
Sim-alpha: a Validated, Exeution-Driven Alpha 21264SimulatorRajagopalan Desikan? Doug Burgery Stephen W. Keklery Todd AustinzyDepartment of Computer Sienes ?Department of Eletrial and Computer EngineeringThe University of Texas at Austinz Department of Eletrial Engineering and Computer SienesThe University of Mihigan at Ann ArborDepartment of Computer SienesTeh Report TR-01-23The University of Texas at Austin
ABSTRACTThis tehnial report desribes installation, use, and design of sim-alpha, an exeution drivenAlpha 21264 simulator. To inrease simulator auray, we have inorporated many of the lowlevel features found in the Alpha 21264. When ompared to a hardware 21264 implementation,sim-alpha ahieves 2% error aross a suite of mirobenhmarks designed to stress the variousmiroarhitetural features in the simulator. The error aross the 10 SPECINT 2000 benhmarksis 6.6% and the 12 SPECFP 2000 benhmarks is 21%, with the net error being 15% aross the 22of the 26 SPECCPU 2000 benhmarks.



1 IntrodutionThe omputer arhiteture ommunity relies heavily on simulators to evaluate new ideas. Publilyavailable simulators like SimpleSalar [1℄, Rsim [10℄, Trimaran [5℄, and SimOS [11℄ are widely usedand shared by researhers, and numerous papers have been published using the results from thesetools. However, few of these tools have been ompared against atual hardware. In this report, wedesribe sim-alpha, a validated, exeution driven, Alpha 21264 proessor simulator. sim-alpha waswritten by extending the SimpleSalar [1℄ tool suite.sim-alpha models both the implementation onstraints, as well as the performane-improving lowlevel features in the 21264. The simulator inludes ags whih allows the user to enable anddisable these features to study their inuene. The simulator allows the user to vary the di�erentparameters of the proessor suh as the issue queue sizes, the feth width, and the reorder bu�ersize. sim-alpha ahieves 2% error aross the set mirobenhmarks we used for the validation, and15% aross a set of 22 marobenhmarks from the SPECCPU 2000 suite. The error aross the 10SPECINT 2000 benhmarks is 6.6%.The rest of the report is organized as follows. Setion 2 desribes how to obtain and build sim-alpha. Setion 3 desribes our target system that inludes the Alpha 21264 proessor, the DS-10L Alphaserver system against whih we validate sim-alpha, the Digital Continuous Pro�lingInfrastruture tool set for measuring performane of programs on the native DS-10L system, andthe mirobenhmarks we used for validating the miroarhiteture and memory system in sim-alpha. We present sim-alpha error aross our suite of mirobenhmarks and marobenhmarks inSetion 4, and desribe usage and internal workings of the tool in Setion 5. Finally, Setion 6summarizes our work and suggests future enhanements.2 Obtaining sim-alphaThe sim-alpha simulator soure ode is available as a tar gzipped �le through the world wide webat : http://www.s.utexas.edu/users/art/ode/alphasim-1.0.tgzThe mirobenhmarks used for the validation an be obtained from :http://www.s.utexas.edu/users/art/ode/mirobenh.tgzThe SPECCPU 2000 benhmark binaries an be obtained from :ftp://ftp.simplesalar.org/pub/benhmarks/spe2000/spe2000alpha.tar.gzsim-alpha urrently runs only on x86/Linux boxes; Sine it does not urrently have ross-endiansupport, it annot run on big-endian mahines. The system all support on sim-alpha also urrentlysupports only Linux alls. To build the simulator, unompress the tgz �le and type make in theresulting alphasim diretory to build sim-alphatar -xvzf alphasim-1.0.tgzd alphasim-1.0make
1



