
Minimizing Randomness in Minimum Spanning Tree, ParallelConnetivity, and Set Maxima Algorithms�Seth Pettie and Vijaya RamahandranDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712seth�s.utexas.edu, vlr�s.utexas.eduTR-01-25July 13, 2001AbstratThere are several fundamental problems whose deterministi omplexity remains unresolved,but for whih there exist randomized algorithms whose omplexity is equal to known lowerbounds. Among suh problems are the minimum spanning tree problem, the set maxima prob-lem, the problem of omputing onneted omponents and (minimum) spanning trees in parallel,and the problem of performing sensitivity analysis on shortest path trees and minimum spanningtrees. However, while eah of these problems has a randomized algorithm whose performanemeets a known lower bound, all of these randomized algorithms use a number of random bitswhih is linear in the number of operations they perform.We address the issue of reduing the number of random bits used in these randomizedalgorithms. For eah of the problems listed above, we present randomized algorithms thathave optimal performane but use only a polylogarithmi number of random bits; for some ofthe problems our optimal algorithms use only log� n random bits. Our results represent anexponential savings in the amount of randomness used to ahieve the same optimal performaneas in the earlier algorithms. Our tehniques are general and ould likely be applied to otherproblems.
�This work was supported by Texas Advaned Researh Program Grant 003658-0029-1999 and NSF Grant CCR-9988160. Seth Pettie was also supported by an MCD Fellowship.



1 IntrodutionFor many fundamental algorithmi problems there is a disrepany between what we know of theirdeterministi omplexity versus their established randomized omplexity. In this paper we examinesome well-studied problems �tting this desription: the minimum spanning tree problem, the par-allel onnetivity and parallel minimum spanning tree problems, the set maxima problem, and thesensitivity analysis problem on shortest paths trees and minimum spanning trees. We propose newalgorithms for these problems whih have optimal performane but whih use signi�antly fewerrandom bits than earlier algorithms.Randomized algorithms are frequently simpler, and, in the abstrat, faster than their deter-ministi ounterparts (e.g. testing primality [Rab80℄, median �nding [BFP+72, FR75℄, omputingminimum spanning trees [KKT95℄). However, they make use of a ommodity that is sare inreality: a stream of perfetly random bits. In pratie a stream of \random" bits is produedby a pseudo-random funtion whih has been seeded with a little non-determinism1, say the leastsigni�ant digits from the omputer's lok. It is not lear if the seed is truly random, and evenless lear how good the ommonly used pseudo-random funtions are. Bah [Ba91℄ studied a fewnumber theoreti algorithms under the assumption of a truly random seed and a ommonly usedpseudo-random funtion, and showed them to have a good probability of suess, though not asgood as guaranteed by using totally random bits. Karlo� and Raghavan [KR93℄ assumed the samemodel and showed that Quiksort an have muh poorer performane than predited. Other pe-uliarities of ertain pseudo-random funtions were noted in [FLW92℄ for Monte Carlo simulationsand in [HR96, Hsu97℄ for parallel implementations of basi graph algorithms. Although debunkingommonly used pseudo-random funtions is worthwhile, the lesson here is to design algorithmswhih demand muh less randomness, and more important, to analyze them in a realisti abstratenvironment.There has been onsiderable amount of work on derandomizing randomized algorithms. Aommon tehnique to reduing randomness is to use k-wise independent random variables ratherthan totally independent ones. The generation of k-wise independent and approximately k-wiseindependent random variables has been well-studied [Jof74, CG89, NN93, EGL+98, CRS00℄. Sev-eral results are known on derandomizing randomized algorithms that use k-wise independene toobtain deterministi algorithms (see [KW85, Lub86, ABI86, Lub93, BR91℄). Very reently Klivansand Spielman [KS01℄ gave a randomness-eÆient method for testing if a multivariate polynomialis identially zero. In all of these algorithms a redution in randomness is traded for an aeptableinrease in the running time2.1.1 Our ResultsIn this paper we address the issue of reduing randomness but with an additional twist: we requireour algorithms to perform an optimal number of operations (to within a onstant