
A Commuting Diagram Relating Threaded andNon-threaded JVM ModelsGeorge M. PorterFaulty Adviser: J Strother Moore, Ph.D.April 16, 2001AbstratWe establish a ommuting diagram that relates two models of the JavaVirtual Mahine (JVM). The �rst model, M3, supports muh of Java, in-luding lasses, objets, and dynami method resolution. The seondmodel, M4, builds upon M3 by adding threads, monitors, and synhro-nized methods. We desribe a theorem, Main, that asserts that runningertain \single-threaded" states on M4 is equivalent to transforming thosestates to the domain of M3, running the transformed state there, andtranslating the result bak to the domain of M4. We de�ne the riteriawe use to determine if the resulting states are equivalent, and we de�neour notion of \single-threaded". We then disuss a few lessons learnedduring the development of Main1 A Desription of M3 and M4M3 and M4 are both models of the Java Virtual Mahine (JVM). They arerespetively the third and fourth members of a series of mahines approahingthe JVM in omplexity. (Sun's spei�ation of the JVM an be found in [2℄).M3 supports muh of the funtionality of the JVM, inluding many byteodes(suh as ADD, IFEQ, MUL, et). M3 supports lasses, with �elds and methods.Setting and retrieving the �elds of objets in the heap respet inheritane, asdoes method invoation.M4 builds upon M3 by supporting multiple threads of exeution in a way thatis onsistent with Sun's spei�ation of the JVM found in [2℄. Synhronizationbetween threads is provided via synhronized methods and synhronized bloks.(For a desription of Java's thread synhronization mehanisms, see [1℄). M4adds two new byteodes: MONITORENTER and MONITOREXIT, whih allow theJVM to aess monitors loated in every Java objet in the heap. These monitorswill be desribed in further detail below. For a omplete desription of M4, see[3℄. In M4, a state onsists of three omponents: the thread table, the heap, andthe lass table. We desribe eah in turn. When we use the word \table" here1

we generally mean a list of pairs in whih \keys" (whih might be thought ofas onstituting the left-hand olumn of the table) are paired with \values" (theright-hand olumn of the table). Suh a table is a map from the keys to theorresponding values.The thread table maps thread numbers to threads. Eah thread onsists ofthree omponents: a all stak, a ag indiating whether the thread is sheduled,and the heap address of an objet of lass Thread in the heap uniquely assoiatedwith this thread. We disuss the heap below.The all stak is a list of frames treated as a stak (the �rst element of thelist is the topmost frame). Eah frame ontains �ve omponents: a programounter and the byteoded method body, a table assoiating variable nameswith values, a stak, and a synhronization ag indiating whether the methodurrently exeuting is synhronized. Unlike the JVM, the loal variables of amethod are referened by symboli names rather than positions.The heap is a table assoiating heap addresses with instane objets. Aninstane objet is a table. The keys of an instane objet are the suessivelasses in the superlass hain of the objet. The value of eah suh key isanother table, mapping the immediate �eld names of the lass to their values.The struture of heap addresses is unimportant but they an be distinguishedfrom integers and other data types. In our model a heap address is a list of theform (REF i), where i is a natural number. One point where our model di�ersfrom the JVM is that in our model the NEW instrution is ompletely responsiblefor the objet's instantiation; all �elds are initialized to 0. Classes in our modeldo not have separate onstrutors.Finally, the lass table is a table mapping lass names to lass desriptions.A lass desription ontains a list of its superlass names, a list of its immediate�elds, and a list of its methods. We do not model syntati typing in ourmahine, though we ould. Thus, our list of �elds is just a simple list of �eldnames (strings) rather than, say, a table mapping �eld names to signatures. Amethod is a list ontaining a method name, the names of the formal parametersof the method, a synhronization status ag, and a list of byteoded instrutions.Our model omits signatures and the aess modes of methods.Byteoded instrutions are represented abstratly as lists onsisting of asymboli opode name followed by zero or more operands. For example, (LOADX) is the instrution that pushes the value of loal variable X onto the stakin the urrent frame. (ADD) pops two items o� the stak in the urrent frameand pushes their sum. (IFEQ 12) pops an item o� the stak and if it is 0,inrements the program ounter by 12; otherwise it inrements it by 1. Thesimilarity of these instrutions to ertain JVM instrutions should be obvious,as should be the di�erenes: we ignore the di�erent types of LOAD (e.g., ILOAD,DLOAD, et.) and ADD instrutions, we ignore the �nite range of integer data, andwe ount program ounter o�sets in number of instrutions rather than numberof bytes. These and most of the other disrepanies between the urrent modeland the JVM are matters of detail that would not hange the basi struture ofthe model to �x and do not impat our ability to use the model to study prooftehniques. 2

(defun exeute-PUSH (inst th s)(modify th s:p (+ 1 (p (top-frame s th))):stak (push (arg1 inst)(stak (top-frame s th)))))Table 1: exeute-PUSHFor those readers urious to see how we de�ne the semantis of suh opera-tions in ACL2, see Table 1. It ontains the de�nition of the funtion exeute-PUSHwhih we use to give semantis to the PUSH instrution. The instrution (PUSH3) is omparable to ICONST 3 or BIPUSH 3 on the JVM.The funtion takes three arguments, named inst, s, and th. The �rst is thelist expression denoting the instrution. The �rst element of inst will always bethe symbol PUSH and the seond is the onstant that is to be pushed on the stakof the urrent frame. The seond argument of exeute-PUSH, s, is the JVMstate, onsisting of a thread table, a heap and a lass table. The third argument,th, is the number of the thread that is to be \stepped." Exeute-PUSH returnsthe state obtained by exeuting the PUSH instrution in the given thread of s. Itreates that state with the funtion make-state, whih takes three arguments:the thread table, the heap and the lass table of the state to be returned. Thelast two omponents of the new state above are the same as those in s. Thethread table is modi�ed by replaing the entry for th by another entry. Thatentry's all stak is obtained by replaing the topmost frame of the urrent allstak (notie we push a frame onto a stak obtained by popping one o�). In thenew frame, the program ounter is advaned by 1, the loals remain unhanged,the onstant (extrated from inst using the funtion arg1) is pushed on thestak, and the method program and synhronization ag are unhanged.The most ompliated instrution formalized in our model is INVOKEVIRTUAL.An example INVOKEVIRTUAL instrution on our mahine is represented by the liststruture (INVOKEVIRTUAL "ColoredPoint" "move" 2). Note that in plaeof the JVM's signature we provide only the number of parameters, sine weonsistently ignore type issues in this model. We paraphrase the de�nition ofexeute-INVOKEVIRTUAL by desribing the state it reates from an instrutionof the form below, a state s , and a thread number th.(INVOKEVIRTUAL name n): Let ref be the item n deep in the stak. Thisis expeted to be a heap referene to an instane objet, obj . Let lass bethe lass of this objet (the �rst key in the table, i.e., the name of the mostspei� lass in the objet's lass hierarhy). Use the funtion lookup-methodto determine from the lass-table of s the losest method with name name inlass or its superlass hain. Let formals and body be the formal parametersand byteoded body of the losest method. Let formals 0 be formals with thenew symbol THIS added to the front.Create a new all stak, s 0, from the all stak of thread th in s by replaingthe topmost frame by a new frame in whih the program ounter has been3

