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Active database technology enhances traditional databases with rules that 

are executed in response to database events.  This enhancement promises excep-

tional returns.  Useful applications of the technology include view maintenance, 

workflow, and real-time decision control systems. 

Unfortunately, penetration of active databases has largely been restricted to 

simple rule systems.  This narrowed focus can be attributed to an explicit connec-

tion of the active rules to the underlying concurrency control system.  Although 

this explicit connection provides a level of flexibility, it becomes semantically 

intractable in more complex applications.  Furthermore, rule execution is computa-

tionally intensive.  Since rules spawn the execution of many queries over the con-

tents of the database, substantial skill is required to develop complex applications 

without introducing long duration transactions. 

This dissertation addresses three issues surrounding application develop-

ment that inhibits the feasibility of active databases.  First, a quantitative evalua-

tion is performed on the semantics of VenusDB, a modular active database 

language that executes within the nested transaction model.  This evaluation pro-

vides evidence that rule modules improve system maintainability.  Second, the 

most general contribution of this dissertation is the identification and study of Log 
vi



Monitoring Applications (LMAs).  LMAs are expert system applications that ana-

lyze logs maintained in a database.  This dissertation develops the formal execu-

tion semantics and correctness proofs of concurrency schemes for applications 

within the LMA class.  The results show that only a minimal number of coupling 

modes are necessary for the database integration of hard rule systems obeying the 

LMA restrictions.  Third, the architecture and evaluation of an active database 

optimizer is presented.  This optimizer uses database statistics to optimize rules as 

well as suggest physical schema optimizations.  The optimizer is integrated within 

VenusDB to improve system scalability. 
vii
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Chapter 1  Introduction

Active databases are databases augmented with production rules that are 

evaluated only on specified events [22,36,94].  Such production rules, coined 

Event-Condition-Action rules (ECA  rules), have been the subject of investigation 

since the early 1980’s.  This early work gained impetus from the heavy exposure of 

rule programming associated with Japan’s Fifth Generation Project.  At that time, 

AI research was developing expert systems that exploited databases for input.  It 

quickly became apparent that many of the core database services could be more 

effectively implemented using active rules [98].  As a result, active database 

research focused on applications such as integrity constraints and view mainte-

nance.  As the work matured, new applications, such as workflow systems, 

appeared.  Workflow systems, programs that automate the movement of informa-

tion in the business process, present interesting transaction and persistent chal-

lenges [15].  

AI research, on the other hand, was evolving to solve complex search 

related problems.  This research concentrated on improving the performance of 

rule matching algorithms [17,39,63] and parallel computation [50,60,63].  Active 

database applications that necessitated rule processing of this type leveraged this 

work by replicating its data within an expert system shell1.  These loosely coupled 

systems suffer from the inefficiency of copying and reformatting data, wasted 

space, and data consistency problems.

Citing the problems of loosely coupled systems, recent work has focused 

on implementing complex rule applications using active database technology 

1. Haley Enterprise’s Rete++ and GenSym’s G2 are two examples of commercial expert 
systems that provide hooks for copying data from a database.
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[69,86].  This dissertation addresses issues that inhibit the development of such 

complex applications.  

The complexity of applications 

is explained in a two-axis active data-

base application taxonomy segregated 

by the complexity of the program’s rule 

systems.  On one axis of this taxon-

omy,  Micheal Stonebraker proposed a 

classification based on the amount of 

search by the applications’ rule systems 

[86].  Simple rule systems have few rules with little interaction, while hard rule 

systems have many rules with significant interaction.  On the other axis, Lance 

Obermeyer suggested classifying problems on the amount of the data being 

searched [69].   This dimensional taxonomy yields four distinct regions (Figure 1).  

Region I consists of simple rule systems that investigate small amounts of 

data.  Applications within this region are implemented using standard program-

ming languages.  

Region II consists of simple rule systems that investigate large amounts of 

data.  It is within this region that early active database research was focused [33, 

97].  Region II applications require the sophisticated data retrieval methods of 

standard databases, but do not necessitate robust rule engines for complex search-

ing.  Representative applications include core system services such as view main-

tenance, integrity constraints, and workflow systems [3,15,22,36,94].  

Region III consists of hard rule systems that investigate small amounts of 

data.  The minimal data requirement of this region alleviates the need for the data-

base facilities of decision support and concurrency control.  As such, region III 
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applications are implemented using expert system languages such as the OPS fam-

ily of rule languages, CLIPS, and Venus [18,40,44]. 

 Lastly, region IV applications consist of hard active database applications.  

These applications consists of hard rule systems that investigate an extensive 

amount of data.  The complexity of these problems requires robustness from both 

the rule inference engine and the data retrieval utility.  Representative applications 

include network security monitors and real-time decision control systems 

[85,94,95] (See Appendix). 

The goal of this research is to facilitate hard active database applications by 

abstracting language limitations that inhibits their development.  The contributions 

of this dissertation are threefold.  

First, the previous generations of active database languages were designed 

for Region II applications in which individual rules are executed as independent 

programs.  These languages contain operationally defined semantics with no prim-

itives for rule organization [37,78,100].  As such, these early languages do not 

scale to hard active database development.  This dissertation addresses language 

semantics by detailing a quantitative evaluation of the semantics of the active data-

base language VenusDB as it relates to code complexity.  VenusDB is an active 

database language that extends the traditional expert system model by including 

facilities for operating directly on database tables as well as a formal definition for 

rule modules that execute within the nested transaction model.  This evaluation 

provides evidence that these language facilities improve system maintainability.   

Second, ECA rules are not simply production rules applied to data within a 

database; rule computation must be integrated within the decision and concurrency 

control systems of the underlying database.  The accepted method of rule integra-

tion, introduced by the HiPAC project, is for active database developers to explic-
3



itly specify transaction behavior via a pair of coupling modes [33].  The modes 

specify the transaction relationship of 1) database events to condition evaluation 

and 2) condition evaluation to action execution.  This method has been effective in 

integrating Region II applications [86].  However, ongoing research has lead to the 

development of dozens of coupling modes [21,24,33,98].  As a result, coupling 

modes often burden application programmers with extremely difficult conceptual 

specifications, and they have proven to be one of the most difficult conceptual 

obstacles in the development of hard active database applications.  

It is the author’s belief that the details of transaction models and concur-

rency schemes are application dependent.  In support of this hypothesis, the most 

general contribution of this dissertation is to begin insulating application program-

mers from the complexities introduced by coupling modes.  In the course of devel-

oping the applications for this dissertation, a class of applications called Log 

Monitoring Applications (LMAs) became evident.  LMAs are a subclass of hard 

rule systems that analyze logs maintained in a database.  This dissertation defines 

formal execution semantics for the LMA class and presents correctness proofs of 

concurrency schemes for LMAs.  The results demonstrate that only a minimal 

number of coupling modes are necessary for the database integration of hard rule 

systems obeying the LMA restrictions.  Further, since the correctness proofs are 

constructive, the correctness theorems themselves may be used to form a compiler-

based rewrite system that specifies concurrency schemes.  This dissertation repre-

sents the first step in such a general purpose system that would completely isolate 

application programers from the details of concurrency control.

Third, active database applications are computationally intensive.  In 

essence, each rule executes one or more queries over the contents of the database.  

In the context of hard active database applications, it is essential to optimize the 

database design for scalable performance.  Current state-of-the-art active databases 
4



fall short of this goal by relying on the underlying database optimizers that only 

optimize individually executed queries [74,98].  Consequently, physical schema 

optimizations are left to the database administrators.  Within hard active databases, 

this decision requires administrators to analyze database workloads, the structure 

of all rules, as well as the columns of all tables in an unfamiliar domain.  This dis-

sertation addresses these issues by introducing the architecture and evaluation of 

the VenusDB optimizer.  The VenusDB optimizer uses databases statistics to cou-

ple the queries to be executed on component databases with suggestions for physi-

cal schema optimizations.  Together, these techniques assist database 

administrators in deploying scalable systems. 

This dissertation is organized as follows.  Chapter 2 presents background 

information.  Chapters 3-5 present the main contributions of the dissertation.  Spe-

cifically, Chapter 3 introduces VenusDB and details the language evaluation; 

Chapter 4 introduces Log Monitoring Applications and presents the concurrency 

schemes for such applications; and Chapter 5 describes the VenusDB optimizer 

and its empirical evaluation.  An Appendix is provided that details a “real” LMA 

that demonstrates the applicability of these contributions.  Lastly, Chapter 6 con-

cludes with closing remarks, and Chapter 7 presents a list of references. 
5



Chapter 2  Background

This chapter presents the background information needed for this disserta-

tion.  It begins by reviewing forward chaining production systems (Section 2.1), 

and then introduces active databases (Section 2.2).  The active database prototype 

used in this dissertation, VenusDB, is based on the fundamentals presented in this 

chapter.

2.1  Production Systems

2.1.1  Definitions

Forward chaining production systems consist of three components.  These 

are a set of rules or productions, a representation of state called working memory, 

and an execution model implemented in the inference engine.  Rules are composed 

of two parts: a condition and an action.  The rule condition is a predicate over the 

working memory.  Other common names for the rule condition are the rule guard, 

the left hand side (LHS), the if part, or the subsequent.  The action of a rule is a list 

of statements or commands that modify the working memory.  Other common 

names for the rule action are the right hand side (RHS), the then part, or the rule 

consequent [40,46].

The working memory is organized into groups of objects called classes.  

Classes are equivalent to database relations.  Instances of a class are called work-

ing memory elements and are equivalent to database tuples. 

2.1.2  Execution Semantics

The execution semantics of rule languages can be divided into two models: 

the OPS model [39,40] and the fixed point semantics model [35,67].  The OPS 
6



model, developed for the OPS family of rule languages, is operationally deter-

mined by the behavior of the RETE match algorithm [39].  The OPS model pro-

ceeds by executing the match-select-act cycle.  Rule evaluation begins in the 

match phase where the RETE algorithm evaluates all of the rule guards against 

working memory to produce a conflict-set of satisfied rules.  The collection of 

individual working memory elements that satisfy a particular rule guard is called 

an instantiation.  Next, the select phase is where the RETE algorithm picks a sin-

gle instantiation from the conflict set to pass to the act phase.  Lastly, the act phase 

is where the RETE algorithm executes the rule action, and the rule is said to have 

fired.  This cycle continues until no further rules satisfy the match cycle.   

The fixed point semantics model is derived from the formal semantics of 

Dijkstra’s guarded command language [35].  Rule languages with formal seman-

tics, such as UNITY, are most often used for program validation and/or parallel 

programming [67].  Fixed point semantics specify that a program may begin in any 

state satisfying a set of initial conditions.  In each step of execution, a rule is 

selected nondeterministically and evaluated.  This rule evaluation is atomic, a sin-

gle transition in a state space.  A restriction on the nondeterministic choice is that 

every rule is selected infinitely often, or in the colloquial, always has an the same 

chance of being selected.  This restriction is called the fairness policy.  Program 

execution continues until fixed point is reached, a state in which the execution of 

any rule does not alter the working memory. 

The VenusDB language used in this dissertation is based on fixed point 

semantics.  As such, VenusDB programs follow formally defined semantics where 

rule actions are defined to be atomic state transitions and programs terminate upon 

fixed point.  These semantics allows formal reasoning about the program behavior 

and transaction models of VenusDB programs.
7



2.2  Active Databases

Traditional databases are systems designed to durably store and efficiently 

search through large amounts of data.  Active databases enhance traditional data-

bases with the ability to react to database events.  Active behavior is achieved by 

extending the database with three main components.  First, active database pro-

grams are encoded as ECA rules.  ECA rules are production rules that are evalu-

ated only on specified events.  Second, active databases address data durability and 

isolation issues in a series of coupling modes that relate rule execution and data-

base transactions.  Third, an architecture interface must be defined between pro-

duction rules and the database facilities.  This section presents these and other 

important design issues of active database systems.

2.2.1  ECA rules

Expert system rules are Condition-Action rules (CA-rules), rules evaluated 

on every update to working memory.  In the active database paradigm, such evalu-

ation is prohibitive since external processing spawns an unlimited number of 

C o n d it io n - A c t io n  r u le s
i f (  a  >  1 0 )  th e n  a  =  a  -  1

   C o n d i t io n     -    A c t io n

E v e n t - C o n d it io n - A c t io n  r u le s
w h e n  a  i s  m o d i f ie d  i f (  a  >  1 0 )  th e n  a  =  a  -  1

          E v e n t         -      C o n d i t io n     -    A c t io n
FIGURE 2. ECA Rules
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events to the database-stored working memory.  Thus, active database rules follow 

the model proposed by HiPAC [33].  This model extends rules to include an event 

section that describes when to evaluate a rule.  The resulting rules are called Event-

Condition-Action rules (ECA-rules).  Refer to Figure 2.  ECA rules offer the pro-

grammer more flexibility than traditional CA rules, and they reduce the overall 

search space.  For example, consider the rule in Figure 2 that maintains a counter 

with a maximum value of 10.  The rule developer may have prior knowledge that 

this rule needs to be evaluated only when the counter is modified and will never 

execute in any other situation.  ECA rules provide this flexibility.

The events recognized by ECA rules can be classified as primitive events 

or composite events.  Primitive events are singular occurrences of events that can 

be subdivided into database events, transaction events, temporal events, and user-

defined events [44,74,98].  Database events include the insertion, deletion, or 

updating of data within the database; transaction events include the begin, commit 

Event HiPAC Ariel POSTGRES REACH SAMOS Sentinal Starburst

Database √ √ √∗ √ √ √ √
Transaction √ √ √ √
Temporal √ √ √ √
User Defined √ √ √ √

Event HiPAC Ariel POSTGRES REACH! SAMOS Sentinal† Starburst
Conjunction √ √ √
Disjunction √ √ √ √ √
Negation √ √
Sequence √ √ √ √
Closure √ √ √ √
History  √ √
* Additionally supports the retrieve event
!  Additionally supports milestone events
† Additionally supports interval and periodic events

Composite Events

Primitive Events

TABLE 1. Events Recognized by Active Database Systems 
9



or abort of a transaction; temporal events occur at absolute, relative or periodic 

time intervals; and user-defined events are signaled by the user application.

Composite events are described by a composition algebra.  Besides the 

conjunction (evaluate if E1 & E2), disjunction (evaluate if E1 | E2), and negation 

of events (evaluate if E1 does not occur in an interval), composite events can be 

composed of a sequence (evaluate if E1 occurs before E2), closure (evaluate if E1 

occurs one or more times in an interval), and history of events (evaluate if E1 

occurs n times in an interval).  Table 1 presents a summary of the events recog-

nized by several active database prototypes.

2.2.2  Coupling Modes

The relationship between rule execution and database transactions has been 

addressed in a series of coupling modes [33,74,98].  An ECA rule contains two 

classes of coupling modes.  The first class is the E-C coupling mode, the transac-

tion relationship between the occurrence of an event and the condition evaluation.  

The second class is the C-A coupling mode, the transaction relationship between 

the evaluation of the rule’s condition and its action’s execution.  

immediate deferred decoupled

immediate

condition checked and 
action executed in same 
transaction not allowed

condition checked in 
action executed in 
separate transaction

deferred

condition checked after 
event, action executed at 
end of transaction

condition checked and 
action executed at end of 
transaction not allowed

decoupled

condition checked after 
event, action executed in 
separate transaction

condition checked at the 
end of the transaction, 
action executed in 
separate transaction

condition checked in a 
separate transaction, 
action executed in 
another separate 
transaction

C
on

di
tio

n-
A

ct
io

n
Event-Condition

TABLE 2. Coupling Modes
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Many coupling modes have been proposed.  The first and most predomi-

nately used modes are immediate, deferred, and decoupled [33,74,98].  In immedi-

ate mode, execution of the pair occurs in the same transaction; in deferred mode, 

execution of the second part of the pair occurs just prior to transaction commit; and 

in decoupled mode, execution of the pair occurs in separate transactions.  Table 2 

summarizes the semantics of these coupling modes.  REACH proposes the addi-

tional modes of detached causally dependent in either of parallel, sequential or 

exclusive modes to give abort and commit semantics for decoupled transactions 

[21].  

2.2.3  Concurrency Control and Recovery

A major difference between active databases and expert systems is that 

active database programs may contain readers and writers that are external to the 

rule programs.  However, concurrency with respect to execution correctness 

between the rule application and other database users is ignored by most active 

database systems.  This is because most active databases are designed to address 

“simple” rule systems.  In this case, programs are (degenerately) correct if rules 

acquire the necessary locks [69,74].  However, correctness is not ensured if the 

active database programs consist of multiple rules.  This dissertation addresses this 

deficiency.

The issue of recovery is similarly colored by a concentration on single rule 

transitions.  It is assumed that the state prior to execution of the failed rule is a 

valid state.  Therefore, a system rollback only recovers single rules.  Other systems 

use the nested transaction model for rule recovery [33].  These systems still fail to 

consider recovery with respect to deep chains of rule firings and decoupled rules 

[74]. 
11



2.2.4  Architecture

The three most common active database architectures are integrated, 

hybrid and layered.  Integrated approaches are implemented directly within the 

database.  Advantages of this approach are that all database facilities are readily 

available, including the DBM’s querying and transaction utilities.  Thus, these sys-

tems are implemented without a loss in performance.  An obvious disadvantage of 

this approach is that the database internals must be known.  Consequently, a sub-

stantial amount of knowledge and effort is required for development.  

The hybrid approach uses open database kits such as OpenOODB [96], 

Starburst [97], and Exodus [23].  This approach retains many of the advantages of 

integrated approaches, including performance, while reducing the development 

effort by publishing an internal database API.  A disadvantage of the hybrid 

approach is that this published API tends to be quite complex.  Further, applica-

tions developed using a hybrid architecture are still limited to a single database.

Last, the layered approach treats the database as a block box.  Access to the 

database is only through standard database facilities (e.g.  SQL queries).  This 

approach has the advantages of providing active capabilities without any modifica-

tion or knowledge of database internals.  Further, in the presence of the SQL stan-

dard, the layered approach can provide active database capabilities to 

heterogeneous systems.  This flexibility often comes at the expense of perfor-

mance since substantial overhead may be incurred.  This dissertation addresses this 

shortcoming by demonstrating the acceptable performance of a layered architec-

ture within the VenusDB active database system.
12



Table 3 presents the architecture of several active databases.  The table also 

presents the data representation (object-oriented or relational) of their respective 

databases.

2.2.5  Language Semantics

Active database language semantics are most often operational.  As a 

result, many different semantics have been proposed.  For example, Starburst 

defines behavior based on deferred coupling modes and delta relations, relations 

that store the net effect of database modifications within a transaction [8].  HiPAC 

defines semantics that allow developers to pick between immediate, deferred, and 

decoupled coupling modes within the nested transaction model.  This nested 

behavior encourages concurrent rule execution [33].  Ariel, on the other hand, uses 

the TREAT match algorithm proposed for expert system languages [52,63].

Picouet and Vianu study this lack of formalism [78,79].  In their work, they 

develop a general framework for active database execution that is consistent with 

the intersection of the ARDL [82], HiPAC [33], Postgres [87], Starburst [97] and 

Sybase [88] technologies.  Their resulting execution model operates in two phases.  

The first phase executes a queue of immediate coupling mode rules while updating 

both a queue of deferred coupling mode rules and the immediate queue.  The first 

Architecture Ariel POSTGRES Starburst HiPAC REACH† SAMOS Sentinel

integrated √ √ √ √
hybrid √ √
layered √ √
† Re-implemented as an integrated architecture

Relational Object Oriented

TABLE 3. Architectural Design of Active Database Systems 
13



phase ends when the immediate queue becomes empty.  The second phase exe-

cutes the rules in the deferred queue.  

Other approaches formalize semantics by mapping active rules to deduc-

tive logic [81].  In this category, Zaniolo identifies a super-set of Datalog programs 

called XY-stratified programs [100].  Zaniolo then describes a transformation of an 

XY-stratified program to deductive logic.  The transformed program, including 

extensional facts that represent database histories, executes using the formal mod-

els of deductive databases.  Flesca and Greco propose semantics in which an active 

database program is transformed into a Datalog program [37].  The program is 

then executed by computing a stable model and updating the database [43].  Bidoit 

and Maabout perform a similar transformation as do Flesca and Greco [13].  How-

ever, Bidoit and Maabout’s execution model is exactly the well-founded semantics 

of Datalog.  A very different approach is described in [6].  Baral et al. propose the 

active database language, �active. �active’s syntax and semantics are derived from 

the causal action description language introduced in [42]. 

2.2.5.1  Confluence and Termination

Since rule evaluation is non-deterministic, another concern for active data-

base language semantics is to determine properties that ensure program termina-

tion and confluence.  A rule program is confluent when the termination state is 

independent of the order of rule execution.  Termination is essential for real-time 

mission critical systems.  Further, confluence is highly desirable or even critical in 

systems, such as financial management systems, where the termination state must 

be guaranteed, unambiguous, and reproducible.  

Aiken et al. address termination and confluence in active databases by 

introducing static methods for analyzing rule programs [1,2].  Their algorithm pro-

ceeds by building a rule trigger graph from the input program.  The graph is then 
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analyzed for cycles and commutative rules, pairs of rules that can execute in any 

order without influencing the trigger graph.  The analysis either concludes that a 

program terminates and is confluent, or identifies suspect rules and give hints for 

fixing the problems.  These methods are also used to determine observable deter-

minism, the situation when actions viewable to the environment, like printing to a 

screen, are always appear the same regardless of rule execution order1.

In addition to Aiken et al.’s work, many of the formalisms presented in 

Section 2.2.5 focus on the termination and confluence properties.  Zaniolo intro-

duced durable and ephemeral changes to the database that assist in deciding the 

termination problem [101].  Flesca et al. [37]  describe how stable-model seman-

tics ensure confluence for a larger class of problems than Aiken et al.’s static meth-

ods.  Comai and Tanca exploit Datalog’s well known confluence and termination 

properties by mapping active rules to Datalog [29].  Finally, Bailey et al. identify 

rule programs on the boundaries of (un)decidability [5].  

2.2.6  Optimization

Active database program optimizations generally fall into two categories.  

The first category is the optimization of the underlying execution algorithms.  As 

such, many active database prototypes [16,23,69] use the incremental algorithms 

used by the AI expert system languages such as the RETE [39], TREAT [63], and 

LEAPS [17] match algorithms.  These algorithms are useful for optimizing rule 

programs that spawn deep chains of rule evaluation.

The second category of active database optimizations are within the rules 

themselves.  Many of these optimizations are left to the underlying DBMS’s query 

1. Note, observable determinism and confluence are orthogonal: a confluent rule program 
is not necessarily observable deterministic and vice versa.
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optimizers due to the predominance of the integrated architecture.  However, there 

is a set of well excepted heuristics for optimizing active database rules.  In [74], 

Paton presents some of these heuristics, including exploiting rule parameters and 

moving constraints as close to event evaluation as possible.  Paton further explains 

how these heuristics allow multiple rules to be optimized using multiple query 

optimizers.  His methods exploit the static methods for rule analysis presented in 

[1] to determine when it is possible to eliminate duplicate work.  

Further optimization of multiple rules presented in the AI literature is often 

avoided [41].  This is largely due to the operational semantics of most active data-

base languages.  However, in [70], Obemeyer suggests a method for trigger filter-

ing using decision trees.  This method reduces the number of times predicates must 

be evaluated due to database events.  

Chapter 5 of this dissertation expands upon these techniques to include 

methods for suggesting physical schema optimizations.
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Chapter 3  The VenusDB Active Database Language

This chapter presents the active database prototype, VenusDB, that is used 

for the application work in this dissertation.

VenusDB is a plat-

form for research in active 

database production sys-

tems.  It is based on Venus, a 

main memory expert sys-

tem shell designed to 

address the shortcomings of 

early rule languages.  One of 

Venus’ primary contributions is its introduction of structured programming within 

a rule paradigm.  Venus rules are organized in parameterized modules whose 

semantics maintain the data driven execution of rule languages.  Venus addition-

ally addresses the performance problems of early rule languages by compiling its 

rules into C++ and executing the LEAPS match algorithm [16,17,64]. 

VenusDB is an extension of Venus that provides the benefits of the Venus 

language to active databases.  Such extensions include the support for events.  In 

effect, events move the Venus language from the Condition-Action rules of expert 

system languages to the Event-Condition-Action rules common to active data-

bases.  Other extensions include the installation of the Abstract Machine Interface 

(AMI), an API between the LEAPS match algorithm and persistent storage [69].  

The AMI provides a tight integration between expert system behavior and active 

databases.

Rule Source 
Code

Database 
Schema

VenusDB compiler

Trigger Filters
[Obermeyer 99]

Schema Opts
[Warshaw 00]

Rule code
[Brant, Obermeyer 94]

Event                                  Condition-Action                             indexing hints

FIGURE 3. VenusDB Compiler Architecture
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Due to its relationship to Venus, the VenusDB language is a compiled rule 

language.  Its compiler was originally designed to take both rule language source 

and database schema information as input [30] (Figure 3).  The output from the 

compiler was to be a set of trigger filters implementing the event mechanism [69], 

the C++ rule code that communicates with the LEAPS match algorithm, and a set 

of schema optimizations.  This chapter describes the rule source, semantics, and 

extensions of Venus to the active database domain.  The chapter concludes with a 

quantitative evaluation of the code complexity of programs written in VenusDB.  

The compiler-generated schema optimizations are covered in Chapter 5.

3.1  Venus Rule Language

3.1.1  C++ Heritage

The Venus language is syntactically modeled on C++, and retains C++ syn-

tax wherever possible without introducing ambiguity or confusion.  Data elements 

in Venus are defined as C++ classes and the data instances are C++ class instances. 

3.1.2  Data

Venus supports the two data types of containers and primitive variables.  

Containers are set data, while primitive variables are individual variables.

Containers are denoted by square brackets ([]), intentionally drawing upon 

the C++ syntax for arrays.  Container elements are accessed indirectly through cur-

sors.

The cursors can be either existential and universal.  The cursor type is 

selected by inserting a quantifier between the square brackets. An existential cur-

sor is denoted by a question mark (?) quantifier, and corresponds to a positive con-
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dition element (e.g. container[?]).  A universal cursor is denoted by an 

asterisk (*) quantifier.  Universal quantifiers are always assumed to be within the 

scope of existential quantifiers.  Consequently, the use of * usually corresponds to 

the use of negative condition elements in common expert system languages (e.g. 

container[*] is roughly equivalent to an OPS5 (-container)).  

Primitive variables are similar to containers, except they always contain 

one element.  A search is never required to find primitive variables.  Therefore, 

their syntax is the same as C++ variables.

3.1.2.1  Rules

A Venus rule consists of a header, a guard, and an action.  The combined 

guard and action is syntactically equivalent to a C++ if expression.  The header 

specifies the rule name, an optional priority, and an optional from clause.  The 

from clause is a syntactic shortcut borrowed from SQL.  It allows the programmer 

to replace a container name and quantifier with a string.  In Figure 4, the keyword 

// for all u in r, if there does not exist 
// a symmetric element e, then create and
// add it to the relation r
module enforce_symmetry(Relation r[]) 
{

rule enforce;
from r[?] e;
     r[*] u;
if(!(u.domain() == e.range() &&

        (u.range() == e.domain())) {
Relation i;
i.setDomain() = e.range();
i.setRange() = e.domain();
r.insert(i);

}
}

FIGURE 4.  Example Module and Rule
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from and the asterisk declare u to be a universally quantified variable over the 

relation r.  Similarly, the question mark declares e to be an existentially quantified 

variable. 

A rule guard is a legal C++ boolean expression with restrictions.  These 

restrictions constrain the use of externally defined C++ functions.  These functions 

are allowed within the guard as long as they execute free from side effects and 

return a value.  

Venus uses a subset of C++ as the action, or right hand side (RHS) lan-

guage.  The action is a list of updates, function calls, and Venus modules.  How-

ever, an action cannot contain branching statements.  The compiler parses the RHS 

and automatically recognizes updates to the state and inserts run-time calls notify-

ing the inference engine.  

