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Abstract

One of the problems with current methods for phylogerettonstruction is the
large number of equally parsimonious trees that are détend during a tree
search; understanding these large sets of trees isllangkafor biologists. |

explored the utility of a data visualization techniquecneating 2D and 3D
images of tree sets in order to improve researchedgratanding of the sets. |
used multidimensional scaling based on Robinson-Fouldstiete distances to
construct the visualizations. Direct visualizationtaka differences was also
explored. | found that structure in the tree sets wieted in the visualizations.
Visual clustering in our pictures corresponds to islandghgfogenetic trees in
the set and also reveals additional structure. Diresalization of taxa

differences provides a good alternative to displaying divexgewith branch

lengths and may be useful in a divide-and-conquer approagihylogenetic

reconstruction. | integrated all of the computatiotehs needed for building the
visualizations into a module for the phylogeny softwaaekage Mesquite.
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1 Background

1.1 What isa Phylogenetic Tree?

A phylogenetic tree is a depiction of the evolutionafgtionships of a set of organisms. A tree
gives a natural representation of any hierarchicalrizgdon, and ever since Linneaus

introduced the idea of a hierarchical classificatiobiological diversity, trees have been used to
represent the organization of life on earth. Witivila and his theory of evolution by natural
selection came the notion that the classificatibspecies should be based on true relatedness. It
was realized that the branching structure of trees di@ mhan simply portray a hierarchy; it

could be seen as a direct representation of the brandiversification of life through history.
Darwin realized this, and an illustration in Qs the Origin of Species (Fig. 1) is the first
phylogenetic tree. In Darwin’s words, (pp. 129-130)

The atfinities of all the beings of the same class have sometimes been represented by
a great tree. 1 believe this simile largely speaks the truth. The green and budding
twigs may represent existing species; and those produced during each former year
may represent the long succession of extinct species ... The limbs divided into great
branches, and these into lesser and lesser branches, were themselves once, when the
tree was small, budding twigs; and this connexion of the former and present buds by
ramifying branches may well represent the classification of all extinct and living
species in groups subordinate to groups ... As buds give rise by growth to tresh
buds, and these, if vigorous, branch out and overtop on all sides many a feeble
branch, so by generation I believe it has been with the great Tree of Life, which fills
with its dead and broken branches the crust of the earth and covers the surface with
its ever branching and beautiful ramifications.
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Figure 1 The first phylogenetic tree, from Darwi@s the Origin of Species

Darwin’s theory brought about the creation of the bhaof science called systematics, the study
of biological diversity in an evolutionary contexthy®genetic trees are very important to
systematists, and a huge amount of current researaigtioot the biological sciences is



1.2 How are phylogenetic trees calculated?

There are many methods currently in use for estimatiyipgenies. Maximum parsimony
(shortest tree) is the most widespread, but maximunihlied is also used frequently.
Maximum parsimony and maximum likelihood are each basatiffenent assumptions about
the underlying evolutionary process, but all follow thee basic algorithmic pattern:

Choose a tree.

Calculate the statistic of interest (parsimonyikaiihood) for that tree.
Repeat steps 1-2 until all trees have been checked asén says stop.
Return the trees(s) with the best score.

PwpPE

1.3 Computational obstacles

The basic difficulty faced with this paradigm is the astrmical number of trees to check. For n
taxa, there are (2n-5)!! distinct trees that can cointieem. In practice, the user always stops the
algorithm early; checking all trees for any reasonablaber of taxa is intractable.

Computational research so far has focused on two piitie algorithm: choosing the next tree

well, and the fast calculation of scores for each.tr€hoosing the next tree well amounts to a

smart sampling of tree-space. There is just not enannghtd check every possible tree, but we
can try to check those trees that we suspect haveggomhe basic approach is to look at the
trees that are similar to the best we have foun@soWork on the fast evaluation of trees has

also helped but does not address the problem’s enormoysitaiimnal complexity.

