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Abstract

In this document we present a new approach to developing sequential and parallel dense linear algebra
libraries. Given a linear algebra operation, we demonstrate how formal techniques can be used to derive a
family of algorithms. Due to the systematic approach used, correctness of the algorithms can be asserted.
Next, we introduce a library of routines that hides the manipulation of indices and allows the code to mirror
the algorithms as they are naturally presented. The idea is that by having the code mirror the algorithm,
the opportunity for introducing indexing errors is minimized. Thus, the correctness assertions regarding the
algorithms carry over to the implementations.

The philosophy behind the approach is that one should start by systematically deriving the algorithms.
The recipe for derivation is given in Chapter 2. Moreover, this derivation should be carefully documented.
To facilitate this, we provide a set of IXTEX macros, given in an appendix. Once one or more algorithms
have been developed, they are translated to implementations using a library of C routines, as part of the
Formal Linear Algebra Methods Environment (FLAME). This library allows the code to look much like the
algorithms as written using I TEX. For all examples in the report we demonstrate that high performance
can be attained on an Intel Pentium (R) III processor.

We illustrate the techniques with a large number of case studies, most of which were carried out by
teams of computer science undergraduate students as part of a class taught in Spring 2001 at UT-Austin
titled High-Performance Parallel Algorithms. The names of the members of the teams are given as the
authors of the chapter on the operation assigned to that team. Thus we show that the approach makes
the development and implementation of high-performance sequential and parallel algorithms for dense linear
algebra operations accessible to novices.

It is important to realize that this document is meant to capture the progress of the project during a
single semester. Thus, the document is incomplete in many ways. For example, the review of the literature
is sparse at best. Many sections and chapters are missing or incomplete. Typographical errors are scattered
throughout. For each operation, only a few algorithms are derived and implemented. The performance results
are limited to a single architecture. While high-performance parallel implementations were also created using
our Parallel Linear Algebra Package (PLAPACK), the discussion of these implementations did not make it
into the document. It is our hope that there is value in this document despite these shortcomings.
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Chapter 1

Introduction

When considering the unmanageable complexity of computer systems, Dijkstra recently made the following
observations [10]:

(i) When exhaustive testing is impossible —i.e., almost always— our trust can only be
based on proof (be it mechanized or not).

(ii) A program for which it is not clear why we should trust it, is of dubious value.

(iii) A program should be structured in such a way that the argument for its correctness
is feasible and not unnecessarily laborious.

(iv) Given the proof, deriving a program justified by it, is much easier than, given the
program, constructing a proof justifying it.

Our Formal Linear Algebra Methods Environment (FLAME) is an attempt to address these concerns when
coding linear algebra libraries [18].

The core undergraduate curriculum in computer science department often includes at least one course
that focuses on the formal derivation and verification of algorithms [13]. Many of us in scientific computing
may have, at some point in time, hastily dismissed this approach, arguing that this is all very nice for small,
simple algorithms, but an academic exercise hardly applicable in “our world.” Since it is often the case that
our work involves libraries comprised of hundreds of thousands or even millions of lines of code, the knee-
jerk reaction that this approach is much too cumbersome to take seriously is understandable. Furthermore,
the momentum of established practices and “traditional wisdom” do little if anything to dissuade one from
this line of reasoning. Yet, as the result of our search for superior methods for designing and constructing
high-performance parallel linear algebra libraries, we have come to the conclusion that it is only through
the systematic approach offered by formal methods that we will be able to deliver reliable, maintainable,
flexible, yet highly efficient matrix libraries even in the relatively well-understood area of (sequential and
parallel) dense linear algebra.

While some would immediately draw the conclusion that a change to a more modern programming
language like C++ is at least highly desirable, if not a necessary precursor to writing elegant code, the fact is
that most applications that call packages like the Linear Algebra PACKage (LAPACK) [4] and the Scalable
Linear Algebra PACKage ScaLAPACK [8, 7] are still written in Fortran and/or C. Interfacing such an
application with a library written in C++ presents certain complications. However, during the mid-nineties,
the Message-Passing Interface (MPI) introduced to the scientific computing community a programming
model, object-based programming, that possesses many of the advantages typically associated with the
intelligent use of an object-oriented language [33]. Using objects (e.g. communicators in MPI) to encapsulate
data structures and hide complexity, a much cleaner approach to coding can be achieved. Our own work on
the Parallel Linear Algebra PACKage (PLAPACK) borrowed from this approach in order to hide details of
data distribution and data mapping in the realm of parallel linear algebra libraries [3, 5, 16, 29, 30, 35, 37].
The primary concept also germane to this paper is that PLAPACK raises the level of abstraction at which
one programs so that indexing is essentially removed from the code, allowing the routine to reflect the
algorithm as it is naturally presented in a classroom setting. Since our initial work on PLAPACK, we
have experimented with similar interfaces in such seemingly disparate contexts as (parallel) out-of-core



linear algebra packages [19, 31, 32] and a low-level implementation of the sequential Basic Linear Algebra
Subprograms (BLAS) [11, 12, 17, 28].

Our Formal Linear Algebra Methods Environment (FLAME) is the latest step in the evolution of these
systems. It facilitates the use of a programming style that is equally applicable to everything from out-of-core,
parallel systems to single-processor systems where cache-management is of paramount concern.

Over the last seven or eight years it has become apparent that what makes our task of library development
more manageable is this systematic approach to deriving algorithms coupled with the abstractions we use
to make our code reflect the algorithms thus produced. Further, from these experiences we can confidently
state that this approach to programming greatly reduces the complexity of the resultant code and does not
sacrifice high performance in order to do so.

Indeed, the formal techniques that we may have dismissed as merely academic or impractical make this
possible, as we attempt to illustrate in this document.

1.1 The case for formal derivation

Ideally, an implementation should clearly reflect the algorithm as it is presented in a classroom setting.
Additionally, some of the derivation of the algorithm should be apparent in the code and different variants
of an algorithm should be recognizable as slight perturbations to an algorithmic “skeleton” or base code.
indexbase code If the code is just a mechanically-realizable, straightforward translation of this algorithmic
expression, there should be no opportunity for the introduction of logical errors or coding bugs. (Note:
while we will frequently refer to translations from algorithms to code as being mechanical or automatic, this
process is currently performed by hand.) Presumably, it should be possible to prove the algorithms correct,
thus ensuring that the code is correct.

Typically, it is difficult to prove code correct precisely because one is not certain that the code truly
mirrors the algorithm. With our approach, the chasm is largely bridged by the simple yet crucial fact
that some very simple syntactic rewrite rules can produce the code from an algorithm expressed as one
might in a classroom, using mathematical formulas and stylized matrix depictions. Since we can prove the
correctuess of the algorithm we wish to employ (the proof is generally constructive in nature, but this is
of little consequence) and because the correctness of the translation from algorithm to code is at least as
reliable as compiler technology, the complexity of the task at hand is greatly ameliorated. By assuming that
components adhere to explicit “contractual obligations” [2], the algorithmic proof requires little alteration
in order to be applicable to the code. In the case of a library constructed entirely through the methodology
presented here, these components would be composed in like manner so as to make this task manageable.
This is largely due to the fact that the approach presented here leads to a software architecture layered in
such a way so as to require one to rely on the correctness of a very small number of base-level modules.
Since those units are small, their correctness can be established through the application of standard formal
methods. It is true that, in practice, one must accept that an application will need to interface with other
libraries (for example, the vendor-supplied BLAS) that are not built in a “proof-friendly” format. However, it
may still be possible to establish the correctness of a program if one is careful to impose minimal obligations
on these, presumably time-tested and well-documented, pieces of code.

It should be noted that the “correctness” discussed so far does not address issues of numerical stability.
We make no claim regarding the stability of the resulting algorithm.

Having said this, we will clarify through a simple example in Sectionsec:example. But first, we review
commonly used matrix and vector notation. For those for whom linear algebra is not second nature, the
most basic of operations are reviewed in A



1.2 Notation

A (column) vector, x, is the n-tuple of real or complex numbers

X1
X2
Xn
Here y; are called the components of vector . We will denote the set of all vectors with real components

R"™ and with complex components C™.
A row vector, T, is the n-tuple of real or complex numbers

T
zt = (x| xn)

Here z! indicates a transposed (column) vector. (We will always assume vectors are column vectors,
unless transposed like this, or explicitly noted.) More about transposition next.

An m x n matrix, A, is the array

a1 Q12 Qlp

Q21 Q2 0 Qg
A=

Uml Qm2 Omn

with m rows and n columns. The (¢,7) component, or element, of A refers to «;;, which may be real or
complex. The numbers m and n are the dimensions of A. If m = n then the matrix is said to be square.
Otherwise, it is said to be rectangular.

Notice that we use the convention introduced in [34] of using Greek letters for real or complex numbers,
lowercase italicized letters for vectors, and uppercase italicized letters for matrices.

Frequently, we will wish to partition a matrix into blocks. For example, if A is an m X n matrix, it can
be partitioned into a M x N matrix of submatrices like

Ay | A || Aun

Apy | Ay |- | Aon
A=

Avr | Amz | -+ | Aun

where A;; is an m; x n; matrix, with Zi\;l n; =n and Zi\il m; = m.
Similarly, a vector can be partitioned into subvectors. For example, if z is a vector of length n, we may
wish to partition like
Ty
€Z2

TN

where z; is an vector of length n;, with Zfil n; =n.
Additional notation and basic linear algebra operations are reviewed in Appendix A.

1.3 A motivating example: LU factorization
We illustrate our approach by considering LU factorization without pivoting. Given an n x n matrix A we

wish to compute an n x n lower triangular matrix L with unit main diagonal and an n X n upper triangular
matrix U so that A = LU. The original matrix A is overwritten by L and U in the process.



The usual derivation of an algorithm for the LU factorization proceeds as follows: Partition

L 1 0 v | ui;
(). o). w0 (34
<a21 Az )7 I | Los )7 0] Uz

Now A = LU translates to

(i) - ) (5 - (e
az | Az Iy [ L2 )7\ 0] Ux I1v11 | brudy + LoaUss

so the following equalities hold:

— T _,T
< 0411—1} | a12—u12 )

az = vl | a2z = lZlu{Q + L22Uss
Finally, we arrive at the following algorithm
e Overwrite ay; and af, with vy and ul,, respectively (no-op).
e Update as; < la1 = a2y /v11.

Update A22 «— A22 — lzlu{?

e Recursively factor Ass — LosUss.

While the algorithm is formulated as tail-recursive, it is usually implemented as a loop.
When presented in a classroom setting, the explanation is typically accompanied by the following pro-
gression of pictures:

aia

Y
Y

<« | current A a2 | Aoy — 221 ail;
a1 11

with an indication that at a given stage the current active part of the matrix resides in the lower-right
quadrant of the left picture. Next, the different parts to be updated are identified and the updates given
(middle picture). Finally, the boundary indicating how far the computation has progressed is moved forward
(right picture).