fator), and wefous on reduing randomness subjet to this primary goal. In the limit we would like to use norandom bits at all, and obtain optimal deterministi algorithms. But in the absene of this ultimateresult, it is a worthwhile goal to redue our dependene on suh a sare resoure as randomness.1We note that there are now web servers (e.g. HotBits, http://www.fourmilab.h/hotbits/) whih will provide amodest number of bits upon request. The bits, apparently random, are derived by measuring some unpreditablephysial proess, suh as the deay of a radioative substane.2One exeption is an intermediate result in [Lub86℄ where a parallel MIS algorithm that uses a logarithmi numberof random bits is given that has the same resoure bounds as the original algorithm that used a linear number ofrandom bits, but neither of these algorithms perform optimal work.1



We propose optimal algorithms using a redued number of random bits for all the problemsgiven in the Introdution. In our algorithms, at most a polylogarithmi-sized random seed isassumed, and methods for deriving random variables from that seed are analyzed expliitly. Ourresults represent an exponential redution over earlier optimal algorithms in the number of randombits used.We desribe our results below. A summary is given in Table 1. Our results are obtained usingtwo main tehniques { (1) using the properties of an arbitrary k-wise independent sampler, and (2)re-using random bits.1.1.1 Parallel MST & ConnetivityThe best deterministi parallel MST and onnetivity algorithms [CV86, CV91, CHL99℄ run inlogarithmi-time yet they all use superlinear work. There are somewhat simpler logarithmi-timelinear expeted work randomized MST and onnetivity algorithms [Gaz91, CKT96, HZ96, PR99,HZ01℄, but eah uses a linear number of random bits.We present a new randomized MST algorithm whih requires only a pairwise independentsampler. Our parallel implementation, whih runs on the EREW PRAM [KR92℄, takes expetedlinear work using O(log3 n log� n) random bits. Our sampling approah di�ers from [KKT95℄ andprevious parallel MST algorithms [CKT96, PR99℄; it is oneptually simpler but not as easilyparallelizable, resulting in a running time of O(log2 n log� n).A simpler version of our parallel MST algorithm also solves parallel onneted omponents withthe same resoures, improving upon [HZ96, HZ01, Gaz91℄ in terms of the number of random bitsused.1.1.2 Set Maxima and Loal SortingIn the set maxima problem we are given a set system (�;S) where � is a set of n totally orderedelements and S = fS1; : : : ; Smg is a olletion of subsets of �, and asked to determine the maximumelement in eah set S1; : : : ; Sm. The goal is to obtain the solution with an algorithm that uses theminimum number of omparisons between elements in �.This intriguing problem seems to have been introdued by Graham, Yao and Yao [GYY80℄ whonoted the trivial solution { just sort � { and gave a simple O(n +m2m) time algorithm, whihis optimal for very small m. A bound of Fredman appears in the same paper showing that aninstane of set maxima an have no more than �m+n�1n�1 � distint solutions; this was later shown tobe asymptotially tight in [GKKS93℄. Liberatore [Lib98℄ has shown the set maxima problem to bepreisely the problem of verifying the optimal base of an arbitrary matroid, and Karger [Kar93℄has demonstrated the usefulness of set maxima in atually �nding an optimal base. Many otheronrete problems are instanes of set maxima (or are reduible to it). These inlude verifying apartial order [KMK89℄, sensitivity analysis (inluding veri�ation) of minimum spanning trees andshortest path trees [Tar82, Kom85℄, and orienting the edges of an undireted, node-weighted graphfrom the lesser to greater endpoint. This last problem was dubbed loal sorting by Goddard et al.[GKKS93℄.Besides the simple set maxima algorithm of [GYY80℄ and the trivial algorithm, there are reallyonly two results to speak of for the general set maxima problem. Bar-noy et al. [BNMN92℄ gavea deterministi algorithm that uses O(n) expeted omparisons when the m = n sets are hosenrandomly. Goddard et al. gave an elegant randomized algorithm for set maxima whih makes anoptimal O(n log m+nn ) expeted omparisons using the same number of random bits.2