inremented by one and n + 1 items have been popped o� the stak. Createanother all stak, s 00, by pushing a new frame onto s 0. This new frame shouldhave a program ounter of 0 and an empty stak. The loals of the new frameshould bind formals 0 to the topmost n + 1 items removed from the stak in s(above), the deepest of whih is bound to THIS. The byteoded body of theframe should be body . We will use s 0 and s 00 in various ases below and wewill not be interested in s 00 unless the losest method is non-native. Considerthe following ases.� The losest method is native: We support only two native methods,"start" and "stop" from the "Objet" lass. We desribe only the �rsthere. In this ase, obj should inlude the lass "Thread" in its super-lass hain. The new state onstruted by the "start" method has thesame heap and lass table as s . The thread table is hanged in two ways.First, the all stak of th is replaed by s 0 above (stepping over theINVOKEVIRTUAL). Seond, the thread th 0 uniquely assoiated with obj ishanged so that its sheduled ag is SCHEDULED.� The losest method is a synhronized method: Feth the ontents of the"monitor" and "mount" �elds in the "Objet" lass of obj . If the mountis 0 or the mount is non-0 but the monitor is th, then we say obj is\available" to th . If obj is available to th, then the new state is obtainedfrom s by replaing the all stak with s 00 after setting the syn-flgomponent of the top frame to LOCKED, and by replaing the heap of swith a heap in whih the "mount" �eld of the objet at ref has beeninremented by one and the "monitor" �eld has been set to th. If, onthe other hand, obj is unavailable, then the \new" state is s itself. Thus,the thread hangs at the INVOKEVIRTUAL instrution until obj beomesavailable. We do not speify the sheduler; instead, our model allows allpossible interleavings of thread exeutions and some thread states (as theone just desribed) make no hange if stepped before progress is possible.� Otherwise, the new state is obtained from s by replaing the all stak withs 00 after setting the syn-flg omponent of the top frame to UNLOCKED.Given exeute-PUSH, the reader an presumably imagine how this desriptionis oded in ACL2.We formalize a variety of instrutions in this style, inluding POP, LOAD,STORE, ADD, MUL, GOTO, IFEQ, IFGT, RETURN, XRETURN, NEW, GETFIELD, PUTFIELD,MONITORENTER, and MONITOREXIT. For eah suh opode op we de�ne an ACL2funtion exeute-op that takes the instrution, urrent state, and thread num-ber and returns the next state.We then de�ne step to be the funtion that takes a state and a threadnumber and exeutes the next instrution in the given thread, provided thatthread exists and is SCHEDULED. Step is essentially a \big swith" on the opodeof the instrution indiated by the program ounter and method body in thetop frame of the all stak of the given thread.4

Finally we de�ne run to take a \shedule" and a state and return the resultof stepping the state aording to the given shedule. A shedule is just a list ofnumbers, indiating whih thread is to be stepped next. That is, our model putsno onstraints on the JVM thread sheduler; however stepping a non-existent,UNSCHEDULED, or otherwise bloked thread is a no-op. We �nd it onvenient alsoto de�ne (runn n shedule s) to run the �rst n steps of shedule starting instate s.The omplete ACL2 soure text for our mahine is available from http://-www.s.utexas.edu/users/moore/publiations/m4/index.html.Our model omits many features of the JVM. Among the more glaring omis-sions are aurate support for the JVM primitive data types like ints, doubles,arrays, et., support for syntati typing both in the naming onvention in theinstrution set (e.g., IADD versus DADD) and �eld and method signatures, lassloading and initialization, INVOKESTATIC (with the onomitant requirementthat lasses have representative instane objets in the heap upon whih syn-hronization an be arranged), exeption handling, and errors. Experiene withother ommerial miroproessor models leads us to believe that these featuresould be added to our model without fundamentally hanging its basi stru-ture. There is no doubt that they greatly ompliate the model and wouldompliate proofs about programs that use the features in question. That isone of the reasons we left them out. Our model is adequate however as a vehilefor studying basi mehanized proof tehniques for dealing with Java programs,inluding multi-threaded appliations.2 A Commuting Diagram Between M3 and M4Proving properties of a multi-threaded system is ompliated by the fat that thethreads an interat in numerous ways. The exat inter-leavings of the threadsis not known before runtime, and so all possible interations must be onsideredin proving its orretness. It would be bene�ial to separate the threads, proveeah of them orret independently of the other threads, and then onlude thatthe resulting multi-threaded state is orret. Often this is impossible, sine thethreads are intertwined and depend on eah other. However, if it were knownthat the threads did not destrutively interfere with eah other, then eah threadould be proved orret independently of the others. This is the driving forebehind our ommuting diagram Main, whih is given below.S3 (m3 (upshed shed))�������������! S03upx?? upx?? ??ydownS4 �������!(m4 shed) S04The formal expression of this diagram is presented at the end of this setion,but for now onsider a multi-threaded state S4. Running the state aording5

to shedule shed results in a new state S04. We have de�ned a funtion upthat transforms ertain types of \single-threaded" M4 states into M3 states. Aprediate singp determines if a state is \single-threaded". Currently, \single-threaded" states are those states in whih no Thread objets have their startor stop methods invoked, only thread 0 is sheduled, and in whih there are nosynhronized or native methods. This de�nition is obviously restritive, and ourhope is that in time the singp prediate an be generalized to reognize otherstates that meet its riteria yet have multiple sheduled threads, for instane.Some of its restritions have to do with the transformation into an M3 state,sine M3 does not support native or synhronized methods, for example.Given the up funtion, an M4 state is transformed (with loss of informationabout the non-sheduled threads) into an M3 state, whih is then run via the m3mahine and the omponent of the shedule that relates to thread 0 (shed').The resulting state an be transformed in a straightforward way bak into anM4 state via down. That resulting state is the same as S04 in terms of thread 0,however information about the unsheduled threads is lost.We now present the de�nitions of up, down, singp, almost-equal, and theommuting diagram Main.(defun up (s)(m3::make-state (ar (binding 0 (m4::thread-table s)))(m4::heap s)(m4::lass-table s)))Up transforms M4 states into M3 states. Note that the lass-tables and heapsare the same in both ases, and that only thread 0 is lifted out of the threadtable and set as M3's all-stak.(defun down (s)(m4::make-state (bind 0 (list (m3::all-stak s)'JVM::SCHEDULEDnil)nil)(m3::heap s)(m3::lass-table s)))Down is naturally the opposite of up, taking M3's all-stak and setting itas the only element of M4's thread-table. The heap and lass-table remainunhanged.(defun singp (s)(and (at-most-thread0-sheduledp (thread-table s))(asso-equal 0 (thread-table s))(equal (addr (asso-equal 0 (thread-table s)))'JVM::SCHEDULED)(no-starts-in-frames (ar (binding 0 (thread-table s))))(no-starts-in-lass-table (lass-table s))6

