
Developing Linear Algebra Algorithms:A Colletion of Class ProjetsSTATUS AT END OF SEMESTERFLAME Working Note #3John A. GunnelsRobert A. van de GeijnDepartment of Computer SienesThe University of TexasAustin, TX 78712fgunnels,rvdgg�s.utexas.eduMay 31, 2001

1

AbstratIn this doument we present a new approah to developing sequential and parallel dense linear algebralibraries. Given a linear algebra operation, we demonstrate how formal tehniques an be used to derive afamily of algorithms. Due to the systemati approah used, orretness of the algorithms an be asserted.Next, we introdue a library of routines that hides the manipulation of indies and allows the ode to mirrorthe algorithms as they are naturally presented. The idea is that by having the ode mirror the algorithm,the opportunity for introduing indexing errors is minimized. Thus, the orretness assertions regarding thealgorithms arry over to the implementations.The philosophy behind the approah is that one should start by systematially deriving the algorithms.The reipe for derivation is given in Chapter 2. Moreover, this derivation should be arefully doumented.To failitate this, we provide a set of LATEX maros, given in an appendix. One one or more algorithmshave been developed, they are translated to implementations using a library of C routines, as part of theFormal Linear Algebra Methods Environment (FLAME). This library allows the ode to look muh like thealgorithms as written using LATEX. For all examples in the report we demonstrate that high performanean be attained on an Intel Pentium (R) III proessor.We illustrate the tehniques with a large number of ase studies, most of whih were arried out byteams of omputer siene undergraduate students as part of a lass taught in Spring 2001 at UT-Austintitled High-Performane Parallel Algorithms. The names of the members of the teams are given as theauthors of the hapter on the operation assigned to that team. Thus we show that the approah makesthe development and implementation of high-performane sequential and parallel algorithms for dense linearalgebra operations aessible to novies.It is important to realize that this doument is meant to apture the progress of the projet during asingle semester. Thus, the doument is inomplete in many ways. For example, the review of the literatureis sparse at best. Many setions and hapters are missing or inomplete. Typographial errors are satteredthroughout. For eah operation, only a few algorithms are derived and implemented. The performane resultsare limited to a single arhiteture. While high-performane parallel implementations were also reated usingour Parallel Linear Algebra Pakage (PLAPACK), the disussion of these implementations did not make itinto the doument. It is our hope that there is value in this doument despite these shortomings.

1

Contents
1 Introdution 61.1 The ase for formal derivation . 71.2 Notation . 81.3 A motivating example: LU fatorization . 81.4 Performane experiments . 91.5 Overview . 111.6 Availability . 112 Formal Derivation 122.1 The orretness of loops . 122.2 A reipe for deriving linear algebra algorithms . 132.2.1 A typial operation . 132.2.2 determining possible loop invariants . 133 Coding Linear Algebra Algorithms 223.1 initializing and �nalizing FLAME . 223.2 Creating an objet . 223.2.1 Objet destrution . 243.2.2 Inquiry routines . 243.2.3 Setting and extrating the ontents . 263.3 A simple driver: matrix-vetor multipliation . 263.4 Views . 273.5 Other useful routines . 314 Matrix-Matrix Multipliation:The Key to High Performane 32by John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn4.1 The objet of the game . 324.2 Speial ases of matrix-matrix multipliation . 334.3 A ost model for hierarhial memories . 344.4 Building-bloks for matrix multipliation . 344.4.1 Multiple panel-panel multiplies in Lh . 354.4.2 Multiple matrix-panel multiplies in Lh . 364.4.3 Multiple panel-matrix multiplies in Lh . 374.5 A heuristi for a multi-level algorithm . 384.6 Pratial onsiderations . 404.6.1 L1-kernels (lowest level) . 404.6.2 L2-kernel . 404.6.3 L3-kernel . 424.7 A family of algorithms . 434.8 Performane . 454.8.1 Implementations tested . 454.8.2 Determining optimal blok sizes . 452

4.8.3 Resident matries . 454.8.4 Commonly enountered shapes . 464.8.5 Square matries . 464.9 Impat on algorithm design . 494.10 Related work . 495 Triangular Matrix MultipliationB LB 505.1 Algorithms that start by splitting L . 505.1.1 Row-lazy algorithm (relative to L) . 515.1.2 Lazy algorithm (relative to L) . 555.2 Algorithms that start by splitting B . 555.2.1 Right-moving (lazy) algorithm . 575.2.2 Left-moving (lazy) algorithm . 585.3 Implementation . 585.4 Performane . 626 Symmetri Matrix MultipliationC BA+ CA symmetri, stored in upper triangle 66by Wynne A. Hexamer6.1 Derivation of a Family of Algorithms . 666.1.1 Column-lazy algorithm (relative to A) . 686.1.2 Lazy algorithm (relative to A) . 696.2 Implementation . 736.3 Performane . 737 Symmetri Matrix MultipliationC AB + CA symmetri, stored in lower triangle 76by Eri G. Geordi and Stephen Y. Hui7.1 Algorithms that start by splitting A . 767.1.1 Up-moving lazy algorithm (relative to C) . 777.1.2 Down-moving algorithm (relative to C) . 817.2 Implementation . 847.3 Performane . 848 Symmetri Rank-k UpdateC AAT + CC symmetri, stored in lower triangle 89by Daniel J. Atkinson and Brian R. Walker8.1 Algorithms that start by splitting C . 898.1.1 Up-left moving algorithm (lazy w.r.t. C) . 908.1.2 Down-right moving algorithm (lazy w.r.t. C) . 928.2 Implementation . 948.3 Performane . 949 Symmetri Rank-2k UpdateC ABT +BAT + �CC symmetri, stored in lower triangle 99by Jin Pan, Hoa V. Phan, and Yu-Hung (Eddie) Wang9.1 Algorithms that start by splitting C . 999.1.1 Lazy algorithm (down-right moving relative to C) . 1009.2 Implementation . 1049.3 Performane . 1043

10 Symmetri Rank-2k UpdateC ATB +BTA+ CC symmetri, stored in lower triangle. 108by Robert M. Green and Jerry L. Slayton10.1 Algorithms that start by splitting C . 10810.1.1 Right-down moving lazy algorithm (w.r.t. C) . 10910.2 Implementation . 11310.3 Performane . 11311 Triangular Matrix MultipliationB LTB 117by Nikou Oskouipour and Jason S. Stirman11.1 Algorithms that start by splitting L . 11711.1.1 Column-lazy algorithm (relative to L) . 11811.1.2 Lazy algorithm (relative to L) . 12111.2 Implementation . 12311.3 Performane . 12312 Triangular Matrix MultipliationB BLT 127by Deepak Giridharagopal, Sammuel A. Jarmon, and Shivraj Ramanan12.1 Algorithms that start by splitting L . 12712.1.1 Lazy algorithm (relative to L) . 12812.1.2 Row-lazy algorithm (relative to L) . 13212.2 Implementation . 13412.3 Performane . 13413 Triangular Matrix MultipliationB �BU 138by Joshua L. Reid, Stephanie E. Rowland, and Robert V. Wilder13.1 Algorithms that start by splitting U . 13813.1.1 Column-lazy algorithm (relative to U) . 13913.1.2 Lazy algorithm (relative to U) . 14213.2 Algorithms that start by splitting B . 14413.2.1 Down-moving (lazy) algorithm . 14413.2.2 Up-moving (lazy) algorithm . 14513.3 Implementation . 14513.4 Performane . 14514 Triangular Matrix MultipliationB BUT 150by Eugene Ho and Lea Kulapaditharom14.1 Algorithms that start by splitting U . 15014.1.1 Row-Lazy algorithm (relative to U) . 15214.1.2 Lazy Algorithm (relative to U) . 15314.2 Implementation . 15914.3 Performane . 15915 Triangular Solve (with Multiple RHSs)B L�TB 161by Trey Henninger and Miguel V�azquez Gar��a15.1 Algorithms that start by splitting L . 16115.1.1 Row-lazy algorithm (relative to L) . 16215.1.2 Lazy algorithm (relative to L) . 16515.2 Implementation . 1664

15.3 Performane . 16616 Triangular Solve (with Multiple RHSs)B BL�T 171by C. Brandon Forehand, Christopher C. Johnson, and David J. Patshke16.1 Algorithms that start by splitting L . 17116.1.1 Column-lazy algorithm (relative to L) . 17216.1.2 Lazy algorithm (relative to L) . 17516.2 Implementation . 17816.3 Performane . 178A Basi Linear Algebra Operations 182A.1 Operations on vetors and matries . 182B Desribing FLAME algorithms in LATEX 186C Computational Routines (alphabetial) 189C.1 Constants . 189C.2 Routines . 189Index 199Author Index 202Constant Index 203Funtion Index 204Operation Index 205

5

Chapter 1IntrodutionWhen onsidering the unmanageable omplexity of omputer systems, Dijkstra reently made the followingobservations [10℄:(i) When exhaustive testing is impossible {i.e., almost always{ our trust an only bebased on proof (be it mehanized or not).(ii) A program for whih it is not lear why we should trust it, is of dubious value.(iii) A program should be strutured in suh a way that the argument for its orretnessis feasible and not unneessarily laborious.(iv) Given the proof, deriving a program justi�ed by it, is muh easier than, given theprogram, onstruting a proof justifying it.Our Formal Linear Algebra Methods Environment (FLAME) is an attempt to address these onerns whenoding linear algebra libraries [18℄.The ore undergraduate urriulum in omputer siene department often inludes at least one oursethat fouses on the formal derivation and veri�ation of algorithms [13℄. Many of us in sienti� omputingmay have, at some point in time, hastily dismissed this approah, arguing that this is all very nie for small,simple algorithms, but an aademi exerise hardly appliable in \our world." Sine it is often the ase thatour work involves libraries omprised of hundreds of thousands or even millions of lines of ode, the knee-jerk reation that this approah is muh too umbersome to take seriously is understandable. Furthermore,the momentum of established praties and \traditional wisdom" do little if anything to dissuade one fromthis line of reasoning. Yet, as the result of our searh for superior methods for designing and onstrutinghigh-performane parallel linear algebra libraries, we have ome to the onlusion that it is only throughthe systemati approah o�ered by formal methods that we will be able to deliver reliable, maintainable,exible, yet highly eÆient matrix libraries even in the relatively well-understood area of (sequential andparallel) dense linear algebra.While some would immediately draw the onlusion that a hange to a more modern programminglanguage like C++ is at least highly desirable, if not a neessary preursor to writing elegant ode, the fat isthat most appliations that all pakages like the Linear Algebra PACKage (LAPACK) [4℄ and the SalableLinear Algebra PACKage SaLAPACK [8, 7℄ are still written in Fortran and/or C. Interfaing suh anappliation with a library written in C++ presents ertain ompliations. However, during the mid-nineties,the Message-Passing Interfae (MPI) introdued to the sienti� omputing ommunity a programmingmodel, objet-based programming, that possesses many of the advantages typially assoiated with theintelligent use of an objet-oriented language [33℄. Using objets (e.g. ommuniators in MPI) to enapsulatedata strutures and hide omplexity, a muh leaner approah to oding an be ahieved. Our own work onthe Parallel Linear Algebra PACKage (PLAPACK) borrowed from this approah in order to hide details ofdata distribution and data mapping in the realm of parallel linear algebra libraries [3, 5, 16, 29, 30, 35, 37℄.The primary onept also germane to this paper is that PLAPACK raises the level of abstration at whihone programs so that indexing is essentially removed from the ode, allowing the routine to reet thealgorithm as it is naturally presented in a lassroom setting. Sine our initial work on PLAPACK, wehave experimented with similar interfaes in suh seemingly disparate ontexts as (parallel) out-of-ore6

