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Abstract

We give randomized constant-factor approximation algorg for thek-median problem
and an intimately related clustering problem. The inputaoheof these problems is a metric
space withn weighted points and an integer0 < & < n. For any such input, leR; denote
the ratio between the maximum and minimum nonzero intetphb#tances, and leR,, denote
the ratio between the maximum and minimum nonzero pointkitgighVe analyze the running
time of our algorithms in terms of the parameters:, R4, andR,,. We prove that over a wide
range of parameter settings, the complexity of both probley® (nk).

*Department of Computer Science, University of Texas atiusiustin, TX 78712. This research was supported
by NSF Grant CCR-9821053. Emafk angopal , pl axt on}@s. ut exas. edu. The second author is presently
on leave at Akamai Techologies, Inc., Cambridge, MA 02139.



1 Introduction

Given a set of points and pairwise distances between theégydive goal ottlusteringproblems

is to partition the points into a number of sets such thatfgomeach set are “close” with respect
to some objective function. Clustering algorithms are Widesed to organize large data sets in
areas such as data mining and information retrieval. Fomel& we may wish to partition a set
of web logs to infer certain usage patterns, or divide a cogfudocuments into a small number
of related groups. Given a set of points and associatedpinitar distances, let thenedian of
the set be the point in the set that minimizes the sum of distto all other points in the set.
(Remark: The median is essentially the discrete analog efcéntroid, and is also called the
medoid[9].) The clustering problem we consider asks us to partitieveighted points inté& sets
such that the sum, over all sets, of the weight of a point tithesdistance to the median of its
set is minimized. Approaches to this type of clustering peol) such as thé-means heuristic,
have been well-studied [4, 9]. We refer to this problem ascthetering variantof the classic
k-median problemthe k-median problem asks us to maklof the points such that the sum over
all pointsz of the weight ofz times the distance from to the nearest marked point is minimized.
It is straightforward to see that we can convert a solutiotihé&k-median problem into a solution
for its clustering variant ifD (nk) time; thus we focus on thiemedian problem when developing
our upper bounds. We also restrict our attention tontietric version of the problems throughout
this paper; the given distance matrix defines a metric spaeethe set of input points, that is,
the distances are nonnegative, symmetric, satisfy thegieanequality, and the distance between
pointsz andy is zero if and only ifr = y. (Remark: For the sake of brevity we writé-median
problem” to mean “metrié-median problem” throughout the remainder of the paper.)

Since problem instances in the application areas mentiabede tend to be large, we are mo-
tivated to ask how input characteristics such as the poinght® and interpoint distances affect
the complexity of the:-median problem and its clustering variant. Weighted oame useful in a
number of applications; for example, we may wish to priedtihe objects in the input. We ask the
following natural question: Does allowing inputs with drlry point weights incur a substantial
time penalty? We note that even for moderate weights(Xaa), the naive approach of viewing
a weighted point as a collection of unit-weight points iras®es the input size dramatically. For
certain applications, the interpoint distances may lie ialatively small range. Thus we are mo-
tivated to ask: Does constraining distances to a small radget substantially faster algorithms?
We resolve both of the above questions for a wide range ot ipgrameters by establishing a time
bound of©®(nk) for the k-median problem and its clustering variant. Thus, we sh@withmany
cases, having large point weights does not incur a subatdimie penalty, and, that we cannot
hope to develop substantially faster algorithms even whernirtterpoint distances lie in a small
range.

Before stating our results we introduce some useful tertagyathat we use throughout this pa-
per. LetU denote the set of all points in a given instance ofithreedian problem; we assume that
U is nonempty. Aconfigurationis a nonempty subset 6f. An m-configurationis a configuration
of size at mostn. For any points: andy in U, letw(z) denote the nonnegative weightgfand let
d(z,y) denote the distance betweeandy. Thecostof any configurationX, denotedost (X), is
defined as", .y d(z, X) - w(xz). We denote the minimum cost of any-configuration byOPT,,,.
For brevity, we say that am-configuration with cost at moat OP T is an(m, a)-configuration.



A k-median algorithm igm, a)-approximateif it produces arn(m, a)-configuration. Ak-median
algorithm isa-approximateif it is (&, a)-approximate. LefR; denote the ratio of the diameter of
U (i.e., the maximum distance between any pair of points)to the minimum distance between
any pair of distinct points i/. Let R,, denote the ratio of the maximum weight of any point in
U to the minimum nonzero weight of any pointin (Remark: We can assume without loss of
generality that at least one pointinhhas nonzero weight since the problem is trivial otherwise.)
Letry =1+ |log Rq| andr,, =1+ |log R, |.

Our main resultis a randomizé&( 1)-approximaté:-median algorithm that runs ii(nk) time
subject to the constraints= Q(logn), kr;, = O(n), andrgr, log(3-) = O(n). The algorithm
succeedsvith high probability that is, for any positive constaff we can adjust constant factors
in the definition of the algorithm to achieve a failure prottigbless thann—¢. We establish a
matching2(nk) lower bound on the running time of any randomized )-approximate:-median
algorithm with a nonnegligible success probability (eeg.leastul]—o), subject to the requirement
that R; exceeds:/k by a sufficiently large constant factor relative to the dasiapproximation
ratio. To obtain tight bounds for the clustering variant, al& prove ar2(nk) time lower bound
for any O(1)-approximate algorithm, but we only require thg be a sufficiently large constant
relative to the desired approximation ratio. Additionadlyr lower bounds assume only thag =
O(1).

Our main technical result is a successive sampling tecleniat we use in all of our algo-
rithms. The basic idea behind the technique is to take a rargionple of the points, set aside a
constant fraction of the points that are “close” to the sample, and recurse on theingmggpoints.
We show that this technique rapidly produces a configuratioose cost is within a constant factor
of optimal. Specifically, for the case of uniform weightsy successive sampling algorithm yields
a(klog(n/k), O(1))-configuration with high probability i©(n max{k,logn}) time.

In addition to this sampling result, our algorithms rely anextraction technique due to Guha
et al. [5] that uses a black bo®(1)-approximatek-median algorithm to compute @&, O(1))-
configuration from anym, O(1))-assignment. The black box algorithm that we use is the finea
time deterministic online median algorithm of Mettu andx@e [10].