We apply our k-wise independene result to improve Goddard et al.'s [GKKS93℄ loal sort-ing and general set maxima algorithms as follows. We give an optimal loal sorting algorithmwhih uses O(log n log log logn) random bits, and an optimal set maxima algorithm whih usesO(log n log(3) n 2O(�(m;n))) random bits, where3 �(m;n) = log� n � log� mn . Both algorithms makean expeted O(n log m+nn ) omparisons, whih is optimal [GYY80, GKKS93℄.1.1.3 Reusing Random BitsUsing the simple tehnique of re-using random bits, we obtain a dramati redution in the numberof random bits used to �nd a minimum spanning tree and to perform sensitivity analysis on MSTsand shortest path trees. Sensitivity analysis subsumes the simpler MST/SSSP veri�ation problem.For eah of these problems there exist optimal deterministi algorithms with unknown omplexities(see [PR00℄ for MST and [DRT92℄ for MST/SSSP sensitivity analysis), deterministi algorithmswhih take time O(m�(m;n)), where �(m;n) is Tarjan's inverse-Akermann funtion (see [Cha00a℄for MST and [Tar82℄ for MST/SSSP sensitivity analysis) and expeted linear-time algorithms whihuse a linear number of random bits [KKT95, DRT92, GKKS93℄. For both problems we give expetedlinear-time algorithms whih use just log� n random bits.1.2 OrganizationThe rest of the paper is organized as follows. In Setion 2 we give a fairly general lemma on the ex-peted behavior of a k-wise independent sampler and show how pairwise independent sampling anbe performed eÆiently on the EREW PRAM. In Setion 3 we give a new parallel MST/onnetivityalgorithm requiring only pairwise independene. In Setion 4 we observe that any 4-wise indepen-dent sampler works in a previous set maxima algorithm, and we give improved set maxima and loalsorting algorithms whih redue the required number of random bits to polylogarithmi. Finally, inSetion 5 we use the tehnique of re-using random bits to give a simple linear expeted time MSTalgorithm (based on the optimal MST algorithm in [PR00℄) and an expeted linear-time algorithmfor sensitivity analysis of MST and shortest path trees, both of whih use only log� n random bits.2 Limited Independene SamplingIn this setion we establish a fairly general result on k-wise independent sampling whih suggeststhat O(1)-wise independene is nearly as good in situations ommon to many randomized sorting-type algorithms. The situation is this: we have a set of elements from a total order � and wish to�nd an element on the heap whose rank is lose to some desired rank t. If we have an abundane ofrandomness, we an simply selet eah element of � independently with probability p and take therank tp sampled element as a deent approximation of the atual rank t element. A tradeo� betweenthe eÆieny and auray of this sheme an be had by manipulating the sampling probability p.We show that by using just pairwise independene the expeted rank (w.r.t. �) of the rank tsampled element is O( tp log n), and using a 2k-wise independene, k > 1, its expetation is O( tp).There is then a natural tradeo� between k and the onentration of the distribution of the tthsampled element around its mean.The following Lemma is just an extension of Chebyshev's inequality for 0/1 random variables.A more omplex proof of this result appears in [SSS95℄; our proof is elementary. We note that asimilar, though inorret, lemma appears in [Cha00, p. 424℄.3This is the same � funtion as the one de�ned in Fredman & Tarjan's minimum spanning tree algorithm [FT87℄3



Probabilisti BoundProblem Deterministi Bound Best previous This paperParallel NC O(m)graph O(m�(m;n)) O(m) random bits O(m) (EREW)onnetivity [CV91℄ [HZ01℄ for EREW o(log3+� n) random bits(work) [Gaz91℄ for CRCWParallel NC O(m)minimum O(m log(3) n) O(m) random bits O(m) (EREW)spanning [CV86℄ [PR99℄ for EREW o(log3+� n) random bitstrees (work) [CKT96℄ for CRCWLoal O(n log n) O(n log m+nn ) O(n log m+nn )sorting (trivial) O(n log m+nn ) random bits o(log1+� n) random bits(omparisons) [GKKS93℄Set O(n log n) O(n log m+nn ) O(n log m+nn )maxima (trivial) O(n log m+nn ) random bits o(log1+� n) random bits(omparisons) [GKKS93℄Minimum O(m�(m;n)) [Cha00a℄ O(m) O(m)spanning O(Optimal(m;n)) [PR00℄ O(m) random bits O(log� n) random bitstrees (time) [KKT95℄MST/SSSP O(m�(m;n)) [Tar82℄ O(m) O(m)sensitivity O(Optimal(m;n)) [DRT92℄ O(m) random bits O(log� n) random bitsanalysis (time) [DRT92℄Abbreviations: EREW and CRCW are, resp., the Exlusive Read Exlusive Write and Conurrent ReadConurrent Write parallel RAMs. Every EREW algorithm is a CRCW algorithm. Optimal(m;n) is thedeision-tree omplexity of the respetive problem. We denote by � an arbitrarily small onstant. With theexeption of Set Maxima, m = jEj is the number of edges and n = jV j is the number of verties; for SetMaxima m is the number of sets and n the number of elements.Table 1. Summary of our results.