linear algebra pakages [19, 31, 32℄ and a low-level implementation of the sequential Basi Linear AlgebraSubprograms (BLAS) [11, 12, 17, 28℄.Our Formal Linear Algebra Methods Environment (FLAME) is the latest step in the evolution of thesesystems. It failitates the use of a programming style that is equally appliable to everything from out-of-ore,parallel systems to single-proessor systems where ahe-management is of paramount onern.Over the last seven or eight years it has beome apparent that what makes our task of library developmentmore manageable is this systemati approah to deriving algorithms oupled with the abstrations we useto make our ode reet the algorithms thus produed. Further, from these experienes we an on�dentlystate that this approah to programming greatly redues the omplexity of the resultant ode and does notsari�e high performane in order to do so.Indeed, the formal tehniques that we may have dismissed as merely aademi or impratial make thispossible, as we attempt to illustrate in this doument.1.1 The ase for formal derivationIdeally, an implementation should learly reet the algorithm as it is presented in a lassroom setting.Additionally, some of the derivation of the algorithm should be apparent in the ode and di�erent variantsof an algorithm should be reognizable as slight perturbations to an algorithmi \skeleton" or base ode.indexbase ode If the ode is just a mehanially-realizable, straightforward translation of this algorithmiexpression, there should be no opportunity for the introdution of logial errors or oding bugs. (Note:while we will frequently refer to translations from algorithms to ode as being mehanial or automati, thisproess is urrently performed by hand.) Presumably, it should be possible to prove the algorithms orret,thus ensuring that the ode is orret.Typially, it is diÆult to prove ode orret preisely beause one is not ertain that the ode trulymirrors the algorithm. With our approah, the hasm is largely bridged by the simple yet ruial fatthat some very simple syntati rewrite rules an produe the ode from an algorithm expressed as onemight in a lassroom, using mathematial formulas and stylized matrix depitions. Sine we an prove theorretness of the algorithm we wish to employ (the proof is generally onstrutive in nature, but this isof little onsequene) and beause the orretness of the translation from algorithm to ode is at least asreliable as ompiler tehnology, the omplexity of the task at hand is greatly ameliorated. By assuming thatomponents adhere to expliit \ontratual obligations" [2℄, the algorithmi proof requires little alterationin order to be appliable to the ode. In the ase of a library onstruted entirely through the methodologypresented here, these omponents would be omposed in like manner so as to make this task manageable.This is largely due to the fat that the approah presented here leads to a software arhiteture layered insuh a way so as to require one to rely on the orretness of a very small number of base-level modules.Sine those units are small, their orretness an be established through the appliation of standard formalmethods. It is true that, in pratie, one must aept that an appliation will need to interfae with otherlibraries (for example, the vendor-supplied BLAS) that are not built in a \proof-friendly" format. However, itmay still be possible to establish the orretness of a program if one is areful to impose minimal obligationson these, presumably time-tested and well-doumented, piees of ode.It should be noted that the \orretness" disussed so far does not address issues of numerial stability.We make no laim regarding the stability of the resulting algorithm.Having said this, we will larify through a simple example in Setionse:example. But �rst, we reviewommonly used matrix and vetor notation. For those for whom linear algebra is not seond nature, themost basi of operations are reviewed in A
7

1.2 NotationA (olumn) vetor, x, is the n-tuple of real or omplex numbersx = 0BBB� �1�2...�n 1CCCAHere �i are alled the omponents of vetor x. We will denote the set of all vetors with real omponentsRn and with omplex omponents Cn.A row vetor, xT , is the n-tuple of real or omplex numbersxT = � �1 �2 � � � �n �Here xT indiates a transposed (olumn) vetor. (We will always assume vetors are olumn vetors,unless transposed like this, or expliitly noted.) More about transposition next.An m� n matrix, A, is the arrayA = 0BBB� �11 �12 � � � �1n�21 �22 � � � �2n...�m1 �m2 � � � �mn 1CCCAwith m rows and n olumns. The (i; j) omponent, or element, of A refers to �ij , whih may be real oromplex. The numbers m and n are the dimensions of A. If m = n then the matrix is said to be square.Otherwise, it is said to be retangular.Notie that we use the onvention introdued in [34℄ of using Greek letters for real or omplex numbers,lowerase italiized letters for vetors, and upperase italiized letters for matries.Frequently, we will wish to partition a matrix into bloks. For example, if A is an m� n matrix, it anbe partitioned into a M �N matrix of submatries likeA = 0BBB� A11 A12 � � � A1NA21 A22 � � � A2N...AM1 AM2 � � � AMN 1CCCAwhere Aij is an mi � nj matrix, with PNi=1 ni = n and PMi=1mi = m.Similarly, a vetor an be partitioned into subvetors. For example, if x is a vetor of length n, we maywish to partition like x = 0BBB� x1x2...xN 1CCCAwhere xi is an vetor of length ni, with PNi=1 ni = n.Additional notation and basi linear algebra operations are reviewed in Appendix A.1.3 A motivating example: LU fatorizationWe illustrate our approah by onsidering LU fatorization without pivoting. Given an n� n matrix A wewish to ompute an n�n lower triangular matrix L with unit main diagonal and an n� n upper triangularmatrix U so that A = LU . The original matrix A is overwritten by L and U in the proess.8

The usual derivation of an algorithm for the LU fatorization proeeds as follows: PartitionA = � �11 aT12a21 A22 � ; L = � 1 0l21 L22 � ; and U = � � uT120 U22 �Now A = LU translates to� �11 aT12a21 A22 � = � 1 0l21 L22 � ;� � uT120 U22 � = � � uT12l21�11 l21uT12 + L22U22 �so the following equalities hold: � �11 = � aT12 = uT12a21 = �11l21 a22 = l21uT12 + L22U22 �Finally, we arrive at the following algorithm� Overwrite �11 and aT12 with �11 and uT12, respetively (no-op).� Update a21 l21 = a21=�11.� Update A22 A22 � l21uT12.� Reursively fator A22 ! L22U22.While the algorithm is formulated as tail-reursive, it is usually implemented as a loop.When presented in a lassroom setting, the explanation is typially aompanied by the following pro-gression of pitures:
� urrent A - �11a21�11 aT12� A22 � a21�11 aT12 -with an indiation that at a given stage the urrent ative part of the matrix resides in the lower-rightquadrant of the left piture. Next, the di�erent parts to be updated are identi�ed and the updates given(middle piture). Finally, the boundary indiating how far the omputation has progressed is moved forward(right piture).It is this progression depited in the pitures that we try to apture both in the derivation and theimplementation of the algorithm. We laim that the disussed algorithm for LU fatorization is naturallygiven by the algorithm in Fig. 1.1. A ode for implementing the algorithm using FLAME is given in Fig. 1.2.The ode an be obtained from the algorithm essentially via textual substitution. Notie that the allsto FLA Inv sal and FLA Ger implement division of a vetor by a salar and rank-1 update of a matrix,respetively. The formatting of the ode is a deliberate attempt to apture the partitioning and repartitioningin the algorithm.1.4 Performane experimentsFor eah matrix operation disussed in this doument, we report performane on an Intel Pentium III (650MHz) proessor with 16 Kbyte L1 data ahe and a 256 Kbyte L2 ahe running RedHat 7.1 Linux. Alloating point alulations were performed in double preision (64-bit) arithmeti.The FLAME routines that perform level 1 BLAS (vetor-vetor operations) and level 2 BLAS (matrix-vetor operations) interfae to a standard BLAS library. For performane experiments, the ATLAS libraryimplementation was used [36℄. In partiular, the prebuilt version in9

partition A! � ATL ATRABL ABR � where ATL is 0� 0do until ABR is 0� 0repartition � ATL ATRABL ABR �! 0� A00 a01 A02aT10 �11 aT02A20 a21 A22 1Awhere �11 is a salar�11 �11 = �11aT12 uT12 = aT12a21 l21 = a21=�11A22 A22 � l21uT12ontinue with � ATL ATRABL ABR � 0� A00 a01 A02aT10 �11 aT02A20 a21 A22 1AenddoFigure 1.1: An unbloked (rank-1 update based) eager LU fatorization algorithm (without pivoting)1 #inlude "FLAME.h"23 void FLA_LU_nopivot_eager_level2(FLA_Obj A)4 {5 FLA_Obj ATL, ATR, A00, a01, A02,6 ABL, ABR, a10t, alpha11, a12t,7 A20, a21, A22;89 FLA_Part_2x2(A, &ATL, /**/ &ATR,10 /* ************** */11 &ABL, /**/ &ABR,12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL);1314 while (min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)) != 0){1516 FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &a01, &A02,17 /* ************* */ /* ************************* */18 /**/ &a10t, /**/ &alpha11, &a12t,19 ABL, /**/ ABR, &A20, /**/ &a21, &A22,20 /* with */ 1, /* by */ 1, /* alpha11 split from */ FLA_BR);2122 /* *** */2324 FLA_Inv_sal(alpha11, a21); /* a21 <- a21 / alpha11 */2526 FLA_Ger(MINUS_ONE, a21, a12t, A22); /* A22 <- A22 - a21 * a12t */2728 /* *** */2930 FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, a01, /**/ A02,31 /**/ a10t, alpha11, /**/ a12t,32 /* ************** */ /* ************************ */33 &ABL, /**/ &ABR, A20, a21, /**/ A22,34 /* with alpha11 added to submatrix */ FLA_TL);35 }36 }Figure 1.2: An unbloked (rank-1 update based) eager LU fatorization implementation (without pivoting)using FLAME. 10

atlas3.2.0 Linux SSE1256.tgzavailable from http://www.netlib.org/atlas/arhives/linux/was used. In many of the performane graphs for level 3 BLAS (matrix-matrix) operations, we reportperformane by a referene implementation. This referene implementation is the one provided by ATLAS.Notie that our implementations heavily rely on a high-performane matrix-matrix multipliation kernel.For our performane experiments, the DGEMM level 3 BLAS kernel for matrix-matrix multipliation was used.We use two di�erent implementations:� the implementation provided by ATLAS, and� our own ITXGEMM implementation [17℄.The latter implementation, whih yields better performane for most matrix sizes, is further explained inChapter 4.We report performane as the rate at whih the omputation was performed in MFLOPS/se. (millionsof oating point operations per seond). More preisely, if C equals the number of oating point operationsrequired to omplete the omputation, and t equals the time required, the rate in MFLOPS/se. is given byCt � 10�61.5 OverviewOur methodology for developing high-performane linear algebra algorithms is introdued in Chapter 2. Theappliation programming interfae (API) is introdued in Chapter 3 as a set of C routines. In Chapter 4,we disuss how high performane an be attained by a matrix-matrix multipliation kernel. In Chapters 5{16 we report a large number of ase studies that demonstrate the methodology for developing algorithms.They also show how bloked algorithms an be used to formulate the algorithms in terms of matrix-matrixmultipliations, whih allows the high performane attained by this kernel to be exploited. It should be notedthat the idea of implementing this partiular set of operations in terms of matrix-matrix multipliation hasbeen studied extensively elsewhere [8, 9, 20, 21, 24, 25, 26, 36℄. In partiular, one may reognize them asspeial ases of the level 3 BLAS.1.6 AvailabilityInformation related to FLAME is available athttp://www.s.utexas.edu/users/flame/Codes disussed in this doument an be found athttp://www.s.utexas.edu/users/flame/materials/The LATEXommands and environments used to typeset many of the formulas and algorithms in this dou-ment, whih are desribed in Appendix B, an be found athttp://www.s.utexas.edu/users/flame/LaTeX/
11