It is this progression depicted in the pictures that we try to capture both in the derivation and the
implementation of the algorithm. We claim that the discussed algorithm for LU factorization is naturally
given by the algorithm in Fig. 1.1. A code for implementing the algorithm using FLAME is given in Fig. 1.2.

The code can be obtained from the algorithm essentially via textual substitution. Notice that the calls
to FLA_Inv_scal and FLA _Ger implement division of a vector by a scalar and rank-1 update of a matrix,
respectively. The formatting of the code is a deliberate attempt to capture the partitioning and repartitioning
in the algorithm.

1.4 Performance experiments

For each matrix operation discussed in this document, we report performance on an Intel Pentium IIT (650
MHz) processor with 16 Kbyte L1 data cache and a 256 Kbyte L2 cache running RedHat 7.1 Linux. All
floating point calculations were performed in double precision (64-bit) arithmetic.

The FLAME routines that perform level 1 BLAS (vector-vector operations) and level 2 BLAS (matrix-
vector operations) interface to a standard BLAS library. For performance experiments, the ATLAS library
implementation was used [36]. In particular, the prebuilt version in



A A
partition A — < Y LA ) where A7y is 0x 0
Apr || ABR
do until Agr is 0 x 0
Apo || ao1 | Aoz

Arp || Arr ) . = =

repartition < aio || a11 | ags where «; is a scalar
AL || ABr

Aso || a1 | Az

Q1 < V11 = (g1
T T _ T

Ayp < Ujp = A7

as1 4l = asi fon

Ao Azy — 121U1T2

Ago | aor || Aoz

. . Arp || Arr T T

continue with — A1p | @11 || Gpa
AL || ABr

Az | a21 || Az

enddo

Figure 1.1: An unblocked (rank-1 update based) eager LU factorization algorithm (without pivoting)

1  #include "FLAME.h"

2

3 void FLA_LU_nopivot_eager_level2( FLA_Obj A )

4 A

5 FLA_Obj ATL, ATR, A0O, al1, A02,

6 ABL, ABR, alOt, alphall, al2t,

7 A20, a21, A22;

8

9 FLA_Part_2x2( A, &ATL, /**/ &ATR,

10 /% kkkkkkkkkkkkkk k[

11 %ABL, /*%/ &ABR,

12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );

13

14 while ( min( FLA_Obj_length( ABR ), FLA_Obj_width( ABR ) ) !'= 0 ){

15

16 FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /#*x/ &al1l, %A02,

17 /% kkkkkskkokokkkkk ok / /% wkskokokokskokokkokokokkokkokokokkokokkok ok ok /
18 [*%/ %al0t, /*x/ galphall, &al2t,
19 ABL, /**/ ABR, %A20, /*x*/ &a21, &A22,

20 /* with */ 1, /* by */ 1, /* alphall split from */ FLA_BR );

21

22 /% skkskokokoskokskosk ksk sk sk ok ok sk sk sk ok ok sk sk ok sk sk o ks sk ok sk sk sk ok sk ks sk ksk sk ok skoskkksk sk kskskokkskoskkokosk ok ok /
23

24 FLA_Inv_scal( alphall, a2l ); /* a2l <- a2l / alphall */
25

26 FLA_Ger( MINUS_ONE, a21, al2t, A22 ); /* A22 <- A22 - a2l * al2t */
27

28 [ ko Rk ok ok Kok oK ok o KoK oK oK o K oK o KK oK o K oK o KK oK o KoK o K oK ok K Ko o KoK oK KK ok o KK ok KoK SR KoK kR KoK sk Rk ok K ok [/
29
30 FLA_Cont_with_3x3_to_2x2( &ATL, /*x/ &ATR, A00, a0, /**/ A02,
31 [*x/ a10t, alphall, /#*/ al2t,
32 /¥ kkkokkokkokokokokokkok ok / ok skokokokokokokokokoskokoskskskskoskskskskskskokok ok ok /
33 &ABL, /*x/ &ABR, A20, a21, /**/ A22,
34 /* with alphall added to submatrix */ FLA_TL );
35 }
36 2

Figure 1.2: An unblocked (rank-1 update based) eager LU factorization implementation (without pivoting)
using FLAME.
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atlas3.2.0 Linux SSE1256.tgz
available from
http://www.netlib.org/atlas/archives/linux/

was used. In many of the performance graphs for level 3 BLAS (matrix-matrix) operations, we report
performance by a reference implementation. This reference implementation is the one provided by ATLAS.

Notice that our implementations heavily rely on a high-performance matrix-matrix multiplication kernel.
For our performance experiments, the DGEMM level 3 BLAS kernel for matrix-matrix multiplication was used.
We use two different implementations:

e the implementation provided by ATLAS, and
e our own ITXGEMM implementation [17].

The latter implementation, which yields better performance for most matrix sizes, is further explained in
Chapter 4.

We report performance as the rate at which the computation was performed in MFLOPS/sec. (millions
of floating point operations per second). More precisely, if C' equals the number of floating point operations
required to complete the computation, and ¢ equals the time required, the rate in MFLOPS/sec. is given by

g x 1076
t

1.5 Overview

Our methodology for developing high-performance linear algebra algorithms is introduced in Chapter 2. The
application programming interface (API) is introduced in Chapter 3 as a set of C routines. In Chapter 4,
we discuss how high performance can be attained by a matrix-matrix multiplication kernel. In Chapters 5—
16 we report a large number of case studies that demonstrate the methodology for developing algorithms.
They also show how blocked algorithms can be used to formulate the algorithms in terms of matrix-matrix
multiplications, which allows the high performance attained by this kernel to be exploited. It should be noted
that the idea of implementing this particular set of operations in terms of matrix-matrix multiplication has
been studied extensively elsewhere [8, 9, 20, 21, 24, 25, 26, 36]. In particular, one may recognize them as
special cases of the level 3 BLAS.

1.6 Availability

Information related to FLAME is available at
http://www.cs.utexas.edu/users/flame/
Codes discussed in this document can be found at
http://www.cs.utexas.edu/users/flame/materials/

The BETEXcommands and environments used to typeset many of the formulas and algorithms in this docu-
ment, which are described in Appendix B, can be found at

http://www.cs.utexas.edu/users/flame/LaTeX/

11



Chapter 2

Formal Derivation

In this chapter, we briefly review general techniques for the derivation of algorithms. We relate these
techniques to the iterative algorithms encountered in subsequent chapters. Finally, we give a systematic
recipe for deriving linear algebra algorithms. The recipe is illustrated for the triangular matrix-matrix
multiplication B < LB.

2.1 The correctness of loops

In a standard text [14] used to teach discrete mathematics to undergraduates in computer science we find
the following material:

We prefer to write a while loop using the syntax
do B — S od

where Boolean expression B is called the guard and statement S is called the repetend.

[The 1Joop is executed as follows: If B is false, then execution of the loop terminates; otherwise
S is executed and the process is repeated.

Each execution of repetend S is called an iteration. Thus, if B is initially false, then 0 iterations
occur.

We now state and prove the fundamental invariance theorem for loops. This theorem refers to
an assertion P that holds before and after each iteration (provided it holds before the first). Such
a predicate is called a loop invariant.

(12.43) Fundamental invariance theorem. Suppose
e {P AB}S{P} holds — i.e. execution of S begun in a state in which P and B are
true terminates with P true — and
e {P} do B — S od true —i.e. execution of the loop begun in a state in which P is
true terminates.

Then {P} do B — S od {P A =B} holds. [In other words, if the loop is entered in a
state where P is true, it will complete in a state where P is true and guard B is false.]

The text proceeds to prove this theorem using mathematical induction.
Let us translate the above into our setting, which will accommodate linear algebra algorithms. Consider
the loop

do until =B
S
enddo
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where B is some condition and S is the body of the loop. The above theorem says that if
e The loop is entered in a state where some condition P holds, and
e for each iteration, P holds at the top of the loop, and

e the body of the loop S has the property that if it is executed starting in a state where P holds it
completes in a state where P holds.

then the loop will complete in a state where conditions P and =B both hold.
A method that formally derives a loop (i.e., iterative implementation) approaches the problem of deter-
mining the body of the loop as follows:

e First, one must determine conditions B and P.

e Next, the body S should be developed so that it maintains condition P while making progress towards
completing the iterative process (eventually B should become false).

As a consequence of the Fundamental Invariance Theorem, this approach implies correctness of the loop.
What we show in the remainder of this chapter, and the subsequent case studies in the remainder of this
book, is that for a large class of dense linear algebra algorithms

e There is a systematic way of determining different conditions P that allow us develop loops to compute
the result of a given linear algebra operation.

e This in turn yields different algorithms for computing the operation.

2.2 A recipe for deriving linear algebra algorithms

2.2.1 A typical operation

A typical linear algebra matrix-matrix operation involves up to three operands: matrices A, B, and C:

C + op(4,B,0)

Example (LTRMM) A lower-triangular matrix-matrix multiplication (LTRMM) can
be expressed as
B+ LB

where B is an m x n matrix and L is a m x m lower triangular matrix. Notice that the
purpose of the game is to overwrite B with the results without requiring a work array in
which to compute LB.

2.2.2 determining possible loop invariants

1. Temporarily replace C' by D. Since C appears both on the left and the right of the operation to
be performed, we temporarily replace one of the instances by a new operand, D.

Example (LTRMM) B <« LB is replaced by D = LB. Notice that the arrow indicates
that the operand is overwritten with the result. We now replace this by an equality, since
the purpose of the game will be to determine equalities that must hold as the computation
unfolds.

2. Pick an Operand and Partition The first step is to pick an operand and partition' it in a meaningful
way:

INote: we provide some useful IATgXmacros for partitioning matrices in Appendix C.
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e If the operand that is picked has a triangular storage structure, the partitioning should be into
four quadrants, so that the quadrant that contains the block that is not used for storing the
matrix can be identified.

Example (LTRMM) Pick L for partitioning:

L_)<LTL 0 >
Lpr || LBr

where Ly, is a square block, say of size k x k.

e If the operand has no special structure, it is typically partitioned into two submatrices, either
horizontally or vertically.

Example (LTRMM) Pick B for partitioning:
B — ( By, || Bgr )

where By, has k columns. Note: this second partitioning does not necessarily lead to the
same set of loop invariants as the partition of L above. Indeed, it doesn’t.

3. Partition the other operands conformal to the first one: Given that the first operand has been
partitioned, the other operands should be partitioned conformally to ensure that blocked multiplication
of the submatrices makes sense.

Example (LTRMM) Let us concentrate of the case where L has been partitioned like

()
L —
Lgy || LBr

When considering D = LB, we notice that D and B must be partitioned by rows:

DT BT
D d B
o (). wd B (F)

where Dt and Bt have k rows.

4. Rewrite the operation using the partitionings: Next, plug the partitioned matrices into the
operation D = op(A4, B, C).

Example (LTRMM) In the example D = LB, where D, L, and B have been partitioned

as described, this yields
Dg Lpr || Lpr Bgp

5. Perform blocked matrix-matrix multiplications and additions: Now that the operation has
been expressed with blocked matrices, we perform the given operations.