In developing our randomized algorithm for thenedian problem we first consider the special
case of uniform weights, that is, whekg, = r,, = 1. For this special case we provide a random-
ized algorithm running it (n max{k, log n}) time subject to the constrainjlog = O(n). The
uniform-weights algorithm is based directly on the two 8inf blocks discussed above: We apply
the successive sampling algorithm to obtéiriog (n/k), O(1))-configuration and then use the
extraction technique to obtain(&, O(1))-configuration. We then use this algorithm to develop
a k-median algorithm for the case of arbitrary weights. Oupo&thm begins by partitioning the
n points intor, power-of2 weight classes and applying the uniform-weights algorithitihin
each weight class (i.e., we ignore the differences betwesights belonging to the same weight
class, which are less than a factor2adpart). The union of the,, k-configurations thus obtained
is an (r,k, O(1))-configuration. We then make use of our extraction techniquebtain a(k,
O(1))-configuration from thigr,,k, O(1))-configuration.



1.1 Problem Definitions

Without loss of generality, throughout this paper we coesil fixed set of: points,U, with an
associated distance functiah: U x U — IR and an associated nonnegative demand function
w : U — IR. We assume that is a metric, that isd is nonnegative, symmetric, satisfies the
triangle inequality, and(z, y) = 0 iff z = y. For a configurationY and a set of point¥’, we let
cost (X,Y) =Y sey d(z, X) - w(z). For any set of pointX, we letw(X) denoteX,c xw(x).

We define arassignments a function front/ to U. For any assignment we letr(U) denote
the set{7(z) | € U}. We refer to an assignmentwith |7(U)| < m as am-assignment
Given an assignment, we define the cost of, denotedc (7), as> .y d(z, 7(x)) - w(z). Itis
straighforward to see that for any assignmentost (7(U)) < c¢(7). For brevity, we say that
an assignment with |7(U)| < m and cost at most - OPT}, is an(m, a)-assignment For an
assignment and a set of pointX’, we letc (7, X) = >, cx d(z, 7(x)) - w(x).

The input to thek-median problem i$U, d, w) and an integek, 0 < k£ < n. Since our goal is
to obtain a(k, O(1))-configuration, we can assume without loss of generalityalianput points
have nonzero weight. We note that for all 0 < m < n, removing zero weight points from
anm-configuration at most doubles its cost. To see this, conside.-configurationX’; we can
obtain anm-configurationX’ by replacing each zero weight point with its closest nonzezmht
point. Using the triangle inequality, it is straightforwlatio see thatost (X') < 2cost (X). This
argument can be used to show that any minimum-cost set ofiscntained in the set of nonzero
weight input points has cost at most twio& T',,,. We also assume that the input weights are scaled
such that the smallest weightisthus the input weights lie in the ranfe R,,]. For output, the
k-median problem requires us to compute a minimum-gaginfiguration. Thauniform weights
k-median problem is the special case in whicfx) is a fixed real for all points.. The output is
also a minimum-cost-configuration.

1.2 Comparison to Previous Work

The firstO(1)-approximatek-median algorithm was given by Chariker al. [3]. Subsequently,
there have been several improvements to the approximattan(see, e.g., [2] for results and ci-
tations). In this section, we focus on the results that aretmalevant to the present paper; we
compare our results with other recent sublinear-time #lgois for thek-median problem. The
first of these results is due to Indyk, who gives a randomizeg:), O(1))-approximate algo-
rithm for the uniform weightg:-median problem [6]. Indyk’s algorithm combines random sam
pling of the input points with a black-boxx§, 5)-approximatek-median algorithm to achieve a
((1 +5)(6+3a)k 23)-approximate algorithm, whevreis the desired success probability. Given an
O(n?)-time! black-boxk-median algorithm, Indyk’s algorithm runs @(nk/62) time. (The poly-
logarithmic factor in the running time 3(log? k).) Indyk’s algorithm take®(y/nk log k) sample
points and then runs the black-béxmedian algorithm on those points to obtain a configuration
X. The black-box algorithm is then run again on a set of poimas are distant from points iX
to produce another configuratidh The final output is the union of andY’, which is shown to
be an(O(k), O(1))-configuration.

Thorup [13] gives a randomize&d(1)-approximate algorithms for themedian k-center, and

1The O-notation omits polylogarithmic factors mandk.



facility location problems in a graph. For these problems, ave not given a metric distance
function but rather a graph on the input points withpositively weighted edges from which
the distances must be computed; all of the algorithms in [L8]in O(m) time. Thorup [13]
also gives arO(nk) time randomized constant-factor approximation algorifomthe k-median
problem that we consider. (The polylogarithmic factor ie tlinning time i€2(log* n).) As part
of this k-median algorithm, Thorup gives a successive samplingiiqal that also consists of a
series of sampling steps but produces(@t(k logn)/¢), 2 + ¢)-configuration for any positive
reale with 0 < ¢ < 0.4 with probability1/2.

Our successive sampling technique is similar in spirit tthkad the above algorithms, but we
take a total 0O (log (n/k)) samples, each of siz@(k), and construct afiO(k log (n/k), O(1))-
assignment from the union of the samples. Overall, our sasipé is much smaller than in Indyk’s
algorithm O(k log (n/k)) points versu®(y/nk log k) points) and smaller than the sample size in
Thorup’s algorithm by a logarithmic factor. However, oug@lithm produces aO (& log (n/k),
O(1))-assignment whereas Indyk’s algorithm produces$@(k), O(1))-configuration. Addition-
ally, the algorithms of Indyk and Thorup both succeed witloastant probability, while our sam-
pling algorithm is guaranteed to succeed with high proligbil

Guhaet al. [5] give k-median algorithms for the data stream model of computatibder the
data stream model of computation, input data is processpeeséally, and the performance of an
algorithm is measured by how many passes it makes over taeamgl by its space requirements.
Guhaet al.[5] give a single-pas®(1)-approximate algorithm for the-median problem that runs
in O(nk) time and require®(n°) space for a positive constant (Their algorithm uses Indyk’s
k-median algorithm as a black box and hence the polylogarttfextor in the running time is also
Q(logk).)