3.1.3  Modules

The unit of organization in a Venus program is the module.  A module con-

sists of a formal parameter list, local variables, and rules. Venus adopted the C++ 

functional notation for module constructs, including curly braces to denote nesting 

program blocks.  The scope of a module is limited to its actual parameters and 

local variables.  To ease formal analysis, there are no global variables. 

Figure 4 illustrates the code for a module called enforce_symmetry.  

This module is from a stylized presentation of a system developed from a specifi-

cation of a device-structure hardware diagnosis program [31].  The module 

enforce_symmetry contains a rule which is parameterized over a type called 

Relation, that ensures that for all pairs (a,b) in the relation, a symmetric pair 

(b,a) is always present.  In the application, this module is used to maintain lists of 

devices in a cluster that can serve as backups to each other.  For example, if in the 
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cluster machine, a can backup machine b, then machine b can also backup 

machine a.  By providing formal parameters to a module, a collection of rules can 

be "reused" for slightly different circumstances.  By this it is meant that the mod-

ule can be called once with one container as the actual parameter, and another time 

with a different container. This feature has been extensively used in all developed 

applications.  Its use often leads to a significant reduction in the number of rules 

and the complexity of each rule [95].

A Venus module will fire rules until fixed point is reached.  The entire RHS 

is treated as a single atomic action. Rules with the same priority, including multi-

ple instantiations of the same rule, are selected for firing by a fair nondeterministic 

policy.  For historical reasons, the current implementation dictates that fairness be 

defined such that a rule instantiation is fired at most once, where once has the 

OPS5 definition [39]. 

3.1.3.1  Module Semantics

A Venus program may consist of more than one module, and modules may 

be children of other modules.  Module names and their actual parameters are listed 

in the action portion of a rule.  Rules containing module calls in their actions are 

called guard rules.  If a guard rule is satisfied, then rules in the embedded module 

may also fire.  Modules may be embedded arbitrarily deep.  The same module with 

the same or different actual parameters may be activated from multiple places in 

the code.  At this time, the graph structure of the module hierarchy must form a 

static and directed acyclic graph (dag). 

It is convenient but incorrect to think of a module as being called in the 

usual sense.  An obvious firing of the guard rule is not necessary for execution of 

rules in the child module.  If the guard rule is not satisfied, the module will not be 

called.  If the guard rule is satisfied, the module might be called.  In regard to mod-
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ule calls, the fairness policy is extended.  Whereas a normal rule will fire at most 

once on a single instantiation, a rule guarding a module call can potentially fire 

whenever there is a state change affecting the satisfaction of a rule predicate in the 

child module. Thus, the data driven nature of Venus extends through the rule 

guarding a module call.  This explains the behavior of rules with guards of 

if(TRUE).

Similarly, the predicate of a guard rule is not distributed over the rules in 

the guarded modules.  As a consequence of the atomicity, even if the predicate is 

disabled during the execution of a child module, that module continues to fire rules 

until it reaches a fixed point.  Again, though this behavior is derived from formal 

declarative definitions, the ultimate execution is consistent with procedural intu-

ition.  For example, in C++, when a function is called in the then portion of an 

if statement, the function will not stop if the guarding expression becomes false 

during execution. 

Figure 5 illustrates the 

semantics of modules.  Module 

A contains one formal parame-

ter, t, which is a container 

over elements of type T.  Ini-

tially, the rule A::guard_C 

will not fire since the local 

variable x is initialized to 0.  

As noted above, the evaluation 

of the if(TRUE) rule, 

A::guard_B, will automati-

cally activate the B module 

with actual parameters t and x.  

module B(T t[], 
         int x){…}
module C(T t[]){…}
module A(T t[])
{
  int x = 0;

  rule guard_B;
  if(TRUE) {
    B(t,x);
  }
  rule guard_C;
  if(x==1) {
    C(t);
  }
}

A

B C

FIGURE 5. Module Definition and 
Resulting Call Graph
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Should module B change the state of x such that upon reaching fixed point the 

value of x is 1, then control will pass to module C.  Should module C modify the t 

container, then control will pass to module B after module C reaches fixed point.  

Execution will continue in this manner, bouncing back and forth between the B and 

C modules, until A reaches fixed point.   

3.1.4   Polymorphism

Venus is designed to inference over data. Venus supports polymorphism 

with respect to this data in two ways.  

First, Venus supports a formalized interface between data stores and the 

inference engine via the Abstract Machine Interface [69].  The formal parameters 

to a Venus module only specify the type of the object that resides within a con-

tainer.  It does not specify the underlying container implementation.  Thus, succes-

sive calls to a module may have as actual parameters different containers with 

different implementations.  For example, the module defined in Figure 4 specifies 

as its formal parameter a container consisting of objects of type Relation.  Con-

sider two separate invocations of the enforce_symmetry module.  The first 

call to the module might be with a container implemented as a main memory dou-

bly linked list.  The second call to the container might be with a container imple-

mented as an Oracle table.  In the first case, a call to r.insert(i) results in 

inserting a node into the list, whereas in the second case, it results in adding a tuple 

into the Oracle database.

Second, Venus supports inheritance within the C++ data stored in contain-

ers.  In the example rule in Figure 4, the container r consists of elements of type 

Relation.  The accessor methods domain() and range() return the object 

ids of elements.  If these methods are defined as C++ virtual methods, then a con-

tainer of elements inheriting from type Relation will be passed to Venus as an 
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actual parameter, and the method calls will be dynamically dispatched to the 

appropriate derived class.

3.2  VenusDB Modifications

The main differences between Venus and VenusDB are the inclusion of 

active database events and an interface between the LEAPS match and persistent 

store called the AMI.

3.2.1  Events

The inclusion of events in the VenusDB language makes it an ECA lan-

guage, as opposed to the Venus language, which is CA. 

The VenusDB version of events is different than that of most other active 

database languages.  This is due to VenusDB’s aim of supporting complex data 

driven applications rather than system services and lower level applications. 

3.2.1.1  Database Events

VenusDB supports the primitive database events insert, update, and 

remove. This allows a programmer to customize the behavior of rules based on the 

triggering event.   Different VenusDB data types are sensitive to different database 

events.  This is generally consistent with other active database prototype efforts.  
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Event declara-

tions are optional and 

rule scoped.  By default, 

data types within rules 

that do not specify 

events are monitored for 

all applicable events.  

Table 4 presents the 

events recognized by the VenusDB data types.  A full discussion of VenusDB 

primitive events is presented in [69.

3.2.1.2  Transaction Events

VenusDB does not support transaction events (e.g. begin, commit, and 

abort).  This is because of VenusDB’s focus on application programs, not system 

services.  At the application level, transaction rollbacks typically only occur at the 

periphery of the system (e.g. at a data entry station).  Once entered into the applica-

tion’s data flow, data is permanent and therefore already committed.  It follows that 

it is sufficient for VenusDB to support database events, and thus, triggering on 

transaction events is not necessary.  

3.2.1.3  Temporal Events

Fine grain temporal events are not supported.  Course grain temporal 

events are indirectly supported.  This is by activating the rule system through a 

cron or equivalent system clock service.  This is not explicitly recognized in the 

language.  Integrating temporal events into VenusDB is an open issue.

3.2.1.4  Composite Events

Data Type insert update remove
Primitive Variable  √  
Existential Cursor √ √  
Universal Cursor  √ √
Container √ √ √
† The default event, all, is the conjunction of  
   the checked events for each data type

Event†

TABLE 4. VenusDB Data Types and 
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Composite events in the style of HiPAC are not supported.  However, it is 

important to note the VenusDB does support an implicit disjunction over the data-

base events listed in a rule’s from clause.  This preserves the data driven behavior 

of VenusDB.

3.2.2  Abstract Machine Interface

VenusDB operates by issuing commands to the Abstract Machine Interface 

(AMI), an instruction set used by the Venus run-time match algorithm, LEAPS.  

The purpose of the AMI is to form a tight integration within a layered architecture.  

The AMI is the only system to publish such a high-level interface between the rule 

and database portions [66,69]. 

VenusDB is implemented as a layered architecture for two reasons.  First, 

VenusDB is a heterogeneous rule engine.  Thus, the hybrid or integrated 

approaches are impractical since they would require a knowledge of detailed infor-

mation about access and implementations of multiple (commercial) database sys-

tems.  Second, only the layered approach is portable satisfying one of the original 

design goals of the VenusDB language.  The research presented in this dissertation 

provides significant evidence that the layered approach is feasible within real sys-

tems that solve real problems.  

The AMI is defined by a set of abstract C++ classes.  An implementation of 

the AMI for a particular database is four C++ classes that inherit from the appro-

priate AMI base classes.  These implementations consist of two container imple-

mentation classes and two cursor implementation classes.  AMI implementation 

classes use the C++ template facility to provide type safety.  This C++ interface 

limits VenusDB to databases that support a C or C++ database access.  With the 

wide acceptance of the ODBC standard, nearly all databases now support such an 

interface.  A full description of the AMI is presented in [69].  
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3.2.2.1  AMI Optimizations

Of particular interest to this research are the AMI’s optimization utilities.  

These are primarily accomplished by leveraging the advanced query facilities of 

composite databases when available.  The VenusDB compiler identifies predicates 

that are applied to a cursor in a particular rule.  These predicates are pushed down 

through the AMI to the local database layer for query processing. 

The AMI’s implementation of this facility is quite flexible.  If the compo-

nent database supports an advanced query capability, the predicates will be exe-

cuted on the database and may result in a significant performance benefit.  If the 

component has no query support, the predicate is ignored and a full relation scan 

occurs.  

The definition and implementation of the AMI predicate facility is being 

refined and heavily exploited by this research.  Chapter 5 explains this utility.

3.2.3   Concurrency Control

Concurrency control issues are traditionally managed by using coupling 

modes and the underlying concurrency mechanisms of the database as presented in 

Section 2.2.  VenusDB does not address such issues.  It is the author’s belief that 

coupling modes are unmanageable in programs that contain many rules that may 

chain.  In other words, coupling modes place undue burden upon the programmer 

on the very programs for which VenusDB is designed.

Correl and Miranker, however, propose a concurrency control scheme 

based upon the modularity features of VenusDB [30].  This scheme attaches isola-

tion specifications to individual modules.  Three categories of data isolation modes 

are proposed called guard stability, serializable, and exclusive.  Guard stability 

(modeled after cursor stability) allows the greatest amount of concurrency, but pro-
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vides the least amount of isolation from other users. This mode dictates that, at 

minimum, a row accessed during condition evaluation will be available during 

action execution.  Exclusive mode ensures no other transactions will affect the rule 

system.  Serializable mode contains properties in between guard stability mode 

and exclusive mode.  

Though a significant step, a serious deficiency of Correl’s method is that it 

requires the application programmer to determine the system requirements and 

sensitivity to external state transitions.  For this reason, this concurrency control 

model has not been adapted into the VenusDB language.  This dissertation poses 

the hypothesis that concurrency models are application dependent.  As such, it 

begins the investigation of the feasibility of modifying the VenusDB compiler to 

take as input a rule program and problem type and output transformed code with 

the appropriate concurrency model (Chapter 4).

3.3  VenusDB Language Semantics: An Evaluation

At its core, VenusDB is an instance of a forward-chaining rule language.  

Such languages are in common use as a method of knowledge representation and 

the basis of expert-system programs [20].  The paradigm has also gained notoriety 

by serving as the basis of systems that are difficult and expensive to maintain 

[62,65,83].  A specific power of this representation is that it is data driven and on 

each cycle of execution, any one of a large number of problem solving alternatives 

may be selected.  Yet, each alternative can be expressed in isolation as a single 

rule.  This capability is both a blessing and a curse [9,53].  Though critical to the 

success of the paradigm, this flat monolithic architecture has proven to be very dif-

ficult to maintain.  Given a seemingly local update to a large rule program, the glo-

bal scope of a rule’s condition regularly introduces bugs elsewhere in the program.
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More recently, the application of forward-chaining rule languages to active 

databases have compounded the problems of the paradigm due to concurrent exe-

cution of other transactions.  In other words, it is precisely the ability to prescribe 

actions to be taken based on a partial definition of a state and/or events on the data-

base, which are independent of the source of an update, that has led to active data-

bases.  It is also this ability that leads to difficult issues in semantics and 

correctness of active database programs (Section 2.2.5).  Further, active database 

languages are usually monolithic since the initial focus of the languages was on 

implementing core system services (such as view maintenance and integrity con-

straints).  In such programs, rules are essentially independent programs in which 

there truly is no relationship between rules.  In addition, SQL is inherently mono-

lithic.  Many active database languages extend SQL, syntactically or conceptually, 

and therefore, they inherit SQL’s lack of program organization.  

VenusDB addresses these semantic issues through a formal language defi-

nition for structured rule programing.  Section 3.1 explains how VenusDB’s mod-

ule semantics lead simultaneously to the evaluation of every rule on every cycle, 

yet introduce structure limiting spurious interactions among rules.  We believe that 

VenusDB’s definition for structured programming improves upon the alternative 

solutions that have been proposed (which are often procedural in nature) [7,62].  

Section 3.3.1 elaborates on these alternatives.  

This section, 3.3, presents an evaluation of VenusDB’s language semantics 

as they relate to code complexity.  The study is performed by comparing an OPS5 

implementation of a deployed expert-system, ALEXSYS, with an implementation 

in Venus called REALESYS.  ALEXSYS proved ideal for this study for several 

reasons.  First and foremost, a version of ALEXSYS is deployed and the prototype 

was readily available.  Originally developed for Citicorp, the program is now in 

widespread use.  Secondly, though the program is of moderate size, 44 rules, it’s 
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roughly the complexity of a “real world” example of a hard expert system applica-

tion, the class of applications addressed in this dissertation1.

3.3.1  Related Work

Identifying the lack of hierarchical decomposition in rule-based programs 

as a culprit in the life-cycle costs of rule programs is not new.  In fact, the problem 

comes up almost immediately in any large scale effort [4].   Following is a taxon-

omy of solutions.

• Structural Protocols: Within a flat monolithic rule language, such as OPS5, spe-

cific protocols concerning the structure of rules have been suggested [4,75].  

• Rule Groups: In a number of systems rules can be grouped together into “rule 

groups’’.  The flow of control among the groups is performed by explicit proce-

dural invocation [38,45,53].  In [7], a method is proposed in which rule devel-

opers must establish metrics to determine the stratum classification of rules.  

Program execution proceeds by moving from lower priority stratums to higher 

priority stratums.  Other approaches include the use of regular expressions in a 

meta-level to define legal sequences [45,49].

• Object Embedded: Rule groups are defined as objects and/or rules that are used 

to define individual members of an object [14,65,73].

An aspect shared by each of the above solutions is that they are procedural 

in nature.  For example, in most of the rule group solutions, control moves from 

module to module as the result of a jump, or a jump to subroutine, executed in the 

action of a rule.  Consequently, only one module at a time is sensitive to the current 

1. Hard active database technology been available at the time of the program’s 
development, the technology would have been exploited [85]
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state of the program.  Thus, not all possible alternatives are evaluated at each 

cycle.  The correctness of the program requires the rule developer to consider both 

data-driven and procedural methods of programing.

The motivations behind VenusDB are most similar to those that produced 

the development of the RIME protocol for R1/XCON [4].  Also, it was only 

through the recognition of these protocols that the modular structure for the OPS5 

ALEXSYS could be inferred. 

To illustrate the structural protocol, consider an abstraction of the control 

mechanism used in the ALEXSYS program presented in Figure 6.  The code frag-

ment illustrates the notion of secret messages to mimic encapsulation [62].  

Inspection reveals that every rule contains a predicate on an element of type goal.  

Rules exploit goal elements in order to form rule groups.  The presence  (/absence) 

of a particular goal element in working memory enables (/disables) rule groups.  

Rules detecting the termination of a subgoal (e.g. rule 

finished_filling_a_bins) change the value of the goal element moving control 

to the next group.  In essence, this protocol is synonymous with a nested transac-

tion model where rules sharing a common goal pattern are grouped within a nested 

FIGURE 6. Modularity by virtue of a "Secret-Message"

rule fill_a_bin_rules;    //module one, fill a bin
if(goal.context == fill_a_bin)//pattern/message 

{...} //signaling module one

rule finished_filling_a_bins;
if(goal.context == fill_a_bin &&
  ...) //recognize termination of the module

{goal.context = fill_b_bin;} //change goal

rule fill_b_bin_rules;   //module two, fill b bin
if(goal.context == fill_b_bin)
{...}
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transaction.  Rules that change goal elements commit transactions and initiate a 

new nested transaction.  Program execution operates by moving between rule 

groups (transactions) and executing to completion (fixed-point).  This form of 

hierarchical programming has been coined "secret messaging" due to the fact that 

unless a programmer is already familiar with the practice, there is nothing to dis-

tinguish these special goal patterns as control patterns. 

The structural protocols do have the desirable feature of managing control-

flow in a strictly data-driven fashion.  Rigid adherence to the protocols eliminates 

undesirable cross-talk among the rule groups.  The protocols manifest groups of 

related rules and key transitions in control flow.  Operationally, it has been 

reported that reusing templates has some of the benefits of code reuse.  That is, 

basic coding structures will not have to be rewritten from scratch each time they 

are needed, leading to reduced development and maintenance costs [4].  

A problem with the structural protocols is that they are not part of the 

underlying language.  Thus, syntactic checking of application source code for 

adherence to the protocol, if done at all, must be conducted by a separate compiler. 

By analogy, this is identical to using the program verifier lint with C programs 

[55].  Other problems with structural protocols, that have been addressed in 

VenusDB, include the duplication of rules in a template rather than parameterizing 

a single copy to implement similar tasks.  As a result, a simple maintenance 

change may involve ensuring that several sections of code are modified.  Lastly, 

despite exploiting the data-driven execution model, the use of goal elements is still 

fundamentally procedural and limits the sensitivity of rules.
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A Venus re-implementa-

tion of the OPS5 fragment of Fig-

ure 6 is illustrated in Figure 7.  In 

this figure, control information is 

explicitly stated in a separate 

module.  The appearance of con-

trol patterns as secret messages is 

eliminated, simplifying (com-

pared to the OPS5) the guards of 

the rules in sub-modules.  Trans-

action issues are also explicitly isolated by VenusDB modules easing the integra-

tion within a database.  Additionally, rule priorities present a straightforward 

manner to further control rule firings. 

Through implementations such as the one in Figure 7, VenusDB language 

semantics encourage passive programming paradigms consistent with the method-

ology of stepwise refinement, a paradigm that is often used for formal methods of 

program development.  Stepwise refinement paradigms contain initial pseudo-

code statements that are elaborated step-by-step into final executable code, much 

like top-down designs [84].  The design of REALESYS exploits stepwise refine-

ment.

3.3.2  The Mortgage Pool Allocation Problem

ALEXSYS and REALESYS implement a solution to the mortgage pool 

allocation problem which is faced several times a month by financial institutions 

who serve as market-makers in mortgage-backed securities.  The problem is for 

the market-makers to map a collection of buy orders for mortgage-backed securi-

ties (e.g. Fannie-Mae) to a collection of sell orders.  It is the market-makers who 

FIGURE 7. The Venus Method for 
Procedural Control Expressed by the 
OPS5 in Figure 6 

module load_bins (log_type logs[]
{
rule fill_a_bins    priority 10;
if(TRUE)

do_fill_a(logs[]);

rule fill_b_bins    priority 9;
if(TRUE)

do_fill_b(logs[]);
}
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arrange the tangible details concerning the transfer of the security and the 

exchange of money.  The market-makers maintain a small inventory of securities 

to facilitate their work.  This inventory is organized into pools.  A request to pur-

chase securities is termed a contract.  Contracts and pools may be of different 

sizes.  When settling a trade, a pool from inventory may be cut into many pieces to 

fulfill one or more contracts.  Similarly, more then one pool may be used to fill a 

contract.  However, it is insufficient for settlements to be arithmetically correct.  

The Public Securities Administration has published many pages of detailed con-

straints limiting how pools are assigned to buy orders [84].   

3.3.2.1  ALEXSYS

The ALocation EXpert SYS-

tem (ALEXSYS) is an OPS5 imple-

mentation of a solution to the 

mortgage pool allocation problem.  

ALEXSYS exploits eight different 

heuristic method/regulatory combina-

tions to define and fulfill buy orders.  

After deciphering the organization of the secret messages in ALEXSYS, it is pos-

sible to expose the modular structure developed by the original authors.  The 44 

rules of ALEXSYS form 12 modules whose control flow is illustrated in Figure 8.    

The longest acyclic path through the call graph is of depth nine.  Yet, the 

graph is made up of many cycles.  In fact, the starting node of the graph is ambigu-

ous as drawn and only slightly clearer when reading the OPS5 source code.  This 

cyclic graph makes it is difficult to determine how control reaches a node/rule to 

become active.  Further, the cycles present in the OPS5 version were directly 

responsible for making debugging the translation of ALEXSYS into VenusDB a 

FIGURE 8.  ALEXSYS Call Graph
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challenge.  For comparison purposes in this case study, the structural protocol used 

by ALEXSYS will be considered equivalent to the VenusDB modules.  

3.3.2.2  REALESYS

The stepwise Refined ALlocation Expert SYStem  (REALESYS) is the 

VenusDB implementation of a solution to the mortgage pool allocation problem.  

As the name implies, REALESYS is implemented using a top-down design with 

stepwise refinement.  For purposes of this study, REALESYS uses the same basic 

collection of greedy heuristic methods as ALEXSYS to achieve as close as possi-

ble execution results for accurate comparisons.  Figure 9 illustrates the call graph 

of REALESYS.

The longest acyclic path within REALESYS is of depth 7.  Vertices with an 

out-degree greater than 0 represent parent modules (i.e. modules with guard rules 

within them).  Orthogonally, vertices with an in-degree greater than 0 represent 

code reused modules (which is not possible in the OPS5 implementation).  For 

FIGURE 9.  REALESYS Call Graph
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illustration purposes, all of the nodes within the large boxes in Level 4 call the 

module pointed to by the boxes (an area of particularly interesting code re-use).  

Inspection easily reveals the root node as the top-most node.  Cycles are nonexist-

ent.  Thus, the sequence of state transitions that reach a particular rule firing is 

clear in the REALASYS program.  This is in sharp contrast with the cyclic ALEX-

SYS call graph.  

We did experience a significant growth in the total number of rules.  

ALEXSYS contains 44 rules while REALESYS contains 74.  However, 28 of the 

74 rules in REALESYS are of the form "if(TRUE)".  Such rules are used primarily 

as control constructs which do not test any of the current state of execution.  Thus, 

only 46 rules within REALESYS contain rules with predicates.  Even eliminating 

the "if(TRUE)" rules, and despite code reuse in the form of parameterized mod-

ules, the number of rules surprisingly increased.  Upon inspection, it was deter-

mined that it is frequently possible to align a single OPS5 rule with a number of 

VenusDB rules.  As is often the case, the single OPS5 rule contains both control 

and problem-state conditions, while the VenusDB representation splits these ele-

ments into parts.  Nevertheless, the quantitative analysis presented in Section 3.3.3 

demonstrates that by all other measures the code is simpler.

The length of the longest acyclic path in REALESYS (7) corresponds 

directly to seven levels of stepwise refinement designed for the REALESYS 

implementation.  Each level divides the program organization in such a way as to 

solve a step of the program while simplifying the guards of the next refinement 

steps.  The levels perform the following functions:

Level 1.  Handles control for incoming trades.

Level 2.  Determines if profit is to be gained by filling a contract +/- 2.5% 

of its value (the allowable range to fulfill a contract).
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Level 3.  Calls to different rank ordered heuristics to fulfill a contract.

Level 4.  Filters on sufficient conditions for the application of the heuristic.

Level 5.  Filters on necessary conditions, determined by government regu-

lations for the application of the heuristic.

Level 6.  Reports a successfully filled contract.

Level 7.  Reports the details of the trade.

By virtue of this organization, all significant control information has been 

narrowed to Level 3 and stated explicitly.  Further, the testing for correctness and 

ranking quality of the heuristics within REALESYS is limited to manipulating the 

rule priorities of the two third level modules.  Lastly, independent of the sufficient 

conditions for a heuristic, which appear in different rules, the satisfaction of gov-

ernment regulations is localized.  Thus, changes in government regulations will 

likely result is small changes to REALESYS.  This is not the case for ALEXSYS.

3.3.3  Quantitative Results

The ideal test for design and long-term maintenance of the two implemen-

tations would be to deploy both independently, and to carefully account for man-

power costs, number of bugs, average time to repair a bug, etc.  Such large scale 

testing is impractical and has rarely been performed.  However, a number of efforts 

have resulted in quantitative software metrics that have, in smaller scale studies, 

been correlated to the life-cycle costs of computer software [11,61].

Any one software metric will not give a full picture of a program’s quality.  

As a result, software metrics have evolved to cover three basic measurement 

domains.  These domains span the areas of 1) volume - size of the program,  2) 
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control flow - complexity of the execution paths, and 3) information flow - com-

plexity of the data flow [49].  Four different software metrics were chosen to mea-

sure ALEXSYS vs. REALESYS covering each of these three domains.  The 

metrics are conditions per rule, lines of code, McCabe’s cyclomatic complexity 

[62], and fan-out2 [53].  Conditions per rule and lines of code are straight-forward 

volume metrics.  McCabe’s cyclomatic complexity, developed by Thomas 

McCabe, is a control flow metric that measures the number of paths through a pro-

gram.  Fan-out2 is an information flow metric that analyzes the read and write sets 

within modules.  Our results on information flow are nearly identical to the other 

three measures and are therefore omitted.  All of these metrics have been shown to 

correlate to the development and life-cycle costs of software [50].

3.3.3.1  Conditions Per Rule

The volume metric conditions per rule give evidence of the guard complex-

ity of a rule-based program.  For an OPS5 rule, the number of conditions is defined 

as the number of features in a rule per the OPS5 resolution strategy.  For a 

VenusDB rule the equivalent measure is defined as the number of AND and OR 

connectives separating relational tests plus 1, plus 1 more if a priority is men-

tioned2. 

Conditions per rule is considered by many rule-based programmers as the 

most telling metric of the complexity of a rule-based program [50].  Many condi-

tions per rule imply complex guards with a large potential for error.  Few condi-

tions per rule, in contrast, represent less complex guards with a small potential for 

error.  

2. Priority mechanisms can be simulated through a single additional condition and a pen-
alty of 1 seems appropriate.
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The results of Figure 10 are positive for REALESYS.  REALESYS yields 

roughly half the average conditions per rule and half the standard deviation as 

compared to ALEXSYS.  The maximum size rule in REALESYS is about 40% 

smaller than the maximum size rule in ALEXSYS.  Interestingly, REALESYS 

contains 43 fewer conditions than ALEXSYS.  This reduction in total conditions 

can be primarily attributed to the code reusable modules in the graph of Figure 9 

combined with the elimination of secret messages by using VenusDB’s modularity.  

Thus, REALESYS contains 14% less conditions than ALEXSYS to get the same 

results.

3.3.3.2   Lines of Code

Lines of code is a volume metric that is frequently given for iterative pro-

grams as a measure of the overall complexity of a program.  The more lines of 

code any program may have, the more likely it is to contain typographical errors, 

code repetition, and complex statements.  

FIGURE 10. Conditions Per Rule
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One line of code is defined as any non-comment line with code, a module 

call, or a function call. 

The results of Figure 11 continue to demonstrate about a twofold complex-

ity improvement of REALESYS as compared to ALEXSYS.  The results also 

demonstrate that the standard deviation between modules is about nine times 

greater for ALEXSYS.  The fewer lines of code and smaller standard deviation for 

REALESYS supports the claim that though REALESYS has about three times as 

many modules as ALEXSYS, the modules tend to be much smaller than those of 

ALEXSYS with less complex rules.  In other words, the additional modules in 

REALESYS actually reduce complexity rather than increase complexity.  This 

claim is further supported with McCabe’s cyclomatic complexity and fan-out2.

