High-Performance Matrix Multiplication Algorithms for
Architectures with Hierarchical Memories *

John A. Gunnels’ Greg M. Henry? Robert A. van de Geijn®

June 20, 2001

Abstract

During the last half-decade, a number of research efforts have centered around the devel-
opment of software for generating automatically tuned matrix multiplication kernels. These
include the PHiPAC project and the ATLAS project. The software products of both projects
employ brute force to search a parameter space for blockings that accommodate multiple lev-
els of memory hierarchy. We take a different approach. Using a simple model of hierarchical
memories we employ mathematics to determine a locally-optimal strategy for blocking matrices.
The theoretical results show that, depending on the shape of the matrices involved, different
strategies are locally-optimal. Rather than determining a blocking strategy at library gener-
ation time, the theoretical results show that ideally one should pursue a heuristic that allows
the blocking strategy to be determined dynamically at run-time as a function of the shapes of
the operands. When the resulting family of algorithms is combined with a highly optimized
inner-kernel for a small matrix multiplication, the approach yields performance that is supe-
rior to that of methods that automatically tune such kernels. Preliminary results, for the Intel
Pentium (R) III processor, support the theoretical insights.

1 Introduction

Research in the development of linear algebra libraries has recently shifted to the automatic gener-
ation and optimization of the matrix multiplication kernels. The idea is that many linear algebra
operations can be implemented in terms of matrix multiplication [3, 11, 7] and that thus it is this
operation that should be highly optimized on different platforms. Since the coding effort is con-
siderable, especially when multiple layers of cache are involved, the general concensus is that this
process should be automated.

In this paper, we develop a theoretical framework that (1) suggests a formula for the block
sizes that should be used at each level of the memory hierarchy, and (2) restricts the possible loop
orderings to a specific family of algorithms for matrix multiplication. Together, we show how to
use these results to build highly optimized matrix multiplication implementations that utilize the
caches in a locally-optimal fashion. The results could be equally well used to limit the search space
that must be examined by packages that automatically tune such kernels.

“This work was partially performed at the Jet Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration. The work was funded by the Remote Exploration
and Experimentation Project (a part of the NASA High Performance Computing and Communications Program
funded by the NASA Office of Space Science.)

"Department of Computer Sciences, The University of Texas, Austin, TX 78712, gunnels@cs.utexas.edu

Intel Corp., Bldg EY2-05, 5350 NE Elam Young Pkwy, Hillsboro, OR 97124-6461, greg.henry@intel.com

$Department of Computer Sciences, The University of Texas, Austin, TX 78712, rvdg@cs.utexas.edu

The current pursuit of highly optimized matrix kernels achieved by coding in a high-level pro-
gramming language started with the implementation of the FORTRAN implementation of Ba-
sic linear Algebra Subprograms (BLAS) [5] for the IBM Power2 [1]. Subsequently, the PHiPAC
project [4] at UC-Berkeley demonstrated that high-performance matrix multiplication kernels can
be written in C and that code generators could be used to automatically generate many different
blockings, allowing automatic tuning. Next, the Automatically Tuned Linear Algebra Software
(ATLAS) project [12] at the University of Tennessee extended the ideas developed as part of the
PHiPAC project by reducing the kernel that is called once matrices are massaged to be in the L1
cache into one specific case: C = ATB + BC for small matrices A, B, and C and reducing the
space searched for optimal blockings. Furthermore it marketed the methodology allowing it to gain
wide-spread acceptance and igniting the current craze in the linear algebra community towards
automatically tuned libraries. Finally, there has been a considerable recent interest in recursive
algorithms and recursive data structures. The idea here is that by recursively partitioning the
operands blocks that fit in the different levels of the caches will automatically be encountered [9].
By storing matrices recursively, blocks that are encountered during the execution of the recursive
algorithms will be in contiguous memory [2, 8, 10].

Other work closely related to this topic is discussed in other papers presented as part of this
session of the conference.