Two practical troubles have surfaced as a result afahgutational difficulty of phylogenetic

tree inference. The first is a lack of confidenceesults. The algorithms discussed above return
the best tree(s) they have seen so far, but withwadking all of the trees, it can’t be known that
better trees weren’t passed over. There is no wgyaoantee an optimal solution without
performing a complete search. The second difficultyn@sin the size of the problems but in

the size of the solutions. Current techniques oftenmmea very large number of trees with the
same (optimal so far) score. For example, in a parsireearch for a phylogenetic tree to
connect 28 genera of sunflowers, Kim and Jansen (1995) foR88 8qually parsimonious trees
after a search of several weeks. Furthermore, tleettee may not in fact be one of the shortest.
A researcher may ask that some sub-optimal treedimmee as well, further exacerbating this
problem.

1.4 Dealing with a large number of returned trees

The trouble with getting so many trees back is in undedig them. One cannot simply flip
through a thousand trees one at a time and get any idetaithb true tree that they approximate.
The most common method used for understanding a large noifriibees is to calculate a
consensus tree for the group. A consensus tree i$ afsaerage or lowest common
denominator of trees. The most conservative is@dlie strict consensus tree; it contains all
hinartitions that are nresent in evene of the set 1inder consideration. (See Finlire 7



divides the leaf nodes of the tree into two distints.sé tree can be completely and uniquely
specified by a list of the bipartitions it contains.

Schizolobium
Feltophorum
Feltophorum
Cercidium
Fakinsonia
Lemuropisum
elanix
olvillea
Conzattia
Gleditsia
Gymnocladus
Burea
Maora.excelsa
Ciptychandra
C.pulcherrima

Batesia

Figure 2 An example consensus tree. A consensus treeagsmple summary
of a set of trees. The region circled in red (uppefediis fully resolved (all
branchings are binary); all trees in the set haigesdime branching pattern. The
blue circle (near the base) shows a polytomy; differees in the set contain
different branchings here. We computed this consensesith MacClade
(Maddison & Maddison 1999) over trees found by Dr. Beryl Samps

(unpublished).

A consensus tree gives a useful but very rough summalng @ointent of a set of trees. My
project explores new techniques for understanding larg@fphg/logenetic trees, techniques
based on the ideas of data visualization.

1.5 Data visualization background

Computers excel at the accurate computation and storamgeniiers and have long since
surpassed humans in this regard. When the goal of timisutation is human understanding or
insight, however, much of a computer’s power is wasiebple are just not any good at
integrating information from huge tables of information

The ability of people to notice patterns or draw conmchssfrom data is dramatically increased if
the data are presented visually (Ware 2000). A large paurdirains is devoted to visual
processing. When we understand information visuallygee lamount of the processing is done
automatically, below the conscious level, by neuralimmery that is already hardwired for
perceiving spatial relationships, contrasts in scédstering patterns, object definition, and so

on.

However, because it was built to perceive the realdytrere is an inherent limitation to the
dimensionality of data that can be understood visudlhe retina is after all only a two-
dimensional input device, and the world our brains evaiwathderstand is three-dimensional.
There is also a sort of primacy of spatial dimensiongsual perception. Perception is limited
when a dimension is presenter variation alona a scale of color. briahtness. ope



This limitation on the dimensionality of informatidinat can be effectively understood by a
human viewer presents a challenge to the visualizafiarset of phylogenetic trees. The
dimensionality of such data is extremely high. If sraee encoded using bipartitions, then tree-
space has a binary-valued dimension for every possjiaetition in a tree, i.e."?- 2

dimensions. An approach that presents only a few diomenat a time or that presents multiple
views is simply insufficient. Instead, we had to lookd way to drastically reduce the
dimensionality of our data while preserving the importafarmation about it.

2 M ethods

2.1 Project overview

| gathered data sets from professors in the schoabloigly who are working on systematics
research: Dr. David Hillis, Dr. Robert Jansen, andBaryl Simpson. In order to construct
visualizations, | computed the Robinson-Foulds distaneigden every pair of trees in each set
and used an off-the-shelf MDS implementation (XGvisgxperiment and learn how useful the
visualizations could be. After encouraging preliminasutts and a positive response from the
biologists, | implemented a more specialized MDS asgfaatmodule for the Mesquite
phylogenetic software system in order to make the visimins generally available.