3.3.3.3  McCabe’s Cyclomatic Complexity

Cyclomatic complexity measures the complexity of control flow by 

extracting the number of possible paths through a program.  Cyclomatic complex-

FIGURE 11. Lines of Code
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ity, v(G), of a program graph of n vertices, e edges, and p connected components is 

calculated by:

v(G) = e - n + 2 * p (EQ 1)

or         

v(G) = number of decision statements + 1 (EQ 2)

In equation 2, a decision statement, called a predicate, is any conditional 

branch within a module [61].  For iterative programs, a cyclomatic complexity of 

less than or equal to 11 for a given module is considered acceptable.  Since the 

control of rule-based programs differ from iterative programs, cyclomatic com-

plexity must be adapted to rule-based programming.  This is done conceptually by 

mapping VenusDB modules to the procedural structure as illustrated in Figure 12.3

3. This is different than Pasik’s mapping which requires first deciphering secret mes-
sages[76].  

void module(/* parameters */)
while(!fixed_point)

switch(non_deterministic_selection(i))
{
case 1:  {

rule LHS_Test;
if( /* LHS Test */ )
{  atomic RHS action; }

case 2:  {
rule IF_TRUE_rule;
/* if(TRUE) has no test */
{  atomic RHS action;}

}}}

FIGURE 12. Abstract Execution Structure for the Application of 
Cyclomatic Complexity to Rule Systems
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The results of Figure 13 show an overall cyclomatic complexity improve-

ment of about 41% (continuing the roughly twofold complexity improvement of 

REALESYS as compared to ALEXSYS) and a slightly smaller standard deviation 

for REALESYS.  This improvement suggests that REALESYS simplifies modules 

by dividing them into parts.  Additionally, this demonstrates the effectiveness of 

top-down design with stepwise refinement.  It was expected that the minimum 

complexity rules would be similar for both REALESYS and ALEXSYS; several 

small rules are typical of rule-based systems [50]. 

Surprisingly, both REALESYS and ALEXSYS have an equivalent value of 

16 for their most complex module.  Inspection reveals that these modules do not 

serve the same function.  The module of complexity 16 within REALESYS stems 

from the control modules, Level 3 in Figure 9.  These modules are composed of a 

series of eight “if(TRUE)” rules, each with a specified priority.  It seems harsh to 

penalize what expresses, in essence, a simple sequence of subroutine calls whose 

direct translation into C++ would reduce the cyclomatic value by half.  The use of 

priorities in this fashion is a recognized failure of VenusDB.  Priorities are a proce-

dural construct that improve upon structured protocols.  In this respect, a compari-

son to the OPS5 version reveals that if all of the control rules in ALEXSYS were 

FIGURE 13. McCabe’s Cyclomatic Complexity per Module
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aligned into a single module, the cyclomatic complexity for this module would be 

roughly twice that of the REALESYS implementation. 

3.3.4  Discussion and Conclusions

Is this a controlled experiment? As above, a completely controlled experi-

ment would involve independent programming teams over several years.  Within 

reasonable confines, we believe we have done a reasonable study.  This is not an 

occasion where a second implementation is simply better than the first.  Experi-

enced knowledge engineers threw away at least two earlier versions of ALEXSYS.  

In this experiment, two implementations of ALEXSYS written in VenusDB were 

produced (a direct naive translation of ALEXSYS, and REALESYS).  The naive 

translation of ALEXSYS shrank the total number of lines of code by about 10%.  

There were no difference in any other measures.  Thus, the possibility that the 

improvements were due to superficial syntax can be ruled out, and it can be con-

cluded that these improvements are indeed due to the language constructs intended 

to support structured programming.  Note that it is not possible to translate 

REALESYS back to OPS5; REALESYS exploits code reuse through parameter-

ized modules.  Even so, a mapping back to OPS5 would, like RIME, rely on pro-

grammers to follow a protocol rather than making the elements of structured 

programming part of the language and checkable by the compiler.  

Despite an increase in the number of rules, VenusDB provides significant 

improvements over OPS5 in all other metrics in the encoding of the mortgage pool 

allocation problem.  REALESYS displays roughly a twofold complexity simplifi-

cation in each of the four metrics spanning the three basic measurement domains 

of software metrics [49].  These measures have been accepted as measures of pro-

gram quality and have been shown to correlate with long-term development and 

maintenance costs.   Thus, it can be concluded that the method of encapsulation 
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developed for VenusDB represents an important step toward reducing the engi-

neering costs of expert-system and active database programs.  
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Chapter 4  Application Semantics for Active Log 

Monitoring Applications

Active database applications are not simply production systems applied to 

data within a database; rule computation must be integrated within the database’s 

transaction model.  The most widely accepted approach is for active database 

developers to relate rule processing to database transactions through a pair of cou-

pling modes [33] (Section 2.2.2).  The flexible specification of events and coupling 

modes is intended to maximize system throughput [34].  However, the progression 

of research has lead to the development of dozens of coupling modes [21,24,33].  

As a result, coupling modes often burden application programmers with difficult 

conceptual specifications.  This complexity becomes virtually unmanageable 

within hard active database applications where hundreds of rules may interact.  

This chapter begins deciphering which coupling modes are necessary to achieve 

useful active database programming.

In the development and study of a number of rule programs, the author has 

observed that many of these systems can be classified into a subclass of hard rule 

systems coined Log Monitoring Applications (LMAs).  LMAs are expert system 

applications that analyze logs maintained in a database.  Applications within the 

LMA class range across point of sale, medical patient, network security monitors, 

real-time decision control systems, and process control monitors [18,31,85,93,94, 

95]1.  In each of these applications, a database is chosen as a storage medium due 

to commercial DBMS's query and data durability services that are exploited as a 

platform for post-processing, analysis, and decision-support.  A fundamental prop-

erty of an LMA is that its logs are only appended to, but data within the logs are 

1. It is the author’s opinion that many other applications that do not intrinsically satisfy 
the LMA restrictions may still be implemented as an LMA. 
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never updated or deleted.  For example, consider a network security monitor that 

analyzes network traffic in order to detect computer hackers (Appendix).  In this 

application, network traffic and suspicious packets are logged to a database.  These 

logs can never be modified; they represent network logs that must be maintained 

for forensics.  Thus, an LMA implementation uses active rules to monitor network 

logs as traffic and interesting packets are inserted into the database.  A contribution 

of this research is to show how this write-once nature of the logs can be exploited 

to insulate application programmers from the complexity of using coupling modes.  

This chapter presents a formal study, using active constructions, of the resulting 

simplifications that can be made of active database programs that obey the LMA 

restrictions.    

The theory of this chapter is applied within a general framework so that it 

is applicable to a wide scope of applications.  Therefore, the chapter concludes by 

explaining how the LMA properties can be exploited within the VenusDB platform 

(Section 4.10). 

4.1  Motivation

The current methods of integrating rules into a database add complexity to 

the development of active database systems.  In part, this complexity is introduced 

to reduce the duration and number of locks taken by rule execution.  Rule execu-

tion is often a long-running activity (Chapter 5).  The  resulting long-duration 

locks may significantly reduce overall system performance.  Dayal et al. summa-

rize this situation in their 1990 SIGMOD paper by saying that “executing a long-

running activity as a single transaction is not strictly necessary in most cases, and 

can significantly delay the execution of short transactions” [34]. 
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As a consequence of the long-duration locks taken by active rules, the rela-

tionship between rules and database transactions has been addressed in a series of 

coupling modes [33,34,74,98].  Coupling modes provide application developers 

with a flexible mechanism for rule integration.  However as this section demon-

strates, this added flexibility often leads to quite different program semantics.  

These semantic differences prove to be an obstacle when developing the large 

quantities of rules that embody hard active database applications.  A goal of the 

research presented in this chapter is to insulate application programmers from the 

complexity added by coupling modes while maintaining their performance bene-

fits.  This chapter accomplishes this goal by presenting formal proofs of concur-

rency schemes for LMAs using coupling modes.  The constructive nature of these 

proofs can be exploited by compiler-based systems. 

4.1.1  Coupling Modes

Traditional expert-system and guarded command rules are Condition-

Action rules (CA-rules), rules evaluated on every update to the database.  In the 

active database paradigm, such evaluation is prohibitive due to its multi-user envi-

ronment.  Therefore, active databases extend rules to include an event clause.  The 

event clause in an algebraic expression that describes the occurring event(s) that 

must occur in order to evaluate a rule.  The resulting rules are called Event-Condi-

tion-Action rules (ECA-rules).

Coupling modes map ECA rules to transactions.  There are two classes of 

coupling modes.  The first class is the E-C coupling mode, the transaction relation-

ship between the occurrence of an event and the condition evaluation.  The second 

class is the C-A coupling mode, the transaction relationship between the evaluation 

of the rule’s condition and its action’s execution.  
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Many coupling modes have been proposed.  The most predominately used 

coupling modes (and the ones used in this chapter) are immediate, deferred, and 

decoupled [33,74,98].  In immediate mode, execution of the pair occurs in the 

same transaction; in deferred mode, execution of the second part of the pair occurs 

just prior to transaction commit; and in decoupled mode, execution of the pair 

occurs in separate transactions. Table 2 in Section 2.2.1 summarizes the semantics 

of these coupling modes.

4.1.2  Example 1

 Figure 14 illustrates the complexities introduced to application developers 

by coupling modes.  The formal notation illustrated in the figure is presented in 

Section 4.4.  Following is its informal description.

Figure 14 contains a single rule, R, and two tables, T0 and T1.  The event 

clause of R monitors for insertions into T0.  In other words, insertions into T0 trig-

ger R for rule evaluation.  R’s conditions clause is satisfied when there does not 

exist the value 3 within T0.  The action of R inserts the value of 2 into T1.  Let the 

initial state of the database be empty, i.e., tables T0 and T1 are empty.  This is 

denoted by �0 = {}.  Rule processing begins  due to the execution of external 

events, modifications to the database that occur from sources outside of the pro-

cessing of rules.  In this example, two external events are executed in sequence.  

The first external event, denoted by , inserts the value 1 into T0.  The second 

external event, denoted by , inserts the value 3 into T0.  Following is an expla-

nation of two different execution scenarios that can occur when executing R using 

the coupling mode assignments of E-C and C-A immediate modes versus E-C and 

C-A decoupled modes.

�0

�1
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First, consider when R is 

stated in E-C and C-A immediate 

coupling modes (Table 5).  In this 

scenario,  is applied in �0.  The 

execution of  triggers R.  Since 

R is stated in E-C immediate mode, 

R’s condition is immediately evaluated before  is allowed to occur.  Since T0 is 

empty, R’s condition is satisfied, and since R is stated in C-A immediate mode, R’s 

action immediately inserts the value of 2 into T1.  At this point, the database con-

tains the values 1 in T0 and 2 in T1.  Formally, the database is in the state 

 where R is no longer triggered.  Thus,  now executes 

and inserts 3 into T0.  Again, R is triggered.   Since R is stated in E-C immediate 

mode, R’s condition is immediately evaluated.  However, R’s condition is not satis-

fied since the value 3 exists in T0.  Therefore, the final database state in this sce-

nario is .   

  Now consider when R is 

stated in E-C and C-A decoupled 

coupling modes (Table 6).  Again, 

 is applied in �0.  The execution 

rule R                                = 〈 (Insert,T0(1)) 〉   = 〈 (Insert,T0(3)) 〉  
E: { (Insert,T0) }   

C:                 �0 = {}

A:  〈  (Insert,T1(2))  〉       

�0 �1

T0 3( )¬

FIGURE 14. Coupling Modes and Rule Execution.

TABLE 5. Scenario 1

State Values Operation
�0 {} �0

�1 {T 0(1)} R

�2 {T 0(1),T 1(2)} �1

�3 {T 0(1),T 0(3),T 1(2)} R
�4 {T 0(1),T 0(3),T 1(2)}  

�0

�0

�1

�2 T0 1( ) T1 2( ),{ }= �1

�4 T0 1( ) T0 3( ), T1 2( ),{ }=

TABLE 6. Scenario 2

State Values Operation
�0 {} �0

�1 {T 0(1)} �1

�2 {T 0(1),T 0(3)} R
�3 {T 0(1),T 0(3)} ��0
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of  triggers R.  Since R is stated in E-C decoupled mode, R’s condition does not 

have to be immediately evaluated.  Therefore, it is possible for  to execute 

before R evaluates its condition.  Consider when this is the case.  Therefore,  

inserts 3 into T0.  At this point, the database contains the values 1 and 3 in T0.  For-

mally, the database is in the state  where R is triggered.  

Now the database evaluates R’s condition.  However, its condition is not satisfied 

since the value 3 exists in T0.  Therefore the final database state in this scenario is 

, a different final database state than exhibited in the first 

scenario.

The above scenarios demonstrate how coupling modes dictate execution 

behavior.  Deciding among the possibilities can become quite difficult when devel-

oping active database applications which may contain hundreds of rules.  Develop-

ers must carefully analyze every rule for the most flexible coupling modes that 

maintain the correct results.  Otherwise, rule execution may not scale to the 

expected level of multi-user activity.  This chapter explains how the LMA restric-

tions can be exploited to simplify these complexities.   

4.2  Background

This section presents background material necessary for this study.  

4.2.1  LMAs, Datalog, and Confluence

LMAs are closely related to programs stated in the logical database lan-

guage Datalog [29].  Datalog programs are deductive logic programs with the fol-

lowing properties [90]:

�0

�1

�1

�2 T0 1( ) T0 3( ),{ }=

�3 T0 1( ) T0 3( ),{ }=
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• Rules are safe - range restricted.

• Data is monotonic.

• Data is stored in a database.

• Pure Datalog rules are Horn clauses.

The above properties of Datalog significantly overlap with the properties  

of LMAs.

A number of studies use the above characteristics and slightly differing 

semantics to map active rules to Datalog [2,29,81,90].  Of particular interest, 

Comai and Tanca demonstrate one such model in which an active rule set that con-

tains rules with only positive variables and insertions in actions is translated into 

an equivalent Datalog program [29]2.  They then use the properties of Datalog to 

prove that the translated program always terminates and is confluent (Section 

2.2.5.1).  

This theory is a foundation on which this study builds its concurrency 

schemes.  Yet, it is not all encompassing.  Foremost, an underlying assumption of 

the previous theories on rule confluence is that rules are executed atomically and 

in isolation from other database activity.  On the other hand, active databases 

assume a multi-user environment where rules and external events execute in paral-

lel within the semantics of coupling modes.  Even so, the studies that have been 

performed on active databases have concluded with restrictive results [2,90].

Secondly, confluence cannot be guaranteed for ECA rule programs in 

which rules do not monitor for all events (as is the case for expert system rules).  

2. They call such rules ECA+ rules.  This paper refers to ECA+ rules as LMA+ rules.
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However, without loss of generality, this situation is ignored.  The justification is 

that omitting external events can be characterized into either 1) omissions purpose-

fully introduced for efficiency improvements (the developers are not concerned 

with the undefined behavior that may result), or 2) inadvertent bugs introduced by 

the active database developer (similar to a semantic bug in a procedural program).  

In either case, an omission of an event does not represent incorrect behavior intro-

duced by the active database language semantics. 

4.2.2  Previous Work

The previous work in active database language semantics focuses on either 

1) language construction (Section 2.2.5, Section 3.3), and/or 2) properties about 

the termination of active database programs (Section 2.2.5.1).  This chapter draws 

from both domains.  In this respect, formal language semantics are used in the con-

struction of this chapter’s execution models, while termination properties are 

exploited in the development of its concurrency schemes.  

4.3  Approach

The study begins with a formal specification of the active database lan-

guages presented in [7,79,98].  Section 4.4 presents the definitions used in this 

chapter as well as a unified general-purpose active database language.  Section 4.5 

expands this language with three increasingly concurrent active database execution 

models.  In all three models, rules execution is triggered by an external event - an 

atomic state change to the database performed by a database user or application 

program.

The first and most basic execution model is the sequential execution model.  

This model forms the basis of correctness by reflecting the behavior of active data-

base programs executing as stand alone applications with no other database activ-
52



ity.   As such, rules are evaluated sequentially until a quiescent state, a state in 

which no more rules are triggered.  Though this model is simple and straightfor-

ward, its single user environment is impractical.  The sequential and atomic prop-

erties of the model lead to unacceptable performance with little ability to scale.  

The second model presented is the parallel execution model.  This model 

expands on the sequential execution model by allowing concurrent rule execution.  

Although restricting external event behavior reduces the usefulness of this model, 

the properties proven about the parallel model are used as a stepping stone to prove 

properties about concurrent LMA rule processing.

The most general execution model presented is the active database execu-

tion model.  This model is an unrestricted model in which both external events and 

rules execute concurrently [79].  As such, the active database execution model 

accurately portrays modern active database systems executing within a multi-user 

environment.

Using these three execution models, this chapter presents a series of proofs 

that specify the concurrency schemes for LMAs.  These schemes meet the suffi-

cient conditions for program correctness.  A program is said to be correct under an 

execution model iff every possible execution path within the model is equivalent to 

some path within the sequential execution model (Section 4.6).  The analysis is 

divided into two categories.  The first category consists of LMA+ programs, LMAs 

that contain only positive variables3.  The second category consists of LMA- pro-

grams, LMAs that contain both positive and negated variables4.  It follows from 

these definitions that the logical database languages Datalog and DatalogNeg are 

3. A positive variable is a database query on the existence of values within a database.
4. A negated variable is a database query that uses the closed world assumption to test for 

the absence of values within a database.
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proper subsets of LMA+ and LMA- programs respectively [90].  The proofs 

exploit the previous results and proof techniques in serializability theory, rule 

dependency graphs, and confluent rules systems [2,29,60,90]. 

Serializability theory determines the conditions upon which concurrent 

processing is equivalent to a serial interleaving of operations.  A well known appli-

cation of the theory is within database transaction models [59].  In [12], Bernstein 

states a set of conditions that specify when the execution order of interfering oper-

ations matter (RAW, WAW, and WAR).  These conditions are violated when inter-

fering operations execute in parallel.  The results of violating the Bernstein 

conditions are that the database may move into an incorrect state.  

This study exploits serializability theory to describe when the parallel exe-

cution of rules interfere with one another.  Rule interference is synonymous to the 

Bernstein conditions where if certain conditions are violated, the order of rule exe-

cution matters.  This chapter uses Kuo et al.’s rule serializability theory based on 

bipartite rule dependency graphs (Section 4.7) [56,60].  

In Kuo et al., a graph in which a cycle of rules interfere with one another is 

called a cycle of dependency.  The set of rules in a cycle of dependency form a 

mutual exclusion set.  Kuo et al. present two key theorems that describe execution 

cycles in terms of cycle serializability, a parallel execution cycle that is equivalent 

to some sequence of serially executed rules [60].  These two theorems are 1) the 

cycle serializability theorem, which states the parallel execution of all rules in a 

mutual exclusion set may lead to a non-cycle serializable execution cycle, and 2) 

the serializability theorem, which states that a parallel execution cycle that does 

not contain all of the rules in a mutual exclusion set is guaranteed to be cycle seri-

alizable. 
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In contrast to serializability theory which describes the properties of inter-

fering rules, confluent rule systems explain the properties of quiescent states (Sec-

tion 2.2.5.1) [2,29,81,90].  A rule system is said to be confluent when the quiescent 

state is unique despite rule ordering.  Towards this end, this study presents the pro-

gram characteristics and concurrency schemes that are sufficient for LMAs to be 

confluent.     

4.3.1  Results

The first result establishes a concurrency scheme for LMA+ programs 

(Section 4.8).  Theorems 2 and 4 prove that an LMA+ program is correct when all 

rules are specified using a single pair of coupling modes, E-C and C-A decoupled 

as reviewed in Section 4.5.1.  In fact, a property of pure Datalog programs is that 

they are confluent [29].  Theorems 1 and 3 use the similarities of LMAs to Data-

log, described in Section 4.2.1, to demonstrate that confluence also holds for active 

LMA+ programs.  Since decoupled modes maximize concurrency, it is fair to con-

clude that DBMS’s need to only support decoupled coupling modes in order to 

support the execution of LMA+ programs.  

The next findings concern the more general LMA- programs (Section 4.9).  

Concurrency schemes for LMA- programs are difficult to assign since they do not 

contain unique quiescent states [29,90].  Further, active database developers expect 

external events and the rules that they trigger to appear as atomic state transitions.  

This assumption necessitates the consideration of the time ordering sequence of 

external events.  These complications become apparent within applications where 

it is possible for an incorrect program execution to contain only cycle serializable 

execution cycles.  Due to such complications, Section 4.9.1 defines event sequenc-
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ing and event isolation.  These properties are exploited in the proofs of correctness 

for LMA- concurrency schemes.

The LMA- analysis begins with the concurrency scheme for programs exe-

cuting the parallel execution model (Section 4.9.2).  Kuo et al.’s work is exploited 

to identify rules that must be stated in E-C and C-A immediate modes.  Specifi-

cally, Theorem 5 proves that an LMA- program executing with the parallel execu-

tion model is correct when at least one rule in every mutual exclusion set is stated 

in E-C and C-A immediate modes.  

The study next analyzes LMA- programs executing with the active data-

base execution model (Section 4.9.3).  Three decreasingly restrictive concurrency 

schemes are presented.  All schemes exploit the interactions of external event clo-

sures - the set of all rules that may become active due to the execution of an exter-

nal event.  Graphically, the external event closure may be pictured as all rules 

reachable by a depth first traversal in the rule dependency graph rooted by the 

external event.  

The first concurrency scheme for LMA- programs executing with the 

active database execution model is overly restrictive.  Theorem 6 proves that an 

LMA- program is correct when at least one rule in every mutual exclusion set is 

stated in E-C and C-A immediate modes, and all rules in all external event closures 

that contain a rule that is connected with a negative edge in the dependency graph 

are stated in E-C and C-A immediate modes.  

The second concurrency scheme for LMA- programs executing the active 

database execution model improves concurrency based on transaction characteris-

tics.  This study’s definition of external events is that they are atomic and commit-

ted.  Theorem 7 exploits this definition by proving that an LMA- program is 
56



correct when at least one rule in every mutual exclusion set is stated in E-C and C-

A immediate modes, and all rules in all external event closures that contain a rule 

that is connected with a negative edge in the dependency graph are stated in E-C 

and C-A deferred modes or stronger.  It is important to note that deferred coupling 

mode semantics allow for rule execution to continue in parallel.  

The third and most general concurrency scheme for LMA- programs exe-

cuting the active database execution model further improves concurrency based 

external event interference, the situation in which the parallel execution of the clo-

sure of rules triggered by two or more external events may not appear to be cor-

rectly sequenced.  Lemma 4 establishes dependency graph regions where external 

event interference may occur.  Theorem 8 proves that an LMA- program is correct 

when at least one rule in every mutual exclusion set is stated in E-C and C-A 

immediate modes, and all rules in all external event closures in which external 

events interfere with one another are stated in E-C and C-A deferred modes or 

stronger.  It is important to note that many LMAs are embedded applications that 

have a limited number of external events.  This last concurrency scheme exploits 

this property to improve system throughput. 

4.4  Definitions

A database table is defined as an active database relation.  A tuple is a 

row in a database table that represents data.  The extensional database, �, is the 

non-empty collection of database tables .  

A database event is defined as  where 

Insert, Modify, and Delete are labels.

T0 T1 … Tn 1–, , ,{ }

V Insert Modify Delete,,{ }∈
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Modifications to the database occur using data manipulation commands 

[7].  A data manipulation command is the pair (V,T) where V is a database event, 

and .  The data manipulation commands a and b are equal iff a = (x,y) and b 

= (x’,y’) and .  

Though usually omitted in this study, data manipulation commands contain 

data.  For example, a database insertion contains an inserted tuple.  When neces-

sary, our examples refer to data in the following ways:

(Insert, T(a)) - Insert tuple a into table T.

(Delete, T(a)) - Delete tuples a from table T.

(Modify, T(a),T(b)) - Modify tuples a in table T to b. 

An active database rule base, �, is defined as a non-empty finite set of 

active database rules.  An active database rule is the triplet (E,C,A) where:

• The event clause, E, is a non-empty collection of data manipulation commands, 

, in which a rule monitors for modifica-

tions to the database.  The execution of any one of the data manipulation com-

mands instigates further processing of the rule.

• The condition clause, C, is a relational calculus predicate ranging over the 

extensional database5.  Variables within the predicate may be either 1) positive 

or 2) negated.  Positive variables are existentially quantified variables.  Negated 

variables are identical to negation used in Datalog and expert systems languages 

that use the closed world assumption to test for the absence of values, or in the 

vernacular, there-does-not exist tests. 

5. Relational calculus predicates are assumed to be safe [90].

T �∈

x x’  y∧ y’= =

V0 T0,( ) V1 T1,( ) … Vn 1– Tn 1–,( ), , ,
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• The action clause, A, is a non-empty sequence of data manipulation commands 

 performed when C is satisfied in some 

state of �.  (Rule satisfaction is discussed below.)

For a rule R = (E,C,A), the notation ER, CR, AR is sometimes used to denote 

the rule’s constituent parts.

An active database is defined as the pair (�,�).  Depending on context, an 

active database is often referred to as an active database program.  These terms 

mean the same thing and are used interchangeably. 

Modifications to the database may occur outside of rule execution through 

an external event.  An external event, �, is defined as a non-empty sequence of 

data manipulation commands  performed 

atomically at a particular time.  External events initiate rule processing.  Therefore, 

with regard to transaction boundaries, external events are assumed to be commit-

ted, i.e., external events may not occur in nested subtransactions that can be rolled 

back.  The rolling back of rule execution is beyond the scope of this study.  

Active databases change state over time.  Towards this end, an extensional 

database state, �, is defined as the state that consists of all the tuples within all of 

the extensional database tables at a particular time.  As such, a table state is the set 

of all tuples belonging to a table  at a particular time.  An active database 

state is defined as the pair (�,�) where

• � is an extensional database state.

•  is the set of triggered rules.  (The triggering of rules is discussed 

below.)

V0 T0,( ) V1 T1,( ) … Vn 1– Tn 1–,( ), , ,

V0 T0,( ) V1 T1,( ) … Vn 1– Tn 1–,( ), , ,

T �∈

� �⊆
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An active database is in a quiescent state, , when the set of trig-

gered rules is empty.   Similarly, an active database executes rules until quies-

cence, the state in which the set of triggered rules is empty6.  Two active database 

states (�,�) and (�’,�’) are equivalent iff all tuples in all table states of � and �’ 

are equivalent and � = �’.

Changes to database state spawn rule evaluation.  Towards this end, a rule 

R monitors a table T when .  Likewise, a table T is monitored if 

 such that .  

Without loss of generality, the following assumption is made:

Assumption:  ,  such that R monitors T.  

This assumption implies that all data manipulation commands within rule 

actions operate on monitored tables.  In practice, actions may contain operations 

on unmonitored tables and/or outside sources (such as printing to a user interface).  

Such operations do not effect this study and are henceforth ignored.  

4.4.1  Functions  

The following is a list of functions used in this chapter.

CR(�):  Where  and � is an extensional database state.

CR(�) = true if CR evaluates to true in state �.  In this case, CR is said to be 

satisfied. 

CR(�) = false otherwise.

6. Quiescence is equivalent to fixed-point described in Section 2.1.

� ∅,( )

V T,( )∃ E
R∈

R∃ �∈ V T,( )∃ E
R∈

T∀ �∈ R �∈∃

R �∈
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AR(�):  Where  and � is an extensional database state.

AR(�) = �’, where AR(�) executes the sequence of data manipulation 

commands AR starting from state � resulting in a new database state �’.

:  Where  and .  

 = true if a positive variable in CR ranges over the table T.

 = false otherwise.

:  Where  and .

 = true if a negated variable in CR ranges over the table T.

 = false otherwise.

Triggers(d): Where d is a sequence of data manipulation commands 

. 

Triggers(d) is the set rules  such that .  

For purposes of analysis, a data manipulation command that does not 

cause a state change (e.g., inserting a repeated copy of a tuple) does not 

add its monitoring rule to the result set.  

Apply(���):  Where � is an external event and � is an extensional database state.

Apply(���) = �’, where Apply(���) executes � starting in state � result-

ing in a new database state �’.

