
Computing Undireted Shortest Pathswith Comparisons and Additions�Seth Pettie and Vijaya RamahandranDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712seth�s.utexas.edu, vlr�s.utexas.eduTR-01-12May 2, 2001AbstratWe study undireted shortest paths problems in a natural model of omputation, namely onewhih gives us two numerial operations: omparisons and additions. This is the model assumedby suh standards as Dijkstra's algorithm, the Bellman-Ford algorithm, and the Floyd-Warshallalgorithm, and is the usual model for proving lower bounds on shortest path problems.We present an algorithm for undireted single soure shortest paths (SSSP) with arbitraryreal edge weights whih performs O(SSSP (m;n)+m log�(m;n)+n log log r) omparisons andadditions. Here SSSP is the omparison-addition omplexity of the problem, r the ratio ofthe maximum-to-minimum edge length, and � Tarjan's inverse-Akermann funtion. By theusual onvention, m and n are the number of edges and verties respetively. Our algorithmis implementable on a pointer mahine with time omplexity O(m�(m;n) + n log log r). Thisrepresents an improvement over Dijkstra's algorithm so long as r < 2no(1) .For the undireted all pairs shortest paths (APSP) problem we present an algorithm that runsin time O(mn�(m;n)) time while performing O(mn log�(m;n)) omparisons and additions.This time bound improves on the best results known for this problem when the input graph issparse, i.e., when m = o(n logn).Our algorithmsmake extensive use of the graph's minimum spanning tree in order to omputeSSSP quikly, and our approah is based on a re�nement of Thorup's omponent hierarhy datastruture, whih was developed under the more powerful RAM model.
�This work was supported by Texas Advaned Researh Program Grant 003658-0029-1999 and NSF Grant CCR-9988160. Seth Pettie was also supported by an MCD Fellowship.

1 IntrodutionThe omputation of shortest paths, either single-soure (SSSP) or all-pairs (APSP), is one of theoldest and most basi graph optimization problems studied in omputer siene. It is then atestament to the solid foundations of our �eld that the standard textbook algorithms of Dijkstra[Dij59℄ and Bellman-Ford [CLR90℄ are still the best algorithms for the positively weighted andgeneral SSSP problem, resp. For the all pairs shortest paths problem, the method of repeatedlyapplying Dijkstra's algorithm starting from eah vertex has stood the test of time for sparse graphswith positive edge weights. Aside from their good asymptoti and real performane these algorithmsare partiularly appealing for their simpliity. They make no extra assumptions on the graphor edge weights, and they require only two operations to at on edge weights: omparisons andadditions. Nearly all reent advanes in the SSSP and APSP problems have ome by either assumingintegral edge weights, possibly bounded in magnitude, or a powerful random aess mahine. Asan intelletual pursuit, if not a pratial one, we believe that shortest paths problems are properlystudied under the omparison-addition model.Let us review some developments on the SSSP problem. For arbitrary edge weights the Bellman-Ford algorithm runs in O(mn) time, where m and n are the number of edges and verties, respe-tively. For arbitrary integral edge weights, Gabow and Tarjan [GT89℄ (see also [G85b℄) gave anSSSP algorithm running in time O(mpn log(nU)), where the magnitude of all edge weights isbounded by U . For reasonable U , say polynomial, this is a substantial improvement over theBellman-Ford algorithm. For the ase of positively weighted direted graphs, Dijkstra's algorithm[Dij59℄ an be implemented using Fibonai heaps [FT87℄ in O(m + n log n) time. As Dijkstra'salgorithm sorts the verties by distane from the soure, it an be shown that no implementationof Dijkstra's algorithm in the omparison-addition model an do better. (For graphs that are notvery sparse { i.e., when m =
(n logn) { Dijktra's algorithm runs optimally in O(m) time.)One way around the n logn sorting bottlenek for sparse graphs is to inrease the power ofthe model. Beginning with the algorithm in [AM+90℄, there has been a onerted e�ort to obtainfaster SSSP algorithms in the RAM model. The urrent fastest algorithms in this model aredue to Thorup [Tho96℄, running in time O(m log log n), and Raman [Ram97℄, running in timeO(m+n(logn) 13+�). Other RAM algorithms an math or improve these bounds when the mahineword size is polylogarithmi or if the maximum edge weight is not too large [Tho96, Ram96, Ram97,CGS97, Hag00℄.For the APSP problem with arbitrary positive edge weights, Dijkstra's algorithm an be appliedn time to obtain an O(mn + n2 log n) time algorithm. An algorithm running in time O(m�n +n2 log n) time is given in Karger et al. [KKP93℄, where m� is the number of edges that appear insome shortest path. The Floyd-Warshall and `min-plus' matrix multipliation algorithms run inO(n3) time [AHU74, CLR90℄, and these give good performane for dense graphs. Fredman [F76℄presented an elegant, though diÆult to implement min-plus matrix multipliation algorithm whihmakes O(n2:5) omparisons and additions. The best implementations of Fredman's algorithm [F76,Tak92℄ are only marginally better than n3. There is a large body of work on fast APSP algorithmsfor dense graphs that restrit the range of values allowed for edge weights (see [S95, GM97℄ forundireted graphs and [AGM97, Z98℄ for direted graphs).In this paper we study undireted shortest paths problems. Sine these problems are onlyinteresting on positive edge lengths1, Dijkstra's algorithm may be used with its usual time bounds.Until reently no SSSP tehniques spei� to undireted graphs were known. Then, Thorup [Tho99℄1If a negative length edge appears in the soure's onneted omponent, the shortest distane to all verties inthat omponent is �1 if, as is usual, edges may be repeated. If we disallow repeated edges on a shortest path theproblem then beomes NP-hard. 1

showed that by assuming integral edge weights and a random aess mahine, undireted SSSPould be solved in linear time. His algorithm, based on traversing the graph's omponent hierarhy(C.H.), is a departure from Dijkstra's approah in that it is non-greedy. Verties are visited one byone, as in Dijkstra's algorithm, though not neessarily in inreasing distane from the soure. SineThorup's C.H. relies on the RAM's power for its eÆieny2, it was unlear whether this approahto SSSP was limited to the RAM, or if it represented a tehnique of more fundamental value.In this paper we demonstrate that the omponent hierarhy approah an indeed be adaptedto the omparison-addition model; in partiular we give the following two results:� An undireted SSSP algorithm whih makes in the viinity of m log�(m;n) + n log log romparisons and additions, where r bounds the ratio of any two edge weights. The algorithmruns on a pointer mahine in O(m�(m;n) +n log log r) time. This gives a better time boundthan Dijkstra's if r � 2no(1) ; in partiular, if r � n(log n)O(1) , the running time is O(m +n log logn).� An undireted APSP algorithms that performs O(mn log�(m;n)) omparisons and additionsand runs in O(mn�(m;n)) time on a pointer mahine. This result improves on Dijkstra'salgorithm and Karger at al. [KKP93℄ when m = o(n log n).The main results we prove are stated below.Theorem 1.1 The undireted single soure shortest path problem an be solved using O(SSSP (m;n)+m log�(m;n)+n log log r) omparisons and additions, where m and n are the number of edges andverties, � the inverse-Akermann funtion, SSSP (m;n) the omparison-addition omplexity ofundireted SSSP, and r the ratio of the maximum to minimum edge length.Corollary 1.1 Undireted SSSP an be solved in O(m�(m;n) + n log log r) time on a pointermahine using the same number of omparisons & additions laimed in Theorem 1.1.Theorem 1.2 The undireted all pairs shortest path problem an be solved with O(mn log�(m;n))omparisons and additions in O(mn�(m;n)) time.Our method for onstruting the C.H. di�ers from [Tho99, Hag00℄ in that it depends heavily onknowing the struture and edge lengths of the graph's minimum spanning tree. Additionally, weshow that the omparison-addition omplexity of SSSP is at least as large as the omparisons-onlyomplexity of MST.2 Preliminaries2.1 The ModelWhen the solution to a numerial problem is de�ned by a set of linear inequalities (e.g. all shortestpath problems), the omparison-addition model presents itself as the most fundamental omputa-tional model. In this model the input onsists, among other things, of m real numbers, initially2Thorup's algorithm seems to require RAM-based priority queues to ahieve linear time. Thorup noted thata simpli�ed algorithm runs in O(logU + m�(m;n)) time where U is the largest edge weight, using the followingoperations: omparisons, additions, most signi�ant bit, and buketing. In terms of information gained, one buketingoperation amounts to a branh with up to maxfn; logUg outomes; it is therefore not surprising that an SSSPalgorithm faster than Dijkstra's ould be developed using these operations.2

