
High-Performan
e Matrix Multipli
ation Algorithms forAr
hite
tures with Hierar
hi
al Memories �John A. Gunnelsy Greg M. Henryz Robert A. van de GeijnxJune 20, 2001Abstra
tDuring the last half-de
ade, a number of resear
h e�orts have
entered around the devel-opment of software for generating automati
ally tuned matrix multipli
ation kernels. Thesein
lude the PHiPAC proje
t and the ATLAS proje
t. The software produ
ts of both proje
tsemploy brute for
e to sear
h a parameter spa
e for blo
kings that a

ommodate multiple lev-els of memory hierar
hy. We take a di�erent approa
h. Using a simple model of hierar
hi
almemories we employ mathemati
s to determine a lo
ally-optimal strategy for blo
king matri
es.The theoreti
al results show that, depending on the shape of the matri
es involved, di�erentstrategies are lo
ally-optimal. Rather than determining a blo
king strategy at library gener-ation time, the theoreti
al results show that ideally one should pursue a heuristi
 that allowsthe blo
king strategy to be determined dynami
ally at run-time as a fun
tion of the shapes ofthe operands. When the resulting family of algorithms is
ombined with a highly optimizedinner-kernel for a small matrix multipli
ation, the approa
h yields performan
e that is supe-rior to that of methods that automati
ally tune su
h kernels. Preliminary results, for the IntelPentium (R) III pro
essor, support the theoreti
al insights.1 Introdu
tionResear
h in the development of linear algebra libraries has re
ently shifted to the automati
 gener-ation and optimization of the matrix multipli
ation kernels. The idea is that many linear algebraoperations
an be implemented in terms of matrix multipli
ation [3, 11, 7℄ and that thus it is thisoperation that should be highly optimized on di�erent platforms. Sin
e the
oding e�ort is
on-siderable, espe
ially when multiple layers of
a
he are involved, the general
on
ensus is that thispro
ess should be automated.In this paper, we develop a theoreti
al framework that (1) suggests a formula for the blo
ksizes that should be used at ea
h level of the memory hierar
hy, and (2) restri
ts the possible looporderings to a spe
i�
 family of algorithms for matrix multipli
ation. Together, we show how touse these results to build highly optimized matrix multipli
ation implementations that utilize the
a
hes in a lo
ally-optimal fashion. The results
ould be equally well used to limit the sear
h spa
ethat must be examined by pa
kages that automati
ally tune su
h kernels.�This work was partially performed at the Jet Propulsion Laboratory, California Institute of Te
hnology, under a
ontra
t with the National Aeronauti
s and Spa
e Administration. The work was funded by the Remote Explorationand Experimentation Proje
t (a part of the NASA High Performan
e Computing and Communi
ations Programfunded by the NASA OÆ
e of Spa
e S
ien
e.)yDepartment of Computer S
ien
es, The University of Texas, Austin, TX 78712, gunnels�
s.utexas.eduzIntel Corp., Bldg EY2-05, 5350 NE Elam Young Pkwy, Hillsboro, OR 97124-6461, greg.henry�intel.
omxDepartment of Computer S
ien
es, The University of Texas, Austin, TX 78712, rvdg�
s.utexas.edu1

The
urrent pursuit of highly optimized matrix kernels a
hieved by
oding in a high-level pro-gramming language started with the implementation of the FORTRAN implementation of Ba-si
 linear Algebra Subprograms (BLAS) [5℄ for the IBM Power2 [1℄. Subsequently, the PHiPACproje
t [4℄ at UC-Berkeley demonstrated that high-performan
e matrix multipli
ation kernels
anbe written in C and that
ode generators
ould be used to automati
ally generate many di�erentblo
kings, allowing automati
 tuning. Next, the Automati
ally Tuned Linear Algebra Software(ATLAS) proje
t [12℄ at the University of Tennessee extended the ideas developed as part of thePHiPAC proje
t by redu
ing the kernel that is
alled on
e matri
es are massaged to be in the L1
a
he into one spe
i�

ase: C = ATB + �C for small matri
es A, B, and C and redu
ing thespa
e sear
hed for optimal blo
kings. Furthermore it marketed the methodology allowing it to gainwide-spread a