�∈

T Pos C
R( )∈ R �∈ �∈

T Pos C
R( )∈

T Pos C
R( )∈

T Neg C
R( )∈ R �∈ T �∈

T Neg C
R( )∈

T Neg C
R( )∈

V0 T0,( ) V1 T1,( ) … Vn 1– Tn 1–,( ), , ,

R �∈ i 0 i n 1 Vi Ti,( ) E
R∈,–≤ ≤,∃
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4.4.2  Sequence of States

An active database may move from state (�n,�n) to state (�n+1,�n+1) in 

the following ways.

1)  A rule  links the states  to  iff  and 

either7

i.  evaluates to true, and

ii. , and

iii.

or

i.  evaluates to false, and

ii. , and

iii.

2)  An external event � links the states  to  iff

i. , and

ii.

7. Due to the properties of LMAs, rules that are un-triggered as described in [97] do not 
have to be considered.

R �∈ �n �n( , ) �n 1+ �n 1+( , ) R �n∈

C
R �n( )

A
R �n( ) �n 1+=

�n R–( ) Triggers A
R( )∪ �n 1+=

C
R �n( )

�n �n 1+=

�n R– �n 1+=

�n �n( , ) �n 1+ �n 1+( , )

Apply � �n,( ) �n 1+=

�n Triggers �( )∪ �n 1+=
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An execution graph is defined as the graph Ge = (V, E) where the vertices 

 represent active database states, and the edges  are states that are 

linked as described above.  An active database program’s execution path is the 

path through an execution graph taken by a particular execution. 

4.4.3  Log Monitoring Application Definitions

Consider an active database program (�,�) that executes the sequence of 

external events .   and , a table  

is an LMA table iff

, (EQ 1)

Informally, a table T is an LMA table iff all rules and all external events 

perform only insertions into T.  Note, it is not necessary to know the entire set � a 

priori; it is sufficient to constrain � to contain only insertions to T. 

For an active database (�,�) and a rule , R is an LMA rule iff

,  (EQ 2)

Informally, a rule R is an LMA rule iff all data manipulation commands in 

its action are insertions. 

Log Monitoring Application (LMA) - Consider an active database pro-

gram (�,�) that executes the sequence of external events 

. (�,�) is an LMA iff:

 , T is satisfied by Equation 1. (EQ 3)

V Ge∈ E Ge∈

� �0 �1 … �n 1–, , ,{ }= R∀ �∈ X∀ �∈ T �∈

V T,( ) A
R

X∪{ }∈∀ V Insert=

R �∈

V T,( ) A
R∈∀ V Insert=

� �0 �1 … �n 1–, , ,{ }=

T �∈∀
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Equation 3 implies that all rules in an LMA are also LMA rules.

This study distinguishes two categories of LMAs.  The first category, 

LMA+ programs, are LMAs containing only positive variables in rule conditions.  

The second category, LMA- programs, are LMAs containing both positive and 

negated variables in rule conditions.

4.5  Active Database Execution 

This section presents three slightly different execution models that vary 

depending on their restrictiveness with respect to concurrency [7,78].  In all three 

models, rule execution begins with the occurrence of an external event. 

The first model, the Sequential model, forms the basis of correctness.  This 

simple model, derived from the algorithms presented in [7,8,97], proceeds by lock-

ing the database from external events and serially executing rules until quiescence. 

Though straightforward, the Sequential model forfeits concurrency.  There-

fore, this section introduces the Parallel and the ActiveDatabase execution mod-

els.  The Parallel model allows for concurrent rule execution but locks the 

database from external events during rule processing.  The general ActiveDatabase 

model, based on an aggregation of the models presented in [7,78], allows for con-

current execution of both external events and rules. 

Before introducing the execution models, a discussion about the semantics 

of parallel rule execution and external events is presented.

4.5.1  Atomicity and Parallel Rule Execution

Section 4.4.2 presented the linking of active database states as if rules are 

executed atomically.  However, this is not the case.  Operations within an exten-
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sional database are guaranteed to be atomic iff the operations execute within a sin-

gle transaction.  In an active database, the set of atomic operations are expanded to 

include rule conditions, rule actions, and external events, but not entire rules, since 

each such operation must be executed within a transaction.  This atomicity does 

not come at the expense of concurrency.  The locking mechanisms of the underly-

ing database allow for concurrent execution of transactions.  Yet, since rule evalu-

ation is not atomic, condition and action evaluation may be split into separate parts 

within a transaction or over multiple transactions.  Thus, parallel rule execution 

may lead to an incorrect database state.  

Coupling modes handle the issue of rule atomicity by allowing the user to 

force the desired execution sequence.  The database locking mechanisms in con-

junction with coupling modes result in the following transaction semantics:

1. Conditions in E-C immediate mode are executed in sequential nested sibling 

transactions from the spawning transaction. 

2. Conditions in E-C deferred mode are delayed until the end of the spawning 

transaction and then executed in parallel nested sibling transactions. 

3. Conditions in E-C decoupled mode are executed in independent top transac-

tions. 

Statements 1 through 3 are identical for rule actions [33]. 

The definition above results in the following two concurrency semantics 

for linking states.  

1. Atomic transition.  Coupling mode semantics imply that rules stated in E-C and 

C-A immediate modes are executed atomically (within the same transaction 

without being broken into pieces).  Stated formally, 
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 represents moving the database from  

to  where X is either an external event or rule stated in E-C and 

C-A immediate modes.

2. Parallel transition (also called a parallel execution cycle).  Stated formally, 

 represents moving the database from  

to  where , , .  

The algorithm for a parallel transition with the above set X is as follows: 

while( )

do_in_parallel

choose R from X, and remove it from X. 

R links  to  where R is spawned in the transaction 

model specified by its coupling modes (or executed atomically if R 

is an external event or a rule stated in E-C and C-A immediate 

modes).  

Much of the remaining focus of this chapter is to clarify the meaning of 

.

4.5.2  Execution Models

The following are the definitions of our three execution models.

4.5.2.1  Sequential execution model 

Method Name: Sequential

Input:  , �j

�k �k( , )   �k 1+ �k 1+( , ) �n �n( , )

�k 1+ �k 1+,( )

(�k+1,�k+1)(�k,�k) X �n �n( , )

�k 1+ �k 1+,( ) X �0 … �, x, �0 … �, , y∪{ }= �i �∈ �j �∈

X  { }≠

�k �k( , ) �k ′ �k ′( , )

�k 1+ �k 1+( , )

�i
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Output:   where k > i.

Algorithm:  For each �j executed, the following algorithm is spawned:

0)  ,  i := i + 1

1) while  

Begin loop

2)  Select 

3)   ,  i := i + 1

End loop

4)  return 

4.5.2.2  Parallel execution model 

Method Name: Parallel

Input:  , �j

Output:   where k > i.

Algorithm:  For each �j executed, the following algorithm is spawned:

0)  , i := i + 1

1) while  

Begin loop

2)  Select 

3)  , i := i + 1

End loop

4)  return 

�k

�i ∅, ) �� �i 1+ �i 1+, )

�i ∅≠

�i∈

�i �i( , )   �i 1+ �i 1+, )

�i

�i

�k

�i ∅( , ) �� �i 1+ �i 1+( , )

�i ∅≠

R �i=

�i �i( , ) R �i 1+ �i 1+( , )

�i
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Step 2 of the Parallel model has been the subject of much research 

[21,87,97].   Many of the first active database languages modeled the Sequential 

algorithm where one rule is selected from Tk on each cycle [97].  Parallel 

improves system throughput by allowing rules to execute concurrently.  The Par-

allel model, similar to the REACH rule system [21], selects all rules in Tk for con-

current execution on each cycle.  This choice may seem overly aggressive since if 

all the rules were really executed in parallel, incorrect behavior could result.  How-

ever, this study shows that coupling modes handle the issue of rule atomicity by 

providing a mechanism to force the necessary execution sequence in cooperation 

with underlying database’s locking mechanisms.  

4.5.2.3  ActiveDatabase Execution model 

Method Name: ActiveDatabase

Input:  , �j

Output:   where k > i.

Algorithm:  Each �j executed in a quiescent state spawns the following 

algorithm:

0) , i := i + 1

1) while  

Begin loop

2)  Select 

3) , i := i + 1

End loop

4)  return 

�i

�k

�i ∅( , ) �� �i 1+ �i 1+( , )

�i ∅≠

R �i=

�i �i,( ) {R ∪ �j+m ∪ ... ∪ �j+n} �i 1+ �i 1+,( )

�i
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The ActiveDatabase execution model selects a set of rules at Step 2 to be 

concurrently evaluated and executed with external events in Step 3.

To simplify notation, the remainder of this study refers to an active data-

base program Y that executes using the execution model X beginning in state 

 executing a sequence of external events � and terminating in state 

 as:

4.6  Correct Active Database Execution

Proofs of concurrency schemes must demonstrate that the scheme enforces 

correct active database behavior.  Towards this end, this section defines correct 

active database execution.

An active database state �j is defined as a sequential database state iff �j 

is the initial database state , or �j is a state that is linked from �0 through 

the sequential application of data manipulation commands.  Note that the initial 

database state, , is a correct active database state, it is the state in which no 

data manipulation commands have occurred.

The above definition of a sequential database state combined with the sim-

plicity of the Sequential execution model gives rise to the following corollary that 

is used to form this study’s definition of program correctness: 

Corollary 1.  All active database states in all execution paths of an active 

database program executing using the Sequential execution model are sequential 

database states.

�i ∅,( )

�j ∅,( )

XY �i �,( ) �j⇒

�0 ∅( , )

�0 ∅( , )
69



Proof.  The reader can verify using induction that such is the case.  

As a consequence of Corollary 1, program correctness is defined per its 

execution using the Sequential execution model.  An active database program is 

correct iff all eligible execution paths contain only sequential active database 

states and all possible quiescent states are producible by the Sequential execution 

model.  Since Step 2 in Sequential is nondeterministic, the Sequential execution 

model may terminate in more than one quiescent state.  Therefore, CorrectY(�n,�) 

is defined as the set of quiescent states reachable by all possible execution paths of 

.  The states in CorrectY(�n,�) are referred to as correct qui-

escent states.  Stated formally,  for an active database program Y that begins execu-

tion in state  and processes the sequence of external events 

, 

CorrectY(�n,�)  = {states S | an execution 

} (EQ 4)

Now we are ready for the formal definition for a correct active database 

program.

Correct Active Database Program -  Consider an active database pro-

gram Y that begins execution in state  and processes the sequence of external 

events .  Let the total set of possible quiescent states after 

sequentially processing all n events using the Sequential execution model be 

.  A program Y is correct under an execution model X iff 

• all eligible execution paths contain only sequential database states, and

• if , then .

 

SequentialY �n �,( )

�n

� �0 … �n 1–, ,{ }=

 ∃

SequentialY �n �,( ) S⇒

�i

� �0 … �n 1–, ,{ }=

CorrectY �i �,( )

XY �n �,( ) �n k+⇒ �n k+ CorrectY �n �,( )∈
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4.7  Serializability of Rules

This study heavily exploits the standard definitions and methodology sur-

rounding the serializability theorem [59].  However, its manifestation in active 

databases and our presentation requires some review and adaptation.  

Serializability theory determines the conditions upon which concurrent 

processing is equivalent to a serial interleaving of operations.  A well known appli-

cation of the theory is within database transaction models [59].  In [12], Bernstein 

states a set of conditions that specify when the execution order of interfering oper-

ations matter (RAW, WAW, and WAR).  These conditions are violated when inter-

fering operations execute in parallel.  The results of violating the Bernstein 

conditions is that the database may move to an incorrect state.  

The evaluation of individual rules may be explored with respect to the 

Bernstein conditions.  In this case, the parallel execution of interfering rules may 

produce an incorrect state.  Formally, for an LMA, a rule R0 interferes with a rule 

R1 iff

(EQ 5)

External events may also interfere with rules.  For an LMA, an external 

event � interferes with a rule R iff

(EQ 6)

In this paper, a simplified version of the bipartite dependency graphs devel-

oped in [60] is used to statically determine rule interferences8.  A dependency 

8. The simplifications result from the properties of LMAs.

Insert T,( ) A
R0  Insert T,( ) Neg C

R1( )∈∃∈∃

Insert T,( ) �  Insert T,( ) Neg C
R( )∈∃∈∃
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graph Gm is defined as (V,E) where the vertices  represent either rules, rep-

resented as “circles” ( ), or external events, represented as “diamonds” ( ).  

Edges , presented in Figure 15, represent the data dependency between 

rules and external events.

Kuo et al. identify a region in a dependency graph that may lead to errone-

ous behavior.  They call this region a cycle of interference, a cycle in a depen-

dency graph in which all edges are negative.  The set of rules in a cycle of 

interference form a mutual exclusion set.

Kuo et al. present two theorems based on rules within mutual exclusion 

sets.  The theorems are based on the concepts of cycle serializability and execu-

tion serializability, which are defined as follows.  A parallel execution cycle ck is 

cycle serializable iff there exists a serial execution of ck, call this ck*, such that 

execution of ck in state (�j, �j) moves the database to a state (�j+1, �j+1), and the 

execution of ck* in state (�j, �j)  moves the database to a state (�*j+m, �*j+m), and 

�j+1 = �*j+m.  An active database program with an execution path of n parallel 

V Gm∈

E Gm∈

Definition

R1 monitors R0; R0 and R1 can not interfere with one 
another. 

R1 monitors R0; R0 and R1 interfere with one another.

R0 monitors �; � and R0 can not interfere with one 
another. 

R0 monitors �; � and R0 interfere with one another.

FIGURE 15.   Bipartite Graph Constructs

Edge

1). 

2). 

3). 

4). 

+R0 R1

 -R0 R1

� + R0

� - R0
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execution cycles is execution serializable iff ∀ j ∈  [0, ..., n-1], cycle j is cycle seri-

alizable.

The theorems from [60] used in this study are:  

Cycle Serializability Theorem.  The parallel execution of all the rules 

within a mutual exclusion set may not be cycle serializable.  Proof given in [60].

Serializability Theorem.  A parallel execution cycle that does not contain 

all of the rules within a mutual exclusion set is guaranteed to be cycle serializable.  

Proof given in [60].

These theorems are used to establish concurrency schemes that force paral-

lel execution cycles to become cycle serializable.  As such, an active database exe-

cution path in which all execution cycles are cycle serializable contains only 

sequential database states.

4.8  Concurrency Schemes for LMA+ Programs

This section presents the concurrency schemes for LMA+ programs.  It 

begins with a discussion on programs executing the Parallel execution model and 

concludes with the Active database execution model.  Each section contains the 

three proofs of 1) the sufficient conditions for all execution cycles to be cycle seri-

alizable, 2) the sufficient conditions for confluence, and 3) the sufficient condi-

tions for programs correctness.  The resulting concurrency schemes demonstrate 

that LMA+ programs with all rules stated in E-C and C-A decoupled modes are 

correct and confluent. 
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4.8.1  Parallel Execution Model

Lemma 1.  Given an LMA+ program in which all rules are specified in the 

E-C and C-A decoupled modes, all parallel execution cycles in all execution paths 

using the Parallel execution model are cycle serializable.     

Proof.  Instead of a direct proof of Lemma 1, it suffices to prove the more 

general claim that all parallel execution cycles in all execution paths of an LMA+ 

program using the Parallel execution model are cycle serializable (regardless of 

coupling modes).  Therefore, it will be vacuously true that the E-C decoupled and 

C-A decoupled modes are sufficient.  

Steps 0-2 and Step 4 in the parallel execution model are cycle serializable 

by definition (page 67).  Now it is necessary to prove that Step 3 in the parallel 

execution model evaluating an LMA+ program is cycle serializable.  Construct 1 in 

Figure 15 is the only edge notation connecting rules in LMA+ programs.  Depen-

dency graphs with only positive edges contain no mutual exclusion sets.  Kuo et 

al.’s Serializability Theorem says that such Parallel execution cycles are guaran-

teed to be cycle serializable.  Thus, a Parallel execution cycle containing any sub-

set of rules within � is guaranteed to be cycle serializable and Step 3 must be cycle 

serializable.  By induction, all execution cycles are cycle serializable and the claim 

has been proven. 

4.8.1.1  Confluence

Theorem 1.  The execution of an LMA+ program using the Parallel execu-

tion model in which all rules are specified in E-C and C-A decoupled modes is 

confluent.
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Proof.  Lemma 1 proves that all parallel execution cycles in all execution 

paths of an LMA+ program executing the Parallel execution model (with the 

stated coupling modes) are cycle serializable.  Therefore, LMA+ programs execut-

ing the Parallel execution model are execution serializable by definition.  Execu-

tion serializability implies that all execution paths are equivalent to some 

sequential execution path.  As such, active database programs executing the Paral-

lel execution model are equivalent to some sequential execution.  Comai and 

Tanca prove that active rules that contain only positive variables and insertions in 

rule conditions are confluent [29].  In its most restrictive case, their execution 

model reduces to the Sequential execution model.  Therefore, in the sequential 

case, the programs that Comai and Tanca prove confluent are equivalent to sequen-

tial LMA+ programs.  Thus, by transitivity, sequential LMA+ programs are conflu-

ent, and LMA+ programs using the Parallel execution model are also confluent.  

4.8.1.2  Program Correctness

Theorem 2.  The execution of an LMA+ program using the Parallel execu-

tion model in which all rules are specified in E-C and C-A decoupled modes is cor-

rect.

Proof.  Given any LMA+ program Y in which all rules are stated in E-C and 

C-A decoupled modes,  is correct, by definition, iff 

i. all parallel execution cycles in all execution paths are cycle serializable, 

and 

 

ParallelY �n �,( )
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ii. all executions of  for any initial 

state  and external event .  

Lemma 1 satisfies i) by proving that all parallel execution cycles in all exe-

cution paths of Y (with the stated coupling modes) using the Parallel execution 

model are cycle serializable.   

Now it is necessary to prove ii).  Theorem 1 proves that LMA+ programs 

using the Parallel execution model are confluent.  Therefore, 

 since there is only one quiescent state in a 

confluent program.

Both conjuncts have been proven and the theorem is satisfied.  

4.8.2  Active Database Execution Model

Lemma 2.  Given an LMA+ program in which all rules are specified in the 

E-C and C-A decoupled modes, all parallel execution cycles in all execution paths 

using the ActiveDatabase execution model are cycle serializable.   

Proof.  The proof of Lemma 2 is almost identical to that of Lemma 1 since 

external events only add constructs 3 and 5 in Figure 15 to the dependency graphs.  

Specifically, it suffices to prove the more general claim that all parallel execution 

cycles in all execution paths of an LMA+ program using the ActiveDatabase exe-

cution model are cycle serializable (regardless of coupling modes).  

Steps 0-2 in the ActiveDatabase execution model are cycle serializable by 

definition (page 68).  Now it is necessary to prove that Step 3 in the ActiveData-

base execution model evaluating an LMA+ program is cycle serializable.  Con-

ParallelY �n �,( ) CorrectY �n �,( )∈

�n �

ParallelY �n �,( ) CorrectY �n �,( )=
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structs 1, 3, and 5 in Figure 15 are the only edges connecting rules in LMA+ 

programs executing the ActiveDatabase execution model.  Dependency graphs 

with only positive edges contain no mutual exclusion sets.  Kuo et al.’s Serializ-

ability Theorem says that such parallel execution cycles are guaranteed to be cycle 

serializable.  Thus, a parallel execution cycle containing any subset of rules within 

� and any number of external events is guaranteed to be cycle serializable, and 

Step 3 must be cycle serializable.  By induction, all execution cycles are cycle seri-

alizable and the claim has been proven.  

4.8.2.1  Confluence 

Theorem 3.  The execution of an LMA+ program using the ActiveDatabase 

execution model in which all rules are specified in E-C and C-A decoupled modes 

is confluent.

Proof.  Lemma 2 proves that all parallel execution cycles in all execution 

paths of an LMA+ program executing the ActiveDatabase execution model (with 

the stated coupling modes) are cycle serializable.  Therefore, LMA+ programs exe-

cuting the ActiveDatabase execution model are execution serializable by defini-

tion.  Execution serializability implies that all execution paths are equivalent to 

some sequential execution path.  As such, active database programs executing the 

ActiveDatabase execution model are equivalent to some sequential execution.  

Comai and Tanca prove that active rules that contain only positive variables and 

insertions in rule conditions are confluent [29].  In its most restrictive case, their 

execution model reduces to the Sequential execution model.  Therefore, in the 

sequential case, the programs that Comai and Tanca prove confluent are equivalent 

to sequential LMA+ programs.  Thus, by transitivity, sequential LMA+ programs 
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are confluent, and LMA+ programs using the ActiveDatabase execution model are 

also confluent.  

4.8.2.2  Program Correctness

Theorem 4.  The execution of an LMA+ program using the ActiveDatabase 

execution model in which all rules are specified in E-C and C-A decoupled modes 

is correct.

Proof.  Given any LMA+ program Y in which all rules are stated in E-C and 

C-A decoupled modes,  is correct, by definition, iff 

i. all parallel execution cycles in all execution paths are cycle serializable, 

and 

ii. all executions of  for 

any initial state  and any sequence of external events 

.  

Lemma 2 satisfies i) by proving that all parallel execution cycles in all exe-

cution paths of Y (with the stated coupling modes) using the ActiveDatabase exe-

cution model are cycle serializable.   

Now it is necessary to prove ii).  Theorem 2 proves that LMA+ programs 

using the ActiveDatabase execution model are confluent.  Therefore, 

 since there is only one quiescent 

state in a confluent program.

Both conjuncts have been proven and the theorem is satisfied.  
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4.9  Concurrency Schemes for LMA- Programs

This section considers LMA- programs.  In general, LMA- programs are 

not confluent since rules and external events may interfere with one another 

[90,98].   

In this study, an active database program is defined to be correct iff the qui-

escent state is reproducible by the Sequential execution model.  With regard to 

ordering, the Sequential execution model sequentially processes each external 

event until quiescence.  Consequently, in addition to presenting the sufficient con-

ditions for cycle serializability, proofs of correctness must present the sufficient 

conditions to maintain the ordering of external events9.  

This section begins with a discussion of external event sequencing and iso-

lation and their impact to proofs on correct active database programs.

4.9.1  External Event Sequencing and Isolation

External events appear as if they are processed in sequence if the events are 

truly sequenced or they are isolated from one another such that their processing 

order does not matter.  In this respect, an active database program that executes a 

sequence of external events  will be correct if all execution cycles are cycle seri-

alizable, and all external events within  are sequenced or isolated.  More for-

mally, an external event  is processed in sequence before an external event  

iff 

9. This sequencing has not been necessary in previous sections.  For example, Section 4.8 

presents  LMA+ programs that are confluent.  Confluence means sequence is irrele-
vant.  

�

�

�0 �1
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• rule evaluation spawned from  quiesces before (in time) the rule 

evaluation spawned from .

To define external event isolation, the definitions of the closure of rules 

must be defined.  For , the set of rules within the Closure(R) is defined by 

the following algorithm:

Algorithm: Closure

Input:

Ouput:

Repeat until S is unchanged:

 for some .   

Graphically, the Closure(R) contains all rules reachable by a depth first tra-

versal of the dependency graph starting from the rules in R.  For convenience, the 

 for a sequence of external events  is equiva-

lent to the .

Now we can define external event isolation.  External events  and , 

, are isolated from one another when either 

, or there does not exist a negative edge in the 

dependency graph to or from any rule within .  

These definitions lead to the following corollary.

�0

�1

R �⊆

R �⊆

S �⊆

S R{ }←

S S← X∪ � ∈  X T∈ riggers A
Y( ) Y S∈

Closure �( ) � �0 … �m 1–, ,{ }=

Closure Triggers �0( ) … Triggers �m 1–( )∪ ∪( )

�i �j

i j≠

Closure �i( ) Closure �j( )∩ ∅=

Closure �i( ) Closure �j( )∪
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Corollary 2.  For an LMA- program Y and sequence of external events 

, if all the external events within  are isolated from one 

another, then any execution serializable execution of 

 for any initial state . 

Proof.  This proof is divided into two cases based on the classification of 

the rules A = .  In the first case, there does not exist a negated variable 

in any of the rules in A.  In this case, the subregions of the dependency graph 

defined by A and  form LMA+ subregions.  Theorem 3 tells us that execution 

serializable LMA+ programs executing the ActiveDatabase execution model are 

confluent.  Therefore, .

In the second case, there does exist a negated variable in the rules in A.  

This case can be further divided into two subcases.  First, consider the set of exter-

nal events  such that ∃ i,j ∈  [0, ..., m-1], i ≠ j, and 

 ≠ ∅ .  Since Y is an LMA- program and the external 

events in  are isolated from one another, there does not exist a negative edge in 

the subregions of the dependency graph defined by B = Closure( ) and the exter-

nal events .  Note, .  If B contains negated variables, the satisfaction of 

the negated variables in B will not be modified by the execution of 

 since non  of the rules interfere with one another.  The 

set of rules B can be divided into the two sets, 1) the rules  that contain 

negated variables that are invalid due to the table states in , and 2) the remaining 

rules .   Since Y is an LMA- and none of the rules in I interfere with one 

another, the negated variables within I will never again become satisfied (no data is 

deleted).  Thus, I can be removed from B without modifying the execution of Y.  

� �0 … �m 1–, ,{ }= �

ActiveDatabaseY � �,( ) CorrectY � �,( )∈ �

Closure �( )

�

ActiveDatabaseY � �,( ) CorrectY � �,( )=

� ′ �⊆

Closure �i( ) Closure �j( )∩

�

�′

� ′ B ′ A⊆

ActiveDatabaseY � �,( )

I B⊆

�

B ′ B I–⊆
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Now consider the remaining rules B’.  The negated variables in the rules in B’ have 

not been invalidated due to the table states in , and they will not be invalidated 

by the execution of  since none of the rules interfere 

with one another.  Thus, the negated variables within the rules in B’ can be 

removed during the execution of  since they also will 

not effect execution behavior; call this modified set of rules B”.  Note, by construc-

tion,  produces the same set of quiescent states whether 

it executes over the rules B or B”.  Since B” contains only positive variables, it is 

equivalent to an LMA+ program.  Theorem 3 tells us that execution serializable 

LMA+ programs executing the ActiveDatabase execution model are confluent.  

Therefore,  = .  

Now consider the second subcase.  This subcase is defined by the set of 

external events in .  Since this subcase is the contrapositive of the 

first subcase, it can be concluded that , if i ≠ j and , 

then  = ∅ .  In this subcase, since there is no interac-

tion between the execution of the external events within  and any other external 

event within , any interleaved execution serializable execution of the external 

events within  will produce the same set of quiescent states.  Therefore, 

.  Thus, 

 since 

, 

, , and there is no 

interaction between  and .

�
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Both cases have been proven, thus the corollary is proved.   

External event isolation and sequencing are interesting since the Sequential 

execution model processes an external event  by locking the active database and 

sequentially evaluating rules within the  until quiescence.  Therefore, 

it is sufficient for a proof of program correctness to prove that all execution cycles 

are cycle serializable, and all external events are either sequenced or execute in 

isolation from one another.  

Example 2.  This exam-

ple demonstrates the necessity 

for external event sequencing.  

Consider Example 1 presented  

in Section 4.1.2.   Example 1 

introduces two external events 

�0 and �1 and a single rule R 

(Figure 14).  Figure 16 illustrates the resulting dependency graph.  Notice that �0 

and �1 are not isolated from one another.  Therefore, Section 4.1.2 demonstrates 

that when R is stated in E-C and C-A immediate modes (Scenario 1), the quiescent 

state may be different than the quiescent state produced when R is stated in E-C 

and C-A decoupled modes (Scenario 2).  In the E-C and C-A decoupled modes 

scenario, the presented execution is not consistent with the experienced sequence 

of the external events and any execution path in the Sequential execution model.  

Therefore, it is incorrect, and �0 and �1 need to be sequenced.

We are now ready to present our concurrency schemes for LMA- programs.

