
High-Performane Matrix Multipliation Algorithms forArhitetures with Hierarhial Memories �John A. Gunnelsy Greg M. Henryz Robert A. van de GeijnxJune 20, 2001AbstratDuring the last half-deade, a number of researh e�orts have entered around the devel-opment of software for generating automatially tuned matrix multipliation kernels. Theseinlude the PHiPAC projet and the ATLAS projet. The software produts of both projetsemploy brute fore to searh a parameter spae for blokings that aommodate multiple lev-els of memory hierarhy. We take a di�erent approah. Using a simple model of hierarhialmemories we employ mathematis to determine a loally-optimal strategy for bloking matries.The theoretial results show that, depending on the shape of the matries involved, di�erentstrategies are loally-optimal. Rather than determining a bloking strategy at library gener-ation time, the theoretial results show that ideally one should pursue a heuristi that allowsthe bloking strategy to be determined dynamially at run-time as a funtion of the shapes ofthe operands. When the resulting family of algorithms is ombined with a highly optimizedinner-kernel for a small matrix multipliation, the approah yields performane that is supe-rior to that of methods that automatially tune suh kernels. Preliminary results, for the IntelPentium (R) III proessor, support the theoretial insights.1 IntrodutionResearh in the development of linear algebra libraries has reently shifted to the automati gener-ation and optimization of the matrix multipliation kernels. The idea is that many linear algebraoperations an be implemented in terms of matrix multipliation [3, 11, 7℄ and that thus it is thisoperation that should be highly optimized on di�erent platforms. Sine the oding e�ort is on-siderable, espeially when multiple layers of ahe are involved, the general onensus is that thisproess should be automated.In this paper, we develop a theoretial framework that (1) suggests a formula for the bloksizes that should be used at eah level of the memory hierarhy, and (2) restrits the possible looporderings to a spei� family of algorithms for matrix multipliation. Together, we show how touse these results to build highly optimized matrix multipliation implementations that utilize theahes in a loally-optimal fashion. The results ould be equally well used to limit the searh spaethat must be examined by pakages that automatially tune suh kernels.�This work was partially performed at the Jet Propulsion Laboratory, California Institute of Tehnology, under aontrat with the National Aeronautis and Spae Administration. The work was funded by the Remote Explorationand Experimentation Projet (a part of the NASA High Performane Computing and Communiations Programfunded by the NASA OÆe of Spae Siene.)yDepartment of Computer Sienes, The University of Texas, Austin, TX 78712, gunnels�s.utexas.eduzIntel Corp., Bldg EY2-05, 5350 NE Elam Young Pkwy, Hillsboro, OR 97124-6461, greg.henry�intel.omxDepartment of Computer Sienes, The University of Texas, Austin, TX 78712, rvdg�s.utexas.edu1

The urrent pursuit of highly optimized matrix kernels ahieved by oding in a high-level pro-gramming language started with the implementation of the FORTRAN implementation of Ba-si linear Algebra Subprograms (BLAS) [5℄ for the IBM Power2 [1℄. Subsequently, the PHiPACprojet [4℄ at UC-Berkeley demonstrated that high-performane matrix multipliation kernels anbe written in C and that ode generators ould be used to automatially generate many di�erentblokings, allowing automati tuning. Next, the Automatially Tuned Linear Algebra Software(ATLAS) projet [12℄ at the University of Tennessee extended the ideas developed as part of thePHiPAC projet by reduing the kernel that is alled one matries are massaged to be in the L1ahe into one spei� ase: C = ATB + �C for small matries A, B, and C and reduing thespae searhed for optimal blokings. Furthermore it marketed the methodology allowing it to gainwide-spread aeptane and igniting the urrent raze in the linear algebra ommunity towardsautomatially tuned libraries. Finally, there has been a onsiderable reent interest in reursivealgorithms and reursive data strutures. The idea here is that by reursively partitioning theoperands bloks that �t in the di�erent levels of the ahes will automatially be enountered [9℄.By storing matries reursively, bloks that are enountered during the exeution of the reursivealgorithms will be in ontiguous memory [2, 8, 10℄.Other work losely related to this topi is disussed in other papers presented as part of thissession of the onferene.2 Notation and Terminology2.1 Speial ases of matrix multipliationThe general form of a matrix multiply is C �AB + �C where C is m � n, A is m � k, andB is k � n. We will use the following terminology when referring to a matrix multiply when twodimensions are large and one is small:Condition ShapeMatrix-panel multiply n is small C = A B + CPanel-matrix multiply m is small C = A B + CPanel-panel multiply k is small C = A B + CThe following observation will beome key to understanding onepts enountered in the rest ofthe paper: Partition X = � X1 � � � XNX � = 0BB� X̂1...X̂MX 1CCA for X 2 fA;B;Cg, where Cj is m�nj,Ĉi is mi � n, Ap is m� kp, Âi is mi � k, Bj is k � nj, and B̂p is kp � n. Then C AB + C anbe ahieved by
2

