Minimizing Randomness in Minimum Spanning Tree, Parallel
Connectivity, and Set Maxima Algorithms*

Seth Pettie and Vijaya Ramachandran
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712
seth@cs.utexas.edu, vlrQcs.utexas.edu

TR-01-25

July 13, 2001

Abstract

There are several fundamental problems whose deterministic complexity remains unresolved,
but for which there exist randomized algorithms whose complexity is equal to known lower
bounds. Among such problems are the minimum spanning tree problem, the set maxima prob-
lem, the problem of computing connected components and (minimum) spanning trees in parallel,
and the problem of performing sensitivity analysis on shortest path trees and minimum spanning
trees. However, while each of these problems has a randomized algorithm whose performance
meets a known lower bound, all of these randomized algorithms use a number of random bits
which is linear in the number of operations they perform.

We address the issue of reducing the number of random bits used in these randomized
algorithms. For each of the problems listed above, we present randomized algorithms that
have optimal performance but use only a polylogarithmic number of random bits; for some of
the problems our optimal algorithms use only log* n random bits. Our results represent an
exponential savings in the amount of randomness used to achieve the same optimal performance
as in the earlier algorithms. Our techniques are general and could likely be applied to other
problems.

*This work was supported by Texas Advanced Research Program Grant 003658-0029-1999 and NSF Grant CCR-
9988160. Seth Pettie was also supported by an MCD Fellowship.

1 Introduction

For many fundamental algorithmic problems there is a discrepancy between what we know of their
deterministic complexity versus their established randomized complexity. In this paper we examine
some well-studied problems fitting this description: the minimum spanning tree problem, the par-
allel connectivity and parallel minimum spanning tree problems, the set maxima problem, and the
sensitivity analysis problem on shortest paths trees and minimum spanning trees. We propose new
algorithms for these problems which have optimal performance but which use significantly fewer
random bits than earlier algorithms.

Randomized algorithms are frequently simpler, and, in the abstract, faster than their deter-
ministic counterparts (e.g. testing primality [Rab80], median finding [BFP*72, FR75], computing
minimum spanning trees [KKT95]). However, they make use of a commodity that is scarce in
reality: a stream of perfectly random bits. In practice a stream of “random” bits is produced
by a pseudo-random function which has been seeded with a little non-determinism®, say the least
significant digits from the computer’s clock. It is not clear if the seed is truly random, and even
less clear how good the commonly used pseudo-random functions are. Bach [Bac91] studied a few
number theoretic algorithms under the assumption of a truly random seed and a commonly used
pseudo-random function, and showed them to have a good probability of success, though not as
good as guaranteed by using totally random bits. Karloff and Raghavan [KR93] assumed the same
model and showed that Quicksort can have much poorer performance than predicted. Other pe-
culiarities of certain pseudo-random functions were noted in [FLW92] for Monte Carlo simulations
and in [HR96, Hsu97] for parallel implementations of basic graph algorithms. Although debunking
commonly used pseudo-random functions is worthwhile, the lesson here is to design algorithms
which demand much less randomness, and more important, to analyze them in a realistic abstract
environment.

There has been considerable amount of work on derandomizing randomized algorithms. A
common technique to reducing randomness is to use k-wise independent random variables rather
than totally independent ones. The generation of k-wise independent and approximately k-wise
independent random variables has been well-studied [Jof74, CG89, NN93, EGL 98, CRS00]. Sev-
eral results are known on derandomizing randomized algorithms that use k-wise independence to
obtain deterministic algorithms (see [KW85, Lub86, ABI86, Lub93, BR91]). Very recently Klivans
and Spielman [KS01]| gave a randomness-efficient method for testing if a multivariate polynomial
is identically zero. In all of these algorithms a reduction in randomness is traded for an acceptable

increase in the running time?.

1.1 Owur Results

In this paper we address the issue of reducing randomness but with an additional twist: we require
our algorithms to perform an optimal number of operations (to within a constant factor), and we
focus on reducing randomness subject to this primary goal. In the limit we would like to use no
random bits at all, and obtain optimal deterministic algorithms. But in the absence of this ultimate
result, it is a worthwhile goal to reduce our dependence on such a scarce resource as randomness.