(no-byteodex-in-frames'JVM::MONITORENTER (ar (binding 0 (thread-table s))))(no-byteodex-in-lass-table'JVM::MONITORENTER (lass-table s))(no-byteodex-in-frames'JVM::MONITOREXIT (ar (binding 0 (thread-table s))))(no-byteodex-in-lass-table'JVM::MONITOREXIT (lass-table s))(no-loked-frames-in-frames(ar (binding 0 (thread-table s))))(no-loked-frames-in-lass-table (lass-table s))(no-other-native-methods-in-lass-table (lass-table s))))Singp is the formal de�nition of a prediate that identi�es \single-threaded"M4 states. Let us onsider eah of its onjunts. The �rst three assert that theM4 state has exatly one sheduled thread, namely thread 0. The next twoonjunts ensure that there are no methods named start or stop invoked onany objets in the state. Following that are four onjunts that hek for thebyteodes MONITORENTER and MONITOREXIT. These byteodes are not allowedsine M3 does not support them. Following the four heks just desribed aretwo onjunts that hek that there are no synhronized methods. Again, sineM3 does not support synhronized methods, we annot allow our M4 state toontain synhronized methods. Lastly, singp asserts that there are no nativemethods in the M4 state, sine again M3 does not support native methods.There is one last de�nition needed before we an present the ommutativediagram. Reall that up and down are not exat inverses, sine up loses in-formation (it disards all threads exept thread 0). Thus we annot say that(down (up s)) = s. It is the ase that (down (up s)) is the same as s, in thesense that the heaps are the same, the lass-tables are the same, and thread 0is the same. The only di�erene is that s may have many unsheduled threads,while (down (up s)) has only one sheduled thread, thread 0. We formulate aprediate almost-equal that aptures this meaning of \equal."(defun almost-equal (s4 s4p)(and (equal (all-stak 0 s4p)(all-stak 0 s4))(equal (heap s4) (heap s4p))(equal (lass-table s4) (lass-table s4p))))We now present the formal de�nition of our ommutative diagram, Main:(defthm main(implies (singp s)(almost-equal (down (m3::m3 (up s) (upshed sh)))(m4 s sh))):hints(("Goal" :in-theory (disable down up upshed7

m3::m3 m4 almost-equal singp):use ((:instane l2 (s (m4 s sh)))))))2.1 Using the Diagram to Port a Theorem from M3 toM4Imagine that you have a theorem about a property of an M3 state. How anyou apply this theorem to an M4 state, given Main? In the short disussion tofollow, we will desribe the proess of using Main to bring a given theorem overto the domain of M4. As a spei� example, we will port a theorem about theFatorial funtion:(defthm fat-is-orret(implies (poised-to-invoke-fat s0 n)(equal(m3 (fat-lok n) s0)(make-state(push (make-frame(+ 1 (p (top-frame s0)))(loals (top-frame s0))(push (al2::fatorial n)(pop (pop (stak (top-frame s0)))))(program (top-frame s0))'JVM::UNLOCKED)(pop (all-stak s0)))(heap s0)(lass-table s0)))):hints (("Goal":indut (fat-is-orret-hint s0 n))))This theorem says that if a state s0 is poised to invoke the fat instanemethod (reall we do not have INVOKESTATIC) on an integer n, the result isthe same as if we had pushed n! onto the stak (removing the instane objet'sreferene) and inremented the p. In other words, we are stating that theJVM byteodes that omprise the Fat method orretly arry out the fatorialfuntion.Bringing this theorem to the domain of M4 involves several steps, some ofwhih relate spei�ally to our fatorial example, while others are \generi"and apply to any theorems we might try to port to M4. There are two basitheorems that we must prove related to Fatorial:� First, we must show that the (poised-to-invoke-fat s0 n) given asa hypothesis in the above theorem is a result of establishing a similarproperty (m4::poised-to-invoke-fat 0 s n). We do this via:(defthm ondition1 8

(implies (m4::poised-to-invoke-fat 0 s n)(m3::poised-to-invoke-fat (up s) n)):hints (("Goal" :in-theory (enable m3::top))))� One that is established, we must show that the (fat-lok n) men-tioned in fat-is-orret is equal to the shedule that we give our M4state. This is done via our seond ondition:(defthm ondition2(equal (upshed (fat-shed 0 n)) (m3::fat-lok n)):hints (("Goal" :in-theory (enable m3::+-revealed))))One these two onditions are satis�ed, then a series of lemmas that are notspei� to Fatorial an establish the M4 version of our M3 theorem:(defthm fat-is-orret(implies (and (singp s0)(poised-to-invoke-fat 0 s0 n))(almost-equal(m4 (fat-shed 0 n) s0)(make-state(modify-tt 0(push (make-frame(+ 1 (p (top-frame 0 s0)))(loals (top-frame 0 s0))(push (al2::fatorial n)(pop(pop(stak (top-frame 0 s0)))))(program (top-frame 0 s0))'jvm::UNLOCKED)(pop (all-stak 0 s0)))'jvm::sheduled(thread-table s0))(heap s0)(lass-table s0)))):hints ...)One of those lemmas relates m3::top-frame to m4::top-frame in suh away that we know that the top frame of an M3 state is equal to the top frameof the 0th thread of the M4 state obtained by using up. A similar theorem ismade about all-stak.
9

