
Developing Linear Algebra Algorithms:A Colle
tion of Class Proje
tsSTATUS AT END OF SEMESTERFLAME Working Note #3John A. GunnelsRobert A. van de GeijnDepartment of Computer S
ien
esThe University of TexasAustin, TX 78712fgunnels,rvdgg�
s.utexas.eduMay 31, 2001

1

Abstra
tIn this do
ument we present a new approa
h to developing sequential and parallel dense linear algebralibraries. Given a linear algebra operation, we demonstrate how formal te
hniques
an be used to derive afamily of algorithms. Due to the systemati
 approa
h used,
orre
tness of the algorithms
an be asserted.Next, we introdu
e a library of routines that hides the manipulation of indi
es and allows the
ode to mirrorthe algorithms as they are naturally presented. The idea is that by having the
ode mirror the algorithm,the opportunity for introdu
ing indexing errors is minimized. Thus, the
orre
tness assertions regarding thealgorithms
arry over to the implementations.The philosophy behind the approa
h is that one should start by systemati
ally deriving the algorithms.The re
ipe for derivation is given in Chapter 2. Moreover, this derivation should be
arefully do
umented.To fa
ilitate this, we provide a set of LATEX ma
ros, given in an appendix. On
e one or more algorithmshave been developed, they are translated to implementations using a library of C routines, as part of theFormal Linear Algebra Methods Environment (FLAME). This library allows the
ode to look mu
h like thealgorithms as written using LATEX. For all examples in the report we demonstrate that high performan
e
an be attained on an Intel Pentium (R) III pro
essor.We illustrate the te
hniques with a large number of
ase studies, most of whi
h were
arried out byteams of
omputer s
ien
e undergraduate students as part of a
lass taught in Spring 2001 at UT-Austintitled High-Performan
e Parallel Algorithms. The names of the members of the teams are given as theauthors of the
hapter on the operation assigned to that team. Thus we show that the approa
h makesthe development and implementation of high-performan
e sequential and parallel algorithms for dense linearalgebra operations a

essible to novi
es.It is important to realize that this do
ument is meant to
apture the progress of the proje
t during asingle semester. Thus, the do
ument is in
omplete in many ways. For example, the review of the literatureis sparse at best. Many se
tions and
hapters are missing or in
omplete. Typographi
al errors are s
atteredthroughout. For ea
h operation, only a few algorithms are derived and implemented. The performan
e resultsare limited to a single ar
hite
ture. While high-performan
e parallel implementations were also
reated usingour Parallel Linear Algebra Pa
kage (PLAPACK), the dis
ussion of these implementations did not make itinto the do
ument. It is our hope that there is value in this do
ument despite these short
omings.

1

Contents
1 Introdu
tion 61.1 The
ase for formal derivation . 71.2 Notation . 81.3 A motivating example: LU fa
torization . 81.4 Performan
e experiments . 91.5 Overview . 111.6 Availability . 112 Formal Derivation 122.1 The
orre
tness of loops . 122.2 A re
ipe for deriving linear algebra algorithms . 132.2.1 A typi
al operation . 132.2.2 determining possible loop invariants . 133 Coding Linear Algebra Algorithms 223.1 initializing and �nalizing FLAME . 223.2 Creating an obje
t . 223.2.1 Obje
t destru
tion . 243.2.2 Inquiry routines . 243.2.3 Setting and extra
ting the
ontents . 263.3 A simple driver: matrix-ve
tor multipli
ation . 263.4 Views . 273.5 Other useful routines . 314 Matrix-Matrix Multipli
ation:The Key to High Performan
e 32by John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn4.1 The obje
t of the game . 324.2 Spe
ial
ases of matrix-matrix multipli
ation . 334.3 A
ost model for hierar
hi
al memories . 344.4 Building-blo
ks for matrix multipli
ation . 344.4.1 Multiple panel-panel multiplies in Lh . 354.4.2 Multiple matrix-panel multiplies in Lh . 364.4.3 Multiple panel-matrix multiplies in Lh . 374.5 A heuristi
 for a multi-level algorithm . 384.6 Pra
ti
al
onsiderations . 404.6.1 L1-kernels (lowest level) . 404.6.2 L2-kernel . 404.6.3 L3-kernel . 424.7 A family of algorithms . 434.8 Performan
e . 454.8.1 Implementations tested . 454.8.2 Determining optimal blo
k sizes . 452

4.8.3 Resident matri
es . 454.8.4 Commonly en
ountered shapes . 464.8.5 Square matri
es . 464.9 Impa
t on algorithm design . 494.10 Related work . 495 Triangular Matrix Multipli
ationB LB 505.1 Algorithms that start by splitting L . 505.1.1 Row-lazy algorithm (relative to L) . 515.1.2 Lazy algorithm (relative to L) . 555.2 Algorithms that start by splitting B . 555.2.1 Right-moving (lazy) algorithm . 575.2.2 Left-moving (lazy) algorithm . 585.3 Implementation . 585.4 Performan
e . 626 Symmetri
 Matrix Multipli
ationC BA+ CA symmetri
, stored in upper triangle 66by Wynne A. Hexamer6.1 Derivation of a Family of Algorithms . 666.1.1 Column-lazy algorithm (relative to A) . 686.1.2 Lazy algorithm (relative to A) . 696.2 Implementation . 736.3 Performan
e . 737 Symmetri
 Matrix Multipli
ationC AB + CA symmetri
, stored in lower triangle 76by Eri
 G. Geordi and Stephen Y. Hui7.1 Algorithms that start by splitting A . 767.1.1 Up-moving lazy algorithm (relative to C) . 777.1.2 Down-moving algorithm (relative to C) . 817.2 Implementation . 847.3 Performan
e . 848 Symmetri
 Rank-k UpdateC AAT + CC symmetri
, stored in lower triangle 89by Daniel J. Atkinson and Brian R. Walker8.1 Algorithms that start by splitting C . 898.1.1 Up-left moving algorithm (lazy w.r.t. C) . 908.1.2 Down-right moving algorithm (lazy w.r.t. C) . 928.2 Implementation . 948.3 Performan
e . 949 Symmetri
 Rank-2k UpdateC ABT +BAT + �CC symmetri
, stored in lower triangle 99by Jin Pan, Hoa V. Phan, and Yu-Hung (Eddie) Wang9.1 Algorithms that start by splitting C . 999.1.1 Lazy algorithm (down-right moving relative to C) . 1009.2 Implementation . 1049.3 Performan
e . 1043

10 Symmetri
 Rank-2k UpdateC ATB +BTA+ CC symmetri
, stored in lower triangle. 108by Robert M. Green and Jerry L. Slayton10.1 Algorithms that start by splitting C . 10810.1.1 Right-down moving lazy algorithm (w.r.t. C) . 10910.2 Implementation . 11310.3 Performan
e . 11311 Triangular Matrix Multipli
ationB LTB 117by Ni
kou Oskouipour and Jason S. Stirman11.1 Algorithms that start by splitting L . 11711.1.1 Column-lazy algorithm (relative to L) . 11811.1.2 Lazy algorithm (relative to L) . 12111.2 Implementation . 12311.3 Performan
e . 12312 Triangular Matrix Multipli
ationB BLT 127by Deepak Giridharagopal, Sammuel A. Jarmon, and Shivraj Ramanan12.1 Algorithms that start by splitting L . 12712.1.1 Lazy algorithm (relative to L) . 12812.1.2 Row-lazy algorithm (relative to L) . 13212.2 Implementation . 13412.3 Performan
e . 13413 Triangular Matrix Multipli
ationB �BU 138by Joshua L. Reid, Stephanie E. Rowland, and Robert V. Wilder13.1 Algorithms that start by splitting U . 13813.1.1 Column-lazy algorithm (relative to U) . 13913.1.2 Lazy algorithm (relative to U) . 14213.2 Algorithms that start by splitting B . 14413.2.1 Down-moving (lazy) algorithm . 14413.2.2 Up-moving (lazy) algorithm . 14513.3 Implementation . 14513.4 Performan
e . 14514 Triangular Matrix Multipli
ationB BUT 150by Eugene Ho and Lea Kulapaditharom14.1 Algorithms that start by splitting U . 15014.1.1 Row-Lazy algorithm (relative to U) . 15214.1.2 Lazy Algorithm (relative to U) . 15314.2 Implementation . 15914.3 Performan
e . 15915 Triangular Solve (with Multiple RHSs)B L�TB 161by Trey Henninger and Miguel V�azquez Gar
��a15.1 Algorithms that start by splitting L . 16115.1.1 Row-lazy algorithm (relative to L) . 16215.1.2 Lazy algorithm (relative to L) . 16515.2 Implementation . 1664

15.3 Performan
e . 16616 Triangular Solve (with Multiple RHSs)B BL�T 171by C. Brandon Forehand, Christopher C. Johnson, and David J. Pats
hke16.1 Algorithms that start by splitting L . 17116.1.1 Column-lazy algorithm (relative to L) . 17216.1.2 Lazy algorithm (relative to L) . 17516.2 Implementation . 17816.3 Performan
e . 178A Basi
 Linear Algebra Operations 182A.1 Operations on ve
tors and matri
es . 182B Des
ribing FLAME algorithms in LATEX 186C Computational Routines (alphabeti
al) 189C.1 Constants . 189C.2 Routines . 189Index 199Author Index 202Constant Index 203Fun
tion Index 204Operation Index 205

5

Chapter 1Introdu
tionWhen
onsidering the unmanageable
omplexity of
omputer systems, Dijkstra re
ently made the followingobservations [10℄:(i) When exhaustive testing is impossible {i.e., almost always{ our trust
an only bebased on proof (be it me
hanized or not).(ii) A program for whi
h it is not
lear why we should trust it, is of dubious value.(iii) A program should be stru
tured in su
h a way that the argument for its
orre
tnessis feasible and not unne
essarily laborious.(iv) Given the proof, deriving a program justi�ed by it, is mu
h easier than, given theprogram,
onstru
ting a proof justifying it.Our Formal Linear Algebra Methods Environment (FLAME) is an attempt to address these
on
erns when
oding linear algebra libraries [18℄.The
ore undergraduate
urri
ulum in
omputer s
ien
e department often in
ludes at least one
oursethat fo
uses on the formal derivation and veri�
ation of algorithms [13℄. Many of us in s
ienti�

omputingmay have, at some point in time, hastily dismissed this approa
h, arguing that this is all very ni
e for small,simple algorithms, but an a
ademi
 exer
ise hardly appli
able in \our world." Sin
e it is often the
ase thatour work involves libraries
omprised of hundreds of thousands or even millions of lines of
ode, the knee-jerk rea
tion that this approa
h is mu
h too
umbersome to take seriously is understandable. Furthermore,the momentum of established pra
ti
es and \traditional wisdom" do little if anything to dissuade one fromthis line of reasoning. Yet, as the result of our sear
h for superior methods for designing and
onstru
tinghigh-performan
e parallel linear algebra libraries, we have
ome to the
on
lusion that it is only throughthe systemati
 approa
h o�ered by formal methods that we will be able to deliver reliable, maintainable,
exible, yet highly eÆ
ient matrix libraries even in the relatively well-understood area of (sequential andparallel) dense linear algebra.While some would immediately draw the
on
lusion that a
hange to a more modern programminglanguage like C++ is at least highly desirable, if not a ne
essary pre
ursor to writing elegant
ode, the fa
t isthat most appli
ations that
all pa
kages like the Linear Algebra PACKage (LAPACK) [4℄ and the S
alableLinear Algebra PACKage S
aLAPACK [8, 7℄ are still written in Fortran and/or C. Interfa
ing su
h anappli
ation with a library written in C++ presents
ertain
ompli
ations. However, during the mid-nineties,the Message-Passing Interfa
e (MPI) introdu
ed to the s
ienti�

omputing
ommunity a programmingmodel, obje
t-based programming, that possesses many of the advantages typi
ally asso
iated with theintelligent use of an obje
t-oriented language [33℄. Using obje
ts (e.g.
ommuni
ators in MPI) to en
apsulatedata stru
tures and hide
omplexity, a mu
h
leaner approa
h to
oding
an be a
hieved. Our own work onthe Parallel Linear Algebra PACKage (PLAPACK) borrowed from this approa
h in order to hide details ofdata distribution and data mapping in the realm of parallel linear algebra libraries [3, 5, 16, 29, 30, 35, 37℄.The primary
on
ept also germane to this paper is that PLAPACK raises the level of abstra
tion at whi
hone programs so that indexing is essentially removed from the
ode, allowing the routine to re
e
t thealgorithm as it is naturally presented in a
lassroom setting. Sin
e our initial work on PLAPACK, wehave experimented with similar interfa
es in su
h seemingly disparate
ontexts as (parallel) out-of-
ore6