Example (LTRMM) In our lower triangular matrix-matrix multiplication example we
get
(52) - (o) B0)- (bt
Dp Lpr || LBr Bg LprBr + LgrBp
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6. Determine equalities that must hold: Once the operations have been performed with the subma-
trices, equalities that must hold can be determined.

Example (LTRMM) In our lower triangular matrix-matrix multiplication example we

de‘ ermined ‘ha‘

Thus, we conclude that the following equalities must hold:

Dr = LrpBr
Dp = LprBr+ LprBg

7. Determine possible contents of D: Next, we determine possible contents of D under the assumption
that some of the computations that appear in the equalities have occurred. One approach to this is to
enumerate all the major operations that must be formed. At a given stage of the computation, each of
these computations either has or has not occurred. By considering all possible combinations, one can
enumerate essentially all possible conditions.

Example (LTRMM) See Fig. 2.1.

8. Eliminate unreasonable conditions: Once possible contents of D have been enumerated, some of
the conditions can typically be eliminated since they do not lead to reasonable loops.

There are two reasons for rejecting a condition:

(a) We want to derive a loop that maintains the condition while making progress towards the desired
result. We need to be able to achieve that condition before we enter the loop. Furthermore, upon
leaving the loop, the desired result should have been computed. If the condition doesn’t allow
this, then the condition is rejected.

(b) The result overwrites part of one of the input operands before that part of the input operand is
no longer needed.

We will illustrate how the first approach can be used to reject possible conditions for the symmetric
matrix multiply in Chapter 6. In Fig. 2.2, we use the second approach to reject a number of conditions
for the triangular matrix-matrix multiplication example.

9. Determine the direction of the computation: The condition that determines the contents of D
indicates a direction in which the computation naturally proceeds. Frequently encountered directions
are

left ( “—H ) right ( H—" ) up BE

down } left-up N right-down .

Example (LTRMM) Consider the condition that currently D contains

*
. In order to move the boundary that indicates how far the
< LpiBr + LprBg > v

computation has proceeded, that boundary must be moved up. Thus, this algorithm
naturally moves through matrices D and B in the “up” direction.
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Example (LTRMM) In our lower triangular matrix-matrix multiplication example we
have determined that

Dy = LypBr
Dp = LprBr+ LprBg
The major operations to be performed are Ly, By, LBy, and LgrBp. Each of these

either has or has not already been computed, leading to the 2® = 8 possible conditions
tabulated below. In the table, a x indicates the indicated part of D has yet to be computed.

Computed? D contains
LyBr | LpLBr | LprBg |

NO NO NO

YES NO YES

NO YES YES

(=
L1 B
YES NO NO < Ti T)
NO | YES NO <7¥>
Lp1Br
LypBr >
YES YES NO —
( Lp;Br
*
NO NO YES
< LprBp >
( *

LprBr + LprBp )

L;LB
YES YES YES ( L7 )
LprBr + LgrBp

Figure 2.1: Step 7 for the LTRMM example.
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Example (LTRMM) In the following table, we again list possible contents of D. This
time, we comment on each possibility.

D contains Comments Viable?
(;) This condition indicates no progress has been NO
made.
Ly.Br Since Br is to be overwritten by Dy, this condi-
( ) tion is not feasible since Br is still needed for the NO
computation Lgr Br.
Since Bp is to be overwritten by Dy, this condi-
( > tion is not feasible since Br is still needed for the NO
LpLBr computation LgyByp.
Ly, By Since Bp is to be overwritten by Dpg, this condi-
( > tion is not feasible since Bpg is still needed for the NO
LpLBr computation LgrBpg.
( ) YES
LprBp
Ly Br Since Bp is to be overwritten by Dy, this condi-
< ) tion is not feasible since By is still needed for the NO
LprBs computation Lgy Br.
( ) YES
Ly Br + LBRBB
< Lr1Br ) This condition indicates that the computation has NO
LgrBr + LgrBg completed.

Considering the comments, only two viable conditions are left, the ones for which there are

no comments.

Figure 2.2: Step 8 for the LTRMM example.
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10. Repartition the matrices: In order to expose what

elements must be updated to make progress, D

is repartitioned. Similarly, the other matrices must be repartitioned conformally to expose submatrices

needed to update D.

repartition D like

where b! is a row
Notice that the double lines have meaning:

Example (LTRMM) Since the computation moves through D in the “up” direction, we

D —T—D 2
repartition ( L ) — dy where d! is a row
5 —_—
D,
Similarly, we must repartition the other matrices:
repartition repartition
BO Loo 0 0
B L 0
- (3) k- (B
B B, BLAL&BR Lyo | Iy || Loz

where )\;; is a scalar

D B L 0
o8] o) ()]

d by lip | A
Dp= D, Bp= DB Lpr={( Lao | l21 ) | Lr=Lo>

11. Determine what is currently in the matrix: Given the repartitionings, we determine what is

currently in matrix D.

Example (LTRMM) D currently contains

*

*

( )

LprBr + LprBp

B
(Lo | l21 ) (—bqg—> + L2 B
1

*

(

L2oBg + 12167 + Lo Bo

)

12. Determine what needs to be in the matrix afte

r the boundary shifts: Notice that once the

boundary shifts, the partitionings of the matrices indicate different submatrices of those matrices. To
maintain the condition, an update to the contents of D is required.

and thus D must hold

Example (LTRMM) After the boundaries shift
Dyp= Dy Bp= By Lyp= Lo |
di b{ 13 A 0
Dp=|—2 Bp= -1 Lp,=(—22 Lpp=|-5% >
b ( Dy > o < B; ) bBr ( Loy ) H Bh < o1 | Lo

*
*
— lT A 0 bT
( Lp.Br + LprBp ) ( L1200 )BO+< 12111 Lo > < 312 )

*

I1,By + A11 b1

L

(

20Bo + 12167 + L2z B>

)
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13. Determine what update must occur: The known contents of D before the shift of the boundaries
and the desired contents of D after the shift of the boundaries determines the update that must occur.

Example (LTRMM) The contents of D must change as follows

=) :
* — < Z{OBO + Allbir >

LBy + lzlblT + L2y By LBy + lzlblT + L2y By

14. State the algorithm: At this point, the partitioning and repartition of the matrices have been
derived, as have the steps required to maintain the desired condition. Thus, the algorithm can be

given.

Example (LTRMM) See Fig. 2.3.

Example (LTRMM) One algorithm for the lower triangular matrix-matrix multiplication.
Notice that we overwrite B with the result.

B
partition B — ( L ) where Bgp has 0 rows

B

L 0

partition L — ( 1L > where Lpp is 0 x0
Lpr || Lr

do until L7y is 0 x 0
By

B
=)~ | &
B B,

where b{ is a row

repartition <

I 0 Lo | O 0
repartition < IL ) — l%;) Al 0 where \{; is a scalar
Lpr || Lr
Lo | I || Ly

b{ — )\nb{
bl « 11,By + bf

Loo || 0 | 0
. . Ly 0

continue with L—”L— +— I TAa] 0
BL BR Lyg || lo1 | L2

B Bo

continue with ( L > — blj

Bpg B

2

enddo

Figure 2.3: Step 14 for the LTRMM example.

15. Classify the algorithm: We classify algorithms by

e the direction in which they move, and

e how aggressively they use and/or update data in the matrices.

While intuitively the classification is consistent, the different categories have slightly different meaning
depending on whether we categorize with respect to an input or an output parameter. In particular:
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Let X be the operand with respect to which we will categorize the algorithm. The following table
explains the different categories:

right /left-moving algorithms: Consider the current partitioning on operand in a right- or left-
moving algorithm w.r.t. X: ( X, || Xg ). Then we will use the following categorization of
algorithms w.r.t. X:

right-moving algorithm

Lazy | The entries in X have been completely used and/or updated. The
entries in X has not been touched (used or updated).

Eager | The entries in X, have been completely used and/or updated. The
entries in X have been updated as much as is possible without
completing another column of X.

left-moving algorithm

Lazy | The entries in X have been completely used and/or updated. The
entries in X, has not been touched (used or updated).

Eager | The entries in X have been completely used and/or updated. The
entries in X7 have been updated as much as is possible without
completing another column of X.

down/up-moving algorithms: Consider the current partitioning on operand in a down- or up-
X
Xp

moving algorithm w.r.t. X: ( > . Then we will use the following categorization of algorithms

w.r.t. X:

down-moving algorithm

Lazy | The entries in Xy have been completely used and/or updated. The
entries in Xp has not been touched (used or updated).

Eager | The entries in X7 have been completely used and/or updated. The
entries in Xp have been updated as much as is possible without
completing another row of X.

up-moving algorithm

Lazy | The entries in X have been completely used and/or updated. The
entries in X has not been touched (used or updated).

Eager | The entries in X p have been completely used and/or updated. The
entries in X have been updated as much as is possible without
completing another row of X.

down-right /up-left-moving algorithms: Consider the current partitioning of an operand in a
. . . Xrr || Xrr .
right-down- or left-up-moving algorithm w.r.t. X: Then we will use the

Xpr | XBr /)

following categorization of algorithms w.r.t. X:
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right-down-moving algorithm

Lazy The entries in Xy, have been completely used and/or updated.
The entries in Xyg, Xpr, and Xgg have not been touched (used
or updated).
Row-lazy The entries in X4y, and Xy i have been completely used and/or
updated. The entries in Xp; and Xpgr have not been touched
(used or updated).
Column-lazy | The entries in X7p and Xpr have been completely used and/or
updated. The entries in X7r and Xpgr have not been touched
(used or updated).
Both-lazy The entries in X7r, X7gr, and Xpr have been completely used
and/or updated. The entries in Xpp have not been touched (used
or updated).
Eager The entries in X7r, X7r, and Xpr have been completely used
and/or updated. The entries in Xpgr have been updated as much
as is possible without completing another row and column of X.

left-up-moving algorithm

Lazy The entries in Xpgr have been completely used and/or updated.
The entries in Xy g, Xpr, and Xy, have not been touched (used
or updated).
Row-lazy The entries in Xpj;, and Xpr have been completely used and/or
updated. The entries in Xp; and Xpgr have not been touched
(used or updated).
Column-lazy | The entries in X7 and Xpr have been completely used and/or
updated. The entries in Xp; and Xp; have not been touched
(used or updated).
Both-lazy The entries in Xpgr, X7, and Xpr have been completely used
and/or updated. The entries in Xy, have not been touched (used
or updated).
Eager The entries in Xpgr, Xrgr, and Xpr have been completely used
and/or updated. The entries in X7z have been updated as much
as is possible without completing another row and column of X.

Example (LTRMM) Consider the example that we have been using throughout this
chapter. Using our categorization, we see that the algorithm that corresponds to the con-
*

LppBr + LprBs
respect to matrix L since data in Lg, and Lgg will not be required for further computation.

