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1 Introdu
tionFor many fundamental algorithmi
 problems there is a dis
repan
y between what we know of theirdeterministi
 
omplexity versus their established randomized 
omplexity. In this paper we examinesome well-studied problems �tting this des
ription: the minimum spanning tree problem, the par-allel 
onne
tivity and parallel minimum spanning tree problems, the set maxima problem, and thesensitivity analysis problem on shortest paths trees and minimum spanning trees. We propose newalgorithms for these problems whi
h have optimal performan
e but whi
h use signi�
antly fewerrandom bits than earlier algorithms.Randomized algorithms are frequently simpler, and, in the abstra
t, faster than their deter-ministi
 
ounterparts (e.g. testing primality [Rab80℄, median �nding [BFP+72, FR75℄, 
omputingminimum spanning trees [KKT95℄). However, they make use of a 
ommodity that is s
ar
e inreality: a stream of perfe
tly random bits. In pra
ti
e a stream of \random" bits is produ
edby a pseudo-random fun
tion whi
h has been seeded with a little non-determinism1, say the leastsigni�
ant digits from the 
omputer's 
lo
k. It is not 
lear if the seed is truly random, and evenless 
lear how good the 
ommonly used pseudo-random fun
tions are. Ba
h [Ba
91℄ studied a fewnumber theoreti
 algorithms under the assumption of a truly random seed and a 
ommonly usedpseudo-random fun
tion, and showed them to have a good probability of su

ess, though not asgood as guaranteed by using totally random bits. Karlo� and Raghavan [KR93℄ assumed the samemodel and showed that Qui
ksort 
an have mu
h poorer performan
e than predi
ted. Other pe-
uliarities of 
ertain pseudo-random fun
tions were noted in [FLW92℄ for Monte Carlo simulationsand in [HR96, Hsu97℄ for parallel implementations of basi
 graph algorithms. Although debunking
ommonly used pseudo-random fun
tions is worthwhile, the lesson here is to design algorithmswhi
h demand mu
h less randomness, and more important, to analyze them in a realisti
 abstra
tenvironment.There has been 
onsiderable amount of work on derandomizing randomized algorithms. A
ommon te
hnique to redu
ing randomness is to use k-wise independent random variables ratherthan totally independent ones. The generation of k-wise independent and approximately k-wiseindependent random variables has been well-studied [Jof74, CG89, NN93, EGL+98, CRS00℄. Sev-eral results are known on derandomizing randomized algorithms that use k-wise independen
e toobtain deterministi
 algorithms (see [KW85, Lub86, ABI86, Lub93, BR91℄). Very re
ently Klivansand Spielman [KS01℄ gave a randomness-eÆ
ient method for testing if a multivariate polynomialis identi
ally zero. In all of these algorithms a redu
tion in randomness is traded for an a

eptablein
rease in the running time2.1.1 Our ResultsIn this paper we address the issue of redu
ing randomness but with an additional twist: we requireour algorithms to perform an optimal number of operations (to within a 
onstant fa
tor), and wefo
us on redu
ing randomness subje
t to this primary goal. In the limit we would like to use norandom bits at all, and obtain optimal deterministi
 algorithms. But in the absen
e of this ultimateresult, it is a worthwhile goal to redu
e our dependen
e on su
h a s
ar
e resour
e as randomness.1We note that there are now web servers (e.g. HotBits, http://www.fourmilab.
h/hotbits/) whi
h will provide amodest number of bits upon request. The bits, apparently random, are derived by measuring some unpredi
tablephysi
al pro
ess, su
h as the de
ay of a radioa
tive substan
e.2One ex
eption is an intermediate result in [Lub86℄ where a parallel MIS algorithm that uses a logarithmi
 numberof random bits is given that has the same resour
e bounds as the original algorithm that used a linear number ofrandom bits, but neither of these algorithms perform optimal work.1