linear algebra pa
kages [19, 31, 32℄ and a low-level implementation of the sequential Basi
 Linear AlgebraSubprograms (BLAS) [11, 12, 17, 28℄.Our Formal Linear Algebra Methods Environment (FLAME) is the latest step in the evolution of thesesystems. It fa
ilitates the use of a programming style that is equally appli
able to everything from out-of-
ore,parallel systems to single-pro
essor systems where
a
he-management is of paramount
on
ern.Over the last seven or eight years it has be
ome apparent that what makes our task of library developmentmore manageable is this systemati
 approa
h to deriving algorithms
oupled with the abstra
tions we useto make our
ode re
e
t the algorithms thus produ
ed. Further, from these experien
es we
an
on�dentlystate that this approa
h to programming greatly redu
es the
omplexity of the resultant
ode and does notsa
ri�
e high performan
e in order to do so.Indeed, the formal te
hniques that we may have dismissed as merely a
ademi
 or impra
ti
al make thispossible, as we attempt to illustrate in this do
ument.1.1 The
ase for formal derivationIdeally, an implementation should
learly re
e
t the algorithm as it is presented in a
lassroom setting.Additionally, some of the derivation of the algorithm should be apparent in the
ode and di�erent variantsof an algorithm should be re
ognizable as slight perturbations to an algorithmi
 \skeleton" or base
ode.indexbase
ode If the
ode is just a me
hani
ally-realizable, straightforward translation of this algorithmi
expression, there should be no opportunity for the introdu
tion of logi
al errors or
oding bugs. (Note:while we will frequently refer to translations from algorithms to
ode as being me
hani
al or automati
, thispro
ess is
urrently performed by hand.) Presumably, it should be possible to prove the algorithms
orre
t,thus ensuring that the
ode is
orre
t.Typi
ally, it is diÆ
ult to prove
ode
orre
t pre
isely be
ause one is not
ertain that the
ode trulymirrors the algorithm. With our approa
h, the
hasm is largely bridged by the simple yet
ru
ial fa
tthat some very simple synta
ti
 rewrite rules
an produ
e the
ode from an algorithm expressed as onemight in a
lassroom, using mathemati
al formulas and stylized matrix depi
tions. Sin
e we
an prove the
orre
tness of the algorithm we wish to employ (the proof is generally
onstru
tive in nature, but this isof little
onsequen
e) and be
ause the
orre
tness of the translation from algorithm to
ode is at least asreliable as
ompiler te
hnology, the
omplexity of the task at hand is greatly ameliorated. By assuming that
omponents adhere to expli
it \
ontra
tual obligations" [2℄, the algorithmi
 proof requires little alterationin order to be appli
able to the
ode. In the
ase of a library
onstru
ted entirely through the methodologypresented here, these
omponents would be
omposed in like manner so as to make this task manageable.This is largely due to the fa
t that the approa
h presented here leads to a software ar
hite
ture layered insu
h a way so as to require one to rely on the
orre
tness of a very small number of base-level modules.Sin
e those units are small, their
orre
tness
an be established through the appli
ation of standard formalmethods. It is true that, in pra
ti
e, one must a

ept that an appli
ation will need to interfa
e with otherlibraries (for example, the vendor-supplied BLAS) that are not built in a \proof-friendly" format. However, itmay still be possible to establish the
orre
tness of a program if one is
areful to impose minimal obligationson these, presumably time-tested and well-do
umented, pie
es of
ode.It should be noted that the \
orre
tness" dis
ussed so far does not address issues of numeri
al stability.We make no
laim regarding the stability of the resulting algorithm.Having said this, we will
larify through a simple example in Se
tionse
:example. But �rst, we review
ommonly used matrix and ve
tor notation. For those for whom linear algebra is not se
ond nature, themost basi
 of operations are reviewed in A
7

1.2 NotationA (
olumn) ve
tor, x, is the n-tuple of real or
omplex numbersx = 0BBB� �1�2...�n 1CCCAHere �i are
alled the
omponents of ve
tor x. We will denote the set of all ve
tors with real
omponentsRn and with
omplex
omponents Cn.A row ve
tor, xT , is the n-tuple of real or
omplex numbersxT = � �1 �2 � � � �n �Here xT indi
ates a transposed (
olumn) ve
tor. (We will always assume ve
tors are
olumn ve
tors,unless transposed like this, or expli
itly noted.) More about transposition next.An m� n matrix, A, is the arrayA = 0BBB� �11 �12 � � � �1n�21 �22 � � � �2n...�m1 �m2 � � � �mn 1CCCAwith m rows and n
olumns. The (i; j)
omponent, or element, of A refers to �ij , whi
h may be real or
omplex. The numbers m and n are the dimensions of A. If m = n then the matrix is said to be square.Otherwise, it is said to be re
tangular.Noti
e that we use the
onvention introdu
ed in [34℄ of using Greek letters for real or
omplex numbers,lower
ase itali
ized letters for ve
tors, and upper
ase itali
ized letters for matri
es.Frequently, we will wish to partition a matrix into blo
ks. For example, if A is an m� n matrix, it
anbe partitioned into a M �N matrix of submatri
es likeA = 0BBB� A11 A12 � � � A1NA21 A22 � � � A2N...AM1 AM2 � � � AMN 1CCCAwhere Aij is an mi � nj matrix, with PNi=1 ni = n and PMi=1mi = m.Similarly, a ve
tor
an be partitioned into subve
tors. For example, if x is a ve
tor of length n, we maywish to partition like x = 0BBB� x1x2...xN 1CCCAwhere xi is an ve
tor of length ni, with PNi=1 ni = n.Additional notation and basi
 linear algebra operations are reviewed in Appendix A.1.3 A motivating example: LU fa
torizationWe illustrate our approa
h by
onsidering LU fa
torization without pivoting. Given an n� n matrix A wewish to
ompute an n�n lower triangular matrix L with unit main diagonal and an n� n upper triangularmatrix U so that A = LU . The original matrix A is overwritten by L and U in the pro
ess.8

The usual derivation of an algorithm for the LU fa
torization pro
eeds as follows: PartitionA = � �11 aT12a21 A22 � ; L = � 1 0l21 L22 � ; and U = � � uT120 U22 �Now A = LU translates to� �11 aT12a21 A22 � = � 1 0l21 L22 � ;� � uT120 U22 � = � � uT12l21�11 l21uT12 + L22U22 �so the following equalities hold: � �11 = � aT12 = uT12a21 = �11l21 a22 = l21uT12 + L22U22 �Finally, we arrive at the following algorithm� Overwrite �11 and aT12 with �11 and uT12, respe
tively (no-op).� Update a21 l21 = a21=�11.� Update A22 A22 � l21uT12.� Re
ursively fa
tor A22 ! L22U22.While the algorithm is formulated as tail-re
ursive, it is usually implemented as a loop.When presented in a
lassroom setting, the explanation is typi
ally a

ompanied by the following pro-gression of pi
tures:
�
urrent A - �11a21�11 aT12� A22 � a21�11 aT12 -with an indi
ation that at a given stage the
urrent a
tive part of the matrix resides in the lower-rightquadrant of the left pi
ture. Next, the di�erent parts to be updated are identi�ed and the updates given(middle pi
ture). Finally, the boundary indi
ating how far the
omputation has progressed is moved forward(right pi
ture).It is this progression depi
ted in the pi
tures that we try to
apture both in the derivation and theimplementation of the algorithm. We
laim that the dis
ussed algorithm for LU fa
torization is naturallygiven by the algorithm in Fig. 1.1. A
ode for implementing the algorithm using FLAME is given in Fig. 1.2.The
ode
an be obtained from the algorithm essentially via textual substitution. Noti
e that the
allsto FLA Inv s
al and FLA Ger implement division of a ve
tor by a s
alar and rank-1 update of a matrix,respe
tively. The formatting of the
ode is a deliberate attempt to
apture the partitioning and repartitioningin the algorithm.1.4 Performan
e experimentsFor ea
h matrix operation dis
ussed in this do
ument, we report performan
e on an Intel Pentium III (650MHz) pro
essor with 16 Kbyte L1 data
a
he and a 256 Kbyte L2
a
he running RedHat 7.1 Linux. All
oating point
al
ulations were performed in double pre
ision (64-bit) arithmeti
.The FLAME routines that perform level 1 BLAS (ve
tor-ve
tor operations) and level 2 BLAS (matrix-ve
tor operations) interfa
e to a standard BLAS library. For performan
e experiments, the ATLAS libraryimplementation was used [36℄. In parti
ular, the prebuilt version in9

partition A! � ATL ATRABL ABR � where ATL is 0� 0do until ABR is 0� 0repartition � ATL ATRABL ABR �! 0� A00 a01 A02aT10 �11 aT02A20 a21 A22 1Awhere �11 is a s
alar�11 �11 = �11aT12 uT12 = aT12a21 l21 = a21=�11A22 A22 � l21uT12
ontinue with � ATL ATRABL ABR � 0� A00 a01 A02aT10 �11 aT02A20 a21 A22 1AenddoFigure 1.1: An unblo
ked (rank-1 update based) eager LU fa
torization algorithm (without pivoting)1 #in
lude "FLAME.h"23 void FLA_LU_nopivot_eager_level2(FLA_Obj A)4 {5 FLA_Obj ATL, ATR, A00, a01, A02,6 ABL, ABR, a10t, alpha11, a12t,7 A20, a21, A22;89 FLA_Part_2x2(A, &ATL, /**/ &ATR,10 /* ************** */11 &ABL, /**/ &ABR,12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL);1314 while (min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)) != 0){1516 FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &a01, &A02,17 /* ************* */ /* ************************* */18 /**/ &a10t, /**/ &alpha11, &a12t,19 ABL, /**/ ABR, &A20, /**/ &a21, &A22,20 /* with */ 1, /* by */ 1, /* alpha11 split from */ FLA_BR);2122 /* *** */2324 FLA_Inv_s
al(alpha11, a21); /* a21 <- a21 / alpha11 */2526 FLA_Ger(MINUS_ONE, a21, a12t, A22); /* A22 <- A22 - a21 * a12t */2728 /* *** */2930 FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, a01, /**/ A02,31 /**/ a10t, alpha11, /**/ a12t,32 /* ************** */ /* ************************ */33 &ABL, /**/ &ABR, A20, a21, /**/ A22,34 /* with alpha11 added to submatrix */ FLA_TL);35 }36 }Figure 1.2: An unblo
ked (rank-1 update based) eager LU fa
torization implementation (without pivoting)using FLAME. 10

atlas3.2.0 Linux SSE1256.tgzavailable from http://www.netlib.org/atlas/ar
hives/linux/was used. In many of the performan
e graphs for level 3 BLAS (matrix-matrix) operations, we reportperforman
e by a referen
e implementation. This referen
e implementation is the one provided by ATLAS.Noti
e that our implementations heavily rely on a high-performan
e matrix-matrix multipli
ation kernel.For our performan
e experiments, the DGEMM level 3 BLAS kernel for matrix-matrix multipli
ation was used.We use two di�erent implementations:� the implementation provided by ATLAS, and� our own ITXGEMM implementation [17℄.The latter implementation, whi
h yields better performan
e for most matrix sizes, is further explained inChapter 4.We report performan
e as the rate at whi
h the
omputation was performed in MFLOPS/se
. (millionsof
oating point operations per se
ond). More pre
isely, if C equals the number of
oating point operationsrequired to
omplete the
omputation, and t equals the time required, the rate in MFLOPS/se
. is given byCt � 10�61.5 OverviewOur methodology for developing high-performan
e linear algebra algorithms is introdu
ed in Chapter 2. Theappli
ation programming interfa
e (API) is introdu
ed in Chapter 3 as a set of C routines. In Chapter 4,we dis
uss how high performan
e
an be attained by a matrix-matrix multipli
ation kernel. In Chapters 5{16 we report a large number of
ase studies that demonstrate the methodology for developing algorithms.They also show how blo
ked algorithms
an be used to formulate the algorithms in terms of matrix-matrixmultipli
ations, whi
h allows the high performan
e attained by this kernel to be exploited. It should be notedthat the idea of implementing this parti
ular set of operations in terms of matrix-matrix multipli
ation hasbeen studied extensively elsewhere [8, 9, 20, 21, 24, 25, 26, 36℄. In parti
ular, one may re
ognize them asspe
ial
ases of the level 3 BLAS.1.6 AvailabilityInformation related to FLAME is available athttp://www.
s.utexas.edu/users/flame/Codes dis
ussed in this do
ument
an be found athttp://www.
s.utexas.edu/users/flame/materials/The LATEX
ommands and environments used to typeset many of the formulas and algorithms in this do
u-ment, whi
h are des
ribed in Appendix B,
an be found athttp://www.
s.utexas.edu/users/flame/LaTeX/
11

