The Potential Costs and Benefits of Long-term Prefetching fo
Content Distribution

Arun Venkataramani Praveen Yalagandula Ravindranath KokRadia Sharif Mike Dahlin

Technical Report TR-01-13
Department of Computer Sciences
University of Texas at Austin
TAY 2.124, Austin, TX 78712-1188, USA

{{arun,ypraveen, rkoku,dahli@csg, sharif@ecé.utexas.edu

June 30, 2001

Abstract

This paper examines the costs and potential benefits oftinmgprefetching for content distribution. In
contrast with traditional short-term prefetching, in whicaches use recent access history to predict and
prefetch objects likely to be referenced in the near futlomeg-term prefetching uses long-term steady-
state object access rates and update frequencies to ydehjécts to replicate to content distribution
locations. Compared to demand caching, long-term prefegdhcreases network bandwidth and disk
space costs but may benefit a system by improving hit ratesaglsalytic models and trace-based
simulations, we examine several algorithms for selectibgais for long-term prefetching. We find
that although the web’s Zipf-like object popularities maltechallenging to prefetch enough objects to
significantly improve hit rates, systems can achieve sicgnifi benefits at modest costs by focusing their
attention on long-lived objects.

1 Introduction

In spite of advances in web proxy caching techniques in tte fesv years, proxy cache hit rates have
not improved much. Even with unlimited cache space, passaohing suffers from uncacheable data,
consistency misses for cached data and compulsory misseeviodata. Prefetching attempts to overcome
these limitations of passive caching by proactively faighcontent without waiting for client requests.
Traditional short-term prefetching at clients uses reeegess history to predict and prefetch objects likely
to be referenced in the near future and can considerablyowegrit rates [8, 9, 18, 21, 32].

In this paper we examine a technique more appropriate fge lproxies and content distribution networks
(CDNs), namelylong-term prefetching. Rather than basing prefetching decisions on the recetarisf
individual clients, long term prefetching seeks to inceels rates by using global object access patterns to
identify a collection of valuable objects to replicate teloas and content distribution servers.

As hardware costs fall, more aggressive prefetching bes@timactive making it possible to store an enor-
mous collection of data at a large content distribution. $t@ example, in March 2001 an 80GB disk drive
cost about $250 [1]. However, maintaining a collection ohdieds of gigabytes or several terabytes of

useful web data incurs not just a space cost but also a batideagdt: as objects in the collection change,
the system must fetch their new versions. It must also feestlyncreated objects that meet its selection
criteria. Due to the Web's Zipf-like access patterns, adargmber of objects must be actively prefetched
to improve hit rates significantly [8]. Maintaining such dleotion appears to be challenging. In particular,
bandwidth expenditure will be the primary constraint in agderm prefetching strategy. For example, in
May 2001 a 1.5 Mbps T1 connection cost about $1000 per moith [2

In this paper, we present a model for understanding stetady-sache behavior in a bandwidth-constrained
prefetching environment. Our hypothesis is that by préfetg objects that are both long-lived and popular,
we can significantly improve hit rates for moderate bandwittists. The key contribution of our work is

a threshold algorithm for long term prefetching that baéenobject access frequency and object update
frequency and that only fetches objects whose probabifityeing accessed before being updated exceeds
a specified threshold.

Using synthetic and real proxy trace based simulations wablksh that our algorithm provides signifi-
cant hit rate improvements at moderate storage and bardaiodts. For example for a modest-size cache
that receives 10 demand requests per second, long-teretgnefy can improve steady state hit rates for
cacheable data from about 62% (for an infinite demand-onthe&gato above 75% while increasing the
bandwidth demands of the system by less than a factor of 2.egenerally, we quantify the trade-offs
involved in choosing a reasonable prefetch threshold favengbject access rate. Based on our trace based
simulation, we conclude that the key challenge to deplogunch algorithms is developing good predictors
of global access patterns. Although we leave developmentidii predictors as future work, we provide
initial evidence that even simple predictors may work well.

