
Reliable Group Rekeying: A Performance Analysis∗

Yang Richard Yang, X. Steve Li, X. Brian Zhang, Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712–1188
{yangyang,xli,zxc,lam}@cs.utexas.edu

TR–01–21
June, 2001

Abstract

In secure group communications, users of a group share a common group
key. A key server sends the group key to authorized new users as well as per-
forms group rekeying for group users whenever the key changes. In this
paper, we investigate scalability issues of reliable grouprekeying, and pro-
vide a performance analysis of our group key management system (called
keygem) based upon the use of key trees. Instead of rekeying after each join
or leave, we use periodic batch rekeying to improve scalability and allevi-
ate out-of-sync problems among rekey messages as well as between rekey
and data messages. Our analyses show that batch rekeying canachieve large
performance gains. We then investigate reliable multicastof rekey messages
using proactive FEC. We observe that rekey transport has an eventual reli-
ability and a soft real-time requirement, and that the rekeyworkload has a
sparseness property, that is, each group user only needs to receive a small
fraction of the packets that carry a rekey message sent by thekey server.
We also investigate tradeoffs between server and receiver bandwidth require-
ments versus group rekey interval, and show how to determinethe maximum
number of group users a key server can support.

1 Introduction

Many emerging network applications, such as pay-per-view distribution of digital
media, restricted teleconferences, and pay-per-use multi-party games, are based

∗Research sponsored in part by NSF grant no. ANI-9977267 and NSA INFOSEC University
Research Program grant no. MDA904-98-C-A901. Experimentswere performed on equipment
procured with NSF grant no. CDA-9624082.

1



upon a secure group communications model [8]. In this model,to protect the pri-
vacy of group communications, a symmetric group key known only to group users
and the key server is used for encrypting data traffic betweengroup users. Access
to the group key is controlled by a group key management system, which sends the
group key to authorized new users as well as performs group rekeying whenever the
group key changes. Specifically, a group key management system can implement
two types of access control:backward access control andforward access control.
If the system changes the group key after a new user joins, thenew user will not be
able to decrypt past group communications; this is called backward access control.
Similarly, if the system rekeys after a current user leaves,or is expelled from the
system, the departed user will not be able to access future group communications;
this is called forward access control.

Implementing access control may have large performance overheads which
limit system scalability. Backward access control can be implemented efficiently
because a new group key can be distributed by encrypting it with the existing group
key for existing group users. Forward access control is harder to implement. To
send a new group key to all remaining group users after a user has departed, one
approach is to encrypt the new group key with each remaining user’s individual
key, which is shared only between the user and the key managementsystem. This
straightforward approach, however, is not scalable because it requires the key man-
agement system to encrypt and send the new group keyN − 1 times, whereN is
group size before the departure.

In the past few years, several approaches [21, 22, 2, 4, 6] have been proposed
to implement scalable forward access control. For example,thekey tree approach,
which uses a hierarchy of keys to facilitate group rekeying,reduces group rekeying
complexity toO(log N) [21, 22], whereN is group size.

 Rekey encoding

Registration

leavejoin

Rekey transport

individual key

rekey message

Figure 1: Functional components of a key management service

Figure 1 shows the functional components of an architecturefor group key
management system. The registration component authenticates users and distributes
to each user its individual key. Authenticated users send their join and leave re-
quests to the rekey encoding component. The rekey encoding component, which
manages the keys in the system, validates the requests by checking whether they
are encrypted by individual keys, and generates rekey messages, which are sent

2



to the rekey transport component for delivery. Previous studies have focused pri-
marily on the rekey encoding component, particularly the processing time required
by the rekey encoding component in a key server [21, 22]; the problem of reli-
able transport of group rekey messages has not been addressed in the literature. To
make a group key management system scalable, however, the design of each of
the three components needs to be scalable. Therefore, the objective of our study
is to investigate scalability issues of all three components, including the evalua-
tion of batch rekeying algorithms to improve scalability for a large and dynamic
group, the characterization of rekey transport workload, the design of a reliable
rekey transport protocol, and an overall performance analysis of our system, called
keygem.