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Lemma 2.1 Let X1; : : : ;Xn be 2k-wise independent 0=1 random variables, eah with mean �. ForX =PiXi we have �X = �n andPr [jX � �Xj � t℄ < �4k�Xt2 �kProof: Along the lines of Chebyshev's inequality we have Pr[jX��Xj � t℄ = Pr[(X��X)2k � t2k℄whih is � E (X��X )2kt2k by Markov's inequality. The numerator an be expanded into an expressionof the form E PQ(Xi��) | the expetation of a sum of produts. By identifying dupliate fatorsin eah produt we an simplify them to be of the formQi(Xi��)ai wherePi ai = 2k. Notie thatbeause the Xi's are 2k-wise independent the fators of eah produt are also independent. Wemay then rewrite the numerator in the formPQ E (Xi��)ai | a sum of produts of expetations.Observe that in any term, if some ai = 1 then E (Xi��)ai = 0 and the term disappears. We boundthe numerator by �rst bounding a single term then bounding the number of non-zero terms. Forthe �rst, note that E (Xi � �)ai = �(1 � �)[(1 � �)ai�1 � (��)ai�1℄ 2 (��; �), hene eah term isbounded by �k.Bounding the number of non-zero terms is equivalent to a balls-and-bins problem: how manyways are there to put 2k balls in n bins (order ounts!) suh that all bins have zero or � 2 balls?Let N be the number of non-zero terms, we have thatN � kXi=1 �ni��2k � i� 1i� 1 �(2k)!2kHere i represents the number of non-empty bins, �ni� the number of ways of seleting suh bins,and �2k�i�1i�1 � the number of ways to distribute the 2k � 2i balls still unaounted for. Eah suhdistribution of balls-to-bins an be realized by a number of distint orderings, whih is ertainly nomore than (2k)!=2k . Simplifying the above expression,N � kXi=1 nii! � (2k � i� 1)i�1(i� 1)! � (2k)!2k� 43 � nkk! � (2k)kk! � (2k)!2k fith term � 14 � (i+ 1)th term.g� 43 � 1 + 124k�1pk� � �nek �k � �2kek �k � �2k2e2 �k fStirling's approximationg< (4nk)kWe onlude that E (X � �X)2k < (4�Xk)kThis bound is reasonably tight. For a lower bound onsider just those terms with exatly kdistint fators (eah repeated twie).N � �nk� � (2k)!2k� nkk! � (2k)!4k fk � n=2g� nk � ek�k �4k2e2 �k 4�k5



� �nke �kWe onlude, using the fat that E(Xi��)2 = �(1��), that E (X��X)2k = 
 �(nk�(1� �)e�1)k�2 The main lemma of this setion is given below.Lemma 2.2 Let � be a set of totally ordered elements and �s be a subset of � derived by samplingeah element with probability p using a 2k-wise independent sampler. Let Y be the number ofunsampled elements less than min�s. ThenE (Y ) � 8><>: 4 ln(np)+O(1)p for k = 121p for k > 1andPr[Y � `℄ � min��k ��4�p`���Proof: Let Xi = 1 if the element of � with rank i is sampled, and 0 otherwise. So E (Xi) = p andfor any distint indies i1; : : : ; i2k, Xi1 ; : : : ;Xi2k are independent.Let S` =Pì=1Xi ount the number of ones in X1; : : : ;X`. We have that E (S`) = p` andPr[Y � `℄ = Pr[S` = 0℄ � Pr[jS` � E (S`)j � p`℄Using Lemma 2.1 we an bound Pr[Y � `℄ as follows.Pr[jS` � E (S`)j � p`℄ � E (S` �E(S`))2k(p`)2k< � 4p`k(p`)2�k f Lemma 2.1g= �4kp`�kThe seond part of the Lemma follows from the simple observation that any 2k-wise independentdistribution is also 2�-wise independent for � � k.To bound E (Y ) we use a variation on a familiar identity. For a random variable Z taking onvalues from the naturals it is easy to show that E(Z) =P1i=1 Pr[Z � i℄ (a similar expression anbe used for real Z). Plugging our best bound on Pr[Y � `℄ into this identity gives a weak boundon the expetation of Y . We have E (Y ) � (4kp�1)k �Pi i�k. Before we give a tighter analysis,onsider the following bound on E (Z) for any natural r.v. Z.E (Z) = 1Xi=1 i � Pr[Z = i℄ � Æ + 1Xi=Æ+1Pr[Z � i℄� Æ +� 1Xi=0 Pr[Z � Æ + 1 +� � i℄6