The alphasim/tests diretory ontains ompiled test binaries. The simulator uses the Sim-pleSalar 3.0 Alpha front end emulator, so it an run any binary ompiled for the Alpha ISA.sim-alpha takes ommand line arguments and also aepts arguments in a �le. The simulator anbe ompiled in three modes:1. Normal mode where it inludes all Alpha 21264 features. This is the default mode. Typemake <sim-alpha>2. Flexible mode where the low level features in the 21264 an turned on or o�. Typemake flexible3. Funtional debug mode where a funtional simulator heks the orretness of the timingsimulator. While running in funtional debug mode, early instrution retire should be dis-abled, and only eio traes, introdued with release 3.0 of the SimpleSalar suite, should beused. Typemake funtional3 Target Spei�ationIn this setion we desribe the Alpha 21264 miroarhiteture, the Compaq DS-10L Alphaservermahine we used as our referene mahine, the Digital Continuous Pro�ling Infrastruture toolfrom Compaq whih allowed us to measure the performane of programs on the native mahine,and the mirobenhmarks whih helped us isolate errors in sim-alpha.3.1 Alpha 21264 OverviewThe Compaq Alpha 21264 [2℄ [3℄ [8℄ [9℄ miroproessor was introdued in 1998. It implements theAlpha arhiteture, whih is a 64-bit load and store RISC arhiteture. To operate at high lokfrequenies, the 21264 inorporates innovative features suh as lustered funtional units, mergingthe branh target bu�er with the instrution ahe, and using a set-predit ahe. In the followingsubsetions, we desribe the general features of the miroproessor, as well as some of the low levelfeatures, whih we have implemented in sim-alpha.3.1.1 Miroproessor featuresThe 21264 has a seven stage pipeline as shown in Figure 1. The feth stage of the pipeline fethesa set of four instrutions from the instrution ahe every yle. It uses the line preditor to getthe address of the instrution to feth the next yle. The slot stage of the pipeline statially slotsinstrutions to sub-lusters on whih they an exeute. The branh preditor also returns witha predition in this stage. The next stage of the pipeline, the map stage, performs renaming ofregisters and puts instrutions in the issue queues. Instrutions issue from the integer and oating-point issue queues in the issue stage, read their input operands in the register read stage, andstart exeuting in the funtional unit assigned. The instrution outputs are written bak in thewritebak stage of the pipeline.Below we list the main features of the 21264. In sim-alpha, all these features an be on�guredwith ommand line parameters, and the default values are those listed in this setion.2



S
tage

0
1

2
3

B
ranch

P
redictors

Line
P

redictor

L1 Inst.
C

ache
64 K

B

Integer
R

egister
M

ap

F
P

R
egister

M
ap

Integer
Issue
Q

ueue
(20)

F
P

Issue
Q

ueue
(15)

R
egister

F
ile

(80)

R
egister

F
ile

(80)

R
egister

F
ile

(72)

U
0

L0U
1

L1F
P

 A
dd

D
iv/S

qrt

F
P

 M
U

L

L1 D
ata

C
ache

64 K
B

set
2−

w
ay 

2−
w

ay
set

V
ictim

B
uffer

M
iss 

A
ddress F

ile

B
us Interface

U
nit

S
ys B

us

64−
bit

C
ache B

us

128−
bit

P
hys A

ddr

44−
bit

F
E

T
C

H
S

LO
T

M
A

P
IS

S
U

E
R

E
G

IS
T

E
R

 R
E

A
D

E
X

E
C

U
T

E
W

R
IT

E
B

A
C

K

(C
1)

C
luster 1 (C

0)
C

luster 0

4
6

5

A
ddr

A
ddr

Figure 1: Alpha 21264: Blok Diagram (Original diagram ourtesy Jim Keller's Alpha 21264presentation)
3



� An issue width of six instrutions (4 integer and 2 oating point) during eah CPU yle froma 20-entry integer issue queue and a 15-entry oating point issue queue.� An 80-entry reorder bu�er for traking instrutions in ight.� A demand-paged memory-management unit onsisting of a 128-entry, fully-assoiative datatranslation bu�er (DTB) and a 128-entry, fully-assoiative instrution translation bu�er(ITB).� Four integer units with an 80 entry register �le. These units are alled sub-lusters in thealpha, and operate on spei� lasses of instrutions. The 80 entry register �le onsists of 31arhitetural registers, 8 PAL shadow registers, and 41 registers for renaming.� Two pipelined oating-point units. One unit exeutes adds, divides, and square roots, andthe other unit exeutes multipliation instrutions. The 21264 has 72 oating registers. Ofthese, 31 are arhitetural registers, and 41 are used for renaming destination registers ofinstrutions in ight.� A 64KB virtually addressed instrution ahe. The ahe is two-way set assoiative with 64byte bloks. The 21264 uses a set preditor to hoose between the two sets on eah aess.This ensures single yle aess lateny to the I-ahe when the set is predited orretly.� A virtually indexed, physially tagged dual-read-ported, 64KB data ahe. The ahe istwo-way set assoiative with 64 byte bloks. The aess time for the ahe is 3 yles.� A tournament branh preditor whih onsists ofa) A two level loal preditor that has 1024 entries in the �rst level (indexed by the PC), with10 bits in eah entry, used to index another 1024 entry table of 3-bit saturating ounters.b) A 4096 entry global preditor with 2-bit saturating ounters.) A 4096 entry hoie preditor to hoose between loal and global preditors with 2-bitsaturating ounters.� An 8-entry vitim data bu�er.� A 32-entry load queue.� A 32-entry store queue.� An 8-entry miss address �le3.1.2 Low-level features in the 21264The following paragraphs desribe some of the implementation onstraints the designers faedfor ahieving high lok frequeny, and the low-level features they inorporated to ahieve highperformane.In the 21264, the branh preditor takes two yles to make a predition. This results in a one-yle bubble between the yle the instrution is fethed and the yle the predition is made.To eliminate this bubble, the 21264 has a line preditor, that e�etively ats as a branh targetbu�er. Eah yle, the line preditor predits the I-ahe line to be aessed in the next yle.When instrutions are fethed from the I-ahe, the line predition bits are also fethed along with4