Chapter 2Formal DerivationIn this
hapter, we brie
y review general te
hniques for the derivation of algorithms. We relate thesete
hniques to the iterative algorithms en
ountered in subsequent
hapters. Finally, we give a systemati
re
ipe for deriving linear algebra algorithms. The re
ipe is illustrated for the triangular matrix-matrixmultipli
ation B LB.2.1 The
orre
tness of loopsIn a standard text [14℄ used to tea
h dis
rete mathemati
s to undergraduates in
omputer s
ien
e we �ndthe following material:We prefer to write a while loop using the syntaxdo B ! S odwhere Boolean expression B is
alled the guard and statement S is
alled the repetend.[The l℄oop is exe
uted as follows: If B is false, then exe
ution of the loop terminates; otherwiseS is exe
uted and the pro
ess is repeated.Ea
h exe
ution of repetend S is
alled an iteration. Thus, if B is initially false, then 0 iterationso

ur. [� � �℄We now state and prove the fundamental invarian
e theorem for loops. This theorem refers toan assertion P that holds before and after ea
h iteration (provided it holds before the �rst). Su
ha predi
ate is
alled a loop invariant.(12.43) Fundamental invarian
e theorem. Suppose� fP ^ BgSfPg holds { i.e. exe
ution of S begun in a state in whi
h P and B aretrue terminates with P true { and� fPg do B ! S od true { i.e. exe
ution of the loop begun in a state in whi
h P istrue terminates.Then fPg do B ! S od fP ^ :Bg holds. [In other words, if the loop is entered in astate where P is true, it will
omplete in a state where P is true and guard B is false.℄The text pro
eeds to prove this theorem using mathemati
al indu
tion.Let us translate the above into our setting, whi
h will a

ommodate linear algebra algorithms. Considerthe loop do until :BSenddo12

where B is some
ondition and S is the body of the loop. The above theorem says that if� The loop is entered in a state where some
ondition P holds, and� for ea
h iteration, P holds at the top of the loop, and� the body of the loop S has the property that if it is exe
uted starting in a state where P holds it
ompletes in a state where P holds.then the loop will
omplete in a state where
onditions P and :B both hold.A method that formally derives a loop (i.e., iterative implementation) approa
hes the problem of deter-mining the body of the loop as follows:� First, one must determine
onditions B and P .� Next, the body S should be developed so that it maintains
ondition P while making progress towards
ompleting the iterative pro
ess (eventually B should be
ome false).As a
onsequen
e of the Fundamental Invarian
e Theorem, this approa
h implies
orre
tness of the loop.What we show in the remainder of this
hapter, and the subsequent
ase studies in the remainder of thisbook, is that for a large
lass of dense linear algebra algorithms� There is a systemati
 way of determining di�erent
onditions P that allow us develop loops to
omputethe result of a given linear algebra operation.� This in turn yields di�erent algorithms for
omputing the operation.2.2 A re
ipe for deriving linear algebra algorithms2.2.1 A typi
al operationA typi
al linear algebra matrix-matrix operation involves up to three operands: matri
es A, B, and C:C op(A;B;C)Example (LTRMM) A lower-triangular matrix-matrix multipli
ation (LTRMM)
anbe expressed as B LBwhere B is an m � n matrix and L is a m � m lower triangular matrix. Noti
e that thepurpose of the game is to overwrite B with the results without requiring a work array inwhi
h to
ompute LB.2.2.2 determining possible loop invariants1. Temporarily repla
e C by D. Sin
e C appears both on the left and the right of the operation tobe performed, we temporarily repla
e one of the instan
es by a new operand, D.Example (LTRMM) B LB is repla
ed by D = LB. Noti
e that the arrow indi
atesthat the operand is overwritten with the result. We now repla
e this by an equality, sin
ethe purpose of the game will be to determine equalities that must hold as the
omputationunfolds.2. Pi
k an Operand and Partition The �rst step is to pi
k an operand and partition1 it in a meaningfulway:1Note: we provide some useful LATEXma
ros for partitioning matri
es in Appendix C.13

� If the operand that is pi
ked has a triangular storage stru
ture, the partitioning should be intofour quadrants, so that the quadrant that
ontains the blo
k that is not used for storing thematrix
an be identi�ed.Example (LTRMM) Pi
k L for partitioning:L! � LTL 0LBL LBR �where LTL is a square blo
k, say of size k � k.� If the operand has no spe
ial stru
ture, it is typi
ally partitioned into two submatri
es, eitherhorizontally or verti
ally.Example (LTRMM) Pi
k B for partitioning:B ! � BL BR �where BL has k
olumns. Note: this se
ond partitioning does not ne
essarily lead to thesame set of loop invariants as the partition of L above. Indeed, it doesn't.3. Partition the other operands
onformal to the �rst one: Given that the �rst operand has beenpartitioned, the other operands should be partitioned
onformally to ensure that blo
ked multipli
ationof the submatri
es makes sense.Example (LTRMM) Let us
on
entrate of the
ase where L has been partitioned likeL! � LTL 0LBL LBR �When
onsidering D = LB, we noti
e that D and B must be partitioned by rows:D ! � DTDB � ; and B ! � BTBB �where DT and BT have k rows.4. Rewrite the operation using the partitionings: Next, plug the partitioned matri
es into theoperation D = op(A;B;C).Example (LTRMM) In the example D = LB, where D, L, and B have been partitionedas des
ribed, this yields � DTDB � = � LTL 0LBL LBR �� BTBB �5. Perform blo
ked matrix-matrix multipli
ations and additions: Now that the operation hasbeen expressed with blo
ked matri
es, we perform the given operations.Example (LTRMM) In our lower triangular matrix-matrix multipli
ation example weget � DTDB � = � LTL 0LBL LBR �� BTBB � = � LTLBTLBLBT + LBRBB �
14

6. Determine equalities that must hold: On
e the operations have been performed with the subma-tri
es, equalities that must hold
an be determined.Example (LTRMM) In our lower triangular matrix-matrix multipli
ation example wedetermined that � DTDB � = � LTLBTLBLBT + LBRBB �Thus, we
on
lude that the following equalities must hold:DT = LTLBTDB = LBLBT + LBRBB7. Determine possible
ontents of D: Next, we determine possible
ontents ofD under the assumptionthat some of the
omputations that appear in the equalities have o

urred. One approa
h to this is toenumerate all the major operations that must be formed. At a given stage of the
omputation, ea
h ofthese
omputations either has or has not o

urred. By
onsidering all possible
ombinations, one
anenumerate essentially all possible
onditions.Example (LTRMM) See Fig. 2.1.8. Eliminate unreasonable
onditions: On
e possible
ontents of D have been enumerated, some ofthe
onditions
an typi
ally be eliminated sin
e they do not lead to reasonable loops.There are two reasons for reje
ting a
ondition:(a) We want to derive a loop that maintains the
ondition while making progress towards the desiredresult. We need to be able to a
hieve that
ondition before we enter the loop. Furthermore, uponleaving the loop, the desired result should have been
omputed. If the
ondition doesn't allowthis, then the
ondition is reje
ted.(b) The result overwrites part of one of the input operands before that part of the input operand isno longer needed.We will illustrate how the �rst approa
h
an be used to reje
t possible
onditions for the symmetri
matrix multiply in Chapter 6. In Fig. 2.2, we use the se
ond approa
h to reje
t a number of
onditionsfor the triangular matrix-matrix multipli
ation example.9. Determine the dire
tion of the
omputation: The
ondition that determines the
ontents of Dindi
ates a dire
tion in whi
h the
omputation naturally pro
eeds. Frequently en
ountered dire
tionsare left � � � right � - � up 0B� 61CAdown 0B� ?1CA left-up 0B� ��I 1CA right-down 0B� ��R 1CAExample (LTRMM) Consider the
ondition that
urrently D
ontains� ?LBLBT + LBRBB �. In order to move the boundary that indi
ates how far the
omputation has pro
eeded, that boundary must be moved up. Thus, this algorithmnaturally moves through matri
es D and B in the \up" dire
tion.15

Example (LTRMM) In our lower triangular matrix-matrix multipli
ation example wehave determined that DT = LTLBTDB = LBLBT + LBRBBThe major operations to be performed are LTLBT , LBLBT , and LBRBB . Ea
h of theseeither has or has not already been
omputed, leading to the 23 = 8 possible
onditionstabulated below. In the table, a ? indi
ates the indi
ated part of D has yet to be
omputed.Computed? D
ontainsLTLBT LBLBT LBRBBNO NO NO � ?? �YES NO NO � LTLBT? �NO YES NO � ?LBLBT �YES YES NO � LTLBTLBLBT �NO NO YES � ?LBRBB �YES NO YES � LTLBTLBRBB �NO YES YES � ?LBLBT + LBRBB �YES YES YES � LTLBTLBLBT + LBRBB �Figure 2.1: Step 7 for the LTRMM example.

16

Example (LTRMM) In the following table, we again list possible
ontents of D. Thistime, we
omment on ea
h possibility.D
ontains Comments Viable?� ?? � This
ondition indi
ates no progress has beenmade. NO� LTLBT? � Sin
e BT is to be overwritten by DT , this
ondi-tion is not feasible sin
e BT is still needed for the
omputation LBLBT . NO� ?LBLBT � Sin
e BT is to be overwritten by DT , this
ondi-tion is not feasible sin
e BT is still needed for the
omputation LBLBT . NO� LTLBTLBLBT � Sin
e BB is to be overwritten by DB , this
ondi-tion is not feasible sin
e BB is still needed for the
omputation LBRBB . NO� ?LBRBB � YES� LTLBTLBRBB � Sin
e BT is to be overwritten by DT , this
ondi-tion is not feasible sin
e BT is still needed for the
omputation LBLBT . NO� ?LBLBT + LBRBB � YES� LTLBTLBLBT + LBRBB � This
ondition indi
ates that the
omputation has
ompleted. NOConsidering the
omments, only two viable
onditions are left, the ones for whi
h there areno
omments. Figure 2.2: Step 8 for the LTRMM example.

17

10. Repartition the matri
es: In order to expose what elements must be updated to make progress, Dis repartitioned. Similarly, the other matri
es must be repartitioned
onformally to expose submatri
esneeded to update D.Example (LTRMM) Sin
e the
omputation moves through D in the \up" dire
tion, werepartition D likerepartition � DTDB �! 0� D0dT1D2 1A where dT1 is a rowSimilarly, we must repartition the other matri
es:repartition� BTBB �! 0� B0bT1B2 1Awhere bT1 is a row repartition� LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere �11 is a s
alarNoti
e that the double lines have meaning:DT =� D0dT1 � BT =� B0bT1 � LTL=� L00 0lT10 �11 �DB= D2 BB= B2 LBL=� L20 l21 � LBR=L2211. Determine what is
urrently in the matrix: Given the repartitionings, we determine what is
urrently in matrix D.Example (LTRMM) D
urrently
ontains� ?LBLBT + LBRBB � = 0� ?� L20 l21 �� B0bT1 �+ L22B2 1A= � ?L20B0 + l21bT1 + L22B2 �12. Determine what needs to be in the matrix after the boundary shifts: Noti
e that on
e theboundary shifts, the partitionings of the matri
es indi
ate di�erent submatri
es of those matri
es. Tomaintain the
ondition, an update to the
ontents of D is required.Example (LTRMM) After the boundaries shiftDT = D0 BT = B0 LTL= L00DB=� dT1D2 � BB=� bT1B2 � LBL=� lT10L20 � LBR=� �11 0l21 L22 �and thus D must hold� ?LBLBT + LBRBB � = 0� ?� lT10L20 �B0 +� �11 0l21 L22 �� bT1B2 � 1A= 0� ?� lT10B0 + �11bT1L20B0 + l21bT1 + L22B2 � 1A
18

13. Determine what update must o

ur: The known
ontents of D before the shift of the boundariesand the desired
ontents of D after the shift of the boundaries determines the update that must o

ur.Example (LTRMM) The
ontents of D must
hange as follows0� � ?? �L20B0 + l21bT1 + L22B2 1A! 0� ?� lT10B0 + �11bT1L20B0 + l21bT1 + L22B2 � 1A14. State the algorithm: At this point, the partitioning and repartition of the matri
es have beenderived, as have the steps required to maintain the desired
ondition. Thus, the algorithm
an begiven. Example (LTRMM) See Fig. 2.3.Example (LTRMM) One algorithm for the lower triangular matrix-matrix multipli
ation.Noti
e that we overwrite B with the result.partition B ! � BTBB � where BB has 0 rowspartition L! � LTL 0LBL LBR � where LBR is 0� 0do until LTL is 0� 0repartition � BTBB �! 0� B0bT1B2 1A where bT1 is a rowrepartition � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1A where �11 is a s
alarbT1 �11bT1bT1 lT10B0 + bT1
ontinue with � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1A
ontinue with � BTBB � 0� B0bT1B2 1Aenddo Figure 2.3: Step 14 for the LTRMM example.15. Classify the algorithm: We
lassify algorithms by� the dire
tion in whi
h they move, and� how aggressively they use and/or update data in the matri
es.While intuitively the
lassi�
ation is
onsistent, the di�erent
ategories have slightly di�erent meaningdepending on whether we
ategorize with respe
t to an input or an output parameter. In parti
ular:19