2.2 Multidimensional scaling (MDYS)

We used multidimensional scaling to form pictures in the or three dimensions to which
people are accustomed. Multidimensional scaling is anigad for creating plots in'Rof data
characterized by dissimilarities. For each pair @ésrin a set, we can compute any of a number
of distance metrics that tell us how dissimilar (@uiealently, how similar) that pair of trees is.
The most obvious such metric is called the Robinsaresadistance (Robinson and Foulds
1981), which is based on an encoding of trees with bipensit The Robinson-Foulds distance
between two trees is the number of bipartitions ihptesent in only one of the trees. If C(T) is
the set of bipartitions in tree T, then the R-F distabetween treegsand t is given by

|C(t1) _C(t2)| + |C(t2) - C(t1)| .

In using multidimensional scaling, we discard informaabout each tree’s absolute location in
tree-space and instead only look at how far apart &es @re from one another. The goal is to
assign each tree a location ih @t R such that the distances between points in the plemtes

as closely as possible the corresponding distancesdretvees in tree-space. Similar trees
(trees that agree closely on the evolutionary histioder investigation) are drawn close together
and dissimilar trees are drawn far apart.

We feel that this approach is justified for a few déferreasons. Among the dimensions of
variation for phylogenetic trees, there are not arevo that are more important than the others.
MDS places all input dimensions on equal footing. Alee,jtdgments that need to be made
regarding tree sets depend not on the sets absolute pasitiee-space, but on the relative
positions of trees within the set. Thirdly, we feelt multidimensional scaling is valuable



because the dimensions along which phylogenetic tregarabinary-valued, and we gain a lot
of room by fitting them into a real-valued space.

2.2.1 Distortion in MDS

There are some sets of dissimilarity data that capidieed in B without any distortion; that is,
the distances between points in the plane exactiyjmthé&cgiven dissimilarities. In the typical
case, however, a perfect embedding is impossible and distogtion in the distances must be
introduced in order to draw all of the points in two disiens. The quality of an embedding
based on dissimilarity data can be judged by a stressdonethich is simply a residual sum of
squares (Buja et. al. 1998):

Sp (%K %) = %;t;(nDij _HXi X H)Zg :

where
D is the given dissimilarity matrix,
(x,,K ,x,) are the point locations in the picture, and
S, is the stress given the matrix D.

The bigger the stress function for a given embeddingntive the relationships between points
in that embedding are distorted from their true separat#o8hepard diagram provides a nice
visual representation of the errors in an embedding atplot of the distances in the embedding
against the distances given by the dissimilarity mdsae Figure 3).

2.3 Implementation of MDS

My implementation of multidimensional scaling performsearistic iterative minimization of
the stress function. The algorithm is:

1. Compute the distance between each pair of trees Beth This is the target dissimilarity
matrix.

2. Begin with a random assignment of point locationsdes.

3. For each pair of points, compute the vector differémteeen their current separation
and their target separation.

4. For each point, find the vector sum of all the ewemtors with which it is involved; this

is the total residual “error” for that point—adding thigrsto that point reduces the total

error of the point’s position with respect to all titber points.

Scale the residual error vectors down. (By about 0.0i&-sth user-defined parameter.)

Add the residual error vectors to the point locations.

Repeat Steps 3-6 until the user says stop.

No o



The number of iterations required to reach a stablgisnlcan vary quite a bit depending on the
initial point locations. There is no guarantee tha algorithm will avoid local minima in the
stress function, but we have run each embedding doz¢ingesfand never ended up with more
than one stable solution.

3 Results

3.1: Tree set visualizations

We used the MDS plotting algorithm to generate visuatinatof several data sets obtained from
researchers in the school of biology at U.T.