It is also lazy with respect to matrix D, since Dy, has been completely computed.

dition that currently D contains ( ) is up-moving and row-lazy with

*
The algorithm that corresponds to the the condition that currently D contains (ﬁ)
BRDB

is also up-moving. However, it is lazy with respect to matrix L since only the data in Lpg
will not be needed for further computation. It is also lazy with respect to matrix B, since
Bpg will not be needed for further computation.
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Chapter 3

Coding Linear Algebra Algorithms

In this chapter we introduce a set of library routines that will allow us to capture in code linear algebra
algorithms as they are naturally presented, for example in a classroom setting. The idea is that by making
the code look as much like the algorithm in Fig. 1.1 the opportunity for the introduction of bugs is minimized.
Readers familiar with MPI [15, 33] and/or our own PLAPACK [35] will recognize the programming style as
being very similar to that used by those interfaces.

3.1 initializing and finalizing FLAME

Before using the FLAME environment one must initialize with a call to

void FLA_Init( )
Purpose: Initialize FLAME.

If no more FLAME calls are to be made, the environment is exited by calling

void FLA_Finalize ( )
Purpose: Finalize FLAME.

Since an application may wish to query whether the environment has already been initialized, we provide
the inquiry routine

int FLA_Initialized ( )
Purpose: Check if FLAME is initialized.

return value TRUE if FLAME is already initialized
FALSE otherwise

3.2 Creating an object

Notice that there the following attributed describe a matrix as it is stored in the memory of a computer:
e the datatype of the entries in the matrix, e.g., double or float,
e m and n, the row and column dimensions of the matrix,
e the address where the data is stored, and

e the mapping that described how the two dimensional array is mapped to memory.
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For now, we will assume that a matrix is stored using column-major ordering. Thus, the mapping to
memory is described by a leading dimension that indicates the number of units through which one must
stride in memory to get from one element in a row of the matrix to the next element in that row. The
following call creates an object that describes a matrix and creates space to store the entries in the matrix:

void FLA_Obj_create ( int datatype, int m, int n, FLA_Obj *matrix )
Purpose: Create an object that describes an m x n matrix as well as associated storage.

datatype datatype of matrix
m, n row dimensions of matrix
matrix object that describes the matrix

Notice that the leading dimension of the array that is used to store the actual matrix is itself determined
inside of this call.
Valid datatype value include

FLA_INT, FLA_DQOUBLE, FLA FLOAT, FLA_DOUBLE_COMPLEX, and FLA_COMPLEX

for the obvious datatypes that are commonly encountered. Additional datatype may be added at a future
stage.

Sometimes it will be handy to create an object without storage attached. This allows a matrix that has
already been stored in a conventional two-dimensional array to be attached to an object. The following call
creates such an object:

void FLA_Obj_create_without_buffer
( int datatype, int m, int n, FLA_Obj *matrix )

Purpose: Create an object that describes an m x n matrix without associated storage.

datatype datatype of matrix
m, n dimensions of matrix
matrix address of object that will describe the matrix

If an object has been created without storage attached, an existing two-dimensional array can be attached
by calling

void FLA_Obj_attach_buffer ( void *buff, int ldim, FLA_Obj matrix )

Purpose: Attach an existing buffer that holds a matrix stored in column-major order with leading
dimension 1dim to the object matrix.

buff address of where buffer exists
ldim leading dimension of array
matrix object that describes the matrix

FLAME treats vectors as special cases of matrices, either as a n x 1 matrix or an 1 X n matrix. Thus, to
create an object for a vector x of length n either of the following calls will suffice:

FLA Obj_create( FLADOUBLE, n, 1, &x ), or
FLA Obj_create( FLADOUBLE, 1, n, &x ),

where x has been declared as a FLA_0bj and n is an integer variable with value n.
Similarly, FLAME treats scalars as a 1 x 1 matrix. Thus, to create a object for a scalar a the following
call is made:

FLA Obj_create( FLADOUBLE, 1, 1, &alpha )

where alpha has been declared as a FLA Obj. A number of scalars occur frequently and are therefore
predefined by FLAME: MINUS_ONE, ZERO, and ONE.

Often it is useful to create a matrix that has the same datatype and dimensions as a given matrix. For
this we provide the call
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void FLA_Obj_create_conf_to ( int trans, FLA_Obj old, FLA_Obj *matrix )

as old, transposing if desired.

trans indicates whether to transpose
old original object
matrix new object

Purpose: Like FLA_Obj_create except that it creates an object with same datatype and dimensions

Valid values for trans include FLA_NO_TRANSPOSE , FLA_TRANSPOSE, and FLA_CONJUGATE_TRANSPOSE. If
trans equals FLA_NO_TRANSPOSE, the new object has the same dimensions as old. Otherwise, it has the same

dimensions as the transpose of old.

3.2.1 Object destruction

If an object was created with FLA Obj_create or FLA_Obj_create_conf to a call to b FLA Obj_free is

required to ensure that all space associated with the object is properly released:

void FLA_Obj_free ( FLA_Obj *obj )
Purpose: Free all space allocated to store data associated with obj.

obj object that describes the object

3.2.2 Inquiry routines

In order to be able to work with the raw data, a number of inquiry routines can be used to access information
about a matrix (or vector or scalar). To extract the datatype and row and column dimensions of the matrix

FLAME provides:

int FLA_Obj_datatype ( FLA_Obj matrix )
int FLA_Obj_length  ( FLA_Obj matrix )
int FLA_Obj_width ( FLA_Obj matrix )
Purpose: Extract datatype, row, or column dimension of matrix, respectively.

matrix object that describes the matrix
return value datatype, row, or column dimension of matrix, respectively

To extract the address of the array that stores the matrix and the leading dimension of that array

FLAME provides:

void *FLA_0Obj_buffer ( FLA_Obj matrix )
int FLA_Obj_ldim ( FLA_Obj matrix )

Purpose: Extract the address and leading dimension of the matrix, respectively.

matrix object that describes the matrix
return value address and leading dimension of matrix, respectively

An example of how to use this information to implement a simple matrix-vector multiplication

is

given in Fig. 3.1. To understand the code one must understand that element «;; of matrix A is stored
in buff_A[j*1dim_A+i], which conforms to column-major order. Similarly, x;, the jth element of z, and
73, the ith element of y, are stored in buff x[j*inc_x] and buff_y[i*inc_y], respectively. (Here indexing

starts at zero.)
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#include "FLA.h"

void FLA_simple_mv_mult( FLA_Obj A, FLA_Obj x, FLA_Obj y )

{

}

int
datatype_A, m_A, n_A, 1dim_A, m_x, n_y, inc_x, m_y, n.y,

datatype_A = FLA_Obj_datatype( A );

m_A = FLA_Obj_length( A );
n_A = FLA_Obj_width ( & );
1dim_A = FLA_Obj_ldim ( A );
m_x = FLA_Obj_length( x );
n_x = FLA_Obj_width ( x );
m_y = FLA_Obj_length( y );
n_y = FLA_Obj_width ( y );

if (mx==1) {

m_Xx = n_x;

inc_x = FLA_Obj_ldim( x );
}

else inc_x = 1;

if (my ==1) {

m.y = n_y;

inc_y = FLA_Obj_ldim( y );
}

else inc_y = 1;

if ( datatype_A == FLA_DOUBLE ){
double
*buff_A, xbuff_x, *buff_y;

buff_A ( double * ) FLA_Obj_datatype( A );
buff_x ( double * ) FLA_Obj_datatype( x );
buff_y = ( double * ) FLA_Obj_datatype( y );

for ( i=0; i<m_A; i++ ) buff_y[ i*inc_y ]

"
[}

for ( j=0; j<n_A; j++ )
for ( i=0; i<m_A; i++ )
buff_y[ i*inc_y ] += buff_A[ j*ldim_A+i ] * buff_x[ j*inc_x ];
}
else FLA_Abort( "datatype not yet supported"

LINE FILE__ );

inc_y;

Figure 3.1: A simple matrix-vector multiplication routine.
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3.2.

3 Setting and extracting the contents

void FLA_Obj_set_contents ( int trans, int m, int n, void *A, int 1dA,+ &\\

void FLA_Obj_axpy_to_contents ( int trans, void *alpha, int m, int n, void *A,

Purpose: Set the contents of the matrix object to those in m X n matrix A with leading dimension 1dA.
For the second call, aA is added to the current contents of matrix.

trans indicates whether to transpose data
alpha scaling factor

m, n dimensions of A

A array with data to be entered in matrix
1dim leading dimension of A

matrix object that describes the matrix

FLA_Obj matrix )

int 1dA, FLA_Obj matrix )

Here consistent means that the datatype of ALPHA and A must match that of the object MATRIX. Valid
values for trans include FLA_NO_TRANSPOSE, FLA_TRANSPOSE, and FLA_CONJUGATE_TRANSPOSE. If trans equals
FLA NO_TRANSPOSE, m and n must equal the dimensions of matrix, respectively. Otherwise, they must equal
the dimensions of the transpose of matrix and the data is transposed as it is entered in or added to matrix.

Similarly FLAME provides the following calls to extract the contents of an object:

void FLA_Obj_get_contents ( int trans, FLA_Obj matrix,

void FLA_Obj_axpy_from_contents ( int trans, void *alpha, FLA_Obj matrix,

Purpose: Get the contents from the matrix object and store in m X n matrix A with leading dimension
1dA. For the second call, « times the contents of matrix are added to the current contents of A.

trans indicates whether data is to be transposed
alpha scaling factor

matrix object that describes the matrix

m, n dimensions of A

A array with data to be entered in matrix

ldim leading dimension of A

int m, int n, void A, int 1dA )

int m, int n, void A, int 1dA )

3.3 A simple driver: matrix-vector multiplication

In Figure 3.2 we show a sample main program that uses most of the calls discussed so far.

line

line

line

line
line
line
line

line

1 FLAME program files start by including the FLAME.h header file.

5—6 FLAME objects A, x, and y, which will hold matrix A and vectors  and y, are declared to be of
type FLA_Obj.

10 Before any calls to FLAME routines can be made, the environment must be initialized by a call to
FLA Init.

12—13 In our example, the user inputs the row and column dimension of matrix A.

15—-17 Descriptors are created for A, z, and y.

19-20 A routine to be described next is used to fill A and = with values.

22 Compute y = Az using the FLAME matrix-vector multiply routine FLA_Gemv to be described later.

24—-26 Print out the contents of A, x, and y. For each element the C print format "%1f " is used to
print the contents as long floating point numbers. The calling sequence for FLA_Obj_show is given later
in this chapter.
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1 #include "FLAME.h"

2

3  main()

4 {

5 FLA_Obj

6 A, x, y;

7 int

8 m, n;

9

10 FLA_Init( );

11

12 printf( "enter matrix dimensions m and n:" );
13 scanf( "%d%d", &m, &n );

14

15 FLA_Obj_create( FLA_DOUBLE, m, n, &A );
16 FLA_Obj_create( FLA_DOUBLE, m, 1, &y );
17 FLA_Obj_create( FLA_DOUBLE, n, 1, &x );
18

19 £ill_matrix( A );
20 £ill_matrix( x );
21
22 FLA_Gemv( FLA_NO_TRANSPOSE, ONE, A, x, ZERO, y );
23
24 FLA_Obj_show( "A = [", A, "J1f ", "1" );
25 FLA_Obj_show( "x = [", x, "%1f ", "]1" );
26 FLA_Obj_show( "y = [", y, "#1f ", "1" );
27
28 FLA_Obj_free( &A );
29 FLA_Obj_free( &y );
30 FLA_Obj_free( &x );
31
32 FLA_Finalize( );
33 )

Figure 3.2: A simple C driver for matrix-vector multiplication.

line 28 After the FLAME environment has finished it is finalized by a call to FLA_Finalize.