First, consider the registration component. For a group keymanagement sys-
tem to grant or deny a join or leave request, the identity of the user sending the
request needs to be authenticated. Thus, each user needs to first register with the
system by authenticating itself to the system and receive its individual key. Reg-
istration using an authentication protocol, however, can have large overheads, and
a key server becomes a bottleneck when user registration rate is high. To improve
the scalability of the registration component, the key server in keygem can offload
its its registration workload to trusted registrars [8, 24]. Machines running regis-
trars can be added or removed dynamically. Moreover, different registrars can use
different authentication protocols to authenticate different sets of users. Since we
can offload the registration workload to registrars, we do not consider this work-
load in this paper. For the detailed operations to register anew user, please see a
description of the keystone system [24].

Second, consider the rekey encoding component. We show thatrekeying af-
ter each join or leave (called individual rekeying) for the key tree approach has
two problems: inefficiency and out-of-sync problems among rekey messages as
well as between rekey and data messages (see Section 2). Furthermore, when user
join/leave rate is high, the delay needed to reliably multicast a rekey message may
be too large to implement individual rekeying. In keygem, weimprove rekey en-
coding efficiency and alleviate the out-of-sync problems byrekeying periodically
for a batch of join/leave requests. The idea of batch rekeying has been proposed
before [4, 13, 18, 22]. However, for batch rekeying based on akey tree, no explicit
algorithm has been presented and its performance has not been analyzed. In this
paper, we present the specification of a batch rekeying algorithm, analyze its per-
formance, and evaluate the benefits of batch rekeying. Our evaluation shows that
batch rekeying not only can reduce the number of expensive signing operations, it
also can reduce substantially bandwidth requirements at server and receivers. In
other words, batch processing can improve system scalability for a highly dynamic
group.

3



Third, consider the rekey transport component. Reliable transport of rekey
messages has not received much attention in previous work. Although the idea of
using FEC to improve the reliability of rekey transport has been discussed in the
SMuG community [8] and in our keystone system, there is no protocol detail and
its performance is not analyzed. The common assumption is that one of the reliable
multicast protocols [7] can be used for rekey transport, andthat prior analyses [11,
14, 20, 9, 15] of these reliable multicast protocols still apply. In this paper, we
observe that rekey transport has its own special properties. First, we observe that
rekey transport has an eventual reliability and a soft real-time requirement because
of the inter-dependencies among rekey messages as well as between rekey and
data messages. Second, we observe that rekey transport workload has asparseness
property, that is, while a key server sends a rekey message asa large block of
packets, each receiver only needs to receive a small fraction of the packets. For
our rekey transport protocol, which is based upon the use of proactive FEC [10,
17], we show that reliable rekey multicast can be analyzed byconverting it to
conventional reliable multicast, which does not have the sparseness property. Using
this approach, we have investigated key server bandwidth overhead, number of
rounds needed to transport the workload of a rekey operation, and how to determine
the proactivity factor for FEC.

Fourth, consider the rekey encoding and the rekey transportcomponents to-
gether. Based on a simple membership model, we show that group rekeying inter-
val serves as a design parameter that allows tradeoffs between rekeying overheads,
group access delay, and the degree of forward access controlvulnerability. Consid-
ering four system constraints, we investigate how to choosean appropriate rekey
interval and determine the maximum number of users that a keyserver can support.

To further improve the scalability and reliability of keygem, we allow keygem
to extend a centralized key server to distributed key servers. Our performance
analysis shows that partitioning users into active and inactive groups can further
improve system scalability. In particular, we present two distributed architectures
with one architecture suitable for applications with both security and reliability
requirements on the transferred application data, such as reliable secure software
transfer, and another architecture suitable for applications with only security re-
quirement on the transferred application data, such as secure multimedia applica-
tions.