We will now bound E (Y ) using this inequality. Assume w.l.o.g. that k is 1 or 2. LettingÆ = � = �p , we have that E (Y ) � �p + �p 1Xi=0 Pr[Y � �(i+1)p ℄� �p 0�1 +�4k� �k dnp=�eXi=1 i�k1AfFor k = 2 and � = 10g � 21pfFor k = 1 and � = 1g � 4 ln(pn) +O(1)p2 We omit the proof of the following Lemma; it is similar to that of Lemma 2.2.Lemma 2.3 Let � be a set of totally ordered elements and �s be a subset of � derived by samplingeah element with probability p using a 2k-wise independent sampler. Let xt be the element of �swith rank t and let Yt be the number of elements in � less than xt. ThenE (Yt) = 8<: O(tp�1 log(np)) for k = 1O(tp�1) for k > 12.1 Pairwise Independent Sampling on the EREW PRAMIn Setion 3 we need a method for generating a set of sampled elements in linear time in the sizeof the sample. Furthermore, we would like it to work on the EREW PRAM, whih is a muh morerealisti model than the CRCW PRAM. We solve both of these problems using Jo�e's method forgenerating k-wise independent variables, given below.Lemma 2.4 (Jo�e [Jof74℄) Let q be prime, a0; a1; : : : ; ak�1 be hosen uniformly at random fromZq, and X(i) =Pk�1j=0 aj � ij (mod q). Then X(0); : : : ;X(q � 1) are uniformly distributed over Zqand k-wise independent.That is, for generating pairwise independent variables we require two random oeÆients, a0and a1. We assume that m (the number of edges) is prime and that all edges are given a uniqueID in Zm; if m is omposite we �nd a prime q > m and inlude q �m dummy edges. We samplethe edges with probability (about) p as follows. If X(i) = a1i+ a0 (mod m) 2 [0::dpme � 1℄ thenedge i is sampled; otherwise it is not. Evaluating the polynomial X on m points is too expensivebeause the number of sampled elements ould be sublinear in m. Under the assumption thata1 6= 0 we an generate the sampled graph by generating all solutions to i = (j�a0)a�11 (mod m)for j 2 [0::dpme � 1℄. This leads us to the following sheme for assigning proessors to samplededges. It takes work linear in the size of the sample, usually O(pm).We assume an EREW PRAM with P proessors, eah of whih knows m;a0; a1; a�11 , and itsunique proessor ID.If a1 = 0 and a0 � dpme then X(�) = a0 and no edges are sampled.7



If a1 = 0 and a0 < dpme then all edges are sampled. Proessor k is assigned edges dmP ekthrough dmP e(k + 1)� 1.If a1 6= 0, then proessor k is assigned edges with IDs of the form (j � a0)a�11 (mod m), fordmpP ek � j < dmpP e(k + 1).Notie that with Jo�e's pairwise independent sampler, assigning EREW proessors to samplededges is quite easy, whereas using his 3-wise independent sampler would be more umbersome. Wewould need to resolve the inevitable onits that our when more than one proessor attemptsto laim the same edge.2.2 Finding a Prime in ParallelJo�e's [Jof74℄ method for generating pairwise independent variables relies on having a known prime.Sine m is a relatively small number (w.r.t. the number of proessors), we an �nd the �rst primegreater than m very easily. Baker and Harman (see [BS96, p. 225℄) showed that if pn is the nthprime, then pn � pn�1 � n:535+o(1). We use this bound to �nd the smallest prime not less than m.Lemma 2.5 Let q be the smallest prime suh that q � m. Then with probability at least 1�m�2+1,q an be found on the EREW PRAM with O(logm) time,  log2m random bits, and b(m) �  logmproessors, where b(m) = m:535+o(1).Proof: We run the Miller-Rabin [Mil76, Rab80℄ primality test  logm times on eah integer in[m: :m+ b(m)℄, reusing the same random bits for eah number tested. The probability that Miller-Rabin reports the wrong answer for any of the numbers is � b(m) � 14� logm � m�(2�1). Eah testuses logm random bits and takes time O(logm), hene �nding the �rst prime � m takes  log2mrandom bits and O(logm) time using b(m) �  logm proessors. 