Reliable Group Rekeying: A Performance Analysis

Yang Richard Yang, X. Steve Li, X. Brian Zhang, Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
{yangyang,xli,zxc,larh@cs.utexas.edu

TR-01-21
June, 2001

Abstract

In secure group communications, users of a group share a oomgroup
key. A key server sends the group key to authorized new usevslhas per-
forms group rekeying for group users whenever the key chande this
paper, we investigate scalability issues of reliable gnakgying, and pro-
vide a performance analysis of our group key managemengraygtalled
keygem) based upon the use of key trees. Instead of rekeftargeach join
or leave, we use periodic batch rekeying to improve scatatdhd allevi-
ate out-of-sync problems among rekey messages as well aedretrekey
and data messages. Our analyses show that batch rekeyiagliaxe large
performance gains. We then investigate reliable multiohstkey messages
using proactive FEC. We observe that rekey transport haseamtel reli-
ability and a soft real-time requirement, and that the rekeykload has a
sparseness property, that is, each group user only needsdive a small
fraction of the packets that carry a rekey message sent bikepheserver.
We also investigate tradeoffs between server and rece@rehbidth require-
ments versus group rekey interval, and show how to deterthexmaximum
number of group users a key server can support.

1 Introduction

Many emerging network applications, such as pay-per-vistrildution of digital
media, restricted teleconferences, and pay-per-use-partly games, are based
*Research sponsored in part by NSF grant no. ANI-9977267 W WIFOSEC University

Research Program grant no. MDA904-98-C-A901. Experimergse performed on equipment
procured with NSF grant no. CDA-9624082.

upon a secure group communications model [8]. In this madegdrotect the pri-
vacy of group communications, a symmetric group key knowlg ttngroup users
and the key server is used for encrypting data traffic betvgeeup users. Access
to the group key is controlled by a group key managementsystdich sends the
group key to authorized new users as well as performs grdayireg whenever the
group key changes. Specifically, a group key managemerdraysan implement
two types of access contrdbackward access control andforward access control.

If the system changes the group key after a new user joingietivauser will not be
able to decrypt past group communications; this is calledward access control.
Similarly, if the system rekeys after a current user leavess expelled from the
system, the departed user will not be able to access futotggrommunications;
this is called forward access control.

Implementing access control may have large performancehesds which
limit system scalability. Backward access control can bplamented efficiently
because a new group key can be distributed by encryptingtittive existing group
key for existing group users. Forward access control isdra@ implement. To
send a new group key to all remaining group users after a wsedéparted, one
approach is to encrypt the new group key with each remaingsg'sindividual
key, which is shared only between the user and the key manageaysem. This
straightforward approach, however, is not scalable bec#ausquires the key man-
agement system to encrypt and send the new groupg\key1 times, whereV is
group size before the departure.

In the past few years, several approaches [21, 22, 2, 4, €] besn proposed
to implement scalable forward access control. For exantipdskey tree approach,
which uses a hierarchy of keys to facilitate group rekeyreduces group rekeying
complexity toO(log N) [21, 22], whereN is group size.

join J leave

Rekey encoding

rekey message

individual key

Registration

Rekey transport

Figure 1: Functional components of a key management service

Figure 1 shows the functional components of an architedireyroup key
management system. The registration component authesgtigsers and distributes
to each user its individual key. Authenticated users seatit thin and leave re-
guests to the rekey encoding component. The rekey encodmganent, which
manages the keys in the system, validates the requests bkinfpevhether they
are encrypted by individual keys, and generates rekey messavhich are sent

2

to the rekey transport component for delivery. Previousdisgihave focused pri-
marily on the rekey encoding component, particularly trecpssing time required
by the rekey encoding component in a key server [21, 22]; toblem of reli-
able transport of group rekey messages has not been adtlireske literature. To
make a group key management system scalable, however, signdd each of
the three components needs to be scalable. Therefore, jinaiob of our study
is to investigate scalability issues of all three composeiricluding the evalua-
tion of batch rekeying algorithms to improve scalability folarge and dynamic
group, the characterization of rekey transport workloae, design of a reliable
rekey transport protocol, and an overall performance aisabf our system, called
keygem.

First, consider the registration component. For a grouprkagagement sys-
tem to grant or deny a join or leave request, the identity efuber sending the
request needs to be authenticated. Thus, each user needs tedister with the
system by authenticating itself to the system and recesvndtividual key. Reg-
istration using an authentication protocol, however, caveHarge overheads, and
a key server becomes a bottleneck when user registratiensratgh. To improve
the scalability of the registration component, the key seiw keygem can offload
its its registration workload to trusted registrars [8,.2Machines running regis-
trars can be added or removed dynamically. Moreover, differegistrars can use
different authentication protocols to authenticate ddfé sets of users. Since we
can offload the registration workload to registrars, we doaomsider this work-
load in this paper. For the detailed operations to registesva user, please see a
description of the keystone system [24].