multiple matrix-panelmultiplies: Cj ABj + Cj for j = 1; : : : ; NC C1C2C3+= A B1B1B1multiple panel-matrixmultiplies: Ĉi ÂiB + Ĉi for i = 1; : : : ;MC Ĉ1Ĉ2Ĉ3 += Â1Â2Â3 Bmultiple panel-panelmultiplies C PNAp ApB̂p + C C +=A1A2A3 B̂1B̂2B̂32.2 A ost model for hierarhial memoriesThe memory hierarhy of a modern miroproessor is often viewed as a pyramid: At the top of thepyramid, there are the proessor registers, with extremely fast aess. At the bottom, there aredisks and even slower media. As one goes down the pyramid, while the ost of memory dereases,the amount of memory inreases along with the time required to aess that that memory.We will model the above-mentioned hierarhy naively as follows: (1) The memory hierarhyonsists of H levels, indexed 0; : : : ;H � 1. Level 0 orresponds to the registers. We will oftendenote the ith level by Li. Notie that on a typial urrent arhiteture L1 and L2 orrespond thelevel 1 and level 2 data ahes and L3 orresponds to RAM. (2) Level h of the memory hierarhyan store Sh oating point numbers. Generally S0 � S1 � � � � � SH�1. (3) Loading a oating pointnumber stored in level h+ 1 to level h osts time �h. We will assume that �0 < �1 < � � � < �H�1.(4) Storing a oating point number from level h to level h+ 1 osts time �h. We will assume that�0 < �1 < � � � < �H�1. (5) If mh � nh matrix C, mh � kh matrix A, and kh � nh matrix B areall stored in level h of the memory hierarhy then forming C AB + C osts time 2mhnhkhh.(Notie that h will depend on mh, nh, and kh).3 Building-bloks for matrix multipliationConsider the matrix multipliation C AB + C where mh+1 � nh+1 matrix C, mh+1 � kh+1matrix A, and kh+1 � nh+1 matrix B are all stored in Lh+1. Let us assume that somehow aneÆient matrix multipliation kernel exists for matries stored in Lh. In this setion, we developthree distint approahes for matrix multipliation kernels for matries stored in Lh+1.PartitionC = 0BB� C11 � � � C1N... ...CM1 � � � CMN 1CCA ; A = 0BB� A11 � � � A1K... ...AM1 � � � AMK 1CCA ; and B = 0BB� B11 � � � B1N... ...BK1 � � � BKN 1CCA(1)where Cij is mh � nh, Aip is mh � kh, and Bpj is kh � nh. The objetive of the game will be todetermine optimal mh, nh, and kh.3.1 Multiple panel-panel multiplies in LhNoting that Cij PKp=1AipBpj + Cij, let us onsider the algorithm in Fig. 1 for omputing thematrix multipliation. In that �gure the osts of the various operations are shown to the right.The order of the outer-most loops is irrelevant to the analysis.3