3.1.1 Idands and clustersin sets of trees

Maddison (1991) described the idea of islands of phylogemets.t An island is a set of trees
connected under a simple branch rearrangement oper&@e@mause the next tree to check in a
tree search is often chosen by rearranging a goodhme&as already been checked, islands can
be found as a side effect of the tree search. Maddisserved that the best trees found in a
search are usually all grouped into one island, but ocalsiaonore than one island of most-
parsimonious trees is discovered.

We were interested in knowing if islands within a dethost-parsimonious (or most-likely, etc.)
trees were visually apparent in the pictures createdibyisualization technique. In a study of
several species of sunflowers, Jansen (1995) found mor&8d8® equally parsimonious trees
divided between two islands. We created visualizationa sample of 68 of these trees and for
68 randomly generated trees over the same taxa (Figure 3).

We found that the islands discovered during the tree seamehindeed visually separate from
one other in the visualizations.

We also found that consensus trees computed for eaath edidrees in the picture were each
more resolved than a consensus tree for the ergigesat (Figure 4). The clusters’ consensus
trees give a clearer idea of which taxa are contrigutie most to a lack of resolution in the
overall consensus tree and can help guide researchikesdnllection of additional data to
resolve the uncertain regions in the trees.

Our results suggest that islands are indeed a useful wagudigg phylogenetic trees, but that
there is meaningful clustering of trees below the le¥@land. One island of trees in Jansen’s
data encompassed three distinct visual clusters. Tlsesus trees computed for each cluster
within that island are more resolved than the consetige for the entire island and provide
another level of detail in understanding the structutbeentire tree set.

Clusters of trees can be thought of as competing hypetimegarding the evolutionary history of
the taxa under investigation, with each cluster cormadipg to a different evolutionary scenario.
The trees within each cluster are often all minarnangements of one another and are all
usually more similar to one another than they arteges in other clusters. When a consensus
tree is constructed for the entire tree set, thendisbin between clusters is lost, and the small
variation within each cluster is washed out by thgdawariation between them.



Visualization of 68 phylogenetic trees
found during a maximum-parsimony 00 04 08 12 16 20
tree search d_config

Visualization of 68 random trees ove
the same taxa. 00 04 08 12 16 2.0

d_config

Figure 3. Visualizations of a set of trees discovered gwimaximum-parsimony
search over several kinds of sunflower. Tree islarelgndicated by color and
are visually separated from one another. The Shepagchdia on the right show
the quality of the visualizations’ embedding of the triee®D space. In a
Shepard diagram, the horizontal axis indicates the dista@tween points in an
embedding, and the vertical axis indicates the targetraies. A straight line
would correspond to a perfect embedding. The degree of diverg®m a
straight line shows how much the given distances atertis in the picture. The
horizontal banding in the Shepard diagrams reflectsatttetliat tree separation
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Strict consensus tree for the | Strict consensus tree for the | Strict consensus tree for the

red island yellow island entire set
Hicotiana Nicotiana Hicotiana
Campanula Campanula Campanula
Scaevola Scaevola Seaevola
Stokesia Stokesia Stokesia
Vernonia Yernonia Yernonia
Fiptocar pa Fiptocarpa Piptocarpa
Gerbera Gerbera Gerbera
Gazania Gazania Gazania
Cacosmia Echinops Cacosmia
Tragopogon Carthamnus Tragopogon
Cicharium Cacosmia Cicharium
Lactuca Tragopogen Lactuca
Echinops Cicharium Echinops
Carthamnus Lactuca Carthamnus
Dimorphotheca Dimarphotheca Dimorphotheca
Felicia Felicia Felicia
Achillea Achillea Achillea
Chrysanthemum Chrysanthemum Chrysanthemum
Blennosperma Elennozperma Blennosperma
Senecio Senecio Senecio
Tagetes Tagetes Tagetes
Flaveria Flaveria Flaveria
Chrormolagna Chromolaena Chramolaena
Eupatarium Eupatorium Eupatorium
Helianthus Helianthus Helianthus
Coreopsis Coreopsis Coreopsis
Bar nadesia EBarnadesia Bar nadesia
Dasyphyllum Dasy phyHHum Dasyphyl lum

Figure 4. Consensus trees for the tree islands sholigure 3, computed using
MacClade (Maddison 1999). Consensus trees computed for isiatrdss are
more resolved than the consensus tree for the esetire

3.1.2 Visualizing tree density

A third case study shows the utility of our method tocatk the degree of tree agreement within
a set of phylogenetic trees. An analysis of chlosidiNA from several species of bellflowers
resulted in 216 equally good trees. When we used our techhiuissialize these trees, we

saw an undifferentiated ball similar to that seertli@errandom trees in Figure 3.