Second, consider the rekey encoding component. We showekeying af-
ter each join or leave (called individual rekeying) for theykree approach has
two problems: inefficiency and out-of-sync problems amoeipy messages as
well as between rekey and data messages (see Section 2jefruote, when user
join/leave rate is high, the delay needed to reliably matiia rekey message may
be too large to implement individual rekeying. In keygem, imm@rove rekey en-
coding efficiency and alleviate the out-of-sync problemgdkeying periodically
for a batch of join/leave requests. The idea of batch rekefigs been proposed
before [4, 13, 18, 22]. However, for batch rekeying based keyaree, no explicit
algorithm has been presented and its performance has notne¢yzed. In this
paper, we present the specification of a batch rekeying ithgor analyze its per-
formance, and evaluate the benefits of batch rekeying. Caluation shows that
batch rekeying not only can reduce the number of expensiyeérgj operations, it
also can reduce substantially bandwidth requirementsra¢isand receivers. In
other words, batch processing can improve system scayjafaitia highly dynamic

group.

Third, consider the rekey transport component. Relialdesport of rekey
messages has not received much attention in previous wdttough the idea of
using FEC to improve the reliability of rekey transport haeib discussed in the
SMuG community [8] and in our keystone system, there is noopm detail and
its performance is not analyzed. The common assumptioistie of the reliable
multicast protocols [7] can be used for rekey transport,thatiprior analyses [11,
14, 20, 9, 15] of these reliable multicast protocols stilplgp In this paper, we
observe that rekey transport has its own special properfigst, we observe that
rekey transport has an eventual reliability and a soft tiead-requirement because
of the inter-dependencies among rekey messages as welhasenerekey and
data messages. Second, we observe that rekey transpotbacbhas aparseness
property, that is, while a key server sends a rekey messagelage block of
packets, each receiver only needs to receive a small fracfisghe packets. For
our rekey transport protocol, which is based upon the useasgive FEC [10,
17], we show that reliable rekey multicast can be analyzeadwerting it to
conventional reliable multicast, which does not have tleesgess property. Using
this approach, we have investigated key server bandwidénhead, number of
rounds needed to transport the workload of a rekey operatimhhow to determine
the proactivity factor for FEC.

Fourth, consider the rekey encoding and the rekey trangponiponents to-
gether. Based on a simple membership model, we show thap geéeying inter-
val serves as a design parameter that allows tradeoffs betve&eying overheads,
group access delay, and the degree of forward access ceulmerability. Consid-
ering four system constraints, we investigate how to cha@wsappropriate rekey
interval and determine the maximum number of users that adweser can support.

To further improve the scalability and reliability of keygewe allow keygem
to extend a centralized key server to distributed key servéur performance
analysis shows that partitioning users into active andtivegroups can further
improve system scalability. In particular, we present tusiributed architectures
with one architecture suitable for applications with boétwity and reliability
requirements on the transferred application data, suckliable secure software
transfer, and another architecture suitable for appboatiwith only security re-
quirement on the transferred application data, such aseacultimedia applica-
tions.

The balance of the paper is organized as follows. In Sectiovednvestigate
scalability issues of the rekey encoding component anduat@lperiodic batch
rekeying. In Section 3, we address the issues of reliabkeyrglnsport, including
rekey workload characterization and performance anabyfsigkey transport. In
Section 4, we integrate the results of Section 2 and Sectiimncdnsider overall
system performance and study tradeoffs between bandwidithead and rekey

4

interval. Extensions to multiple key servers are presemegection 5. Our con-
clusion is in Section 6.

2 Improving Rekey Encoding Scalability

Having been authenticated by a registrar, a user can thehes@in request to the
key server. The key server will also receive leave requesis éxisting users. The
rekey encoding component processes these requests tagregay messages.
Before discussing the issues of individual rekeying, we Erfly review the key
tree idea [21, 22].