 

�

Closure �( )

FIGURE 16. Dependency Graph of Figure 14

�0

 R

-

-�1
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4.9.2  Parallel Execution Model

4.9.2.1  Cycle Serializability

Lemma 3.  Given an LMA- application, all parallel execution cycles in all 

execution paths using the Parallel execution model are cycle serializable under the 

following condition:

• At least one rule within all mutual exclusion sets is specified in E-C and 

C-A immediate modes.   

Proof.  The proof of Lemma 3 uses the same logic as the proof of Lemma 

1.  

Execution begins in Step 0 of the Parallel execution model.  Steps 0-2 and 

Step 4 are cycle serializable by definition (page 67).  Now it is necessary to prove 

that Step 3 in the Parallel execution model evaluating an LMA- program is cycle 

serializable.  

Consider a parallel execution cycle that contains all the rules within a 

mutual exclusion set.   Lemma 3’s condition sets at least one of these rules to E-C 

and C-A immediate modes.  According to the definitions in Section 4.5.1, rules 

become atomic when they are set to E-C and C-A immediate modes.  Atomic oper-

ations take the necessary locks to execute serially in the face of conflicting opera-

tions.  Therefore, the mutual exclusion set will not truly execute in parallel if 

interference occurs.  Kuo et al.’s Serializability Theorem tells us that such parallel 

execution cycles are cycle serializable.  Thus, a parallel execution cycle containing 

any subset of rules within � is guaranteed to be cycle serializable, and Step 3 must 

be cycle serializable.  By induction, all execution cycles are cycle serializable and 

the claim has been proven.     
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Lemma 3 gives rise to the following corollary.

Corollary 3.  Given an LMA- application, all parallel execution cycles in 

all execution paths using the Parallel execution model are guaranteed to be cycle 

serializable, by static methods, only under the following condition:  

• At least one rule within all mutual exclusion sets is specified in E-C and 

C-A immediate modes.   

Proof.  Lemma 3 proves that the conditions of the corollary are sufficient to 

guarantee cycle serializability in the Parallel execution model.  For the purpose of 

contradiction, suppose that a weaker concurrency scheme exists that also statically 

guarantees cycle serializability within the Parallel execution model, i.e., consider 

a concurrency scheme that contains mutual exclusion sets without any rules stated 

in E-C and C-A immediate modes that still guarantees cycle serializability.  In this 

weaker scheme, consider one of these mutual exclusion sets that does not contain 

any rules stated in E-C and C-A immediate modes.  In such a set, a possible inter-

leaving of operations include evaluating all the rule conditions in the mutual exclu-

sion set before executing any actions.  This interleaving is possible because in this 

particular set of rules:

• Rules stated using an E-C immediate mode must have a C-A deferred 

mode or weaker.

• Rules stated using an C-A immediate mode must have a E-C deferred 

mode or weaker.

• All decoupled and deferred modes may be evaluated in parallel.

The above conditions imply that the rules in the identified mutual exclu-

sion set could be evaluated using the following algorithm:
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1. Evaluate all the rule conditions in the exclusion set that have an E-C 

immediate coupling mode.

2. Evaluate all the rule conditions in the exclusion set that are stated in 

either E-C  deferred or decoupled mode whose C-A coupling mode is 

not immediate.

3. Evaluate in parallel the remaining conditions.

4. Perform the actions of all satisfied rules according to their coupling 

modes.  

In the above algorithm, it is possible that no action will be executed until 

all the rule conditions have been evaluated.  This described interleaving is equiva-

lent to executing all the rules in the mutual exclusion set in parallel since all rules 

will evaluate their respective conditions in the same database state and execute 

their LMA rule actions accordingly.  Kuo et al.’s Cycle Serializability Theorem 

says that the parallel execution of all rules in a mutual exclusion set may not be 

serializable.  This is a contradiction, and therefore, the corollary has been proven.  

Example 3.  To illustrate Corollary 3, consider the example presented in 

Figure 17.  In the figure,  , , and R0 and R1 form a cycle of 

interference.  Consider when R0 is stated in E-C and C-A decoupled modes, and R1 

is stated in E-C immediate and C-A deferred modes.  Let the external event �0 

insert the tuple 3 into both T0 and T1.  Due to coupling mode semantics, R1’s con-

dition will immediately be evaluated while R1’s action will be evaluated right 

before transaction commit.  In the absence of other external events, a legal inter-

leaving of operations is to apply �0 in state �0, evaluate  in �1, evaluate  

 

R0 R1 �∈, T0 T1 �∈,

C
R1 C

R0
86



in �2, and execute  and  in �3 and �4 respectively.  Thus, both  

and  evaluate to true. Upon the completion of R0 and R1’s actions, the 

database will be in an inconsistent state; specifically, both R0 and R1 executed in 

parallel inserting the tuple 1 into both T0 and T1.  

4.9.2.2  Program Correctness

Theorem 5.  The execution of an LMA- application using the Parallel exe-

cution model obeying the following condition is correct:

• At least one rule in every mutual exclusion set uses the E-C and C-A 

immediate modes.  

Proof.  The proof of Theorem 5 is similar in logic to the proof of Theorem 

4.  Specifically, given any LMA- program Y in which all rules are stated in the cou-

pling modes described by the theorem condition,  is correct, by 

definition, iff 

i. all parallel execution cycles in all execution paths are cycle serializable, 

and 

A
R1 A

R0 C
R0 �1( )

C
R1 �2( )

FIGURE 17. An example cycle of dependency.

R0

R1

--�0

	

	

rule R0                                  rule R1                                 �0 = { }
E: { (Insert,T0) }  E: { (Insert,T1) }    �0 = 〈  (Insert,T0(3)), 

C:                 C:   �����������(Insert,T1(3)) 〉
A:  〈  (Insert,T1(1))  〉              A:  〈  (Insert,T0(1)) 〉 

T0 1( )¬ T1 1( )¬

ParallelY �n �,( )
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ii. all executions of  for any initial 

state  and external event .  

Lemma 3 satisfies i) by proving that all parallel execution cycles in all exe-

cution paths of Y (with the stated coupling modes) using the Parallel execution 

model are cycle serializable.   

Now it is necessary to prove ii).  Consider the Parallel execution model.  

By definition, the Parallel execution model processes each external event sequen-

tially until quiescence. Since i) proved that all parallel execution cycles are cycle 

serializable, it can be concluded that for all executions of Y, 

.10

Both conjuncts have been proven and the theorem is satisfied.  

4.9.3  ActiveDatabase Execution Model

Lemma 4.  Given an LMA- application, all parallel execution cycles in all 

execution paths using the ActiveDatabase execution model are cycle serializable 

under the following condition:

• At least one rule within all mutual exclusion sets is specified in E-C and 

C-A immediate modes.

Proof.  The proof of Lemma 4 is similar to the proof of Lemma 3.  Specifi-

cally, the only difference between LMA- programs using the ActiveDatabase exe-

cution model versus the Parallel execution model, with respect to cycle 

10.In fact, the sufficient conditions for confluent LMA- programs are shown in [29,81].  
These studies demonstrate the transformations upon stratified active database rules, 
programs that contain no cycles of interference, to obtain confluence.

ParallelY �n �,( ) CorrectY �n �,( )∈
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serializability, is that parallel execution cycles may contain external events.  Yet, 

external events do not introduce non-serializable behavior.  This is because exter-

nal events are atomic.  Atomic operations take the necessary locks to execute seri-

ally in the face of conflicting operations.  Therefore, a mutual exclusion set 

containing an external event cannot truly be executed in parallel if interference 

occurs11.  Thus, by Kuo et al.’s Serializability Theorem and the same reasoning as 

Lemma 3, all parallel execution cycles using the ActiveDatabase execution model 

under the theorem condition are cycle serializable. 

4.9.3.1  Program Correctness

Three concurrency schemes are presented for the correctness of programs 

executing the ActiveDatabase execution model.  Each successive scheme allows 

for more concurrency.

The first and unnecessarily restrictive concurrency scheme is presented in 

Theorem 6.  

Theorem 6.  The execution of an LMA- program using the ActiveDatabase 

execution model obeying the following conditions is correct: 

• At least one rule in every mutual exclusion set uses the E-C immediate 

and C-A immediate modes.

• For every external event �i in which the Closure(�i) contains a rule 

connected with a negative edge in the dependency graph,�all of the rules 

in the Closure(�i) are stated in E-C and C-A immediate modes.

11.Further, external events are never part of a cycle of dependency.  The in-degree of all 
external event nodes in a bipartite graph is 0.
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Proof.   The proof of Theorem 6 is similar to the proof of Theorem 5.  Spe-

cifically, given any LMA- program Y in which all rules are stated in the coupling 

modes described by the theorem conditions,  is correct, 

by definition, iff 

i. all parallel execution cycles in all execution paths are cycle serializable, 

and 

ii. all executions of  for 

any initial state  and any sequence of external events 

.  

Lemma 4 satisfies i) by proving that all parallel execution cycles in the 

execution of Y (with the stated coupling modes) using the ActiveDatabase execu-

tion model are cycle serializable. 

Now it is necessary to prove ii).  The theorem conditions specify that for 

every external event �i�in which the Closure(�i) contains a rule connected with a 

negative edge in the dependency graph,�all of the rules in the Closure(�i) are 

stated in E-C and C-A immediate modes.  Label this set of external events �’.  The 

external events in �’ are necessarily sequenced since for any , all of the 

rules in Closure(�i) are executed atomically within a single transaction.  Since i) 

proved that all parallel execution cycles are cycle serializable, 

 by definition.

Now consider the remaining set of external events �”.  These external 

events do not trigger any interfering rules.  Thus, by definition, all of the external 

events in �” are isolated from one another.  Corollary 2 says that since 

ActiveDatabaseY �n �,( )

ActiveDatabaseY �n �,( ) CorrectY �n �,( )∈

�n
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 is an execution serializable execution of a set of iso-

lated external events, .  

Lastly, the theorem’s conditions imply that 

 does not contain any rules connected with a 

negative edge.  Otherwise, the offending rules and their closures would be in �’ 

and not �”.  Thus, using the same logic presented in Corollary 2, if A is non-

empty, A can be reduced to an LMA+ set of rules.  Since LMA+ regions contain no 

interfering rules and Theorem 3 proves that these regions are confluent, 

 and  can be interleaved 

in any order without affecting the resulting database states.  Therefore, 

 for all possible execution paths.

Both conjuncts have been proven and the theorem is satisfied. 

Though sufficient, Theorem 6 is a very restrictive concurrency scheme.  

For one, Theorem 6 does not take into account transaction boundaries.  The defini-

tion of external events is that they are atomic and committed.  Theorem 7 exploits 

this property and weakens the concurrency scheme accordingly.  

Theorem 7.  The execution of an LMA- program using the ActiveDatabase 

execution model obeying the following conditions is correct. 

• At least one rule in every mutual exclusion set uses the E-C immediate 

and C-A immediate modes.

• For every external event �i in which the Closure(�i) contains a rule 

connected with a negative edge in the dependency graph,�all of the rules 

in the Closure(�i) are stated in E-C and C-A deferred modes or stronger.
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Proof.  This proof is similar to the proof of Theorem 6.  Specifically, given 

any LMA- program Y in which all rules are stated in the coupling modes described 

by the theorem conditions,  is correct, by definition, iff

i. all parallel execution cycles in all execution paths are cycle serializable, 

and 

ii. all executions of  for 

any initial state  and any sequence of external events 

.  

i) is proved identically as in Theorem 6.  Therefore, it is only left to prove 

that the loosened conditions of Theorem 7 are still sufficient for ii).   

The theorem conditions specify that for every external event �i�in which 

the Closure(�i) contains a rule connected with a negative edge in the dependency 

graph,�all of the rules in the Closure(�i) are stated in E-C and C-A deferred modes.  

Label this set of external events �’.  The external events in �’ are necessarily 

sequenced since for any , all of the rules in Closure(�i) are executed to 

quiescence before the end of a transaction, and our definition of an external event 

says that no other external event is permitted to execute until the transaction has 

been completely committed.  Since i) proved that all parallel execution cycles are 

cycle serializable,  by defini-

tion.

Now consider the remaining set of external events �”.  These external 

events do not trigger any interfering rules.  Thus, by definition, all of the external 

events in �” are isolated from one another.  Corollary 2 says that since 

ActiveDatabaseY �n �,( )

ActiveDatabaseY �n �,( ) CorrectY �n �,( )∈
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 is an execution serializable execution of a set of iso-

lated external events, .  

Lastly, the theorem’s conditions imply that 

 does not contain any rules connected with a 

negative edge.  Otherwise, the offending rules and their closures would be in �’ 

and not �”.  Thus, using the same logic presented in Corollary 2, if A is non-

empty, A can be reduced to an LMA+ set of rules.  Since LMA+ regions contain no 

interfering rules and Theorem 3 proves that these regions are confluent, 

 and  can be interleaved 

in any order without affecting the resulting database states.  Therefore, 

 for all possible execution paths.

Both conjuncts have been proven and the theorem is satisfied.  

Theorem 7 provides more concurrency than Theorem 6 since external 

events that trigger interfering rules do not execute all rules within the closure 

atomically.  Therefore, rule execution from other regions in the dependency graph 

may continue processing in parallel.  Yet the conditions in Theorem 7 can still be 

weakened.  Borrowing from the definition of event isolation, a close examination 

of rule dependency graphs reveals that external events need to be sequenced only 

when rules within their closures interfere with one another.  The following is a for-

mal definition of this occurrence.

External Event Interference - Two external events, �i and �j, interfere 

with one another when , , and , 

such that R is a rule connected in either direction with a negative edge in the 

ActiveDatabaseY �n �″,( )

ActiveDatabaseY �n �″,( ) CorrectY �n �″,( )∈

Closure � ′( ) Closure �″( )∩ A=
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dependency graph.  In other words, the definition of external event interference is 

very nearly the contrapositive of the definition of external event isolation.

Corollary 4 follows from this definition.

Corollary 4.  For an LMA- program Y, any initial state , and the 

sequence of external events  that can not interfere with 

one another, if all cycles are cycle serializable, then 

.

Proof.  Consider the set of external events  such that 

, if , then   is isolated from all other external events 

within .  Corollary 2 tells us that 

.

Now consider the remaining set of external events .  By con-

struction, , if , then  does not interfere with any 

external event in , yet  is not isolated from all the external events in .  From 

the definitions of external event isolation and interference, it can be concluded that 

some of the rules in A =  -  may be connected with 

a negative edge.  This is because the only difference between an isolated external 

event and a non-interfering external event is that a non-interfering external event 

may contain a negative edge in its closure, even though its closure intersects with 

other external event closures.  If the external event closures do not contain nega-

tive edges, then they are isolated from one another.  Set A is defined by these dif-

ferences.  Thus, the negative edges in A can only interfere with execution spawned 

by �i.  Otherwise,  would interfere with another external event in .  This 

�n
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implies that for any execution serializable execution, any interleaving of  with 

any other external event within  will not modify the satisfiability of the negated 

variables in A.  Now consider the rest of the rules in , i.e., B = 

 - A.  The rules in B do not contain negative edges, otherwise  

would interfere with another external event in .  All of the rules in B can be 

reduced to contain only positive variables using the logic presented in Corollary 2.  

Thus, by Theorem 3, these subregions of the dependency graph are confluent.  The 

properties of A and B imply that  can be interleaved in any order with the exter-

nal events in  without modifying the resulting set of database states.  By induc-

tion, .

Lastly, the corollary’s conditions imply that 

 does not contain any rules connected with a 

negative edge.  Otherwise, the external events would interfere with one another.  

Thus, using the same logic presented in Corollary 2, if C is non-empty, C can be 

reduced to an LMA+ set of rules.  Since LMA+ regions contain no interfering rules 

and Theorem 3 proves that these regions are confluent, 

 and  can be interleaved 

in any order without affecting the resulting database states.  Therefore, 

 for all possible execution paths. 

The loosest concurrency scheme for LMA- programs using the ActiveData-

base execution model can now be presented.
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Theorem 8.  The execution of an LMA- program using the ActiveDatabase 

execution model obeying the following conditions is correct: 

• At least one rule in every mutual exclusion set uses the E-C immediate 

and C-A immediate modes.

• For every external event �i that interferes with another external event,�

all the rules in the Closure(�i) are stated in E-C and C-A deferred 

modes or stronger.

Proof.  This proof is similar to the proof of Theorem 7.  Specifically, given 

any LMA- program Y in which all rules are stated in the coupling modes described 

by the theorem conditions,  is correct, by definition, iff

i. all parallel execution cycles in all execution paths are cycle serializable, 

and 

ii. all executions of  for 

any initial state  and any sequence of external events 

.  

i) is proved identically as in Theorem 6.  Therefore, it is only left to prove 

that the loosened conditions of Theorem 8 are still sufficient for ii).      

The theorem conditions specify that for every external event �i�that inter-

feres with another external event,�all of the rules in the Closure(�i) are stated in E-

C and C-A deferred modes or stronger.  Label this set of external events �’.  The 

external events in �’ are necessarily sequenced since for any , all of the 

rules in Closure(�i) are executed to quiescence before the end of a transaction, and 
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ActiveDatabaseY �n �,( ) CorrectY �n �,( )∈
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our definition of an external event says that no other external event is permitted 

execution until the transaction has been completely committed.  Since i) proved 

that all parallel execution cycles are cycle serializable, 

 by definition. 

Now consider the remaining set of external events �”.  All the external 

events in �” can not interfere with one another.  Corollary 4 tells says that  

.  

Lastly, the theorem’s conditions imply that 

 does not contain any rules connected with a 

negative edge.  Otherwise, the offending rules and their closures would be in �’ 

and not �”.  Thus, using the same logic presented in Corollary 2, if A is non-

empty, A can be reduced to an LMA+ set of rules.  Since LMA+ regions contain no 

interfering rules and Theorem 3 proves that these regions are confluent, 

 and  can be interleaved 

in any order without affecting the resulting database states.  Therefore, 

 for all possible execution paths.

Both conjuncts have been proven and the theorem is satisfied.  

4.10  VenusDB Integration

So far, this chapter has presented concurrency schemes for LMAs execut-

ing in a general active database environment.  This section applies these tech-

niques to LMAs executing within VenusDB.  An algorithm for assigning 

concurrency schemes is presented.  This algorithm can be directly implemented 
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within the VenusDB compiler resulting in a system that insulates LMA application 

programmers from the details of concurrency control.

4.10.1  Background

Recall, active rules are evaluated using the nested transaction model as pro-

posed by the HiPAC project (Section 4.5.1) [33].  This behavior can be summa-

rized as:

• Rule constituents in immediate coupling mode spawn sequential sibling nested 

transactions.

• Rule constituents in deferred coupling mode spawn parallel sibling nested trans-

actions right before a transaction commit.

• Rule constituents in decoupled coupling mode spawn parallel top level transac-

tions.

VenusDB is an active database language that also operates within the 

nested transaction model (Chapter 3).  As such, VenusDB rule conditions and 

actions execute as an atomic state transition in a state space.  However, actions of 

VenusDB rules may include one or more modules.  Such rules that list one or more 

modules in its action are called guard rules.  Thus, restrictions must be placed on 

coupling mode assignments of VenusDB guard rules.  These restrictions include 

the following two rules:

• C-A deferred restriction - Decoupled mode is not allowed for rule constituents 

in child modules that can be called from a guard rule stated in C-A deferred 

mode.  This ensures that the child modules will execute in the same transaction 

as the C-A deferred rule.
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• C-A immediate restriction - Only immediate coupling mode is allowed for rule 

constituents in child modules that can be called from a guard rule stated in C-A 

immediate mode.  This ensures that the child modules will execute in sequential 

sibling transactions as suggested by the C-A immediate mode.

Figure 18 illustrates these restrictions.  On the left, rule 

immediate_mode states its action in C-A immediate mode.  

immediate_mode’s action lists module A.  As a result, the rule constituents in A 

and all of A’s children are restricted to immediate mode.  On the right, rule 

deferred_mode states its action in C-A deferred mode.  deferred_mode’s 

action also lists module A.  In this case, the rule constituents in A and all of A’s chil-

dren are restricted to immediate and/or deferred modes.

FIGURE 18. VenusDB Coupling Mode Restrictions

A

X Y Z

A

X Y Z

Must use immediate mode Must use immediate or deferred 
modes

rule deferred_mode;
from ...;
E-C coupling mode = ...;
C-A coupling mode = deferred;
if(...)
{

A(...);
}

rule immediate_mode;
from ...;
E-C coupling mode = ...
C-A coupling mode = immediate;
if(...)
{

A(...);
}
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Lastly, VenusDB’s layered architecture does not permit coupling modes.  

Correl and Miranker have studied this shortcoming [30].  Their solution attaches 

isolation specifications to individual modules and tables.  Three categories of data 

isolation are proposed called guard stability, serializable, and exclusive.  Guard 

stability mode allows the greatest amount of concurrency, but provides the least 

amount of isolation from other users.  This mode dictates that, at minimum, a row 

accessed during condition evaluation will be available during action execution.  

Guard stability mode is the default specification for VenusDB rules.  Serializable 

mode, with properties in between guard stability and exclusive modes, dictates that 

all rules in nested modules execute within the same transaction.  Exclusive mode, 

being the strongest data isolation mode, dictates that accesses to specified tables 

are mutually exclusive.  

Within LMAs, these isolation modes can be directly mapped to the 

restricted coupling mode assignments for VenusDB programs presented above.  

These mappings are:

• Specifying rule constituents in decoupled mode are equivalent to guard stabil-

ity.  In LMAs, rows accessed during condition evaluation are always available 

during action execution.

• Specifying a rule action in C-A deferred mode under the C-A deferred restric-

tions described above, is equivalent to issuing serializable mode to the rule’s 

action.  This dictates that the rule’s action and it’s child modules will execute 

within the same transaction.

• Specifying rule constituents in immediate coupling mode, under the C-A imme-

diate mode restrictions described above, are equivalent to issuing exclusive 

mode on all tables accessed by the rule.  This ensures that data access from 

immediate rules are mutually exclusive. 
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• Specifying a rule in E-C deferred mode in which any rule within its module may 

be triggered by an external event (as opposed to the firing of a guard rule) is 

equivalent to issuing exclusive mode on all tables accessed in the E-C deferred 

mode rule’s condition.  This is stronger than guaranteeing that the condition is 

evaluated in the same transaction as the triggering external event12.

4.10.2  Coupling Mode Assignment Algorithm

The definitions presented in this section combined with the techniques of 

this chapter give rise to the following algorithm for specifying concurrency 

schemes for VenusDB programs that obey the LMA restrictions.  

1. Build a bipartite rule graph for every module as described in Section 4.7.

2. Specify the coupling modes for every rule in every module according to Theo-

rem 8.

3. For every guard rule that uses C-A deferred mode, change all decoupled mode 

assignments in all rules in all child modules to deferred mode.

Step 3 maintains correctness since it only restricts the concurrency scheme pro-

posed by Theorem 8.

4. For every guard rule that uses C-A immediate mode, change all coupling mode 

assignments in all rules in all child modules to immediate mode.

Similarly, Step 4 also maintains correctness since it only further restricts the 

concurrency scheme proposed by Theorem 8.

12.This restriction is necessary since Correl and Miranker did not provide primitives for 
coupling external events to conditions.
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5. For every rule stated in C-A deferred mode, surround the entire action in serial-

izable mode.  Remove the C-A deferred mode assignments.  

Step 5 maintains correctness by applying the mapping of C-A deferred mode to 

VenusDB primitives as described above.  Further note that Step 3 changed all 

decoupled mode assignments in all child modules to deferred mode.  Thus, this 

step need not be recursive. 

6. For every rule that uses immediate coupling mode, issue exclusive mode on all 

tables accessed.  Remove the immediate coupling mode assignments.

Similarly, Step 6 maintains correctness by applying the mapping of immediate 

mode to VenusDB primitives as described above.  Further note that Step 4 mod-

ified all coupling modes of all child modules from a guard rule stated in C-A 

immediate mode to immediate mode.  Thus, this step also need not be recursive.

7. For every rule that is stated in E-C deferred mode in which any rule within its 

module may be triggered by an external event, issue exclusive mode on all 

tables accessed by its condition.  Remove the remaining E-C deferred mode 

assignments.

Similarly, Step 7 maintains correctness by applying the mapping of E-C 

deferred mode rules that may be triggered by external events to VenusDB prim-

itives as described above.  

8. Remove all remaining coupling mode assignments.

Step 8 maintains correctness since the only remaining coupling modes are 

decoupled.  In VenusDB, the default isolation primitive is serializable mode 

which is equivalent to stating LMA rules in either or both of E-C and C-A 

decoupled modes (as described above). 
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4.11  Conclusion and Future Work

A large number of coupling modes have been developed to provide the 

flexibility to efficiently integrate active rules within database transactions.  How-

ever, coupling modes become unmanageable within hard active database applica-

tions.  Towards this end, this chapter presented formal execution semantics and 

correctness proofs for concurrency schemes for a significant subclass of hard rule 

systems called Log Monitoring Applications (LMAs).  LMAs are expert system 

applications that analyze logs maintained in a database.  The concurrency proofs 

demonstrate that the number of applicable coupling modes are significantly 

reduced for programs obeying the LMA restrictions.  Specifically, the first set of 

proofs establish that LMA+ programs, LMAs with only positive variables, are con-

fluent, and thus, their rules can use the most flexible coupling modes of E-C and 

C-A decoupled modes.  Since decoupled modes maximize concurrency, it is fair to 

conclude that DBMS’s need to only support decoupled coupling modes in order to 

support the execution of LMA+ programs.  The second set of proofs establish that 

for LMA- programs, LMAs with both positive and negated variables, only one rule 

in a set of conflicting rules must be made atomic using E-C and C-A immediate 

coupling modes.  However, the remaining rules may use more flexible coupling 

modes.  Thus, the resulting concurrency control schemes minimize the coupling 

mode support necessary for the underlying database.  

A separate contribution of this work is that the constructive proof tech-

niques can be exploited to build an algorithm for implementing concurrency 

schemes.  Such an algorithm insulates application programmers from the complex-

ities of coupling modes.  This algorithm would operate by constructing a rule 

dependency graph from an input rule program.  The algorithm then walks the 
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graph and outputs the concurrency schemes presented in this paper.  Section 4.10 

details an example of this algorithm within the VenusDB compiler.

Lastly, algorithms such as the ones presented in Section 4.10 combined 

with the techniques of this chapter represent the first step in building a general pur-

pose rule compiler that completely isolates application programers from integrat-

ing rules within a database.  It is the author’s belief that the details of transaction 

models and concurrency schemes are application dependent.  Therefore, we expect 

similar studies to be performed on other application classes.  As the number of 

investigated problem areas are expanded, this compiler will be presented with a 

problem type and implement the appropriate isolation model.  We believe that such 

technology attacks one of the major complexity stumbling blocks to general use of 

active database systems.  
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Chapter 5  The VenusDB Optimizer

Rule-based applica-

tions are computationally 

intensive.  As a result, one 

of the main themes of rule-

based language research has 

always been performance.  

Within hard active data-

bases, performance issues 

are magnified since rule 

evaluation spawns queries over the contents of a database.  Consequently, inade-

quate performance increases the duration of locks inhibiting overall system 

throughput.  Towards this end, a primary concern in the development of VenusDB 

has been performance.  As such, VenusDB is a compiled active database language 

(Figure 19).  The compiler was originally designed to take as input rule language 

source and database schema information [30].  The output was to be a set of trigger 

filters implementing the event mechanism [69], optimized C++ rule code that 

tightly integrates the LEAPS match algorithm via the AMI [16,41,60,69], and a set 

of schema optimizations.  This chapter introduces the VenusDB optimizer, an opti-

mizer guided by component database statistics to suggest physical schema optimi-

zations.