Let X be the operand with respe
t to whi
h we will
ategorize the algorithm. The following tableexplains the di�erent
ategories:right/left-moving algorithms: Consider the
urrent partitioning on operand in a right- or left-moving algorithm w.r.t. X : � XL XR �. Then we will use the following
ategorization ofalgorithms w.r.t. X :right-moving algorithmLazy The entries in XL have been
ompletely used and/or updated. Theentries in XR has not been tou
hed (used or updated).Eager The entries in XL have been
ompletely used and/or updated. Theentries in XR have been updated as mu
h as is possible without
ompleting another
olumn of X .left-moving algorithmLazy The entries in XR have been
ompletely used and/or updated. Theentries in XL has not been tou
hed (used or updated).Eager The entries in XR have been
ompletely used and/or updated. Theentries in XL have been updated as mu
h as is possible without
ompleting another
olumn of X .down/up-moving algorithms: Consider the
urrent partitioning on operand in a down- or up-moving algorithm w.r.t. X : � XTXB �. Then we will use the following
ategorization of algorithmsw.r.t. X : down-moving algorithmLazy The entries in XT have been
ompletely used and/or updated. Theentries in XB has not been tou
hed (used or updated).Eager The entries in XT have been
ompletely used and/or updated. Theentries in XB have been updated as mu
h as is possible without
ompleting another row of X .up-moving algorithmLazy The entries in XB have been
ompletely used and/or updated. Theentries in XT has not been tou
hed (used or updated).Eager The entries in XB have been
ompletely used and/or updated. Theentries in XT have been updated as mu
h as is possible without
ompleting another row of X .down-right/up-left-moving algorithms: Consider the
urrent partitioning of an operand in aright-down- or left-up-moving algorithm w.r.t. X : � XTL XTRXBL XBR �. Then we will use thefollowing
ategorization of algorithms w.r.t. X :

20

right-down-moving algorithmLazy The entries in XTL have been
ompletely used and/or updated.The entries in XTR, XBL, and XBR have not been tou
hed (usedor updated).Row-lazy The entries in XTL and XTR have been
ompletely used and/orupdated. The entries in XBL and XBR have not been tou
hed(used or updated).Column-lazy The entries in XTL and XBL have been
ompletely used and/orupdated. The entries in XTR and XBR have not been tou
hed(used or updated).Both-lazy The entries in XTL, XTR, and XBL have been
ompletely usedand/or updated. The entries in XBR have not been tou
hed (usedor updated).Eager The entries in XTL, XTR, and XBL have been
ompletely usedand/or updated. The entries in XBR have been updated as mu
has is possible without
ompleting another row and
olumn of X .left-up-moving algorithmLazy The entries in XBR have been
ompletely used and/or updated.The entries in XTR, XBL, and XTL have not been tou
hed (usedor updated).Row-lazy The entries in XBL and XBR have been
ompletely used and/orupdated. The entries in XTL and XTR have not been tou
hed(used or updated).Column-lazy The entries in XTR and XBR have been
ompletely used and/orupdated. The entries in XTL and XBL have not been tou
hed(used or updated).Both-lazy The entries in XBR, XTR, and XBL have been
ompletely usedand/or updated. The entries in XTL have not been tou
hed (usedor updated).Eager The entries in XBR, XTR, and XBL have been
ompletely usedand/or updated. The entries in XTL have been updated as mu
has is possible without
ompleting another row and
olumn of X .Example (LTRMM) Consider the example that we have been using throughout this
hapter. Using our
ategorization, we see that the algorithm that
orresponds to the
on-dition that
urrently D
ontains � ?LBLBT + LBRBB � is up-moving and row-lazy withrespe
t to matrix L sin
e data in LBL and LBR will not be required for further
omputation.It is also lazy with respe
t to matrix D, sin
e DL has been
ompletely
omputed.The algorithm that
orresponds to the the
ondition that
urrentlyD
ontains � ?LBRBB �is also up-moving. However, it is lazy with respe
t to matrix L sin
e only the data in LBRwill not be needed for further
omputation. It is also lazy with respe
t to matrix B, sin
eBB will not be needed for further
omputation.
21

Chapter 3Coding Linear Algebra AlgorithmsIn this
hapter we introdu
e a set of library routines that will allow us to
apture in
ode linear algebraalgorithms as they are naturally presented, for example in a
lassroom setting. The idea is that by makingthe
ode look as mu
h like the algorithm in Fig. 1.1 the opportunity for the introdu
tion of bugs is minimized.Readers familiar with MPI [15, 33℄ and/or our own PLAPACK [35℄ will re
ognize the programming style asbeing very similar to that used by those interfa
es.3.1 initializing and �nalizing FLAMEBefore using the FLAME environment one must initialize with a
all tovoid FLA_Init()Purpose: Initialize FLAME.If no more FLAME
alls are to be made, the environment is exited by
allingvoid FLA_Finalize ()Purpose: Finalize FLAME.Sin
e an appli
ation may wish to query whether the environment has already been initialized, we providethe inquiry routineint FLA_Initialized ()Purpose: Che
k if FLAME is initialized.return value TRUE if FLAME is already initializedFALSE otherwise3.2 Creating an obje
tNoti
e that there the following attributed des
ribe a matrix as it is stored in the memory of a
omputer:� the datatype of the entries in the matrix, e.g., double or float,� m and n, the row and
olumn dimensions of the matrix,� the address where the data is stored, and� the mapping that des
ribed how the two dimensional array is mapped to memory.
22

For now, we will assume that a matrix is stored using
olumn-major ordering. Thus, the mapping tomemory is des
ribed by a leading dimension that indi
ates the number of units through whi
h one muststride in memory to get from one element in a row of the matrix to the next element in that row. Thefollowing
all
reates an obje
t that des
ribes a matrix and
reates spa
e to store the entries in the matrix:void FLA_Obj_
reate (int datatype, int m, int n, FLA_Obj *matrix)Purpose: Create an obje
t that des
ribes an m� n matrix as well as asso
iated storage.datatype datatype of matrixm, n row dimensions of matrixmatrix obje
t that des
ribes the matrixNoti
e that the leading dimension of the array that is used to store the a
tual matrix is itself determinedinside of this
all.Valid datatype value in
ludeFLA INT, FLA DOUBLE, FLA FLOAT, FLA DOUBLE COMPLEX, and FLA COMPLEXfor the obvious datatypes that are
ommonly en
ountered. Additional datatype may be added at a futurestage.Sometimes it will be handy to
reate an obje
t without storage atta
hed. This allows a matrix that hasalready been stored in a
onventional two-dimensional array to be atta
hed to an obje
t. The following
all
reates su
h an obje
t:void FLA_Obj_
reate_without_buffer(int datatype, int m, int n, FLA_Obj *matrix)Purpose: Create an obje
t that des
ribes an m� n matrix without asso
iated storage.datatype datatype of matrixm, n dimensions of matrixmatrix address of obje
t that will des
ribe the matrixIf an obje
t has been
reated without storage atta
hed, an existing two-dimensional array
an be atta
hedby
allingvoid FLA_Obj_atta
h_buffer (void *buff, int ldim, FLA_Obj matrix)Purpose: Atta
h an existing bu�er that holds a matrix stored in
olumn-major order with leadingdimension ldim to the obje
t matrix.buff address of where bu�er existsldim leading dimension of arraymatrix obje
t that des
ribes the matrixFLAME treats ve
tors as spe
ial
ases of matri
es, either as a n� 1 matrix or an 1�n matrix. Thus, to
reate an obje
t for a ve
tor x of length n either of the following
alls will suÆ
e:FLA Obj
reate(FLA DOUBLE, n, 1, &x), orFLA Obj
reate(FLA DOUBLE, 1, n, &x),where x has been de
lared as a FLA Obj and n is an integer variable with value n.Similarly, FLAME treats s
alars as a 1� 1 matrix. Thus, to
reate a obje
t for a s
alar � the following
all is made:FLA Obj
reate(FLA DOUBLE, 1, 1, &alpha)where alpha has been de
lared as a FLA Obj. A number of s
alars o

ur frequently and are thereforeprede�ned by FLAME: MINUS ONE, ZERO, and ONE. .Often it is useful to
reate a matrix that has the same datatype and dimensions as a given matrix. Forthis we provide the
all 23

void FLA_Obj_
reate_
onf_to (int trans, FLA_Obj old, FLA_Obj *matrix)Purpose: Like FLA Obj
reate ex
ept that it
reates an obje
t with same datatype and dimensionsas old, transposing if desired.trans indi
ates whether to transposeold original obje
tmatrix new obje
tValid values for trans in
lude FLA NO TRANSPOSE , FLA TRANSPOSE, and FLA CONJUGATE TRANSPOSE. Iftrans equals FLA NO TRANSPOSE, the new obje
t has the same dimensions as old. Otherwise, it has the samedimensions as the transpose of old.3.2.1 Obje
t destru
tionIf an obje
t was
reated with FLA Obj
reate or FLA Obj
reate
onf to a
all to b FLA Obj free isrequired to ensure that all spa
e asso
iated with the obje
t is properly released:void FLA_Obj_free (FLA_Obj *obj)Purpose: Free all spa
e allo
ated to store data asso
iated with obj.obj obje
t that des
ribes the obje
t3.2.2 Inquiry routinesIn order to be able to work with the raw data, a number of inquiry routines
an be used to a

ess informationabout a matrix (or ve
tor or s
alar). To extra
t the datatype and row and
olumn dimensions of the matrixFLAME provides:int FLA_Obj_datatype (FLA_Obj matrix)int FLA_Obj_length (FLA_Obj matrix)int FLA_Obj_width (FLA_Obj matrix)Purpose: Extra
t datatype, row, or
olumn dimension of matrix, respe
tively.matrix obje
t that des
ribes the matrixreturn value datatype, row, or
olumn dimension of matrix, respe
tivelyTo extra
t the address of the array that stores the matrix and the leading dimension of that arrayFLAME provides:void *FLA_Obj_buffer (FLA_Obj matrix)int FLA_Obj_ldim (FLA_Obj matrix)Purpose: Extra
t the address and leading dimension of the matrix, respe
tively.matrix obje
t that des
ribes the matrixreturn value address and leading dimension of matrix, respe
tivelyAn example of how to use this information to implement a simple matrix-ve
tor multipli
ation isgiven in Fig. 3.1. To understand the
ode one must understand that element �ij of matrix A is storedin buff A[j*ldim A+i℄, whi
h
onforms to
olumn-major order. Similarly, �j , the jth element of x, and�i, the ith element of y, are stored in buff x[j*in
 x℄ and buff y[i*in
 y℄, respe
tively. (Here indexingstarts at zero.)
24

1 #in
lude "FLA.h"23 void FLA_simple_mv_mult(FLA_Obj A, FLA_Obj x, FLA_Obj y)4 {5 int6 datatype_A, m_A, n_A, ldim_A, m_x, n_y, in
_x, m_y, n_y, in
_y;78 datatype_A = FLA_Obj_datatype(A);9 m_A = FLA_Obj_length(A);10 n_A = FLA_Obj_width (A);11 ldim_A = FLA_Obj_ldim (A);1213 m_x = FLA_Obj_length(x);14 n_x = FLA_Obj_width (x);15 m_y = FLA_Obj_length(y);16 n_y = FLA_Obj_width (y);1718 if (m_x == 1) {19 m_x = n_x;20 in
_x = FLA_Obj_ldim(x);21 }22 else in
_x = 1;2324 if (m_y == 1) {25 m_y = n_y;26 in
_y = FLA_Obj_ldim(y);27 }28 else in
_y = 1;2930 if (datatype_A == FLA_DOUBLE){31 double32 *buff_A, *buff_x, *buff_y;3334 buff_A = (double *) FLA_Obj_datatype(A);35 buff_x = (double *) FLA_Obj_datatype(x);36 buff_y = (double *) FLA_Obj_datatype(y);3738 for (i=0; i<m_A; i++) buff_y[i*in
_y ℄ = 0;3940 for (j=0; j<n_A; j++)41 for (i=0; i<m_A; i++)42 buff_y[i*in
_y ℄ += buff_A[j*ldim_A+i ℄ * buff_x[j*in
_x ℄;43 }44 else FLA_Abort("datatype not yet supported", __LINE__, __FILE__);45 } Figure 3.1: A simple matrix-ve
tor multipli
ation routine.
25