The undifferentiated ball indicates that there areutstanding differences among the inter-tree
distances in a group of trees. However, scale is ignoyeur plotting method, and a very tight
cluster of trees would appear as an undifferentiatedf lifalvére the only thing in the picture.
The situation might be that you have a lot of varimimnong the trees of the set (All the inter-
tree distances are large and more or less equal) oyahdtave very little (All the inter-tree
distances are small and more or less equal). Bothlgveame picture. In the first case, the
trees represent very different evolutionary histdioeghe taxa under investigation, and in the
second, the trees agree closely.

In order to distinguish between these two cases, we addddm trees to both kinds of set and
repeated the visualization procedure (Figure 5). In the afihe trees that agreed closely with
one another, the trees of interest contracted itighaball at the center of the picture. In the
second case, the undifferentiated ball remained largelgame, with the trees of interest
scattered uniformly throughout.

This result showed us that it is a good idea to includessodication of scale with the picture,
either by adding random trees as we did in this expenmemtcompanylng the image with

i e i 1 )



Trees derived from mixed with random trees
Campanulaceae sequence data

random trees mixed with random trees

Figure 5. An demonstration of a method to distinguish éetwwo types of tree
set that appear similar under our visualization technid@yeadding random trees
to each set, we were able to distinguish between a grfdupes that agrees
closely and one that does not.



3.1.2 Another example embedding

In another example of the visualization of a treewetgenerated pictures of a group of trees
that arose in research being performed on several bustiee Caesalpinia genus by Dr. Beryl
Simpson of U.T.’s botany department. She provided us3#ithequally parsimonious trees
constructed over 51 taxa. Figure 6 shows an example paltug with some sample consensus

trees.

AN

consensus tree of all trees in the set

consensus tree for trees in the “head”

consensus tree for trees in the “tail”

Figure 6. A 2D embedding of 342 phylogenetic trees over thesgeaesalpinia
with some sample consensus trees. As was the gaserforst example with
sunflowers, consensus trees of visual partitions opittere are more resolved

than the overall consensus tree.




3.2 Using MDSto visualize inter-taxon distances

Multidimensional scaling is applicable to any kind of diiece data, not only difference data for
phylogenetic tree sets. Differences between pasp@dies can be computed directly from
molecular sequence or morphological data. We can they @appVisualization technique to
create pictures in which the points correspond to tabkeer than to trees.

3.2.1 Visualization of a broad set of taxa

Figure 7 shows a picture of a wide variety of species dmawms way. The species differences
were based directly on sequence differences in mitoclaimMA common to all of the species.
Such a picture can only show gross differences betweses and is not useful in revealing
small evolutionary separations, because homology (cgemeevolution) can cause a pair of
taxa to appear more closely related than they realy &his is why techniques like parsimony
are used to measure the true degree of divergence betpessrss

This kind of picturds useful, however, in getting an overall idea of the degfeolutionary
divergence among a group of species. In a phylogenetjdrif@enation on the degree of
divergence can only be shown clumsily, by using labeladdh lengths. A combination of a
phylogenetic tree and an MDS-generated picture based oespéferences can convey a more
integrated understanding of the evolutionary past of a grbtgxa.

.

JLocustal

g nopheles
v e

Bideloidogyne]

MHymenolepis|
» N
JFasciola

Terebratalia

Figure 7. Visualization of taxa differences. Each pivitthe picture represents a
single taxon. Similar taxa are drawn close togetliefew taxa are labeled.