The VenusDB optimizer differs from current state-of-the-art active data-

base optimizers that solely rely on the underlying database optimizer [74,98].  A 

limitation of the database optimizer is that it only optimizes single rules at execu-

tion time.  As a result, the underlying database schemas are deemed constant.  In 

hard active databases, large quantities of rules may request queries using common 

predicates.  Indexing provides tremendous performance improvements in such an 

Rule Source 
Code

Database 
Schema

VenusDB compiler

Trigger Filters
[Obermeyer 99]

Schema Opts
[Warshaw 00]

Rule code
[Brant, Obermeyer 94]

Event                                  Condition-Action                             indexing hints

FIGURE 19. VenusDB Compiler Architecture
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environment [16,56,69].  Complicating matters is that the choice of indices may be 

quite daunting.  Network administrators must make a greedy choice among a com-

binatoric number of possibilities.  The VenusDB optimizer assists administrators in 

this task.  In addition, based on its physical schema suggestions, the optimizer 

determines the set of queries to be sent through the AMI for execution on the com-

ponent databases.  The resulting system reduces the deployment costs for scalable 

active database programs.

This chapter begins by introducing background material, it then details the 

architecture of the VenusDB optimizer, an instance of an extensible rule-based 

optimizer written in Venus [92].  Lastly, it concludes with an empirical evaluation.

5.1  Background

Performance tuning is a requirement of all enterprise database applications.  

Related administration tasks include table normalization, distribution, and replica-

tion of data, as well as index selection.  Index selection, however, has long proven 

to be one of the most difficult, but most effective, performance related tasks.  

Administrators must be keenly aware of workloads, data distributions, table size, 

and other database resource issues in order to implement useful indices.  

Several attempts have been made in automating index selection [28,51].  

Common elements of these solutions are providing accurate workloads and meth-

ods for pruning the large space.  One particularly interesting approach was pro-

posed by the AutoAdmin project at Microsoft Research [25,26].  In a pair of 

publications, Chaudhuri and Narasayya present a suite of tools that suggest and 

analyze the impact of indices within Microsoft SQL Server.  The tools use the syn-

tax of queries to eliminate obvious inappropriate candidates.  Search proceeds iter-

atively by first optimizing individual rules for single column indices.  Search 
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continues by next optimizing workloads using multiple key indices.  A unique 

characteristic of their work is that their tools uses cost estimations incurred from 

hypothetical workloads that resemble the cost model exploited by SQL Server’s 

query optimizer.  This feature minimizes the impact of index optimization to the 

online system.

The VenusDB optimizer builds on the fundamentals of Chaudhuri and 

Narasayya’s work.  It is similar in that it is uses cost estimations to guide its multi-

stage search algorithm for index suggestions.  However, it differs in that its archi-

tecture is rule-based and incurs the benefits described in [92].  Additionally, the 

VenusDB optimizer specifically addresses the requirements of active databases 

including join order considerations.  

As has been discussed, hard active database applications may spawn large 

quantities of queries.  Optimizing these queries are complicated within VenusDB 

due to its layered architecture and match algorithm.  In this case, declarative lan-

guage abstractions obscure the actual queries that execute on component data-

bases.  The VenusDB optimizer is designed to cope with these issues.  Being part 

of the VenusDB compiler, it is tightly coupled with the target format of its rules 

and recommends index suggestions accordingly.  In fact, it is the optimizer itself 

that determines the set of queries that are sent to the component databases.  This 

chapter demonstrates the effectiveness of this architecture.

5.2  Architecture

VenusDB is a layered active database.  Therefore, the database is treated as 

a black box that is only accessed through standard database facilities (such as SQL 

queries).  VenusDB implements this communication layer through instances of the 
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AMI (Section 3.2.2).  In general, layered systems often sacrifice speed for flexibil-

ity, and VenusDB is no exception.

The VenusDB optimizer facilitates the efficient implementation of 

VenusDB’s layered architecture.  It accomplishes this in two ways.  First, 

VenusDB rules can be viewed as statements upon a federated database.  Consistent 

with most loosely coupled federated databases, the VenusDB optimizer decom-

poses these federated statements into one or more statements that can be locally 

executed on its constituent datastores.  We call this type of optimization predicate 

pushdown - predicates that are pushed to the local database for execution.  Second, 

the optimizer suggests indices that support predicate pushdown.  The combination 

of these techniques reduce the workload of the VenusDB inference engine.  

The VenusDB optimizer is implemented using the extensible Venus-based 

optimizer architecture detailed in [92].  As such, the VenusDB optimizer defines 

the operator tree and cost model in C++, and its space of algebraic rewrites and 

search strategy in Venus.  Among the many benefits of this architecture, the cost 

model uses database statistics.  Therefore, the search for optimal indices is guided 

by actual database workloads.  

5.2.1  Optimization Suite

This section details the VenusDB optimizer’s optimization suite consisting 

of predicate pushdown and schema suggestions.  To begin, the VenusDB match 

algorithm must be reviewed as it applies to the suite.

5.2.1.1  LEAPS Algorithm
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VenusDB implements rule matching using the LEAPS algorithm.  This sec-

tion summarizes the necessary elements of this algorithm for understanding 

VenusDB’s optimization suite.  For a complete description, refer to [16,17,66].

The LEAPS match algorithm is an implementation of the so called match-

select-act cycle.  In the match-select-act cycle, rule evaluation begins in the match 

phase which evaluates all of the rule guards against the contents of the database 

and produces a conflict-set of satisfied rules.  The individual database elements 

that satisfy a particular rule guard is called an instantiation.  Next, the select phase 

picks a single instantiation from the conflict set to pass to the act phase.  Lastly, the 

act phase executes the rule action, and the rule is said to have fired.  This cycle 

continues until no further rules satisfy the match cycle.  This state is called fixed 

point.    

Venus Rule

rule r;
from X[?] x;
     Y[?] y;
     Z[?] z;
if(...) {
  ...
}

C++ Implementation

void evaluate_rule_r() {

  Cursor X = Container_X.newCursor();
  Cursor Y = Container_Y.newCursor();
  Cursor Z = Container_Z.newCursor();

  for(X.reset();!X.atEnd();X.next()) {
  // predicate over X’s value

  for(Y.reset();!Y.atEnd();Y.next()) {
  // predicate over X and Y’s values

  for(Z.reset();!Z.atEnd();Z.next()) {
  // predicate over X,Y,and Z’s values
  {
    performAction();
  }}}}

FIGURE 20. Example Rule and Its C++ Implementation
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The LEAPS algorithm, as opposed to the other common match algorithms 

[39,63], is lazily evaluated.  Lazy evaluation differs from eager evaluation in that 

the match phase produces only a single instantiation to pass to the select phase.  

Therefore, search in the LEAPS algorithm is the process of finding a single instan-

tiation in the match phase.  If no instantiation is found, fixed point is reached and 

the algorithm terminates.  Otherwise, the match-select-act cycle continues as nor-

mal.

The search for a valid instantiation within the LEAPS match phase is 

essentially implemented using nested loops for each rule.  For example, consider 

Figure 20.  The figure presents a sample VenusDB rule and an abstraction of its 

C++ implementation.  Rule r is a 3-way join.  The implementation of rule r’s con-

dition is a triply nested loop, one for each existential quantifier1.  

evaluate_rule_r begins by declaring three cursors over the containers to be 

evaluated.  Each loop then uses the cursors to traverse the containers while testing 

predicates against the cursor values.  If a predicate is satisfied, the next inner loop 

will be executed.  If a predicate is not satisfied, the cursor is moved forward.  

When the innermost loop is reached, the rule action is performed2.  

The LEAPS algorithm continues evaluating until fixed point is reached.  

5.2.1.2  Predicate Pushdown

1. This is actually inaccurate.  Rule r would really be implemented using only two loops.  
In LEAPS, search is seeded by search points that reduce the join-arity by one.  The 
details of this mechanism is beyond the scope of this section.

2. Though not illustrated, the search for instantiations is suspended during action execu-
tion.  After the action completes, search is resumed, not necessarily in the same rule, 
based on a priority queue of search points.  This queue is the essence of the LEAPS 
algorithm. 
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A close inspection of Figure 20 reveals wasted work.  In Venus, containers 

and their elements live in main memory.  Therefore, iterating over the values of 

containers and testing one at a time is feasible.  Conversely, VenusDB containers 

and elements may live over a network on a database.  Nested loop evaluation in 

this context is equivalent to locally materializing the contents of an exponential 

number of  “select *” queries per rule evaluation without regard to indices.  

Further, recall that LEAPS is a lazy match algorithm.  Therefore, the generation of 

the entire stream of data is rarely exhausted since only one instantiation is pro-

duced on each cycle.

Figure 21 presents the same rule presented in Figure 20 with an alternate 

C++ implementation using predicate pushdown.  In this version, evaluation of 

rules still occurs using nested loops.  However, the rule predicates are removed 

from the loops, parameterized, and inserted into the newCursor methods3.  The 

reset methods substitute the actual values of the cursors in the predicates.  

Before iteration, the implementing streams (AMI implementations) relay these 

predicates to their local databases for execution.  Therefore, instead of executing 

full relation scans, the database executes finely constrained select predicates that 

take advantage of querying and indexing utilities.  If a query returns an empty 

result, the loop is aborted.  Otherwise, the loop is traversed the same as before, but 

hopefully with a substantially reduced stream size.  

This optimization facility is modeled after the cursor creation scheme in 

Oracle and other relational database management systems.  In these systems, the 

creation of a result set for a query statement is a multiple step process.  This pro-

3. In reality, the predicates are repeated within the loops as in Figure 20.  This allows the 
VenusDB engine to correctly process predicates if predicate pushdown is not supported 
by an AMI implementation.
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cess begins with the parsing of an SQL query to build an optimized execution plan.  

For efficiency, database systems usually allow the query to include parameters.  

Thus, a single SQL query is parsed and optimized once, but executed multiple 

times.  Parameterization is achieved by embedding formal parameters within the 

SQL query.  To retrieve rows, a query execute function is called.  For queries that 

have formal parameters, actual parameters are substituted.  For example, a valid 

SQL query for Oracle is "select a, b from c where a = :1."  In this 

statement, ":1" is a formal parameter.  The call to the execute function will con-

tain an actual parameter to substitute for the formal parameter.

Venus Rule

rule r;
from X[?] x;
     Y[?] y;
     Z[?] z;
if(...) {
  ...
}

C++ Implementation with Predicate Pushdown

void evaluate_rule_r() {

  Cursor X = Container_X.newCursor( 
      /* predicate over X’s value */);
  Cursor Y = Container_Y.newCursor(
      /* predicate over X and Y’s 
         values */);
  Cursor Z = Container_Z.newCursor(
      /* predicate over X,Y, and Z’s 
         values */);

  for(X.reset(/* parameter subst */);
      !X.atEnd();X.next()) {
  
  for(Y.reset(/* parameter subst */);
      !Y.atEnd();Y.next()) {

  for(Z.reset(/* parameter subst */);
      !Z.atEnd();Z.next()) {
  {
    performAction();
  }}}}

FIGURE 21. Example Rule and Its C++ Implementation using 
Predicate Pushdown
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Similarly, when using predicate pushdown, the newCursor statement 

includes a parameterized predicate.  This is a logical statement that contains con-

stant tests and formal parameters for substitution.  For example, "x == 1 && y 

= :1" is a valid parameterized predicate.  Before iterating over a container, a cur-

sor must call the reset method.  If the cursor was created using a parameterized 

predicate with formal parameters, the reset method substitutes the values of the 

current cursor positions as actual parameters.  

The results of these definitions yield a flexible optimization scheme.  If a 

component database supports an advanced query capability, predicate pushdown 

may result in significant performance benefit.  Otherwise, the predicate statements 

are ignored, and full relation scans occur.

5.2.1.3  Indexing

The scalability of rule programs have been proven to improve when using 

indices [69].  Thus, it follows that the scalability of VenusDB programs will also 

improve with the use of indices.  

However, determining the optimal indices for the complex applications this 

dissertation addresses can be quite difficult.  In these cases, database administra-

tors must identify indices from the large space consisting of the number of predi-

cates in the rule programs times the aggregate number of columns of all exploited 

database schemas.  Further, the administrators must use workflow information to 

decide which queries are more likely to be executed than other queries, and which 

of these queries deserve optimization.  Lastly, the previous section demonstrated 

that the VenusDB match algorithm may spawn somewhat unexpected query state-

ments.  
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The VenusDB optimizer is designed to assists database administrators in 

their schema optimizations.  The optimizer accomplishes this task by using data-

base workloads to suggest indices that directly support the database queries 

spawned by the LEAPS algorithm. 

5.2.2  Rule-based Implementation

The VenusDB optimizer is an instance of the Venus-based optimizer, an 

extensible rule-based optimizer written in Venus [92].  The adaptation of this 

extensible architecture has tremendously reduced the development effort of the 

VenusDB optimizer.  Features of the Venus-based optimizer that have proven ideal 

for this project include:

• The exploitation of Venus’ modularity to encapsulate the optimizer components 

of rewrite and search as a set of declaratively expressed rule modules without 

sacrificing performance.

• A well structured rule environment that operates within fixed-point semantics 

[18,19].

• Embeddability in C++ and thus embeddability within VenusDB.  Venus’ data 

definition language is precisely C++.  Thus, benefits seen in extensible object-

oriented optimizers developed by [57,72] with respect to the operator tree and 

cost model are exploited identically.  

• An optimizing compiler [64,91].

• A familiar C++ syntax.  

This section introduces the VenusDB instance of the Venus-based opti-

mizer.
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5.2.2.1  Optimizer Components

The four basic parts of an optimizer consist of the operator tree, cost 

model, search-space and search strategy.  The operator tree is the machine repre-

sentation of a statement, and uses the cost model to estimate the efficiency of the 

statement.  The search space is defined as the space of algebraically equivalent 

transformations defined in the rewrite system, while the search strategy uses the 

cost model to search for an optimal plan within the search space.  The Venus-based 

optimizer encapsulates each of these components.

5.2.2.2  Data Model

Due to its connection to C++, the Venus-based optimizer’s operator tree 

and its associated cost model are defined in terms of first-class C++ objects that 

closely resemble the object-oriented operator tree definitions developed in [57,72] 

(Figure 22).  The rule-system exploits this API which in turn decouples the rule-

system from the data model.

5.2.2.2.1 Operator Tree

The operator tree is implemented using an abstract class hierarchy that rep-

resents algebraic database operators combined with the abstract methods and 

attributes needed to define a descriptor, the logical and physical description of the 

operator [32].  Following conventional definitions, a logical operator is defined as 

an algebraic operation that operates on its inputs, and a physical operator is 

defined as a logical operation that has been assigned an implementing algorithm. 

Figure 22 presents a UML class diagram for the VenusDB operator tree.  

The shaded area illustrates the classes that are predefined by the Venus-based opti-

mizer.  The base class, OPERATOR, represents an algebraic operation.  The classes 
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LOGICAL and PHYSICAL are derived from OPERATOR, representing a logical 

and physical operator respectively, and contain a pointer to one another.  The spine 

of the operator tree is maintained within the logical operator.  As studied in the 

Volcano and OPT++ efforts, this separation of algebra has proven effective 

[48,57].   

The non-shaded area of Figure 22 illustrates the classes implemented for 

the VenusDB optimizer.  Recall, VenusDB rules are evaluated using nested loops.  

Each loop ranges over a container with either an existential or universal cursor 

(Sections 3.1 and 5.2.1.1).  Thus, the VenusDB operator tree specializes the Venus-

based optimizer’s class hierarchy by representing rule conditions with an ordered 

list of cursors.  The tail of the list represents a (possibly non-restrictive) cursor 

predicate over a container.  Internal nodes represents a cursor predicated as well as 

a nested loop join with the next element in the list.  The list is ordered from outer-

most to innermost loop.  

FIGURE 22. VenusDB Optimizer’s Operator Tree

OPERATOR
+Enum:nodeOp()
+Operator:parent()
+String:objectName()

LOGICAL
+Physical:physical()
+List<LOGICAL>:operands()
+boolean:operator==()

PHYSICAL
+Descriptor:getDescriptor()
+Cost:calculateCost()
+boolean:operator==()

Index
+databaseIndex()

Cursor
+variableList
+modifyJoinOrder()

CE
+calculateCost()
+useFullScan()
+useIndexScan() 
+cost()

DataSource
+elementSize()
+selectivity()
+cardinality()

FULL ORACLE MainMemory

Venus Specific Classes

Predefined 
Abstract Classes 

0..1

BitMap BTree
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Towards this end, the Cursor class encodes the logical representation of a 

cursor.  A Cursor contains a maximum of one operand.  Additionally, Cursor 

maintains a list of variables in its predicate that must be “bound” before loop eval-

uation.  A variable is bound when it is assigned a value during loop iteration.  In 

other words, consider the following rule:

rule A;

form X[?] x;

Y[?] y;

if(y.a == 3 && x.a == y.a) {..}

If the cursor y is used as the outer loop, then y.a attribute will be bound to 

a value, specifically the number 3, during loop iteration.  Later, during x’s loop 

iteration, x.a == y.a will use y.a’s bound value, the number 3, to evaluate the 

predicate.  Though not illustrated, cyclic predicates constrain the possible ordering 

of nested loops.  The Cursor’s variableList maintains this information.

The physical representation of a cursor is encoded within the CE class4.  

CE is an abstract class that represents the type of database retrieval that will be 

used for cursor evaluation.  Consequently, the Index and Full classes are 

derived from CE to represent index and full table scans respectively.  The Index 

class is further refined with the BitMap and BTree classes to represent bitmap 

and B-tree indices respectively.

CE also contains a pointer to its originating data source that is used for 

retrieving descriptor information.  This is represented by the abstract Data-

Source class.  The VenusDB optimizer described in this section ranges over main 

4. CE stands for conditional element.  Cursors are called CEs in Venus’s implementation 
code.
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memory and Oracle 8i AMI instances.  Therefore, ORACLE and MainMemory 

classes are derived from DataSource.  

5.2.2.2.2 Cost Model

The cost model within the Venus-based optimizer is defined in terms of 

abstract methods associated with the physical operators (Figure 22) .  Each physi-

cal operator is refined to contain a set of implementing algorithms.  It is these 

implementing algorithms that refine the calculateCost method which is used 

by the rule system to calculate a cost of an algebraic operation.  

The VenusDB optimizer exploits the Venus-based cost model in order to 

use database statistics.  This is accomplished by abstractly defining the cost within 

the CE class.  In turn, the CE class implements the calculateCost method 

through an abstract interface.  This design allows the descriptor information to be 

filled by actual database statistics.  

The cost model of a VenusDB rule closely resembles the cost models for 

standard SQL queries presented in [10,54].  The cost of a rule is composed of the 

costs of its individual cursors.  The cost of a cursor is dependent on both its 

restricting predicate and its access path.  For an existential cursor ranging over the 

container A and predicate P, the cost of the cursor is calculated by

 (EQ 1)

where card(A) is the cardinality of A and select(A,P) is the selectivity of A 

as restricted by predicate P. 5  

card(A) if A is a Full scan
log(card(A)) * select(A,P) if A is a B-Tree scan
select(A,P) if A is a bitmap scan
card(A) * select(A,P)         if A is a Predicate scan
card(A)/1000 if A is in main memory

cost(A,P) = 
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The selectivity of a cursor is dependent on the range of the values of the 

container it will traverse and the predicate it will execute.  VenusDB calculates the 

selectivity of a cursor A as restricted by predicate P by

 (EQ 2)

The catalog estimation is the primary utility within the VenusDB optimizer 

to use workload information.  The catalog estimation of main memory containers 

are roughly estimated.  However, predicates ranging over database containers 

exploit database statistics.  In particular, depending on availability, the ORACLE 

class estimates selectivity using histogram estimations or the number of elements 

within leaves of an index.  Primary and foreign key information is also exploited.

Predicates may be grouped with disjunctive and conjunctive logical con-

nectives.  As such, the selectivity for logical connectives are computed by

(EQ 3)

Lastly, the estimated cost of a rule is calculated recursively.  For a rule that 

contains only a single cursor, the cost of the rule is simply the cost of the cursor.  

Rules composed many cursors form nested loop joins.  The calculated cost of join-

ing cursors A and B where A is the outer loop and B is the inner loop is 

5. Universal cursors are implemented by first applying DeMorgan’s law.  The cursor eval-
uation then fails if any values are returned (Venus uses the closed-world assumption).  
Therefore, the estimated cost of an universal cursor is equivalent to an existential cur-
sor with a selectivity equal to one.  

catalog estimation,     if P∈ {==}

1- equality estimation,    if P∈ {!=}

0.50,             if P∈ {>,>=,<,<=}

select(A,P) = 

select(A) * select(B)          if •  is &&

1 - (1-select(A)) * (1 - select(B))   if •  is ||
select(A •  B) = 
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join(A,B) = cost(A) + select(A) * card(A) * cost(B) (EQ 4)

The total estimated cost of a VenusDB rule equals the estimated cost of the 

outermost join.

5.2.2.3  Rule System Architecture

The rewrite and search components are segregated in separate modules and 

are implemented using the Venus rule language. 

The module call graph of the rule components is illustrated in Figure 23.  

The Venus-based optimizer is cost-driven.  Therefore, search strategies use cost 

estimates to sequence and prune the search space.

5.2.2.3.1 Rewrite System

The search space is defined by the space of algebraic rewrites presented in 

the rewrite system.  Like the previous generation of rule-based optimizers, the 

rewrite system in the Venus-based optimizer is implemented in rule-based form 

[32,47,48,80].  The rewrite system applies different transformation and implemen-

tation rewrites on a subquery by exploiting procedural and heuristic elements, con-

strained by the algebraic representation.  If the preconditions and conditions for a 

rewrite are satisfied, the operator is applied and the new subquery is passed to the 

post-conditions modules which update accordingly. 

The VenusDB optimizer contains three rewrite rules.  

The modifyJoinOrder rule reverses the order of nested loops6.  This 

rule additionally has the effect of granting the VenusDB optimizer control over the 

6. Note, changing the order of a nested loop is only sometimes equivalent to a join com-
mute.  In some cases, the operation is equivalent to applying a sequence of commuta-
tive and transitive operators.
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predicates that will be executed on component databases.  Due to bound-variable 

restrictions, this rewrite must validate the legality of loop reordering by checking 

the cursor’s respective variableList’s.  

The other two rewrite rules, useIndexScan and useFullScan, 

change the access paths of cursors.  useIndexScan assigns an index to a cursor.  

This rule chooses its index selection from a table that is computed prior to the 

rewrite stage.  If the index to be created is on a single column and the number of 

distinct values within the column is less than the log of the cardinality of the table, 

a bitmap will be used.  Otherwise, a B-tree will be used.  useFullScan assigns 

a full table scan to a cursor.  There are no restrictions in the application of use-

FullScan.

5.2.2.3.2 Search Strategy

Search Strategy

Re-Write
System

Post conditions

Search for a subquery to be optimized.

Heuristic fan-out applying transformations.

Transformation and implementation
modules grouped by algebraic operator.

Ensuring consistency of the optimizer,
assisting search mechanism

FIGURE 23. Rule System Architecture
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The VenusDB optimizer’s search strategy occurs in three phases.  In the 

first phase, a graph rewriting algorithm greedily prunes the number of useful indi-

ces.  This algorithm begins by inspecting every rule for cursors that are involved in 

a non-inequality predicate.  Each such predicate is considered a potential index.  

These indices form the nodes of a graph.  Additionally, the nodes are adorned with 

the number of cursors that may use the index.  The algorithm then inspects rules 

for potential multiple column indices.  Candidates include cursors involved in mul-

tiple predicates within the same rule.  Arcs are drawn connecting nodes accord-

ingly.  The algorithm completes by building an index table that contains all nodes 

within the graph as well as all of the multiple column indices described by con-

nected components.  Since data locality affects the usefulness of an index, the mul-

tiple column indices are ordered from the nodes with the most predicates to the 

least predicates.

The second phase of search optimizes VenusDB rules using the Venus-

based optimizer’s search template to implement hill climbing.  This template is 

modeled after classic AI heuristic search and is implemented using the Venus rule 

language.  

Heuristic search is often represented as a directed graph rooted from a des-

ignated start node.  Nodes within the graph represent states in the search space.  An 

arc connecting a pair of nodes represents an application of an operator by the 

search routine.  Search is the process of traversing the graph through the expansion 

of nodes by operator applications in an attempt to find a goal criterion.  The encod-

ing of search is commonly represented with an open and closed list.  The open list 

contains nodes that have been investigated but not expanded by the search routine, 

and the closed list contains nodes that have been expanded by the search routine 

[77].  
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Following this model, the top-level module(s) coupled with the post-condi-

tion module(s) of the Venus-based optimizer define the search strategy.  The top-

level module(s), represented as the search strategy box in Figure 23, choose a sub-

query to pass to the rewrite system based on cost estimates, while the post-condi-

tions module(s) update according to search strategy.  

Implementing hill climbing is straight-forward using this template.  Hill 

climbing is a simple search strategy that applies all possible rewrites to a query and 

retains only the least cost rewrite.  The search continues by recursively rewriting 

the least cost rewrite and completes when the rewriting yields no improvement.  

Consequently, the encoding of hill climbing roots the search graph with the 

rule to be optimized.  The open list contains each cursor within the rule.  The 

closed list stores a log of all expanded rewrites.  The search method modules pick 

a least-cost cursor from the open list.  The rewrite system expands the cursor using 

rewrite rules, while the post-condition module(s) places only the most improved 

cursor in the open list and moves all other cursors to the closed list.  Optimization 

continues in this fashion until rewrites no longer provide cost improvements. 

In this way, rules are rewritten within the space of VenusDB rewrites.  

Joins are reordered and indices are suggested from the index table.  Cost is esti-

mated using the VenusDB cost model.  When all rules have been optimized, the set 

of indices used in optimal rule configurations are gathered together in an index 

suggestion table.  

The third phase of search prunes the index suggestion table by eliminating 

replicated indices and aggregating  other indices using heuristics.  Currently, the 

primary heuristic used is to eliminate a multiple column index when another multi-

ple column index in the table contains a superset of its columns.  
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Lastly, the index suggestion table is reported.  The report includes the rules 

that benefit from each index, the estimated performance improvement, and the 

estimated size of the index.

5.2.3  Use of the VenusDB Optimizer

Database administrators should employ the following algorithm when 

using the VenusDB optimizer.  

1. A rule program is fed to the VenusDB compiler.  The compiler outputs rule code 

as well as index suggestions.  

2. The suggested indices are created on the component databases.  

3. The rule program is again fed to the VenusDB compiler.  The compiler will pro-

duce rule code as well as the VenusDB optimizer’s index suggestions.  These 

index suggestions may be different than the previous suggestions due to the sta-

tistic estimations gathered from the component databases descriptors.

4. The index suggestions from the previous two compiler executions are com-

pared.  Indices that are no longer recommend are deleted.  New index sugges-

tions are created on the component databases.

5. The database administrator then repeats Steps 1-4 as deemed appropriate.

5.3  Empirical Evaluation

The goal of the empirical evaluation is to demonstrate that the optimizer:

• Improves overall performance for rule programs that vary with the complexity 

of search and data.  This demonstrates the overall scalability improvement 

gained by the VenusDB optimizer.
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• Reduces the time to evaluate each rule.  This measures the amount of time the 

database may be locked during rule evaluation.  A reduction means that the 

transaction time has been decreased and is particularly important in reducing 

the lock times of “immediate” coupling mode rules (Section 2.2.2).

• Chooses indices that otherwise would not have been obvious.  This demon-

strates that the optimizer successfully assists database administrators in com-

plex database design issues.

5.3.1  Test Programs

To satisfy the goals of the experiment, the empirical evaluation was per-

formed on five programs from the University of Texas benchmark suite [17,69].  

The programs vary with the size of data, complexity of rules, number of rules, and 

number of attributes within relations in order to measure the scalability improve-

ments afforded by the VenusDB optimizer.  A separate requirement of each selec-

tion is that the database driving the programs could be atomically generated with 

control parameters.  Table 7 summarizes the following descriptions of the selected 

test programs.