We propose optimal algorithms using a redu
ed number of random bits for all the problemsgiven in the Introdu
tion. In our algorithms, at most a polylogarithmi
-sized random seed isassumed, and methods for deriving random variables from that seed are analyzed expli
itly. Ourresults represent an exponential redu
tion over earlier optimal algorithms in the number of randombits used.We des
ribe our results below. A summary is given in Table 1. Our results are obtained usingtwo main te
hniques { (1) using the properties of an arbitrary k-wise independent sampler, and (2)re-using random bits.1.1.1 Parallel MST & Conne
tivityThe best deterministi
 parallel MST and 
onne
tivity algorithms [CV86, CV91, CHL99℄ run inlogarithmi
-time yet they all use superlinear work. There are somewhat simpler logarithmi
-timelinear expe
ted work randomized MST and 
onne
tivity algorithms [Gaz91, CKT96, HZ96, PR99,HZ01℄, but ea
h uses a linear number of random bits.We present a new randomized MST algorithm whi
h requires only a pairwise independentsampler. Our parallel implementation, whi
h runs on the EREW PRAM [KR92℄, takes expe
tedlinear work using O(log3 n log� n) random bits. Our sampling approa
h di�ers from [KKT95℄ andprevious parallel MST algorithms [CKT96, PR99℄; it is 
on
eptually simpler but not as easilyparallelizable, resulting in a running time of O(log2 n log� n).A simpler version of our parallel MST algorithm also solves parallel 
onne
ted 
omponents withthe same resour
es, improving upon [HZ96, HZ01, Gaz91℄ in terms of the number of random bitsused.1.1.2 Set Maxima and Lo
al SortingIn the set maxima problem we are given a set system (�;S) where � is a set of n totally orderedelements and S = fS1; : : : ; Smg is a 
olle
tion of subsets of �, and asked to determine the maximumelement in ea
h set S1; : : : ; Sm. The goal is to obtain the solution with an algorithm that uses theminimum number of 
omparisons between elements in �.This intriguing problem seems to have been introdu
ed by Graham, Yao and Yao [GYY80℄ whonoted the trivial solution { just sort � { and gave a simple O(n +m2m) time algorithm, whi
his optimal for very small m. A bound of Fredman appears in the same paper showing that aninstan
e of set maxima 
an have no more than �m+n�1n�1 � distin
t solutions; this was later shown tobe asymptoti
ally tight in [GKKS93℄. Liberatore [Lib98℄ has shown the set maxima problem to bepre
isely the problem of verifying the optimal base of an arbitrary matroid, and Karger [Kar93℄has demonstrated the usefulness of set maxima in a
tually �nding an optimal base. Many other
on
rete problems are instan
es of set maxima (or are redu
ible to it). These in
lude verifying apartial order [KMK89℄, sensitivity analysis (in
luding veri�
ation) of minimum spanning trees andshortest path trees [Tar82, Kom85℄, and orienting the edges of an undire
ted, node-weighted graphfrom the lesser to greater endpoint. This last problem was dubbed lo
al sorting by Goddard et al.[GKKS93℄.Besides the simple set maxima algorithm of [GYY80℄ and the trivial algorithm, there are reallyonly two results to speak of for the general set maxima problem. Bar-noy et al. [BNMN92℄ gavea deterministi
 algorithm that uses O(n) expe
ted 
omparisons when the m = n sets are 
hosenrandomly. Goddard et al. gave an elegant randomized algorithm for set maxima whi
h makes anoptimal O(n log m+nn ) expe
ted 
omparisons using the same number of random bits.2



We apply our k-wise independen
e result to improve Goddard et al.'s [GKKS93℄ lo
al sort-ing and general set maxima algorithms as follows. We give an optimal lo
al sorting algorithmwhi
h uses O(log n log log logn) random bits, and an optimal set maxima algorithm whi
h usesO(log n log(3) n 2O(�(m;n))) random bits, where3 �(m;n) = log� n � log� mn . Both algorithms makean expe
ted O(n log m+nn ) 
omparisons, whi
h is optimal [GYY80, GKKS93℄.1.1.3 Reusing Random BitsUsing the simple te
hnique of re-using random bits, we obtain a dramati
 redu
tion in the numberof random bits used to �nd a minimum spanning tree and to perform sensitivity analysis on MSTsand shortest path trees. Sensitivity analysis subsumes the simpler MST/SSSP veri�
ation problem.For ea
h of these problems there exist optimal deterministi
 algorithms with unknown 
omplexities(see [PR00℄ for MST and [DRT92℄ for MST/SSSP sensitivity analysis), deterministi
 algorithmswhi
h take time O(m�(m;n)), where �(m;n) is Tarjan's inverse-A
kermann fun
tion (see [Cha00a℄for MST and [Tar82℄ for MST/SSSP sensitivity analysis) and expe
ted linear-time algorithms whi
huse a linear number of random bits [KKT95, DRT92, GKKS93℄. For both problems we give expe
tedlinear-time algorithms whi
h use just log� n random bits.1.2 OrganizationThe rest of the paper is organized as follows. In Se
tion 2 we give a fairly general lemma on the ex-pe
ted behavior of a k-wise independent sampler and show how pairwise independent sampling 
anbe performed eÆ
iently on the EREW PRAM. In Se
tion 3 we give a new parallel MST/
onne
tivityalgorithm requiring only pairwise independen
e. In Se
tion 4 we observe that any 4-wise indepen-dent sampler works in a previous set maxima algorithm, and we give improved set maxima and lo
alsorting algorithms whi
h redu
e the required number of random bits to polylogarithmi
. Finally, inSe
tion 5 we use the te
hnique of re-using random bits to give a simple linear expe
ted time MSTalgorithm (based on the optimal MST algorithm in [PR00℄) and an expe
ted linear-time algorithmfor sensitivity analysis of MST and shortest path trees, both of whi
h use only log� n random bits.2 Limited Independen
e SamplingIn this se
tion we establish a fairly general result on k-wise independent sampling whi
h suggeststhat O(1)-wise independen
e is nearly as good in situations 
ommon to many randomized sorting-type algorithms. The situation is this: we have a set of elements from a total order � and wish to�nd an element on the 
heap whose rank is 
lose to some desired rank t. If we have an abundan
e ofrandomness, we 
an simply sele
t ea
h element of � independently with probability p and take therank tp sampled element as a de
ent approximation of the a
tual rank t element. A tradeo� betweenthe eÆ
ien
y and a