3 The Proof of 'Main'3.1 Three LemmasTo prove the ommuting diagram, we had to �rst prove three lemmas, L1, L2,and L3. The proofs of these lemmas will be desribed in detail below, but �rstwe will present them and try to motivate their role in establishing Main. Then,we will prove Main given the lemmas. Finally, we will desribe their proofs.Lemma L1.(singp s)) (m3 (up s) (upshed sh)) = (up (m4 s sh))In many respets L1 is the hardest of the three lemmas to prove, sine itrelates M3 and M4 states. L1 says that transforming a \single-threaded" M4state s to the domain of M3 and running it with the appropriate shedule is thesame as running s on M4, and then transforming it to the domain of M3.Upshed is an ACL2 funtion that turns an M4 shedule into an M3 shedule,by stepping the mahine the exat number of times 0 appears in sh.Lemma L2.(singp s)) (down (up s)) � sThe most straight-forward of the three lemmas, L2 relates down to up, in thesense of almost-equal (�).Lemma L3.(singp s)) (singp (m4 s sh))L3 simply says that \single-threadedness" is preserved over the mahine M4.This lemma is important sine without it, we would be unable to reason aboutthe mahine after its �rst step.3.2 The Derivation of \Main"Reall the statement of Main:Theorem Main.(singp s0)) (down (m3 (up s0) (upshed sh))) � (m4 s0 sh)Proof:Assume[1℄ (singp S0)By L3 we have[2℄ (singp (m4 s0 sh)) 10

Thus, by L1 and [1℄ we have[3℄ (m3 (up s0) (upshed sh)) = (up (m4 s0 sh))Applying down to both sides of [3℄ gives[4℄ (down (m3 (up s0) (upshed sh))=[5℄ (down (up (m4 s0 sh)))By L2 and [2℄ we get[5℄ (down (up (m4 s0 sh)))�[6℄ (m4 s0 sh)Thus, [4℄ � [6℄.Q.E.D.Having derived 'Main', we now turn our attention to eah of the three lemmasin turn.3.3 L1Reall the de�nition of lemma L1. L1 asserts that if a state s is \single-threaded"aording to singp, then running s on mahine m4 and transforming it to thedomain of M3 is the same as transforming s to the domain of M3 and runningit (with the appropriate shedule). To prove suh a statement, we follow thedesign of the mahines themselves. First, note that the mahines m3 and m4exeute via repeated step operations. Thus, we prove a step version of lemmaL1, and then generalize it to the mahine via indution. The step lemma weprove is given by:Lemma. L1-lemma2:(implies (singp s)(equal (M3::step3 (up s))(up (step4 0 s))))Step3 and step4 both at as large \swith" statements, fething the nextbyteode and exeuting the related EXECUTE-op funtion on the state, whereop is the name of the byteode. Thus to prove the theorem above, we de�neand prove lemmas for eah byteode. We then disable the de�nitions of theEXECUTE-op funtions, and L1-lemma2 follows from the fat that step3 andstep4 open up into a ase for eah byteode, and we have lemmas already provenfor eah of these ases. Let us onsider the lemma related to the byteode ADD.Lemma. L1-lemma2-EXECUTE-ADD:(implies (singp s)(equal (M3::EXECUTE-ADD inst (up s))11

(up (M4::EXECUTE-ADD inst 0 s))))Most of the byteodes suh as ADD and PUSH were proved with minimal dif-�ulty. The notable exeption was INVOKEVIRTUAL, whih had to be treateddi�erently, due in part to its sophistiation, and in part to its role in the a-tivation of threads in the JVM. Reall that in Java, threads are reated viainstantiating objets of the Thread lass (or implementing the Runnable inter-fae, although our model does not support interfaes). The threads reated byinstantiating those objets do not start out sheduled, they must expliitly bestarted via invoking their start methods. Invoking their stop methods ausesthem to beome unsheduled. To preserve \single-threadedness", we must pre-vent threads from hanging their sheduled status. Currently, we ahieve thisby preventing the invoation of any method named start or stop. Note thisrestrition in the statement of L1-lemma-EXECUTE-INVOKEVIRTUAL:Lemma. L1-lemma-EXECUTE-INVOKEVIRTUAL:(implies (and (singp s)(not (equal (addr inst) "start"))(not (equal (addr inst) "stop")))(equal (M3::EXECUTE-INVOKEVIRTUAL inst (up s))(up (M4::EXECUTE-INVOKEVIRTUAL inst 0 s))))To prove the above lemma, we had to establish the fat that singp does in-deed assert that no start or stopmethods are invoked anywhere in the program(and thus the seond and third hypotheses are satis�ed). Singp uses reursivefuntions to hek that start and stop methods are not invoked anywhere inthe lass-table or thread-table. To admit l1-lemma-EXECUTE-INVOKEVIRTUAL,we thus had to prove that those reursive funtions established that any instru-tion that INVOKEVIRTUAL has the opportunity to exeute is not start or stop.We did this by relating the reursive funtion no-starts-in-lass-table,whih appears as part of singp, to the M4 funtion LOOKUP-METHOD-IN--SUPERCLASSES. One that relation was established, it was lear that when singpholds, LOOKUP-METHOD-IN-SUPERCLASSES will not return an instrution thatinvokes start or stop methods. Thus we showed that singp established hy-potheses two and three of L1-lemma-EXECUTE-INVOKEVIRTUAL. One that wasompleted, the lemma was admitted.Having proved all of the byteode-level lemmas, the step lemma given abovewas admitted easily, via a ase analysis. Via indution over the step lemma,L1-lemma2 was admitted to the theorem prover.There is one more detail related to L1 that bears inspetion. The funtionupshed transforms an M4 shedule (whih is a list of natural numbers) into anatural number that represents the number of times that the M3 state shouldbe stepped. But what of non-zero elements of shed? Upshed disards them,and so we must show that they do not alter our \single-threaded" state. Weadmit another lemma stating this very fat:12

Lemma. L1-lemma1:(implies (and (singp s)(not (equal th 0)))(equal (step4 th s) s)))We now turn our attention to the other two lemmas, L2 and L3.3.4 L2In the last step of the derivation of Main, we took advantage of the fat that ifa state s is \single-threaded", then it is \equal" (in the almost-equal sense)to (down (up s)). L2 establishes this fat.Lemma. L2:(implies (singp s)(almost-equal (down (up s)) s))The proof follows in a straight-forward manner from the de�nitions of up,down, and almost-equal.3.5 L3L3 establishes the fat that \single-threadedness" is preserved over the mahinem4. Sine L2 and L3 have singp as a hypothesis, it is important that we establishthat singp is preserved over step4. Otherwise, one we step the mahine, wean no longer apply lemmas L1 and L2.The proof for L3 is very similar to the proof of L1. First, we must prove thestep-version of lemma:Lemma. L3-lemma:(implies (singp s)(singp (step4 th s)))From L3-lemma, we use indution to establish L3. We prove the step-versionof L3 as we did with L1, namely we prove the property over eah of the byteodes.By then disabling the de�nitions of eah of the EXECUTE-op funtions, L3-lemmaopens into a ase for eah byteode, for whih we have our byteode-level proofsompleted. An example of a straightforward byteode that we prove is given byADD:Lemma. L3-lemma-EXECUTE-ADD:(implies (singp s)(singp (exeute-add inst 0 s))))As before, we had to treat INVOKEVIRTUAL speially. In a manner simi-lar to L1, we related the reursive funtions given in singp to the methodthat INVOKEVIRTUAL is alled to at on. After establishing that singp ensures13