2If a better bound on b(m) is established then �nding the next prime � m an be made deter-ministi. Consider Cram�er's onjeture.Conjeture 2.1 (Cram�er) Let pn be the n-th prime. Then pn � pn�1 = O(log2 n).If this onjeture were true we ould employ O(pm logm) proessors to �nd the �rst prime� m in O(logm) time deterministially.3 A Parallel MST/Connetivity Algorithm3.1 OverviewIn this setion we present a new randomized MST algorithm whih uses the same type of approahas the one in Karger, Klein and Tarjan [KKT95℄. Our algorithm has two desirable attributes.It, like the KKT algorithm, is based on `Bor�uvka steps' and is therefore parallelizable. Seond,we show that our algorithm an tolerate a lower quality random sampler. In partiular we use apairwise independent sampler in lieu of total independene. This allows us to redue the numberof random bits used to polylogarithmi in the input size.We assume, in this setion and in Setion 5, a familiarity with the minimum spanning treeproblem. See [CLR90℄ or [Tar82℄ for a desription of MST.8



3.2 An Alternate Randomized MST AlgorithmA traditional Bor�uvka step identi�es and ontrats at least half of the unidenti�ed MST edges,reduing the number of verties by at least a fator of two. If implemented in the usual way, eahBor�uvka step takes linear time and Bor�uvka's algorithm takes O(m logn) time. Below we de�neindutively an approximate Bor�uvka step, based upon a normal Bor�uvka step in a sampled graph.De�nition 3.1 In the ith approximate Bor�uvka step all edges are sampled with a �xed probability.An edge is eligible to partiipate in this step if it is sampled, it is not a self-loop, and it was nottainted in the �rst i� 1 approximate Bor�uvka steps { see De�nition 3.2.De�nition 3.2 In an approximate Bor�uvka step eah vertex selets and ontrats its minimumweight inident edge whih is eligible by De�nition 3.1. An unsampled edge (u; v) beomes taintedif it is lighter than either one of the edges seleted by u or v.Let G0 = G be the original graph and let Gi be the graph after i approximate Bor�uvka steps.If for some vertex v no edge inident on v is sampled, we let v hoose an imaginary in�nite weightedge (v;1), thus tainting all unsampled edges inident on v. This guarantees that after lognapproximate Bor�uvka steps the graph will ontrat to a single vertex.ith Approximate Bor�uvka Step:1. Let Gs be derived from Gi�1 by randomly sampling eah edge withprobability p(i) and removing self-loops.2. For eah vertex v let ev be the least weight untainted edge inident onv whih appears in Gs, and let F = fev : v 2 V (Gs)g3. Let Gi be derived from Gi�1 by ontrating all edges in F .After log n approximate Bor�uvka steps we have onstruted an approximate MST (omposedof all edges ontrated in Step 3). We then employ a linear-time MST veri�ation algorithm (see[DRT92, Kin97, Kom85℄) to �lter out those edges never tainted, then redue the number of vertiesin the graph by performing a few exat Bor�uvka steps. Repeated iterations | approximate Bor�uvkasteps, �ltering, and exat Bor�uvka steps | will eventually redue the graph to a single vertex. Alledges identi�ed in the exat Bor�uvka steps belong to the MST. The eÆieny of this algorithmdepends upon how we implement the sampling and ensuring that (most of the time) the numberof edges in the graph is redued by a onstant fator in eah iteration. Before addressing thesematters of eÆieny we should prove orretness. Lemma 3.1, proved below, implies that edgesnever tainted after the lognth approximate Bor�uvka step are indeed not in the MST.De�nition 3.3 Let C be a subgraph of G and U � E(G). A subgraph C is ontratible w.r.t. U iffor any e1 = (u1; v1); e2 = (u2; v2) 2 U where u1; u2 2 C, there exists a path in C between u1 andu2 onsisting of edges with weight less than maxfw(e1); w(e2)g.Lemma 3.1 Let Cv denote the subgraph of G ontrated to form v 2 V (Gi). Then Cv is on-tratible w.r.t. all edges still untainted after the ith approximate Bor�uvka step.Proof: Note that Cv is the union of some set fCv1 ; : : : ; Cvjg where fv1; : : : ; vjg � V (Gi�1). Weindutively assume that the fCvjg are ontratible w.r.t. untainted edges. Consider �rst the ase9