ura
y of this s
heme 
an be had by manipulating the sampling probability p.We show that by using just pairwise independen
e the expe
ted rank (w.r.t. �) of the rank tsampled element is O( tp log n), and using a 2k-wise independen
e, k > 1, its expe
tation is O( tp).There is then a natural tradeo� between k and the 
on
entration of the distribution of the tthsampled element around its mean.The following Lemma is just an extension of Chebyshev's inequality for 0/1 random variables.A more 
omplex proof of this result appears in [SSS95℄; our proof is elementary. We note that asimilar, though in
orre
t, lemma appears in [Cha00
, p. 424℄.3This is the same � fun
tion as the one de�ned in Fredman & Tarjan's minimum spanning tree algorithm [FT87℄3



Probabilisti
 BoundProblem Deterministi
 Bound Best previous This paperParallel NC O(m)graph O(m�(m;n)) O(m) random bits O(m) (EREW)
onne
tivity [CV91℄ [HZ01℄ for EREW o(log3+� n) random bits(work) [Gaz91℄ for CRCWParallel NC O(m)minimum O(m log(3) n) O(m) random bits O(m) (EREW)spanning [CV86℄ [PR99℄ for EREW o(log3+� n) random bitstrees (work) [CKT96℄ for CRCWLo
al O(n log n) O(n log m+nn ) O(n log m+nn )sorting (trivial) O(n log m+nn ) random bits o(log1+� n) random bits(
omparisons) [GKKS93℄Set O(n log n) O(n log m+nn ) O(n log m+nn )maxima (trivial) O(n log m+nn ) random bits o(log1+� n) random bits(
omparisons) [GKKS93℄Minimum O(m�(m;n)) [Cha00a℄ O(m) O(m)spanning O(Optimal(m;n)) [PR00℄ O(m) random bits O(log� n) random bitstrees (time) [KKT95℄MST/SSSP O(m�(m;n)) [Tar82℄ O(m) O(m)sensitivity O(Optimal(m;n)) [DRT92℄ O(m) random bits O(log� n) random bitsanalysis (time) [DRT92℄Abbreviations: EREW and CRCW are, resp., the Ex
lusive Read Ex
lusive Write and Con
urrent ReadCon
urrent Write parallel RAMs. Every EREW algorithm is a CRCW algorithm. Optimal(m;n) is thede
ision-tree 
omplexity of the respe
tive problem. We denote by � an arbitrarily small 
onstant. With theex
eption of Set Maxima, m = jEj is the number of edges and n = jV j is the number of verti
es; for SetMaxima m is the number of sets and n the number of elements.Table 1. Summary of our results.
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Lemma 2.1 Let X1; : : : ;Xn be 2k-wise independent 0=1 random variables, ea
h with mean �. ForX =PiXi we have �X = �n andPr [jX � �Xj � t℄ < �4k�Xt2 �kProof: Along the lines of Chebyshev's inequality we have Pr[jX��Xj � t℄ = Pr[(X��X)2k � t2k℄whi
h is � E (X��X )2kt2k by Markov's inequality. The numerator 
an be expanded into an expressionof the form E PQ(Xi��) | the expe
tation of a sum of produ
ts. By identifying dupli
ate fa
torsin ea
h produ
t we 
an simplify them to be of the formQi(Xi��)ai wherePi ai = 2k. Noti
e thatbe
ause the Xi's are 2k-wise independent the fa
tors of ea
h produ
t are also independent. Wemay then rewrite the numerator in the formPQ E (Xi��)ai | a sum of produ
ts of expe
tations.Observe that in any term, if some ai = 1 then E (Xi��)ai = 0 and the term disappears. We boundthe numerator by �rst bounding a single term then bounding the number of non-zero terms. Forthe �rst, note that E (Xi � �)ai = �(1 � �)[(1 � �)ai�1 � (��)ai�1℄ 2 (��; �), hen
e ea
h term isbounded by �k.Bounding the number of non-zero terms is equivalent to a balls-and-bins problem: how manyways are there to put 2k balls in n bins (order 
ounts!) su
h that all bins have zero or � 2 balls?Let N be the number of non-zero terms, we have thatN � kXi=1 �ni��2k � i� 1i� 1 �(2k)!2kHere i represents the number of non-empty bins, �ni� the number of ways of sele
ting su
h bins,and �2k�i�1i�1 � the number of ways to distribute the 2k � 2i balls still una