Waltz

Waltz, developed at Columbia University, is a program designed to map a 

two-dimensional drawing to a three-dimensional space.  The drawing algorithm 

TABLE 7. Summary of Test Programs

Program Rules Cond/Rule Columns
Waltz 25 6.3 12 3D line labeling through constraint satisfaction

Manners 9 3.1 16 Arranges seating of guests using depth-first search
TSP 24 10.8 60 Traveling salesman problem using greedy heuristics

TPC-D 3 10 61 Transaction Processing Performance Council query
REALESYS-A 74 3.5 15 Active database mortgage pool allocation program

Description
125



uses a constraint satisfaction solver.  Constraint satisfaction proceeds by labeling 

lines in the drawing according to its neighbors.  The input to a Waltz program con-

sists of Cartesion coordinates representing lines.  The data generator scales accord-

ing to a base drawing called a region.  A region contains 72 lines.  Waltz contains 

25 rules with 6.28 conditions per rule.  The aggregate number of all columns in all 

tables is 12.  Waltz is an example of a program with lots of search and moderate 

data requirements.

Manners

Manners is a depth-first search for seat assignments at a dinner arrange-

ment.  Seat assignments are limited by etiquette rules such as neighbors should be 

of the opposite sex and share hobbies.  The number of guests is a parameter of the 

data generator.  Manners contains 9 rules with 3.1 conditions per rule.  The aggre-

gate number of all columns in all tables is 16.  Manners is another example of a 

program with lots of search and moderate data requirements.   

TSP

TSP is an implementation of the classic traveling salesman problem.  TSP 

uses greedy heuristics to determine the minimum distance route for a salesman to 

visit all cities in his/her itinerary.  The program contains rules that heuristically 

choose when to travel to new cities and when to cross borders of states.  The data 

includes the Cartesion coordinates of each city as well as a clique describing the 

distances between each city.  A parameter of the data generator is the number of 

cities to visit.  TSP contains 24 rules with 10.83 conditions per rule.  The aggregate 

number of all columns in all tables is 60.  TSP is an example of a program with 

extensive search and data.   

TPC-D
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The Transaction Processing Performance Council periodically publishes a 

suite of database benchmarks [89].  TPC-D is one such benchmark that measures 

performance of databases with typical workloads.  The benchmark defines a data-

base schema, a series of queries and a data generator.  The size of the data is a 

parameter of the data generator.

The VenusDB TCP-D program is adopted from [69].  This program models 

one of the more complex queries within the TPC-D benchmark.  Though this pro-

gram cannot be considered an actual TPC-D result, it is a good example of a pro-

gram with selective search and lots of data.  TPC-D contains 3 rules with 10 

conditions per rule.  The aggregate number of all columns in all tables is 61.  The 

TPC-D program characteristics are representative of the program described in the 

Appendix.  

REALESYS-A

REALESYS-A is the active database version of REALESYS described in 

Section 3.3.2.2 [71].  The data generator takes as input the number of pools that 

have been traded to fill contracts.  REALESYS-A contains 74 rules with 3.5 condi-

tions per rule.  The aggregate number of all columns in all tables is 15.  REALE-

SYS-A is an example of a program with lots of search and little data.

5.3.2  Test Harness

The empirical evaluation was performed on an instance of the VenusDB 

optimizer that mirrored the architecture described in Section 5.2.2.  The optimizer 

ranges over main memory and Oracle 8i containers.  

However, due to the realities of Oracle 8i, the optimizer contained notice-

able modifications from the original design.  In Oracle 8i, there is no way to ensure 

that Oracle will use an available index.  Oracle does publishes a set of language 
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statements, called hint syntax, that is embedded within queries to provide imple-

mentation hints.  However, these statements are only hints.  Therefore, there are 

cases when suggested indices are ignored by Oracle’s optimizer despite hint syn-

tax.  Next, we did not find a published method to interpret Oracle’s histogram on 

data that is neither discrete or numeric.  For these reasons, three modifications 

were made.  First, the cost model uses the number of leaves per key of an index for 

selectivity estimations.  If an index is not available, selectivity is calculated based 

on the predicate type and a constant percentage of the attribute’s cardinality.  Sec-

ond, the optimizer augments predicate pushdown statements with Oracle hint syn-

tax.  This modification requires an additional step in the VenusDB usage algorithm 

presented in Section 5.2.3.  In the new step, predicates are analyzed using SQL’s 

plan analyzer.  Indices ignored by the Oracle optimizer are deleted.  Third, the 

optimizer only modifies join orders in the face of overwhelming evidence.  The 

basic greedy heuristics of the VenusDB compiler proved difficult to improve upon 

[64]. 

With the optimizer in place, the empirical evaluation was performed by 

executing each test program on a series of equally spaced increasing data sizes.  At 

each data size, the program was run three times.  The first run did not contain any 

VenusDB optimizations, i.e., no predicates were pushed to the Oracle database and 

no indices were implemented; primary keys were established on LEAPS time-tags.  

The second run turned on the predicate pushdown utility but indices were not cre-

ated on the Oracle database.  The third run utilized both the predicate pushdown 

utility and the final set of index suggestions from the VenusDB optimizer after 

completing the algorithm presented in Section 5.2.3.  All tests were performed on a 

Sun Ultra-60 with two 450-MHz UltraSPARC II processors running Solaris 2.7.  

The machine had 16 gigabytes of main memory and a 30 gigabyte RAID disk 

array.  Sun publishes the SPECInt95 rating for configurations of this machine 
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ranging from 19.7-32.7.  The AMI implementation resided over Oracle version 8i 

database.  

The two primary measures of overall execution time and average number 

of cycles per second were taken during each execution.  Overall execution time 

measures the raw performance improvements achieved by using the VenusDB 

optimizer.  Cycles per second measures the scalability improvements afforded to 

each rule by the VenusDB optimizer.  

Figures 24-28 reports a summary of the results.  In each figure, the tables 

on the left contain the four column labels of 1) Data Size, 2) No Opt, the non-opti-

mized run, 3) Push, the pushdown enabled run, and 4) Index, the final optimized 

configuration.  Values are reported in seconds.  A comparison matrix is presented 

to the right of each table.  The matrix contains the three column labels of 1) Push/

No Opt, speedup of the pushdown run over the non-optimized run, 2) Index/Push, 

speedup of the indexed run over the pushdown run, and 3) Index/No Opt, speedup 

of the indexed run over the non-optimized run.  Values in the matrix for the overall 

execution time are a percentage of reduction in time.  Values in the matrix for 

cycles per second are a percentage of speedup.  In both tables, dashes represent 

programs that were not completed due to excessive lengths of time.  The tables are 

accompanied by two log-scaled graphs.  The graph in the lower left plots the exe-

cution time results.  The graph in the lower right plots the cycles per second 

results.

Figure 29, located at the end of the chapter, presents the unabridged results.  

The tables in this figure contain three new columns.  The “Opt 1” column contains 

the execution times after the first run of the VenusDB optimizer; the “Opt 2” col-

umn contains the execution times for the final optimized configuration; and the 

“Firings” column contains the number of rule firings within a program execution.  

Lastly, the least squares line for each series is presented.  
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FIGURE 24. TPC-D Results
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FIGURE 25. TSP Results
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FIGURE 26. Waltz Results
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FIGURE 27. Manners Results
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FIGURE 28. REALESYS-A Results
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5.3.3  Discussion

The results demonstrate that the VenusDB optimizer succeeds in all three 

goals of the empirical evaluation: 1) improving overall performance, 2) reducing 

the time to evaluate rules, and 3) assisting the database administrators with the 

choice of indices.

The overall execution results demonstrate that both predicate pushdown 

and indexing are beneficial.  With respect to predicate pushdown, the overall per-

formance of TPC-D and TSP programs are improved nearly or greater than an 

order of magnitude.  Manners and Waltz also contain statistically significant 

improvements, 84% and 39% reductions respectively.  The least squares lines fur-

ther supports the claim that predicate pushdown tremendously improves scalabil-

ity.

Additional performance improvements are demonstrated with the use of 

VenusDB’s index suggestions in TPC-D, TSP, and Manners.  Specifically, large 

additional performance improvements are demonstrated from the TPC-D and TSP 

programs, as much as 56% and 30% respectively.  These improvements suggest 

that programs with large amounts of data scale much better with the use of the 

VenusDB index suggestions.  The least squares lines give evidence that such pro-

grams can expect nearly a twofold additional speedup.  In the case of Manners, 

program execution is further reduced up to 30%.  The Manners plots further sug-

gest that the larger the Manners program, the more benefit gained from indices.

The average cycles per second results magnify the trends established by the 

overall execution time.  In nearly all programs, predicate pushdown reduces aver-

age cycle time by several orders of magnitude topped by an astounding 10,150% 

speedup for TPC-D.  Indexing further reduces cycle time in all programs but Waltz 

and REALESYS-A.  In the case of TPC-D and TSP, this additional reduction 
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proves to quite significant, with speedups up to 130% and 44% respectively.  

Therefore, it can be concluded that the VenusDB optimizer successfully reduces 

the cycle time for VenusDB programs.  Thus, programs that necessitate immediate 

coupling mode rules as discussed in Chapter 4 must work in conjunction with the 

VenusDB optimizer for scalable performance.

Although the evidence is subjective, the optimizer’s suggestions support a 

claim that index selection is best served by an automated utility.  This is because 

the suggestions were not always obvious.  The foreign keys of all tables were sug-

gested.  Yet, in the case of TSP and Waltz, their foreign keys contain two or more 

columns.  Other interesting suggestions include bitmap suggestions on the sta-

tus column of the Cities table in TSP and bitmaps suggestions on both hobby 

columns of the Manners’ Guests and Chosen tables.  

The results from the Waltz and REALESYS-A programs provided further 

insight into the usefulness of the VenusDB optimizer.  These programs contain lit-

tle data and lots of search.  Their results demonstrate these properties by exhibiting 

less performance improvements than the other programs.  In fact, REALESYS-A 

remained roughly constant regardless of the optimization scheme.  These programs 

are examples of expert systems that are designed to consume data as soon as it 

materializes.  Therefore, queries over large tables of data are not performed.  Pro-

grams with these characteristics are sufficiently optimized using the LEAPS algo-

rithm [64].  The final optimization configurations confirm this claim.  

5.4  Conclusion 

Hard active database programs make extreme resource demands.  Such 

programs spawn large quantities of queries over large database tables.  Rule chain-

ing compounds these demands.  Since it is often the case that hard active databases 
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are used to encode real-time decision control systems, these systems must scale.  

However, the complex nature of these programs makes optimization tasks non-

trivial.  Thus, a utility must assist database administrators.

The results of the empirical evaluation suggest that the VenusDB optimizer 

addresses these concerns.  Tables 24-28 indicate that the VenusDB optimizer 

improves the scalability of VenusDB programs.  In fact, the programs with larger 

data sets, TPC-D, TSP, and manners, tend to be improved the most by using the 

VenusDB optimizer.  In these cases, an order of magnitude performance improve-

ment is not uncommon.  The index suggestions from the VenusDB optimizer fur-

ther reduce execution time by as much as 50%.  It cannot be overlooked that many 

of these suggestions may not have been easily discovered by even the most experi-

enced database administrators.  Cycle time results demonstrate a similar perfor-

mance improvement.  This suggests that the duration of database locks by rule 

evaluation will also be reduced.  Lastly, the programs that did not experience per-

formance improvements via the VenusDB optimizer contained little data.  Previous 

studies have demonstrated that VenusDB’s LEAPS match algorithm successfully 

optimizes such programs [64].

In conclusion, the VenusDB optimizer facilitates practical development of 

hard active database applications by assisting rule developers in their optimiza-

tions tasks.  In turn, the combination of VenusDB optimizer and VenusDB’s 

LEAPS match algorithm provides scalable performance on both axes of hard 

active database programs: data and search.    
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FIGURE 29. Complete Results

Data Size No Opt. Push Opt 1 Opt 2 Firings
1MB 1040 19 17 17 1079

10MB 11834 115 77 59 756
100MB - 1130 494 488 727

1GB - 16550 15451 11709 488
Least Sq 1199 17 16 12 -

Data Size No Opt Push Opt 1 Opt 2 Firings
south 30 17 30 18 132

mountains 142 44 71 43 272
usa1 423 90 139 88 380
usa2 4801 847 684 674 1260
usa3 17945 3045 2319 2286 2550
usa4 - 6857 4990 4748 4032

Least Sq 1229 229 166 159 -

Data Size No Opt Push Opt 1 Opt 2 Firings
1 49 48 53 51 265
2 145 128 141 136 541
4 430 366 386 365 1093
8 1417 1124 1170 1139 2197

16 5519 3968 4056 3980 4405
32 - 17178 17518 17241 8821

Least Sq* 368 264 270 265 -

Data Size No Opt Push Opt 1 Opt 2 Firings
16 7 7 8 6 184
32 37 23 23 23 624
64 345 110 102 97 12

128 4500 715 540 531 8640
Least Sq 42 7 5 5 -

Data Size No Opt Push Opt 1 Opt 2 Firings
8 37 35 42 36 1098

16 67 68 78 68 1916
32 247 246 257 248 5597
64 523 517 531 519 10563

Least Sq 9 9 9 9 -

* Line estimation to datasize 16.  
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Chapter 6  Conclusion

In the last decade, active database research has received much attention.  

Many successful research prototypes have been demonstrated culminating with the 

extension of the SQL3 standard with a sophisticated trigger definition.  However, 

applications of the technology have largely been restricted to simple rule systems 

where single rules encode entire programs.  The development of more complex 

applications, termed hard rule systems, have been hindered by a host of limiting 

factors.  These limitations include confusing and operational language semantics, 

flat monolithic-rule architectures, and limited performance.  This dissertation 

addressed these obstacles in the following three ways.

First, a study of the semantics of the active database language VenusDB 

concluded that the software quality of rule programs using VenusDB can be 

improved by as much as 50% compared to rule programs using flat monolithic lan-

guages.  VenusDB is an active database language derived from fixed point seman-

tics.  Additionally, VenusDB contains a formal definition for rule modules that 

conforms to the nested transaction model.  Software metrics validate that these 

semantics improve overall software quality.  Though not absolute, the improve-

ments in metric ratings also suggest a reduction in maintenance costs for hard rule 

systems.

Second, the most general contribution of this dissertation addressed the 

complexity introduced by coupling modes.  Coupling modes provide active data-

base developers with a flexible mechanism for determining transaction semantics 

of rules.  Unfortunately, they also introduce a level of complexity that is unman-

ageable in hard active database applications.  Towards this end, this dissertation 

developed formal execution semantics and concurrency schemes for a subclass of 

hard rule systems called Log Monitoring Applications (LMAs).  LMAs are expert 
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system applications that analyze logs maintained in a database.  The concurrency 

proofs demonstrated that the write-once property of LMAs significantly reduce the 

number of applicable coupling modes.  Specifically, the first set of proofs estab-

lished that LMA+ programs, LMAs with only positive variables, are confluent, and 

thus, rules can use the most flexible coupling modes.  Since only the most flexible 

coupling modes are necessary, it is fair to conclude that a DBMS needs to only 

support these most flexible coupling modes in order to support the execution of 

LMA+ programs.  The second set of proofs established that for LMA- programs, 

LMAs with both positive and negated variables, only one rule in a set of conflict-

ing rules must be made atomic.  However, the remaining rules may use more flexi-

ble coupling modes.  An algorithm that builds upon the constructive nature of 

these proofs was presented to establish concurrency schemes for LMAs written in 

VenusDB.  Together, the concurrency schemes and concurrency scheme assign-

ment algorithm represent the first step in insulating application programmers from 

the details of integrating rules within a database.

Third, an optimizer is developed that assists database administrators in 

deploying scalable hard active database systems.  Implemented within the 

VenusDB platform, the VenusDB optimizer uses component database statistics to 

optimize rules, decompose rule predicates into queries that are executed on com-

ponent databases (termed predicate pushdown), and suggest a set of supporting 

indices.  An empirical evaluation confirmed that this architecture successfully 

improves the scalability of VenusDB programs.  The first set of results demon-

strated that predicate pushdown often reduces the execution time of programs with 

large data sets by an order of magnitude.  In these same programs, the optimizer’s 

index suggestions further improve performance by as much as 50%.  It cannot be 

overlooked that many of these index suggestions may not have been easily discov-

ered by even the most experienced database administrators.  The second set of 
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results demonstrated similar improvements in the reduction of cycle time, which in 

turn, reduces the duration of database locks due to rule evaluation.  Since earlier 

empirical evaluations of VenusDB have demonstrated scalability of rule programs 

with little data and lots of search, it can be concluded that the addition of the 

VenusDB optimizer delivers scalability on both axes of hard active database pro-

grams: data and search.  

In conclusion, the issues addressed in this dissertation represent significant 

steps towards facilitating hard active database applications.

6.1  Future Research

Although this dissertation addresses many issues that facilitate hard active 

database applications, other issues must still be addressed.  These issues include, 

but are not limited to:

• This dissertation presented an investigation of LMA class of programs.  How-

ever, many other useful application classes exist.  In [29], a class of applications 

is presented that extends the LMA- class by permitting deletes in rule actions.  

Still other classes vary with the complexity of the event algebra such as allow-

ing composite algebras that may or may not include temporal and transactional 

events.  Each of these classes of problems requires formal analysis.  The result-

ing analysis would complete the general purpose rewrite system proposed in 

this dissertation.  In addition to the techniques presented in Chapter 4, real-time 

analysis [68] and rule based optimization [41] techniques may be applicable.

• The constructive proof techniques of Chapter 4 utilize the results in confluent 

rule system, dependency graph, and serializability theories.  These techniques 

are readily adapted for formal analysis.  However, further parallelism may be 

gained through optimizing rule-based rewrites and dynamic analysis such as the 
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ones presented in [60,99].  Dynamic analysis allows for coupling mode assign-

ments based on the semantic relationships that are only available at run-time 

(implying dynamic assignment of coupling modes).  The net result may allow 

the restrictiveness of statically-stated coupling modes to be dynamically 

reduced to further increase system throughput.

• This dissertation does not address recovery issues.  Most current active data-

bases implement recovery using only their native extensional database system.  

This is insufficient.  When an event is rolled back, all rules spawned from that 

event must also be rolled back.  Further, any chained rules must be rolled back.  

Decoupled coupling modes further complicate matters [74].  For example, when 

a committed event spawns evaluation of a decoupled rule right before a system 

failure, the system must ensure that the decoupled rule is executed because its 

spawning event has already been committed.  It is the author’s opinion that the 

solutions to these problems may also be application dependent.  For example, it 

may be sufficient for LMAs to implement recovery by using the nested transac-

tion model combined with a persistent event log.  Thus, chained rules will be 

rolled back and system failures would be logged so as to guarantee the execu-

tion of decoupled rules.  Much work in the recovery of active rules has yet to be 

investigated. 

• A limitation of the VenusDB modular definition is that it is procedural in the 

sense that rule modules cannot be inherited.  Object-oriented rule systems have 

long adapted rule inheritance schemes within limited architectures [31].  Inher-

itance within VenusDB would be extremely powerful.  Inheritance would have 

provided a method to implement differing Venus-based optimizer search strate-

gies in a plug and play manner instead of using design templates as described in 

[92].  Search strategies could be elegantly exchanged at run-time to obtain sig-

nificantly different results.  Further, the design of REALESYS would have also 
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benefited from inheritance.  In REALESYS, many modules contain “if(TRUE)” 

rules whose action consists solely of a module call that contains a single reused 

rule.  Inheritance, especially if allowed to contain an overall priority assign-

ment, would have eliminated many, if not all, of these “if(TRUE)” rules.  It is 

the author’s conjecture that prioritized inheritance would be similarly beneficial 

to any application being developed in VenusDB. 

• The VenusDB optimizer uses static optimization techniques.  However, signifi-

cant improvements in performance may be attained through mid-query re-opti-

mizations such as the ones presented in [58].  Mid-query re-optimizations allow 

inefficient queries to be re-optimized during query execution.  This is particu-

larly important within a multidatabase system such as VenusDB.  For example, 

a useful mid-query re-optimization includes interrupting execution when a rule 

is querying a web-based data source that is slow in responding.  The optimizer 

can dynamically reformulate the rule in such a way that may have otherwise  

seemed inefficient.

In conclusion, this dissertation facilitates hard active database applications 

by solving many issues that limit their development.  In turn, these solutions sup-

port the implementations of a new complexity of active database applications.
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Appendix  WatchDog: An LMA Application

This dissertation addressed issues facilitating hard active database applica-

tions.  A driving force in the progression of this research was the development of 

WatchDog, a network security monitor that represents a “real world” example of 

an LMA [94]1.  Common to LMAs, the primary reason the developers of Watch-

Dog chose a DBMS is to exploit the database’s durability, integrity, and decision-

support services for post event analysis.  These characteristics allow near real-time 

monitoring of multiple network sensors, each simultaneously logging to a central-

ized database.  When WatchDog discovers a network attack, the database’s query 

facility readily supports further investigation by a network administrator.  

This appendix reports on the architecture and performance of the Watch-

Dog system.  To date, WatchDog serves as the most comprehensive development 

effort within the VenusDB platform.  In particular, WatchDog contains many rules 

(at the time of this writing, proposals for several hundred rules were being devel-

oped) and demanding data needs (~ 45 GB of data in the database at any one time).  

These demands required the exploitation of VenusDB’s modular features (Chapter 

3), the investigation of the LMA properties (Chapter 4), and the development of 

the VenusDB optimizer (Chapter 5).  Therefore, the success of WatchDog speaks 

to the overall applicability of the active database contributions presented in this 

dissertation.   

A.1  Overview

The monitoring for hacker attacks on some military sub-networks is per-

formed by a centralized command.  A privileged computer on each subnet, called a 

probe, sniffs all network traffic.  An initial set of filters executing on that computer 

1. WatchDog is currently being developed by the Rule-Based Expert System Project at the 
Applied Research Laboratories at The University of Texas at Austin.
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analyzes traffic, captures suspicious packets while discarding obvious non-threat-

ening connections.  A synopsis of the results and a filtered subset of connection 

logs are forwarded to the central command and logged to an Oracle database.  

There, an ad-hoc C program with embedded SQL periodically wakes and further 

analyzes the activities.  This analysis searches for possible intrusion patterns and 

raises alarms for the human network analysts if suspicious activity is detected.  If 

further action is required, the network analyst may exploit an array of database 

query tools to investigate and track an individual alarm event. 

WatchDog is an effort to better automate the analysis portion of this work 

process using the VenusDB active database system (Figure 30).  In this respect, 

VenusDB is exploited to encode the possible intrusion detection component 

directly in declarative rules and to execute those rules in tight integration with the 

existing database in near real-time.  Thus, the latency between the completion of a 

possible intrusion pattern and the notification of the human network analyst is sig-

nificantly reduced.  

WatchDog is also an example of an LMA - WatchDog receives connection 

logs and suspicious packets in near real-time and persists them within a database.  

These connection logs and suspicious packets can never be updated or deleted by 
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FIGURE 30. WatchDog System Architecture
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any application in order to enable computer forensics.  Therefore, WatchDog’s 

database is used a platform for durability and postmortem decision support.  The 

LMA properties of WatchDog are exploited in the design of the rule architecture.  

A.2  Implementation

WatchDog is implemented with only minimal modification to the existing 

database application. 

A.2.1  Rule Architecture

Network traffic contains a high rate of activity.  Further, hacker attacks 

must be caught as quickly as possible to reduce damage.  Therefore, a requirement 

of WatchDog is to minimize the time to process an external event so as to maxi-

mize throughput.  The techniques presented in Chapters 3.3 - 5 are exploited for 

this purpose.  

First, the analysis techniques presented in Chapter 4 are used to specify 

nonrestrictive coupling modes.  To facilitate system throughput, it was our initial 

goal to specify rules using decoupled coupling modes as often as possible.  Fur-

ther, WatchDog operates only on committed data.  Therefore, E-C decoupled mode 

for all rules was adopted.  However, our initial design called for C-A immediate 

mode for all rules.  This is because VenusDB semantics define rules as atomic state 

transitions.  Without formal analysis, we simply did not have the means to ensure 

proper behavior without specifying C-A immediate coupling mode.  However, the 

completion of our formal investigation of LMA properties revealed that C-A 

decoupled mode was in fact sufficient to guarantee correctness within the current 

design.  Further, we were able to provide a detailed list of requirements as to the 

rule properties that would ensure program correctness, or require more restrictive 

coupling modes.  Developers have used these requirements to ensure maximum 

throughput.
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Second, the rule architecture is modular.  Since WatchDog is an LMA, rule 

processing necessarily begins with an insert into an extensional active LMA table.  

As an optimization, the event clause of all rules is limited to a single table1.  Rules 

are segregated into modules based on this table.  At run-time, insertion events 

invoke evaluation by passing data to the appropriate VenusDB module.  The rules 

in the VenusDB modules are designed to seed their conditions with the data of 

their invoking event.  This optimization tremendously reduces the condition search 

of individual rules.  As described in our performance evaluation, this optimization 

combined with the VenusDB optimizer presented in Chapter 5 yield terrific perfor-

mance. 

A.2.2  Data Flow

Figure 31 illustrates the data flow of WatchDog.  Data enters the analysis 

system through a bank of monitored networks and is inserted into an Oracle data-

base.  The Oracle connection log and suspicious packet tables are augmented with 

SQL triggers that fire upon insert events.  These triggers alert and send copies of 

the inserted data to the appropriate VenusDB module by invoking methods of the 

VenusDB AMI [69].  

Unfortunately, the implementation of this event detection mechanism is 

more complicated than it sounds.  The fundamental constraint is the inflexibility of 

Oracle’s trigger mechanism.  This mechanism allows attaching a C function to the 

action of a trigger, which is executed within the Oracle process.  VenusDB, how-

ever, is a C++ embedded system.  It cannot coexist in the same process as Oracle.  

Therefore, VenusDB executes in a separate process and sends events from Oracle 

to VenusDB via AF_UNIX socket calls.  More specifically, the Oracle registered C 

1. The event clause for VenusDB rules is disjunctive.  Therefore, this restriction does not 
restrict the semantic power of WatchDog rules.  
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trigger function writes events to a socket, while a function in the VenusDB process 

monitors the socket for inserted events.  When an event is detected, it is copied 

from the socket and placed into a FIFO queue.  When VenusDB is ready to accept 

an event, it is removed from the queue.

The WatchDog rule component may then insert data from the Oracle data-

base through the standard AMI methods.

A.2.3  Control Flow

Figure 31 also illustrates the control flow of WatchDog.  As previously 

stated, data enters the system through a bank of monitored networks, causing the 

Oracle database to be updated.  Oracle then evaluates which active LMA tables 

have been updated and passes control to the applicable trigger code.  The trigger 

code then calls a C function that sends data to VenusDB via a socket interface.  

When the trigger code finishes, the database transaction completes.  This architec-

ture implements rules in E-C decoupled mode. 

FIGURE 31. WatchDog Architecture
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The WatchDog component contains a detached thread that monitors the 

socket for data and inserts detected data into a shared, semaphore-protected FIFO 

queue. Data is then removed from the queue and passed to the appropriate module 

at instances that are deemed safe.  During rule evaluation, AMI calls may insert 

into the database starting the process over again.  Note that since the database and 

the rule-set are in different address spaces, rule execution occurs in parallel with 

the database.

A.2.4  Code Modules

Four code units are added to the rule set to implement the system services.

• An Oracle AMI container and cursor implementation.  This contains the code 

that 1) communicates with the Oracle database and 2) implements a detached 

thread that inserts data into an associated FIFO buffer.

• Oracle trigger code.  This code passes data to the C function using a non-stan-

dard code escape. 

• A C function that passes data through a socket call interface.  This component 

must be written in a general-purpose programming language, not SQL.  This is 

because it communicates with system sockets.  The function is implemented as 

a shared object.

• A semaphore-protected FIFO data structure.

A.3  Measurements 

The performance test were executed on a Sun Ultra-2 dual CPU machine 

with 256 megabytes of main memory and a 6-disk RAID Level 5 storage unit.  The 

WatchDog application is instrumented to measure two interesting system proper-

ties.
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First is an examination of the latency due to the database event detection 

scheme.  This contains two components.  The first is the latency of inserting a row 

into a table until the completion of its trigger action.  This was measured at 20 mil-

liseconds.  It was constant regardless of the database size.  Signaling by use of 

native event detection can be no faster than this.  The second is the latency 

between inserting a tuple, writing the event information to the socket, and retriev-

ing it from the socket, and notifying VenusDB through the AMI.  This was mea-

sured at 23 milliseconds.  Thus, the entire event detection scheme nominally adds 

3 milliseconds.  However, there are several distinct operating system processes 

involved in this scheme.  Thus, there may be some amount of distributed execu-

tion, and similar results may not be achievable on a uniprocessor.