The balance of the paper is organized as follows. In Section 2, we investigate
scalability issues of the rekey encoding component and evaluate periodic batch
rekeying. In Section 3, we address the issues of reliable rekey transport, including
rekey workload characterization and performance analysisof rekey transport. In
Section 4, we integrate the results of Section 2 and Section 3to consider overall
system performance and study tradeoffs between bandwidth overhead and rekey

4



interval. Extensions to multiple key servers are presentedin Section 5. Our con-
clusion is in Section 6.

2 Improving Rekey Encoding Scalability

Having been authenticated by a registrar, a user can then send a join request to the
key server. The key server will also receive leave requests from existing users. The
rekey encoding component processes these requests to prepare rekey messages.
Before discussing the issues of individual rekeying, we first briefly review the key
tree idea [21, 22].

2.1 Key tree

A key tree is a directed tree in which each node represents a key. The root of the
key tree is thegroup key, which is shared by all users, and a leaf node is a user’s
individual key, which is shared only between the user and the key server. Since each
node represents a key, we call a node in the key tree a key node.For key nodes
representing the individual keys of users, we also refer to them as user nodes. A
trusted key server manages the key tree, and a useru is given keyk if and only if
there is a directed path from its individual key to keyk in the key tree. Consider a
group with 9 users. An example key tree is shown in Figure 2. Inthis group, user
u9 is given three keys:k9, k789, andk1−9. Key k9 is the user’s individual key, key
k1−9 is the group key, andk789 is an auxiliary key shared byu7, u8, andu9.

k123

k2 k5 k8k1 k3 k4 k6 k7 k9

k456

k1−9

k789

group key

keys

(change to k1−8)

(change to k78)
auxiliary

individual
keys

(user nodes)

u1 u2 u3 u4 u5 u6 u7 u8 u9
leave

users

Figure 2: An example key tree

Supposeu9 leaves the group. The key server will then need to change the keys
that u9 knows: changek1−9 to k1−8, and changek789 to k78. To distribute the
changed keys to the remaining users usinggroup-oriented rekeying strategy [22],
the key server constructs the followingrekey message by traversing the key tree
bottom-up: ({k78}k7

, {k78}k8
, {k1−8}k123

, {k1−8}k456
, {k1−8}k78

). Here{k′}k

denotes keyk′ encrypted by keyk, and is referred to as anencrypted key or an

5



encryption. Upon receiving this message, a user extracts the encryptedkeys that it
needs. For example,u7 only needs{k1−8}k78

and{k78}k7
.

2.2 Issues of individual rekeying

Although individual rekeying introduces no extra delay to process user requests, it
has two issues.

First, if we rekey after each join or leave, it is hard to control the synchro-
nization that will arise because of the inter-dependenciesamong rekey messages as
well as between rekey and data messages. When synchronization is not achieved,
we will haveout-of-sync problems. Consider an encryption{k}k′ in a rekey mes-
sage. A user must receivek′ in order to decrypt the encryption. However,k′ may
be distributed in a previous rekey message, and if the previous rekey message has
not arrived, the user will not be able to recover the new key. Also, consider a group
key distributed in a rekey message to a user. If data messagesare encrypted us-
ing the group key and the group key has not arrived, the user will not be able to
decrypt the data messages. As a result of these out-of-sync problems, if rekey mes-
sage delivery delay is high and join/leave requests happen frequently, a user may
need to keep all of the old group keys, and buffer a large amount of rekey and data
messages that it cannot decrypt yet.