Mishraet al.[11] show that in order to find &, O(1))-configuration, it is enough to take a
sufficiently large sample of the input points and use it asiirip a black-boxO(1)-approximate
k-median algorithm. To compute(&, O(1))-configuration with an arbitrarily high constant prob-
ability, the required sample size @3 R2k). The running time of this technique depends on the
black-box algorithm used. In the general case, the sizeeoséimple may be as large asbut
depending on the diameter of the input metric space, thisnigae can yield running times of
o(n?) (e.g., if the diameter is(n?/k)).

As noted earlier, we also make use of a technique due to ®ubh [5] that takes an(m,
O(1))-configuration and extracts @, O(1))-configuration; they use this technique in isolation
in a divide-and-conquer fashion to develop thieimedian algorithms. We view the extraction
technique as a postprocessing step that yields @(1))-approximate:-median algorithm given
an (n, O(1))-approximate:-median algorithm. In our algorithms, we take advantagéneffact
that this postprocessing step can be performed rapidlyekample, ifm = O(k) and the black-
box algorithm require®(n?) time, the time required for postprocessing is jO$t:?).

Guhaet al.[5] establish a lower bound 6¢f(nk) for deterministiaD(1)-approximate:-median
algorithms. We note that they work with a slightly differel@finition of thek-median problem in
which the distance between two distinct points is allowetded. We adopt the view that points
at distance zero are represented by a single point with corsunately higher weight; this view
avoids having an infinite value fag;. For the proof of the lower bound, Gulkaal.[5] construct
a problem instance for which optimal solution has dosind reduce the problem to a graph
partitioning problem [7]. The intuition is that any algdmmt producing a-configuration with



nonzero cost is nad(1)-approximate. Although their problem instance contaissigict points at
distance) (i.e., an infiniteR,), with a slight modification their proof only requires thaj exceed

n by a sufficiently large constant factor relative to the dssmpproximation ratio. Intuitively, with
such a large setting a¢;, a deterministid:-median algorithm taking(nk) time and making just
one “mistake” has fails to achieve the desired approximataio. Our lower bounds are stronger
in the sense that we focus on constructing problem instathegshave small values ak;, and
then show that any randomizéemedian algorithms running in(nk) time is likely to make many
“mistakes” on these instances.

1.3 Outline

The rest of this paper is organized as follows. In Section€pvesent and analyze our successive
sampling algorithm. In Section 3, we make use of our samgllggrithm, in conjunction with an
extraction result, to develop an(1)-approximate uniform weights-median algorithm. Then, in
Section 4, we use the uniform weights algorithm as a subreut develop a®(1)-approximate
k-median algorithm for the case of arbitrary weights. We @néour lower bounds for the-
median problem and its clustering variant in Appendix A.

2 Approximate Clustering via Successive Sampling

Our first result is a successive sampling algorithm that taots an assignment that has cost
O(OPT}) with high probability. We make use of this algorithm to degebur uniform weights
k-median algorithm. (Remark: We assume arbitrary weight®ito proofs since the arguments
generalize easily to the weighted case; furthermore, thghted result may be of independent
interest.) Informally speaking, the algorithm works in gdimg steps. In each step we take a small
sample of the points, set aside a constant fraction the weigbse constituent points are each
close to the sample, and recurse on the remaining pointse 8ia eliminate a constant fraction of
the weight at each sampling step, the number of samples takegarithmic in the total weight.
We are able to show that using the samples taken, it is pedsildonstruct an assignment whose
cost is within a constant factor of optimal with high proldajai For the uniform weight&-median
problem, our sampling algorithm runs@n» max{k, logn}) time. (We give &-median algorithm
for the case of arbitrary weights in Section 4.)

Throughout this section, we use the symhe|$, andk’ to denote real numbers appearing in
the definition and analysis of our successive sampling dlgor The value otx and’ should be
chosen to ensure that the failure probability of the alfponitneets the desired threshold. (See the
paragraph preceding Lemma 2.3 for discussion of the chdioeamd£’.) The asymptotic bounds
established in this paper are valid for any choicgslich that) < 5 < 1.

We also make use of the following definitions:

e A ball A is a pair(z,r), where thecenterz of A belongs toU, and theradius  of A is a
nonnegative real.

e Given aballA = (z,r), we let Points(A) denote the sefy € U | d(z,y) < r}. However,
for the sake of brevity, we tend to writéinstead ofPoints(A). For example, we writez €
A”and “A U B” instead of ¢ € Points(A)” and “Points(A) U Points(B)”, respectively.
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e For any sefX and nonnegative rea| we defineBalls(X, r) as the set),c x A, whereA, =

(z,r).

2.1 Algorithm

The following algorithm takes as input an instance of tAmedian problem and produces an
assignmeng such that with high probability; (o) = O(cost (X)) for anyk-configurationX'.
LetU, = U, and letS, = (. While |U;| > ak':

e Construct a set of point§; by sampling (with replacementpk’| times fromU;, where at
each sampling step the probability of selecting a giventgeiproportional to its weight.

e For each point irV;, compute the distance to the nearest poirfi;in

e Using linear-time selection on the distances computed énpitevious step, compute the
smallest real; such thatw(Balls(S;,v;)) > fw(U;). LetC; = Balls(S;, v;).

e For eachr in C;, choose a poing in S; such that!(z,y) < v; and leto(z) = v.
o Let Ui+1 =U; \ C;.

Note that the loop terminates sineg¢U;) < w(U;41) for all ¢ > 0. Lett¢ be the total number
of iterations of the loop. Le€; = S; = U;. By the choice oiC; in each iteration and the loop
termination conditiont is O(log (w(U)/k")). For the uniform demands-median problem¢ is
simply O(log (n/k'")). From the first step it follows thaw (U)| is O(tk').

The first step of the algorithm can be performediiwnk’) time over all iterations. In each
iteration the second and third steps can be performed indi(fié;| £') by using a (weighted) linear
time selection algorithm. For the uniform demartdsedian problem, this computation requires
O(nk') time over all iterations. The running times of the third aodrth steps are negligible.
Thus, for the uniform demandsmedian problem, the total running time of the above albanits
O(nk').