!We note that there are now web servers (e.g. HotBits, http://www.fourmilab.ch/hotbits/) which will provide a
modest number of bits upon request. The bits, apparently random, are derived by measuring some unpredictable
physical process, such as the decay of a radioactive substance.

2One exception is an intermediate result in [Lub86] where a parallel MIS algorithm that uses a logarithmic number
of random bits is given that has the same resource bounds as the original algorithm that used a linear number of
random bits, but neither of these algorithms perform optimal work.

We propose optimal algorithms using a reduced number of random bits for all the problems
given in the Introduction. In our algorithms, at most a polylogarithmic-sized random seed is
assumed, and methods for deriving random variables from that seed are analyzed explicitly. Our
results represent an exponential reduction over earlier optimal algorithms in the number of random
bits used.

We describe our results below. A summary is given in Table 1. Our results are obtained using
two main techniques — (1) using the properties of an arbitrary k-wise independent sampler, and (2)
re-using random bits.

1.1.1 Parallel MST & Connectivity

The best deterministic parallel MST and connectivity algorithms [CV86, CV91, CHL99] run in
logarithmic-time yet they all use superlinear work. There are somewhat simpler logarithmic-time
linear expected work randomized MST and connectivity algorithms [Gaz91, CKT96, HZ96, PR99,
HZ01], but each uses a linear number of random bits.

We present a new randomized MST algorithm which requires only a pairwise independent
sampler. Our parallel implementation, which runs on the EREW PRAM [KR92], takes expected
linear work using O(log® nlog* n) random bits. Our sampling approach differs from [KKT95] and
previous parallel MST algorithms [CKT96, PR99]; it is conceptually simpler but not as easily
parallelizable, resulting in a running time of O(log? nlog* n).

A simpler version of our parallel MST algorithm also solves parallel connected components with
the same resources, improving upon [HZ96, HZ01, Gaz91] in terms of the number of random bits
used.

1.1.2 Set Maxima and Local Sorting

In the set mazima problem we are given a set system (x,S) where x is a set of n totally ordered
elements and § = {S1,...,Sn} is a collection of subsets of x, and asked to determine the maximum
element in each set S1,...,S,. The goal is to obtain the solution with an algorithm that uses the
minimum number of comparisons between elements in .

This intriguing problem seems to have been introduced by Graham, Yao and Yao [GYY80] who
noted the trivial solution — just sort x — and gave a simple O(n + m2™) time algorithm, which
is optimal for very small m. A bound of Fredman appears in the same paper showing that an
instance of set maxima can have no more than (m:{f; 1) distinct solutions; this was later shown to
be asymptotically tight in [GKKS93]. Liberatore [Lib98] has shown the set maxima problem to be
precisely the problem of verifying the optimal base of an arbitrary matroid, and Karger [Kar93]
has demonstrated the usefulness of set maxima in actually finding an optimal base. Many other
concrete problems are instances of set maxima (or are reducible to it). These include verifying a
partial order [KMKS89], sensitivity analysis (including verification) of minimum spanning trees and
shortest path trees [Tar82, Kom85|, and orienting the edges of an undirected, node-weighted graph
from the lesser to greater endpoint. This last problem was dubbed local sorting by Goddard et al.
[GKKS93].

Besides the simple set maxima algorithm of [GYY80] and the trivial algorithm, there are really
only two results to speak of for the general set maxima problem. Bar-noy et al. [BNMN92| gave
a deterministic algorithm that uses O(n) expected comparisons when the m = n sets are chosen
randomly. Goddard et al. gave an elegant randomized algorithm for set maxima which makes an

optimal O(nlog mT“'") expected comparisons using the same number of random bits.

We apply our k-wise independence result to improve Goddard et al.’s [GKKS93] local sort-
ing and general set maxima algorithms as follows. We give an optimal local sorting algorithm
which uses O(lognlogloglogn) random bits, and an optimal set maxima algorithm which uses
O(log nlog® n 20(B(mn)) random bits, where® B(m,n) = log* n — log* ™. Both algorithms make
an expected O(nlog mT“‘) comparisons, which is optimal [GYY80, GKKS93].