3.2.3 Setting and extra
ting the
ontentsvoid FLA_Obj_set_
ontents (int trans, int m, int n, void *A, int ldA,+ &\\FLA_Obj matrix)void FLA_Obj_axpy_to_
ontents (int trans, void *alpha, int m, int n, void *A,int ldA, FLA_Obj matrix)Purpose: Set the
ontents of the matrix obje
t to those in m�n matrix A with leading dimension ldA.For the se
ond
all, �A is added to the
urrent
ontents of matrix.trans indi
ates whether to transpose dataalpha s
aling fa
torm, n dimensions of AA array with data to be entered in matrixldim leading dimension of Amatrix obje
t that des
ribes the matrixHere
onsistent means that the datatype of ALPHA and A must mat
h that of the obje
t MATRIX. Validvalues for trans in
lude FLA NO TRANSPOSE, FLA TRANSPOSE, and FLA CONJUGATE TRANSPOSE. If trans equalsFLA NO TRANSPOSE,m and n must equal the dimensions of matrix, respe
tively. Otherwise, they must equalthe dimensions of the transpose of matrix and the data is transposed as it is entered in or added to matrix.Similarly FLAME provides the following
alls to extra
t the
ontents of an obje
t:void FLA_Obj_get_
ontents (int trans, FLA_Obj matrix,int m, int n, void A, int ldA)void FLA_Obj_axpy_from_
ontents (int trans, void *alpha, FLA_Obj matrix,int m, int n, void A, int ldA)Purpose: Get the
ontents from the matrix obje
t and store in m�n matrix A with leading dimensionldA. For the se
ond
all, � times the
ontents of matrix are added to the
urrent
ontents of A.trans indi
ates whether data is to be transposedalpha s
aling fa
tormatrix obje
t that des
ribes the matrixm, n dimensions of AA array with data to be entered in matrixldim leading dimension of A3.3 A simple driver: matrix-ve
tor multipli
ationIn Figure 3.2 we show a sample main program that uses most of the
alls dis
ussed so far.line 1 FLAME program �les start by in
luding the FLAME.h header �le.line 5{6 FLAME obje
ts A, x, and y, whi
h will hold matrix A and ve
tors x and y, are de
lared to be oftype FLA Obj.line 10 Before any
alls to FLAME routines
an be made, the environment must be initialized by a
all toFLA Init.line 12{13 In our example, the user inputs the row and
olumn dimension of matrix A.line 15{17 Des
riptors are
reated for A, x, and y.line 19{20 A routine to be des
ribed next is used to �ll A and x with values.line 22 Compute y = Ax using the FLAME matrix-ve
tor multiply routine FLA Gemv to be des
ribed later.line 24{26 Print out the
ontents of A, x, and y. For ea
h element the C print format "%lf " is used toprint the
ontents as long
oating point numbers. The
alling sequen
e for FLA Obj show is given laterin this
hapter. 26

1 #in
lude "FLAME.h"23 main()4 {5 FLA_Obj6 A, x, y;7 int8 m, n;910 FLA_Init();1112 printf("enter matrix dimensions m and n:");13 s
anf("%d%d", &m, &n);1415 FLA_Obj_
reate(FLA_DOUBLE, m, n, &A);16 FLA_Obj_
reate(FLA_DOUBLE, m, 1, &y);17 FLA_Obj_
reate(FLA_DOUBLE, n, 1, &x);1819 fill_matrix(A);20 fill_matrix(x);2122 FLA_Gemv(FLA_NO_TRANSPOSE, ONE, A, x, ZERO, y);2324 FLA_Obj_show("A = [", A, "%lf ", "℄");25 FLA_Obj_show("x = [", x, "%lf ", "℄");26 FLA_Obj_show("y = [", y, "%lf ", "℄");2728 FLA_Obj_free(&A);29 FLA_Obj_free(&y);30 FLA_Obj_free(&x);3132 FLA_Finalize();33 } Figure 3.2: A simple C driver for matrix-ve
tor multipli
ation.line 28 After the FLAME environment has �nished it is �nalized by a
all to FLA Finalize.A sample routine for �lling A and x with data is given in Fig. 3.3.3.4 ViewsNoti
e that in Fig. 2.3 be
ame obvious that in stating a linear algorithm one frequently must partition amatrix, A, likepartitionA! � ATL ATRABL ABR � where ATL is mb � nbThe primary me
hanism used by our
oding approa
h to hide
ompli
ated indexing is the notion of a view,whi
h is simply a referen
e into an existing matrix or ve
tor. Given that A is a des
riptor of a matrix, thefollowing
all
reates des
riptors of the four quadrants:void FLA_Part_2x2 (FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,FLA_Obj *ABL, FLA_Obj *ABR,int mb, int nb, int quadrant)Purpose: Partition matrix A into four quadrants where the quadrant indi
ated by quadrant is mb�nbA matrix to be partitionedmb, nb row and
olumn dimensions of quadrant indi
ated by quadrantquadrant quadrant for whi
h dimensions are given in mb and nbATL-ABR views of TL, TR, BL, and BR quadrants27

1 #in
lude "FLAME.h"23 #define BUFFER(i, j) buff[(j)*lda + (i) ℄45 void fill_matrix(FLA_Obj A)6 {7 int datatype, m, n, lda;89 datatype = FLA_Obj_datatype(A);10 m = FLA_Obj_length(A);11 n = FLA_Obj_width (A);12 lda = FLA_Obj_ldim (A);1314 if (datatype == FLA_DOUBLE){15 double *buff;16 int i, j;1718 buff = (double *) FLA_Obj_buffer(A);1920 for (j=0; j<n; j++)21 for (i=0; i<m; i++)22 BUFFER(i,j) = i+j*0.01;23 }24 else FLA_Abort("Datatype not yet supported", __LINE__, __FILE__);25 } Figure 3.3: A simple routine for �lling a matrixHere quadrant
an take on the values FLA TL, FLA TR, FLA BL, and FLA BR to indi
ate that mb and nbindi
ate the dimensions of the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, respe
tively.Also from Fig. 2.3, we noti
e that it is useful to be able to take a 2�2 partitioning of a given matrix A andrepartition this so that submatri
es
an be identi�ed that need to be updated and/or used for
omputation:repartition � ATL ATRABL ABR �! 0� A00 A01 A02A10 A11 A12A20 A21 A22 1A where A11 is mb � nbGiven that ATL, ATR, ABL, and ABR were the result of a
all to FLA Part 2x2, we would like
reate new viewsfor this 3� 3 partitioning from this 2� 2 partitioning. To support this, we introdu
e the
allvoid FLA_Repart_from_2x2_to_3x3(FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *A01, FLA_Obj *A02,FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,FLA_Obj ABL, FLA_Obj ABR, FLA_Obj *A20, FLA_Obj *A21, FLA_Obj *A22,int mb, int nb, int quadrant)Purpose: Repartition a 2�2 partitioning of matrix A into a 3�3 partitioning where mb�nb submatrixA11 is split from the quadrant indi
ated by quadrant.ATL-ABR views of TL, TR, BL, and BR quadrantsmb, nb row and
olumn dimensions of A11quadrant quadrant from whi
h A11 is partitionedA00-A22 views of A00{A22Here quadrant
an again take on the values FLA TL, FLA TR, FLA BL, and FLA BR to indi
ate that mb andnb submatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respe
tively.In order to update the partitioning of A into the four quadrants, we need to be able to update thedes
riptions of ATL, ATR, ABL, and ABR:
ontinue with � ATL ATRABL ABR � 0� A00 A01 A02A10 A11 A12A20 A21 A22 1A28

This update of the views is a

omplished by a
all tovoid FLA_Cont_with_3x3_to_2x2(FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,FLA_Obj ABL, FLA_Obj ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,int quadrant)Purpose: Update the 2� 2 partitioning of matrix A by moving the boundaries so that A11 is addedto the quadrant indi
ated by quadrant.ATL-ABR views of TL, TR, BL, and BR quadrantsA00-A22 views of A00{A22quadrant quadrant to whi
h A11 is to be addedThis time the value of quadrant (FLA TL, FLA TR, FLA BL, or FLA BR) indi
ates to whi
h quadrant sub-matrix A11 is to be added.We will see in subsequent
hapters that we frequently will want to
reate a 2� 1 partitioning of a givenmatrix A:partition A! � ATAB � where AT has mb rowsFor this we introdu
e the
allvoid FLA_Part_2x1 (FLA_Obj A, FLA_Obj *AT,FLA_Obj *AB, int mb, int side)Purpose: Partition matrix A into a top and bottom side where the side indi
ated by side has mbrows.A matrix to be partitionedmb row dimension of side indi
ated by sideside side for whi
h row dimension is givenAT, AB view of Top and Bottom partHere side
an take on the values FLA TOP or FLA BOTTOM to indi
ate that mb indi
ates the row dimensionof AT or AB , respe
tively.Given that matrix A is already partitioned like� ATAB �a repartitioning likerepartition � ATAB �! 0� A0A1A2 1A where A1 has mb rowsis a

omplished by the
allvoid FLA_Repart_from_2x1_to_3x1 (FLA_Obj AT, FLA_Obj *A0,FLA_Obj *A1,FLA_Obj AB, FLA_Obj *A2,int mb, int side)Purpose: Repartition a 2� 1 partitioning of matrix A into a 3� 1 partitioning where submatrix A1with mb rows is split from the side indi
ated by side.AT, AB views of Top and Bottom sidesmb row dimension of A1side side from whi
h A1 is partitionedA0-A2 views of A0{A2 29

Here side
an take on the values FLA TOP or FLA Bottom to indi
ate that mb submatrix A1 is partitionedfrom AT or AB , respe
tively.Given a 3 � 1 partitioning of a given matrix A, we may wish to update a 2 � 1 partitioning by addingA1 to either AT or AB :
ontinue with � ATAB � 0� A0A1A2 1AFor this FLAME provides the
allvoid FLA_Cont_with_3x1_to_2x1 (FLA_Obj *AT, FLA_Obj A0,FLA_Obj A1,FLA_Obj *AB, FLA_Obj A2,int side)Purpose: Update the 2� 1 partitioning of matrix A by moving the boundaries so that A1 is added tothe side indi
ated by side.AT, AB views of Top and Bottom sidesA0-A2 views of A0{A2side side from whi
h A1 is partitionedNow side indi
ates whether A1 is to be added to AT or AB .Similarly, we may wish to
reate a 1� 2 partitioning of a given matrix A:partition A! � ATAB � where AT has n rowsFor this we introdu
e the
allvoid FLA_Part_1x2 (FLA_Obj A, FLA_Obj *AT, FLA_Obj *AB,int nb, int side)Purpose: Partition matrix A into a left and right side where the side indi
ated by side has nb
olumnsA matrix to be partitionednb
olumn dimension of side indi
ated by sideside side for whi
h
olumn dimension is givenAL, AR view of Left and Right partHere side
an take on the values FLA LEFT or FLA RIGHT to indi
ate that nb equals the
olumn dimensionof AL or AR, respe
tively.Given that matrix A is already partitioned like� AL AR �a repartitioning likerepartition � ATAB �! 0� A0A1A2 1A where A1 has n rowsis a

omplished by the
all
30

void FLA_Repart_from_1x2_to_1x3(FLA_Obj AL, FLA_Obj AR, FLA_Obj *A0, FLA_Obj *A1, FLA_Obj *A2,int nb, int side)Purpose: Repartition a 1� 2 partitioning of matrix A into a 1� 3 partitioning where submatrix A1with nb
olumns is split from the side indi
ated by side.AL, AR views of Left and Right sidesA0-A2 views of A0{A2nb
olumn dimension of A1side side from whi
h A1 is partitionedNow side indi
ates whether A1 is partitioned from AL or AR.Given a 1� 3 partitioning of a given matrix A, updating a 1� 2 partitioning by adding A1 to either ALor AR, � AL AR �! � A0 A1 A2 �is a

omplished by a
all tovoid FLA_Cont_with_1x3_to_1x2 (FLA_Obj *AL, FLA_Obj *AR,FLA_Obj A0, FLA_Obj A1, FLA_Obj A2, int side)Purpose: Update the 1� 2 partitioning of matrix A by moving the boundaries so that A1 is added tothe side indi
ated by side.AL, AR views of Left and Right sidesside side to whi
h A1 is addedA0-A2 views of A0{A2Parameter side indi
ates whether A1 is added to AL or AR.3.5 Other useful routinesTo examine the
ontents of an obje
t, we re
ommend the following routine:void FLA_Obj_show(
har *string1, FLA_Obj A,
har *format,
har *string2)Purpose: Print the
ontents of A.string1 string to be printed before
ontentsA des
riptor for Aformat format to be used to print ea
h individual elementstring2 string to be printed after
ontentsIn parti
ular, the result ofFLA_Obj_show("A =", A, "%lf ", "℄");is something likeA = [< entries >℄whi
h
an then be fed to MATLAB. This be
omes useful when
he
king results against a MATLAB imple-mentation of an operation.
31