2.2 Approximation Bound

The goal of this section is to establish Theorem 1. The protifetheorem makes use of Lemmas
2.3, 2.5, and 2.11, which are established below. We remaitkTtheorem 1 is used in Sections 3
and 4.

Theorem 1 With high probability,c (¢) = O(cost (X)) for any k-configurationX .

Proof: The claim of Lemma 2.3 holds with high probability if we d¢ét= max{k,logn} anda
andg appropriately large. The theorem then follows from Lemma&s 2.5, and 2.11. n

The proof of Lemma 2.3 below relies on bounding the failui@yaibility of a certain family of
random experiments. We begin by bounding the failure pritibabf a simpler family of random
experiments related to the well-known coupon collectobfEm. For any positive integen and
any nonnegative reals andb, let us definef(m, a,b) as the probability that more thamn bins
remain empty aftefb| balls are thrown at random (uniformly and independently) im bins.
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Techniques for analyzing the coupon collector problem.(seg, [12]) can be used to obtain sharp
estimates orf (m, a, b). However, the following simple upper bound is sufficientdor purposes.

Lemma 2.1 For any positive reak, there exists a positive realsuch that for all positive integers
m and any reab > m, we havef (m, e, \b) < e.

Proof: Note that a crude upper bound giim, ¢, Ab) is given by the probability of obtaining
at most(1 — ¢)m successes ifAb| Bernoulli trials, each of which has success probabity
The claim then follows by choosing sufficiently large and applying a standard Chernoff bound.
(We have in mind the following tail bound: X is a random variable drawn from a Bernoulli
distribution withn trials and each trial has success probabijlitthen for allé such thad < § <1,
Pr{X <(1-90)np} < e~9°m0/2: see [1, Appendix A] for a derivation.) ]

We now develop a weighted generalization of the precedingria. For any positive integer
m, nonnegative reale andb, andm-vectorv = (ro, ..., r,_1) Of nonnegative reals;, we define
defineg(m, a,b,v) as follows. Consider a set af bins numbered from to m — 1 where bini
has associated weight Let R denote the total weight of the bins. Assume that eacfb pballs
is thrown independently at random into one of theébins, where bint is chosen with probability
ri/R, 0 < i < m. We defineg(m, a, b, v) as the probability that the total weight of the empty bins
after all of the balls have been thrown is more thdh

Lemma 2.2 For any positive reak there exists a positive real such that for all positive integers
m and any reab > m, we havey(m, £, A\b, v) < e~? for all m-vectorsv of nonnegative reals.

Proof: Fix e, b, m, andv. We will use Lemma 2.1 to deduce the existence of a suitaldeelof
A that depends only an Our strategy for reducing the claim to its unweighted ceypdrt will be
to partition almost all of the weight associated with theveighted bins int®(m) “sub-bins” of
equal weight. Specifically, we Ietdenote% and for eachi we partition the weight; associated

with bin ¢ into [’"?J completesub-bins of weight and ondncompletesub-bin of weight less than
s. Furthermore, when a ball is thrown into a particular bin,imagine that the throw is further
refined to a particular sub-bin of that bin, where the prolttgtihat a particular sub-bin is chosen
is proportional to its weight.

Note that the total weight of the incomplete sub-bins is tee®ic R/2. Furthermore, we can
assume without loss of generality that< 1, since the claim holds vacuously fer > 1. It
follows that less than half of the total weightlies in incomplete sub-bins. Thus, by a standard
Chernoff bound argument, for any positive r@aalve can choosg sufficiently large to ensure that
the following claim holds with probability of failure at mbs="/2 (i.e., half the desired failure
threshold appearing in the statement of the lemma): At l¥astf the [\b] balls are thrown into
complete sub-bins.

Let m' denote the number of complete sub-bins. Since at least halfeototal weightR
belongs to complete sub-bins, we hargs < m' < 2m/e. Accordingly, by a suitable application
of Lemma 2.1, we can establish the existence of a positive\t¢ddepending only om) such that,
after at least\’b balls have landed in complete sub-bins, the probability tiienumber of empty
complete sub-bins exceeds:)’/2 is at moste°/2.

From the claims of the two preceding paragraphs, we can gdadhat there exists & (de-
pending only ore) such that the following statement holds with probabilifyfalure at most°:
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The number of empty complete sub-bins is at most/2. Note that the total weight of the com-
plete sub-bins is at most-: £ - % = ¢R/2. As argued earlier, the total weight of the incomplete
sub-bins is also at mosi?/2. Thus, there exists a positive reabuch that aftef \b| ball tosses,
the probability that the total weight of the empty bins is mtitanc R is at moste°. ]

For the remainder of this section, we fix a positive readuch that? < v < 1. We also
let u; denote the minimum real such that there exisis@nfigurationX with the property that
w(Balls(X, 1;)) > yw(U;). Lemma 2.3 below establishes the main probabilistic clagedtin our
analysis of the algorithm of Section 2.1. We note that thenb@nimolds with high probability by
takingk’ = max{k, [logn|} anda andj appropriately large.

Lemma 2.3 For any positive reak, there exists a sufficiently large choicecouch that; < 2u;
forall i, 0 < i < ¢, with probability of failure at most—¢*".

Proof: Fix ¢ and letX denote ak-configuration such thab(Balls(X, p1;)) > yw(U;). Let us
define each poing in U; to begoodif it belongs toBalls(X, 11;), andbad otherwise. LetG denote
the set of good points. We associate each good powith its closest point inX, breaking ties
arbitrarily. For each point in X, let A, denote the set of good points associated wjthote that
the sets4, form a partition ofG. Recall thatS; denotes theéth set of sample points chosen by the
algorithm. For any: in X, we say thatS; coversA, iff S; N A, is nonempty. For any point, we
say thatS; coversy iff there exists an: in X such thaty belongs toA, andS; coversA,. Let G’
denote the set of points covered By note thatz' C G.

We will establish the lemma by proving the following claimorFany positive reals and¢,
there exists a sufficiently large choice @fsuch thatw(G') > (1 — ¢)w(G) with probability of
failure at most—¢*". This claim then implies the lemma becayséthe factor appearing in the
definition of ;) is less thany (the factor appearing in the definition pf) and for all pointsy
covered bys;, d(y, S;) < 2u;.