21 Keytree

A key tree is a directed tree in which each node representy.alke root of the
key tree is thegroup key, which is shared by all users, and a leaf node is a user’s
individual key, which is shared only between the user and the key serveare 8ach
node represents a key, we call a node in the key tree a key riaatekey nodes
representing the individual keys of users, we also refehéont as user nodes. A
trusted key server manages the key tree, and awsegiven keyk if and only if
there is a directed path from its individual key to Kein the key tree. Consider a
group with 9 users. An example key tree is shown in Figure 2hisxgroup, user

ug IS given three keyskg, krsg, andki_g. Key kg is the user’s individual key, key
k1_g is the group key, anélgg is an auxiliary key shared by, ug, andug.

auxiliary
keys

individual
keys
(user nodes)

users ul u2 u3 u4 us ué u7 ug u9

Figure 2: An example key tree

Supposeuy leaves the group. The key server will then need to changeety® k
that ug knows: changeé:;_o to k1_g, and change:rsg to k7s. To distribute the
changed keys to the remaining users ugingup-oriented rekeying strategy [22],
the key server constructs the followimgkey message by traversing the key tree
bottom-up: ({k7s}r,, {k78}rss {k1-8}kiosr (K18} kaser {F1-8}tirs). Here{k'}x
denotes key:’ encrypted by key, and is referred to as asncrypted key or an

encryption. Upon receiving this message, a user extracts the encriptexithat it
needs. For exampley; only needs(k;_g} k., and{krs} ..

2.2 Issuesof individual rekeying

Although individual rekeying introduces no extra delay toqess user requests, it
has two issues.

First, if we rekey after each join or leave, it is hard to cohthe synchro-
nization that will arise because of the inter-dependermmeng rekey messages as
well as between rekey and data messages. When synchronizatiot achieved,
we will haveout-of-sync problems. Consider an encryptigh}; in a rekey mes-
sage. A user must receivié in order to decrypt the encryption. Howevéf,may
be distributed in a previous rekey message, and if the pueviekey message has
not arrived, the user will not be able to recover the new kdgoAconsider a group
key distributed in a rekey message to a user. If data messagemncrypted us-
ing the group key and the group key has not arrived, the udeneti be able to
decrypt the data messages. As a result of these out-of-sghtems, if rekey mes-
sage delivery delay is high and join/leave requests hapgeuéntly, a user may
need to keep all of the old group keys, and buffer a large atnaiurekey and data
messages that it cannot decrypt yet.

Second, individual rekeying can be inefficient. For autloation purpose,
each rekey message needs to be digitally signed to provat thiagjinates from
the key server, and we know that signing operation can hage leomputation
or bandwidth overheads. Moreover, as Snoeyink, Suri andhése observed
in [19], which we have also independently derived at the stime using a differ-
ent proof [25], we know that when a key server rekeys afteh eaguest and when
forward access control is require@(log N) is a lower bound on the amortized
number of encrypted keys. Thus, the key tree approach headglachieved the
complexity of this lower bound, and we cannot further imgrtive performance of
rekey encoding if we rekey after each request. To overcomsdithit and reduce
the number of signing operations, we need to consider bataying.

2.3 Periodic batch rekeying

Periodic batch rekeying, which collects requests duringkay interval and rekeys
them in a batch, can alleviate the out-of-sync problems amatave efficiency.

To alleviate the out-of-sync problems, periodic batch yetg delays the usage of
a new group key until the next rekey interval, and rekey ariscan guarantee
with a high probability that the rekey message has beenatelivbefore the next
interval (see Section 4). As for performance, an obvioutopmance gain of batch

processing/ join and L leave requests is that it reduces the number of signing
operations fromJ + L to 1. Moreover, the number of encrypted keys generated by
batch rekeying can be less than the sum of those generatedilidual rekeying.
Consider Figure 2. Suppose bath andug send leave requests. If the key server
rekeys individually, it will need to update the group keydij and at each time,
the new group key needs to be encrypted:by;. However, if the two requests are
rekeyed in a batch, the key server only needs to update tlp ¢y once.

Periodic batch rekeying improves performance at the expehdelayed group
access control, because a new user has to wait longer to bptaddy the group
and a departed (or expelled) user can stay within the graugelo Thus, we ob-
serve that group rekeying interval serves as a design p#eathat allows tradeoffs
between rekeying overheads, group access delay, and treed#fgorward access
control vulnerability.

To accommodate different application requirements andenteddeoffs be-
tween performance and group access control, keygem caategarthree batch
modes: 1) periodic batch rekeying, in which the key servec@sses both join
and leave requests periodically in a batch; 2) periodictb&ave rekeying, in
which the key server processes each join request immegdiatebduce the delay
for a new user to access group communications, but procésses requests in
a batch; and 3) periodic batch join rekeying, in which the Beyver processes
each leave request immediately to reduce the exposurer®whke have departed,
but processes join requests in a batch. We will investigatdaradeoffs further in
Section 4.