eptan
e and igniting the
urrent
raze in the linear algebra
ommunity towardsautomati
ally tuned libraries. Finally, there has been a
onsiderable re
ent interest in re
ursivealgorithms and re
ursive data stru
tures. The idea here is that by re
ursively partitioning theoperands blo
ks that �t in the di�erent levels of the
a
hes will automati
ally be en
ountered [9℄.By storing matri
es re
ursively, blo
ks that are en
ountered during the exe
ution of the re
ursivealgorithms will be in
ontiguous memory [2, 8, 10℄.Other work
losely related to this topi
 is dis
ussed in other papers presented as part of thissession of the
onferen
e.2 Notation and Terminology2.1 Spe
ial
ases of matrix multipli
ationThe general form of a matrix multiply is C �AB + �C where C is m � n, A is m � k, andB is k � n. We will use the following terminology when referring to a matrix multiply when twodimensions are large and one is small:Condition ShapeMatrix-panel multiply n is small C = A B + CPanel-matrix multiply m is small C = A B + CPanel-panel multiply k is small C = A B + CThe following observation will be
ome key to understanding
on
epts en
ountered in the rest ofthe paper: Partition X = � X1 � � � XNX � = 0BB� X̂1...X̂MX 1CCA for X 2 fA;B;Cg, where Cj is m�nj,Ĉi is mi � n, Ap is m� kp, Âi is mi � k, Bj is k � nj, and B̂p is kp � n. Then C AB + C
anbe a
hieved by
2

multiple matrix-panelmultiplies: Cj ABj + Cj for j = 1; : : : ; NC C1C2C3+= A B1B1B1multiple panel-matrixmultiplies: Ĉi ÂiB + Ĉi for i = 1; : : : ;MC Ĉ1Ĉ2Ĉ3 += Â1Â2Â3 Bmultiple panel-panelmultiplies C PNAp ApB̂p + C C +=A1A2A3 B̂1B̂2B̂32.2 A
ost model for hierar
hi
al memoriesThe memory hierar
hy of a modern mi
ropro
essor is often viewed as a pyramid: At the top of thepyramid, there are the pro
essor registers, with extremely fast a

ess. At the bottom, there aredisks and even slower media. As one goes down the pyramid, while the
ost of memory de
reases,the amount of memory in
reases along with the time required to a

ess that that memory.We will model the above-mentioned hierar
hy naively as follows: (1) The memory hierar
hy
onsists of H levels, indexed 0; : : : ;H � 1. Level 0
orresponds to the registers. We will oftendenote the ith level by Li. Noti
e that on a typi
al
urrent ar
hite
ture L1 and L2
orrespond thelevel 1 and level 2 data
a
hes and L3
orresponds to RAM. (2) Level h of the memory hierar
hy
an store Sh
oating point numbers. Generally S0 � S1 � � � � � SH�1. (3) Loading a
oating pointnumber stored in level h+ 1 to level h
osts time �h. We will assume that �0 < �1 < � � � < �H�1.(4) Storing a
oating point number from level h to level h+ 1
osts time �h. We will assume that�0 < �1 < � � � < �H�1. (5) If mh � nh matrix C, mh � kh matrix A, and kh � nh matrix B areall stored in level h of the memory hierar
hy then forming C AB + C
osts time 2mhnhkh
h.(Noti
e that
h will depend on mh, nh, and kh).3 Building-blo
ks for matrix multipli
ationConsider the matrix multipli
ation C AB + C where mh+1 � nh+1 matrix C, mh+1 � kh+1matrix A, and kh+1 � nh+1 matrix B are all stored in Lh+1. Let us assume that somehow aneÆ
ient matrix multipli
ation kernel exists for matri
es stored in Lh. In this se
tion, we developthree distin
t approa
hes for matrix multipli
ation kernels for matri
es stored in Lh+1.PartitionC = 0BB� C11 � � � C1N... ...CM1 � � � CMN 1CCA ; A = 0BB� A11 � � � A1K... ...AM1 � � � AMK 1CCA ; and B = 0BB� B11 � � � B1N... ...BK1 � � � BKN 1CCA(1)where Cij is mh � nh, Aip is mh � kh, and Bpj is kh � nh. The obje
tive of the game will be todetermine optimal mh, nh, and kh.3.1 Multiple panel-panel multiplies in LhNoting that Cij PKp=1AipBpj + Cij, let us
onsider the algorithm in Fig. 1 for
omputing thematrix multipli
ation. In that �gure the
osts of the various operations are shown to the right.The order of the outer-most loops is irrelevant to the analysis.3