It remains to prove the preceding claim. First, note thatfeition of i; implies that at least
a v fraction of the total weight is associated with good poinfteus, a standard Chernoff bound
argument implies that for any positive realsand¢, there exists a sufficiently large choice @f
such that at leastk’ of the |ak’| samples associated with the constructiortpfaire good with
probability of failure at most ¢*' /2.

To ensure thaty(G') is at least(1 — ¢)w(G) with failure probabilitye=¢¥'/2, we can apply
Lemma 2.2 by viewing each sample associated with a good po#fjtas a ball toss and each set
A, as a bin with weightv(A4,). The claim then follows. =

Lemma 2.4 For all i such tha) < i <t ¢ (0,C;) < vw(C;).

Proof: Observe that

c(o,Cy) = Z d(z,o(x)) - w(z)

zeC;

< > v-w(z)

zeC;

= I/iU)(Ci),

where the second step follows from the definitiorCpfand the construction af(x). n



Lemma 2.5

Proof: Observe that

0<:<¢t
0<i<t
The first step follows since the se&f$, 0 < i < ¢, form a partition ofU. The second step follows

from Lemma 2.4. n

Throughout the remainder of this section we fix an arbitiagonfigurationX'. For alli such
that0 < i < ¢, we letF; denote the sefz € U; | d(z, X) > u;}, and for any integem > 0, we
let ™ denoteF; \ (Uj=oFitjm)-

Lemma 2.6 Let s, j, andm be integers such that < i < ¢, 0 < j <t m > 0, and (i —
j) mod m = 0. ThenF™ N F* = ().

Proof: Without loss of generality, assume tliat j. Then, by definitionF™ = F;\ (Us~0Fiism)-
SinceF" C Fjy and(i — j) mod m = 0, it follows thatF;™ and F* do not intersect. "

Lemma 2.7 Leti be an integer such that < i < ¢ and letY be a subset of;. Thenw(F;) >
(1 —y)w(U;) andcost (X,Y) > pw(Y).

Proof: First, note that by the definition ¢f;, w(F;) is at leas{1 — y)w(U;). By the definition of
Fi, d(y, X) = pi foranyy in F;. Thuscost (X,Y) = 3 cy d(y, X) - w(y) = piw(Y). =

Lemma 2.8 For all 7, 7, andm such tha) <i <¢,0 < j <t, andm > 0,

COSt(X, Ui~ ) mod mzoFim) > > piw(F™).
(i—7) mod m=0
Proof: By Lemma 2.6, for alk, j, andm such thad <i <¢,0 < j <t,andm > 0,
CoSt( X, Uii—j) moa m—oFJ") = S cost(X,FM).

(i—7) mod m=0
By Lemma 2.7 cost (X, F]™) > pw(F™), and the claim follows. n
For the remainder of the section, tet= [log; 4 ((1 —)/3)].

Lemma 2.9 For all ¢ such tha < i < t, w(F;y,) < sw(F).

Proof: Note thatw(Fj;,) < w(Uiy,) < (1 - 8)w(l;) < L2 w(F), where the last step

follows from Lemma 2.7. The claim then follows by the definitiof r. ]



Lemma 2.10 For all i such thad < i < ¢, w(F}) > “F,

Proof: Observe that

w(F) = w(F;\ UjsoFiijr)

w(F)
> w(F) - Y Y
7>0
L w(E)
- 2
where the second step follows from Lemma 2.9. n

Lemma 2.11 For anyk-configurationX,

1
cost(X) >

2_7,7 Z piw(Cy).

0<i<t

Proof: Letj = arg max.,_.{> () mod r—o w(F} )} and fix ak-configurationX. Thencost (X)
is at least -

COSt(X, U(i_j) mod r:O-Fir) > Z ,U'zw(]?zr)

> = > mww(F)

v
|
=
£
eS|

V
[y
|
2
[ [
|M|
=
5=
&)

where the first step follows from Lemma 2.8, the second stédpwe from averaging and the
choice ofj, the third step follows from Lemma 2.10, the fourth stepdat from Lemma 2.7, and
the last step follows sinc€; C U. n

3 An Efficient Algorithm for the Case of Uniform Weights

Theorem 2.4 of Guhet al. [5] implies that for any giver(m, O(1))-configurationX, we can
compute &k, O(1))-configuration by simply running a@(1)-approximatek-median algorithm
on the modified problem instance obtained by redistributireg point weights as follows: The
weight of any given point is moved to a poiny in X such thati(z,y) = d(z, X). (This result
follows from the analysis of algorithm Small-Space of Getal. [5], since it corresponds to the
case in whicld = 1 in step 1 and thém, O(1))-configuration is the output in step 2. It should be
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remarked that although algorithm Small-Space is presantadnanner that assumes the output
of step 2 to be (O(k), O(1))-configurations, the analysis of Small-Space given in [Sasily
seen to hold for the more general case in which the outpuepfais a collection of (m, O(1))-
configurations.)

By Theorem 1, the output of our sampling algorithm is(an O(1))-assignment with high
probability, wheren = O(max{k,logn}log(n/k)) in the case of uniform weights. ThugU)
is an(m, O(1))-configuration with high probability, and we can directlyppthe Guheet al.[5]
technique to extract g, O(1))-configuration fromy(U). The only trouble with this approach is
that a direct application of their technique expefds:n) = w(nk) time in computing the closest
point in o(U) to each point inU. Fortunately, it is straightforward to verify that the foling
variation of the Guhat al. [5] technique is also valid. Given amr, O(1))-assignment, we can
redistribute the weight of each pointto o(z) and then run a@(1)-approximate:-median algo-
rithm on the modified problem instance. (Remark: In [5, SecCf], the point’ is defined to be
the median closest to the pointFor the purposes of our variation, the paihshould instead be
defined a%r (7). )

We now analyze the running time of the above algorithm. To mat@ the assignment, we
use our sampling algorithm with the parametéset toO(max{k,logn}). The time required to
computeo is thenO(n max{k,logn}). We note that the required weight function can be com-
puted during the execution of the sampling algorithm withiogreasing its running time. The
deterministic online median algorithm of Mettu and Plaxtb®] can then be used to complete the
extraction step itO(|o(U)|* + |o(U)| r4) time. The total time taken by the algorithm is therefore

Ok + |o(U)]? + |o(U)|rq) = O(nk'+ k?log? (n/k) + r4k'log (n/k))
= O(nk' +rqk'log (n/k)),

where the first step follows from the analysis of our sampbfgprithm for the case of uniform
weights. By the choice of’, the overall running time i®((n + r4log (n/k)) max{k,logn}).
Note that ift = Q(logn) andkr2 = O(n), this time bound simplifies t®(nk).