stored in the variables v1; : : : ; vm. Eah variable vi; 0 < i < 1, an hold one real number andmay only be manipulated3 by additions, of the form vi := vj + vk, and omparisons, of the formvi ?< vj. An algorithm then hooses whih operations to perform based on the outome of previousomparisons. We are primarily interested in the number of numerial operations. Any overheadrequired to examine the non-numerial input or deide whih omparisons and additions to makeis ignored for simpliity.Although this model does not inlude subtration as a primitive operation it may be simulatedwith a onstant fator loss in eÆieny. We may represent a real q1 = a1 � b1 as two reals(kept in separate variables). An addition, q1 + q2 = (a1 + a2) � (b1 + b2), or a subtration,q1 � q2 = (a1 + b2) � (a2 + b1), may be aomplished with two atual additions. A omparison,say q1 ?< q2 � a1 + b2 ?< a2 + b1, may be aomplished with two atual additions and oneomparison. The power of these simple algebrai transformations was explored by Fredman [F76℄who demonstrated that all-pairs shortest paths ould be solved with O(n2:5) omparisons andadditions, though the required overhead of Fredman's algorithm is onsiderably larger. We use thissimulation of subtration in Setion 4.In our algorithms it will also be neessary to approximate the ratio of ertain input variables.Suppose that v1 and vm are known to be the smallest and largest input variables. Then theratios f viv1 : 1 � i � mg an be approximated to within a 1 + � fator using O(1� + log(vmv1) +m(log log vmv1 + log 1�)) omparisons and additions. Consider �rst the ase � = 1. We generate theset D = fv1; 2v1; 4v1; : : : ; 2dlog(vmv1)ev1g using addition for simple doubling, then perform a binarysearh over D for eah variable vi, thus approximating the desired ratios to within a fator of two.For smaller � we simply ontinue the binary searh until the lower and upper bounds on vi aresuÆiently lose. Eah omparison in this binary searh is either of the form a � v1 ?< vi where a isthe sum of at most log(1�) elements from D, or of the form b � v1= ?< vi, where 1 � b; � 1� and is a power of two. The �rst kind of omparison is simple to handle. The seond kind beomessimpler if redued to a omparison without division: b �v1 ?< �vi. There are 1� possible terms whihan appear on the left side of the ?< and m log(1�) terms on the right side, all of whih an be easilyomputed in advane.There are some rather weak lower bounds in the omparison-addition model for shortest pathsproblems. Spira and Pan [SP73℄ showed that regardless of additions,
(n2) omparisons are ne-essary to solve SSSP on the omplete graph. Karger et al. [KKP93℄ proved that all-pairs shortestpaths requires
(mn) omparisons if all summations orrespond to paths in the graph. In straight-line omputation (using operations of the form vi := minfvj ; vkg in lieu of omparisons) Kerr [K70℄proved a lower bound of
(n3) on the all-pairs shortest path problem. Graham et al. [G+80℄showed that for the all pairs shortest distane problem, any information-theoreti argument (inthe omparison-addition model) ould yield only
(n2) bounds on the number of omparisons.Similarly, no information-theoreti superlinear lower bound on SSSP an be obtained as this istantamount to omputing the log of the number of spanning trees.One interesting aspet of our SSSP algorithm is that for ertain ranges of m, n, and r (e.g.,m = O(n), r = 22o(�(m;n))) its omparison-addition omplexity is unknown: it depends upon thedeision-tree omplexity of the minimum spanning tree problem. To date the best upper bound onMST, due to Chazelle [Chaz00℄, is O(m�(m;n)). The following Lemma says that omputing theMST will never be a bottlenek for an SSSP algorithm.3Depending on the problem at hand one may also wish to allow addition and multipliation of onstants.3

Lemma 2.1 The omparison-only omplexity of MST is no more than the omparison-additionomplexity of SSSP.Proof: Consider only undireted graphs with edge weights of the form 2i�n2 for distint i. It iseasily shown that the MST and shortest paths tree for these graphs are idential, regardless ofthe soure. Moreover, in k steps no SSSP algorithm an generate a number whih is the sum ofmore than 2k edge lengths. Sine no SSSP (or MST) algorithm takes more than n2 steps, everyomparison made by the SSSP algorithm is immediately reduible to a omparison between twoedge lengths; hene a SSSP algorithm may be redued to an addition-free MST algorithm. 22.2 NotationThe input is a weighted undireted graph G = (V;E; `) and a distinguished soure vertex s 2 V .Here ` : E !R+ assigns a positive length to eah edge and the length of a path < v0; v1; : : : ; vk >is de�ned asPk�1i=0 `(vi; vi+1). We let `min denote the minimum length edge. For R � V let dR(v) bethe length of a shortest path from s to v in the subgraph indued by R[fvg, and let d(v) = dV (v).Using this notation the SSSP problem is to �nd d(v) for all v 2 V . By onvention jV j = n andjEj = m. We use the term vertex to mean an element of V and node to mean a vertex of anyother graph we onstrut during the ourse of our algorithm. All data strutures required of ouralgorithm may be implemented in the stated time bounds using just a pointer mahine [Tar79℄.2.3 Dijkstra's Algorithm.A tentative distane D(v) � d(v) is maintained for all v, as well as a set S of visited verties whosedistane from s has been determined. One invariant is maintained.Invariant 0. For all v 2 S; D(v) = d(v), and for all v 