3.2.2 Direct visualization of taxa differences as a guide to tree reconstruction

As stated above, the biggest computational obstacleytogametic reconstruction is the vast
number of phylogenies to consider. The early identificeof groups of taxa known to be
related allows the problem to be broken up, drasticaiucing the amount of computation
necessary for a complete reconstruction.

In a demonstration to show how our visualization teghes can be useful in this regard, we set
up some synthetic model evolutionary trees. We sinaildie evolution of a gene sequence
along the model trees and then visualized the resultingesee differences (Figure 8).
Monophyletic groups of species (a common ancestor spauikall of its descendants) clustered
clearly in the pictures.

A
e

Figure 8. Visualization of species differences. Thedfice data were
computed based on modeled evolution along the synthetictievary tree
shown on the right. This tree has long internal edfjésngth x that separate its
taxa into four monophyletic groups. The branch lengitismeach of the four
sub-trees are fixed at four. A longer branch lengthesponds to greater
evolutionary separation.

x=10 x =20

Because the number of trees that can organize eadrsup-of species is much smaller than
the number of trees that can organize all of themthegea successful divide-and-conquer
approach to phylogenetic reconstruction is possiblermesgituations. Tree reconstruction is
undertaken on each group in isolation, followed by a kefarahe best way to connect the sub-
trees (Figure 9). This is what is done on a very laogdée when a scientist looks for a
phylogenetic tree to organize salamanders, for exammpieloes not include any pine tree DNA
in his data. It is not clear on how small of a adtis possible to use divide-and-conquer as a
phylogenetic reconstruction technique.



Figure 9. Divide-and-conquer method for phylogenetic treenstcuction. First,
monophyletic groups of taxa are found by clustering. Skcmiree search is
conducted for the best tree to assemble each of ti@grd-inally, another
search is used to find the best way of connectingubérges.

Such partitioning of taxa may be very useful to phylogemetonstruction, but it is not clear
whether visualizations are very helpful in this regdafdr this divide-and-conquer method to be
correct, one must be assured that the sub-groups areneaophyletic, and the degree of
clustering required for confidence in this fact is sue thprobably could just as easily be
recognized by automatic clustering procedures as by humaend. On the other hand,
visualization may reveal subtleties of the distributioat raw clustering would hide.

4 Software Tools

Visualization in phylogenetics is a new idea, so tlig@ré any software currently available for it.
We did our experimentation and prototyping for the visutdina by using many different

pieces of existing software and tying them together siitiple scripts to handle data flow and
formatting. Initial tree searches were done by veriesearchers in the school of biology using
software designed for that purpose: PAUP* (Swofford 2000) axQWale (Maddison 1999).
We used a set of programs written by Daniel Huson (200€)ngoute the inter-tree distances
and to generate random trees. Finally, we used theigeia¢a visualization package of XGvis
(Swayne et. al. 1998) and XGobi (Buja et. al. 1998) to perfdB% on the difference data and
plot and explore the resultant point sets. | wroterséganple programs to handle data flow
between these programs and to translate data amongribeswrequired formats.

A goal of this project is a software tool that carubed by biology researches to explore their
phylogenetic data sets visually. To this end, | havgesmran integrated program that ties the
whole process together. | wrote this program as a madtles larger Mesquite system.

4.1 What isMesquite?

Mesquite is a modular software system for phylogenettysis currently under development at
the University of Arizona (Maddison and Maddison 2001). ddés modules already exist to
perform all of the traditional phylogenetic computatiomganization of sequence and data, tree



to researchers using many different computer platfoifesquite is new and not as well
established in the systematics world as some older gasKkRAUP* and MacClade), but its
modular nature made it easier for me to add my work aoget piece of software and
distributing the visualization module will give me the mt&to have my ideas tried out in a real
research environment. We do expect that Mesquitdadlbme very popular for use in
phylogenetic analysis.