4  An Efficient Algorithm for the Case of Arbitrary Weights

The algorithm developed in Sections 2 and ®{d )-approximate for thé-median problem with
arbitrary weights. However, the time bound establishedtlier case of uniform weights does
not apply to the case of arbitrary weights because the rgntiine of the successive sampling
procedure is slightly higher in the latter case. (More el the running time of the sampling
algorithm of Section 2 i$)(nk’log %) for the case of arbitrary weights.) In this section, we
use the uniform-weight algorithm developed in Sections@ &io develop &-median algorithm
for the case of arbitrary weights that is time optimal for ga@ range of:.

We first give an informal description of the algorithm, whansists of three main steps. First,
we partition the input points according to weight in{p sets. Next, we run our uniform weights
k-median algorithm on each of the resulting sets, and shawttbainion of the resulting outputs is
an(O(kry), O(1))-configuration. We then obtain(&, O(1))-configuration by creating a problem
instance from théO(kr,,), O(1))-configuration computed in the previous step and then feedin
this problem instance as input to &{1)-approximate:-median algorithm.

11



We now give a more precise description of dumedian algorithm. Letd be the uniform
weights k-median algorithm of Sections 2 and 3, and be anO(1)-approximatek-median
algorithm.

e Compute set®; for 0 < i < r,, such that for alk € B;, 2! < w(z) < 2¢F1,

e Fori=0,1...r, — 1: RunA with B; as the set of input pointd,as the distance function,
2¢t1 as the fixed weight, and the parameter= max{k, [logn]}; let Z; denote the output.
Let ¢; denote the assignment induced By that is,¢;(z) = y iff yisin Z; andd(z, Z;) =
d(z,y). For a pointz, if z € Z;, letwy, (z) = w(¢; '(z)), otherwise leti,, (z) = 0.

e Let ¢ be the assignment corresponding to the union of the assigsmgedefined in the
previous step, and let, denote the weight function corresponding to the union oftaght
functionsw,,. RunB with ¢(U) as the set of input pointd,as the distance function, arnig,
as the weight function. Output the resultikgconfiguration.

Note that in the second step), is defined in terms of. (i.e., |U|) and not|B;|. Thus, the
argument of the proof of Theorem 1 implies thtsucceeds with high probability in terms of
n. Assuming that-, is polynomially bounded im, with high probability we have that every
invocation ofA is successful.

We now observe that the above algorithm corresponds to #na@adase of algorithm Small-
Space of [5] in which the parametéis set tor,,, the uniform weights algorithm of Section 3 is
used in step 2 of Small-Space, and the online median algowof{10] is used in step 4 of Small-
Space. Thus, [5, Theorem 2.4] implies that the outpus &f a(k, O(1))-configuration with high
probability.

We now discuss the running time of the above algorithm. Itrigsightforward to compute the
setsB; in O(n) time. Our uniform weight¢-median algorithm require@((|B;| + r4log %)k’)
time to computeZ;, so the time required for all invocations dfis

0( 5 <|Bi|+rdlog<|3i|/k>>k') - o(rw (’;—i'+rdkflog(%)))

0§i<Tw
n !
= O <<n+7‘drwlog—> k;) )
k7

(The first step follows from the fact that the sum is maximindeen|B;| = n/r,.) Note that each
weight functionw@,, can be computed i®(|B;| k) time; it follows thatw, can be computed in
O(nk) time. We employ the online median algorithm of [10] as thekiboxk-median algorithm
B. Since|¢(U)|is at mostr,,, the time required for the invocation Bfis O((kr,,)*+kr,rq). The
overall time required for out-median algorithm is therefor@((n + 747y, log(77—)) k" + (kry)? +
kryrq). Note that ifk = Q(logn), kr;, = O(n), andrgry, log(;2-) = O(n), this time bound
simplifies toO(nk).
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A Lower Bounds

In this section, we give lower bounds for thenedian problem and its clustering variant. Through-
out the section, we refer to the clustering variant askttatustering problem Recall that the
k-clustering problem asks us to partition the input pointshstinat the sum, over all sets in the
partition, of the weight of a point times the distance to thedian of its set, is minimized. Since
anyk-median solution can be converted into a solution foritfedustering problem i (nk) time,

in developing our upper bounds it was sufficient to considdy the k-median problem. Unfor-
tunately this reduction is not useful for the present puepafsestablishing2(nk) lower bounds;
accordingly, in this section we consider the problems sepby.

For both thek-clustering problem and thiemedian problem, we establish a lower bound of
Q(nk) time on any randomized algorithm that(¥1)-approximate with even a negligible proba-
bility. Since the overall objective of this paper is to studg complexity of approximate clustering
in terms of the four parameters k, R;, andR,,, it is desirable for the metric spaces associated
with our lower bound arguments to have small values for l®trand R,,. In terms ofR,,, we
achieve this goal completely, since all of the input disttibns that we consider below have uni-
form weights, that isR,, = 1. For thek-clustering problem, our lower bounds are established with
R, equal to a constant (sufficiently large relative to the dbapproximation ratio); this is clearly
best possible up to a constant factor. For thmedian problem, our lower bound requirRg to
exceedh/k by a sufficiently large constant factor relative to the desimpproximation ratio.

In our proofs, we assume an oracle model of computation irchvthie algorithm is charged
only for asking the oracle the distance between a pair oftpoile refer to each call to the oracle as
aprobe By a generalization of Yao’s technique [14] due to Mackeni&], we can establish a lower
bound ofp on the success probability of a randomized algorithm bylaihg an input distribution
for which every deterministic algorithm has a success gibaof at mostp. (The intuition
underlying this reduction is that the success probability andomized algorithm is just a convex
combination of the success probabilities of a number ofrdatestic algorithms.) Thus in what
follows, we restrict our attention to exhibiting “hard” tidutions for determinstic algorithms.
All of the problems considered in this section take the sampetias the:-median problem. Our
lower bounds also hold for the non-uniform case since fohedwice ofn andk, we exhibit a
probability distribution over the set af-point metric spaces on which no deterministic algorithm
making a sufficiently small number of probes can achieve ntiwaia a negligible probability of
success.