The rest of the paper is organized as follows. Section 2 gesvisome background information about
prefetching and our prefetching model. Section 3 presémsalgorithms that we consider for long-term
prefetching. Section 4 discusses the methodology we useatoate long-term prefetching. Section 5 dis-
cusses the results of our simulations and provides insajtdst how long-term prefetching works. Section
6 discusses related work. Section 7 summarizes our connkisi

2 Background

This section describes five key parameters of web workldaatsietermine the effectiveness of caching and
prefetching: prefetching models, object popularitiegeobsizes, object update patterns and lifetimes, and
the availability of spare bandwidth for prefetching.

2.1 Prefetching models

We categorize prefetching schemes into two groups: skar-eind long-term. In the short-term model,
a cache’s recent requests are observed and likely nearftune requests are predicted. Based on these
predictions, the objects are prefetched. Considerabéarels has been performed on this type of model [18,
21, 32], most of which are based on variations of a Predidtpiartial-Matching (PPM) strategy [16].

In the long-term model of prefetching on which we focus, wsuase that a cache or content distribution
site maintains a collection of replicated objects based lobal access pattern statistics such as object
popularity and update rates. We envision a hierarchicatstre for content distribution with lower level
caches (proxy caches) primarily focusing on servicingntlrequests and the higher level caches (content
distribution servers) on effective content distributiosing long-term prefetching. Proxy caches can use
short term prefetching to improve hit rates further. Cotsarvers maintain a collection of popular objects

2

and update these objects as they change. New objects ai tadtie collection based on server assistance
and user access.

The content distribution system requires four components:

1. Satistics tracking. Our selection algorithm uses as input: (i) estimates of abjetimes and (ii)
estimates of access frequency to objects. MaintainingeteeBmates is a key challenge to deploying
a long-term prefetching based system, and we do not addiiggsroblem in detail.

If content servers are trusted by the content distributigsiesn, they may be able to provide good
estimates. Otherwise, the system itself must gather ageebability reports from clients or caches
and track object update rates. For example, a distributkgldtion of caches and content distribution
nodes could gather local object access distributions grattréhese statistics to a central aggregation
site which would distribute the aggregate statistics tocthehes and nodes. There is some evidence
that relatively short windows of time can provide good ascestimates [25].

2. Section criteria. Based on the statistics, the selection criteria moduleraétes which objects
should be included in the replica’s collection. The resthig paper discusses this issue in detail.

3. Data and update distribution. The system must distribute objects and updates to objectttes that
include the objects in their collection of replicated oltgedNe model a push-based system in which
updates to replicas are sent immediately to caches that“katscribed” to the object in question.
We leave the details of constructing such a system as futark. w

4. Request redirection. In order to enable clients to transparently access a neanby af a replicated
object, an effective redirection scheme is needed. A numbexperimental [20, 38] and commercial
systems [3, 4] address this issue.

2.2 Popularity distributions

A key parameter for understanding long-term prefetchirthésdistribution of requests across objects. Sev-
eral studies [6, 15, 22, 36] have found that the relativeridigion with which Web pages are accessed
follows a Zipf-like distribution. Zipf's law states thatétrelative probability of a request for tliéh most
popular object page is inversely proportionalitadCunha et al. [15] found that the request probability for
a Web cache trace, when fitted with a curve of the farfif*, yields a curve with exponent af = 0.982
which we will use as a default parameter. Other researclass teached similar conclusions [8].

According to this model, given an universe &f Web pages, the relative probability ih most popular
page is

1

ko ()

For our synthetic workload, we will use this model of accessith N = 10%, a = .982, andC = 0.0389.