A sample routine for filling A and x with data is given in Fig. 3.3.

3.4 Views

Notice that in Fig. 2.3 became obvious that in stating a linear algorithm one frequently must partition a
matrix, A, like

A A
partitionA — <M> where Ay is my X ny
Apr || ABr

The primary mechanism used by our coding approach to hide complicated indexing is the notion of a view,
which is simply a reference into an existing matrix or vector. Given that A is a descriptor of a matrix, the
following call creates descriptors of the four quadrants:

void FLA_Part_2x2 ( FLA_Obj A, FLA_Obj *ATL, FLA_Obj *ATR,
FLA_Obj *ABL, FLA_Obj *ABR,
int mb, int nb, int quadrant )

Purpose: Partition matrix A into four quadrants where the quadrant indicated by quadrant is mb X nb

A matrix to be partitioned

mb, nb row and column dimensions of quadrant indicated by quadrant
quadrant quadrant for which dimensions are given in mb and nb
ATL-ABR views of TL, TR, BL, and BR quadrants
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#include "FLAME.h"
#define BUFFER( i, j ) buff[ (j)*lda + (i) 1]
void fill_matrix( FLA_Obj A )

{
int datatype, m, n, lda;

QOO = WN -

datatype = FLA_Obj_datatype( A );
10 m = FLA_Obj_length( A );
11 n = FLA_Obj_width ( A );
12 lda = FLA_Obj_ldim ( A );
13
14 if ( datatype == FLA_DOUBLE ){
15 double *buff;
16 int i, j;
17
18 buff = ( double * ) FLA_Obj_buffer( A );
19
20 for ( j=0; j<m; j++ )
21 for ( i=0; i<m; i++ )
22 BUFFER( i,j ) = i+j*0.01;
23 }
24 else FLA_Abort( "Datatype not yet supported", __LINE__, __FILE__ );
25 ¥

Figure 3.3: A simple routine for filling a matrix

Here quadrant can take on the values FLA_TL, FLA_TR, FLA BL, and FLA_BR to indicate that mb and nb
indicate the dimensions of the Top-Left, Top-Right, Bottom-Left, or Bottom-Right quadrant, respectively.
Also from Fig. 2.3, we notice that it is useful to be able to take a 2 x 2 partitioning of a given matrix A and
repartition this so that submatrices can be identified that need to be updated and/or used for computation:

Arp | Ag Ago || Ao | Aoz
repartition <—”—A T ) — | Ao || A1 | Ao where Aj; is my X ny
BL Br Aso || A21 | A2

Given that ATL, ATR, ABL, and ABR were the result of a call to FLA_ Part_2x2, we would like create new views
for this 3 x 3 partitioning from this 2 x 2 partitioning. To support this, we introduce the call

void FLA_Repart_from_2x2_to_3x3
( FLA_Obj ATL, FLA_Obj ATR, FLA_Obj *A00, FLA_Obj *AO1, FLA_Obj *A02,
FLA_Obj *A10, FLA_Obj *A11, FLA_Obj *A12,
FLA_Obj ABL, FLA_Obj ABR, FLA_0Obj *A20, FLA_Obj *A21, FLA_Obj *A22,
int mb, int nb, int quadrant )

Purpose: Repartition a 2 x 2 partitioning of matrix A into a 3 x 3 partitioning where mb x nb submatrix
Ajp; is split from the quadrant indicated by quadrant.

ATL-ABR views of TL, TR, BL, and BR quadrants
mb, nb row and column dimensions of A;;
quadrant quadrant from which A, is partitioned
A00-A22 views of A00*A22

Here quadrant can again take on the values FLA_TL, FLA_TR, FLA_BL, and FLA_BR to indicate that mb and
nb submatrix A11 is split from submatrix ATL, ATR, ABL, or ABR, respectively.

In order to update the partitioning of A into the four quadrants, we need to be able to update the
descriptions of ATL; ATR; ABL; and ABR:

A A Ago | Aot || Aoz
continue with (A—H”Ai> — Ao | A || Az
BLl#BR Ay [ Azt || Az
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This update of the views is accomplished by a call to

void FLA_Cont_with_3x3_to_2x2
( FLA_Obj *ATL, FLA_Obj =*ATR, FLA_Obj AOO, FLA_Obj AO1, FLA_Obj AO2,
FLA_Obj A10, FLA_Obj Al11, FLA_Obj A12,
FLA_Obj ABL, FLA_Obj ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,
int quadrant )

Purpose: Update the 2 x 2 partitioning of matrix A by moving the boundaries so that A;; is added
to the quadrant indicated by quadrant.

ATL-ABR views of TL, TR, BL, and BR quadrants
A00-A22 views of A00*A22
quadrant quadrant to which A;; is to be added

This time the value of quadrant (FLA_TL, FLA_TR, FLA BL, or FLA_BR) indicates to which quadrant sub-
matrix A1l is to be added.

We will see in subsequent chapters that we frequently will want to create a 2 x 1 partitioning of a given
matrix A:

Ap

B

partition A — ( ) where Ap has m; rows

For this we introduce the call

void FLA_Part_2x1 ( FLA_Obj A, FLA_Obj *AT,
FLA_Obj *AB, int mb, int side )

Purpose: Partition matrix A into a top and bottom side where the side indicated by side has mb

rows.
A matrix to be partitioned

mb row dimension of side indicated by side
side side for which row dimension is given
AT, AB view of Top and Bottom part

Here side can take on the values FLA_TOP or FLA_BOTTOM to indicate that mb indicates the row dimension
of Ar or Ap, respectively.
Given that matrix A is already partitioned like

()

a repartitioning like

Ao
repartition < L > — A, where A; has m;, rows
B
Ay

is accomplished by the call

void FLA_Repart_from_2x1_to_3x1 ( FLA_Obj AT, FLA_Obj *AO,
FLA_Obj =*A1l,
FLA_Obj AB, FLA_Obj *A2,
int mb, int side )
Purpose: Repartition a 2 x 1 partitioning of matrix A into a 3 x 1 partitioning where submatrix A;
with mb rows is split from the side indicated by side.

AT, AB views of Top and Bottom sides
mb row dimension of A;

side side from which A; is partitioned
AO-A2 views of Ag—As
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Here side can take on the values FLA_TOP or FLA_Bottom to indicate that mb submatrix A; is partitioned
from A7 or Ap, respectively.

Given a 3 x 1 partitioning of a given matrix A, we may wish to update a 2 x 1 partitioning by adding
A to either Ay or Apg:

A Ao

continue with ( L > — Ay
Ap

Ay

For this FLAME provides the call

void FLA_Cont_with_3x1_to_2x1 ( FLA_0bj *AT, FLA_Obj AO,
FLA_Obj A1,
FLA_Obj *AB, FLA_Obj A2,
int side )
Purpose: Update the 2 x 1 partitioning of matrix A by moving the boundaries so that A; is added to
the side indicated by side.

AT, AB views of Top and Bottom sides
AO-A2 views of Ag—As
side side from which A; is partitioned

Now side indicates whether A; is to be added to Ay or Ag.
Similarly, we may wish to create a 1 x 2 partitioning of a given matrix A:

Ap
Ap

partition A — ( > where A; has n rows

For this we introduce the call

void FLA_Part_1x2 ( FLA_Obj A, FLA_Obj *AT, FLA_Obj *AB,
int nb, int side )

Purpose: Partition matrix A into a left and right side where the side indicated by side has nb columns

A matrix to be partitioned

nb column dimension of side indicated by side
side side for which column dimension is given
AL, AR view of Left and Right part

Here side can take on the values FLA_LEFT or FLA_RIGHT to indicate that nb equals the column dimension
of Ap or Ag, respectively.
Given that matrix A is already partitioned like

(4| Az )
a repartitioning like
Ao
repartition < L > — | A; | where A; has n rows
B
A

is accomplished by the call
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void FLA_Repart_from_1x2_to_1x3
( FLA_Obj AL, FLA_Obj AR, FLA_Obj *AO, FLA_Obj %A1, FLA_Obj *A2,
int nb, int side )
Purpose: Repartition a 1 x 2 partitioning of matrix A into a 1 x 3 partitioning where submatrix A;
with nb columns is split from the side indicated by side.

AL, AR views of Left and Right sides
AO-A2 views of Ag—As

nb column dimension of A;

side side from which A; is partitioned

Now side indicates whether A; is partitioned from Aj or Ag.
Given a 1 x 3 partitioning of a given matrix A, updating a 1 x 2 partitioning by adding A; to either Ay
or Ag,
(AcflAr )= (Ao [ A [ A42)

is accomplished by a call to

void FLA_Cont_with_1x3_to_1x2 ( FLA_0bj *AL, FLA_Obj *AR,

FLA_Obj AO, FLA_Obj A1, FLA_Obj A2, int side )
Purpose: Update the 1 x 2 partitioning of matrix A by moving the boundaries so that A; is added to
the side indicated by side.

AL, AR views of Left and Right sides
side side to which A; is added
AO-A2 views of Ag—As

Parameter side indicates whether 4, is added to A, or Ag.

3.5 Other useful routines

To examine the contents of an object, we recommend the following routine:

void FLA_Obj_show( char *stringl, FLA_Obj A, char *format, char *string2 )

Purpose: Print the contents of A.

stringl string to be printed before contents

A descriptor for A

format format to be used to print each individual element
string?2 string to be printed after contents

In particular, the result of
FLA_Obj_show( "A =", A, "J1f ", "1" );

is something like

A=
< entries >
]

which can then be fed to MATLAB. This becomes useful when checking results against a MATLAB imple-
mentation of an operation.
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Chapter 4

Matrix-Matrix Multiplication:
The Key to High Performance

by

John A. Gunnels

Greg M. Henry

Robert A. van de Geijn

As will will see in subsequent chapters, most important dense linear algebra operations can be organized
so that most of the computation is in matrix-matrix multiplication. Thus, it is important to understand
why and how matrix-matrix multiplication can be implemented to achieve high performance on modern
microprocessors with hierarchical memories. In this chapter, we describe the basic approach used by our
ITXGEMM matrix-matrix multiplication implementation [17].