Chapter 2Formal DerivationIn this hapter, we briey review general tehniques for the derivation of algorithms. We relate thesetehniques to the iterative algorithms enountered in subsequent hapters. Finally, we give a systematireipe for deriving linear algebra algorithms. The reipe is illustrated for the triangular matrix-matrixmultipliation B LB.2.1 The orretness of loopsIn a standard text [14℄ used to teah disrete mathematis to undergraduates in omputer siene we �ndthe following material:We prefer to write a while loop using the syntaxdo B ! S odwhere Boolean expression B is alled the guard and statement S is alled the repetend.[The l℄oop is exeuted as follows: If B is false, then exeution of the loop terminates; otherwiseS is exeuted and the proess is repeated.Eah exeution of repetend S is alled an iteration. Thus, if B is initially false, then 0 iterationsour. [� � �℄We now state and prove the fundamental invariane theorem for loops. This theorem refers toan assertion P that holds before and after eah iteration (provided it holds before the �rst). Suha prediate is alled a loop invariant.(12.43) Fundamental invariane theorem. Suppose� fP ^ BgSfPg holds { i.e. exeution of S begun in a state in whih P and B aretrue terminates with P true { and� fPg do B ! S od true { i.e. exeution of the loop begun in a state in whih P istrue terminates.Then fPg do B ! S od fP ^ :Bg holds. [In other words, if the loop is entered in astate where P is true, it will omplete in a state where P is true and guard B is false.℄The text proeeds to prove this theorem using mathematial indution.Let us translate the above into our setting, whih will aommodate linear algebra algorithms. Considerthe loop do until :BSenddo12

where B is some ondition and S is the body of the loop. The above theorem says that if� The loop is entered in a state where some ondition P holds, and� for eah iteration, P holds at the top of the loop, and� the body of the loop S has the property that if it is exeuted starting in a state where P holds itompletes in a state where P holds.then the loop will omplete in a state where onditions P and :B both hold.A method that formally derives a loop (i.e., iterative implementation) approahes the problem of deter-mining the body of the loop as follows:� First, one must determine onditions B and P .� Next, the body S should be developed so that it maintains ondition P while making progress towardsompleting the iterative proess (eventually B should beome false).As a onsequene of the Fundamental Invariane Theorem, this approah implies orretness of the loop.What we show in the remainder of this hapter, and the subsequent ase studies in the remainder of thisbook, is that for a large lass of dense linear algebra algorithms� There is a systemati way of determining di�erent onditions P that allow us develop loops to omputethe result of a given linear algebra operation.� This in turn yields di�erent algorithms for omputing the operation.2.2 A reipe for deriving linear algebra algorithms2.2.1 A typial operationA typial linear algebra matrix-matrix operation involves up to three operands: matries A, B, and C:C op(A;B;C)Example (LTRMM) A lower-triangular matrix-matrix multipliation (LTRMM) anbe expressed as B LBwhere B is an m � n matrix and L is a m � m lower triangular matrix. Notie that thepurpose of the game is to overwrite B with the results without requiring a work array inwhih to ompute LB.2.2.2 determining possible loop invariants1. Temporarily replae C by D. Sine C appears both on the left and the right of the operation tobe performed, we temporarily replae one of the instanes by a new operand, D.Example (LTRMM) B LB is replaed by D = LB. Notie that the arrow indiatesthat the operand is overwritten with the result. We now replae this by an equality, sinethe purpose of the game will be to determine equalities that must hold as the omputationunfolds.2. Pik an Operand and Partition The �rst step is to pik an operand and partition1 it in a meaningfulway:1Note: we provide some useful LATEXmaros for partitioning matries in Appendix C.13

� If the operand that is piked has a triangular storage struture, the partitioning should be intofour quadrants, so that the quadrant that ontains the blok that is not used for storing thematrix an be identi�ed.Example (LTRMM) Pik L for partitioning:L! � LTL 0LBL LBR �where LTL is a square blok, say of size k � k.� If the operand has no speial struture, it is typially partitioned into two submatries, eitherhorizontally or vertially.Example (LTRMM) Pik B for partitioning:B ! � BL BR �where BL has k olumns. Note: this seond partitioning does not neessarily lead to thesame set of loop invariants as the partition of L above. Indeed, it doesn't.3. Partition the other operands onformal to the �rst one: Given that the �rst operand has beenpartitioned, the other operands should be partitioned onformally to ensure that bloked multipliationof the submatries makes sense.Example (LTRMM) Let us onentrate of the ase where L has been partitioned likeL! � LTL 0LBL LBR �When onsidering D = LB, we notie that D and B must be partitioned by rows:D ! � DTDB � ; and B ! � BTBB �where DT and BT have k rows.4. Rewrite the operation using the partitionings: Next, plug the partitioned matries into theoperation D = op(A;B;C).Example (LTRMM) In the example D = LB, where D, L, and B have been partitionedas desribed, this yields � DTDB � = � LTL 0LBL LBR �� BTBB �5. Perform bloked matrix-matrix multipliations and additions: Now that the operation hasbeen expressed with bloked matries, we perform the given operations.Example (LTRMM) In our lower triangular matrix-matrix multipliation example weget � DTDB � = � LTL 0LBL LBR �� BTBB � = � LTLBTLBLBT + LBRBB �
14

6. Determine equalities that must hold: One the operations have been performed with the subma-tries, equalities that must hold an be determined.Example (LTRMM) In our lower triangular matrix-matrix multipliation example wedetermined that � DTDB � = � LTLBTLBLBT + LBRBB �Thus, we onlude that the following equalities must hold:DT = LTLBTDB = LBLBT + LBRBB7. Determine possible ontents of D: Next, we determine possible ontents ofD under the assumptionthat some of the omputations that appear in the equalities have ourred. One approah to this is toenumerate all the major operations that must be formed. At a given stage of the omputation, eah ofthese omputations either has or has not ourred. By onsidering all possible ombinations, one anenumerate essentially all possible onditions.Example (LTRMM) See Fig. 2.1.8. Eliminate unreasonable onditions: One possible ontents of D have been enumerated, some ofthe onditions an typially be eliminated sine they do not lead to reasonable loops.There are two reasons for rejeting a ondition:(a) We want to derive a loop that maintains the ondition while making progress towards the desiredresult. We need to be able to ahieve that ondition before we enter the loop. Furthermore, uponleaving the loop, the desired result should have been omputed. If the ondition doesn't allowthis, then the ondition is rejeted.(b) The result overwrites part of one of the input operands before that part of the input operand isno longer needed.We will illustrate how the �rst approah an be used to rejet possible onditions for the symmetrimatrix multiply in Chapter 6. In Fig. 2.2, we use the seond approah to rejet a number of onditionsfor the triangular matrix-matrix multipliation example.9. Determine the diretion of the omputation: The ondition that determines the ontents of Dindiates a diretion in whih the omputation naturally proeeds. Frequently enountered diretionsare left � � � right � - � up 0B� 61CAdown 0B� ?1CA left-up 0B� ��I 1CA right-down 0B� ��R 1CAExample (LTRMM) Consider the ondition that urrently D ontains� ?LBLBT + LBRBB �. In order to move the boundary that indiates how far theomputation has proeeded, that boundary must be moved up. Thus, this algorithmnaturally moves through matries D and B in the \up" diretion.15

Example (LTRMM) In our lower triangular matrix-matrix multipliation example wehave determined that DT = LTLBTDB = LBLBT + LBRBBThe major operations to be performed are LTLBT , LBLBT , and LBRBB . Eah of theseeither has or has not already been omputed, leading to the 23 = 8 possible onditionstabulated below. In the table, a ? indiates the indiated part of D has yet to be omputed.Computed? D ontainsLTLBT LBLBT LBRBBNO NO NO � ?? �YES NO NO � LTLBT? �NO YES NO � ?LBLBT �YES YES NO � LTLBTLBLBT �NO NO YES � ?LBRBB �YES NO YES � LTLBTLBRBB �NO YES YES � ?LBLBT + LBRBB �YES YES YES � LTLBTLBLBT + LBRBB �Figure 2.1: Step 7 for the LTRMM example.

16

Example (LTRMM) In the following table, we again list possible ontents of D. Thistime, we omment on eah possibility.D ontains Comments Viable?� ?? � This ondition indiates no progress has beenmade. NO� LTLBT? � Sine BT is to be overwritten by DT , this ondi-tion is not feasible sine BT is still needed for theomputation LBLBT . NO� ?LBLBT � Sine BT is to be overwritten by DT , this ondi-tion is not feasible sine BT is still needed for theomputation LBLBT . NO� LTLBTLBLBT � Sine BB is to be overwritten by DB , this ondi-tion is not feasible sine BB is still needed for theomputation LBRBB . NO� ?LBRBB � YES� LTLBTLBRBB � Sine BT is to be overwritten by DT , this ondi-tion is not feasible sine BT is still needed for theomputation LBLBT . NO� ?LBLBT + LBRBB � YES� LTLBTLBLBT + LBRBB � This ondition indiates that the omputation hasompleted. NOConsidering the omments, only two viable onditions are left, the ones for whih there areno omments. Figure 2.2: Step 8 for the LTRMM example.

17

10. Repartition the matries: In order to expose what elements must be updated to make progress, Dis repartitioned. Similarly, the other matries must be repartitioned onformally to expose submatriesneeded to update D.Example (LTRMM) Sine the omputation moves through D in the \up" diretion, werepartition D likerepartition � DTDB �! 0� D0dT1D2 1A where dT1 is a rowSimilarly, we must repartition the other matries:repartition� BTBB �! 0� B0bT1B2 1Awhere bT1 is a row repartition� LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1Awhere �11 is a salarNotie that the double lines have meaning:DT =� D0dT1 � BT =� B0bT1 � LTL=� L00 0lT10 �11 �DB= D2 BB= B2 LBL=� L20 l21 � LBR=L2211. Determine what is urrently in the matrix: Given the repartitionings, we determine what isurrently in matrix D.Example (LTRMM) D urrently ontains� ?LBLBT + LBRBB � = 0� ?� L20 l21 �� B0bT1 �+ L22B2 1A= � ?L20B0 + l21bT1 + L22B2 �12. Determine what needs to be in the matrix after the boundary shifts: Notie that one theboundary shifts, the partitionings of the matries indiate di�erent submatries of those matries. Tomaintain the ondition, an update to the ontents of D is required.Example (LTRMM) After the boundaries shiftDT = D0 BT = B0 LTL= L00DB=� dT1D2 � BB=� bT1B2 � LBL=� lT10L20 � LBR=� �11 0l21 L22 �and thus D must hold� ?LBLBT + LBRBB � = 0� ?� lT10L20 �B0 +� �11 0l21 L22 �� bT1B2 � 1A= 0� ?� lT10B0 + �11bT1L20B0 + l21bT1 + L22B2 � 1A
18

13. Determine what update must our: The known ontents of D before the shift of the boundariesand the desired ontents of D after the shift of the boundaries determines the update that must our.Example (LTRMM) The ontents of D must hange as follows0� � ?? �L20B0 + l21bT1 + L22B2 1A! 0� ?� lT10B0 + �11bT1L20B0 + l21bT1 + L22B2 � 1A14. State the algorithm: At this point, the partitioning and repartition of the matries have beenderived, as have the steps required to maintain the desired ondition. Thus, the algorithm an begiven. Example (LTRMM) See Fig. 2.3.Example (LTRMM) One algorithm for the lower triangular matrix-matrix multipliation.Notie that we overwrite B with the result.partition B ! � BTBB � where BB has 0 rowspartition L! � LTL 0LBL LBR � where LBR is 0� 0do until LTL is 0� 0repartition � BTBB �! 0� B0bT1B2 1A where bT1 is a rowrepartition � LTL 0LBL LBR �! 0� L00 0 0lT10 �11 0L20 l21 L22 1A where �11 is a salarbT1 �11bT1bT1 lT10B0 + bT1ontinue with � LTL 0LBL LBR � 0� L00 0 0lT10 �11 0L20 l21 L22 1Aontinue with � BTBB � 0� B0bT1B2 1Aenddo Figure 2.3: Step 14 for the LTRMM example.15. Classify the algorithm: We lassify algorithms by� the diretion in whih they move, and� how aggressively they use and/or update data in the matries.While intuitively the lassi�ation is onsistent, the di�erent ategories have slightly di�erent meaningdepending on whether we ategorize with respet to an input or an output parameter. In partiular:19