(1)

C
pi = —, wWhereC =
Za

2.3 Object sizes
Studies by Barford and Crovella [14] show that web objeatsizxhibit a distribution that is a hybrid of a

log-normal and a heavy tailed Pareto distribution. The ayersize of a web object has been shown to be
around 13KB. Work by Breslau et al. [8] suggests that thetitlis or no correlation between object sizes

3

and their popularity. However, an earlier study by Crovetlal. [15] claims an inverse relationship between
object sizes and popularitigse. usersprefer small documents. They show a weak Zipf correlation between
popularity and size with a zipf parameter -0.33. However weermbt observe an appreciable correlation
between object sizes and popularity in the Squid traces alyzaed. Hence, for our simulations we do not
assume any correlation. It must, however, be emphasizéd thainverse correlation were to be assumed, a
prefetching strategy based on maintaining popular objeittperform better with respect to both bandwidth
and cache size.

2.4 Update patternsand lifetimes

Web objects have two sources of change - (i) updates to ghbjleat are already present, (ii) introduction
of new objects. The work by Douglis et al. [17] shows that (nddetimes of web objects are distributed
with an overall mean of about 1.8 months for html files and 3dhths for image files. Though they
analyzed lifetimes for objects in varying popularity clesslittle correlation is observed between lifetime
and popularity. The work by Breslau et al. [8] further strémggs the case for lack of strong correlation
between lifetime, popularity and size of objects.

The lifetime distribution for a single object over time isufad to be exponential in [9]. They consider
the Internet as an exponentially growing universe of objedth each object changing at time intervals
determined by an exponential distribution. Their analgbisws that the age distribution of an exponentially
growing population of objects with (identical) exponehtige distributions remains exponential with the
parameter given by the sum of the population growth and bhjgdate rate constants. They then show with
respect to the cost of maintaining a collection of fresh papabjects that the introduction of new objects
on the Internet is equivalent to changing objects in a stetieerse of objects with a different rate parameter.

In our simulations we use the data for lifetime distributpmesented in [17]. We assume no correlation with
popularity or size. Our criterion for selecting an objeché&sed on its current popularity and mean lifetime
and is independent of its past and of other objects. We thierafescribe our algorithm in terms of the

bandwidth cost to update a fixed collection of objects as #reyupdated. But following analysis done by
Brewington et al. [9], our algorithm and analysis also afplthe case of maintaining a changing collection
of objects that meet the system'’s replication selectioiega. We explain this assumption in greater detalil
in section 4.

2.5 Spare prefetch resources

Prefetching increases system resource demands in orderptove response time. This increase arises
because not all objects prefetched end up being used. Resotwnsumed by prefetching include server
CPU cycles, server disk I/O’s, and network bandwidth. Tfoeee a key issue in understanding prefetching
is to determine an appropriate balance between increasedroe consumption and improved response
time.

Unfortunately, system resources and response time areraotld comparable quantities, and the appropri-
ate balance depends on the value of improved response timanahe amount of “spare” system resources
that can be consumed by prefetching without interferindhwliémand requests. For example, if a system
has ample spare bandwidth, it may be justified to, say, qpésihandwidth demands to improve response
time by, say, 20%, but in other circumstances such a traideenfld be unwise.

Often, prefetch algorithms explicitly calculate the prbitity that a candidate for prefetching will be used.
For such algorithms, it is natural to specifypeefetch threshold and to prefetch objects whose probability

of use exceeds the prefetch threshold. This approach lthetexcess resources consumed by prefetching
to a factor of at mosm times more resources than a demand system. Note that thehobaint

of resource expansion may remain significantly below thisenfpound because systems may not prefetch
all objects and because some objects may attain a highaul ygefetch fractions than enforced by this
threshold.

Although determining an appropriate prefetch threshoidafeystem is challenging, several factors support
the position that aggressive prefetching can be justifies évt “wastes” system resources.

e User timeisvaluable. If bandwidth is cheap and human waiting time expensive,gbtbfng can be
justified even if it significantly increases bandwidth denfgand only modestly improves response
times. For example, Duchamp argues for a prefetch threstsfold25 in his hyperlink prefetching
system [18], and Chandra et al. [12] argue that thresholdsvasas 0.01 may be justified given
current WAN network transfer costs and human waiting tinlees

e Technology trends favor increased prefetching in the future. The prices of computing, storage, and
communications fall rapidly over time, while the value ofhiman waiting time remains approximately
constant.

e Prefetch requests may be less expensive to serve than demand requests for the same amount of data.
Servers may schedule prefetch requests to be handled irathkghound, and networks may benefit
from the reduced burstiness of prefetch traffic [14]. Furtiere, techniques such as multicast, digital
fountain [10], delta-encoding [30], and satellite linkspapr well suited to long-term prefetching
for content distribution and allow data transmission at a&lmlower cost than traditional network
transmission.