2 Notation and Terminology

2.1 Special cases of matrix multiplication

The general form of a matrix multiply is C < aAB + BC where C'is m x n, A is m X k, and
B is k x n. We will use the following terminology when referring to a matrix multiply when two
dimensions are large and one is small:

Condition Shape
Matrix-panel multiply | n is small =| A % + %
Panel-matrix multiply | m is small LC] = LA B |+ L]

Panel-panel multiply | & is small C |= ILI +| ¢

The following observation will become key to understanding concepts encountered in the rest of
X
the paper: Partition X = (X, ‘ ‘ XNy) = : for X € {A, B,C}, where Cj is m X nj,
Xy
Cj is m; X n, Ay is m x ky, A; is m; x k, Bj is k x nj, and B, is k) x n. Then C <= AB + C can
be achieved by

multiple matrix-panel .

multiplies: Cj < ABj - Cj forj=1,....Nc CiCofCs|+=| A \B1|B1|B1

multiple panel-matrix | - - A . [A

multiplies: Ci+— A;B+C;fori=1,...,M¢c Oy |+ =4 B
Cs As

multiple panel-panel N ~ By

multiplies O By +C ¢ |+=laudsy B,

B3

2.2 A cost model for hierarchical memories

The memory hierarchy of a modern microprocessor is often viewed as a pyramid: At the top of the
pyramid, there are the processor registers, with extremely fast access. At the bottom, there are
disks and even slower media. As one goes down the pyramid, while the cost of memory decreases,
the amount of memory increases along with the time required to access that that memory.

We will model the above-mentioned hierarchy naively as follows: (1) The memory hierarchy
consists of H levels, indexed 0,...,H — 1. Level 0 corresponds to the registers. We will often
denote the ith level by L;. Notice that on a typical current architecture L; and Ly correspond the
level 1 and level 2 data caches and L3 corresponds to RAM. (2) Level h of the memory hierarchy
can store S, floating point numbers. Generally Sp < S; < --- < Spy_1. (3) Loading a floating point
number stored in level h + 1 to level h costs time pp. We will assume that pg < p; < --- < pg_1.
(4) Storing a floating point number from level h to level h + 1 costs time oj,. We will assume that
op <oy < - <og-1. (5) If mp X np matrix C, my, X k, matrix A, and kp, X nj, matrix B are
all stored in level A of the memory hierarchy then forming C < AB + C costs time 2mpnpkpyp-
(Notice that 7, will depend on my, ny, and kp).

3 Building-blocks for matrix multiplication

Consider the matrix multiplication C' <~ AB + C where mp1 X npy1 matrix C, mpp1 X kpyg
matrix A, and kpy1 X mp4q matrix B are all stored in Lj4;. Let us assume that somehow an
efficient matrix multiplication kernel exists for matrices stored in L. In this section, we develop
three distinct approaches for matrix multiplication kernels for matrices stored in Lp.

Partition

Cip |-+ | Cin A || Aix By |-+ | Bin
me-| | |, and = -

Cui | | Cun Aai |- | Auk Bri |-+ | Bkn

where Cj; is my, X np, Aip is my, X ky, and By; is kj, X np. The objective of the game will be to
determine optimal my, ny, and k.

3.1 Multiple panel-panel multiplies in L,

Noting that Cj; Z;[f:l AipByi + Cjj, let us consider the algorithm in Fig. 1 for computing the
matrix multiplication. In that figure the costs of the various operations are shown to the right.
The order of the outer-most loops is irrelevant to the analysis.

Algorithm 1
forj=1,...,N
fori=1,...,M

Load Cj; from Lp41 to Ly,. MpNRE PR
forp=1,....K
Load A;, from Lp41 to Ly, mpkppp,
Load Bp; from Lp41 to Ly. krpnppn
Update Cij — Aipoj + C,'j 2mpnpknyn
endfor
Store Cy; from Ly to Lp41 MpNKOH
endfor
endfor

Figure 1: Multiple panel-panel multiply based blocked matrix multiplication.