Algorithm 1for j = 1; : : : ; Nfor i = 1; : : : ;MLoad Cij from Lh+1 to Lh. mhnh�hfor p = 1; : : : ;KLoad Aip from Lh+1 to Lh. mhkh�hLoad Bpj from Lh+1 to Lh. khnh�hUpdate Cij AipBpj + Cij 2mhnhkh
hendforStore Cij from Lh to Lh+1 mhnh�hendforendforFigure 1: Multiple panel-panel multiply based blo
ked matrix multipli
ation.The
ost for updating C is given bymh+1nh+1(�h + �h) +mh+1nh+1kh+1 �hnh +mh+1nh+1kh+1 �hmh + 2mh+1nh+1kh+1
hSin
e it also equals 2mh+1nh+1kh+1, solving for
h+1, the e�e
tive
ost per
oating point operationat level Lh+1, yields
PPh+1 = �h + �h2kh+1 + �h2nh + �h2mh +
hThe question now is how to �nd the mh, nh, and kh that minimize
h+1 under the
onstraint thatCij , Aik and Bkj all �t in Lh, i.e., mhnh+mhkh+nhkh � Sh. The smaller kh, the more spa
e in Lh
an be dedi
ated to Cij and thus the smaller the fra
tions �h=mh and �h=nh
an be made. A goodstrategy is thus to let essentially all of Lh be dedi
ated to Cij, i.e., mhnh � Sh. The minimum isthen attained when essentially mh � nh � pSh.Noti
e that it suÆ
es to have mh+1 = mh or nh+1 = nh for the above
ost of
h+1 to bea
hieved. Thus, the above already for the spe
ial
ases0BB� C11...CM1 1CCA+= 0BB� A11 � � � A1K... ...AM1 � � �AMK 1CCA0BB� B11...BK1 1CCA +=(2) � C11 � � � C1N �+= � A11 � � �A1K �0BB� B11 � � � B1N... ...BK1 � � � BKN 1CCA +=(3)Here the distan
e between single/thin lines is kh and between double/thi
k lines mh = nh, wherekh is mu
h smaller than mh and nh.The inner-most loop in Alg. 1 implements multiple panel-panel multiplies sin
e kh is smallrelative to mh and nh. Hen
e the name of this se
tion.3.2 Multiple matrix-panel multiplies in LhMoving the loops over l and i to the outside we obtain the algorithm in Fig. 2(left). Performing an4

Algorithm 2for p = 1; : : : ;Kfor i = 1; : : : ;MLoad Aip from Lh+1 to Lh.for j = 1; : : : ; NLoad Cij from Lh+1 to Lh.Load Bpj from Lh+1 to Lh.Update Cij AipBpj + CijStore Cij from Lh to Lh+1endforendforendfor
Algorithm 3for j = 1; : : : ; Nfor p = 1; : : : ;KLoad Bpj from Lh+1 to Lh.for i = 1; : : : ;MLoad Cij from Lh+1 to Lh.Load Aip from Lh+1 to Lh.Update Cij AipBpj + CijStore Cij from Lh to Lh+1endforendforendforFigure 2: Multiple matrix-panel (left) and panel-matrix (right) multiply based blo
ked matrixmultipli
ation.analysis similar to that given in Se
tion 3.1 the e�e
tive
ost of a
oating point operation is nowgiven by
MPh+1 = �h2nh+1 + �h + �h2kh + �h2mh +
h(4) Again, the question is how to �nd the mh, nh, and kh that minimize
h+1 under the
onstraintthat Cij , Aik and Bkj all �t in Lh, i.e., mhnh +mhkh + nhkh � Sh. Note that the smaller nh, themore spa
e in Lh
an be dedi
ated to Ail and thus the smaller the fra
tions (�h + �h)=2kh and�h=2mh
an be made. A good strategy is thus to let essentially all of Lh be dedi
ated to Ail, i.e.,mhkh � Sh. The minimum is then attained when essentially mh � kh � pSh.Noti
e that it suÆ
es to have mh+1 = mh or kh+1 = kh for the above
ost of
h+1 to be a
hieved.In other words, the above holds for the spe
ial
ases0BB� C11 � � � C1N... ...CM1 � � �CMN 1CCA+= 0BB� A11...AM1 1CCA � B11 � � �B1N � +=(5) � C11 � � � C1N �+= � A11 � � � A1K �0BB� B11 � � � B1N... ...BK1 � � � BKN 1CCA +=(6) The inner-most loop in Alg. 2 implements multiple matrix-panel multiplies sin
e nh is smallrelative to mh and kh. Thus the name of this se
tion.3.3 Multiple panel-matrix multiplies in LhFinally, moving the loops over p and j to the outside we obtain the algorithm given in Fig. 2(right).This time, the e�e
tive
ost of a
oating point operation is given by
PMh+1 = �h2mh+1 + �h + �h2kh + �h2nh +
h(7) Again, the question is how to �nd the mh, nh, and kh that minimize
h+1 under the
onstraintthat Cij , Aik and Bkj all �t in Lh, i.e., mhnh +mhkh + nhkh � Sh. Note that the smaller mh, the5