1.1.3 Reusing Random Bits

Using the simple technique of re-using random bits, we obtain a dramatic reduction in the number
of random bits used to find a minimum spanning tree and to perform sensitivity analysis on MST's
and shortest path trees. Sensitivity analysis subsumes the simpler MST /SSSP verification problem.
For each of these problems there exist optimal deterministic algorithms with unknown complexities
(see [PROO] for MST and [DRT92] for MST/SSSP sensitivity analysis), deterministic algorithms
which take time O(ma(m,n)), where a(m,n) is Tarjan’s inverse-Ackermann function (see [Cha00a]
for MST and [Tar82] for MST /SSSP sensitivity analysis) and expected linear-time algorithms which
use a linear number of random bits [KKT95, DRT92, GKKS93]. For both problems we give expected
linear-time algorithms which use just log* n random bits.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we give a fairly general lemma on the ex-
pected behavior of a k-wise independent sampler and show how pairwise independent sampling can
be performed efficiently on the EREW PRAM. In Section 3 we give a new parallel MST /connectivity
algorithm requiring only pairwise independence. In Section 4 we observe that any 4-wise indepen-
dent sampler works in a previous set maxima algorithm, and we give improved set maxima and local
sorting algorithms which reduce the required number of random bits to polylogarithmic. Finally, in
Section 5 we use the technique of re-using random bits to give a simple linear expected time MST
algorithm (based on the optimal MST algorithm in [PR00]) and an expected linear-time algorithm
for sensitivity analysis of MST and shortest path trees, both of which use only log* n random bits.

2 Limited Independence Sampling

In this section we establish a fairly general result on k-wise independent sampling which suggests
that O(1)-wise independence is nearly as good in situations common to many randomized sorting-
type algorithms. The situation is this: we have a set of elements from a total order x and wish to
find an element on the cheap whose rank is close to some desired rank ¢. If we have an abundance of
randomness, we can simply select each element of x independently with probability p and take the
rank tp sampled element as a decent approximation of the actual rank ¢ element. A tradeoff between
the efficiency and accuracy of this scheme can be had by manipulating the sampling probability p.

We show that by using just pairwise independence the expected rank (w.r.t. x) of the rank ¢

sampled element is O(It—) logn), and using a 2k-wise independence, k > 1, its expectation is O(%).

There is then a natural tradeoff between k and the concentration of the distribution of the #*®
sampled element around its mean.

The following Lemma is just an extension of Chebyshev’s inequality for 0/1 random variables.
A more complex proof of this result appears in [SSS95]; our proof is elementary. We note that a
similar, though incorrect, lemma appears in [ChaOOc, p. 424].

3This is the same (3 function as the one defined in Fredman & Tarjan’s minimum spanning tree algorithm [FT87]

Probabilistic Bound

Problem Deterministic Bound Best previous ‘ This paper
Parallel NC O(m)
graph O(ma(m,n)) O(m) random bits O(m) (EREW)
connectivity [CVI1] [HZ01] for EREW o(log®*™¢ n) random bits
(work) [Gaz91] for CRCW
Parallel NC O(m)
minimum O(m1og® n) O(m) random bits O(m) (EREW)
spanning [CV86] [PR99] for EREW o(log®*¢n) random bits
trees (work) [CKT96] for CRCW
Local O(nlogn) O(nlog ™tn) O(nlog ™tn)
sorting (trivial) O(nlog ™) random bits o(log**¢n) random bits
(comparisons) [GKKS93]
Set O(nlogn) O(nlog ™tn) O(nlog ™tn)
maxima (trivial) O(nlog 1) random bits | o(log'** n) random bits
(comparisons) [GKKS93]
Minimum O(ma(m,n)) [Cha00a] O(m) O(m)
spanning O(Optimal(m, n)) [PROO] O(m) random bits O(log* n) random bits
trees (time) [KKT95]
MST/SSSP O(ma(m,n)) [Tar82] O(m) O(m)
sensitivity O(Optimal(m,n)) [DRT92] O(m) random bits O(log* n) random bits
analysis (time) [DRT92]

Abbreviations: EREW and CRCW are, resp., the Exclusive Read Exclusive Write and Concurrent Read

Concurrent Write parallel RAMs.