that INVOKEVIRTUAL only gets \well formed" methods, we were able to admitL3-lemma-EXECUTE-INVOKEVIRTUAL. One this was aomplished, we ould es-tablish L3-lemma, and thus L3.Proving the three lemmas led diretly to the proof of Main, following theproof outline given above.4 DisussionThe previous setion presented the proof of Main. We now disuss severalproblems we enountered in trying to prove Main, and show how their solutionsmade their way into the �nal statement of Main and its proof. We will alsoinlude unexpeted results that only ame to light during the proof attempt.4.1 Pakages and Identi�ersOne of the most surprising and interesting behaviors we disovered while prov-ing Main relates to the way ACL2 handles pakages. We de�ned the mahinesM3 and M4 in pakages M3 and M4, respetively. As the proof of Main de-veloped, we realized that ertain identi�ers in our states were not global, butrather grounded in a ertain pakage. Consider for example identi�ers suh asLOAD, PUSH, THIS, and LOCKED. In reality, in the M4 model these are M4::LOAD,M4::PUSH, M4::THIS, and M4::LOCKED. But in the M3 model, the identi�ersare represented by M3::LOAD, M3::PUSH, M3::THIS, and M3::LOCKED. When wetried to draw a orrespondene between an M3 program and an M4 programthat look idential, we realized that in fat they are not! Consider the followingM3 program fragment:(NEW "Alpha")(PUSH 1)(PUSH 2)(ADD)(STORE A)(LOAD A)Now the program is really represented by:(M3::NEW "Alpha")(M3::PUSH 1)(M3::PUSH 2)(M3::ADD)(M3::STORE A)(M3::LOAD A)But in M4 eah of the instrutions are in the M4 pakage. To ontinue thisidea, we realized that in a given program when we refer to THIS in the M3pakage, we mean for that to be the same THIS in the M4 pakage. To orret14

this problem, we de�ne a new pakage JVM. We always refer to identi�ers in theJVM pakage, so that from either M3 or M4 we an refer to the same logialobjet, for example JVM::THIS.We had not onsidered this behavior before starting on the proof, and in fatdid not realize it until deep into the proof attempt. This is one of the bene�tsto using formal proof tehniques|they are often a good way to disover theunknown behaviors of a given formal system.A perfet example of this fat relates to a areless mistake we made duringthe de�nition of M4. In M3, there is a DUP byteode, whih dupliates the itemon the top of the stak of the topmost frame in the all-stak. By our omission,there was no suh operation in M4, and so ACL2 failed on the proof attempt,trying to relate an M4 state to an M3 state in whih the DUP byteode had beenexeuted. Sine M4 had no DUP byteode, this relation was doomed to failure.One we added DUP to M4, the proof went through.Some would suggest that if we had been more areful, this failure would havebeen avoided. They are right. However, attempting to live a life free of mistakesis hopeless, and so a tehnique like automati proof heking is a valuable aidin �nding and orreting mistakes.4.2 Thread ShedulingWhen we �rst started thinking about Main, we realized that our multithreadedstates ould have at most one sheduled thread. This restrition was the �rstto make up singp. It wasn't until we failed to prove L1 that we realized thatwe had to make a stronger statement. To admit Main, we had to make surethat exatly one thread is sheduled in a given state. Why is this restritionneessary?Reall that stepping an unsheduled thread in M4 has no e�et (it is a \no-op"). Note that M3 behaves di�erently, in that eah step in fat modi�es themahine. Consider an M4 state in whih no thread is sheduled. Stepping anyof its threads leave the state unhanged, sine m4 will not step unsheduledthreads. On the other hand, transforming the state to the domain of M3 andstepping it there will modify the state, sine all sheduling information is lostduring the translation.So for this reason we had to tighten our de�nition of \single-threaded". Thisaddition an be seen in the third onjunt of singp.4.3 Omissions from singpThere were three additional re�nements made to singp during the developmentof Main. Eah of these re�nements prevented features of M4 from interferingwith the translation of multithreaded states to the domain of M3.First, we had to prevent \single-threaded" states from ontaining nativemethods (other than start and stop, whih are expliitly forbidden). M3 doesnot support native methods, and so it is impossible to translate states thatdepend on native methods to the domain of M3.15

Seondly, we disallowed synhronized methods from our M4 states. Re-member that when a synhronized method is invoked, the JVM automatiallyobtains loks on the instane objet. M3 does not support monitors, and so itwould be unable to obtain these loks. One idea would be to make synhro-nized method invoation behave just like non-synhronized method invoationon M3. If this were the ase then invoking synhronized methods on M4 wouldhange the heap (in terms of the monitor in the instane objet), however therewould be no analogous modi�ation to the M3 heap. We feel that keeping thesynhronized methods would thus be unsatisfatory, sine the heap would betreated di�erently between M3 and M4.The last omission is related to the seond, namely we overlooked MONITOR-ENTER and MONITOREXIT. Again, we ould have made these byteodes no-opson M3, however we would be in a situation where these byteodes modify theheap in M4, yet leave the heap unhanged in M3. In reality MONITORENTERand MONITOREXIT hange the heaps in ways that the threads annot detet.(In Java there is no way to determine the status of a given monitor{they areopaque objets). As mentioned in the following setion, it might be bene�ial tointrodue a more powerful up that an modify M4 heaps into forms that workbetter with M3.Eah of these re�nements tightened our notion of \single-threadedness", andone they were introdued, we were able to establish Main.4.4 A Faulty all-stak-rrefDuring the development of Main, we deided to alter the order of arguments toM4. During this proess, we overlooked all-stak-rref, a funtion usedby M4. This funtion, given a thread and a thread-table, returns a refer-ene to the thread's assoiated objet in the heap. Interestingly, the faultyall-stak-rref did not prevent M4 or Main from ertifying properly. Thepresene of the bug was only disovered during an attempt to �nd a state S0that satis�es both of the hypotheses of the theorem about Fatorial. Before thisattempt was made, the hypotheses were in fat unsatis�able, and thus the theo-rem was vauous! Luky for us the faulty funtion did not ause other problemsin the erti�ation proess, and one the bug was disovered and repaired wewere able to reertify all of our books. We now know that there is at least onestate (namely S0) that satis�es the hypotheses of our theorem about Fatorial.5 Suggestions for future workDuring the development of Main, we thought of several opportunities to improveour work. We present them in the hopes that our work will beome moreappliable to \real-world" appliations involving multithreaded JVM programs.An obvious plae to begin improving our theorem is in the de�nition ofsingp. Reall that singp ats as a prediate that identi�es \single-threaded"states. Currently, the methods used to make that determination are somewhat16