4.2 My Mesquite module

My software adds tree set visualization as an integnaitce of a large phylogenetic analysis
package (Figure 10). A user can take any group of trees Wit e is working and create a
2D plotting of the trees based on Robinson-Foulds dissancebecause the Mesquite system is
modular, any other distance metric for which a moduteldegen written. My module will be
distributed freely as a plug-in module for Mesquite. | bellavailable along with the main
Mesquite software from Drs. Wayne and David Maddison at
http://mesquite.biosci.arizona.edu/mesquite/download/dowritral.

My program is interactive. The MDS algorithm is artiethso that the user can watch and
understand what is being done and can decide when a pludirigeen reached that is good
enough. Points in the embedding are selectable. Whiegla tree is selected, that tree is
displayed, and when multiple trees are selected, theseosns tree is displayed. This
connection between the point set display and the tepdagliallows effective exploration of the
tree set and aids in the understanding of its structure.
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5 Discussion

Success in data visualization is notoriously difficultieasure or evaluate. One cannot take an
insight of a researcher and ask her, “Would you havaeeathis without the visualization?”
Likewise, we can never be sure if a scientist gaineeraaderstanding from our pictures of tree
sets that he would have with only the individual treethé set and their consensus.

However, we are encouraged by the responses of tlogisisl with whom we have worked.
There is excitement about the idea, and it is clesrahuseful tool for understanding the results
of phylogenetic analyses is needed. There is reasmawveconfidence in our technique. We
have found a correspondence between the traditionahlagicicture of a tree set given by
islands and the visual structure of our images. Genewdilgt is seen in the pictures has
triggered associations with knowledge that a viewer @yréad about a set of trees. Only time
will tell how useful this new method is, but our eadgults are encouraging, and further
investigation is warranted.

Very large data sets and heavy computer analysis, thauglmrthe past, have recently become
a common feature of biological research. Advancesiiomated experimental techniques,
especially with regard to gene sequencing and biologicgimgahave given rise to the fields of
computational biology and bioinformatics. The datacarethere. Visualizing phylogenetic tree
sets is only a small example of the opportunitiesabaund for the application of existing and
novel data visualization ideas in the field of biology.

6 Future Work

No software tool or research project is ever comptateourse. The methods of visualizing sets
of phylogenetic trees need to be explored more thoroudHigre are many additional features
that would improve my Mesquite module and, there is aflahexplored potential in the area of
biological data visualization generally.

The Robinson-Foulds metric is a convenient and, wevaglmeaningful measure of tree
dissimilarity to use in constructing MDS-based visualtizet. It is not without problems,
however, as Penny and Hendy (1985) showed. Other distaetess should be investigated in
order to determine their utility in visualization cansttion. Alternatives to MDS in these
visualization techniques also deserve attention; mulkidgional scaling is only one way of
mapping a point set into two or three dimensions;

There are many improvements and additional features thiak would improve my Mesquite
module. Firstly, | think that 3D embeddings should be incusligh the 2D. Pictures in 3D can

be rendered by MDS with less distortion than in 2D, laihihk that a lot of the structure we’ve
seen in our prototype 3D visualizations just isn’t captumetle corresponding 2D embeddings.
Also, another link between the tree view and the eitiipg picture should be created. A user
should be able to select taxa or edges in the treeanewestrict the MDS calculations to tree
variation that involves those taxa or edges. Thitufe would allow better understanding of the
connection between the variation in phylogeneticstgg® the ambiguity in the data from which

it arises. Finally, and more ambitiously, | would ltkeconnect the tree set visualizations to the
tree search routines, so that a tree search coutddred by the researcher and better trees could

ha faiinAd in tha firet nlar



A big visualization challenge in biology is the “treidife,” a phylogenetic tree organiziral
species. Even when extinct species are ignoredsthisruly enormous tree, with as many as
ten million leaves, and creating a comprehensible Mspaesentation of if will be a big
challenge. There is also a lot of room for furtmestigation of tree set visualizations. Our
work could be extended greatly through the explorationiwrotvay of mapping trees into two
or three dimensions. Multidimensional scaling is amg way of doing it, and it would be
interesting to try other point assignment algorithmaduditional tree comparison ideas.
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