison-addition 
omplexity of SSSP is at least as large as the 
omparisons-only
omplexity of MST.2 Preliminaries2.1 The ModelWhen the solution to a numeri
al problem is de�ned by a set of linear inequalities (e.g. all shortestpath problems), the 
omparison-addition model presents itself as the most fundamental 
omputa-tional model. In this model the input 
onsists, among other things, of m real numbers, initially2Thorup's algorithm seems to require RAM-based priority queues to a
hieve linear time. Thorup noted thata simpli�ed algorithm runs in O(logU + m�(m;n)) time where U is the largest edge weight, using the followingoperations: 
omparisons, additions, most signi�
ant bit, and bu
keting. In terms of information gained, one bu
ketingoperation amounts to a bran
h with up to maxfn; logUg out
omes; it is therefore not surprising that an SSSPalgorithm faster than Dijkstra's 
ould be developed using these operations.2



stored in the variables v1; : : : ; vm. Ea
h variable vi; 0 < i < 1, 
an hold one real number andmay only be manipulated3 by additions, of the form vi := vj + vk, and 
omparisons, of the formvi ?< vj. An algorithm then 
hooses whi
h operations to perform based on the out
ome of previous
omparisons. We are primarily interested in the number of numeri
al operations. Any overheadrequired to examine the non-numeri
al input or de
ide whi
h 
omparisons and additions to makeis ignored for simpli
ity.Although this model does not in
lude subtra
tion as a primitive operation it may be simulatedwith a 
onstant fa
tor loss in eÆ
ien
y. We may represent a real q1 = a1 � b1 as two reals(kept in separate variables). An addition, q1 + q2 = (a1 + a2) � (b1 + b2), or a subtra
tion,q1 � q2 = (a1 + b2) � (a2 + b1), may be a

omplished with two a
tual additions. A 
omparison,say q1 ?< q2 � a1 + b2 ?< a2 + b1, may be a

omplished with two a
tual additions and one
omparison. The power of these simple algebrai
 transformations was explored by Fredman [F76℄who demonstrated that all-pairs shortest paths 
ould be solved with O(n2:5) 
omparisons andadditions, though the required overhead of Fredman's algorithm is 
onsiderably larger. We use thissimulation of subtra
tion in Se
tion 4.In our algorithms it will also be ne
essary to approximate the ratio of 
ertain input variables.Suppose that v1 and vm are known to be the smallest and largest input variables. Then theratios f viv1 : 1 � i � mg 
an be approximated to within a 1 + � fa
tor using O(1� + log(vmv1 ) +m(log log vmv1 + log 1� )) 
omparisons and additions. Consider �rst the 
ase � = 1. We generate theset D = fv1; 2v1; 4v1; : : : ; 2dlog( vmv1 )ev1g using addition for simple doubling, then perform a binarysear
h over D for ea
h variable vi, thus approximating the desired ratios to within a fa
tor of two.For smaller � we simply 
ontinue the binary sear
h until the lower and upper bounds on vi aresuÆ
iently 
lose. Ea
h 
omparison in this binary sear
h is either of the form a � v1 ?< vi where a isthe sum of at most log(1� ) elements from D, or of the form b � v1=
 ?< vi, where 1 � b; 
 � 1� and
 is a power of two. The �rst kind of 
omparison is simple to handle. The se
ond kind be
omessimpler if redu
ed to a 
omparison without division: b �v1 ?< 
 �vi. There are 1� possible terms whi
h
an appear on the left side of the ?< and m log(1� ) terms on the right side, all of whi
h 
an be easily
omputed in advan
e.There are some rather weak lower bounds in the 
omparison-addition model for shortest pathsproblems. Spira and Pan [SP73℄ showed that regardless of additions, 
(n2) 
omparisons are ne
-essary to solve SSSP on the 
omplete graph. Karger et al. [KKP93℄ proved that all-pairs shortestpaths requires 
(mn) 
omparisons if all summations 
orrespond to paths in the graph. In straight-line 
omputation (using operations of the form vi := minfvj ; vkg in lieu of 
omparisons) Kerr [K70℄proved a lower bound of 
(n3) on the all-pairs shortest path problem. Graham et al. [G+80℄showed that for the all pairs shortest distan
e problem, any information-theoreti
 argument (inthe 
omparison-addition model) 
ould yield only 
(n2) bounds on the number of 
omparisons.Similarly, no information-theoreti
 superlinear lower bound on SSSP 
an be obtained as this istantamount to 
omputing the log of the number of spanning trees.One interesting aspe
t of our SSSP algorithm is that for 
ertain ranges of m, n, and r (e.g.,m = O(n), r = 22o(�(m;n))) its 
omparison-addition 
omplexity is unknown: it depends upon thede
ision-tree 
omplexity of the minimum spanning tree problem. To date the best upper bound onMST, due to Chazelle [Chaz00℄, is O(m�(m;n)). The following Lemma says that 
omputing theMST will never be a bottlene
k for an SSSP algorithm.3Depending on the problem at hand one may also wish to allow addition and multipli
ation of 
onstants.3