Every EREW algorithm is a CRCW algorithm. Optimal(m,n) is the

decision-tree complexity of the respective problem. We denote by € an arbitrarily small constant. With the
exception of Set Maxima, m = |E| is the number of edges and n = |V| is the number of vertices; for Set
Maxima m is the number of sets and n the number of elements.

Table 1. Summary of our results.

Lemma 2.1 Let X;,...,X,, be 2k-wise independent 0/1 random variables, each with mean p. For
X =), X; we have pux = pn and

dkuy *
PrlX —] 2 o < (1)

Proof: Along the lines of Chebyshev’s inequality we have Pr[|X — ux| > t] = Pr[(X —ux)?* > 2¥]

which is <]E(X;# by Markov’s inequality. The numerator can be expanded into an expression
of the form E > [[(X; —) — the expectation of a sum of products. By identifying duplicate factors
in each product we can simplify them to be of the form [[,(X; —p)* where). a; = 2k. Notice that
because the X;’s are 2k-wise independent the factors of each product are also independent. We
may then rewrite the numerator in the form > [[E(X; — u)* — a sum of products of expectations.
Observe that in any term, if some a; = 1 then E(X; —)% = 0 and the term disappears. We bound
the numerator by first bounding a single term then bounding the number of non-zero terms. For
the first, note that E(X; — u)% = pu(1 — p)[(1 — p)% ! — (—p)%~1] € (—p,), hence each term is
bounded by uF.

Bounding the number of non-zero terms is equivalent to a balls-and-bins problem: how many
ways are there to put 2k balls in n bins (order counts!) such that all bins have zero or > 2 balls?
Let IV be the number of non-zero terms, we have that

N < g (r;) (2ki—_¢1— 1) (2212)!

Here ¢ represents the number of non-empty bins, (7) the number of ways of selecting such bins,
and (2kz.:lf 1) the number of ways to distribute the 2k — 2¢ balls still unaccounted for. Each such
distribution of balls-to-bins can be realized by a number of distinct orderings, which is certainly no

more than (2k)!/2¥. Simplifying the above expression,

k i . i—1
n' (2k—i—1)" (2k)!
N < 0. :
S (i — 1) ok
=1
N LNCTS |
< oS i tem <k (4D tem)
1+ 5 ko(2ke\F /2k2\"
< & % . (%) . <Te> . <e—2> {Stirling’s approximation}
< (4nk)*

We conclude that E(X — px)?* < (4pxk)*
This bound is reasonably tight. For a lower bound consider just those terms with exactly k
distinct factors (each repeated twice).

e)
> B Gy
=k (6 () o

5

()
> i
e
We conclude, using the fact that B(X;—p)? = p(1—p), that E(X —px)?* = Q ((nkp(1 — p)e 1)F)
O

The main lemma of this section is given below.

Lemma 2.2 Let x be a set of totally ordered elements and xs be a subset of x derived by sampling
each element with probability p using a 2k-wise independent sampler. Let Y be the number of
unsampled elements less than min ys. Then

41In(np)+0(1) _
— fork=1
E(Y) <
2L for k>1

and

S

Proof: Let X; = 1 if the element of x with rank i is sampled, and 0 otherwise. So E(X;) = p and
for any distinct indices iy, ..., %2, Xi;,...,X;,, are independent.

(27"
Let S, = Zle X; count the number of ones in X7,..., X,. We have that E(Sy) = pf and
Pr[Y > (] = Pr[S, = 0] < Pr[|S, — E(Sy)| > p/]

Using Lemma 2.1 we can bound Pr[Y > /] as follows.

E(Sy — E(S))%*

Pr[|S; — E(Sy)| > pf] < (p0)?*
apek \ ¥
< ((513)2> { Lemma 2.1}

- ()

The second part of the Lemma follows from the simple observation that any 2k-wise independent
distribution is also 2v-wise independent for v < k.

To bound E(Y') we use a variation on a familiar identity. For a random variable Z taking on
values from the naturals it is easy to show that E(Z) = > °, Pr[Z > 4] (a similar expression can
be used for real Z). Plugging our best bound on Pr[Y > /] into this identity gives a weak bound
on the expectation of Y. We have E(Y) < (4kp 1)k - >.i *. Before we give a tighter analysis,
consider the following bound on E(Z) for any natural r.v. Z.