2.4 Batch rekeying algorithms

In periodic batch rekeying mode, the key server maintainsyaiee that is slightly
different from the key tree described in Section 2.1 to fadé a key identification
strategy that we proposed in [27]. In particular, we add naties that represent
empty key nodes to a key tree so that the key server can alwaiysaim a complete
and balanced key tree. To identify each node in the key teekey server assigns
integer IDs to tree nodes in breadth first search order, \WwghD of the tree root
aso.

At the end of each rekey interval, the key server colletigin and L leave
requests and executes the following marking algorithm watgthe key tree and
generate aekey subtree. The objectives of the marking algorithm are to 1) reduce
the number of encrypted keys; 2) maintain the balance of pldated key tree; and
3) make it efficient for users to identify the encrypted ket they need.

The marking algorithm first updates the key tree.JIfi< L, the key server
replaces/ of the departed users that have the smallest IDs wittythewly joined

becomes becomes becomes

leaves leave new

new

3 leaves i1 j2 ul 1leave ul j1

2 joins 3 joins ul j3 i1 je
d=2

J<L J > L (Strategy 1)

Figure 3: Example of marking algorithm for=£ L.

users. By replacing departed users with newly joined udleesalgorithm reduces
the number of encrypted keys [12]. Whdh< L, we notice that some of the
departed users will not be replaced. For these user nodegðserver changes
them to null nodes (see the left figure of Figure 3 for an exaplf all of the
children of a node are null nodes, the key server changesaithe to null node as
well. Onthe other hand, if > L, the key server first replaces thedeparted users
with L of the newly joined users. However, the key server still seednsert the
remainingJ — L new users. For insertion, three strategies have been et
to achieve different tradeoffs among the aforementionegktbbjectives:

e Strategy 1. In this strategy, to add the remainihg L new users, the key
server first splits thd. replaced nodes to add the remaining new users. If
splitting the newly replaced nodes is still not enough to alidf the re-
maining new users (i.eJ > d - L), the key server splits the leaf nodes
from left to right and adds new users (see the right figure gfifeé 3 for an
example). The advantage of this approach is that it redbeasumber of en-
crypted keys because it first splits the replaced user nddesdisadvantage
is that if the user nodes of some users are changed, the kayr séll need
to provide new IDs individually to these users in additiornewly joined
users. We notice that such notification will increase keyesebandwidth
overhead.

e Strategy 2. This strategy, which we proposed and investiat[12], achieves
a smaller number of encrypted keys than that of Strategy 1h Wis strat-
egy, the key server creates a tree with new users at its lekgfsnand grafts
the tree under a departed user node with the smallest héigig.strategy,
however, does not keep the key tree as balanced as Strat€ygythe other
hand, with this strategy, the ID of at most one remaining is@enodified;
therefore, the key server only needs to provide new IDs toastmne re-
maining user in addition to newly joined users.

e Strategy 3. This strategy, which we proposed and invesiigat [27], was
designed to make it efficient for remaining users to iderttify encrypted
keys that they need. With this strategy, the key server #saces the null
nodes that have IDs between m + 1 andd - m + d with newly joined
users, wheren is the ID of the last node in the key tree that is neither a user
node nor a null node. If there are still extra joins, startivith the user node
with ID m + 1, the key server splits a user node to atdhildren, moves
the content of the user node to its left-most child, and abldsl new user
nodes. The key server repeats this process until all neve @seradded to
the key tree. A disadvantage of this strategy is that it gameera slightly
larger number of encrypted keys. The advantage of thisegtyahowever, is
that if the key server multicasts, the ID of the last node that is neither a
user node nor a key node, in a rekey message, each remaimingillshe
able to independently derive the ID of its user node evenedfdinucture of
the key tree has been modified. For an explanation of how esahwhose
ID has changed, determines its new ID, please see [27].

Comparing the three strategies to processjthe L case, our evaluation shows
that the difference in terms of the size of rekey subtree iallsnTherefore, we
report analytical results below for Strategy 3 only.

After updating the key tree, the key server makes a copy okdlyetree, and
marks the states of key nodes in the duplicated key tree. dtesnare marked
with one of the following four statesJnchanged, Join, Leave, andReplace.

We first mark the states of user nodes: 1) A user node is maskedanged
unless it is changed by the following rules. 2) A user node départed user is
markedLeave if the node is not replaced; otherwise, it is markesplace. 3) A
user node is markedbin if it is a replacement for a null node or it is split from a
previous user node.