Lemma 2.1 The 
omparison-only 
omplexity of MST is no more than the 
omparison-addition
omplexity of SSSP.Proof: Consider only undire
ted graphs with edge weights of the form 2i�
n2 for distin
t i. It iseasily shown that the MST and shortest paths tree for these graphs are identi
al, regardless ofthe sour
e. Moreover, in k steps no SSSP algorithm 
an generate a number whi
h is the sum ofmore than 2k edge lengths. Sin
e no SSSP (or MST) algorithm takes more than 
n2 steps, every
omparison made by the SSSP algorithm is immediately redu
ible to a 
omparison between twoedge lengths; hen
e a SSSP algorithm may be redu
ed to an addition-free MST algorithm. 22.2 NotationThe input is a weighted undire
ted graph G = (V;E; `) and a distinguished sour
e vertex s 2 V .Here ` : E !R+ assigns a positive length to ea
h edge and the length of a path < v0; v1; : : : ; vk >is de�ned asPk�1i=0 `(vi; vi+1). We let `min denote the minimum length edge. For R � V let dR(v) bethe length of a shortest path from s to v in the subgraph indu
ed by R[fvg, and let d(v) = dV (v).Using this notation the SSSP problem is to �nd d(v) for all v 2 V . By 
onvention jV j = n andjEj = m. We use the term vertex to mean an element of V and node to mean a vertex of anyother graph we 
onstru
t during the 
ourse of our algorithm. All data stru
tures required of ouralgorithm may be implemented in the stated time bounds using just a pointer ma
hine [Tar79℄.2.3 Dijkstra's Algorithm.A tentative distan
e D(v) � d(v) is maintained for all v, as well as a set S of visited verti
es whosedistan
e from s has been determined. One invariant is maintained.Invariant 0. For all v 2 S; D(v) = d(v), and for all v 62 S; D(v) = dS(v).Initially S = ;, D(s) = 0, and D(v) = 1 for v 6= s. In ea
h step of Dijkstra's algorithm anunvisited vertex with minimum tentative distan
e is visited, set S is augmented with this vertexand tentative distan
es updated appropriately. It is simple to prove that Invariant 0 is maintained.Eventually S = V , and therefore D(v) = d(v) for all v. An unfortunate aspe
t of Dijkstra'salgorithm is that its 
omplexity is inherently as bad as sorting the d-values of all verti
es. Noti
ethat Dijkstra's algorithm remains perfe
tly 
orre
t if any vertex v is visited for whi
h D(v) isprovably equal to d(v). Although this modi�ed algorithm is not inherently as diÆ
ult as sorting,it does not suggest an eÆ
ient implementation.The re
ent algorithms of Thorup [Tho99℄ (for undire
ted graphs) and Hagerup (for dire
tedgraphs) [Hag00℄ are implementations of this non-greedy version of Dijkstra's algorithm. Ea
h usesthe notion of a 
omponent hierar
hy { a stru
ture based on 
lassifying edges by length { to de
idewhen verti
es are ready to be visited.2.4 Thorup's Algorithm.Thorup's algorithm [Tho99℄ maintains Invariant 0 but might not visit verti
es greedily. It worksby simulating Dijkstra's algorithm in a pie
emeal fashion, identifying parts of the problem whi
h
an be solved independently of one another.De�nition 2.1 A subgraph H is safe over interval I w.r.t. vertex set X if for all v 2 H withd(v) 2 I, dX[H(v) = d(v). 4