4.1 The object of the game

The basics behind the design of a highly efficient matrix multiplication implementation are rather simple.
To implement C' = AB + C where C, A, and B are m x n, m x k, and k X n matrices, respectively, one starts
by partitioning these matrices like

Cll e ClN A11 e AlK B11 BlN
C= ; ; VA= ; : , and B = :

CM1 CMN AM1 AMK Bri1|...| Bgkn

where Cj; is my X ng, A, is my X ky, and By; is ky x np. (Naturally, some blocks may not be exactly this
block size, a minor detail.) Now, C;; = A;1B1j + - -+ + Aixk Bij + Cj;. Given that C, A, and B all reside in
main memory, the blockings of these matrices and the ordering of the updates C; = A;,B,; + C;; needs to
be orchestrated so that movement into the caches of the processor is best amortized over computation.

For the moment considering an architecture with two layers of cache memory, this initial partitioning
creates blocks to be moved in and out of the L2 cache. Now Cj;, A;,, and B,; are themselves blocked and
the computation with these even smaller blocks is orchestrated to optimally utilize the L1 cache. Finally, one
further blocking is necessary to optimally utilize the registers. The purpose of the game now is to determine
the optimal block size and the optimal ordering of the loops so that data movement between levels of the
memory hierarchy is amortized over as much computation as possible.

Notice that for each level of the memory hierarchy we may need as many as three nested loops, not
counting the registers. Thus, for a typical architecture with two caches and a main memory, one must
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consider as many as nine nested loops. Since the ordering of these loops will affect memory access patterns,
one must consider up to 9! = 362880 different loop orderings. By realizing that it is only the three loops for
a given level of the hierarchy that need to be ordered, there are 3 x 3! = 18 possible loop orderings. For each
of these loop orderings, one needs to consider different blockings at each level of the memory hierarchy. In
other words, without some reasonable way of pruning the space of possible algorithms, one faces a formidable
task.

The theory that we develop in the first part of this paper will allow us to propose a sensible heuristic
for pruning the space of possible algorithms. By combining this heuristic with practical considerations
we can reduce the number of different algorithms to only eight. Simultaneously, theoretical and practical
considerations allow us to severely restrict the range of reasonable block sizes. The net result is a highly
efficient implementation of matrix multiplication.

4.2 Special cases of matrix-matrix multiplication

The general form of a matrix-matrix multiply is C' <~ «AB+ C where C'is mxn, Ais mxk, and B is k X n.
We will use the following terminology when referring to a matrix-matrix multiply when two dimensions are
large and one is small:

Condition Shape

Matrix-panel multiply | n is small % + %

Panel-matrix multiply | m is small - B +

L B |
A +| C

The following observation will become key to understanding concepts encountered in the rest of the paper:
Partition

Il
b

Panel-panel multiply | k is small c

X

X=(X] [ Xnx )=

Xy

for X € {A, B,C}, where C; is m x n;, C; is m; x n, Apis m X kp, A; is my x k, Bj is k x nj, and E’p is
kp x n. Then C' <= AB + C can be achieved as
multiple matrix-panel multiplies:

Cj(—ABj-I-Cj fOI“j:].,...,NC cilesles| + = A B.|B.|B,

multiple panel-matrix multiplies:

N . N C A
Ci+ AiB+Cifori=1,...,Mc o =4, B
Cs Az
or multiple panel-panel multiplies
R X B,
C+ AB +---+An,Bn, C |+=lAlaas| [ B,
By
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4.3 A cost model for hierarchical memories

The memory hierarchy of a modern microprocessor is often viewed as the pyramid given in Fig. 4.1: At the

fast expensive
local memory
/ shared memory \
/ disk \
slow / tape \ cheap

Figure 4.1: The hierarchical memories viewed as a pyramid.

top of the pyramid, there are the processor registers, with extremely fast access. At the bottom, there are
disks and even slower media. As one goes down the pyramid, the amount of memory increases as well as the
time required to access that that memory, while the cost of memory decreases.

We will model the above mentioned hierarchy naively as follows:

1.

The memory hierarchy consists of L levels, indexed 0, ..., L — 1. Level 0 corresponds to the registers.
We will often denote the ith level by L;. Notice that on a typical current architecture L; and Lo
correspond the level 1 and level 2 data caches and Lg corresponds to RAM.

. Level h of the memory hierarchy can store Sy, floating point numbers. Generally Sy < 57 <--- < Sp_3.

Loading a floating point number stored in level h + 1 to level h costs time p,. We will assume that
po<pr<---<pr—1.

. Storing a floating point number from level h to level h + 1 costs time op,. We will assume that

op <01 <:---<0[—1-

If my, x np matrix C', my, X kp, matrix A, and kp X np matrix B are all stored in level h of the memory
hierarchy then forming C < AB + C costs time 2mpnpkpy,. (Notice that v, will depend on my,, np,
and kh)

4.4 Building-blocks for matrix multiplication

Consider the matrix multiplication C' <— AB + C where mp4+1 X npy1 matrix C, mp41 X kp41 matrix A, and
kp+1 X npy1 matrix B are all stored in Lp41. Let us assume that somehow an efficient matrix multiplication
kernel exists for matrices stored in L. In this section, we develop three distinct approaches for matrix
multiplication kernels for matrices stored in Lp 1.

Partition

(4.1)

Cii | --| Cin A || Ak By |-+ | Bin
C= VA= , and B = :

Cumi |-+ | Cun Avi |-+ | Auk Bki | --- | Bkn

where Cjj is myp, x ny, Aip is my, X kp, and Bp; is kj, x np. We must now determine the optimal my, 1y, and

kp,.
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Algorithm 1 forj=1,...,N
fori=1,...,M

Load Cj; from Lp41 to Ly,. MpNh PR
forp=1,...,K
Load A;p from Lpy1 to Ly,. muknpn
Load Bpj from Ljy1 to Ly. knnnpn
Update Cij — Aipoj + Ci]‘ 2mpnnknyn
endfor
Store Ci]‘ from Lp to Lp+1 MKENKLOR
endfor

endfor

Figure 4.2: Multiple panel-panel multiply based blocked matrix-matrix multiplication.

4.4.1 Multiple panel-panel multiplies in L,

Noting that Cj; «+ lele AipBpj + Cyj, let us consider the algorithm in Fig. 4.2 for computing the matrix-
matrix multiplication. In that figure the costs of the various operations are shown to the right. The order
of the outer-most loops is irrelevant to the analysis.

The cost for updating C' is given by

M N K

DD | manapn +munnon + Y knmipn + knnnpn + 2mannknya)
i=1 j=1 p=1

h h
(4.2) = mps10h+1(pn + on) + Mpr1npr1kns1 z—h + Map1nht1knt1 51—1; + 2mpp1nnt1kn+17n

Since yp41 is defined to be the cost of a floating point operation when all three matrices are stored in Lp1,
we find that by we also have that the cost is given by

(4.3) 2mp1nn1kpt17r41

Thus, by dividing 4.2 by 2mp1n,+1kr41 the effective cost per floating point operation at this level is given
b
Y _ PrntoOon Ph Ph
Tht = 2kp41 2ny, * 2my,

The question now is how to find the my, ny, and kj, that minimize v,41 under the constraint that Cj;, A
and By all fit in Ly, i.e., mpnp +mpky +niky, < Sp. The smaller kj, the more space in Ly can be dedicated
to C;; and thus the smaller the fractions pj/my and pp/ng, can be made. A good strategy is thus to let
essentially all of Lj be dedicated to Cj;, i.e., mpny & Sp. The minimum is then attained when essentially
mp < Np < \/S_h

Notice that it suffices to have mp1 = my, or np41 = ny for the above cost of y,41 to be achieved. Thus,
the above already for the special cases

On Ay || Air B,
o e
“Cort Al |Amk Bra
Bl By \ T I
(4.5) ( Cll”"'HClN )+:( A11|.--|A1K ) +=
B --||Brn

Here the distance between single/thin lines is kj, and between double/thick lines my = np, where kj, is much
smaller than my, and np. The significance of this will become apparent later.
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Algorithm 2 forp=1,...,.K
fori=1,...,M

Load A;p from level h + 1 to level h. mpknpn

for j=1,...,N
Load Cj; from level h + 1 to level h. Mp ML P
Load Bp; from level h + 1 to level h. knnnpn
Update Cij — Aipoj + Ci]‘ 2mpnnknyn
Store Cj; from level h to level h + 1 MpNKLoH

endfor

endfor

endfor

Figure 4.3: Multiple matrix-panel multiply based blocked matrix-matrix multiplication.

Note 1 The above analysis shows that for the ordering of the loops given in Alg. 1, the strategy should
be to load Ly, with blocks of C' that fill most of Ly. The intuitive reason is that the cost of moving blocks
Cij between Ly, and Lyt is amortized over computation with many smaller blocks A;p and By;, which are
“streamed” from Lpy1. Simultaneously, the cost of bringing each of these smaller blocks into Ly, is itself
amortized over many computations, since Cy; is essentially as large as possible and almost square.

The inner-most loop in Alg. 1 implements multiple panel-panel multiplies since kj, is small relative to my,

and ny. Thus the name of this section.

4.4.2 Multiple matrix-panel multiplies in L,

Moving the loops over [ and 7 to the outside we get the algorithm in Fig. 4.3. Performing an analysis similar
to that given in Section 4.4.1 the effective cost of a floating point operation is now given by

+ o
Ph +Ph h+ph

4.6 =
( ) Tht 2nh+1 Qkh th

+ Y

Again, the question is how to find the my,, ny, and kj, that minimize ~,4; under the constraint that Cj;,
Ay, and By; all fit in Ly, ie., mpny + mpkn + npky < Sp. Note that the smaller ny, the more space in
Ly, can be dedicated to A; and thus the smaller the fractions (pp + 0)/2k, and pp/2my, can be made. A
good strategy is thus to let essentially all of L, be dedicated to A, i.e., mpkp = Sp. The minimum is then
attained when essentially m;, ~ k, ~ v/Sh.

Notice that it suffices to have mpy1 = my or kp1 = kp, for the above cost of v,41 to be achieved. In
other words, the above holds for the special cases

C'11 ClN All ( B11|"'|BlN ) @ ‘:I:I:I:I:I:I:I:III:H
- H =

(A7) 1IN

Cumil |Cun A

Bul-- By (I
. . +=

4.8) ( Cul-{cw ) +=(Aul- Ak )

Bri||- - ||Br N

here the distance between single/thin lines is nj and between double/thick lines is mp = kp, where ny, is
much smaller than m;, and k. This will become important later when we notice that these occur naturally
as we move up and down the memory hierarchy.

Note 2 The above analysis shows that for the ordering of the loops given in Alg. 2, the strategy should
be to load Ly, with blocks of A that fill most of L. The intuitive reason is that the cost of moving blocks
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Algorithm 3 forj=1,...,N
forp=1,...,K

Load B,; from level h + 1 to level h. knnppn

fori=1,..., M
Load Cj; from level h + 1 to level h. Mp ML P
Load A;p from level h + 1 to level h. muknpn
Update Cij — Aipoj + Ci]‘ 2mpnnknyn
Store Cj; from level h to level h + 1 MpNKLoH

endfor

endfor

endfor

Figure 4.4: Multiple panel-matrix multiply based blocked matrix-matrix multiplication.