E(Z)zf;z’-Pr[Z:z’] < 5+ i:: Pr[Z > i
i= i=0+1

o
§+AY Pr[Z>6+1+A-]
=0

IN

We will now bound E(Y) using this inequality. Assume w.lo.g. that k£ is 1 or 2. Letting
0=A= %, we have that

“@IQ

o0
S iy > 252
1=0

+
4_ np/ 5] o
/8 i:l

IN

{For k=2 and g =10} <

{For k=1and g =1} <

We omit the proof of the following Lemma; it is similar to that of Lemma 2.2.

Lemma 2.3 Let x be a set of totally ordered elements and xs be a subset of x derived by sampling
each element with probability p using a 2k-wise independent sampler. Let x; be the element of X
with rank t and let Y; be the number of elements in x less than x;. Then

O(tp tlog(np)) fork=1
E(Y;) =
O(tp™ 1) fork>1

2.1 Pairwise Independent Sampling on the EREW PRAM

In Section 3 we need a method for generating a set of sampled elements in linear time wn the size
of the sample. Furthermore, we would like it to work on the EREW PRAM, which is a much more
realistic model than the CRCW PRAM. We solve both of these problems using Joffe’s method for
generating k-wise independent variables, given below.

Lemma 2.4 (Joffe [Jof7}]) Let q be prime, ag,ai,...,ax_1 be chosen uniformly at random from
Zg, and X (i) = Ef;& aj i/ (mod q). Then X(0),...,X(q— 1) are uniformly distributed over Z,
and k-wise independent.

That is, for generating pairwise independent variables we require two random coefficients, ag
and a;. We assume that m (the number of edges) is prime and that all edges are given a unique
ID in Z,,; if m is composite we find a prime ¢ > m and include ¢ — m dummy edges. We sample
the edges with probability (about) p as follows. If X (i) = a1i +ap (mod m) € [0..[pm]| — 1] then
edge ¢ is sampled; otherwise it is not. Evaluating the polynomial X on m points is too expensive
because the number of sampled elements could be sublinear in m. Under the assumption that
a; # 0 we can generate the sampled graph by generating all solutions to i = (j —ag)a; L' (mod m)
for j € [0..[pm] — 1]. This leads us to the following scheme for assigning processors to sampled
edges. It takes work linear in the size of the sample, usually O(pm).

We assume an EREW PRAM with P processors, each of which knows m, ag, a1, al_l, and its
unique processor ID.

If a; = 0 and ag > [pm] then X(-) = ap and no edges are sampled.

If a; = 0 and ap < [pm] then all edges are sampled. Processor k is assigned edges [k
through [](k + 1) — 1.

1

If a; # 0, then processor k is assigned edges with IDs of the form (j —ag)a; ™ (mod m), for

[Pk <j <[FIk+1).

Notice that with Joffe’s pairwise independent sampler, assigning EREW processors to sampled
edges is quite easy, whereas using his 3-wise independent sampler would be more cumbersome. We
would need to resolve the inevitable conflicts that occur when more than one processor attempts
to claim the same edge.

2.2 Finding a Prime in Parallel

Joffe’s [Jof74] method for generating pairwise independent variables relies on having a known prime.
Since m is a relatively small number (w.r.t. the number of processors), we can find the first prime
greater than m very easily. Baker and Harman (see [BS96, p. 225]) showed that if p, is the n'P
prime, then p, — pp—1 < n?35t°(1) We use this bound to find the smallest prime not less than m.

Lemma 2.5 Let q be the smallest prime such that ¢ > m. Then with probability at least 1—m—2¢t1,

q can be found on the EREW PRAM with O(logm) time, clog®m random bits, and b(m) - clogm
processors, where b(m) = m"35+o(1)

Proof: We run the Miller-Rabin [Mil76, Rab80] primality test clogm times on each integer in

[m .. m+b(m)], reusing the same random bits for each number tested. The probability that Miller-
Rabin reports the wrong answer for any of the numbers is < b(m) (%)Clogm < m~(=1)_ Each test
uses log m random bits and takes time O(logm), hence finding the first prime > m takes clog®m

random bits and O(logm) time using b(m) - clogm processors. O

If a better bound on b(m) is established then finding the next prime > m can be made deter-
ministic. Consider Cramér’s conjecture.