rude. We prevent our program from invoking methods alled start or stop.We do not allow synhronized methods. What singp is really looking for arestates in whih the threads do not interfere with eah other. Currently, there arestates that meet that riteria that singp rejets. For example, onsider a statein whih several threads are all sheduled, yet none of them modify the heap.It would be pro�table to inrease the sophistiation in whih singp deides if agiven state is \single-threaded". This would allow more states to pass throughsingp.Another avenue of improvement involves the translation of states betweenM3 and M4. Reall that urrently, up and down do not modify the lass-table orheap of the state they are transforming. Furthermore, they modify the thread-table only in that up lifts out thread 0, and down onstruts a thread-table froman M3 all-stak. It would be advantageous to inrease the sophistiation ofthese two funtions. Perhaps up ould modify the heap in a way that removesall monitors from the objets. Sine we already know that the state in questionis \single-threaded", we would not have to worry about ontention of loks. If wehad suh an up, then we would be able to add MONITORENTER and MONITOREXITto M3, making them no-ops. Thus we ould then remove singp's restritionsabout states that ontain those byteodes.These two additions to our model and our proof would ertainly improvethe utility of Main. We hope that, in time, they will be added to Main and theJVM model.6 AknowledgmentsI would like to thank those who have helped and supported me while learningACL2, working on this projet, and writing this paper. I am espeially gratefulto J Strother Moore, for spending ountless hours with me on M4 and this proof,for developing the theorems that allow Main to port theorems from M3 to M4,and for supporting me in my eduational goals. I would also like to thank BobBoyer for his advie and aid, and for reading this paper. Finally, I would liketo thank my family for their 22 years of onstant love and support.Referenes[1℄ J. Gosling, B. Joy, and G. Steele. The Java Language Spei�ation. Addison-Wesley, 1996.[2℄ T. Lindholm and F. Yellin. The Java Virtual Mahine Spei�ation (SeondEdition). Addison-Wesley, 1999.[3℄ J S. Moore and G. Porter. An exeutable formal JVM thread model. InProeedings of the USENIX Java Virtual Mahine Researh and TehnologySymposium, April 2001. 17

A M31 ; Abstrat Mahine 3; M3 is M2 exept that we now have the heap, lasses and invokevirtual.; $Id: m3.lisp,v 1.13 2001/04/10 03:45:41 george Exp $5 #|(defpkg "JVM" '(nil t))(defpkg "M3"10 (set-differene-equal(union-eq '(ASSOC-EQUAL LEN NTH ZP SYNTAXPQUOTEP FIX NFIX E0-ORDINALP E0-ORD-<)(union-eq *al2-exports**ommon-lisp-symbols-from-main-lisp-pakage*))15 '(PC PROGRAM PUSH POP REVERSE STEP ++)))(ertify-book "m3" 2)|#20 (in-pakage "M3"); Utilities25 ; Staks(defun push (obj stak) (ons obj stak))(defun top (stak) (ar stak))(defun pop (stak) (dr stak))30 (defthm staks(and (equal (top (push x s)) x)(equal (pop (push x s)) s)))(in-theory (disable push top pop))35 ; Alists(defun bound? (x alist) (asso-equal x alist))(defun bind (x y alist)40 (ond ((endp alist) (list (ons x y)))((equal x (ar (ar alist)))(ons (ons x y) (dr alist)))(t (ons (ar alist) (bind x y (dr alist))))))18

45 (defun binding (x alist) (dr (asso-equal x alist))); Instrutions(defun op-ode (inst) (ar inst))(defun arg1 (inst) (ar (dr inst)))50 (defun arg2 (inst) (ar (dr (dr inst))))(defun arg3 (inst) (ar (dr (dr (dr inst))))); M3 States(defun make-state (all-stak heap lass-table)55 (list all-stak heap lass-table))(defun all-stak (s) (nth 0 s))(defun heap (s) (nth 1 s))(defun lass-table (s) (nth 2 s))60 (defthm states(and (equal (all-stak (make-state s h)) s)(equal (heap (make-state s h)) h)(equal (lass-table (make-state s h)))))65 (in-theory (disable make-state all-stak heap lass-table)); Frames(defun top-frame (s) (top (all-stak s)))70 (defun p (frame) (nth 0 frame))(defun loals (frame) (nth 1 frame))(defun stak (frame) (nth 2 frame))(defun program (frame) (nth 3 frame))75 (defun syn-flg (frame) (nth 4 frame))(defun make-frame (p loals stak program syn-flg)(list p loals stak program syn-flg))80 (defthm frames(and(equal (p (make-frame p l s prog syn-flg)) p)(equal (loals (make-frame p l s prog syn-flg)) l)(equal (stak (make-frame p l s prog syn-flg)) s)85 (equal (program (make-frame p l s prog syn-flg)) prog)(equal (syn-flg (make-frame p l s prog syn-flg)) syn-flg)))(in-theory (disable make-frame p loals stak program syn-flg))90 (defun next-inst (s) 19

(nth (p (top-frame s)) (program (top-frame s)))); Class Delarations(defun make-lass-del (name superlasses fields methods)95 (list name superlasses fields methods))(defun lass-del-name (dl)(nth 0 dl))(defun lass-del-superlasses (dl)100 (nth 1 dl))(defun lass-del-fields (dl)(nth 2 dl))(defun lass-del-methods (dl)(nth 3 dl))105 ; This is a base set of lasses that are 'built in' to M3 states(defun base-lass-def ()(list (make-lass-del "Objet"nil110 '("monitor" "mount" "wait-set")nil)(make-lass-del "Thread"'("Objet")nil115 '(("run" () nil(jvm::return))("start" () nil ())("stop" () nil ())))))120 (defun make-lass-def (list-of-lass-dels)(append (base-lass-def) list-of-lass-dels))(defun method-name (m)(nth 0 m))125 (defun method-formals (m)(nth 1 m))(defun method-syn (m)(nth 2 m))(defun method-program (m)130 (dddr m)); The Standard Modify(defun suppliedp (key args)135 (ond ((endp args) nil)((equal key (ar args)) t)20