In other words, if X = S is the set of visited verti
es, a subgraph is safe over I if one 
an
orre
tly solve the shortest path problem for v 2 H s.t. d(v) 2 I, without looking at parts of thegraph outside of H [ S.The following Lemmas are not diÆ
ult to prove. See [Tho99℄ for proofs of similar 
laims.Lemma 2.2 Suppose H is safe over [a; b) w.r.t. X, Ht is the subgraph of H indu
ed by edges oflength less than t, and Ht is the set of 
onne
ted 
omponents of Ht. Then all members of Ht aresafe over [a;minfa+ t; bg) w.r.t. X.Lemma 2.3 If H is safe over [a; b) w.r.t. X, then for a + t < b and X 0 � X [ fv 2 H : d(v) 2[a; a+ t)g, H is also safe over [a+ t; b) w.r.t. X 0.Lemma 2.2 says that a subgraph whi
h is safe over some interval 
an be de
omposed into smallersubgraphs, ea
h of whi
h is safe over a shorter interval. Lemma 2.3 says that if a subgraph H issafe over [a; b), then on
e all verti
es in H whose d-values lie in [a; a+ t) are visited, H will be safeover [a + t; b). Used together, Lemmas 2.2 and 2.3 form the basis of a re
ursive SSSP algorithmwhi
h is parameterized only by 
hoi
es of t. In the 
ase of Thorup's algorithm, edge lengths areassumed to be integers and t is always 
hosen to be the largest power of two whi
h dis
onne
tsH. Given this system for 
hoosing the t parameter, Thorup pre
omputes a 
omponent hierar
hy toassist the re
ursive invo
ations of his algorithm. A node x at level j of the 
omponent hierar
hyrepresents a maximal 
onne
ted subgraph Cx indu
ed by edges with length less than 2j . Its 
hildrenare those nodes fxig whose asso
iated fCxig are maximal 
onne
ted subgraphs of Cx restri
ted toedges with length < 2j�1. Leaves of the hierar
hy 
orrespond to verti
es of the graph so we donot di�erentiate between the two in our notation. Below we give the main re
ursive pro
edure ofThorup's algorithm, 
alled Visit. It takes a 
omponent hierar
hy node x and an interval I withthe guarantee that Cx is safe over I w.r.t. the 
urrent set of visited verti
es S. If x is a leaf (i.e. avertex of G), it follows that D(x) = d(x). Extending the D-value notation to 
omponent hierar
hynodes, we let D(x) denote the minimum D-value over all des
endant leaves of x. Initially S := ;and Visit(root; [0;1) ) is 
alled on the root of the 
omponent hierar
hy.Visit(x; [a; b) )1. If b � a or Cx � S return.2. If x is a leaf, set S := S [ fxg, update D-values and return.3. Let t := 2level(x)�14. For ea
h 
hild y of x s.t. D(y) 2 [a; a+ t),5. Visit(y; [a; a+ t) )6. Visit(x; [a+ t; b) )Making Thorup's algorithm eÆ
ient amounts to solving three interrelated problems: buildingthe 
omponent hierar
hy, updatingD-values for 
omponent hierar
hy nodes when leaves are visited(line 2), and qui
kly de
iding whi
h re
ursive 
alls to make (line 4).To build the 
omponent hierar
hy and update D-values Thorup resorts to RAM priority queues;de
iding whi
h re
ursive 
alls to make is a

omplished by word shifts and bu
keting. In other words,new te
hniques are needed to adapt the 
omponent hierar
hy approa
h to the 
omparison-additionmodel. In Se
tion 3 we des
ribe the properties of a 
omponent hierar
hy whi
h is parti
ularly suitedto the 
omparison-addition model. The 
onstru
tion of this hierar
hy, whi
h is 
losely linked tothe stru
ture and weighting of the graph's minimum spanning tree, is des
ribed in Se
tions 4 and5. It takes O(MST (m;n) + n log log r) time to 
onstru
t our hierar
hy, where MST (m;n) is the
omparison 
omplexity of MST. In Se
tion 6 we des
ribe our algorithm, deferring its analysis,5