ounted for. Ea
h su
hdistribution of balls-to-bins 
an be realized by a number of distin
t orderings, whi
h is 
ertainly nomore than (2k)!=2k . Simplifying the above expression,N � kXi=1 nii! � (2k � i� 1)i�1(i� 1)! � (2k)!2k� 43 � nkk! � (2k)kk! � (2k)!2k fith term � 14 � (i+ 1)th term.g� 43 � 1 + 124k�1pk� � �nek �k � �2kek �k � �2k2e2 �k fStirling's approximationg< (4nk)kWe 
on
lude that E (X � �X)2k < (4�Xk)kThis bound is reasonably tight. For a lower bound 
onsider just those terms with exa
tly kdistin
t fa
tors (ea
h repeated twi
e).N � �nk� � (2k)!2k� nkk! � (2k)!4k fk � n=2g� nk � ek�k �4k2e2 �k 4�k5



� �nke �kWe 
on
lude, using the fa
t that E(Xi��)2 = �(1��), that E (X��X)2k = 
 �(nk�(1� �)e�1)k�2 The main lemma of this se
tion is given below.Lemma 2.2 Let � be a set of totally ordered elements and �s be a subset of � derived by samplingea
h element with probability p using a 2k-wise independent sampler. Let Y be the number ofunsampled elements less than min�s. ThenE (Y ) � 8><>: 4 ln(np)+O(1)p for k = 121p for k > 1andPr[Y � `℄ � min��k ��4�p`���Proof: Let Xi = 1 if the element of � with rank i is sampled, and 0 otherwise. So E (Xi) = p andfor any distin
t indi
es i1; : : : ; i2k, Xi1 ; : : : ;Xi2k are independent.Let S` =Pì=1Xi 
ount the number of ones in X1; : : : ;X`. We have that E (S`) = p` andPr[Y � `℄ = Pr[S` = 0℄ � Pr[jS` � E (S`)j � p`℄Using Lemma 2.1 we 
an bound Pr[Y � `℄ as follows.Pr[jS` � E (S`)j � p`℄ � E (S` �E(S`))2k(p`)2k< � 4p`k(p`)2�k f Lemma 2.1g= �4kp`�kThe se
ond part of the Lemma follows from the simple observation that any 2k-wise independentdistribution is also 2�-wise independent for � � k.To bound E (Y ) we use a variation on a familiar identity. For a random variable Z taking onvalues from the naturals it is easy to show that E(Z) =P1i=1 Pr[Z � i℄ (a similar expression 
anbe used for real Z). Plugging our best bound on Pr[Y � `℄ into this identity gives a weak boundon the expe
tation of Y . We have E (Y ) � (4kp�1)k �Pi i�k. Before we give a tighter analysis,
onsider the following bound on E (Z) for any natural r.v. Z.E (Z) = 1Xi=1 i � Pr[Z = i℄ � Æ + 1Xi=Æ+1Pr[Z � i℄� Æ +� 1Xi=0 Pr[Z � Æ + 1 +� � i℄6