Algorithm 1for j = 1; : : : ; Nfor i = 1; : : : ;MLoad Cij from Lh+1 to Lh. mhnh�hfor p = 1; : : : ;KLoad Aip from Lh+1 to Lh. mhkh�hLoad Bpj from Lh+1 to Lh. khnh�hUpdate Cij AipBpj + Cij 2mhnhkhhendforStore Cij from Lh to Lh+1 mhnh�hendforendforFigure 1: Multiple panel-panel multiply based bloked matrix multipliation.The ost for updating C is given bymh+1nh+1(�h + �h) +mh+1nh+1kh+1 �hnh +mh+1nh+1kh+1 �hmh + 2mh+1nh+1kh+1hSine it also equals 2mh+1nh+1kh+1, solving for h+1, the e�etive ost per oating point operationat level Lh+1, yields PPh+1 = �h + �h2kh+1 + �h2nh + �h2mh + hThe question now is how to �nd the mh, nh, and kh that minimize h+1 under the onstraint thatCij , Aik and Bkj all �t in Lh, i.e., mhnh+mhkh+nhkh � Sh. The smaller kh, the more spae in Lhan be dediated to Cij and thus the smaller the frations �h=mh and �h=nh an be made. A goodstrategy is thus to let essentially all of Lh be dediated to Cij, i.e., mhnh � Sh. The minimum isthen attained when essentially mh � nh � pSh.Notie that it suÆes to have mh+1 = mh or nh+1 = nh for the above ost of h+1 to beahieved. Thus, the above already for the speial ases0BB� C11...CM1 1CCA+= 0BB� A11 � � � A1K... ...AM1 � � �AMK 1CCA0BB� B11...BK1 1CCA +=(2) � C11 � � � C1N �+= � A11 � � �A1K �0BB� B11 � � � B1N... ...BK1 � � � BKN 1CCA +=(3)Here the distane between single/thin lines is kh and between double/thik lines mh = nh, wherekh is muh smaller than mh and nh.The inner-most loop in Alg. 1 implements multiple panel-panel multiplies sine kh is smallrelative to mh and nh. Hene the name of this setion.3.2 Multiple matrix-panel multiplies in LhMoving the loops over l and i to the outside we obtain the algorithm in Fig. 2(left). Performing an4

Algorithm 2for p = 1; : : : ;Kfor i = 1; : : : ;MLoad Aip from Lh+1 to Lh.for j = 1; : : : ; NLoad Cij from Lh+1 to Lh.Load Bpj from Lh+1 to Lh.Update Cij AipBpj + CijStore Cij from Lh to Lh+1endforendforendfor
Algorithm 3for j = 1; : : : ; Nfor p = 1; : : : ;KLoad Bpj from Lh+1 to Lh.for i = 1; : : : ;MLoad Cij from Lh+1 to Lh.Load Aip from Lh+1 to Lh.Update Cij AipBpj + CijStore Cij from Lh to Lh+1endforendforendforFigure 2: Multiple matrix-panel (left) and panel-matrix (right) multiply based bloked matrixmultipliation.analysis similar to that given in Setion 3.1 the e�etive ost of a oating point operation is nowgiven by MPh+1 = �h2nh+1 + �h + �h2kh + �h2mh + h(4) Again, the question is how to �nd the mh, nh, and kh that minimize h+1 under the onstraintthat Cij , Aik and Bkj all �t in Lh, i.e., mhnh +mhkh + nhkh � Sh. Note that the smaller nh, themore spae in Lh an be dediated to Ail and thus the smaller the frations (�h + �h)=2kh and�h=2mh an be made. A good strategy is thus to let essentially all of Lh be dediated to Ail, i.e.,mhkh � Sh. The minimum is then attained when essentially mh � kh � pSh.Notie that it suÆes to have mh+1 = mh or kh+1 = kh for the above ost of h+1 to be ahieved.In other words, the above holds for the speial ases0BB� C11 � � � C1N... ...CM1 � � �CMN 1CCA+= 0BB� A11...AM1 1CCA � B11 � � �B1N � +=(5) � C11 � � � C1N �+= � A11 � � � A1K �0BB� B11 � � � B1N... ...BK1 � � � BKN 1CCA +=(6) The inner-most loop in Alg. 2 implements multiple matrix-panel multiplies sine nh is smallrelative to mh and kh. Thus the name of this setion.3.3 Multiple panel-matrix multiplies in LhFinally, moving the loops over p and j to the outside we obtain the algorithm given in Fig. 2(right).This time, the e�etive ost of a oating point operation is given byPMh+1 = �h2mh+1 + �h + �h2kh + �h2nh + h(7) Again, the question is how to �nd the mh, nh, and kh that minimize h+1 under the onstraintthat Cij , Aik and Bkj all �t in Lh, i.e., mhnh +mhkh + nhkh � Sh. Note that the smaller mh, the5