Let X be the operand with respet to whih we will ategorize the algorithm. The following tableexplains the di�erent ategories:right/left-moving algorithms: Consider the urrent partitioning on operand in a right- or left-moving algorithm w.r.t. X : � XL XR �. Then we will use the following ategorization ofalgorithms w.r.t. X :right-moving algorithmLazy The entries in XL have been ompletely used and/or updated. Theentries in XR has not been touhed (used or updated).Eager The entries in XL have been ompletely used and/or updated. Theentries in XR have been updated as muh as is possible withoutompleting another olumn of X .left-moving algorithmLazy The entries in XR have been ompletely used and/or updated. Theentries in XL has not been touhed (used or updated).Eager The entries in XR have been ompletely used and/or updated. Theentries in XL have been updated as muh as is possible withoutompleting another olumn of X .down/up-moving algorithms: Consider the urrent partitioning on operand in a down- or up-moving algorithm w.r.t. X : � XTXB �. Then we will use the following ategorization of algorithmsw.r.t. X : down-moving algorithmLazy The entries in XT have been ompletely used and/or updated. Theentries in XB has not been touhed (used or updated).Eager The entries in XT have been ompletely used and/or updated. Theentries in XB have been updated as muh as is possible withoutompleting another row of X .up-moving algorithmLazy The entries in XB have been ompletely used and/or updated. Theentries in XT has not been touhed (used or updated).Eager The entries in XB have been ompletely used and/or updated. Theentries in XT have been updated as muh as is possible withoutompleting another row of X .down-right/up-left-moving algorithms: Consider the urrent partitioning of an operand in aright-down- or left-up-moving algorithm w.r.t. X : � XTL XTRXBL XBR �. Then we will use thefollowing ategorization of algorithms w.r.t. X :

20

right-down-moving algorithmLazy The entries in XTL have been ompletely used and/or updated.The entries in XTR, XBL, and XBR have not been touhed (usedor updated).Row-lazy The entries in XTL and XTR have been ompletely used and/orupdated. The entries in XBL and XBR have not been touhed(used or updated).Column-lazy The entries in XTL and XBL have been ompletely used and/orupdated. The entries in XTR and XBR have not been touhed(used or updated).Both-lazy The entries in XTL, XTR, and XBL have been ompletely usedand/or updated. The entries in XBR have not been touhed (usedor updated).Eager The entries in XTL, XTR, and XBL have been ompletely usedand/or updated. The entries in XBR have been updated as muhas is possible without ompleting another row and olumn of X .left-up-moving algorithmLazy The entries in XBR have been ompletely used and/or updated.The entries in XTR, XBL, and XTL have not been touhed (usedor updated).Row-lazy The entries in XBL and XBR have been ompletely used and/orupdated. The entries in XTL and XTR have not been touhed(used or updated).Column-lazy The entries in XTR and XBR have been ompletely used and/orupdated. The entries in XTL and XBL have not been touhed(used or updated).Both-lazy The entries in XBR, XTR, and XBL have been ompletely usedand/or updated. The entries in XTL have not been touhed (usedor updated).Eager The entries in XBR, XTR, and XBL have been ompletely usedand/or updated. The entries in XTL have been updated as muhas is possible without ompleting another row and olumn of X .Example (LTRMM) Consider the example that we have been using throughout thishapter. Using our ategorization, we see that the algorithm that orresponds to the on-dition that urrently D ontains � ?LBLBT + LBRBB � is up-moving and row-lazy withrespet to matrix L sine data in LBL and LBR will not be required for further omputation.It is also lazy with respet to matrix D, sine DL has been ompletely omputed.The algorithm that orresponds to the the ondition that urrentlyD ontains � ?LBRBB �is also up-moving. However, it is lazy with respet to matrix L sine only the data in LBRwill not be needed for further omputation. It is also lazy with respet to matrix B, sineBB will not be needed for further omputation.
21

Chapter 3Coding Linear Algebra AlgorithmsIn this hapter we introdue a set of library routines that will allow us to apture in ode linear algebraalgorithms as they are naturally presented, for example in a lassroom setting. The idea is that by makingthe ode look as muh like the algorithm in Fig. 1.1 the opportunity for the introdution of bugs is minimized.Readers familiar with MPI [15, 33℄ and/or our own PLAPACK [35℄ will reognize the programming style asbeing very similar to that used by those interfaes.3.1 initializing and �nalizing FLAMEBefore using the FLAME environment one must initialize with a all tovoid FLA_Init()Purpose: Initialize FLAME.If no more FLAME alls are to be made, the environment is exited by allingvoid FLA_Finalize ()Purpose: Finalize FLAME.Sine an appliation may wish to query whether the environment has already been initialized, we providethe inquiry routineint FLA_Initialized ()Purpose: Chek if FLAME is initialized.return value TRUE if FLAME is already initializedFALSE otherwise3.2 Creating an objetNotie that there the following attributed desribe a matrix as it is stored in the memory of a omputer:� the datatype of the entries in the matrix, e.g., double or float,� m and n, the row and olumn dimensions of the matrix,� the address where the data is stored, and� the mapping that desribed how the two dimensional array is mapped to memory.
22

For now, we will assume that a matrix is stored using olumn-major ordering. Thus, the mapping tomemory is desribed by a leading dimension that indiates the number of units through whih one muststride in memory to get from one element in a row of the matrix to the next element in that row. Thefollowing all reates an objet that desribes a matrix and reates spae to store the entries in the matrix:void FLA_Obj_reate (int datatype, int m, int n, FLA_Obj *matrix)Purpose: Create an objet that desribes an m� n matrix as well as assoiated storage.datatype datatype of matrixm, n row dimensions of matrixmatrix objet that desribes the matrixNotie that the leading dimension of the array that is used to store the atual matrix is itself determinedinside of this all.Valid datatype value inludeFLA INT, FLA DOUBLE, FLA FLOAT, FLA DOUBLE COMPLEX, and FLA COMPLEXfor the obvious datatypes that are ommonly enountered. Additional datatype may be added at a futurestage.Sometimes it will be handy to reate an objet without storage attahed. This allows a matrix that hasalready been stored in a onventional two-dimensional array to be attahed to an objet. The following allreates suh an objet:void FLA_Obj_reate_without_buffer(int datatype, int m, int n, FLA_Obj *matrix)Purpose: Create an objet that desribes an m� n matrix without assoiated storage.datatype datatype of matrixm, n dimensions of matrixmatrix address of objet that will desribe the matrixIf an objet has been reated without storage attahed, an existing two-dimensional array an be attahedby allingvoid FLA_Obj_attah_buffer (void *buff, int ldim, FLA_Obj matrix)Purpose: Attah an existing bu�er that holds a matrix stored in olumn-major order with leadingdimension ldim to the objet matrix.buff address of where bu�er existsldim leading dimension of arraymatrix objet that desribes the matrixFLAME treats vetors as speial ases of matries, either as a n� 1 matrix or an 1�n matrix. Thus, toreate an objet for a vetor x of length n either of the following alls will suÆe:FLA Obj reate(FLA DOUBLE, n, 1, &x), orFLA Obj reate(FLA DOUBLE, 1, n, &x),where x has been delared as a FLA Obj and n is an integer variable with value n.Similarly, FLAME treats salars as a 1� 1 matrix. Thus, to reate a objet for a salar � the followingall is made:FLA Obj reate(FLA DOUBLE, 1, 1, &alpha)where alpha has been delared as a FLA Obj. A number of salars our frequently and are thereforeprede�ned by FLAME: MINUS ONE, ZERO, and ONE. .Often it is useful to reate a matrix that has the same datatype and dimensions as a given matrix. Forthis we provide the all 23

void FLA_Obj_reate_onf_to (int trans, FLA_Obj old, FLA_Obj *matrix)Purpose: Like FLA Obj reate exept that it reates an objet with same datatype and dimensionsas old, transposing if desired.trans indiates whether to transposeold original objetmatrix new objetValid values for trans inlude FLA NO TRANSPOSE , FLA TRANSPOSE, and FLA CONJUGATE TRANSPOSE. Iftrans equals FLA NO TRANSPOSE, the new objet has the same dimensions as old. Otherwise, it has the samedimensions as the transpose of old.3.2.1 Objet destrutionIf an objet was reated with FLA Obj reate or FLA Obj reate onf to a all to b FLA Obj free isrequired to ensure that all spae assoiated with the objet is properly released:void FLA_Obj_free (FLA_Obj *obj)Purpose: Free all spae alloated to store data assoiated with obj.obj objet that desribes the objet3.2.2 Inquiry routinesIn order to be able to work with the raw data, a number of inquiry routines an be used to aess informationabout a matrix (or vetor or salar). To extrat the datatype and row and olumn dimensions of the matrixFLAME provides:int FLA_Obj_datatype (FLA_Obj matrix)int FLA_Obj_length (FLA_Obj matrix)int FLA_Obj_width (FLA_Obj matrix)Purpose: Extrat datatype, row, or olumn dimension of matrix, respetively.matrix objet that desribes the matrixreturn value datatype, row, or olumn dimension of matrix, respetivelyTo extrat the address of the array that stores the matrix and the leading dimension of that arrayFLAME provides:void *FLA_Obj_buffer (FLA_Obj matrix)int FLA_Obj_ldim (FLA_Obj matrix)Purpose: Extrat the address and leading dimension of the matrix, respetively.matrix objet that desribes the matrixreturn value address and leading dimension of matrix, respetivelyAn example of how to use this information to implement a simple matrix-vetor multipliation isgiven in Fig. 3.1. To understand the ode one must understand that element �ij of matrix A is storedin buff A[j*ldim A+i℄, whih onforms to olumn-major order. Similarly, �j , the jth element of x, and�i, the ith element of y, are stored in buff x[j*in x℄ and buff y[i*in y℄, respetively. (Here indexingstarts at zero.)
24

1 #inlude "FLA.h"23 void FLA_simple_mv_mult(FLA_Obj A, FLA_Obj x, FLA_Obj y)4 {5 int6 datatype_A, m_A, n_A, ldim_A, m_x, n_y, in_x, m_y, n_y, in_y;78 datatype_A = FLA_Obj_datatype(A);9 m_A = FLA_Obj_length(A);10 n_A = FLA_Obj_width (A);11 ldim_A = FLA_Obj_ldim (A);1213 m_x = FLA_Obj_length(x);14 n_x = FLA_Obj_width (x);15 m_y = FLA_Obj_length(y);16 n_y = FLA_Obj_width (y);1718 if (m_x == 1) {19 m_x = n_x;20 in_x = FLA_Obj_ldim(x);21 }22 else in_x = 1;2324 if (m_y == 1) {25 m_y = n_y;26 in_y = FLA_Obj_ldim(y);27 }28 else in_y = 1;2930 if (datatype_A == FLA_DOUBLE){31 double32 *buff_A, *buff_x, *buff_y;3334 buff_A = (double *) FLA_Obj_datatype(A);35 buff_x = (double *) FLA_Obj_datatype(x);36 buff_y = (double *) FLA_Obj_datatype(y);3738 for (i=0; i<m_A; i++) buff_y[i*in_y ℄ = 0;3940 for (j=0; j<n_A; j++)41 for (i=0; i<m_A; i++)42 buff_y[i*in_y ℄ += buff_A[j*ldim_A+i ℄ * buff_x[j*in_x ℄;43 }44 else FLA_Abort("datatype not yet supported", __LINE__, __FILE__);45 } Figure 3.1: A simple matrix-vetor multipliation routine.
25