We will now bound E (Y ) using this inequality. Assume w.l.o.g. that k is 1 or 2. LettingÆ = � = �p , we have that E (Y ) � �p + �p 1Xi=0 Pr[Y � �(i+1)p ℄� �p 0�1 +�4k� �k dnp=�eXi=1 i�k1AfFor k = 2 and � = 10g � 21pfFor k = 1 and � = 1g � 4 ln(pn) +O(1)p2 We omit the proof of the following Lemma; it is similar to that of Lemma 2.2.Lemma 2.3 Let � be a set of totally ordered elements and �s be a subset of � derived by samplingea
h element with probability p using a 2k-wise independent sampler. Let xt be the element of �swith rank t and let Yt be the number of elements in � less than xt. ThenE (Yt) = 8<: O(tp�1 log(np)) for k = 1O(tp�1) for k > 12.1 Pairwise Independent Sampling on the EREW PRAMIn Se
tion 3 we need a method for generating a set of sampled elements in linear time in the sizeof the sample. Furthermore, we would like it to work on the EREW PRAM, whi
h is a mu
h morerealisti
 model than the CRCW PRAM. We solve both of these problems using Jo�e's method forgenerating k-wise independent variables, given below.Lemma 2.4 (Jo�e [Jof74℄) Let q be prime, a0; a1; : : : ; ak�1 be 
hosen uniformly at random fromZq, and X(i) =Pk�1j=0 aj � ij (mod q). Then X(0); : : : ;X(q � 1) are uniformly distributed over Zqand k-wise independent.That is, for generating pairwise independent variables we require two random 
oeÆ
ients, a0and a1. We assume that m (the number of edges) is prime and that all edges are given a uniqueID in Zm; if m is 
omposite we �nd a prime q > m and in
lude q �m dummy edges. We samplethe edges with probability (about) p as follows. If X(i) = a1i+ a0 (mod m) 2 [0::dpme � 1℄ thenedge i is sampled; otherwise it is not. Evaluating the polynomial X on m points is too expensivebe
ause the number of sampled elements 
ould be sublinear in m. Under the assumption thata1 6= 0 we 
an generate the sampled graph by generating all solutions to i = (j�a0)a�11 (mod m)for j 2 [0::dpme � 1℄. This leads us to the following s
heme for assigning pro
essors to samplededges. It takes work linear in the size of the sample, usually O(pm).We assume an EREW PRAM with P pro
essors, ea
h of whi
h knows m;a0; a1; a�11 , and itsunique pro
essor ID.If a1 = 0 and a0 � dpme then X(�) = a0 and no edges are sampled.7



If a1 = 0 and a0 < dpme then all edges are sampled. Pro
essor k is assigned edges dmP ekthrough dmP e(k + 1)� 1.If a1 6= 0, then pro
essor k is assigned edges with IDs of the form (j � a0)a�11 (mod m), fordmpP ek � j < dmpP e(k + 1).Noti
e that with Jo�e's pairwise independent sampler, assigning EREW pro
essors to samplededges is quite easy, whereas using his 3-wise independent sampler would be more 
umbersome. Wewould need to resolve the inevitable 
on
i
ts that o

ur when more than one pro
essor attemptsto 
laim the same edge.2.2 Finding a Prime in ParallelJo�e's [Jof74℄ method for generating pairwise independent variables relies on having a known prime.Sin
e m is a relatively small number (w.r.t. the number of pro
essors), we 
an �nd the �rst primegreater than m very easily. Baker and Harman (see [BS96, p. 225℄) showed that if pn is the nthprime, then pn � pn�1 � n:535+o(1). We use this bound to �nd the smallest prime not less than m.Lemma 2.5 Let q be the smallest prime su
h that q � m. Then with probability at least 1�m�2
+1,q 
an be found on the EREW PRAM with O(logm) time, 
 log2m random bits, and b(m) � 
 logmpro
essors, where b(m) = m:535+o(1).Proof: We run the Miller-Rabin [Mil76, Rab80℄ primality test 
 logm times on ea
h integer in[m: :m+ b(m)℄, reusing the same random bits for ea
h number tested. The probability that Miller-Rabin reports the wrong answer for any of the numbers is � b(m) � 14�
 logm � m�(2
�1). Ea
h testuses logm random bits and takes time O(logm), hen
e �nding the �rst prime � m takes 
 log2mrandom bits and O(logm) time using b(m) � 
 logm pro
essors. 2If a better bound on b(m) is established then �nding the next prime � m 
an be made deter-ministi
. Consider Cram�er's 
onje
ture.Conje
ture 2.1 (Cram�er) Let pn be the n-th prime. Then pn � pn�1 = O(log2 n).If this 
onje
ture were true we 
ould employ O(pm logm) pro
essors to �nd the �rst prime� m in O(logm) time deterministi
ally.3 A Parallel MST/Conne
tivity Algorithm3.1 OverviewIn this se
tion we present a new randomized MST algorithm whi
h uses the same type of approa
has the one in Karger, Klein and Tarjan [KKT95℄. Our algorithm has two desirable attributes.It, like the KKT algorithm, is based on `Bor�uvka steps' and is therefore parallelizable. Se
ond,we show that our algorithm 
an tolerate a lower quality random sampler. In parti
ular we use apairwise independent sampler in lieu of total independen
e. This allows us to redu
e the numberof random bits used to polylogarithmi
 in the input size.We assume, in this se
tion and in Se
tion 5, a familiarity with the minimum spanning treeproblem. See [CLR90℄ or [Tar82℄ for a des
ription of MST.8