The cost for updating C' is given by
Ph Ph
Mpy1Mh+1(Pn + on) + mh+1nh+1kh+1n—h + mh+1nh+1kh+lm_h + 2mp1np1kn17n

Since it also equals 2mp41np+1kp+1, solving for 441, the effective cost per floating point operation

at level Ly 1, yields
PP _ PhtTOnh Ph Ph

Vh+1 = Yner | 2nn | 2mp + Y

The question now is how to find the my, ny, and kp that minimize v, under the constraint that
Cij, Air and By; all fit in Ly, i.e., mpnp, +mpky +npky < Sp. The smaller ky, the more space in Ly,
can be dedicated to Cj; and thus the smaller the fractions py,/my, and p,/ny, can be made. A good
strategy is thus to let essentially all of Lj; be dedicated to Cjj, i.e., mpny ~ Sp. The minimum is
then attained when essentially m;, ~ ny ~ 1/Sh.

Notice that it suffices to have mpi1 = my or npy; = np for the above cost of y,41 to be
achieved. Thus, the above already for the special cases

& Au""‘AlK By
2) A 5 ; @ h %
G A)\ Bra
Bul-|B~x \ [TT7 IO
3) (Cul--Jow) +=(Aul-|ax)| : =
Bril | Brn

Here the distance between single/thin lines is kj, and between double/thick lines m; = ny, where
ky, is much smaller than my and ny,.

The inner-most loop in Alg. 1 implements multiple panel-panel multiplies since kj is small
relative to my, and nj. Hence the name of this section.

3.2 Multiple matrix-panel multiplies in L,

Moving the loops over [and i to the outside we obtain the algorithm in Fig. 2(left). Performing an

Algorithm 2
forp=1,...,K
fori=1,...,M
Load A;, from Ly to Ly,.
forj=1,...,N
Load Cij from Lpy1 to Ly,
Load B, from Lp41 to L.
Update Cij — Aipoj + Cij
Store Cjj from Ly to Ly

Algorithm 3
foryj=1,...,N
forp=1,....K
Load Bp; from Lp41 to Ly.
fori=1,...,.M
Load C,'j from Lpy1 to Ly,
Load A;, from Ly to Ly.
Update Cij — Aipoj + Cij
Store Cjj from Lj to Ly

endfor endfor
endfor endfor
endfor endfor

Figure 2: Multiple matrix-panel (left) and panel-matrix (right) multiply based blocked matrix
multiplication.

analysis similar to that given in Section 3.1 the effective cost of a floating point operation is now
given by

tOn | Ph
4 Mp _ _Ph_ Ph 4
(4) Th+1 M1 2% 2,

+ Y

Again, the question is how to find the my, ny, and kj, that minimize -y, under the constraint
that Cj;, Aj, and By all fit in Ly, i.e., mpny + mpky + npky < Sp. Note that the smaller ny,, the
more space in Ly can be dedicated to A; and thus the smaller the fractions (pp + o1,)/2k;, and
pr/2my, can be made. A good strategy is thus to let essentially all of Lj, be dedicated to Ay, i.e.,
mpky, ~ Sp. The minimum is then attained when essentially my, ~ kj, ~ v/Sh,.

Notice that it suffices to have mp1 = my, or kp11 = kjp, for the above cost of ;4.1 to be achieved.
In other words, the above holds for the special cases

Cui || Ciw Au) (Bul B) (I
(5) : Rl +:@
CMl“CMN AMI
Bull-[Biwv \ mm [T
(6) (Cul--|Cin)+: (Aul-- JAig) : +=
Bi1|| - +|Bk N

The inner-most loop in Alg. 2 implements multiple matrix-panel multiplies since np is small
relative to my, and kj. Thus the name of this section.

3.3 Multiple panel-matrix multiplies in L,

Finally, moving the loops over p and j to the outside we obtain the algorithm given in Fig. 2(right).
This time, the effective cost of a floating point operation is given by
Ph + Op Ph

7 PM _ _ Ph Ph_
() 7h+1 2mh+1 + Zkh + Znh +,Yh

Again, the question is how to find the my, ny, and kj that minimize ;11 under the constraint
that Cj;, Aix and By; all fit in Ly, i.e., myny + mpky +npky, < Sp,. Note that the smaller my,, the

more space in Ly, can be dedicated to B,; and thus the smaller the fractions (pj + 03)/2k;, and
pn/2ny, can be made. A good strategy in this case is to dedicate essentially all of Lj, to By;, i.e.,
npkp = Sp. The minimum is then attained when essentially n, ~ kj, ~ \/Sj.