Chapter 4Matrix-Matrix Multipli
ation:The Key to High Performan
ebyJohn A. GunnelsGreg M. HenryRobert A. van de GeijnAs will will see in subsequent
hapters, most important dense linear algebra operations
an be organizedso that most of the
omputation is in matrix-matrix multipli
ation. Thus, it is important to understandwhy and how matrix-matrix multipli
ation
an be implemented to a
hieve high performan
e on modernmi
ropro
essors with hierar
hi
al memories. In this
hapter, we des
ribe the basi
 approa
h used by ourITXGEMM matrix-matrix multipli
ation implementation [17℄.4.1 The obje
t of the gameThe basi
s behind the design of a highly eÆ
ient matrix multipli
ation implementation are rather simple.To implement C = AB+C where C, A, and B are m�n, m�k, and k�n matri
es, respe
tively, one startsby partitioning these matri
es likeC = 0B� C11 : : : C1N... ...CM1 : : : CMN 1CA ; A = 0B� A11 : : : A1K... ...AM1 : : : AMK 1CA ; and B = 0B� B11 : : : B1N... ...BK1 : : : BKN 1CAwhere Cij is mb � nb, Aip is mb � kb, and Bpj is kb � nb. (Naturally, some blo
ks may not be exa
tly thisblo
k size, a minor detail.) Now, Cij = Ai1B1j + � � �+AiKBKj +Cij . Given that C, A, and B all reside inmain memory, the blo
kings of these matri
es and the ordering of the updates Cij = AipBpj + Cij needs tobe or
hestrated so that movement into the
a
hes of the pro
essor is best amortized over
omputation.For the moment
onsidering an ar
hite
ture with two layers of
a
he memory, this initial partitioning
reates blo
ks to be moved in and out of the L2
a
he. Now Cij , Aip, and Bpj are themselves blo
ked andthe
omputation with these even smaller blo
ks is or
hestrated to optimally utilize the L1
a
he. Finally, onefurther blo
king is ne
essary to optimally utilize the registers. The purpose of the game now is to determinethe optimal blo
k size and the optimal ordering of the loops so that data movement between levels of thememory hierar
hy is amortized over as mu
h
omputation as possible.Noti
e that for ea
h level of the memory hierar
hy we may need as many as three nested loops, not
ounting the registers. Thus, for a typi
al ar
hite
ture with two
a
hes and a main memory, one must32

onsider as many as nine nested loops. Sin
e the ordering of these loops will a�e
t memory a

ess patterns,one must
onsider up to 9! = 362880 di�erent loop orderings. By realizing that it is only the three loops fora given level of the hierar
hy that need to be ordered, there are 3� 3! = 18 possible loop orderings. For ea
hof these loop orderings, one needs to
onsider di�erent blo
kings at ea
h level of the memory hierar
hy. Inother words, without some reasonable way of pruning the spa
e of possible algorithms, one fa
es a formidabletask.The theory that we develop in the �rst part of this paper will allow us to propose a sensible heuristi
for pruning the spa
e of possible algorithms. By
ombining this heuristi
 with pra
ti
al
onsiderationswe
an redu
e the number of di�erent algorithms to only eight. Simultaneously, theoreti
al and pra
ti
al
onsiderations allow us to severely restri
t the range of reasonable blo
k sizes. The net result is a highlyeÆ
ient implementation of matrix multipli
ation.4.2 Spe
ial
ases of matrix-matrix multipli
ationThe general form of a matrix-matrix multiply is C �AB+�C where C is m�n, A is m�k, and B is k�n.We will use the following terminology when referring to a matrix-matrix multiply when two dimensions arelarge and one is small: Condition ShapeMatrix-panel multiply n is small C = A B + CPanel-matrix multiply m is small C = A B + CPanel-panel multiply k is small C = A B + CThe following observation will be
ome key to understanding
on
epts en
ountered in the rest of the paper:Partition X = � X1 � � � XNX � = 0B� X̂1...X̂MX 1CAfor X 2 fA;B;Cg, where Cj is m � nj , Ĉi is mi � n, Ap is m � kp, Âi is mi � k, Bj is k � nj , and B̂p iskp � n. Then C AB + C
an be a
hieved asmultiple matrix-panel multiplies:Cj ABj + Cj for j = 1; : : : ; NC C1C2C3 += A B1B1B1multiple panel-matrix multiplies:Ĉi ÂiB + Ĉi for i = 1; : : : ;MC Ĉ1Ĉ2Ĉ3 += Â1Â2Â3 Bor multiple panel-panel multipliesC A1B̂1 + � � �+ANAB̂NA C += A1A2A3 B̂1B̂2B̂333

4.3 A
ost model for hierar
hi
al memoriesThe memory hierar
hy of a modern mi
ropro
essor is often viewed as the pyramid given in Fig. 4.1: At thefast
slow?
6 expensive

heap?
6

�������
�������

AAAAAAA
AAAAAAAregistersL1
a
heL2
a
he...lo
al memoryshared memory...disktapeFigure 4.1: The hierar
hi
al memories viewed as a pyramid.top of the pyramid, there are the pro
essor registers, with extremely fast a

ess. At the bottom, there aredisks and even slower media. As one goes down the pyramid, the amount of memory in
reases as well as thetime required to a

ess that that memory, while the
ost of memory de
reases.We will model the above mentioned hierar
hy naively as follows:1. The memory hierar
hy
onsists of L levels, indexed 0; : : : ; L� 1. Level 0
orresponds to the registers.We will often denote the ith level by Li. Noti
e that on a typi
al
urrent ar
hite
ture L1 and L2
orrespond the level 1 and level 2 data
a
hes and L3
orresponds to RAM.2. Level h of the memory hierar
hy
an store Sh
oating point numbers. Generally S0 � S1 � � � � � SL�1.3. Loading a
oating point number stored in level h + 1 to level h
osts time �h. We will assume that�0 < �1 < � � � < �L�1.4. Storing a
oating point number from level h to level h + 1
osts time �h. We will assume that�0 < �1 < � � � < �L�1.5. If mh�nh matrix C, mh� kh matrix A, and kh�nh matrix B are all stored in level h of the memoryhierar
hy then forming C AB + C
osts time 2mhnhkh
h. (Noti
e that
h will depend on mh, nh,and kh).4.4 Building-blo
ks for matrix multipli
ationConsider the matrix multipli
ation C AB+C where mh+1�nh+1 matrix C, mh+1� kh+1 matrix A, andkh+1�nh+1 matrix B are all stored in Lh+1. Let us assume that somehow an eÆ
ient matrix multipli
ationkernel exists for matri
es stored in Lh. In this se
tion, we develop three distin
t approa
hes for matrixmultipli
ation kernels for matri
es stored in Lh+1.PartitionC = 0B� C11 � � � C1N... ...CM1 � � � CMN 1CA ; A = 0B� A11 � � � A1K... ...AM1 � � � AMK 1CA ; and B = 0B� B11 � � � B1N... ...BK1 � � � BKN 1CA(4.1)where Cij is mh�nh, Aip is mh� kh, and Bpj is kh�nh. We must now determine the optimal mh, nh, andkh. 34

Algorithm 1 for j = 1; : : : ; Nfor i = 1; : : : ;MLoad Cij from Lh+1 to Lh. mhnh�hfor p = 1; : : : ; KLoad Aip from Lh+1 to Lh. mhkh�hLoad Bpj from Lh+1 to Lh. khnh�hUpdate Cij AipBpj +Cij 2mhnhkh
hendforStore Cij from Lh to Lh+1 mhnh�hendforendforFigure 4.2: Multiple panel-panel multiply based blo
ked matrix-matrix multipli
ation.4.4.1 Multiple panel-panel multiplies in LhNoting that Cij PKp=1 AipBpj + Cij , let us
onsider the algorithm in Fig. 4.2 for
omputing the matrix-matrix multipli
ation. In that �gure the
osts of the various operations are shown to the right. The orderof the outer-most loops is irrelevant to the analysis.The
ost for updating C is given byMXi=1 NXj=1 "mhnh�h +mhnh�h + KXp=1 [khmh�h + khnh�h + 2mhnhkh
h℄#= mh+1nh+1(�h + �h) +mh+1nh+1kh+1 �hnh +mh+1nh+1kh+1 �hmh + 2mh+1nh+1kh+1
h(4.2)Sin
e
h+1 is de�ned to be the
ost of a
oating point operation when all three matri
es are stored in Lh+1,we �nd that by we also have that the
ost is given by2mh+1nh+1kh+1
h+1(4.3)Thus, by dividing 4.2 by 2mh+1nh+1kh+1 the e�e
tive
ost per
oating point operation at this level is givenby
h+1 = �h + �h2kh+1 + �h2nh + �h2mh +
hThe question now is how to �nd the mh, nh, and kh that minimize
h+1 under the
onstraint that Cij , Aikand Bkj all �t in Lh, i.e., mhnh+mhkh+nhkh � Sh. The smaller kh, the more spa
e in Lh
an be dedi
atedto Cij and thus the smaller the fra
tions �h=mh and �h=nh
an be made. A good strategy is thus to letessentially all of Lh be dedi
ated to Cij , i.e., mhnh � Sh. The minimum is then attained when essentiallymh � nh � pSh.Noti
e that it suÆ
es to have mh+1 = mh or nh+1 = nh for the above
ost of
h+1 to be a
hieved. Thus,the above already for the spe
ial
ases0BB� C11...CM1 1CCA+= 0BB� A11 � � � A1K... ...AM1 � � �AMK 1CCA0B� B11...BK1 1CA +=(4.4) � C11 � � � C1N �+= � A11 � � �A1K �0B� B11 � � � B1N... ...BK1 � � � BKN 1CA +=(4.5)Here the distan
e between single/thin lines is kh and between double/thi
k lines mh = nh, where kh is mu
hsmaller than mh and nh. The signi�
an
e of this will be
ome apparent later.35

Algorithm 2 for p = 1; : : : ; Kfor i = 1; : : : ;MLoad Aip from level h+ 1 to level h. mhkh�hfor j = 1; : : : ; NLoad Cij from level h+ 1 to level h. mhnh�hLoad Bpj from level h+ 1 to level h. khnh�hUpdate Cij AipBpj +Cij 2mhnhkh
hStore Cij from level h to level h+ 1 mhnh�hendforendforendforFigure 4.3: Multiple matrix-panel multiply based blo
ked matrix-matrix multipli
ation.Note 1 The above analysis shows that for the ordering of the loops given in Alg. 1, the strategy shouldbe to load Lh with blo
ks of C that �ll most of Lh. The intuitive reason is that the
ost of moving blo
ksCij between Lh and Lh+1 is amortized over
omputation with many smaller blo
ks Aip and Bpj , whi
h are\streamed" from Lh+1. Simultaneously, the
ost of bringing ea
h of these smaller blo
ks into Lh is itselfamortized over many
omputations, sin
e Cij is essentially as large as possible and almost square.The inner-most loop in Alg. 1 implements multiple panel-panel multiplies sin
e kh is small relative to mhand nh. Thus the name of this se
tion.4.4.2 Multiple matrix-panel multiplies in LhMoving the loops over l and i to the outside we get the algorithm in Fig. 4.3. Performing an analysis similarto that given in Se
tion 4.4.1 the e�e
tive
ost of a
oating point operation is now given by
h+1 = �h2nh+1 + �h + �h2kh + �h2mh +
h(4.6)Again, the question is how to �nd the mh, nh, and kh that minimize
h+1 under the
onstraint that Cij ,Aik and Bkj all �t in Lh, i.e., mhnh +mhkh + nhkh � Sh. Note that the smaller nh, the more spa
e inLh
an be dedi
ated to Ail and thus the smaller the fra
tions (�h + �h)=2kh and �h=2mh
an be made. Agood strategy is thus to let essentially all of Lh be dedi
ated to Ail, i.e., mhkh � Sh. The minimum is thenattained when essentially mh � kh � pSh.Noti
e that it suÆ
es to have mh+1 = mh or kh+1 = kh for the above
ost of
h+1 to be a
hieved. Inother words, the above holds for the spe
ial
ases0BB� C11 � � � C1N... ...CM1 � � � CMN 1CCA+= 0BB� A11...AM1 1CCA � B11 � � �B1N � +=(4.7) � C11 � � � C1N �+= � A11 � � � A1K �0B� B11 � � � B1N... ...BK1 � � � BKN 1CA +=(4.8)here the distan
e between single/thin lines is nh and between double/thi
k lines is mh = kh, where nh ismu
h smaller than mh and kh. This will be
ome important later when we noti
e that these o

ur naturallyas we move up and down the memory hierar
hy.Note 2 The above analysis shows that for the ordering of the loops given in Alg. 2, the strategy shouldbe to load Lh with blo
ks of A that �ll most of Lh. The intuitive reason is that the
ost of moving blo
ks36