3.2.3 Setting and extrating the ontentsvoid FLA_Obj_set_ontents (int trans, int m, int n, void *A, int ldA,+ &\\FLA_Obj matrix)void FLA_Obj_axpy_to_ontents (int trans, void *alpha, int m, int n, void *A,int ldA, FLA_Obj matrix)Purpose: Set the ontents of the matrix objet to those in m�n matrix A with leading dimension ldA.For the seond all, �A is added to the urrent ontents of matrix.trans indiates whether to transpose dataalpha saling fatorm, n dimensions of AA array with data to be entered in matrixldim leading dimension of Amatrix objet that desribes the matrixHere onsistent means that the datatype of ALPHA and A must math that of the objet MATRIX. Validvalues for trans inlude FLA NO TRANSPOSE, FLA TRANSPOSE, and FLA CONJUGATE TRANSPOSE. If trans equalsFLA NO TRANSPOSE,m and n must equal the dimensions of matrix, respetively. Otherwise, they must equalthe dimensions of the transpose of matrix and the data is transposed as it is entered in or added to matrix.Similarly FLAME provides the following alls to extrat the ontents of an objet:void FLA_Obj_get_ontents (int trans, FLA_Obj matrix,int m, int n, void A, int ldA)void FLA_Obj_axpy_from_ontents (int trans, void *alpha, FLA_Obj matrix,int m, int n, void A, int ldA)Purpose: Get the ontents from the matrix objet and store in m�n matrix A with leading dimensionldA. For the seond all, � times the ontents of matrix are added to the urrent ontents of A.trans indiates whether data is to be transposedalpha saling fatormatrix objet that desribes the matrixm, n dimensions of AA array with data to be entered in matrixldim leading dimension of A3.3 A simple driver: matrix-vetor multipliationIn Figure 3.2 we show a sample main program that uses most of the alls disussed so far.line 1 FLAME program �les start by inluding the FLAME.h header �le.line 5{6 FLAME objets A, x, and y, whih will hold matrix A and vetors x and y, are delared to be oftype FLA Obj.line 10 Before any alls to FLAME routines an be made, the environment must be initialized by a all toFLA Init.line 12{13 In our example, the user inputs the row and olumn dimension of matrix A.line 15{17 Desriptors are reated for A, x, and y.line 19{20 A routine to be desribed next is used to �ll A and x with values.line 22 Compute y = Ax using the FLAME matrix-vetor multiply routine FLA Gemv to be desribed later.line 24{26 Print out the ontents of A, x, and y. For eah element the C print format "%lf " is used toprint the ontents as long oating point numbers. The alling sequene for FLA Obj show is given laterin this hapter. 26

1 #inlude "FLAME.h"23 main()4 {5 FLA_Obj6 A, x, y;7 int8 m, n;910 FLA_Init();1112 printf("enter matrix dimensions m and n:");13 sanf("%d%d", &m, &n);1415 FLA_Obj_reate(FLA_DOUBLE, m, n, &A);16 FLA_Obj_reate(FLA_DOUBLE, m, 1, &y);17 FLA_Obj_reate(FLA_DOUBLE, n, 1, &x);1819 fill_matrix(A);20 fill_matrix(x);2122 FLA_Gemv(FLA_NO_TRANSPOSE, ONE, A, x, ZERO, y);2324 FLA_Obj_show("A = [", A, "%lf ", "℄");25 FLA_Obj_show("x = [", x, "%lf ", "℄");26 FLA_Obj_show("y = [", y, "%lf ", "℄");2728 FLA_Obj_free(&A);29 FLA_Obj_free(&y);30 FLA_Obj_free(&x);3132 FLA_Finalize();33 } Figure 3.2: A simple C driver for matrix-vetor multipliation.line 28 After the FLAME environment has �nished it is �nalized by a all to FLA Finalize.A sample routine for �lling A and x with data is given in Fig. 3.3.3.4 ViewsNotie that in Fig. 2.3 beame obvious that in stating a linear algorithm one frequently must partition amatrix, A, likepartitionA! � ATL ATRABL ABR � where ATL is mb � nbThe primary mehanism used by our oding approah to hide ompliated indexing is the notion of a view,whih is simply a referene into an existing matrix or vetor. Given that A is a desriptor of a matrix, thefollowing all reates desriptors of the four quadrants:void FLA_Part_2x2 (FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,FLA_Obj *ABL, FLA_Obj *ABR,int mb, int nb, int quadrant)Purpose: Partition matrix A into four quadrants where the quadrant indiated by quadrant is mb�nbA matrix to be partitionedmb, nb row and olumn dimensions of quadrant indiated by quadrantquadrant quadrant for whih dimensions are given in mb and nbATL-ABR views of TL, TR, BL, and BR quadrants27

1 #inlude "FLAME.h"23 #define BUFFER(i, j) buff[(j)*lda + (i) ℄45 void fill_matrix(FLA_Obj A)6 {7 int datatype, m, n, lda;89 datatype = FLA_Obj_datatype(A);10 m = FLA_Obj_length(A);11 n = FLA_Obj_width (A);12 lda = FLA_Obj_ldim (A);1314 if (datatype == FLA_DOUBLE){15 double *buff;16 int i, j;1718 buff = (double *) FLA_Obj_buffer(A);1920 for (j=0; j<n; j++)21 for (i=0; i<m; i++)22 BUFFER(i,j) = i+j*0.01;23 }24 else FLA_Abort("Datatype not yet supported", __LINE__, __FILE__);25 } Figure 3.3: A simple routine for �lling a matrixHere quadrant an take on the values FLA TL, FLA TR, FLA BL, and FLA BR to indiate that mb and nbindiate the dimensions of the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, respetively.Also from Fig. 2.3, we notie that it is useful to be able to take a 2�2 partitioning of a given matrix A andrepartition this so that submatries an be identi�ed that need to be updated and/or used for omputation:repartition � ATL ATRABL ABR �! 0� A00 A01 A02A10 A11 A12A20 A21 A22 1A where A11 is mb � nbGiven that ATL, ATR, ABL, and ABR were the result of a all to FLA Part 2x2, we would like reate new viewsfor this 3� 3 partitioning from this 2� 2 partitioning. To support this, we introdue the allvoid FLA_Repart_from_2x2_to_3x3(FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *A01, FLA_Obj *A02,FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,FLA_Obj ABL, FLA_Obj ABR, FLA_Obj *A20, FLA_Obj *A21, FLA_Obj *A22,int mb, int nb, int quadrant)Purpose: Repartition a 2�2 partitioning of matrix A into a 3�3 partitioning where mb�nb submatrixA11 is split from the quadrant indiated by quadrant.ATL-ABR views of TL, TR, BL, and BR quadrantsmb, nb row and olumn dimensions of A11quadrant quadrant from whih A11 is partitionedA00-A22 views of A00{A22Here quadrant an again take on the values FLA TL, FLA TR, FLA BL, and FLA BR to indiate that mb andnb submatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respetively.In order to update the partitioning of A into the four quadrants, we need to be able to update thedesriptions of ATL, ATR, ABL, and ABR:ontinue with � ATL ATRABL ABR � 0� A00 A01 A02A10 A11 A12A20 A21 A22 1A28

This update of the views is aomplished by a all tovoid FLA_Cont_with_3x3_to_2x2(FLA_Obj *ATL, FLA_Obj *ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,FLA_Obj ABL, FLA_Obj ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,int quadrant)Purpose: Update the 2� 2 partitioning of matrix A by moving the boundaries so that A11 is addedto the quadrant indiated by quadrant.ATL-ABR views of TL, TR, BL, and BR quadrantsA00-A22 views of A00{A22quadrant quadrant to whih A11 is to be addedThis time the value of quadrant (FLA TL, FLA TR, FLA BL, or FLA BR) indiates to whih quadrant sub-matrix A11 is to be added.We will see in subsequent hapters that we frequently will want to reate a 2� 1 partitioning of a givenmatrix A:partition A! � ATAB � where AT has mb rowsFor this we introdue the allvoid FLA_Part_2x1 (FLA_Obj A, FLA_Obj *AT,FLA_Obj *AB, int mb, int side)Purpose: Partition matrix A into a top and bottom side where the side indiated by side has mbrows.A matrix to be partitionedmb row dimension of side indiated by sideside side for whih row dimension is givenAT, AB view of Top and Bottom partHere side an take on the values FLA TOP or FLA BOTTOM to indiate that mb indiates the row dimensionof AT or AB , respetively.Given that matrix A is already partitioned like� ATAB �a repartitioning likerepartition � ATAB �! 0� A0A1A2 1A where A1 has mb rowsis aomplished by the allvoid FLA_Repart_from_2x1_to_3x1 (FLA_Obj AT, FLA_Obj *A0,FLA_Obj *A1,FLA_Obj AB, FLA_Obj *A2,int mb, int side)Purpose: Repartition a 2� 1 partitioning of matrix A into a 3� 1 partitioning where submatrix A1with mb rows is split from the side indiated by side.AT, AB views of Top and Bottom sidesmb row dimension of A1side side from whih A1 is partitionedA0-A2 views of A0{A2 29

Here side an take on the values FLA TOP or FLA Bottom to indiate that mb submatrix A1 is partitionedfrom AT or AB , respetively.Given a 3 � 1 partitioning of a given matrix A, we may wish to update a 2 � 1 partitioning by addingA1 to either AT or AB :ontinue with � ATAB � 0� A0A1A2 1AFor this FLAME provides the allvoid FLA_Cont_with_3x1_to_2x1 (FLA_Obj *AT, FLA_Obj A0,FLA_Obj A1,FLA_Obj *AB, FLA_Obj A2,int side)Purpose: Update the 2� 1 partitioning of matrix A by moving the boundaries so that A1 is added tothe side indiated by side.AT, AB views of Top and Bottom sidesA0-A2 views of A0{A2side side from whih A1 is partitionedNow side indiates whether A1 is to be added to AT or AB .Similarly, we may wish to reate a 1� 2 partitioning of a given matrix A:partition A! � ATAB � where AT has n rowsFor this we introdue the allvoid FLA_Part_1x2 (FLA_Obj A, FLA_Obj *AT, FLA_Obj *AB,int nb, int side)Purpose: Partition matrix A into a left and right side where the side indiated by side has nb olumnsA matrix to be partitionednb olumn dimension of side indiated by sideside side for whih olumn dimension is givenAL, AR view of Left and Right partHere side an take on the values FLA LEFT or FLA RIGHT to indiate that nb equals the olumn dimensionof AL or AR, respetively.Given that matrix A is already partitioned like� AL AR �a repartitioning likerepartition � ATAB �! 0� A0A1A2 1A where A1 has n rowsis aomplished by the all
30

void FLA_Repart_from_1x2_to_1x3(FLA_Obj AL, FLA_Obj AR, FLA_Obj *A0, FLA_Obj *A1, FLA_Obj *A2,int nb, int side)Purpose: Repartition a 1� 2 partitioning of matrix A into a 1� 3 partitioning where submatrix A1with nb olumns is split from the side indiated by side.AL, AR views of Left and Right sidesA0-A2 views of A0{A2nb olumn dimension of A1side side from whih A1 is partitionedNow side indiates whether A1 is partitioned from AL or AR.Given a 1� 3 partitioning of a given matrix A, updating a 1� 2 partitioning by adding A1 to either ALor AR, � AL AR �! � A0 A1 A2 �is aomplished by a all tovoid FLA_Cont_with_1x3_to_1x2 (FLA_Obj *AL, FLA_Obj *AR,FLA_Obj A0, FLA_Obj A1, FLA_Obj A2, int side)Purpose: Update the 1� 2 partitioning of matrix A by moving the boundaries so that A1 is added tothe side indiated by side.AL, AR views of Left and Right sidesside side to whih A1 is addedA0-A2 views of A0{A2Parameter side indiates whether A1 is added to AL or AR.3.5 Other useful routinesTo examine the ontents of an objet, we reommend the following routine:void FLA_Obj_show(har *string1, FLA_Obj A, har *format, har *string2)Purpose: Print the ontents of A.string1 string to be printed before ontentsA desriptor for Aformat format to be used to print eah individual elementstring2 string to be printed after ontentsIn partiular, the result ofFLA_Obj_show("A =", A, "%lf ", "℄");is something likeA = [< entries >℄whih an then be fed to MATLAB. This beomes useful when heking results against a MATLAB imple-mentation of an operation.
31