the instrutions. These bits are used the next yle to get the next set of instrutions. When thebranh preditor ompletes, the predition is ompared with the line preditor in the slot stage ofthe pipeline. For ertain lasses of ontrol instrutions like branhes and immediate jumps, if thebranh preditor predition di�ers from the line preditor predition, feth is re-initiated with thebranh preditor address. The line preditor an store a target for a set of four instrutions. Insim-alpha, using ommand line parameters, we an vary the number of instrutions for whih theline preditor stores a predition. We an also disable the line preditor, and use a regular btbinstead.The instrution ahe is two-way set-assoiative. To ahieve single yle aess, a way preditorin the I-ahe predits whih set is being aessed in the urrent yle. Way predition gives thee�etive aess time of a diret mapped ahe, although it does result in a 2-yle bubble on a setmispredition. The way preditor lateny an be varied in sim-alpha.In the map stage, the proessor does not know the number of free registers available to renamein the urrent yle. Hene, it ensures that there are always enough registers available to renamefor the next two yles by stalling for 3 yles, whenever the number of free physial registers fallsbelow 8. After 3 yles it again evaluates the number of free physial registers, and will stall againfor 3 yles if the free register ondition is still unsatis�ed.The integer exeution ore is partitioned into two lusters C0 and C1. Eah luster has a opy ofthe 80-entry physial register �le, and two sub-lusters alled lower (L) and upper (U), ontainingthe integer funtional units. These sub-lusters are not symmetri, and ontain di�erent numbersand types of funtional units. For example, an integer multiply funtional unit is present only inU1. The register �les ontain idential values. These is a one-yle delay to transfer data fromone luster to another. Thus, dependent instrutions an issue during suessive yles only to thesame luster, and will have to wait one yle to issue to the other luster. The 21264 statiallyslots instrutions to the two sub-lusters in the slot stage to ahieve a better load balane, and thendynamially hooses the luster during issue. For example, if a fethed otaword ontains an add,a mult, a load, and a shift instrution in that order, the slot stage will slot it as LULU to ensuremaximum usage of exeution resoures. sim-alpha provides ommand line options for varying thenumber of lusters, disabling slotting and lustering, and for setting the value of the ross lusterdelay.The D-ahe in the 21264 has a 3-yle hit lateny. To failitate faster instrution wakeup ona ahe hit, the 21264 uses a tehnique alled load-use speulation, where it issues instrutionsdependent on the load assuming a load hit. If the load misses in the ahe, these instrutions aresquashed and reissued. In sim-alpha, we approximate load-use speulation by reissuing only theinstrutions that are dependent on the missing load.The 21264 also uses prefething on an I-ahe miss to improve performane. The 21264 an prefethfour instrution ahe lines from the L2 ahe on an I-ahe miss. Four lines is also the defaultprefeth value in sim-alpha. However, the number of lines to prefeth an be varied using ommandline parameters. The 21264 has an 8-entry uni�ed vitim bu�er to ahe reently evited bloksfrom the I-ahe, D-ahe, and L2 ahe. sim-alpha ahes bloks only from the level-one D-ahein the vitim bu�er. The size of the vitim bu�er an be varied in sim-alpha.5