more spa
e in Lh
an be dedi
ated to Bpj and thus the smaller the fra
tions (�h + �h)=2kh and�h=2nh
an be made. A good strategy in this
ase is to dedi
ate essentially all of Lh to Bpj, i.e.,nhkh � Sh. The minimum is then attained when essentially nh � kh � pSh.Noti
e that it suÆ
es to have nh+1 = nh and/or kh+1 = kh for the above
ost of
h+1 to bea
hieved. In other words, the above holds for the spe
ial
ases0BB� C11 � � � C1N... ...CM1 � � �CMN 1CCA+ = 0BB� A11...AM1 1CCA � B11 � � �B1N � +=(8) 0BB� C11...CM1 1CCA+ = 0BB� A11 � � � A1K... ...AM1 � � �AMK 1CCA0BB� B11...BK1 1CCA +=(9)an observation that will be
ome important later.3.4 SummaryThe
on
lusions to draw from Se
tions 2.1 and 3.1{3.3 are: (1) There are three shapes of matrixmultipli
ation that one expe
ts to en
ounter at ea
h level of the memory hierar
hy: panel-panel,matrix-panel, and panel-matrix multipli
ation. (2) If one su
h shape is en
ountered at Lh+1, alo
ally-optimal approa
h to utilizing Lh will perform multiple instan
es with one of the other twoshapes. (3) Given that multiple instan
es of a given shape are to be performed, the strategy is tomove a submatrix of one of the three operands into Lh (we will
all this the resident matrix in Lh),�lling most of that layer, and to amortize the
ost of this data movement by streaming submatri
esfrom the other operands from Lh+1 to Lh.Interestingly enough, the shapes dis
ussed are exa
tly those that we en
ountered when studyinga
lass of matrix multipli
ation algorithms on distributed memory ar
hite
tures [6℄. This is notsurprising, sin
e distributed memory is just another layer in the memory hierar
hy.4 A Family of AlgorithmsWe now show how to turn the observations made in the previous se
tion into a pra
ti
al implemen-tation.High-performan
e implementations of matrix multipli
ation typi
ally start with an \inner-kernel". This kernel
arefully or
hestrates the movement of data in and out of the registers andthe
omputation under the assumption that one or more of the operands are in the L1
a
he. Forour implementation on the Intel Pentium (R) III pro
essor, the inner-kernel performs the operationC = ATB + �C where 64 � 8 matrix A is kept in the L1
a
he. Matri
es B and C have a largenumber of
olumns, whi
h we view as multiple-panels, with ea
h panel of width one. Thus, ourinner-kernel performs a multiple matrix-panel multiply (MMP) with a transposed resident matrixA. The te
hni
al reasons why this parti
ular shape was sele
ted go beyond the s
ope of this paper.While it may appear that we thus only have one of the three kernels for operation in the L1
a
he, noti
e that for the submatri
es with whi
h we
ompute at that level one
an instead
omputeCT = BTA + CT , reversing the role of A and B. This simple observation allows us to
laim thatwe also have an inner-kernel that performs a multiple panel-matrix multiply (MPM).Let us introdu
e a naming
onvention for a family of algorithms that perform the dis
ussedalgorithms at di�erent levels of the memory hierar
hy:6

General C = AB + C L3-kernels L2-kernels L1-kernels

+= �������
��

-CCCCCCCCW

+= �����R
+= �����R
+= �����R

+= �����+= �����+= �����-+= -+= -+= -AAAAU

+= MPP-MPM-MMP+= MPP-MMP-MPM+= MPM-MPP-MPM+= MPM-MPP-MMP+= MPM-MMP-MPM+= MMP-MPM-MMP+= MMP-MPP-MPM+= MMP-MPP-MMPFigure 3: Possible algorithms for matri
es in memory level L3 given all L2-kernels.<kernel at L3>-<kernel at L2>-<kernel at L1>.For example MPP-MPM-MMP will indi
ate that the L3-kernel uses multiple panel-panel multiplies,
alls the L2-kernel that uses multiple matrix-panel multiplies, whi
h in turn
alls the L1-kernel thatuses multiple panel-matrix multiplies. Given the
onstraint that only two of the possible three kernelalgorithms are implemented at L1, the tree of algorithms in Fig. 3
an be implemented.5 Performan
eIn this se
tion, we report performan
e attained by the di�erent algorithms. Performan
e is re-ported by the rate of
omputations attained, in millions of
oating point operations per se
ond(MFLOPS/se
). For the usual matrix dimensions m, n, and k, we use the operation
ount 2mnkfor the matrix multipli
ation. We tested performan
e of the operation C = C � AB (� = �1 and� = 1) sin
e this is the
ase most frequently en
ountered when matrix multipli
ation is used inlibraries su
h as LAPACK.We report performan
e on an Intel Pentium (R) III (650 MHz) pro
essor with a 16 Kbyte L17