Chapter 4Matrix-Matrix Multipliation:The Key to High PerformanebyJohn A. GunnelsGreg M. HenryRobert A. van de GeijnAs will will see in subsequent hapters, most important dense linear algebra operations an be organizedso that most of the omputation is in matrix-matrix multipliation. Thus, it is important to understandwhy and how matrix-matrix multipliation an be implemented to ahieve high performane on modernmiroproessors with hierarhial memories. In this hapter, we desribe the basi approah used by ourITXGEMM matrix-matrix multipliation implementation [17℄.4.1 The objet of the gameThe basis behind the design of a highly eÆient matrix multipliation implementation are rather simple.To implement C = AB+C where C, A, and B are m�n, m�k, and k�n matries, respetively, one startsby partitioning these matries likeC = 0B� C11 : : : C1N... ...CM1 : : : CMN 1CA ; A = 0B� A11 : : : A1K... ...AM1 : : : AMK 1CA ; and B = 0B� B11 : : : B1N... ...BK1 : : : BKN 1CAwhere Cij is mb � nb, Aip is mb � kb, and Bpj is kb � nb. (Naturally, some bloks may not be exatly thisblok size, a minor detail.) Now, Cij = Ai1B1j + � � �+AiKBKj +Cij . Given that C, A, and B all reside inmain memory, the blokings of these matries and the ordering of the updates Cij = AipBpj + Cij needs tobe orhestrated so that movement into the ahes of the proessor is best amortized over omputation.For the moment onsidering an arhiteture with two layers of ahe memory, this initial partitioningreates bloks to be moved in and out of the L2 ahe. Now Cij , Aip, and Bpj are themselves bloked andthe omputation with these even smaller bloks is orhestrated to optimally utilize the L1 ahe. Finally, onefurther bloking is neessary to optimally utilize the registers. The purpose of the game now is to determinethe optimal blok size and the optimal ordering of the loops so that data movement between levels of thememory hierarhy is amortized over as muh omputation as possible.Notie that for eah level of the memory hierarhy we may need as many as three nested loops, notounting the registers. Thus, for a typial arhiteture with two ahes and a main memory, one must32

onsider as many as nine nested loops. Sine the ordering of these loops will a�et memory aess patterns,one must onsider up to 9! = 362880 di�erent loop orderings. By realizing that it is only the three loops fora given level of the hierarhy that need to be ordered, there are 3� 3! = 18 possible loop orderings. For eahof these loop orderings, one needs to onsider di�erent blokings at eah level of the memory hierarhy. Inother words, without some reasonable way of pruning the spae of possible algorithms, one faes a formidabletask.The theory that we develop in the �rst part of this paper will allow us to propose a sensible heuristifor pruning the spae of possible algorithms. By ombining this heuristi with pratial onsiderationswe an redue the number of di�erent algorithms to only eight. Simultaneously, theoretial and pratialonsiderations allow us to severely restrit the range of reasonable blok sizes. The net result is a highlyeÆient implementation of matrix multipliation.4.2 Speial ases of matrix-matrix multipliationThe general form of a matrix-matrix multiply is C �AB+�C where C is m�n, A is m�k, and B is k�n.We will use the following terminology when referring to a matrix-matrix multiply when two dimensions arelarge and one is small: Condition ShapeMatrix-panel multiply n is small C = A B + CPanel-matrix multiply m is small C = A B + CPanel-panel multiply k is small C = A B + CThe following observation will beome key to understanding onepts enountered in the rest of the paper:Partition X = � X1 � � � XNX � = 0B� X̂1...X̂MX 1CAfor X 2 fA;B;Cg, where Cj is m � nj , Ĉi is mi � n, Ap is m � kp, Âi is mi � k, Bj is k � nj , and B̂p iskp � n. Then C AB + C an be ahieved asmultiple matrix-panel multiplies:Cj ABj + Cj for j = 1; : : : ; NC C1C2C3 += A B1B1B1multiple panel-matrix multiplies:Ĉi ÂiB + Ĉi for i = 1; : : : ;MC Ĉ1Ĉ2Ĉ3 += Â1Â2Â3 Bor multiple panel-panel multipliesC A1B̂1 + � � �+ANAB̂NA C += A1A2A3 B̂1B̂2B̂333

4.3 A ost model for hierarhial memoriesThe memory hierarhy of a modern miroproessor is often viewed as the pyramid given in Fig. 4.1: At thefast
slow?
6 expensive

heap?
6

�������
�������

AAAAAAA
AAAAAAAregistersL1 aheL2 ahe...loal memoryshared memory...disktapeFigure 4.1: The hierarhial memories viewed as a pyramid.top of the pyramid, there are the proessor registers, with extremely fast aess. At the bottom, there aredisks and even slower media. As one goes down the pyramid, the amount of memory inreases as well as thetime required to aess that that memory, while the ost of memory dereases.We will model the above mentioned hierarhy naively as follows:1. The memory hierarhy onsists of L levels, indexed 0; : : : ; L� 1. Level 0 orresponds to the registers.We will often denote the ith level by Li. Notie that on a typial urrent arhiteture L1 and L2orrespond the level 1 and level 2 data ahes and L3 orresponds to RAM.2. Level h of the memory hierarhy an store Sh oating point numbers. Generally S0 � S1 � � � � � SL�1.3. Loading a oating point number stored in level h + 1 to level h osts time �h. We will assume that�0 < �1 < � � � < �L�1.4. Storing a oating point number from level h to level h + 1 osts time �h. We will assume that�0 < �1 < � � � < �L�1.5. If mh�nh matrix C, mh� kh matrix A, and kh�nh matrix B are all stored in level h of the memoryhierarhy then forming C AB + C osts time 2mhnhkhh. (Notie that h will depend on mh, nh,and kh).4.4 Building-bloks for matrix multipliationConsider the matrix multipliation C AB+C where mh+1�nh+1 matrix C, mh+1� kh+1 matrix A, andkh+1�nh+1 matrix B are all stored in Lh+1. Let us assume that somehow an eÆient matrix multipliationkernel exists for matries stored in Lh. In this setion, we develop three distint approahes for matrixmultipliation kernels for matries stored in Lh+1.PartitionC = 0B� C11 � � � C1N... ...CM1 � � � CMN 1CA ; A = 0B� A11 � � � A1K... ...AM1 � � � AMK 1CA ; and B = 0B� B11 � � � B1N... ...BK1 � � � BKN 1CA(4.1)where Cij is mh�nh, Aip is mh� kh, and Bpj is kh�nh. We must now determine the optimal mh, nh, andkh. 34

Algorithm 1 for j = 1; : : : ; Nfor i = 1; : : : ;MLoad Cij from Lh+1 to Lh. mhnh�hfor p = 1; : : : ; KLoad Aip from Lh+1 to Lh. mhkh�hLoad Bpj from Lh+1 to Lh. khnh�hUpdate Cij AipBpj +Cij 2mhnhkhhendforStore Cij from Lh to Lh+1 mhnh�hendforendforFigure 4.2: Multiple panel-panel multiply based bloked matrix-matrix multipliation.4.4.1 Multiple panel-panel multiplies in LhNoting that Cij PKp=1 AipBpj + Cij , let us onsider the algorithm in Fig. 4.2 for omputing the matrix-matrix multipliation. In that �gure the osts of the various operations are shown to the right. The orderof the outer-most loops is irrelevant to the analysis.The ost for updating C is given byMXi=1 NXj=1 "mhnh�h +mhnh�h + KXp=1 [khmh�h + khnh�h + 2mhnhkhh℄#= mh+1nh+1(�h + �h) +mh+1nh+1kh+1 �hnh +mh+1nh+1kh+1 �hmh + 2mh+1nh+1kh+1h(4.2)Sine h+1 is de�ned to be the ost of a oating point operation when all three matries are stored in Lh+1,we �nd that by we also have that the ost is given by2mh+1nh+1kh+1h+1(4.3)Thus, by dividing 4.2 by 2mh+1nh+1kh+1 the e�etive ost per oating point operation at this level is givenby h+1 = �h + �h2kh+1 + �h2nh + �h2mh + hThe question now is how to �nd the mh, nh, and kh that minimize h+1 under the onstraint that Cij , Aikand Bkj all �t in Lh, i.e., mhnh+mhkh+nhkh � Sh. The smaller kh, the more spae in Lh an be dediatedto Cij and thus the smaller the frations �h=mh and �h=nh an be made. A good strategy is thus to letessentially all of Lh be dediated to Cij , i.e., mhnh � Sh. The minimum is then attained when essentiallymh � nh � pSh.Notie that it suÆes to have mh+1 = mh or nh+1 = nh for the above ost of h+1 to be ahieved. Thus,the above already for the speial ases0BB� C11...CM1 1CCA+= 0BB� A11 � � � A1K... ...AM1 � � �AMK 1CCA0B� B11...BK1 1CA +=(4.4) � C11 � � � C1N �+= � A11 � � �A1K �0B� B11 � � � B1N... ...BK1 � � � BKN 1CA +=(4.5)Here the distane between single/thin lines is kh and between double/thik lines mh = nh, where kh is muhsmaller than mh and nh. The signi�ane of this will beome apparent later.35

Algorithm 2 for p = 1; : : : ; Kfor i = 1; : : : ;MLoad Aip from level h+ 1 to level h. mhkh�hfor j = 1; : : : ; NLoad Cij from level h+ 1 to level h. mhnh�hLoad Bpj from level h+ 1 to level h. khnh�hUpdate Cij AipBpj +Cij 2mhnhkhhStore Cij from level h to level h+ 1 mhnh�hendforendforendforFigure 4.3: Multiple matrix-panel multiply based bloked matrix-matrix multipliation.Note 1 The above analysis shows that for the ordering of the loops given in Alg. 1, the strategy shouldbe to load Lh with bloks of C that �ll most of Lh. The intuitive reason is that the ost of moving bloksCij between Lh and Lh+1 is amortized over omputation with many smaller bloks Aip and Bpj , whih are\streamed" from Lh+1. Simultaneously, the ost of bringing eah of these smaller bloks into Lh is itselfamortized over many omputations, sine Cij is essentially as large as possible and almost square.The inner-most loop in Alg. 1 implements multiple panel-panel multiplies sine kh is small relative to mhand nh. Thus the name of this setion.4.4.2 Multiple matrix-panel multiplies in LhMoving the loops over l and i to the outside we get the algorithm in Fig. 4.3. Performing an analysis similarto that given in Setion 4.4.1 the e�etive ost of a oating point operation is now given byh+1 = �h2nh+1 + �h + �h2kh + �h2mh + h(4.6)Again, the question is how to �nd the mh, nh, and kh that minimize h+1 under the onstraint that Cij ,Aik and Bkj all �t in Lh, i.e., mhnh +mhkh + nhkh � Sh. Note that the smaller nh, the more spae inLh an be dediated to Ail and thus the smaller the frations (�h + �h)=2kh and �h=2mh an be made. Agood strategy is thus to let essentially all of Lh be dediated to Ail, i.e., mhkh � Sh. The minimum is thenattained when essentially mh � kh � pSh.Notie that it suÆes to have mh+1 = mh or kh+1 = kh for the above ost of h+1 to be ahieved. Inother words, the above holds for the speial ases0BB� C11 � � � C1N... ...CM1 � � � CMN 1CCA+= 0BB� A11...AM1 1CCA � B11 � � �B1N � +=(4.7) � C11 � � � C1N �+= � A11 � � � A1K �0B� B11 � � � B1N... ...BK1 � � � BKN 1CA +=(4.8)here the distane between single/thin lines is nh and between double/thik lines is mh = kh, where nh ismuh smaller than mh and kh. This will beome important later when we notie that these our naturallyas we move up and down the memory hierarhy.Note 2 The above analysis shows that for the ordering of the loops given in Alg. 2, the strategy shouldbe to load Lh with bloks of A that �ll most of Lh. The intuitive reason is that the ost of moving bloks36