Second is a measurement of the program’s transaction time, which is the 

time to execute the VenusDB portion per database insert1.  The VenusDB portion is 

comprised of pulling the inserted tuple from the FIFO queue and executing the 

rules against the triggering tuple and database.  The transaction time necessarily 

varies.  This is because the amount of work done by the rule system depends on the 

added tuple and the state of the database.  Evaluation may include chained rules, 

and each rule may require multiple database queries executed through the AMI.  A 

data flow of 1,000 connection logs and 1,000 suspicious packet records was initi-

ated to examine transaction time.  A subset of these records contained values suffi-

cient to cause rule firings. The initial state of the database at the beginning of the 

insertion flow is a test parameter.  Results are shown in Table 8.  In the first exper-

iment, the database was empty.  In the second, it contained 10,000 preexisting 

tuples.  In the third, it contained 100,000 tuples.  As shown by the uniformly low 

minimum transaction time, database inserts that do not trigger rule firings are 

1. The transaction time is more precisely referred to as the time it takes for an external 
event to execute until quiescence, refer to Chapter 4.  We use transaction time because 
of the associated implications of rule processing to database transactions.
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quickly evaluated and discarded.  This is true regardless of the size of the database, 

implying that certain events are eliminated based on trigger filtering only.  The 

average and maximum transaction times scale roughly linear with database size.  

As a feasibility test, an early prototype of the VenusDB optimizer’s schema sug-

gestions was applied to the 100,000 tuple case.  This optimization reduced execu-

tion times by approximately half.  

The government security level of the Applied Research Laboratories’ 

RBES project prohibits further analysis at this time.

A.4  Summary

This appendix reported on WatchDog, an effort to implement a compli-

cated decision support application in an active database.  The implementation 

moves functionality that was previously encoded outside an existing database and 

integrates it directly within the database.  WatchDog is an LMA.  As a result, LMA 

properties combined with VenusDB modularity were exploited for a clean and effi-

cient rule architecture.  By virtue of VenusDB’s AMI, WatchDog utilizes the exist-

ing Oracle database.  Performance was outstanding; on average it took less than 

one second to completely evaluate the impact of a database insert against a 

100,000 tuple database.  Performance was further improved two-fold with the 

addition of the VenusDB optimizer prototype.  In conclusion, WatchDog demon-

strates the effective application of the contributions of this dissertation.

Empty DB 10,000 tuples 100,000 tuples 100,000 optimized
Average .004 .04 .8 .3
Minimum .0002 .0002 .0002 .0002
Maximum .8 6 56 26
Std. Deviation .04 .41 4.7 2.3

TABLE 8. WatchDog Metrics
150



  References

1 A. Aiken, J. Hellerstein, and J. Widom, “Static analysis techniques for pre-
dicting the behavior of active database rules,” ACM Transactions on Data-
base Systems, vol. 20, no. 1, March, pp. 3-41, 1995.

2 A. Aiken, J. Widom, and J.M. Hellerstein, “Behavior of database production 
rules: termination, confluence, and observable determinism,” in Proceedings 
of the ACM-SIGMOD Conference.  San Diego, CA,  June, 1992, 59-68.

3 H.J. Appelrath, H. Behrends, H. Jasper, and Olaf Zukunft,  “Case studies on 
active database applications,”  Database and Expert System Applications.  
Zurich, Switzerland, September, 1996, pp.69-78.

4 J. Bachant, E. Soloway, and K. Jensen, “Assessing the maintainability of 
XCON-in-RIME: coping with the problems of a very large rule-base,” In 
Proceedings of the National Conference on Artificial Intelligence.  Seattle, 
WA,  August, 1987, pp. 824--829.

5 J. Bailey, G. Dong, and K. Ramamohanarao, “Decidability and undecidability 
results for the termination problem of active database rules,” Symposium on 
Principles of Database Systems. Seattle, WA, June, 1998, pp. 264-273.

6 C. Baral, J. Lobo, and G. Trajcevski,  “Formal characterizations of active 
database: part II,”  Deductive and Object Oriented Databases.  Montreux, 
Switzerland, December, 1997, pp. 247-264.

7 E. Baralis, S. Ceri, and S. Paraboschi, “Modularization techniques for active 
rules design,” ACM Transaction on Database Systems, vol. 21, no. 1, March, 
pp. 1-29, 1996.

8 E. Baralis and J. Widom, “Using delta relations to optimize condition evalua-
tion in active databases,” Rules in Database Systems, Athens, Greece, Sep-
tember, 1995, pp. 292-308.

9 V. Barker and D. O’Conner,  “Expert systems for configuration at digital: 
XCON and beyond,”  Communications of the ACM, March, 1989.

10 D. Batory.  Class notes for CS 387H, Database System Implementation, Uni-
versity of Texas at Austin, Fall, 1996.
151



11 V. R. Basili, and R. W. Reiter, Jr.,  “Evaluating automatable measures of soft-
ware development,” In Proceedings on Workshop on Quantitative Software 
Models. October, 1979.

12 P.A. Bernstein and N. Goodman, “Concurrency control in distributed data-
base systems,” ACM Computing Surveys. vol 13, no. 2, June, pp. 185-221, 
1981.

13 N. Bidoi and S. Maabout,  “A model theoretic approach to update rule pro-
grams,”  Proceedings of the International conference on Database Theory.  
Delphi, Greece, January, pp.173-187, 1997.

14 D.G. Bobrow and M. Stefik. The Loops Manual. Xerox PARC, 1983.

15 A.J. Bonner,  “Workflow, transactions and Datalog,” Symposium on Princi-
ples of Database Systems. Philadelphia, PA, June, 1999, pp. 294-305.  

16 D. Brant, “Inferencing on large data sets,” Ph.D. dissertation. Austin, TX: 
Department of Computer Sciences, The University of Texas at Austin, 1993.

17 D. Brant and T. Grose, B. Lofaso, and D. P. Miranker, "Effects of database 
size on rule system performance: Five case studies," in Proceedings of the 
17th International Conference on Very Large Data Bases. Barcelona, Spain, 
September, 1991, pp. 287-296.

18 J.C. Browne et al., "Modularity in rule-based programming," International 
Journal on Artificial Intelligence Tools, vol. 4, no. 1&2, pp. 201-218, 1995.

19  J.C. Browne, and et. al,  “A new approach to modularity in rule-based pro-
gramming,”  In Proceedings of the 6th International Conference on Tools 
with Artificial Intelligence, IEEE Press, 1994, 18-25.

20 L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Expert Sys-
tems in OPS5: An Introduction to Rule-Based Programming. Addison-Wes-
ley Publishing Company, Inc., 1985.

21 A. Buchmann, J. Zimmermann, and J. Blakeley, “Building an integrated 
active OODBMS: Requirements, architecture, and design decisions,” in Pro-
ceedings of the 11th International Conference on Data Engineering.  Taipeh, 
Taiwan, March, 1995, pp. 117-128.

22 C. Bussler and S. Jablonski, “Implementing agent coordination for workflow 
management systems using active database systems,” in Proceedings of the 
152



4th International Workshop on Research Issues in Data Engineering. Hous-
ton, Texas, February, 1994, pp. 53-59.

23 M. Carey, D. DeWitt, J. Richardson, and I. Shekita, "Object and file manage-
ment in the EXODUS extensible database system," in Proceedings of the 
12th International Conference on Very Large Databases. Kyoto, Japan, 
August, 1986, pp. 91-100.

24 S. Chakravarthy, "Snoop: An expressive event specification language for 
active databases," Knowledge and Data Engineering Journal, vol. 14, 
November, pp. 1-26, 1994.

25 S. Chaudhuri and V. Narasayya,  “AutoAdmin ‘What-if’ Index analysis util-
ity,” in Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data.  Seattle, WA, June, 1998, pp. 367-378

26 S. Chaudhuri and V. Narasayya,  “An efficient cost-driven index selection 
tool for Microsoft SQL Server,” in Proceedings of the 23rd Conference on 
Very Large Databases.  Athens, Greece, August, 1997, pp. 146-155.

27 M. Cherniack and S. B. Zdonik,  “Rule languages and internal algebras for 
rule-based optimizers,”  Proceedings of the ACM SIGMOD International 
Conference on Management of Data.  Montreal, Canada,  June, 1996, pp. 
401-412.

28 Sunil Choenni, Henk M. Blanken, and D T. Chang,  “On the selection of sec-
ondary indices in relational databases,” Date and Knowledge Engineering, 
vol 11, no. 3, December, pp. 207-, 1993.

29 S. Comai and L. Tanca, “Using the properties of datalog to prove termination 
and confluence in active databases,” Rules in Database Systems. Skövd, Swe-
den, June, 1997, pp. 100-117.

30 S. Correl and D. Miranker, "On isolation, concurrency, and the Venus rule 
language," in Proceedings of the 4th International Conference on Informa-
tion and Knowledge Management. Baltimore, MD, November, 1995, pp. 
281-289.

31 J. Crawford, D. Dvorak, D. Litman, A. Mishra, and P. F. Patel-Schneider, 
“Path-based rules in object-oriented programming,” in Proceedings of the 
13th National Conference on Artificial Intelligence. Portland, Oregon, 1996, 
pp. 490-497.
153



32 D. Das and D. Batory, “Prairie:  A rule specification framework for query 
optimizers,”  in Proceedings of the 11th International Conference on Data 
Engineering, 201-210, Taipei, March, 1995, pp. 201-210.

33 U. Dayal, A. P. Buchmann, and S. Chakravarthy, “The HiPAC project,” in 
Active database systems: triggers and rules for advanced database process-
ing, J. Widom and S. Ceri, Eds. San Francisco, CA.: Morgan Kaufmann Pub-
lishers, 1996, pp. 177-205.

34 U. Dayal, M. Hsu, and R. Ladin, “Organizing long-running activities with 
triggers and transactions,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, Atlantic City, NJ, 1990, pp. 204-
214.

35 E. Dijkstra.  Formal Development of Programs and Proofs, Addison-Wesley, 
1990.

36 L. Do and P. Drew, “Active database management of global data integrity 
constraints in heterogeneous database environments,” in Proceedings of the 
11th International Conference on Data Engineering. Taipei, Taiwan, March, 
1995, pp. 99-108.

37 S. Flesca and S. Greco,  “Declarative semantics for active rules,” Database 
and Expert System Applications. Vienna, Austria, August, 1998, pp. 871-880.

38 C.L. Forgy,  “The OPS83 report,” Technical Report CMU-CS-84-133, 
Department of Computer Science, Carnegie Mellon University, May, 1984.

39 C. Forgy, “RETE: A fast match algorithm for the many pattern/many object 
pattern match problem,” Artificial Intelligence, vol., 19, pp. 17-37, 1982.

40 C. Forgy, “OPS5 user's manual,” Technical Report CMU-CS-81-135. Carn-
egie-Mellon University, 1981.

41 D. Gadbois and D.P. Miranker, “Discovering procedural execution of rule-
based programs,” in Proceedings of the 12h National Conference on Artifi-
cial Intelligence.  Seattle, Washington, July, 1994, pp. 459-464.

42 M. Gelfond and V. Lifschitz, "Representing action and change by logic pro-
grams," Journal of Logic Programming, vol. 17, no. 2,3, & 4, November, pp. 
301-321, 1993.
154



43 M. Gelfond and V. Lifschitz, “The stable model semantics for logic program-
ming,”  Proceedings of the 5th International Conference on Logic Program-
ming.  St. Paul, MN, August, 1988.

44 A. Geppert, S. Gatziu, K. R. Dittrich, H. Fritschi, and A. Vaduva, “Architec-
ture and implementation of the active object-oriented database management 
system SAMOS,” TR 95.29. Institut fur Informatik, Universitat Zurich, Swit-
zerland, 1995.

45 J. Giarrantano.  CLIPS User’s Guide.  Artificial Intelligence Section, Lyndon 
B. Johnson Space Center, June, 1989.

46 J. Giarrantano and G. Riley, Expert Systems: Principles and Programming, 
3rd Edition. Boston, MA: PWS Publishing Co, 1998.

47 G. Graefe and D. J. Dewitt, “The EXODUS optimizer generator,”  in Pro-
ceedings, 1987 ACM SIGMOD International Conference on Management of 
Data. San Francisco, CA, May, 1987. 387-394.

48 G. Graefe and W. McKenna, “The Volcano optimizer generator: Extensibility 
and efficient search,” in Proceeding of the 12th International Conference on 
Data Engineering.  Vienna, Austria, April, 1993, 209-218.

49 T. Grose, “The programming and functionality of OPS5 compared to LISP 
and FORTRAN in an aeronautical route planning system,” Master of Arts 
Thesis, The University of Texas at Austin, May, 1991.

50 A. Gupta, Parallelism in Production Systems, Pitman/Morgan-Kaufmann 
Publishers, Inc., Los Altos, CA, 1987.

51 H. Gupta, V. Harinarayan, A. Rajaramana, and J.D. Ullman, “Index selection 
for OLAP,” in Proceedings of the International Conference on Data Engi-
neering. Birmingham, U.K., April, 1997, pp. 208-219.

52 E. Hanson, “The design and implementation of the Ariel active database rule 
system,” IEEE Transactions on Knowledge and Data Engineering, vol. 8, no. 
1, February, pp. 157-172, 1996.

53 S. Henry and D. Kafura, "Software structure metrics based on information 
flow," IEEE Transactions on Software Engineering, vol. 7, no. 5, September, 
pp. 510-518, 1981.
155



54 J.M. Hellerstein, “Predicate migration:  Optimizing queries with expensive 
predicates,” in Proceedings of the ACM-SIGMOD Conference on Manage-
ment of Data. Washington, D.C., May, 1993, pp. 267-276.

55 Inference Corp. Art Reference Manual, 1987.

56 T. Ishida and S.J. Stolfo, “Simultaneous firing of production rules on tree 
structured machines,” International Conference on Parallel Processing. Tor-
onto, Canada, August, 1998. 

57 N. Kabra and D. J. Dewitt,  “OPT++:  An object-oriented implementation for 
extensible database query optimization,” Unpublished paper http://
www.cs.wisc.edu/shore/shore.papers.html, 1994. 

58 N. Kabra and D. J. DeWitt, “Efficient mid-query re-optimization of sub-opti-
mal query execution plans,” in Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data.  Seattle, WA, June, 1998, pp. 
106-117.

59 H. Korth, A. Silberschatz.  Database System Concepts.  McGraw-Hill, Inc., 
1991.

60 C.M. Kuo, D.P. Miranker, and J. C. Browne, “On the performance of the 
CREL system,”  Journal of Parallel and Distributed Computing, vol 13, 
1991.

61 T. McCabe, “A complexity measure,” IEEE Transactions on Software Engi-
neering, December, 1976, pp. 308-320.

62 J. McDermott,  “R1("XCON") at age 12: Lessons for an elementary school 
achiever,”  Artificial Intelligence, vol. 59, 1993, 241-247.

63 D.P. Miranker, TREAT: A new and efficient match algorithm for AI produc-
tion systems.  Los Altos, CA: Pittman/Morgan-Kaufman Publishers, 1989.

64 D. P. Miranker, D. Brant, B. J. Lofaso, and D. Gadbois, “On the performance 
of lazy matching in production systems,” in Proceedings of the 8th National 
Conference on Artificial Intelligence. Boston, MA, July, 1990, pp. 685-692.

65 D. P. Miranker, F.H. Burke, J.J. Steele, J. Kolts, and D.R. Haug, “The C++ 
embeddable rule system,”  Int. Journal on Artificial Intelligence Tools, vol. 2, 
no. 1, pp. 33-46, 1993.  Also in the Proceedings of the 1991 International 
Conference on Tools for Artificial Intelligence
156



66 D. P. Miranker and L. Obermeyer, “An overview of the VenusDB active mul-
tidatabase system,” International Symposium on Cooperative Database Sys-
tems for Advanced Applications. Kyoto, Japan, December, 1996.

67 J. Misra. “UNITY:  A foundation of parallel programming,” in Proceedings. 
9th International Summer School on Constructive Methods in Computer Sci-
ence. Marktoberdorf, Germany, July 24-August 5, 1988, in NATO ASI 
Series, Vol. F 55, ed. Manfred Broy, Springer-Verlag, pp. 397-433, 1989

68 A. Mok and R.H. Wang, “Response-time bounds of equal rule-based pro-
grams under rule priority structure,”  IEEE Transactions on Software Engi-
neering, vol. 21, no. 7, July, pp. 593-623, 1982.

69 L. Obermeyer, “Abstractions and algorithms for active multidatabases,”   
Doctoral Thesis.  Austin, TX: Department of Compute Sciences, The Univer-
sity of Texas at Austin, 1999.

70 L. Obermeyer and D.P. Miranker,  “Evaluating triggers using decision trees,” 
in Proceedings of the 6th International Conference on Information and 
Knowledge Management.  Las Vegas, NV, November, 1997, pp. 144-150.

71 L. Obermeyer, L. Warshaw, and D. P. Miranker, “Porting an expert database 
application to an active database: An experience report,” Databases: Active 
and Real Time. Baltimore, MD, November, 1996.

72 M. Tamer Özsu, Adriana Munoz, and Duana Szafron, “An extensible query 
optimizer for an objectbase management system,” in Proceedings of the 4th 
International Conference on Information and Knowledge Management.  Bal-
timore, MD, November 1995, 188-196.

73 F. Pachet, Proceedings of the OOPSLA’94 Workshop on Embedded Object-
Oriented Production Systems. Technical Report LAFORIA 94/24. Labora-
toire Formes et Intelligence Artifcielle, Institut Blaise Pascal. Dec., 1994.

74 N.W. Paton.  Active Rules in Database Systems, Springer-Verlag New York, 
Inc., 1999.

75 A. J. Pasik, “A source-to-source transformation for increasing rule-based sys-
tem parallelism,”  IEEE Trans. of Knowledge and Data Engineering, vol. 4, 
no 4, August, pp. 336-343, 1992.

76 A. Pasik, “A methodology for programming production systems and its 
implications on parallelism,” Ph.D. Dissertation, Columbia University, New 
York, New York, 1989.
157



77 J. Pearl,  Heuristics.  Intelligent Search strategies for Computer Problem 
Solving.  Addison-Wesley, 1984.

78 P. Picouet and V Vianu,  “Expressiveness and complexity of active data-
bases,”  International conferences on Database Theory.  Delphi, Greece, Jan-
uary, 1997, pp. 155-172.

79 P. Picouet and V. Vianu, “Semantics and expressiveness issues in active data-
base,” in Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems. San Jose, CA, May, 1995, pp. 113-
124.

80 H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible rule based query 
rewrite optimization in Starburst,” in Proceedings of the, 1992 ACM SIG-
MOD International Conference on Management of Data.  San Diego, CA, 
June, 1992, pp. 39-48.

81 L. Raschid, “Maintaining consistency in a stratified production system pro-
gram,” in Proceedings of the 8th National Conference on Artificial Intelli-
gence. Boston, MA, August 1990, pp. 284-289.

82 E.Simon, J. Kiernan, and C. de Maindreville,  “Implementing high level 
active rules on top of a relational dbms,”  in Proceedings of International 
Conference on Very Large Databases.  Vancouver, British Columbia, Canada, 
August, 1992, pp. 315-326.

83 E. Soloway, J. Bachant, and K. Jensen, “Assessing the maintainability of 
XCON-in-RIME: Coping with the problems of a very large rule-base,” in the 
Proceedings of the National Conference on Artificial Intelligence.  Seattle, 
WA, July, 1987, pp. 824-829.

84 M. Staskauskas, “The formal specification and design of a distributed elec-
tronic funds-transfer system,”  IEEE Transactions on Computers, vol. 37, no. 
12, December, pp. 1515-1528, 1988.

85 S. Stolfo et. al,  The ALEXSYS mortgage pool allocation expert system:  A 
case study of speeding up rule-based programs.  Columbia University 
Department of Computer Science and Center for Advanced Technology, 
1990.

86 M. Stonebraker, “The integration of rule systems and database systems,” 
IEEE Transactions on Knowledge and Data Engineering, vol. 4, no. 5, Octo-
ber, pp. 415-423, 1992.
158



87 M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos, “On rules, proce-
dures, caching and views in database systems,” in Proceedings of the, 1990 
ACM SIGMOD Conference on Management of Data. Atlantic City, N.J., 
May, 1990.

88 Sybase, Inc.  Transact-sql user’s guide.  Technical Report, 1987.

89 Transaction Processing Performance Council, “TPC benchmark D.”  San 
Jose, CA, 1993. 

90 J. D. Ullman. Principles of Database and Knowledge-Based Systems. W H 
Freeman & Co, 1988.

91 Y-W Wang and E. N. Hanson, “A performance comparison of the Rete and 
TREAT algorithms for testing database rule conditions, “in Proceedings of 
the Eighth International Conference on Data Engineering. Tempe, AZ, Feb-
ruary, 1992, pp. 88-97.

92 L. Warshaw and D.P. Miranker, “Rule-based query optimization, revisited,” 
Proceedings of the 9th Conference on Information and Knowledge Manage-
ment. Kansas City, Kansas, November, 1999, pp. 267-275.

93 L. Warshaw, et al., “Monitoring network logs for anomalous activity,” 
Applied Research Laboratories at the University of Texas at Austin, technical 
report #TP-99-1, 1998.

94 L. Warshaw, L. Obermeyer, D. P. Miranker,  and Sara Matzner, “VenusIDS:  
An active database component for an intrusion detection system,” unpub-
lished document.

95 L. Warshaw and D. P. Miranker, “A case study of Venus and a declarative 
basis for rule modules,” in Proceedings of the 5th Conference on Information 
and Knowledge Management. Baltimore, MD, November, 1996, pp. 317-325.

96 D. Wells, J. Blakeley, and C. Thompson, “ Architecture of an open object-ori-
ented database management system,”  Computer, vol. 25, no. 10, 1992.

97 J. Widom, “The Starburst active database rule system,” IEEE Transactions on 
Knowledge and Data Engineering, August, 1996.

98 J. Widom and S. Ceri,  Active Database Systems: Triggers and Rules for 
Advanced Database Processing, Morgan Kaufmann Publishers, 1996.
159



99 S-Y. Wu, D.P. Miranker, and J.C. Browne, “Toward semantic-based parallel-
ism in production systems,” in Proceedings of the International Conference 
on Parallel and Distributed Systems, 1994.

100 C. Zaniolo,  “The nonmonotonic semantics of active rules in deductive data-
bases,”  Deductive and Object Oriented Databases. Montreux, Switzerland, 
December, 1997, pp. 265-282.

101 C. Zaniolo,  “Active database rules with transaction-conscious stable-model 
semantics,”  Deductive and Object Oriented Databases. Signapore, Decem-
ber, 1995, pp. 55-72.
160



161

  VITA

Lane Bradley Warshaw was born in Atlanta, Georgia on February 1, 1973, 

the son of Susie Blass Warshaw and Jerry David Warshaw.  After completing his 

work at North Springs High School, Atlanta, Georgia, in 1991, he entered The 

University of Texas at Austin, where he graduated with special departmental hon-

ors with the degree of Bachelor of Science in Computer Sciences in 1996.  Follow-

ing graduation, he began working for the Applied Research Laboratories of The 

University of Texas at Austin, where he continued to work throughout his graduate 

studies.   In August 1996, he entered the Graduate School of The University of 

Texas at Austin to pursue a Master of Science in Computer Sciences, which he was 

awarded in May 1999.  In January 2000, he left the Applied Research Laboratories 

to begin working at Liaison Technology Incorporated, where he serves as a Senior 

Software Engineer.  

Permanent address:1710 Goodrich Avenue #A, Austin, Texas 78704

This dissertation was typed by the author.


	Facilitating Hard Active Database Applications
	Lane Bradley Warshaw, B.S., M.S.
	Facilitating Hard Active Database Applications
	Dedication
	Acknowledgements
	Facilitating Hard Active Database Applications
	Chapter 1 Introduction
	Chapter 2 Background
	2.1 Production Systems
	2.1.1 Definitions
	2.1.2 Execution Semantics

	2.2 Active Databases
	2.2.1 ECA rules
	2.2.2 Coupling Modes
	2.2.3 Concurrency Control and Recovery
	2.2.4 Architecture
	2.2.5 Language Semantics
	2.2.5.1 Confluence and Termination

	2.2.6 Optimization


	Chapter 3 The VenusDB Active Database Language
	3.1 Venus Rule Language
	3.1.1 C++ Heritage
	3.1.2 Data
	3.1.2.1 Rules

	3.1.3 Modules
	3.1.3.1 Module Semantics

	3.1.4 Polymorphism

	3.2 VenusDB Modifications
	3.2.1 Events
	3.2.1.1 Database Events
	3.2.1.2 Transaction Events
	3.2.1.3 Temporal Events
	3.2.1.4 Composite Events

	3.2.2 Abstract Machine Interface
	3.2.2.1 AMI Optimizations

	3.2.3 Concurrency Control

	3.3 VenusDB Language Semantics: An Evaluation
	3.3.1 Related Work
	3.3.2 The Mortgage Pool Allocation Problem
	3.3.2.1 ALEXSYS
	3.3.2.2 REALESYS

	3.3.3 Quantitative Results
	3.3.3.1 Conditions Per Rule
	3.3.3.2 Lines of Code
	3.3.3.3 McCabe's Cyclomatic Complexity

	3.3.4 Discussion and Conclusions


	Chapter 4 Application Semantics for Active Log Monitoring Applications
	4.1 Motivation
	4.1.1 Coupling Modes
	4.1.2 Example 1

	4.2 Background
	4.2.1 LMAs, Datalog, and Confluence
	4.2.2 Previous Work

	4.3 Approach
	4.3.1 Results

	4.4 Definitions
	4.4.1 Functions
	4.4.2 Sequence of States
	4.4.3 Log Monitoring Application Definitions

	4.5 Active Database Execution
	4.5.1 Atomicity and Parallel Rule Execution
	4.5.2 Execution Models
	4.5.2.1 Sequential execution model
	4.5.2.2 Parallel execution model
	4.5.2.3 ActiveDatabase Execution model


	4.6 Correct Active Database Execution
	4.7 Serializability of Rules
	4.8 Concurrency Schemes for LMA+ Programs
	4.8.1 Parallel Execution Model
	4.8.1.1 Confluence
	4.8.1.2 Program Correctness

	4.8.2 Active Database Execution Model
	4.8.2.1 Confluence
	4.8.2.2 Program Correctness


	4.9 Concurrency Schemes for LMA- Programs
	4.9.1 External Event Sequencing and Isolation
	4.9.2 Parallel Execution Model
	4.9.2.1 Cycle Serializability
	4.9.2.2 Program Correctness

	4.9.3 ActiveDatabase Execution Model
	4.9.3.1 Program Correctness


	4.10 VenusDB Integration
	4.10.1 Background
	4.10.2 Coupling Mode Assignment Algorithm

	4.11 Conclusion and Future Work

	Chapter 5 The VenusDB Optimizer
	5.1 Background
	5.2 Architecture
	5.2.1 Optimization Suite
	5.2.1.1 LEAPS Algorithm
	5.2.1.2 Predicate Pushdown
	5.2.1.3 Indexing

	5.2.2 Rule-based Implementation
	5.2.2.1 Optimizer Components
	5.2.2.2 Data Model
	5.2.2.3 Rule System Architecture

	5.2.3 Use of the VenusDB Optimizer

	5.3 Empirical Evaluation
	5.3.1 Test Programs
	5.3.2 Test Harness
	5.3.3 Discussion

	5.4 Conclusion
	5.5 Acknowledgment

	Chapter 6 Conclusion
	6.1 Future Research

	Appendix WatchDog: An LMA Application
	A.1 Overview
	A.2 Implementation
	A.2.1 Rule Architecture
	A.2.2 Data Flow
	A.2.3 Control Flow
	A.2.4 Code Modules

	A.3 Measurements
	A.4 Summary

	References
	VITA