more spae in Lh an be dediated to Bpj and thus the smaller the frations (�h + �h)=2kh and�h=2nh an be made. A good strategy in this ase is to dediate essentially all of Lh to Bpj, i.e.,nhkh � Sh. The minimum is then attained when essentially nh � kh � pSh.Notie that it suÆes to have nh+1 = nh and/or kh+1 = kh for the above ost of h+1 to beahieved. In other words, the above holds for the speial ases0BB� C11 � � � C1N... ...CM1 � � �CMN 1CCA+ = 0BB� A11...AM1 1CCA � B11 � � �B1N � +=(8) 0BB� C11...CM1 1CCA+ = 0BB� A11 � � � A1K... ...AM1 � � �AMK 1CCA0BB� B11...BK1 1CCA +=(9)an observation that will beome important later.3.4 SummaryThe onlusions to draw from Setions 2.1 and 3.1{3.3 are: (1) There are three shapes of matrixmultipliation that one expets to enounter at eah level of the memory hierarhy: panel-panel,matrix-panel, and panel-matrix multipliation. (2) If one suh shape is enountered at Lh+1, aloally-optimal approah to utilizing Lh will perform multiple instanes with one of the other twoshapes. (3) Given that multiple instanes of a given shape are to be performed, the strategy is tomove a submatrix of one of the three operands into Lh (we will all this the resident matrix in Lh),�lling most of that layer, and to amortize the ost of this data movement by streaming submatriesfrom the other operands from Lh+1 to Lh.Interestingly enough, the shapes disussed are exatly those that we enountered when studyinga lass of matrix multipliation algorithms on distributed memory arhitetures [6℄. This is notsurprising, sine distributed memory is just another layer in the memory hierarhy.4 A Family of AlgorithmsWe now show how to turn the observations made in the previous setion into a pratial implemen-tation.High-performane implementations of matrix multipliation typially start with an \inner-kernel". This kernel arefully orhestrates the movement of data in and out of the registers andthe omputation under the assumption that one or more of the operands are in the L1 ahe. Forour implementation on the Intel Pentium (R) III proessor, the inner-kernel performs the operationC = ATB + �C where 64 � 8 matrix A is kept in the L1 ahe. Matries B and C have a largenumber of olumns, whih we view as multiple-panels, with eah panel of width one. Thus, ourinner-kernel performs a multiple matrix-panel multiply (MMP) with a transposed resident matrixA. The tehnial reasons why this partiular shape was seleted go beyond the sope of this paper.While it may appear that we thus only have one of the three kernels for operation in the L1ahe, notie that for the submatries with whih we ompute at that level one an instead omputeCT = BTA + CT , reversing the role of A and B. This simple observation allows us to laim thatwe also have an inner-kernel that performs a multiple panel-matrix multiply (MPM).Let us introdue a naming onvention for a family of algorithms that perform the disussedalgorithms at di�erent levels of the memory hierarhy:6

General C = AB + C L3-kernels L2-kernels L1-kernels

+= �������
��

-CCCCCCCCW

+= �����R
+= �����R
+= �����R

+= �����+= �����+= �����-+= -+= -+= -AAAAU

+= MPP-MPM-MMP+= MPP-MMP-MPM+= MPM-MPP-MPM+= MPM-MPP-MMP+= MPM-MMP-MPM+= MMP-MPM-MMP+= MMP-MPP-MPM+= MMP-MPP-MMPFigure 3: Possible algorithms for matries in memory level L3 given all L2-kernels.<kernel at L3>-<kernel at L2>-<kernel at L1>.For example MPP-MPM-MMP will indiate that the L3-kernel uses multiple panel-panel multiplies,alls the L2-kernel that uses multiple matrix-panel multiplies, whih in turn alls the L1-kernel thatuses multiple panel-matrix multiplies. Given the onstraint that only two of the possible three kernelalgorithms are implemented at L1, the tree of algorithms in Fig. 3 an be implemented.5 PerformaneIn this setion, we report performane attained by the di�erent algorithms. Performane is re-ported by the rate of omputations attained, in millions of oating point operations per seond(MFLOPS/se). For the usual matrix dimensions m, n, and k, we use the operation ount 2mnkfor the matrix multipliation. We tested performane of the operation C = C � AB (� = �1 and� = 1) sine this is the ase most frequently enountered when matrix multipliation is used inlibraries suh as LAPACK.We report performane on an Intel Pentium (R) III (650 MHz) proessor with a 16 Kbyte L17