A;p between Ly, and Lp11 is amortized over computation with many smaller blocks Cyi; and By;, which are
“streamed” from Lpy1. Simultaneously, the cost of bringing each of these smaller blocks into Ly, is itself
amortized over many computations, since A;, is essentially as large as possible and almost square.

The inner-most loop in Alg. 2 implements multiple matrix-panel multiplies since nj is small relative to
my, and k. Thus the name of this section.

4.4.3 Multiple panel-matrix multiplies in L,

Finally, moving the loops over p and j to the outside we get the algorithm given in Fig. 4.4. This time, the
effective cost of a floating point operation is given by

+ 0o
(4'9) Ph + Ph h Ph

Yht1 = Dmna 2% + 2, + 7

Again, the question is how to find the my,, ny, and kj, that minimize 4, under the constraint that Cj;,
Ajr and By all fit in Ly, ie., mpny + mpky + npk, < Sp. Note that the smaller my,, the more space in
Ly, can be dedicated to Bp; and thus the smaller the fractions (pn + 04)/2ks and pp/2ny, can be made. A
good strategy is thus to let essentially all of Lj be dedicated to By, i.e., npkp ~ Sp. The minimum is then
attained when essentially nj, ~ k = v/Sh.

Notice that it suffices to have np41 = ny and/or kp41 = kj, for the above cost of 541 to be achieved. In
other words, the above holds for the special cases

Cll e ClN All

( Bul|-|Bin ) LT
(4.10) + = -
Cumi| - |Cun Am
Cu Ap |- Ak B
(4.11) o e=| ] ] z :
O A |Amk B

an observation that will become important later.

Note 3 The above analysis shows that for the ordering of the loops given in Alg. 3, the strategy should be to
load Ly, with blocks of B that fill most of Ly,. The intuitive reason is that the cost of moving block B,; between
Ly and Lyt is amortized over computation with many smaller blocks Cyi; and A;p, which are “streamed”
from Lpi1. Simultaneously, the cost of bringing each of these smaller blocks into Ly, is itself amortized over
many computations, since By; is essentially as large as possible and almost square.
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4.5 A heuristic for a multi-level algorithm

Key observations so far are

e From Section 4.4: If one were to perform a matrix-matrix multiplication with all operands stored
in L;_; (as would naturally occur as part of an application) then this operation should be staged
to perform multiple panel-panel, matrix-panel, or panel-matrix multiplies, moving data to and/from
L .

e Each of the individual panel-panel, matrix-panel, or panel-matrix multiplication has the property that
all operands reside in L5 and should be staged itself be implemented by utilizing Ly 3 efficiently.

e Whenever all operands of the matrix-matrix multiply fill most of Lj4

— a panel-panel multiply can be efficiently implemented by performing multiple matrix-panel or
panel-matrix multiplies in L. This follows from (4.7) and (4.10).

— a matrix-panel multiply can be efficiently implemented by performing multiple panel-panel or
panel-matrix multiplies in Lj. This follows from (4.4) and (4.11).

— a panel-matrix multiply can be efficiently implemented by performing multiple panel-panel or
matrix-panel multiplies in L. This follows from (4.5) and (4.8).

e From Section 4.2 we conclude that even the matrix-matrix multiply in Ly ; can be staged as multiple
panel-panel, matrix-panel, or panel-matrix multiplies.

Thus, we conclude that at each layer of the memory hierarchy we should stage the matrix-matrix multiply
as multiple panel-panel, matrix-panel, or panel-matrix multiplies.
These observations leads to the following heuristic for implementing the matrix-matrix multiply:

e Ifin level Ly, one encounters a panel-panel multiply, an optimal implementation will utilize a matrix-
panel or panel-matrix multiply in Lj. Moreover, the optimal matrix-panel or panel-matrix multiply
in L will pick k;, ~ /S, and thus kp1 = kn =~ v/Sp. (Recall that we already determined that
Mpt1 & Npt1 &/ Spy1 was a desirable blocking.)

e Ifin level Ly, one encounters a matrix-panel multiply, an optimal implementation will utilize a panel-
panel or panel-matrix multiply in L. Moreover, the optimal panel-panel or panel-matrix multiply in

Ly, will pick np &~ /Sy and thus np41 = np & /Sh.

e Ifin level Ly, one encounters a panel-matrix multiply, an optimal implementation will utilize a panel-
panel or matrix-panel multiply in Lj;. Moreover, the optimal panel-panel or matrix-panel multiply in
Ly, will pick my, =~ /Sy, and thus mp41 = mp = /Sh-

The decision made at a give level Lj4; is summarized in Fig. 4.5. In other words, at each level of the
hierarchy, Ly, one of the three operands is chosen to be approximately /Sy x v/Sp, and fills most of that
memory layer while the other two operands are either approximately \/Sh_1 X v/Sp of /Sy x \/Sh_1.
Another way of viewing this is that one of the operands is moved into level Lj while the other two operands
are streamed (moved in in smaller submatrices) from level Lj1i. Notice that if mg, ng, and kg are now
given, all block sizes are approximately determined by the above analysis.

The above heuristic leaves a number of questions:

1. What choices to make in memory layer Ly _; since there the shape of the matrices may not cleanly fall
into any of these categories. In particular, What if at some level Lj,_; the smallest dimension is much
larger than /Sy 27 Notice that our theory actually does answer this question since...

2. What if at some level Lj;1 the “small” dimension is much smaller than /Sy. Indeed, what if more
than one dimension is “small” relative to v/.S},.

We will visit these questions later.
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Figure 4.5: Optimal partitioning at memory level L; and resulting shapes in level Lj .
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4.6 Practical considerations

In the previous section we developed a heuristic for implementation of matrix-matrix multiplication that
best amortizes movement of data between memory hierarchies from a local point of view. However, there
are many issues associated with actual implementation that are ignored by the analysis and the heuristic.
In this section we discuss implementation details that do take some of those issues into account. We do so
by noting certain machine characteristics that to our knowledge hold for a wide variety of architectures.

Rather than making the register level our lowest level, we start with L, the L1 cache. The reason for this
is that at that level loop indexing is a major concern and thus a lot of machine details must be considered.
We will not discuss how registers come into play since this goes beyond the scope of this chapter.

4.6.1 L;-kernels (lowest level)

While previously we have discussed the shape of the computation to be performed in the L; cache to be
a panel-panel, matrix-panel or panel-matrix multiply, in order to keep loop indexing down to a minimum,
at that level our kernels actually perform multiple such operations. Specifically, this allows the loops to be
unrolled to eliminate most of the loop overhead.

Matrix-panel L;-kernel

Our theory indicates that one of the operations that may be encountered at the L; level is a matrix-panel
multiply. Instead, we consider the operation C' < AB + C where C is my; x n, A is my X ki, and B is
k1 X n, with n >> ng. The idea is that the overhead of performing the multiple matrix-panel multiplies
encountered in the matrix-panel multiply based approaches discussed in Sec. 4.4.2 is amortized over many
such matrix-panel multiplies.

The question is how to perform the computation so that elements of A are used with a frequency so that
the cache-replacement policy keeps A in the L; cache. To achieve this, C' is computed a few columns at a
time. For example, if C' is computed a single column at a time, for every m; elements of C' and k; elements
of B all m; x ki elements of A are accessed and which tends to keep A in the L1 cache.

Panel-matrix L;-kernel

We similar treat the case where the shape of matrices in L; is a panel-matrix multiply. This time, we
consider the operation C «<— AB + C where C is m X ny, Ais m X k1, and B is k1 X ny, with m >> mg. The
idea is that the overhead of performing the multiple panel-matrix multiplies encountered in the panel-matrix
multiply based approaches discussed in Sec. 4.4.3 is amortized over many such panel-matrix multiplies.

This time, the computation must be orchestrated in such a way that the elements of B are used with a
frequency so that the cache-replacement policy keeps B in the L; cache. To achieve this, C' is computed a
few rows at a time.

Panel-panel L;-kernel

We could similarly treat the case where the shape of matrices in L; is a panel-panel multiply. If so, we would
consider the operation C' <+ AB + C where C is m; x ny, Ais 1m X k, and B is k X ny, with k& >> k.
However, for this approach leads to a utilization of the registers that requires elements of C' to be loaded
to and stored from registers with great frequency. This inherently leads to an L;-kernel that is slower than
either the matrix-panel or panel-matrix multiply kernel. Thus, we don’t consider this approach to be a viable
Ly -kernel. We will analyze approaches for La-kernels under the assumption that this particular L;-kernel is
not available. Thus, in Fig. 4.6 we delete from Fig. 4.5 the panel-panel multiply as a possible
shape in the L; level.

4.6.2 Ls-kernel

We now ask ourselves the question of what possible algorithms can be implemented when we perform a
multiplication with matrices that are stored in Lo. To answer this question, we turn to Fig. 4.6 in which we
delete the shapes and algorithms in Fig. 4.5 that now cannot be supported.
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Figure 4.6: Possible algorithms for matrices in memory level Lo given that our kernel at L; can only
accommodate matrix-panel and panel-matrix multiplication.
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Just like for the L;-kernel, our Ls-kernel assumes that one matrix of size approximately /S x /Sz
is moved into Lo after which multiple panel-panel, matrix-panel, or panel-matrix multiplies commence.
Depending on which matrix occupies most of Lo, one of the four blockings remaining in Fig. 4.6 is used to
smaller subproblems that can be passed to the Li-kernel.

For the sake of consistency, our Ls-kernel performs multiple panel-panel, matrix-panel, or panel-matrix
multiplies, like the L;-kernel. This is illustrated in Fig. 4.7.

Notice that if the Lo-kernel implements multiple panel-panel multiplies, there is a choice of two possible
blockings. One leads to a panel-matrix multiply as basic operation in the L; level, the other to a matrix-panel
multiply. The question naturally becomes which of the two to use. Notice from (4.9) that the panel-matrix
multiply based algorithm has a cost of

PM _ _P1 p1+ 01 P1
T2 2m2 2]61 2n1

while (4.6) shows the matrix-panel multiply based algorithm has a cost of

MP _ PL | pPLtO1 p1

y =gt —F—t+to—+

12 2712 2k1 2m1 m

If parameters p; and o; are equal in both these equations, the panel-matrix multiply based algorithm
outperforms the matrix-panel multiply based algorithm when 4™ < 43 or

Note that one can expect 1 to be equal for both equations since in our situation the L;-kernel is one and
the same for both approaches.

4.6.3 Ls-kernel

For current generation microprocessors, the Ls level is typically the primary RAM of the processor. For this
reason, our discussion will target that situation.