(t (suppliedp key (dr args)))))(defun atual (key args)140 (ond ((endp args) nil)((equal key (ar args)) (adr args))(t (atual key (dr args)))))(defmaro modify (s &rest args)145 (list 'make-state(ond ((suppliedp :all-stak args)(atual :all-stak args))((or (suppliedp :p args)(suppliedp :loals args)150 (suppliedp :stak args)(suppliedp :program args)(suppliedp :syn-flg args))(list 'push(list 'make-frame155 (if (suppliedp :p args)(atual :p args)(list 'p (list 'top-frame s)))(if (suppliedp :loals args)(atual :loals args)160 (list 'loals (list 'top-frame s)))(if (suppliedp :stak args)(atual :stak args)(list 'stak (list 'top-frame s)))(if (suppliedp :program args)165 (atual :program args)(list 'program (list 'top-frame s)))(if (suppliedp :syn-flg args)(atual :syn-flg args)(list 'syn-flg (list 'top-frame s))))170 (list 'pop (list 'all-stak s))))(t (list 'all-stak s)))(if (suppliedp :heap args)(atual :heap args)(list 'heap s))175 (if (suppliedp :lass-table args)(atual :lass-table args)(list 'lass-table s)))); (PUSH onst)180 (defun exeute-PUSH (inst s)(modify s:p (+ 1 (p (top-frame s)))21

:stak (push (arg1 inst) (stak (top-frame s)))))185 ; (POP)(defun exeute-POP (inst s)(delare (ignore inst))(modify s:p (+ 1 (p (top-frame s)))190 :stak (pop (stak (top-frame s))))); (LOAD var)(defun exeute-LOAD (inst s)(modify s195 :p (+ 1 (p (top-frame s))):stak (push (binding (arg1 inst)(loals (top-frame s)))(stak (top-frame s)))))200 ; (STORE var)(defun exeute-STORE (inst s)(modify s:p (+ 1 (p (top-frame s))):loals (bind (arg1 inst)205 (top (stak (top-frame s)))(loals (top-frame s))):stak (pop (stak (top-frame s))))); (DUP)210 (defun exeute-DUP (inst s)(delare (ignore inst))(modify s:p (+ 1 (p (top-frame s))):stak (push (top (stak (top-frame s))) (stak (top-frame s)))))215 ; (ADD)(defun exeute-ADD (inst s)(delare (ignore inst))(modify s220 :p (+ 1 (p (top-frame s))):stak (push (+ (top (pop (stak (top-frame s))))(top (stak (top-frame s))))(pop (pop (stak (top-frame s)))))))225 ; (SUB)(defun exeute-SUB (inst s)(delare (ignore inst))(modify s 22

:p (+ 1 (p (top-frame s)))230 :stak (push (- (top (pop (stak (top-frame s))))(top (stak (top-frame s))))(pop (pop (stak (top-frame s))))))); (MUL)235 (defun exeute-MUL (inst s)(delare (ignore inst))(modify s:p (+ 1 (p (top-frame s))):stak (push (* (top (pop (stak (top-frame s))))240 (top (stak (top-frame s))))(pop (pop (stak (top-frame s))))))); (GOTO n)(defun exeute-GOTO (inst s)245 (modify s:p (+ (arg1 inst) (p (top-frame s))))); (IFEQ n)(defun exeute-IFEQ (inst s)250 (modify s:p (if (equal (top (stak (top-frame s))) 0)(+ (arg1 inst) (p (top-frame s)))(+ 1 (p (top-frame s)))):stak (pop (stak (top-frame s)))))255 ; (IFNE n)(defun exeute-IFNE (inst s)(modify s:p (if (equal (top (stak (top-frame s))) 0)260 (+ 1 (p (top-frame s)))(+ (arg1 inst) (p (top-frame s)))):stak (pop (stak (top-frame s))))); (IFGT n)265 (defun exeute-IFGT (inst s)(modify s:p (if (> (top (stak (top-frame s))) 0)(+ (arg1 inst) (p (top-frame s)))(+ 1 (p (top-frame s))))270 :stak (pop (stak (top-frame s))))); (IFLT n)(defun exeute-IFLT (inst s)(modify s 23

275 :p (if (< (top (stak (top-frame s))) 0)(+ (arg1 inst) (p (top-frame s)))(+ 1 (p (top-frame s)))):stak (pop (stak (top-frame s)))))280 ; (NEW lass)(defun build-lass-field-bindings (field-names)(if (endp field-names)nil(ons (ons (ar field-names) 0)285 (build-lass-field-bindings (dr field-names)))))(defun build-immediate-instane-data (lass-name lass-table)(ons lass-name(build-lass-field-bindings290 (lass-del-fields(bound? lass-name lass-table)))))(defun build-an-instane (lass-names lass-table)(if (endp lass-names)295 nil(ons (build-immediate-instane-data (ar lass-names) lass-table)(build-an-instane (dr lass-names) lass-table))))(defun exeute-NEW (inst s)300 (let* ((lass-name (arg1 inst))(lass-table (lass-table s))(new-objet (build-an-instane(ons lass-name(lass-del-superlasses305 (bound? lass-name lass-table)))lass-table))(new-address (len (heap s))))(modify s:p (+ 1 (p (top-frame s)))310 :stak (push (list 'JVM::REF new-address)(stak (top-frame s))):heap (bind new-address new-objet (heap s))))); (GETFIELD lass field)315 (defun deref (ref heap)(binding (adr ref) heap))(defun field-value (lass-name field-name instane)(binding field-name320 (binding lass-name instane)))24

(defun exeute-GETFIELD (inst s)(let* ((lass-name (arg1 inst))(field-name (arg2 inst))325 (instane (deref (top (stak (top-frame s))) (heap s)))(field-value (field-value lass-name field-name instane)))(modify s:p (+ 1 (p (top-frame s))):stak (push field-value330 (pop (stak (top-frame s))))))); (PUTFIELD lass field)(defun set-instane-field (lass-name field-name value instane)(bind lass-name335 (bind field-name value(binding lass-name instane))instane))(defun exeute-PUTFIELD (inst s)340 (let* ((lass-name (arg1 inst))(field-name (arg2 inst))(value (top (stak (top-frame s))))(instane (deref (top (pop (stak (top-frame s)))) (heap s)))(address (adr (top (pop (stak (top-frame s)))))))345 (modify s:p (+ 1 (p (top-frame s))):stak (pop (pop (stak (top-frame s)))):heap (bind address(set-instane-field lass-name350 field-namevalueinstane)(heap s)))))355 ; (INVOKEVIRTUAL lass method n)(defun reverse (lst)(if (onsp lst)(append (reverse (dr lst)) (list (ar lst)))nil))360 (defun bind-formals (rformals stak)(if (endp rformals)nil(ons (ons (ar rformals) (top stak))365 (bind-formals (dr rformals) (pop stak)))))25