Conjecture 2.1 (Cramér) Let p, be the n-th prime. Then p, — pn_1 = O(log® n).

If this conjecture were true we could employ O(y/mlogm) processors to find the first prime
> m in O(logm) time deterministically.

3 A Parallel MST /Connectivity Algorithm

3.1 Overview

In this section we present a new randomized MST algorithm which uses the same type of approach
as the one in Karger, Klein and Tarjan [KKT95]. Our algorithm has two desirable attributes.
It, like the KKT algorithm, is based on ‘Boruvka steps’ and is therefore parallelizable. Second,
we show that our algorithm can tolerate a lower quality random sampler. In particular we use a
pairwise independent sampler in lieu of total independence. This allows us to reduce the number
of random bits used to polylogarithmic in the input size.

We assume, in this section and in Section 5, a familiarity with the minimum spanning tree
problem. See [CLR90] or [Tar82] for a description of MST.

3.2 An Alternate Randomized MST Algorithm

A traditional Boruvka step identifies and contracts at least half of the unidentified MST edges,
reducing the number of vertices by at least a factor of two. If implemented in the usual way, each
Boruvka step takes linear time and Boruvka’s algorithm takes O(mlogn) time. Below we define
inductively an approzximate Boruvka step, based upon a normal Boruvka step in a sampled graph.

Definition 3.1 In the i*" approzimate Borivka step all edges are sampled with a fized probability.
An edge is eligible to participate in this step if it is sampled, it is not a self-loop, and it was not
tainted in the first i — 1 approzimate Boruvka steps — see Definition 3.2.

Definition 3.2 In an approximate Boruvka step each verter selects and contracts its minimum
weight incident edge which is eligible by Definition 3.1. An unsampled edge (u,v) becomes tainted
if it is lighter than either one of the edges selected by u or v.

Let Gy = G be the original graph and let G; be the graph after i approximate Boruvka steps.
If for some vertex v no edge incident on v is sampled, we let v choose an imaginary infinite weight
edge (v,00), thus tainting all unsampled edges incident on v. This guarantees that after logn
approximate Boruvka steps the graph will contract to a single vertex.

ith Approximate Bortuvka Step:

1. Let G4 be derived from G;_1 by randomly sampling each edge with
probability p(i) and removing self-loops.

2. For each vertex v let e, be the least weight untainted edge incident on
v which appears in G, and let F = {e, : v € V(Gs)}

3. Let G; be derived from G; ; by contracting all edges in F.

After logn approximate Boruvka steps we have constructed an approximate MST (composed
of all edges contracted in Step 3). We then employ a linear-time MST verification algorithm (see
[DRT92, Kin97, Kom85]) to filter out those edges never tainted, then reduce the number of vertices
in the graph by performing a few ezact Boruvka steps. Repeated iterations — approximate Boruvka
steps, filtering, and exact Boruvka steps — will eventually reduce the graph to a single vertex. All
edges identified in the exact Boruvka steps belong to the MST. The efficiency of this algorithm
depends upon how we implement the sampling and ensuring that (most of the time) the number
of edges in the graph is reduced by a constant factor in each iteration. Before addressing these
matters of efficiency we should prove correctness. Lemma 3.1, proved below, implies that edges

th

never tainted after the logn“* approximate Boruvka step are indeed not in the MST.

Definition 3.3 Let C be a subgraph of G and U C E(G). A subgraph C' is contractible w.r.t. U if
for any e; = (u1,v1),e2 = (ug,v2) € U where uy,us € C, there exists a path in C between u; and
ug consisting of edges with weight less than max{w(e1), w(ez)}.

Lemma 3.1 Let C, denote the subgraph of G contracted to form v € V(G;). Then C, is con-
tractible w.r.t. all edges still untainted after the i approzimate Borivka step.

Proof: Note that C, is the union of some set {Cy,,...,Cy;} where {v1,...,v;} C V(Gi-1). We
inductively assume that the {C,,} are contractible w.r.t. untainted edges. Consider first the case