We then mark the states of other key nodes: 1) If all the ofwilahf a key node
are marked_eave, we mark itLeave and remove all of its children. 2) Otherwise,
if all of its children are marketlnchanged, we mark itUnchanged, and remove all
of its children. 3) Otherwise, if all of its children are madkUnchanged or Join,
we mark it asJoin, create avirtual node, which contains the old key of the key
node, and use it to replace all of ltkichanged children. 4) Otherwise, if the node
has at least onkeave or Replace child, we mark it afReplace.

We call the pruned subtreekey subtree, and we observe that each edge in the
rekey subtree corresponds to an encryption: parent nodgpead by child node.
The detail of how to traverse a rekey subtree to generateey mlessage will be
investigated in Section 3.1.

The running complexity of our marking algorithm @((.JJ + L)log N). Our

benchmark shows that on a Sun Ultra Sparc | with 167MHz CP#& ntlarking
algorithm takes less thah5 ms for N = 1024, and less thari0 ms for N =
4096. On the other hand, according to our benchmark, the runimmg of a batch
rekeying algorithm based on boolean function minimizafihcan take tens of
seconds at similar group sizes.

2.5 Worst scenario analysis

We analyze the worst scenario and average scenario perfoentd batch rekeying
based upon Strategy 3. (An analysis of batch rekeying based 8trategy 2 was
presented in [12].) The metric we use is the number of ened/geys. In this
subsection, we will show that even if we consider the worshiner of encrypted
keys to rekeyL leave requests, assuming no joins in a batch, batch rekegng
still have large benefit. From our previous discussion, wankthat it is because of
forward access control that makes rekey encoding diffichéirefore quantifying
the benefit of batch rekeying under this scenario can beuctste. For results on
worst case performance of other cases, we refer the interesader to [12]. We
present the average performance in next section.

Consider a balanced tree with degreand heighth. We know that there are
N = d" leaf nodes. Supposk of the users leave. We observe that the worst
scenario happens when the departed users are evenly Wmstribn the tree leaf
nodes, and therefore, the number of overlapped encrypcghge minimum.

Without delving into the detail of analysis (see AppendiX)jassuming. =
d', whereL < N/d, we derive that the worst number of encrypted keys is:

Encyorst(N, L) = Ldlogy % + % D)

On the other hand, in individual rekeying, a single depautsgt costg log,; N .
Suppose thd, requests are processed individually, then there will baibhdotal
of Ldlog,; N encrypted keys. Comparing with Equation (1), we observettia
difference isLdlog,; L. When L is large, the benefit of batch rekeying can be
substantial. Whed. > N/d, more edges in the rekey subtree will be pruned, and
the savings become even larger.

2.6 Averagescenario analysis

Let Enc(N, J, L) denote the average number of encrypted keys whg@in and
L leave requests are processed forMamser key tree. To simplify the analysis,
we assume that the key tree is balanced at the beginning dfch, end we let
h = log,; N denote the height of the key tree. Also, we assume that thartep

10

users are uniformly distributed over the tree leaf nodese Jdenario that users
have different leave probabilities can be utilized to fartimprove performance,
for example, by using a Huffman type of tree to minimize thenber of encrypted
keys. However, such exploration and analysis are beyonsicibyge of this paper.

Since our batch rekeying algorithm depends on the reldtiprizetween/ and
L, our analytical results also depend on the relationshipvéen J and L. By
considering the number of times that a key node belongs t&ey reubtree, we
derive the following analytical expressions for the averagimber of encrypted
keys (see Appendix A.2):

o J=1L:
o Chen
Enc;(N,J,L) = dY d'(1- 2=
ey () Z%(q§)

whereN, = N/d'.
o J <Lt

Ency(N,J,L) = FEncs(N,L,L)—(L—J)—
h—1d'—1 L—N, L—k—N,
ocjl%lch 0

D)IP P R
1=0 i=0 k=J N

whereNy = N/dl, Ni=1%-Ny, Ny =N — (i-i- 1)N0.
o J>L:

Bnes(N,J,L) = [$U=Dy

=0 =0
c
—&7 % 1(J = L —dNy)-
N
min{d, [55441] + 1))
whereNy = N/d', Ny =i - Ny, 1(z) = 1 if = > 0; otherwise1(x) = 0.

Next, we plot our analytical results. Figure 4 shows theeslof Enc(N, J, L)
for N = 4096 and a wide range of and L values. We have plotted both simula-
tion results (controlled by achieving a confidence inteoi&%) and our analytical
results; our analytical results match simulations well #mely are indistinguish-
able in the figure. From Figure 4, we observe that for a fiked“nc(N, J, L)

11