Algorithm 3 for j = 1; : : : ; Nfor p = 1; : : : ; KLoad Bpj from level h+ 1 to level h. khnh�hfor i = 1; : : : ;MLoad Cij from level h+ 1 to level h. mhnh�hLoad Aip from level h+ 1 to level h. mhkh�hUpdate Cij AipBpj +Cij 2mhnhkh
hStore Cij from level h to level h+ 1 mhnh�hendforendforendforFigure 4.4: Multiple panel-matrix multiply based blo
ked matrix-matrix multipli
ation.Aip between Lh and Lh+1 is amortized over
omputation with many smaller blo
ks Cij and Bpj , whi
h are\streamed" from Lh+1. Simultaneously, the
ost of bringing ea
h of these smaller blo
ks into Lh is itselfamortized over many
omputations, sin
e Aip is essentially as large as possible and almost square.The inner-most loop in Alg. 2 implements multiple matrix-panel multiplies sin
e nh is small relative tomh and kh. Thus the name of this se
tion.4.4.3 Multiple panel-matrix multiplies in LhFinally, moving the loops over p and j to the outside we get the algorithm given in Fig. 4.4. This time, thee�e
tive
ost of a
oating point operation is given by
h+1 = �h2mh+1 + �h + �h2kh + �h2nh +
h(4.9)Again, the question is how to �nd the mh, nh, and kh that minimize
h+1 under the
onstraint that Cij ,Aik and Bkj all �t in Lh, i.e., mhnh + mhkh + nhkh � Sh. Note that the smaller mh, the more spa
e inLh
an be dedi
ated to Bpj and thus the smaller the fra
tions (�h + �h)=2kh and �h=2nh
an be made. Agood strategy is thus to let essentially all of Lh be dedi
ated to Bpj , i.e., nhkh � Sh. The minimum is thenattained when essentially nh � kh � pSh.Noti
e that it suÆ
es to have nh+1 = nh and/or kh+1 = kh for the above
ost of
h+1 to be a
hieved. Inother words, the above holds for the spe
ial
ases0BB� C11 � � � C1N... ...CM1 � � � CMN 1CCA+ = 0BB� A11...AM1 1CCA � B11 � � �B1N � +=(4.10) 0BB� C11...CM1 1CCA+ = 0BB� A11 � � � A1K... ...AM1 � � �AMK 1CCA0BB� B11...BK1 1CCA +=(4.11)an observation that will be
ome important later.Note 3 The above analysis shows that for the ordering of the loops given in Alg. 3, the strategy should be toload Lh with blo
ks of B that �ll most of Lh. The intuitive reason is that the
ost of moving blo
k Bpj betweenLh and Lh+1 is amortized over
omputation with many smaller blo
ks Cij and Aip, whi
h are \streamed"from Lh+1. Simultaneously, the
ost of bringing ea
h of these smaller blo
ks into Lh is itself amortized overmany
omputations, sin
e Bpj is essentially as large as possible and almost square.37

4.5 A heuristi
 for a multi-level algorithmKey observations so far are� From Se
tion 4.4: If one were to perform a matrix-matrix multipli
ation with all operands storedin LL�1 (as would naturally o

ur as part of an appli
ation) then this operation should be stagedto perform multiple panel-panel, matrix-panel, or panel-matrix multiplies, moving data to and/fromLL�2.� Ea
h of the individual panel-panel, matrix-panel, or panel-matrix multipli
ation has the property thatall operands reside in LL�2 and should be staged itself be implemented by utilizing LL�3 eÆ
iently.� Whenever all operands of the matrix-matrix multiply �ll most of Lh+1{ a panel-panel multiply
an be eÆ
iently implemented by performing multiple matrix-panel orpanel-matrix multiplies in Lh. This follows from (4.7) and (4.10).{ a matrix-panel multiply
an be eÆ
iently implemented by performing multiple panel-panel orpanel-matrix multiplies in Lh. This follows from (4.4) and (4.11).{ a panel-matrix multiply
an be eÆ
iently implemented by performing multiple panel-panel ormatrix-panel multiplies in Lh. This follows from (4.5) and (4.8).� From Se
tion 4.2 we
on
lude that even the matrix-matrix multiply in LL�1
an be staged as multiplepanel-panel, matrix-panel, or panel-matrix multiplies.Thus, we
on
lude that at ea
h layer of the memory hierar
hy we should stage the matrix-matrix multiplyas multiple panel-panel, matrix-panel, or panel-matrix multiplies.These observations leads to the following heuristi
 for implementing the matrix-matrix multiply:� If in level Lh+1 one en
ounters a panel-panel multiply, an optimal implementation will utilize a matrix-panel or panel-matrix multiply in Lh. Moreover, the optimal matrix-panel or panel-matrix multiplyin Lh will pi
k kh � pSh and thus kh+1 = kh � pSh. (Re
all that we already determined thatmh+1 � nh+1 �pSh+1 was a desirable blo
king.)� If in level Lh+1 one en
ounters a matrix-panel multiply, an optimal implementation will utilize a panel-panel or panel-matrix multiply in Lh. Moreover, the optimal panel-panel or panel-matrix multiply inLh will pi
k nh � pSh and thus nh+1 = nh � pSh.� If in level Lh+1 one en
ounters a panel-matrix multiply, an optimal implementation will utilize a panel-panel or matrix-panel multiply in Lh. Moreover, the optimal panel-panel or matrix-panel multiply inLh will pi
k mh � pSh and thus mh+1 = mh � pSh.The de
ision made at a give level Lh+1 is summarized in Fig. 4.5. In other words, at ea
h level of thehierar
hy, Lh, one of the three operands is
hosen to be approximately pSh � pSh and �lls most of thatmemory layer while the other two operands are either approximately pSh�1 � pSh of pSh � pSh�1.Another way of viewing this is that one of the operands is moved into level Lh while the other two operandsare streamed (moved in in smaller submatri
es) from level Lh+1. Noti
e that if m0, n0, and k0 are nowgiven, all blo
k sizes are approximately determined by the above analysis.The above heuristi
 leaves a number of questions:1. What
hoi
es to make in memory layer LL�1 sin
e there the shape of the matri
es may not
leanly fallinto any of these
ategories. In parti
ular, What if at some level LL�1 the smallest dimension is mu
hlarger than pSL�2? Noti
e that our theory a
tually does answer this question sin
e...2. What if at some level Lh+1 the \small" dimension is mu
h smaller than pSh. Indeed, what if morethan one dimension is \small" relative to pSh.We will visit these questions later. 38

Shape in Lh+1 Optimal blo
kings Shape in Lh

nh +=mh+1 � kh+1 �������R

+= -

+=+= +=mh � kh6
+=mh � kh6mh+= kh+1 � nh+1�������R += -+= -

+=kh � nh6

+=kh � nh6-

mh+1 � nh+1 kh+= �������R

+= -

+= -
mh � nh6+=

mh � nh6+=Figure 4.5: Optimal partitioning at memory level Lh and resulting shapes in level Lh+1.

39

4.6 Pra
ti
al
onsiderationsIn the previous se
tion we developed a heuristi
 for implementation of matrix-matrix multipli
ation thatbest amortizes movement of data between memory hierar
hies from a lo
al point of view. However, thereare many issues asso
iated with a
tual implementation that are ignored by the analysis and the heuristi
.In this se
tion we dis
uss implementation details that do take some of those issues into a

ount. We do soby noting
ertain ma
hine
hara
teristi
s that to our knowledge hold for a wide variety of ar
hite
tures.Rather than making the register level our lowest level, we start with L1, the L1
a
he. The reason for thisis that at that level loop indexing is a major
on
ern and thus a lot of ma
hine details must be
onsidered.We will not dis
uss how registers
ome into play sin
e this goes beyond the s
ope of this
hapter.4.6.1 L1-kernels (lowest level)While previously we have dis
ussed the shape of the
omputation to be performed in the L1
a
he to bea panel-panel, matrix-panel or panel-matrix multiply, in order to keep loop indexing down to a minimum,at that level our kernels a
tually perform multiple su
h operations. Spe
i�
ally, this allows the loops to beunrolled to eliminate most of the loop overhead.Matrix-panel L1-kernelOur theory indi
ates that one of the operations that may be en
ountered at the L1 level is a matrix-panelmultiply. Instead, we
onsider the operation C AB + C where C is m1 � n, A is m1 � k1, and B isk1 � n, with n >> n0. The idea is that the overhead of performing the multiple matrix-panel multipliesen
ountered in the matrix-panel multiply based approa
hes dis
ussed in Se
. 4.4.2 is amortized over manysu
h matrix-panel multiplies.The question is how to perform the
omputation so that elements of A are used with a frequen
y so thatthe
a
he-repla
ement poli
y keeps A in the L1
a
he. To a
hieve this, C is
omputed a few
olumns at atime. For example, if C is
omputed a single
olumn at a time, for every m1 elements of C and k1 elementsof B all m1 � k1 elements of A are a

essed and whi
h tends to keep A in the L1
a
he.Panel-matrix L1-kernelWe similar treat the
ase where the shape of matri
es in L1 is a panel-matrix multiply. This time, we
onsider the operation C AB+C where C is m�n1, A is m� k1, and B is k1�n1, with m >> m0. Theidea is that the overhead of performing the multiple panel-matrix multiplies en
ountered in the panel-matrixmultiply based approa
hes dis
ussed in Se
. 4.4.3 is amortized over many su
h panel-matrix multiplies.This time, the
omputation must be or
hestrated in su
h a way that the elements of B are used with afrequen
y so that the
a
he-repla
ement poli
y keeps B in the L1
a
he. To a
hieve this, C is
omputed afew rows at a time.Panel-panel L1-kernelWe
ould similarly treat the
ase where the shape of matri
es in L1 is a panel-panel multiply. If so, we would
onsider the operation C AB + C where C is m1 � n1, A is 1m � k, and B is k � n1, with k >> k0.However, for this approa
h leads to a utilization of the registers that requires elements of C to be loadedto and stored from registers with great frequen
y. This inherently leads to an L1-kernel that is slower thaneither the matrix-panel or panel-matrix multiply kernel. Thus, we don't
onsider this approa
h to be a viableL1-kernel. We will analyze approa
hes for L2-kernels under the assumption that this parti
ular L1-kernel isnot available. Thus, in Fig. 4.6 we delete from Fig. 4.5 the panel-panel multiply as a possibleshape in the L1 level.4.6.2 L2-kernelWe now ask ourselves the question of what possible algorithms
an be implemented when we perform amultipli
ation with matri
es that are stored in L2. To answer this question, we turn to Fig. 4.6 in whi
h wedelete the shapes and algorithms in Fig. 4.5 that now
annot be supported.40

Shape in L2 Optimal blo
kings Shape in L1

+= �������R

+= -

+=+= +=
+=

+= �������R ���������PPPPPPPPP+= -+= -

+=

+=-

+= �������R

���������PPPPPPPPP+= -

+= -
�������HHHHHHH+=

�������HHHHHHH+=Figure 4.6: Possible algorithms for matri
es in memory level L2 given that our kernel at L1
an onlya

ommodate matrix-panel and panel-matrix multipli
ation.