62 S; D(v) = dS(v).Initially S = ;, D(s) = 0, and D(v) = 1 for v 6= s. In eah step of Dijkstra's algorithm anunvisited vertex with minimum tentative distane is visited, set S is augmented with this vertexand tentative distanes updated appropriately. It is simple to prove that Invariant 0 is maintained.Eventually S = V , and therefore D(v) = d(v) for all v. An unfortunate aspet of Dijkstra'salgorithm is that its omplexity is inherently as bad as sorting the d-values of all verties. Notiethat Dijkstra's algorithm remains perfetly orret if any vertex v is visited for whih D(v) isprovably equal to d(v). Although this modi�ed algorithm is not inherently as diÆult as sorting,it does not suggest an eÆient implementation.The reent algorithms of Thorup [Tho99℄ (for undireted graphs) and Hagerup (for diretedgraphs) [Hag00℄ are implementations of this non-greedy version of Dijkstra's algorithm. Eah usesthe notion of a omponent hierarhy { a struture based on lassifying edges by length { to deidewhen verties are ready to be visited.2.4 Thorup's Algorithm.Thorup's algorithm [Tho99℄ maintains Invariant 0 but might not visit verties greedily. It worksby simulating Dijkstra's algorithm in a pieemeal fashion, identifying parts of the problem whihan be solved independently of one another.De�nition 2.1 A subgraph H is safe over interval I w.r.t. vertex set X if for all v 2 H withd(v) 2 I, dX[H(v) = d(v). 4

In other words, if X = S is the set of visited verties, a subgraph is safe over I if one anorretly solve the shortest path problem for v 2 H s.t. d(v) 2 I, without looking at parts of thegraph outside of H [S.The following Lemmas are not diÆult to prove. See [Tho99℄ for proofs of similar laims.Lemma 2.2 Suppose H is safe over [a; b) w.r.t. X, Ht is the subgraph of H indued by edges oflength less than t, and Ht is the set of onneted omponents of Ht. Then all members of Ht aresafe over [a;minfa+ t; bg) w.r.t. X.Lemma 2.3 If H is safe over [a; b) w.r.t. X, then for a + t < b and X 0 � X [fv 2 H : d(v) 2[a; a+ t)g, H is also safe over [a+ t; b) w.r.t. X 0.Lemma 2.2 says that a subgraph whih is safe over some interval an be deomposed into smallersubgraphs, eah of whih is safe over a shorter interval. Lemma 2.3 says that if a subgraph H issafe over [a; b), then one all verties in H whose d-values lie in [a; a+ t) are visited, H will be safeover [a + t; b). Used together, Lemmas 2.2 and 2.3 form the basis of a reursive SSSP algorithmwhih is parameterized only by hoies of t. In the ase of Thorup's algorithm, edge lengths areassumed to be integers and t is always hosen to be the largest power of two whih disonnetsH. Given this system for hoosing the t parameter, Thorup preomputes a omponent hierarhy toassist the reursive invoations of his algorithm. A node x at level j of the omponent hierarhyrepresents a maximal onneted subgraph Cx indued by edges with length less than 2j . Its hildrenare those nodes fxig whose assoiated fCxig are maximal onneted subgraphs of Cx restrited toedges with length < 2j�1. Leaves of the hierarhy orrespond to verties of the graph so we donot di�erentiate between the two in our notation. Below we give the main reursive proedure ofThorup's algorithm, alled Visit. It takes a omponent hierarhy node x and an interval I withthe guarantee that Cx is safe over I w.r.t. the urrent set of visited verties S. If x is a leaf (i.e. avertex of G), it follows that D(x) = d(x). Extending the D-value notation to omponent hierarhynodes, we let D(x) denote the minimum D-value over all desendant leaves of x. Initially S := ;and Visit(root; [0;1)) is alled on the root of the omponent hierarhy.Visit(x; [a; b))1. If b � a or Cx � S return.2. If x is a leaf, set S := S [fxg, update D-values and return.3. Let t := 2level(x)�14. For eah hild y of x s.t. D(y) 2 [a; a+ t),5. Visit(y; [a; a+ t))6. Visit(x; [a+ t; b))Making Thorup's algorithm eÆient amounts to solving three interrelated problems: buildingthe omponent hierarhy, updatingD-values for omponent hierarhy nodes when leaves are visited(line 2), and quikly deiding whih reursive alls to make (line 4).To build the omponent hierarhy and update D-values Thorup resorts to RAM priority queues;deiding whih reursive alls to make is aomplished by word shifts and buketing. In other words,new tehniques are needed to adapt the omponent hierarhy approah to the omparison-additionmodel. In Setion 3 we desribe the properties of a omponent hierarhy whih is partiularly suitedto the omparison-addition model. The onstrution of this hierarhy, whih is losely linked tothe struture and weighting of the graph's minimum spanning tree, is desribed in Setions 4 and5. It takes O(MST (m;n) + n log log r) time to onstrut our hierarhy, where MST (m;n) is theomparison omplexity of MST. In Setion 6 we desribe our algorithm, deferring its analysis,5