Notice that while in this level on the surface it may appear that one should analyze the general matrix-
matrix multiplication C' < aAB + BC for general m x n matrix C, m x k matrix A, and k& X n matrix
B. However, a common use of matrix-matrix multiplication is as part of the implementation of other dense
linear algebra algorithms, e.g. for factorization operations like LU, Cholesky, and QR factorization. In those
algorithms, as implemented in LAPACK, the matrix-matrix multiply invariably appears as a panel-panel,
matrix-panel or panel-matrix multiply. Indeed, the width of the panels involved are determined by the width
that makes matrix-matrix multiplication operate at peak performance. Thus, the most important cases of
to analyze are exactly those where one of m, n, or k equals approximately v/S>. Thus, we again analyze
the panel-panel, matrix-panel, and panel-matrix multiply before proceeding with the general case. To do so,
again consider Fig. 4.5.

Ls-kernel for panel-panel multiply

In this case k = ks ~ +/S>. As for the Ls-kernel there are now two choices for implementation: a panel-
matrix multiply based algorithm and a matrix-panel multiply based algorithm. The first yields an effective
cost per floating point operation of

SPM p2 | p2to2 | P2

3 T om 2k 2n5

while the second yields
Mp _ P2 | P2t 02 P2
BT T ok T om, 2

If parameters po2, 09, and - are equal in both these equations, the panel-matrix multiply based algorithm
outperforms the matrix-panel multiply based algorithm when /2™ < yMF or
1 1 1 1

— 4+ — <=+ —
m T2 n mo
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Note that one cannot expect v, to be equal for both equations since in our situation the Ls-kernel for each
of the Ls-kernels is not the same for both approaches.

Ls-kernel for panel-matrix multiply

In this case m = ms &~ 1/S3. Unlike for the Lo-kernel there are now two choices for implementation: a
panel-panel or matrix-panel multiply based algorithm. The first yields an effective cost per floating point
operation of

pp_ P2 P20z P2

BT, T o o,

while the second yields
MpP _ P2 | P2t 02 P2 ‘
2n 2]62 + 2m2 + "
Again, if parameters py, o9, and 7, are equal in both these equations, the panel-panel multiply based

algorithm outperforms the matrix-panel multiply based algorithm when 72F < 3P or

777 < 1 + L
n mo
Again, one cannot expect v2 to be equal for both equations since in the Lo-kernel for the two approaches is
not the same.

Ls-kernel for matrix-panel multiply

In this case n = ny & /S3. There are two choices for implementation: a panel-panel and a panel-matrix
multiply based algorithm. The first yields an effective cost per floating point operation of

pp_ P2 P2t 02 P2

T o, 2% My

while the second yields
PM _ P2 P2t 02 P2
BT om T 2k 2my
If parameters po, o2, and 2 are equal in both these equations, the panel-panel multiply based algorithm
outperforms the panel-matrix multiply based algorithm when 4% < 4™ or

Lyl

m N2
Again, one cannot expect v, to be equal for both equations since in the Lo-kernel for the two approaches is
not the same.

4.7 A family of algorithms

We now turn the observations made above into a practical implementation.

High-performance implementations of matrix multiplication typically start with an “inner-kernel”. This
kernel carefully orchestrates the movement of data in and out of the registers and the computation under
the assumption that one or more of the operands are in the L1 cache. For our implementation on the Intel
Pentium (R) III processor, the inner-kernel performs the operation C'= AT B 4+ fC where 64 x 8 matrix A is
kept in the L1 cache. Matrices B and C have a large number of columns, which we view as multiple-panels,
with each panel of width one. Thus, our inner-kernel performs a multiple matrix-panel multiply (MMP) with
a transposed resident matrix A. The technical reasons why this particular shape was selected go beyond the
scope of this paper.

While it may appear that we thus only have one of the three kernels for operation in the L1 cache, notice
that for the submatrices with which we compute at that level one can instead compute CT = BTA 4+ C7T,
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Figure 4.7: A tree of possible algorithms for matrices in memory level L3 given that our kernel at L, can
only accommodate matrix-panel and panel-matrix multiplication.
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reversing the role of A and B. This simple observation allows us to claim that we also have an inner-kernel
that performs a multiple panel-matrix multiply (MPM).
Let us introduce a naming convention for a family of algorithms that perform the discussed algorithms

at different levels of the memory hierarchy:
<kernel at L3>-<kernel at Lo>-<kernel at Li>.
For example MPP-MPM-MMP will indicate that the Ls-kernel uses multiple panel-panel multiplies, calls

the Lo-kernel that uses multiple matrix-panel multiplies, which in turn calls the L;-kernel that uses multiple
panel-matrix multiplies. Given the constraint that only two of the possible three kernel algorithms are
implemented at Li, the tree of algorithms in Fig. 4.7 can be constructed.

4.8 Performance

In this section, we report performance attained by the different algorithms. Details regarding the performance
test bed can be found in 1.4. For the usual matrix dimensions m, n, and k, we use the operation count
2mnk for a matrix-matrix multiplication. We tested performance of the operation C = C — AB (a = —1
and # = 1) since this is the case most frequently encountered when matrix multiplication is used in libraries
like LAPACK.

4.8.1 Implementations tested

It turns out that whenever all operands start by being stored in main memory, there is no noticeable difference
between the different loop orderings at that level. In other words, MPM-MMP-MPM achieves performance
that is essentially identical to MPP-MMP-MPM. Thus, we only report performance for the following variants:
MPM-MMP-MPM, MMP-MPM-MMP, MPM-MPP-MPM, and MPM-MPP-MMP.

4.8.2 Determining optimal block sizes

Our first experiment is intended to demonstrate that the block size chosen for the matrix that remains
resident in the L2 cache has a clear effect on the overall performance of the matrix multiplication routine.
In Fig. 4.8(a) we report performance attained as a function of the fraction of the L2 cache filled with the
resident matrix when a matrix multiplication with & = m = n = 1000 is executed. This experiments tests
our theory that reuse of data in the L2 cache impacts overall performance as well as our theory that the
resident matrix should occupy “most” of the L2 cache. Note that performance improves as a larger fraction
of the L2 cache is filled with the resident matrix. Once the resident matrix fills more than half of the L2
cache, performance starts to diminish. This is consistent with the theory which tells us that some of the
cache must be used for the matrices that are being streamed from main memory. Once more than 3/4 of the
L2 cache is filled with the resident matrix, performs drops significantly. This is consistent with the scenario
where parts of the other matrices start vacating parts of the resident matrix from the L2 cache.

The exact reason why the MPM-MMP-MPM variant performs better when the block size is chosen
appropriately is not entirely clear. Most likely, it has to do with the details of the packing and unpacking
routines that are part of the implementation.

Based on the above experiment, we fix the block size for the resident matrix in the L2 cache to 128 x 128,
which fills exactly half of this cache, for the remaining experiments.

4.8.3 Resident matrices

The next set of experiments show that the cost of moving a submatrix into the L2 cache and then amortizing
the cost of this memory operation over as much computation as possible is indeed observable in practice.

Matrix A resident in L2: In Fig. 4.8(b), dimensions m and k are fixed to 128. This implies that matrix
A fills half of the L2 cache. Notice that variant MPM-MMP-MPM will keep 128 x 128 submatrices of A
resident in the L2 cache. Thus, one would expect performance to increase smoothly as n is increased.
For the other variants, one would expect a drop in performance whenever n becomes slightly larger
than a multiple of 128, since they attempt to keep 128 x 128 submatrices of C' or B in the L2 cache:
whenever n is slightly larger than 128, one of the submatrices of A or B is relatively small.

45



Matrix B resident in L2: In Fig. 4.8(c), dimensions n and k are fixed to 128. This implies that matrix B
fills half of the L2 cache. Notice that variant MMP-MPM-MMP will keep 128 x 128 submatrices of B
resident in the L2 cache. Thus, one would expect performance to increase smoothly as m is increased.
For the other variants, one would expect a drop in performance whenever k becomes slightly larger
than a multiple of 128, since they attempt to keep 128 x 128 submatrices of C' or A in the L2 cache:
whenever m is slightly larger than 128, one of the submatrices of C' or A is relatively small.

Matrix C resident in L2: In Fig. 4.8(d), dimensions m and n are fixed to 128. This implies that matrix C
fills half of the L2 cache. Notice that variants MPM-MPP-MPM and MPM-MPP-MMP will both keep
128 x 128 submatrices of C resident in the L2 cache. Thus, one would expect performance to increase
smoothly as k is increased. For the other variants, one would expect a drop in performance whenever
k becomes slightly larger than a multiple of 128, since they attempt to keep 128 x 128 submatrices
of A or B in the L2 cache: whenever k is slightly larger than 128, one of the submatrices of A or
B is relatively small. Unfortunately, we cannot observe this phenomena, since the L1 kernel takes a
performance hit every time k is slightly larger than 64.

4.8.4 Commonly encountered shapes

The most commonly encountered special cases of matrix-matrix multiplication are the matrix-panel, panel-
matrix, and panel-panel multiplications. Not only did they show up in this paper as the shape that is
encountered at each level of the memory hierarchy, but it is also the shape that shows up when implementing
other matrix operations like LU, Cholesky, and QR factorization, for example as part of LAPACK.

Matrix-panel multiply In Fig. 4.9(a) we report performance as a function of n (the number of columns
in the panel) when m and k are fixed to be large. Notice that our theory indicates that when a matrix-
panel multiply is performed in main memory, the L2 kernel should perform multiple panel-matrix or
panel-panel multiplies. The theory indicates that MPP-MMP-MPM and MPM-MMP-MPM, which
perform a matrix-panel multiply in the L2 level, should not be good choices. The data in Fig. 4.9(a)
supports this.

Panel-matrix multiply In Fig. 4.9(b) we report performance as a function of m (the number of columns
in the panel) when n and & are fixed to be large. Notice that our theory indicates that when a panel-
matrix multiply is performed in main memory, the L2 kernel should perform multiple matrix-panel
or panel-panel multiplies. Thus, MPM-MMP-MPM, MPM-MPP-MPM, or MPM-MPP-MMP should
perform well. The theory indicates that MMP-MPM-MMP, which perform a panel-matrix multiply
in the L2 level, would not be good choice. The data in Fig. 4.9(b) supports this in the sense that
MMP-MPM-MMP, which for other matrix shapes frequently did well, does not perform quite as well
for small m.

Panel-panel multiply In Fig. 4.9(c) we report performance as a function of &k (the number of columns in
the panel) when m and n are fixed to be large. Notice that our theory indicates that when a panel-
panel multiply is performed in main memory, the L2 kernel should perform multiple matrix-panel or
panel-matrix multiplies. The theory indicates that variants *-MPP-* which perform multiple panel-
panel multiplies in the L2 level, should not be good choices. The data in Fig. 4.9(c) supports this in
the range 64 < k < 128. Interestingly enough, it does not appear to be true in the range k£ < 64 for
MPM-MPP-MMP. We believe that can be attributed to the fact that in that range there isn’t sufficient
opportunity for reuse of data in the L2 cache. As a result, it is best to ignore it, which is essentially
what MPM-MPP-MMP does.

4.8.5 Square matrices

Matrix multiplication with square matrices is relatively uncommon in practice. However, it is commonly
presented in papers. Thus, for good measure, we include Fig. 4.9(a).
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