Algorithm 3 for j = 1; : : : ; Nfor p = 1; : : : ; KLoad Bpj from level h+ 1 to level h. khnh�hfor i = 1; : : : ;MLoad Cij from level h+ 1 to level h. mhnh�hLoad Aip from level h+ 1 to level h. mhkh�hUpdate Cij AipBpj +Cij 2mhnhkhhStore Cij from level h to level h+ 1 mhnh�hendforendforendforFigure 4.4: Multiple panel-matrix multiply based bloked matrix-matrix multipliation.Aip between Lh and Lh+1 is amortized over omputation with many smaller bloks Cij and Bpj , whih are\streamed" from Lh+1. Simultaneously, the ost of bringing eah of these smaller bloks into Lh is itselfamortized over many omputations, sine Aip is essentially as large as possible and almost square.The inner-most loop in Alg. 2 implements multiple matrix-panel multiplies sine nh is small relative tomh and kh. Thus the name of this setion.4.4.3 Multiple panel-matrix multiplies in LhFinally, moving the loops over p and j to the outside we get the algorithm given in Fig. 4.4. This time, thee�etive ost of a oating point operation is given byh+1 = �h2mh+1 + �h + �h2kh + �h2nh + h(4.9)Again, the question is how to �nd the mh, nh, and kh that minimize h+1 under the onstraint that Cij ,Aik and Bkj all �t in Lh, i.e., mhnh + mhkh + nhkh � Sh. Note that the smaller mh, the more spae inLh an be dediated to Bpj and thus the smaller the frations (�h + �h)=2kh and �h=2nh an be made. Agood strategy is thus to let essentially all of Lh be dediated to Bpj , i.e., nhkh � Sh. The minimum is thenattained when essentially nh � kh � pSh.Notie that it suÆes to have nh+1 = nh and/or kh+1 = kh for the above ost of h+1 to be ahieved. Inother words, the above holds for the speial ases0BB� C11 � � � C1N... ...CM1 � � � CMN 1CCA+ = 0BB� A11...AM1 1CCA � B11 � � �B1N � +=(4.10) 0BB� C11...CM1 1CCA+ = 0BB� A11 � � � A1K... ...AM1 � � �AMK 1CCA0BB� B11...BK1 1CCA +=(4.11)an observation that will beome important later.Note 3 The above analysis shows that for the ordering of the loops given in Alg. 3, the strategy should be toload Lh with bloks of B that �ll most of Lh. The intuitive reason is that the ost of moving blok Bpj betweenLh and Lh+1 is amortized over omputation with many smaller bloks Cij and Aip, whih are \streamed"from Lh+1. Simultaneously, the ost of bringing eah of these smaller bloks into Lh is itself amortized overmany omputations, sine Bpj is essentially as large as possible and almost square.37

4.5 A heuristi for a multi-level algorithmKey observations so far are� From Setion 4.4: If one were to perform a matrix-matrix multipliation with all operands storedin LL�1 (as would naturally our as part of an appliation) then this operation should be stagedto perform multiple panel-panel, matrix-panel, or panel-matrix multiplies, moving data to and/fromLL�2.� Eah of the individual panel-panel, matrix-panel, or panel-matrix multipliation has the property thatall operands reside in LL�2 and should be staged itself be implemented by utilizing LL�3 eÆiently.� Whenever all operands of the matrix-matrix multiply �ll most of Lh+1{ a panel-panel multiply an be eÆiently implemented by performing multiple matrix-panel orpanel-matrix multiplies in Lh. This follows from (4.7) and (4.10).{ a matrix-panel multiply an be eÆiently implemented by performing multiple panel-panel orpanel-matrix multiplies in Lh. This follows from (4.4) and (4.11).{ a panel-matrix multiply an be eÆiently implemented by performing multiple panel-panel ormatrix-panel multiplies in Lh. This follows from (4.5) and (4.8).� From Setion 4.2 we onlude that even the matrix-matrix multiply in LL�1 an be staged as multiplepanel-panel, matrix-panel, or panel-matrix multiplies.Thus, we onlude that at eah layer of the memory hierarhy we should stage the matrix-matrix multiplyas multiple panel-panel, matrix-panel, or panel-matrix multiplies.These observations leads to the following heuristi for implementing the matrix-matrix multiply:� If in level Lh+1 one enounters a panel-panel multiply, an optimal implementation will utilize a matrix-panel or panel-matrix multiply in Lh. Moreover, the optimal matrix-panel or panel-matrix multiplyin Lh will pik kh � pSh and thus kh+1 = kh � pSh. (Reall that we already determined thatmh+1 � nh+1 �pSh+1 was a desirable bloking.)� If in level Lh+1 one enounters a matrix-panel multiply, an optimal implementation will utilize a panel-panel or panel-matrix multiply in Lh. Moreover, the optimal panel-panel or panel-matrix multiply inLh will pik nh � pSh and thus nh+1 = nh � pSh.� If in level Lh+1 one enounters a panel-matrix multiply, an optimal implementation will utilize a panel-panel or matrix-panel multiply in Lh. Moreover, the optimal panel-panel or matrix-panel multiply inLh will pik mh � pSh and thus mh+1 = mh � pSh.The deision made at a give level Lh+1 is summarized in Fig. 4.5. In other words, at eah level of thehierarhy, Lh, one of the three operands is hosen to be approximately pSh � pSh and �lls most of thatmemory layer while the other two operands are either approximately pSh�1 � pSh of pSh � pSh�1.Another way of viewing this is that one of the operands is moved into level Lh while the other two operandsare streamed (moved in in smaller submatries) from level Lh+1. Notie that if m0, n0, and k0 are nowgiven, all blok sizes are approximately determined by the above analysis.The above heuristi leaves a number of questions:1. What hoies to make in memory layer LL�1 sine there the shape of the matries may not leanly fallinto any of these ategories. In partiular, What if at some level LL�1 the smallest dimension is muhlarger than pSL�2? Notie that our theory atually does answer this question sine...2. What if at some level Lh+1 the \small" dimension is muh smaller than pSh. Indeed, what if morethan one dimension is \small" relative to pSh.We will visit these questions later. 38

Shape in Lh+1 Optimal blokings Shape in Lh

nh +=mh+1 � kh+1 �������R

+= -

+=+= +=mh � kh6
+=mh � kh6mh+= kh+1 � nh+1�������R += -+= -

+=kh � nh6

+=kh � nh6-

mh+1 � nh+1 kh+= �������R

+= -

+= -
mh � nh6+=

mh � nh6+=Figure 4.5: Optimal partitioning at memory level Lh and resulting shapes in level Lh+1.

39

4.6 Pratial onsiderationsIn the previous setion we developed a heuristi for implementation of matrix-matrix multipliation thatbest amortizes movement of data between memory hierarhies from a loal point of view. However, thereare many issues assoiated with atual implementation that are ignored by the analysis and the heuristi.In this setion we disuss implementation details that do take some of those issues into aount. We do soby noting ertain mahine harateristis that to our knowledge hold for a wide variety of arhitetures.Rather than making the register level our lowest level, we start with L1, the L1 ahe. The reason for thisis that at that level loop indexing is a major onern and thus a lot of mahine details must be onsidered.We will not disuss how registers ome into play sine this goes beyond the sope of this hapter.4.6.1 L1-kernels (lowest level)While previously we have disussed the shape of the omputation to be performed in the L1 ahe to bea panel-panel, matrix-panel or panel-matrix multiply, in order to keep loop indexing down to a minimum,at that level our kernels atually perform multiple suh operations. Spei�ally, this allows the loops to beunrolled to eliminate most of the loop overhead.Matrix-panel L1-kernelOur theory indiates that one of the operations that may be enountered at the L1 level is a matrix-panelmultiply. Instead, we onsider the operation C AB + C where C is m1 � n, A is m1 � k1, and B isk1 � n, with n >> n0. The idea is that the overhead of performing the multiple matrix-panel multipliesenountered in the matrix-panel multiply based approahes disussed in Se. 4.4.2 is amortized over manysuh matrix-panel multiplies.The question is how to perform the omputation so that elements of A are used with a frequeny so thatthe ahe-replaement poliy keeps A in the L1 ahe. To ahieve this, C is omputed a few olumns at atime. For example, if C is omputed a single olumn at a time, for every m1 elements of C and k1 elementsof B all m1 � k1 elements of A are aessed and whih tends to keep A in the L1 ahe.Panel-matrix L1-kernelWe similar treat the ase where the shape of matries in L1 is a panel-matrix multiply. This time, weonsider the operation C AB+C where C is m�n1, A is m� k1, and B is k1�n1, with m >> m0. Theidea is that the overhead of performing the multiple panel-matrix multiplies enountered in the panel-matrixmultiply based approahes disussed in Se. 4.4.3 is amortized over many suh panel-matrix multiplies.This time, the omputation must be orhestrated in suh a way that the elements of B are used with afrequeny so that the ahe-replaement poliy keeps B in the L1 ahe. To ahieve this, C is omputed afew rows at a time.Panel-panel L1-kernelWe ould similarly treat the ase where the shape of matries in L1 is a panel-panel multiply. If so, we wouldonsider the operation C AB + C where C is m1 � n1, A is 1m � k, and B is k � n1, with k >> k0.However, for this approah leads to a utilization of the registers that requires elements of C to be loadedto and stored from registers with great frequeny. This inherently leads to an L1-kernel that is slower thaneither the matrix-panel or panel-matrix multiply kernel. Thus, we don't onsider this approah to be a viableL1-kernel. We will analyze approahes for L2-kernels under the assumption that this partiular L1-kernel isnot available. Thus, in Fig. 4.6 we delete from Fig. 4.5 the panel-panel multiply as a possibleshape in the L1 level.4.6.2 L2-kernelWe now ask ourselves the question of what possible algorithms an be implemented when we perform amultipliation with matries that are stored in L2. To answer this question, we turn to Fig. 4.6 in whih wedelete the shapes and algorithms in Fig. 4.5 that now annot be supported.40

Shape in L2 Optimal blokings Shape in L1

+= �������R

+= -

+=+= +=
+=

+= �������R ���������PPPPPPPPP+= -+= -

+=

+=-

+= �������R

���������PPPPPPPPP+= -

+= -
�������HHHHHHH+=

�������HHHHHHH+=Figure 4.6: Possible algorithms for matries in memory level L2 given that our kernel at L1 an onlyaommodate matrix-panel and panel-matrix multipliation.