For any positive real > 1, it is convenient to define a metric space tobesimpleif the
following conditions hold: (1) all of the points have unitight; (2) the points of the metric space
can be partitioned into equivalence classes such thatskendie between any pair of distinct points
is 1 if the points belong to the same equivalence class/anterwise. Thus, an§simple metric
space ha®; = ¢ andR,, = 1. Our lower bounds are all based ésimple input distributions for
some appropriately chosen value/of

In order to establish a lower bound for theclustering problem, we find it convenient to in-
troduce a problem that we call tikematching problem The input to thek-matching problem is
the same as the input to tleclustering problem. The output is a partition of théenput points
into a collection of disjoint pairs and singletons, subjecthe constraint that there are at most
k singletons. We refer to such an output as-matching The costof a k-matching is defined
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as the sum, over all output pairs of poiiits y), of d(z,y) - min{w(z), w(y)}. The goal of the
k-matching problem is to compute a minimum-ckshatching.

Given an algorithm for thé-clustering problem, consider the associdtedatching algorithm
defined as follows: (1) run the-clustering algorithm to partition the input points into at most
k clusters; (2) arbitrarily partition each even-sized aushto a number of pairs; (3) arbitrarily
partition each odd-sized cluster into a singleton and a rurabpairs; (4) return thé-matching
formed by the singletons and pairs computed in the previgasteps. Using the triangle inequal-
ity, it is straightforward to prove that the cost of thematching produced by this algorithm is at
most the cost of thé-clustering computed in step (1) (i.e., the sum over all {sirof the weight
of z multiplied by the distance from to the medoid of its cluster). Furthermore, thisnatching
algorithm uses exactly the same number of probes as thelaisstic clustering algorithm. Below
we will exhibit an input distribution with respect to whichyadeterministid:-matching algorithm
making a sufficiently small number of probes has only a ndgkgorobability of computing &-
matching with cost within a constant factor of the cost ofd@pémal clustering. By the foregoing
reduction from th&-matching problem to the-clustering problem, such a result implies that any
deterministick-clustering algorithm running on the same input distribntand making the same
small number of probes has only the same negligible proibabilcomputing ak-clustering with
cost within a constant factor of optimal.

In order to state and prove our lower bounds it is conveniiittoduce a shorthand notation
for expressing certain kinds of statements. In partictitarrany statemeng$, we define an associ-
ated statement, which we refer to as #helaim S, as follows: For all positive realsandc, there
exist positive realg and~y and positive integers, anda such that for all positive integersandk
for whichn > ng and1 < k < n, there exists a probability distributian over the set of-simple
n-point metric spaces where= ~ such that any deterministic-matching algorithm4 making
at mostonk probes on an input drawn uniformly at random frdm the statemen$ holds with
probability at least — . (We remark that a giveR-claim S need not contain the parameteiVe
also remark that if thé-claims.S and7" hold, then theP-claim S A T holds.)

We define aP’-claim in the same way asR-claim except that the restriction dnis strength-
ened tol < k < 7. Similarly, aP"-claim is a variant of &-claim in which the restriction ok is
5 < k < n. Note that for any statemefst the P’-claim S and theP"-claim S imply the P-claim
S.

Finally, for addressing the-median problem we defing-, Q'-, and@"-claims in an analogous
manner, where the algorithm is assumed to be /&cmedian algorithm rather thankamatching
algorithm, and’ is defined to be* instead ofy.

The rest of this section is devoted to proving the followiwg theorems.

Theorem 2 TheP-claim “the cost of thek-matching solution computed by is more than: times
the cost of an optimal-clustering solution” holds.

Theorem 3 The@-claim “the cost of thek-median solution computed b4 is more tharc: times
the cost of an optimat-median solution” holds.

The proof of the first theorem follows from Lemmas A.1 and Aéldw. The proof of the
second theorem follows from Lemmas A.3 and A.4.
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Lemma A.1 The P’'-claim “the cost of thek-matching solution computed b4 is more thanc
times the cost of an optimatclustering solution” holds.

Proof Sketch: Let D denote the distribution af-simplen-point metric spaces where each point
is independently placed into one bfequivalence classes uniformly at random. Given an input
instance drawn fronD, the cost of an optimadl-clustering solution is easily seen to he- k.

Let us define a point to becleanwith respect to an execution of algorithdif the following
two conditions are satisfied: (1) there is no pajsuch that/(z, y) = 1 and.A has probed(z, y);
(2) A has probed the distance betweeand at most other points.

It is not difficult to establish the following’'-claim: “At least(1 — ¢)n points are clean”. Since
A is ak-matching algorithm it outputs at least- k£ > n/2 pairs. This observation, together with
the preceding®’-claim, implies theP'-claim “At leastn /3 of the pairs produced byl consist of
two clean points.” Note that each such output pair of cleantpandependently contributes a cost
of ¢ to the cost of th&-matching produced byl with probability at least — ﬁ since a clean
point is equally likely to belong to any of the at le&$t — <) equivalence classes (those for which
A has not probed a distance between the given clean point amelgoint in the equivalence class).
The claim of the lemma now follows by choosing constants appately (i.e., by setting, v, and

no to appropriate functions afandc) and applying a standard Chernoff bound argument. =

Lemma A.2 The P"-claim “the cost of thek-matching solution computed b¥ is more thanc
times the cost of an optimatclustering solution” holds.

Proof Sketch: The proof of the preceding lemma does not readily extendrgelaalues oft,
so we employ a somewhat different approach. In this case Weedde input distributiorD by
randomly partitioning the: points intok clusters (i.e., equivalence classes); k of which are
pairs, and2k — n of which are singletons. As in the proof of Lemma A.1, the afsan optimal
k-clustering solution i — k.