Overall, we conclude that if aggressive prefetching is showvsignificantly improve response time, the
infrastructure can and will be built to accommodate it.

3 Model and algorithms

In contrast with traditional caching, where space is thenpry limiting factor, for long-term prefetching
bandwidth is likely to be the primary limiting factor. In ghsection, we first describe an equilibrium model
useful for understanding the dynamics of bandwidth-caistd long-term prefetching. We then describe
our algorithms.

3.1 Bandwidth equilibrium

A long-term prefetching system attempts to maintain a ctthe of object replicas as these objects change
and new objects are introduced into the system.

Figure 1 illustrates the forces that drive the collectiorfre$h objects stored in a cache towards equilibrium.
New objects are inserted into the cache by demand requastaids in the cache and by prefetches. Objects
are removed from the set of fresh objects in the cache wherrsenpdate cached objects, invalidating the
cached copy.

For simplicity, we describe a system in which servers imlatt clients’ cached objects when they are updated [132672.
Client-polling consistency would yield essentially thengamodel: in that case, objects that expire are removed fhensét of
objects that may be accessed without contacting the server.

5

Demand fetch
uncached object

Cached object
Collection of invalidated
objects in cache

Prefetch object

Figure 1: Equilibrium in bandwidth-constrained cache.

Prefetching increases
the rate that new objects
are added to the cache

New X1 O New X2

Rate of object insertion
(RegRate * MissRate(X))

Original Equilibrium

Objects/Second

By prefetching

less fast-changing
objects, the invalidation
rate falls for a given X

Rate of object invalidation
(increases with increasing /X/)

IXI (Number of fresh cached objects)

Figure 2: Equilibrium in bandwidth-constrained cache.

The solid lines in Figure 2 illustrates how this equilibriumattained for a demand-only cache with no
prefetching. LetX be the set of fresh objects in the cache at a given momenteaji||denote the number
of objects in this set. If the number of requests per secomdjlsent to the cache BeqRate, then the rate
of object insertion into this set BeqRate - MissRate(X). For a given request rate, the miss rate typically
falls slowly as|X| increases [19, 23], and the rate of insertion falls with it the same time the rate of
invalidations (or expirations) of cached objects increasg| X | increases. As the figure illustrates, these
factors combine to yield an equilibrium collection of oldgthat can be maintained in the cache.

The dotted lines in Figure 2 illustrate how prefetching charge this equilibrium. First, as the horizontal
line illustrates, prefetching increases the rate at whieWw objects are added t&. If the collection of
objects prefetched have similar lifetimes to the collectid objects fetched on demand, then invalidation
rates will behave in a similar fashion, and a new equilibriwith a larger setX will be attained as shown
by the point labeledNew Equilibrium X;.

A prefetching system, however, has another degree of freeda@an choose what objects to prefetch. If a
prefetching system chooses to prefetch relatively lomgdliobjects, its invalidation rate for a given number
of prefetched objectsX | may be smaller than the invalidation rate for the same nurobgemand fetched
objects. This change has the effect of shifting the invéilisarate line down, and yields a new equilibrium,
New Equilibrium X5, with | Xo| > | X1].

A potential disadvantage of preferentially prefetchingddived objects is that the system may thereby
reduce the number of frequently-referenced objects igpchEs. In particular, althoudis| > | X1, if the
objects inX; are more popular than the objectsXn, the hit rate for equilibriumX; may exceed the hit
rate for equilibriumXs.