Second, individual rekeying can be inefficient. For authentication purpose,
each rekey message needs to be digitally signed to prove thatit originates from
the key server, and we know that signing operation can have large computation
or bandwidth overheads. Moreover, as Snoeyink, Suri and Varghese observed
in [19], which we have also independently derived at the sametime using a differ-
ent proof [25], we know that when a key server rekeys after each request and when
forward access control is required,Ω(log N) is a lower bound on the amortized
number of encrypted keys. Thus, the key tree approach has already achieved the
complexity of this lower bound, and we cannot further improve the performance of
rekey encoding if we rekey after each request. To overcome this limit and reduce
the number of signing operations, we need to consider batch rekeying.

2.3 Periodic batch rekeying

Periodic batch rekeying, which collects requests during a rekey interval and rekeys
them in a batch, can alleviate the out-of-sync problems and improve efficiency.
To alleviate the out-of-sync problems, periodic batch rekeying delays the usage of
a new group key until the next rekey interval, and rekey transport can guarantee
with a high probability that the rekey message has been delivered before the next
interval (see Section 4). As for performance, an obvious performance gain of batch

6



processingJ join andL leave requests is that it reduces the number of signing
operations fromJ + L to 1. Moreover, the number of encrypted keys generated by
batch rekeying can be less than the sum of those generated by individual rekeying.
Consider Figure 2. Suppose bothu8 andu9 send leave requests. If the key server
rekeys individually, it will need to update the group key twice, and at each time,
the new group key needs to be encrypted byk123. However, if the two requests are
rekeyed in a batch, the key server only needs to update the group key once.

Periodic batch rekeying improves performance at the expense of delayed group
access control, because a new user has to wait longer to be accepted by the group
and a departed (or expelled) user can stay within the group longer. Thus, we ob-
serve that group rekeying interval serves as a design parameter that allows tradeoffs
between rekeying overheads, group access delay, and the degree of forward access
control vulnerability.

To accommodate different application requirements and make tradeoffs be-
tween performance and group access control, keygem can operate in three batch
modes: 1) periodic batch rekeying, in which the key server processes both join
and leave requests periodically in a batch; 2) periodic batch leave rekeying, in
which the key server processes each join request immediately to reduce the delay
for a new user to access group communications, but processesleave requests in
a batch; and 3) periodic batch join rekeying, in which the keyserver processes
each leave request immediately to reduce the exposure to users who have departed,
but processes join requests in a batch. We will investigate the tradeoffs further in
Section 4.

2.4 Batch rekeying algorithms

In periodic batch rekeying mode, the key server maintains a key tree that is slightly
different from the key tree described in Section 2.1 to facilitate a key identification
strategy that we proposed in [27]. In particular, we add nullnodes that represent
empty key nodes to a key tree so that the key server can always maintain a complete
and balanced key tree. To identify each node in the key tree, the key server assigns
integer IDs to tree nodes in breadth first search order, with the ID of the tree root
as0.

At the end of each rekey interval, the key server collectsJ join andL leave
requests and executes the following marking algorithm to update the key tree and
generate arekey subtree. The objectives of the marking algorithm are to 1) reduce
the number of encrypted keys; 2) maintain the balance of the updated key tree; and
3) make it efficient for users to identify the encrypted keys that they need.

The marking algorithm first updates the key tree. IfJ ≤ L, the key server
replacesJ of the departed users that have the smallest IDs with theJ newly joined

7



becomes

leaves

3 leaves
2 joins

becomes

1 leave
3 joins
d=2

becomes

j1u1 u1

j3 j1 j2u1

leave new new

j1 j2

J < L J > L (Strategy 1)

Figure 3: Example of marking algorithm forJ 6= L.

users. By replacing departed users with newly joined users,the algorithm reduces
the number of encrypted keys [12]. WhenJ < L, we notice that some of the
departed users will not be replaced. For these user nodes, the key server changes
them to null nodes (see the left figure of Figure 3 for an example). If all of the
children of a node are null nodes, the key server changes the node to null node as
well. On the other hand, ifJ > L, the key server first replaces theL departed users
with L of the newly joined users. However, the key server still needs to insert the
remainingJ − L new users. For insertion, three strategies have been investigated
to achieve different tradeoffs among the aforementioned three objectives:

• Strategy 1. In this strategy, to add the remainingJ − L new users, the key
server first splits theL replaced nodes to add the remaining new users. If
splitting the newly replaced nodes is still not enough to addall of the re-
maining new users (i.e.J > d · L), the key server splits the leaf nodes
from left to right and adds new users (see the right figure of Figure 3 for an
example). The advantage of this approach is that it reduces the number of en-
crypted keys because it first splits the replaced user nodes.The disadvantage
is that if the user nodes of some users are changed, the key server will need
to provide new IDs individually to these users in addition tonewly joined
users. We notice that such notification will increase key server bandwidth
overhead.

• Strategy 2. This strategy, which we proposed and investigated in [12], achieves
a smaller number of encrypted keys than that of Strategy 1. With this strat-
egy, the key server creates a tree with new users at its leaf nodes and grafts
the tree under a departed user node with the smallest height.This strategy,
however, does not keep the key tree as balanced as Strategy 1.On the other
hand, with this strategy, the ID of at most one remaining useris modified;
therefore, the key server only needs to provide new IDs to at most one re-
maining user in addition to newly joined users.

8



• Strategy 3. This strategy, which we proposed and investigated in [27], was
designed to make it efficient for remaining users to identifythe encrypted
keys that they need. With this strategy, the key server first replaces the null
nodes that have IDs betweend · m + 1 andd · m + d with newly joined
users, wherem is the ID of the last node in the key tree that is neither a user
node nor a null node. If there are still extra joins, startingwith the user node
with ID m + 1, the key server splits a user node to addd children, moves
the content of the user node to its left-most child, and addsd − 1 new user
nodes. The key server repeats this process until all new users are added to
the key tree. A disadvantage of this strategy is that it generates a slightly
larger number of encrypted keys. The advantage of this strategy, however, is
that if the key server multicastsm, the ID of the last node that is neither a
user node nor a key node, in a rekey message, each remaining user will be
able to independently derive the ID of its user node even if the structure of
the key tree has been modified. For an explanation of how each user, whose
ID has changed, determines its new ID, please see [27].

Comparing the three strategies to process theJ > L case, our evaluation shows
that the difference in terms of the size of rekey subtree is small. Therefore, we
report analytical results below for Strategy 3 only.

After updating the key tree, the key server makes a copy of thekey tree, and
marks the states of key nodes in the duplicated key tree. The nodes are marked
with one of the following four states:Unchanged, Join, Leave, andReplace.

We first mark the states of user nodes: 1) A user node is markedUnchanged
unless it is changed by the following rules. 2) A user node of adeparted user is
markedLeave if the node is not replaced; otherwise, it is markedReplace. 3) A
user node is markedJoin if it is a replacement for a null node or it is split from a
previous user node.

We then mark the states of other key nodes: 1) If all the children of a key node
are markedLeave, we mark itLeave and remove all of its children. 2) Otherwise,
if all of its children are markedUnchanged, we mark itUnchanged, and remove all
of its children. 3) Otherwise, if all of its children are marked Unchanged or Join,
we mark it asJoin, create avirtual node, which contains the old key of the key
node, and use it to replace all of itsUnchanged children. 4) Otherwise, if the node
has at least oneLeave or Replace child, we mark it asReplace.

We call the pruned subtreerekey subtree, and we observe that each edge in the
rekey subtree corresponds to an encryption: parent node encrypted by child node.
The detail of how to traverse a rekey subtree to generate a rekey message will be
investigated in Section 3.1.

The running complexity of our marking algorithm isO((J + L) log N). Our

9



benchmark shows that on a Sun Ultra Sparc I with 167MHz CPU, the marking
algorithm takes less than4.5 ms for N = 1024, and less than10 ms for N =
4096. On the other hand, according to our benchmark, the running time of a batch
rekeying algorithm based on boolean function minimization[4] can take tens of
seconds at similar group sizes.