Let us assume for the sake of simplicity thais a multiple of2a. (Remark: It is not difficult
to modify our argument to handle genera) For the sake of the analysis, it is useful to think
of sampling from the input distributio® via the following three-stage process: (1) randomly
partition then points intog: supergroup®f size2a; (2) randomly partition each supergroup into
a pairs; (3) pick a random set df — £ pairs and split them to obtaizk — » singletons. In
what follows we refer to these pairs and singletongnasit-pairsandinput-singletonsin order
to avoid confusion with the pairs and singletons computedlfggrithm A, which we refer to as
output-pairsandoutput-singletons

We define a supergroup to lrerestingif it contains at least one input-pair. Note that there
are at Ieast’;—’c interesting supergroups. Let us define a supergroup tedi it contains at least
one output-pair; otherwise, it [due

If there arei blue supergroups then at leastutput-pairs either span distinct supergroups or
contain at least one input-singleton; it follows that thetoof thek-matching produced by is
at leasti/. If at least half (say) of the interesting supergroups ave fhis argument is sufficient
to establish the lemma. Thus, in what follows, we may assurakdt least half of the interesting
supergroups are red.

Let us define a supergroup to bkeanwith respect to an execution of algorith#if A does
not probe the distance between any two points in the supgogrt is not difficult to establish
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the following P"-claim: “At least al — ¢ fraction of the interesting supergroups are clean.” By
this P"-claim and the assumption of the previous paragraph, wéledtahe P"-claim “at least
one-third of the interesting supergroups are clean and red”

Let G denote a clean interesting red supergroup ang:let) denote an output-pair that belongs
to G (such a pair exists singg is red). If z is an input-singleton then the cost of péif, y) is ¢,
and we can attribute this costta Otherwisex belongs to some input-paig, z), and algorithm
A pays/ for the pair(z, y) unlessy = z. But the probability thay = z is 2a1_1 sinceG is clean.
Furthermore, the event that= z is independent of the analogous events defined for othen clea
interesting red supergroups. Thus each clean interegtthgupergroup independently contributes,
with probability at least — ﬁ a cost of at least to the total cost of thé-matching produced
by A. The claim of the lemma now follows by choosing constants@ppately and applying a
standard Chernoff bound argument. n

Lemma A.3 TheQ'-claim “the cost of thé:-median solution computed by is more than: times
the cost of an optimat-median solution” holds.

Proof Sketch: Let D denote the distribution agksimplen-point metric spaces associated with the
following partitioning scheme: (1) independently placeteaf then points into one ofk/2| ten-
tative equivalence classasiformly at random; (2) randomly seledt/2| specialpoints and move
each of these special points into a singleton equivalerass cNote that for any such instance, the
cost of an optimak-median solution is — £.

We define a point to becleanwith respect to an execution of algorith#if there is no point
y belonging to the same tentative equivalence clagsfaswhich .4 has probed(z, y).

It is not difficult to establish the following pair ap’-claims: (1) at leastl — ¢)n points are
clean; (2) at leadtl — ¢) [k/2] of the special points are clean.

Let X denote the random variable corresponding to the set of gears, and let” denote
the remaining points. Le¥ denote the random variable corresponding to the set of alpgean
points. We now argue that the conditional distributiorZadiven X and|Z| has a simple structure,
namely,Z is a uniformly random subset of of size|Z|. This claim holds because the definition
of a clean point implies that the behavior of algorittdnis the same no matter which siz&}
subset ofX is equal toZ. Combining this claim with the results of the preceding gaaah, it is
straightforward to establish thg'-claim “A fails to outputi (say) of the clean special points.”

Note that each special point that does not appear in the batpd contributes/ to the cost
of the k-median solution computed byt. Thus we obtain thé&)'-claim “the cost of the solution
computed byA is at least{1 — ¢)k¢/8". Choosingy sufficiently large (depending at), the claim
of the lemma then follows sinde= yn/k. n

Lemma A.4 The@"-claim “the cost of thé:-median solution computed byis more tharc times
optimal” holds.

Proof Sketch: This proof is similar to that of Lemma A.2 above. We define tipuit distribution
D in the same manner, as well as the following terms: supepgrdean supergroup, interesting
supergroup, input-pair, input-singleton. As before, noe at Ieas%’c of the supergroups are
interesting.
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We define thenput-weightof a supergroup as the number of input-pairs and input-singb
that it contains. We define tlautput-weighof a supergroup as the size of its intersection with the
k-median solution computed h4. We define thealiscrepancyof a supergroup as its input-weight
minus its output-weight. Note that the sum of the discreenaf all supergroups is zero since the
total input-weight and the total output-weight are bothada k. A supergroup idalancedif it
has discrepancy 0.

If the total discrepancy of the supergroups with positivee@pancy is then it is straightfor-
ward to prove that the cost of tikemedian solution computed by is at leasts/. If s is at least
one-quarter of the number of interesting supergroups thisrargument is sufficient to establish
the claim of the lemma. Thus in what follows we may assume ghatless than one-quarter
of the number of interesting supergroups. Under this astompmat least half of the interesting
supergroups are balanced (since at most one-quarter ofdhiemave negative discrepancy).

It is not difficult to establish the followin@”-claim: “At least al — ¢ fraction of the interesting
supergroups are clean.” Combining this with the conclusitthe preceding paragraph we obtain
the Q"-claim “at least one-third of the interesting supergrougscidean and balanced”.

Let G denote a clean interesting balanced supergroupaimput-pairs and input-singletons.
Thus the input-weight and output-weightGfis ¢ + j (sinceG is balanced), and > 0 (sinceG
is interesting). In order to avoid paying a cost/dbr servicing any of the points in supergroGp
the subset of7 of sizei 4+ j contained in the output afl has to include exactly one point out of
each of the input-pairs, and all of thg input-singletons. Sinc€& is clean, the probability thad
produces such an outputdsdivided by (2;’). Given the constraints o namely,l < i < a, this
probability is at most /a. Furthermore, the event that produces such an output is independent
the analogous events defined for other clean interestirapbatl supergroups. Thus each clean
interesting balanced supergroup independently cong#yutith probability at least/a, a cost of
at least/ to the total cost of thé-median solution produced hy. The claim of the lemma now
follows by choosing constants appropriately and applyirsgamdard Chernoff bound argument.

]
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