Notice that it suffices to have ny11 = ny, and/or k41 = kj for the above cost of y,41 to be
achieved. In other words, the above holds for the special cases

0'11 “CIN L (Bn""‘BlN) _%Dﬂ]

(8) : : +=
Cui| - |Cun Ap

Cn Ay |-+ Ak By
(9) : += : : : % " E
Cun Ayt |Auk Br

an observation that will become important later.

3.4 Summary

The conclusions to draw from Sections 2.1 and 3.1-3.3 are: (1) There are three shapes of matrix
multiplication that one expects to encounter at each level of the memory hierarchy: panel-panel,
matrix-panel, and panel-matrix multiplication. (2) If one such shape is encountered at Ly 1, a
locally-optimal approach to utilizing L; will perform multiple instances with one of the other two
shapes. (3) Given that multiple instances of a given shape are to be performed, the strategy is to
move a submatrix of one of the three operands into L, (we will call this the resident matrix in Ly,),
filling most of that layer, and to amortize the cost of this data movement by streaming submatrices
from the other operands from Ly, to Ly.

Interestingly enough, the shapes discussed are exactly those that we encountered when studying
a class of matrix multiplication algorithms on distributed memory architectures [6]. This is not
surprising, since distributed memory is just another layer in the memory hierarchy.

4 A Family of Algorithms

We now show how to turn the observations made in the previous section into a practical implemen-
tation.

High-performance implementations of matrix multiplication typically start with an “inner-
kernel”. This kernel carefully orchestrates the movement of data in and out of the registers and
the computation under the assumption that one or more of the operands are in the L1 cache. For
our implementation on the Intel Pentium (R) III processor, the inner-kernel performs the operation
C = A" B + BC where 64 x 8 matrix A is kept in the L1 cache. Matrices B and C have a large
number of columns, which we view as multiple-panels, with each panel of width one. Thus, our
inner-kernel performs a multiple matrix-panel multiply (MMP) with a transposed resident matrix
A. The technical reasons why this particular shape was selected go beyond the scope of this paper.

While it may appear that we thus only have one of the three kernels for operation in the L1
cache, notice that for the submatrices with which we compute at that level one can instead compute
CT = BT A+ CT, reversing the role of A and B. This simple observation allows us to claim that
we also have an inner-kernel that performs a multiple panel-matrix multiply (MPM).

Let us introduce a naming convention for a family of algorithms that perform the discussed
algorithms at different levels of the memory hierarchy:

General C = AB+C L3-kernels Lo-kernels Lq-kernels

M= e
/D (I MMP
e D / 0 MPP-
- EE e
=S
NI += MPM-

/ i E%D et

= VAN e

bd O~ MMP
+= > += <

NI += MPM-

omm —TEE°

\ E+=%D_+mmmﬂ+ MPAL

Omm ~ “v°

(] += [T %] Mme
—-b%+ =§ MPP-

MPM

M+= Yoo

OMmm ~— MMP

Figure 3: Possible algorithms for matrices in memory level L3 given all Lo-kernels.

<kernel at L3>-<kernel at Lo>-<kernel at Lq>.

For example MPP-MPM-MMP will indicate that the Ls-kernel uses multiple panel-panel multiplies,
calls the Lo-kernel that uses multiple matrix-panel multiplies, which in turn calls the L;-kernel that
uses multiple panel-matrix multiplies. Given the constraint that only two of the possible three kernel
algorithms are implemented at L, the tree of algorithms in Fig. 3 can be implemented.

5 Performance

In this section, we report performance attained by the different algorithms. Performance is re-
ported by the rate of computations attained, in millions of floating point operations per second
(MFLOPS/sec). For the usual matrix dimensions m, n, and k, we use the operation count 2mnk
for the matrix multiplication. We tested performance of the operation C = C — AB (a = —1 and
B = 1) since this is the case most frequently encountered when matrix multiplication is used in
libraries such as LAPACK.

We report performance on an Intel Pentium (R) III (650 MHz) processor with a 16 Kbyte L1