41

Just like for the L1-kernel, our L2-kernel assumes that one matrix of size approximately pS2 � pS2is moved into L2 after whih multiple panel-panel, matrix-panel, or panel-matrix multiplies ommene.Depending on whih matrix oupies most of L2, one of the four blokings remaining in Fig. 4.6 is used tosmaller subproblems that an be passed to the L1-kernel.For the sake of onsisteny, our L2-kernel performs multiple panel-panel, matrix-panel, or panel-matrixmultiplies, like the L1-kernel. This is illustrated in Fig. 4.7.Notie that if the L2-kernel implements multiple panel-panel multiplies, there is a hoie of two possibleblokings. One leads to a panel-matrix multiply as basi operation in the L1 level, the other to a matrix-panelmultiply. The question naturally beomes whih of the two to use. Notie from (4.9) that the panel-matrixmultiply based algorithm has a ost ofPM2 = �12m2 + �1 + �12k1 + �12n1 + 1while (4.6) shows the matrix-panel multiply based algorithm has a ost ofMP2 = �12n2 + �1 + �12k1 + �12m1 + 1If parameters �1 and �1 are equal in both these equations, the panel-matrix multiply based algorithmoutperforms the matrix-panel multiply based algorithm when PM2 < MP2 or1m2 + 1n1 < 1n2 + 1m1Note that one an expet 1 to be equal for both equations sine in our situation the L1-kernel is one andthe same for both approahes.4.6.3 L3-kernelFor urrent generation miroproessors, the L3 level is typially the primary RAM of the proessor. For thisreason, our disussion will target that situation.Notie that while in this level on the surfae it may appear that one should analyze the general matrix-matrix multipliation C �AB + �C for general m � n matrix C, m � k matrix A, and k � n matrixB. However, a ommon use of matrix-matrix multipliation is as part of the implementation of other denselinear algebra algorithms, e.g. for fatorization operations like LU, Cholesky, and QR fatorization. In thosealgorithms, as implemented in LAPACK, the matrix-matrix multiply invariably appears as a panel-panel,matrix-panel or panel-matrix multiply. Indeed, the width of the panels involved are determined by the widththat makes matrix-matrix multipliation operate at peak performane. Thus, the most important ases ofto analyze are exatly those where one of m, n, or k equals approximately pS2. Thus, we again analyzethe panel-panel, matrix-panel, and panel-matrix multiply before proeeding with the general ase. To do so,again onsider Fig. 4.5.L3-kernel for panel-panel multiplyIn this ase k = k2 � pS2. As for the L2-kernel there are now two hoies for implementation: a panel-matrix multiply based algorithm and a matrix-panel multiply based algorithm. The �rst yields an e�etiveost per oating point operation of PM3 = �22m + �2 + �22k2 + �22n2 + 2while the seond yields MP3 = �22n + �2 + �22k2 + �22m2 + 2If parameters �2, �2, and 2 are equal in both these equations, the panel-matrix multiply based algorithmoutperforms the matrix-panel multiply based algorithm when PM3 < MP3 or1m + 1n2 < 1n + 1m242

Note that one annot expet 2 to be equal for both equations sine in our situation the L2-kernel for eahof the L2-kernels is not the same for both approahes.L3-kernel for panel-matrix multiplyIn this ase m = m2 � pS2. Unlike for the L2-kernel there are now two hoies for implementation: apanel-panel or matrix-panel multiply based algorithm. The �rst yields an e�etive ost per oating pointoperation of PP3 = �22m2 + �2 + �22k + �22n2 + 2while the seond yields MP3 = �22n + �2 + �22k2 + �22m2 + 2Again, if parameters �2, �2, and 2 are equal in both these equations, the panel-panel multiply basedalgorithm outperforms the matrix-panel multiply based algorithm when PP3 < MP3 or??? < 1n + 1m2Again, one annot expet 2 to be equal for both equations sine in the L2-kernel for the two approahes isnot the same.L3-kernel for matrix-panel multiplyIn this ase n = n2 � pS2. There are two hoies for implementation: a panel-panel and a panel-matrixmultiply based algorithm. The �rst yields an e�etive ost per oating point operation ofPP3 = �22m2 + �2 + �22k + �22n2 + 2while the seond yields PM3 = �22m + �2 + �22k2 + �22n2 + 2If parameters �2, �2, and 2 are equal in both these equations, the panel-panel multiply based algorithmoutperforms the panel-matrix multiply based algorithm when PP3 < PM3 or1m + 1n2 <???Again, one annot expet 2 to be equal for both equations sine in the L2-kernel for the two approahes isnot the same.4.7 A family of algorithmsWe now turn the observations made above into a pratial implementation.High-performane implementations of matrix multipliation typially start with an \inner-kernel". Thiskernel arefully orhestrates the movement of data in and out of the registers and the omputation underthe assumption that one or more of the operands are in the L1 ahe. For our implementation on the IntelPentium (R) III proessor, the inner-kernel performs the operation C = ATB+�C where 64�8 matrix A iskept in the L1 ahe. Matries B and C have a large number of olumns, whih we view as multiple-panels,with eah panel of width one. Thus, our inner-kernel performs a multiple matrix-panel multiply (MMP) witha transposed resident matrix A. The tehnial reasons why this partiular shape was seleted go beyond thesope of this paper.While it may appear that we thus only have one of the three kernels for operation in the L1 ahe, notiethat for the submatries with whih we ompute at that level one an instead ompute CT = BTA + CT ,43

L 2-kernel
ShapeinL 2
Optimalblok
ings
L 1-kernel

+=
���� � � �R

+= option1-
+=+=
- +=+=

+= ���� � � �R
+=
-+=+=

+= ���� � � �R
+= option2-

+= ���.+= . . . ���+= ���
Figure 4.7: A tree of possible algorithms for matries in memory level L3 given that our kernel at L1 anonly aommodate matrix-panel and panel-matrix multipliation.

44

reversing the role of A and B. This simple observation allows us to laim that we also have an inner-kernelthat performs a multiple panel-matrix multiply (MPM).Let us introdue a naming onvention for a family of algorithms that perform the disussed algorithmsat di�erent levels of the memory hierarhy:<kernel at L3>-<kernel at L2>-<kernel at L1>.For example MPP-MPM-MMP will indiate that the L3-kernel uses multiple panel-panel multiplies, allsthe L2-kernel that uses multiple matrix-panel multiplies, whih in turn alls the L1-kernel that uses multiplepanel-matrix multiplies. Given the onstraint that only two of the possible three kernel algorithms areimplemented at L1, the tree of algorithms in Fig. 4.7 an be onstruted.4.8 PerformaneIn this setion, we report performane attained by the di�erent algorithms. Details regarding the performanetest bed an be found in 1.4. For the usual matrix dimensions m, n, and k, we use the operation ount2mnk for a matrix-matrix multipliation. We tested performane of the operation C = C � AB (� = �1and � = 1) sine this is the ase most frequently enountered when matrix multipliation is used in librarieslike LAPACK.4.8.1 Implementations testedIt turns out that whenever all operands start by being stored in main memory, there is no notieable di�erenebetween the di�erent loop orderings at that level. In other words, MPM-MMP-MPM ahieves performanethat is essentially idential to MPP-MMP-MPM. Thus, we only report performane for the following variants:MPM-MMP-MPM, MMP-MPM-MMP, MPM-MPP-MPM, and MPM-MPP-MMP.4.8.2 Determining optimal blok sizesOur �rst experiment is intended to demonstrate that the blok size hosen for the matrix that remainsresident in the L2 ahe has a lear e�et on the overall performane of the matrix multipliation routine.In Fig. 4.8(a) we report performane attained as a funtion of the fration of the L2 ahe �lled with theresident matrix when a matrix multipliation with k = m = n = 1000 is exeuted. This experiments testsour theory that reuse of data in the L2 ahe impats overall performane as well as our theory that theresident matrix should oupy \most" of the L2 ahe. Note that performane improves as a larger frationof the L2 ahe is �lled with the resident matrix. One the resident matrix �lls more than half of the L2ahe, performane starts to diminish. This is onsistent with the theory whih tells us that some of theahe must be used for the matries that are being streamed from main memory. One more than 3/4 of theL2 ahe is �lled with the resident matrix, performs drops signi�antly. This is onsistent with the senariowhere parts of the other matries start vaating parts of the resident matrix from the L2 ahe.The exat reason why the MPM-MMP-MPM variant performs better when the blok size is hosenappropriately is not entirely lear. Most likely, it has to do with the details of the paking and unpakingroutines that are part of the implementation.Based on the above experiment, we �x the blok size for the resident matrix in the L2 ahe to 128�128,whih �lls exatly half of this ahe, for the remaining experiments.4.8.3 Resident matriesThe next set of experiments show that the ost of moving a submatrix into the L2 ahe and then amortizingthe ost of this memory operation over as muh omputation as possible is indeed observable in pratie.Matrix A resident in L2: In Fig. 4.8(b), dimensions m and k are �xed to 128. This implies that matrixA �lls half of the L2 ahe. Notie that variant MPM-MMP-MPM will keep 128�128 submatries of Aresident in the L2 ahe. Thus, one would expet performane to inrease smoothly as n is inreased.For the other variants, one would expet a drop in performane whenever n beomes slightly largerthan a multiple of 128, sine they attempt to keep 128� 128 submatries of C or B in the L2 ahe:whenever n is slightly larger than 128, one of the submatries of A or B is relatively small.45

Matrix B resident in L2: In Fig. 4.8(), dimensions n and k are �xed to 128. This implies that matrix B�lls half of the L2 ahe. Notie that variant MMP-MPM-MMP will keep 128� 128 submatries of Bresident in the L2 ahe. Thus, one would expet performane to inrease smoothly as m is inreased.For the other variants, one would expet a drop in performane whenever k beomes slightly largerthan a multiple of 128, sine they attempt to keep 128� 128 submatries of C or A in the L2 ahe:whenever m is slightly larger than 128, one of the submatries of C or A is relatively small.Matrix C resident in L2: In Fig. 4.8(d), dimensions m and n are �xed to 128. This implies that matrix C�lls half of the L2 ahe. Notie that variants MPM-MPP-MPM and MPM-MPP-MMP will both keep128� 128 submatries of C resident in the L2 ahe. Thus, one would expet performane to inreasesmoothly as k is inreased. For the other variants, one would expet a drop in performane wheneverk beomes slightly larger than a multiple of 128, sine they attempt to keep 128 � 128 submatriesof A or B in the L2 ahe: whenever k is slightly larger than 128, one of the submatries of A orB is relatively small. Unfortunately, we annot observe this phenomena, sine the L1 kernel takes aperformane hit every time k is slightly larger than 64.4.8.4 Commonly enountered shapesThe most ommonly enountered speial ases of matrix-matrix multipliation are the matrix-panel, panel-matrix, and panel-panel multipliations. Not only did they show up in this paper as the shape that isenountered at eah level of the memory hierarhy, but it is also the shape that shows up when implementingother matrix operations like LU, Cholesky, and QR fatorization, for example as part of LAPACK.Matrix-panel multiply In Fig. 4.9(a) we report performane as a funtion of n (the number of olumnsin the panel) when m and k are �xed to be large. Notie that our theory indiates that when a matrix-panel multiply is performed in main memory, the L2 kernel should perform multiple panel-matrix orpanel-panel multiplies. The theory indiates that MPP-MMP-MPM and MPM-MMP-MPM, whihperform a matrix-panel multiply in the L2 level, should not be good hoies. The data in Fig. 4.9(a)supports this.Panel-matrix multiply In Fig. 4.9(b) we report performane as a funtion of m (the number of olumnsin the panel) when n and k are �xed to be large. Notie that our theory indiates that when a panel-matrix multiply is performed in main memory, the L2 kernel should perform multiple matrix-panelor panel-panel multiplies. Thus, MPM-MMP-MPM, MPM-MPP-MPM, or MPM-MPP-MMP shouldperform well. The theory indiates that MMP-MPM-MMP, whih perform a panel-matrix multiplyin the L2 level, would not be good hoie. The data in Fig. 4.9(b) supports this in the sense thatMMP-MPM-MMP, whih for other matrix shapes frequently did well, does not perform quite as wellfor small m.Panel-panel multiply In Fig. 4.9() we report performane as a funtion of k (the number of olumns inthe panel) when m and n are �xed to be large. Notie that our theory indiates that when a panel-panel multiply is performed in main memory, the L2 kernel should perform multiple matrix-panel orpanel-matrix multiplies. The theory indiates that variants *-MPP-*, whih perform multiple panel-panel multiplies in the L2 level, should not be good hoies. The data in Fig. 4.9() supports this inthe range 64 � k � 128. Interestingly enough, it does not appear to be true in the range k � 64 forMPM-MPP-MMP. We believe that an be attributed to the fat that in that range there isn't suÆientopportunity for reuse of data in the L2 ahe. As a result, it is best to ignore it, whih is essentiallywhat MPM-MPP-MMP does.4.8.5 Square matriesMatrix multipliation with square matries is relatively unommon in pratie. However, it is ommonlypresented in papers. Thus, for good measure, we inlude Fig. 4.9(a).46