The branh preditor uses an adder to preompute targets of immediate branhes. This adderenables the 21264 to predit targets of immediate branhes orretly even if the line preditor iswrong. The 21264 also has a mehanism alled early instrution retire to detet no-ops early in thepipeline (map stage). These no-ops are retired immediately, and thus do not onsume exeutionresoures. The user an enable or disable the adder and the early instrution retire in sim-alpha.To enfore orret memory aesses, the 21264 uses order traps. Order traps result in the pipelinebeing ushed, and the instrution being restarted from the feth stage of the pipeline. There are twomain types of order traps: Load-Load order traps and Store-Load order traps. The 21264 invokesa load trap on a newer load instrution that has been issued before an older load instrution to thesame address. To detet a store trap, the 21264 ompares the addresses of all store instrutionsas they are issued to loads in the load queue. If the proessor detets a newer load to the sameaddress in the load queue, it invokes a store trap on the newer load. Store traps are neessary toensure that loads and stores to the same address happen in program order. Traps are expensive interms of performane, the minimum ost being 12 yles. Hene the 21264 uses speial hardwareto redue the ourrene of store traps. The proessor has a 1024 one bit table alled the stWaittable, indexed by the PC, to stall issue of loads ausing order traps. This bit is fethed from theI-ahe with eah instrution. The proessor does not issue a load for whih the stWait bit is set,until all previous stores have issued. On a store trap, this bit is set for the faulting load when it isre-fethed. All bits in the stWait table are unonditionally leared every 16,384 yles. The 21264also has another type of trap alled Mbox trap, for ensuring orretness in the memory system.The Mbox traps also result in a ushing of the pipeline but are triggered by events ourring in thememory system suh as outstanding misses to two loads to same address but di�erent destinationregisters, outstanding misses to di�erent physial addresses that map to the same D-ahe or L2ahe line, and store queue overow. The Load-Load order traps and the Mbox traps an bedisabled in sim-alpha. The user an also set the size of the stWait table.3.2 Compaq DS-10L AlphaserverWe used the Compaq DS-10L Alphaserver to validate sim-alpha. The workstation has a single21264 proessor loked at 466 MHz, a 2 MB external L2 ahe (diret mapped, with 64 bytebloks), and 256 MB of physial memory. The workstation runs version 5.1 of Compaq Tru64UNIX. The DS-10L has ustom memory ontroller hips whih onsists of a single ontrol hip, theDigital DC1046C, and two hips whih at as data swithes, the Digital DC1047B. The SDRAMonsists of 16 hips of 8MB eah running at 125 MHz and an 8-ns aess time. The C ompiler onthe DS-10L is version 6.3-025 of the Compaq C ompiler.3.3 Digital Continuous Pro�ling InfrastrutureThe Digital Continuous Pro�ling Infrastruture (DCPI) [4℄ for Compaq Alpha platforms permitsontinuous low-overhead pro�ling of entire systems, inluding the kernel, user programs, drivers,and shared libraries. DCPI (subsequently renamed Continuous Pro�ling Infrastruture) samplesthe Alpha performane monitoring ounters to ollet information about eah program running onthe system.DCPI an be used for measuring the frequeny of ertain events on the Alpha 21064, 21164, andthe 21264. On the 21264, DCPI an measure the number of yles taken by a program, number6



of instrutions retired, Mbox traps inurred, number of retired itlb misses, number of single anddouble dtlb misses, number of retired onditional branhes, and number of retired unaligned trapsDCPI alulated the number of yles taken by the programs to omplete on the native DS-10Lsystem. This number an then be ompared against the number of yles taken in the simulator,to ompute the simulator error.3.4 MirobenhmarksFigure 2 gives a brief desription of the mirobenhmarks we used for validating sim-alpha. The�rst row lists the mirobenhmarks we used for testing the front-end suh as the line preditorimplementation and the branh preditor implementation. The C infront of the names of these mi-robenhmarks signi�es that these test ontrol ow. The seond row lists the mirobenhmarks fortesting the exeution ore suh as the sheduler. The E in the mirobenhmark name stands for theexeution ore. The last row lists the mirobenhmarks for testing the memory system parameterssuh as the level-one ahe lateny, the level-two ahe lateny, and the main memory lateny. TheM here stands for the memory system.A more omplete desription of the mirobenhmarks anbe found in [6℄ [7℄. The soure ode for all the mirobenhmarks an be obtained from the websitelisted in Setion 2.

7