2.5 Worst scenario analysis

We analyze the worst scenario and average scenario performance of batch rekeying
based upon Strategy 3. (An analysis of batch rekeying based upon Strategy 2 was
presented in [12].) The metric we use is the number of encrypted keys. In this
subsection, we will show that even if we consider the worst number of encrypted
keys to rekeyL leave requests, assuming no joins in a batch, batch rekeyingcan
still have large benefit. From our previous discussion, we know that it is because of
forward access control that makes rekey encoding difficult;therefore quantifying
the benefit of batch rekeying under this scenario can be instructive. For results on
worst case performance of other cases, we refer the interested reader to [12]. We
present the average performance in next section.

Consider a balanced tree with degreed and heighth. We know that there are
N = dh leaf nodes. SupposeL of the users leave. We observe that the worst
scenario happens when the departed users are evenly distributed on the tree leaf
nodes, and therefore, the number of overlapped encryptionsis the minimum.

Without delving into the detail of analysis (see Appendix A.1), assumingL =
dl, whereL ≤ N/d, we derive that the worst number of encrypted keys is:

Encworst(N,L) = Ld logd
N

L
+

L − d

d − 1
(1)

On the other hand, in individual rekeying, a single departeduser costsd logd N .
Suppose theL requests are processed individually, then there will be about a total
of Ld logd N encrypted keys. Comparing with Equation (1), we observe that the
difference isLd logd L. WhenL is large, the benefit of batch rekeying can be
substantial. WhenL ≥ N/d, more edges in the rekey subtree will be pruned, and
the savings become even larger.

2.6 Average scenario analysis

Let Enc(N,J,L) denote the average number of encrypted keys whenJ join and
L leave requests are processed for anN user key tree. To simplify the analysis,
we assume that the key tree is balanced at the beginning of a batch, and we let
h = logd N denote the height of the key tree. Also, we assume that the departed

10



users are uniformly distributed over the tree leaf nodes. The scenario that users
have different leave probabilities can be utilized to further improve performance,
for example, by using a Huffman type of tree to minimize the number of encrypted
keys. However, such exploration and analysis are beyond thescope of this paper.

Since our batch rekeying algorithm depends on the relationship betweenJ and
L, our analytical results also depend on the relationship betweenJ and L. By
considering the number of times that a key node belongs to a rekey subtree, we
derive the following analytical expressions for the average number of encrypted
keys (see Appendix A.2):

• J = L:

Enc1 (N,J,L) = d

h−1∑

l=0

dl(1 −
CJ

N−N0

CJ
N

)

whereN0 = N/dl.

• J < L:

Enc2 (N,J,L) = Enc1 (N,L,L) − (L − J)−
h−1∑

l=0

dl
−1∑

i=0

(

L−N0∑

k=J

Ck
N1

CL−k−N0

N2

CL
N

)

whereN0 = N/dl, N1 = i · N0, N2 = N − (i + 1)N0.

• J > L:

Enc3 (N,J,L) = ⌈d·(J−L)
d−1 ⌉+

h−1∑

l=0

dl
−1∑

i=0

(d(1 −
CJ

N−N0

CJ
N

)+

CJ

N−N0

CJ

N

· 1(J − L − dN1)·

min{d, ⌈J−L−dN1

N/dl+1 ⌉ + 1})

whereN0 = N/dl, N1 = i · N0, 1(x) = 1 if x > 0; otherwise,1(x) = 0.

Next, we plot our analytical results. Figure 4 shows the values ofEnc(N,J,L)
for N = 4096 and a wide range ofJ andL values. We have plotted both simula-
tion results (controlled by achieving a confidence intervalof 5%) and our analytical
results; our analytical results match simulations well andthey are indistinguish-
able in the figure. From Figure 4, we observe that for a fixedL, Enc(N,J,L)

11