3.2 An Alternate Randomized MST AlgorithmA traditional Bor�uvka step identi�es and 
ontra
ts at least half of the unidenti�ed MST edges,redu
ing the number of verti
es by at least a fa
tor of two. If implemented in the usual way, ea
hBor�uvka step takes linear time and Bor�uvka's algorithm takes O(m logn) time. Below we de�neindu
tively an approximate Bor�uvka step, based upon a normal Bor�uvka step in a sampled graph.De�nition 3.1 In the ith approximate Bor�uvka step all edges are sampled with a �xed probability.An edge is eligible to parti
ipate in this step if it is sampled, it is not a self-loop, and it was nottainted in the �rst i� 1 approximate Bor�uvka steps { see De�nition 3.2.De�nition 3.2 In an approximate Bor�uvka step ea
h vertex sele
ts and 
ontra
ts its minimumweight in
ident edge whi
h is eligible by De�nition 3.1. An unsampled edge (u; v) be
omes taintedif it is lighter than either one of the edges sele
ted by u or v.Let G0 = G be the original graph and let Gi be the graph after i approximate Bor�uvka steps.If for some vertex v no edge in
ident on v is sampled, we let v 
hoose an imaginary in�nite weightedge (v;1), thus tainting all unsampled edges in
ident on v. This guarantees that after lognapproximate Bor�uvka steps the graph will 
ontra
t to a single vertex.ith Approximate Bor�uvka Step:1. Let Gs be derived from Gi�1 by randomly sampling ea
h edge withprobability p(i) and removing self-loops.2. For ea
h vertex v let ev be the least weight untainted edge in
ident onv whi
h appears in Gs, and let F = fev : v 2 V (Gs)g3. Let Gi be derived from Gi�1 by 
ontra
ting all edges in F .After log n approximate Bor�uvka steps we have 
onstru
ted an approximate MST (
omposedof all edges 
ontra
ted in Step 3). We then employ a linear-time MST veri�
ation algorithm (see[DRT92, Kin97, Kom85℄) to �lter out those edges never tainted, then redu
e the number of verti
esin the graph by performing a few exa
t Bor�uvka steps. Repeated iterations | approximate Bor�uvkasteps, �ltering, and exa
t Bor�uvka steps | will eventually redu
e the graph to a single vertex. Alledges identi�ed in the exa
t Bor�uvka steps belong to the MST. The eÆ
ien
y of this algorithmdepends upon how we implement the sampling and ensuring that (most of the time) the numberof edges in the graph is redu
ed by a 
onstant fa
tor in ea
h iteration. Before addressing thesematters of eÆ
ien
y we should prove 
orre
tness. Lemma 3.1, proved below, implies that edgesnever tainted after the lognth approximate Bor�uvka step are indeed not in the MST.De�nition 3.3 Let C be a subgraph of G and U � E(G). A subgraph C is 
ontra
tible w.r.t. U iffor any e1 = (u1; v1); e2 = (u2; v2) 2 U where u1; u2 2 C, there exists a path in C between u1 andu2 
onsisting of edges with weight less than maxfw(e1); w(e2)g.Lemma 3.1 Let Cv denote the subgraph of G 
ontra
ted to form v 2 V (Gi). Then Cv is 
on-tra
tible w.r.t. all edges still untainted after the ith approximate Bor�uvka step.Proof: Note that Cv is the union of some set fCv1 ; : : : ; Cvjg where fv1; : : : ; vjg � V (Gi�1). Weindu
tively assume that the fCvjg are 
ontra
tible w.r.t. untainted edges. Consider �rst the 
ase9