41

Just like for the L1-kernel, our L2-kernel assumes that one matrix of size approximately pS2 � pS2is moved into L2 after whi
h multiple panel-panel, matrix-panel, or panel-matrix multiplies
ommen
e.Depending on whi
h matrix o

upies most of L2, one of the four blo
kings remaining in Fig. 4.6 is used tosmaller subproblems that
an be passed to the L1-kernel.For the sake of
onsisten
y, our L2-kernel performs multiple panel-panel, matrix-panel, or panel-matrixmultiplies, like the L1-kernel. This is illustrated in Fig. 4.7.Noti
e that if the L2-kernel implements multiple panel-panel multiplies, there is a
hoi
e of two possibleblo
kings. One leads to a panel-matrix multiply as basi
 operation in the L1 level, the other to a matrix-panelmultiply. The question naturally be
omes whi
h of the two to use. Noti
e from (4.9) that the panel-matrixmultiply based algorithm has a
ost of
PM2 = �12m2 + �1 + �12k1 + �12n1 +
1while (4.6) shows the matrix-panel multiply based algorithm has a
ost of
MP2 = �12n2 + �1 + �12k1 + �12m1 +
1If parameters �1 and �1 are equal in both these equations, the panel-matrix multiply based algorithmoutperforms the matrix-panel multiply based algorithm when
PM2 <
MP2 or1m2 + 1n1 < 1n2 + 1m1Note that one
an expe
t
1 to be equal for both equations sin
e in our situation the L1-kernel is one andthe same for both approa
hes.4.6.3 L3-kernelFor
urrent generation mi
ropro
essors, the L3 level is typi
ally the primary RAM of the pro
essor. For thisreason, our dis
ussion will target that situation.Noti
e that while in this level on the surfa
e it may appear that one should analyze the general matrix-matrix multipli
ation C �AB + �C for general m � n matrix C, m � k matrix A, and k � n matrixB. However, a
ommon use of matrix-matrix multipli
ation is as part of the implementation of other denselinear algebra algorithms, e.g. for fa
torization operations like LU, Cholesky, and QR fa
torization. In thosealgorithms, as implemented in LAPACK, the matrix-matrix multiply invariably appears as a panel-panel,matrix-panel or panel-matrix multiply. Indeed, the width of the panels involved are determined by the widththat makes matrix-matrix multipli
ation operate at peak performan
e. Thus, the most important
ases ofto analyze are exa
tly those where one of m, n, or k equals approximately pS2. Thus, we again analyzethe panel-panel, matrix-panel, and panel-matrix multiply before pro
eeding with the general
ase. To do so,again
onsider Fig. 4.5.L3-kernel for panel-panel multiplyIn this
ase k = k2 � pS2. As for the L2-kernel there are now two
hoi
es for implementation: a panel-matrix multiply based algorithm and a matrix-panel multiply based algorithm. The �rst yields an e�e
tive
ost per
oating point operation of
PM3 = �22m + �2 + �22k2 + �22n2 +
2while the se
ond yields
MP3 = �22n + �2 + �22k2 + �22m2 +
2If parameters �2, �2, and
2 are equal in both these equations, the panel-matrix multiply based algorithmoutperforms the matrix-panel multiply based algorithm when
PM3 <
MP3 or1m + 1n2 < 1n + 1m242

Note that one
annot expe
t
2 to be equal for both equations sin
e in our situation the L2-kernel for ea
hof the L2-kernels is not the same for both approa
hes.L3-kernel for panel-matrix multiplyIn this
ase m = m2 � pS2. Unlike for the L2-kernel there are now two
hoi
es for implementation: apanel-panel or matrix-panel multiply based algorithm. The �rst yields an e�e
tive
ost per
oating pointoperation of
PP3 = �22m2 + �2 + �22k + �22n2 +
2while the se
ond yields
MP3 = �22n + �2 + �22k2 + �22m2 +
2Again, if parameters �2, �2, and
2 are equal in both these equations, the panel-panel multiply basedalgorithm outperforms the matrix-panel multiply based algorithm when
PP3 <
MP3 or??? < 1n + 1m2Again, one
annot expe
t
2 to be equal for both equations sin
e in the L2-kernel for the two approa
hes isnot the same.L3-kernel for matrix-panel multiplyIn this
ase n = n2 � pS2. There are two
hoi
es for implementation: a panel-panel and a panel-matrixmultiply based algorithm. The �rst yields an e�e
tive
ost per
oating point operation of
PP3 = �22m2 + �2 + �22k + �22n2 +
2while the se
ond yields
PM3 = �22m + �2 + �22k2 + �22n2 +
2If parameters �2, �2, and
2 are equal in both these equations, the panel-panel multiply based algorithmoutperforms the panel-matrix multiply based algorithm when
PP3 <
PM3 or1m + 1n2 <???Again, one
annot expe
t
2 to be equal for both equations sin
e in the L2-kernel for the two approa
hes isnot the same.4.7 A family of algorithmsWe now turn the observations made above into a pra
ti
al implementation.High-performan
e implementations of matrix multipli
ation typi
ally start with an \inner-kernel". Thiskernel
arefully or
hestrates the movement of data in and out of the registers and the
omputation underthe assumption that one or more of the operands are in the L1
a
he. For our implementation on the IntelPentium (R) III pro
essor, the inner-kernel performs the operation C = ATB+�C where 64�8 matrix A iskept in the L1
a
he. Matri
es B and C have a large number of
olumns, whi
h we view as multiple-panels,with ea
h panel of width one. Thus, our inner-kernel performs a multiple matrix-panel multiply (MMP) witha transposed resident matrix A. The te
hni
al reasons why this parti
ular shape was sele
ted go beyond thes
ope of this paper.While it may appear that we thus only have one of the three kernels for operation in the L1
a
he, noti
ethat for the submatri
es with whi
h we
ompute at that level one
an instead
ompute CT = BTA + CT ,43

L 2-kernel
ShapeinL 2
Optimalblo
k
ings
L 1-kernel

+=
���� � � �R

+= option1-
+=+=
- +=+=

+= ���� � � �R
+=
-+=+=

+= ���� � � �R
+= option2-

+= ���.+= . . . ���+= ���
Figure 4.7: A tree of possible algorithms for matri
es in memory level L3 given that our kernel at L1
anonly a

ommodate matrix-panel and panel-matrix multipli
ation.

44

reversing the role of A and B. This simple observation allows us to
laim that we also have an inner-kernelthat performs a multiple panel-matrix multiply (MPM).Let us introdu
e a naming
onvention for a family of algorithms that perform the dis
ussed algorithmsat di�erent levels of the memory hierar
hy:<kernel at L3>-<kernel at L2>-<kernel at L1>.For example MPP-MPM-MMP will indi
ate that the L3-kernel uses multiple panel-panel multiplies,
allsthe L2-kernel that uses multiple matrix-panel multiplies, whi
h in turn
alls the L1-kernel that uses multiplepanel-matrix multiplies. Given the
onstraint that only two of the possible three kernel algorithms areimplemented at L1, the tree of algorithms in Fig. 4.7
an be
onstru
ted.4.8 Performan
eIn this se
tion, we report performan
e attained by the di�erent algorithms. Details regarding the performan
etest bed
an be found in 1.4. For the usual matrix dimensions m, n, and k, we use the operation
ount2mnk for a matrix-matrix multipli
ation. We tested performan
e of the operation C = C � AB (� = �1and � = 1) sin
e this is the
ase most frequently en
ountered when matrix multipli
ation is used in librarieslike LAPACK.4.8.1 Implementations testedIt turns out that whenever all operands start by being stored in main memory, there is no noti
eable di�eren
ebetween the di�erent loop orderings at that level. In other words, MPM-MMP-MPM a
hieves performan
ethat is essentially identi
al to MPP-MMP-MPM. Thus, we only report performan
e for the following variants:MPM-MMP-MPM, MMP-MPM-MMP, MPM-MPP-MPM, and MPM-MPP-MMP.4.8.2 Determining optimal blo
k sizesOur �rst experiment is intended to demonstrate that the blo
k size
hosen for the matrix that remainsresident in the L2
a
he has a
lear e�e
t on the overall performan
e of the matrix multipli
ation routine.In Fig. 4.8(a) we report performan
e attained as a fun
tion of the fra
tion of the L2
a
he �lled with theresident matrix when a matrix multipli
ation with k = m = n = 1000 is exe
uted. This experiments testsour theory that reuse of data in the L2
a
he impa
ts overall performan
e as well as our theory that theresident matrix should o

upy \most" of the L2
a
he. Note that performan
e improves as a larger fra
tionof the L2
a
he is �lled with the resident matrix. On
e the resident matrix �lls more than half of the L2
a
he, performan
e starts to diminish. This is
onsistent with the theory whi
h tells us that some of the
a
he must be used for the matri
es that are being streamed from main memory. On
e more than 3/4 of theL2
a
he is �lled with the resident matrix, performs drops signi�
antly. This is
onsistent with the s
enariowhere parts of the other matri
es start va
ating parts of the resident matrix from the L2
a
he.The exa
t reason why the MPM-MMP-MPM variant performs better when the blo
k size is
hosenappropriately is not entirely
lear. Most likely, it has to do with the details of the pa
king and unpa
kingroutines that are part of the implementation.Based on the above experiment, we �x the blo
k size for the resident matrix in the L2
a
he to 128�128,whi
h �lls exa
tly half of this
a
he, for the remaining experiments.4.8.3 Resident matri
esThe next set of experiments show that the
ost of moving a submatrix into the L2
a
he and then amortizingthe
ost of this memory operation over as mu
h
omputation as possible is indeed observable in pra
ti
e.Matrix A resident in L2: In Fig. 4.8(b), dimensions m and k are �xed to 128. This implies that matrixA �lls half of the L2
a
he. Noti
e that variant MPM-MMP-MPM will keep 128�128 submatri
es of Aresident in the L2
a
he. Thus, one would expe
t performan
e to in
rease smoothly as n is in
reased.For the other variants, one would expe
t a drop in performan
e whenever n be
omes slightly largerthan a multiple of 128, sin
e they attempt to keep 128� 128 submatri
es of C or B in the L2
a
he:whenever n is slightly larger than 128, one of the submatri
es of A or B is relatively small.45

Matrix B resident in L2: In Fig. 4.8(
), dimensions n and k are �xed to 128. This implies that matrix B�lls half of the L2
a
he. Noti
e that variant MMP-MPM-MMP will keep 128� 128 submatri
es of Bresident in the L2
a
he. Thus, one would expe
t performan
e to in
rease smoothly as m is in
reased.For the other variants, one would expe
t a drop in performan
e whenever k be
omes slightly largerthan a multiple of 128, sin
e they attempt to keep 128� 128 submatri
es of C or A in the L2
a
he:whenever m is slightly larger than 128, one of the submatri
es of C or A is relatively small.Matrix C resident in L2: In Fig. 4.8(d), dimensions m and n are �xed to 128. This implies that matrix C�lls half of the L2
a
he. Noti
e that variants MPM-MPP-MPM and MPM-MPP-MMP will both keep128� 128 submatri
es of C resident in the L2
a
he. Thus, one would expe
t performan
e to in
reasesmoothly as k is in
reased. For the other variants, one would expe
t a drop in performan
e wheneverk be
omes slightly larger than a multiple of 128, sin
e they attempt to keep 128 � 128 submatri
esof A or B in the L2
a
he: whenever k is slightly larger than 128, one of the submatri
es of A orB is relatively small. Unfortunately, we
annot observe this phenomena, sin
e the L1 kernel takes aperforman
e hit every time k is slightly larger than 64.4.8.4 Commonly en
ountered shapesThe most
ommonly en
ountered spe
ial
ases of matrix-matrix multipli
ation are the matrix-panel, panel-matrix, and panel-panel multipli
ations. Not only did they show up in this paper as the shape that isen
ountered at ea
h level of the memory hierar
hy, but it is also the shape that shows up when implementingother matrix operations like LU, Cholesky, and QR fa
torization, for example as part of LAPACK.Matrix-panel multiply In Fig. 4.9(a) we report performan
e as a fun
tion of n (the number of
olumnsin the panel) when m and k are �xed to be large. Noti
e that our theory indi
ates that when a matrix-panel multiply is performed in main memory, the L2 kernel should perform multiple panel-matrix orpanel-panel multiplies. The theory indi
ates that MPP-MMP-MPM and MPM-MMP-MPM, whi
hperform a matrix-panel multiply in the L2 level, should not be good
hoi
es. The data in Fig. 4.9(a)supports this.Panel-matrix multiply In Fig. 4.9(b) we report performan
e as a fun
tion of m (the number of
olumnsin the panel) when n and k are �xed to be large. Noti
e that our theory indi
ates that when a panel-matrix multiply is performed in main memory, the L2 kernel should perform multiple matrix-panelor panel-panel multiplies. Thus, MPM-MMP-MPM, MPM-MPP-MPM, or MPM-MPP-MMP shouldperform well. The theory indi
ates that MMP-MPM-MMP, whi
h perform a panel-matrix multiplyin the L2 level, would not be good
hoi
e. The data in Fig. 4.9(b) supports this in the sense thatMMP-MPM-MMP, whi
h for other matrix shapes frequently did well, does not perform quite as wellfor small m.Panel-panel multiply In Fig. 4.9(
) we report performan
e as a fun
tion of k (the number of
olumns inthe panel) when m and n are �xed to be large. Noti
e that our theory indi
ates that when a panel-panel multiply is performed in main memory, the L2 kernel should perform multiple matrix-panel orpanel-matrix multiplies. The theory indi
ates that variants *-MPP-*, whi
h perform multiple panel-panel multiplies in the L2 level, should not be good
hoi
es. The data in Fig. 4.9(
) supports this inthe range 64 � k � 128. Interestingly enough, it does not appear to be true in the range k � 64 forMPM-MPP-MMP. We believe that
an be attributed to the fa
t that in that range there isn't suÆ
ientopportunity for reuse of data in the L2
a
he. As a result, it is best to ignore it, whi
h is essentiallywhat MPM-MPP-MMP does.4.8.5 Square matri
esMatrix multipli
ation with square matri
es is relatively un
ommon in pra
ti
e. However, it is
ommonlypresented in papers. Thus, for good measure, we in
lude Fig. 4.9(a).46