(defun popn (n stak)(if (zp n)stak370 (popn (- n 1) (pop stak))))(defun lass-name-of-ref (ref heap)(ar (ar (deref ref heap))))375 (defun lookup-method-in-superlasses (name lasses lass-table)(ond ((endp lasses) nil)(t (let* ((lass-name (ar lasses))(lass-del (bound? lass-name lass-table))(method (bound? name (lass-del-methods lass-del))))380 (if methodmethod(lookup-method-in-superlasses name (dr lasses)lass-table))))))385 (defun lookup-method (name lass-name lass-table)(lookup-method-in-superlasses name(ons lass-name(lass-del-superlasses(bound? lass-name lass-table)))390 lass-table))(defun exeute-INVOKEVIRTUAL (inst s)(let* ((method-name (arg2 inst))(nformals (arg3 inst))395 (obj-ref (top (popn nformals (stak (top-frame s)))))(obj-lass-name (lass-name-of-ref obj-ref (heap s)))(losest-method(lookup-method method-nameobj-lass-name400 (lass-table s)))(vars (ons 'JVM::THIS (method-formals losest-method)))(prog (method-program losest-method))(s1 (modify s:p (+ 1 (p (top-frame s)))405 :stak (popn (len vars) (stak (top-frame s))))))(modify s1:all-stak(push (make-frame 0(reverse410 (bind-formals (reverse vars)(stak (top-frame s))))nil26

prog'JVM::UNLOCKED)415 (all-stak s1))))); (XRETURN)(defun exeute-XRETURN (inst s)(delare (ignore inst))420 (let ((val (top (stak (top-frame s))))(s1 (modify s:all-stak (pop (all-stak s)))))(modify s1:stak (push val (stak (top-frame s1))))))425 ; (RETURN)(defun exeute-RETURN (inst s)(delare (ignore inst))(modify s430 :all-stak (pop (all-stak s)))); The M3 Run Level(defun do-inst (inst s)(ase (op-ode inst)435 (JVM::PUSH (exeute-PUSH inst s))(JVM::POP (exeute-POP inst s))(JVM::LOAD (exeute-LOAD inst s))(JVM::STORE (exeute-STORE inst s))(JVM::DUP (exeute-DUP inst s))440 (JVM::ADD (exeute-ADD inst s))(JVM::SUB (exeute-SUB inst s))(JVM::MUL (exeute-MUL inst s))(JVM::GOTO (exeute-GOTO inst s))(JVM::IFEQ (exeute-IFEQ inst s))445 (JVM::IFNE (exeute-IFNE inst s))(JVM::IFGT (exeute-IFGT inst s))(JVM::IFLT (exeute-IFLT inst s))(JVM::NEW (exeute-NEW inst s))(JVM::GETFIELD (exeute-GETFIELD inst s))450 (JVM::PUTFIELD (exeute-PUTFIELD inst s))(JVM::INVOKEVIRTUAL (exeute-INVOKEVIRTUAL inst s))(JVM::XRETURN (exeute-XRETURN inst s))(JVM::RETURN (exeute-RETURN inst s))(otherwise s)))455 (defun step3 (s)(do-inst (next-inst s) s)) 27

(defun m3 (n s)460 (if (zp n)s(m3 (- n 1) (step3 s)))); Compile it all.465 ; (omp t); The idea is that a JVM programmer will do something like; (in-pakage "JVM"); and then he will type a program that looks like:470 ; ("fat" (n) nil (load this) ...); and really he has reated475 ; ("fat" (n) nil (jvm::load jvm::this) ...)

28

B M41 ; M4.lisp; J Strother Moore <moore�s.utexas.edu>; George Porter <george�s.utexas.edu>; $Id: m4.lisp,v 1.11 2001/04/10 03:45:41 george Exp $5 #|(defpkg "JVM" '(nil t))(DEFPKG "M4"10 (set-differene-equal(union-eq '(ASSOC-EQUAL LEN NTH ZP SYNTAXPQUOTEP FIX NFIX E0-ORDINALP E0-ORD-<)(union-eq *al2-exports**ommon-lisp-symbols-from-main-lisp-pakage*))15 '(PC PROGRAM PUSH POP REVERSE STEP ++)))(ertify-book "m4" 2)|#20 ; Notes:; Do JVM objets have an mount field? Can the user set them with; (putfield "Objet" "mount")? This mahine allows that, whih; an srew up monitors.25 ; --; Abstrat Mahine 4 - by George Porter and J Moore; $Id: m4.lisp,v 1.11 2001/04/10 03:45:41 george Exp $30 (in-pakage "M4"); ---; Utilities35 (defun push (obj stak) (ons obj stak))(defun top (stak) (ar stak))(defun pop (stak) (dr stak))40 #|(defthm staks(and (equal (top (push x s)) x)(equal (pop (push x s)) s)))29

45 (in-theory (disable push top pop)); Imported from ACL2.(defun asso-equal (x alist)50 (ond ((endp alist) nil)((equal x (ar (ar alist)))(ar alist))(t (asso-equal x (dr alist)))))|#55 (defun bound? (x alist) (asso-equal x alist))(defun bind (x y alist)(ond ((endp alist) (list (ons x y)))60 ((equal x (ar (ar alist)))(ons (ons x y) (dr alist)))(t (ons (ar alist) (bind x y (dr alist))))))(defun binding (x alist) (dr (asso-equal x alist)))65 (defun op-ode (inst) (ar inst))(defun arg1 (inst) (ar (dr inst)))(defun arg2 (inst) (ar (dr (dr inst))))(defun arg3 (inst) (ar (dr (dr (dr inst)))))70 ; Imported from ACL2#|(defun nth (i lst)(if (zp i)75 (ar lst)(nth (- i 1) (dr lst))))(defun zp (i)(if (integerp i) (<= i 0) t))80 |#(defun reverse (x)(if (onsp x)(append (reverse (dr x)) (list (ar x)))85 nil)); ---; States90 30

(defun make-state (thread-table heap lass-table)(list thread-table heap lass-table))(defun thread-table (s) (nth 0 s))(defun heap (s) (nth 1 s))95 (defun lass-table (s) (nth 2 s))(defthm states(and (equal (thread-table (make-state tt h)) tt)(equal (heap (make-state tt h)) h)100 (equal (lass-table (make-state tt h)))))(defthm states2(and (equal (thread-table (list tt h)) tt)(equal (heap (list tt h)) h)105 (equal (lass-table (list tt h)))))(in-theory (disable make-state thread-table heap lass-table))(defun all-stak (th s)110 (ar (binding th (thread-table s))))(defun all-stak-status (th s)(adr (binding th (thread-table s))))115 (defun all-stak-rref (th tt)(addr (binding th tt))); ---120 ; Class Delarations and the Class Table; The lass table of a state is an alist. Eah entry in a lass table is; a "lass delaration" and is of the form125 ; (lass-name super-lass-names fields defs); Note that the definition below of the Thread lass inludes a 'run' method,; whih most appliations will override. The definition is onsistent; with the default run method provided by the Thread lass [O'reily page xxx℄130 (defun make-lass-del (name superlasses fields methods)(list name superlasses fields methods))(defun lass-del-name (dl)135 (nth 0 dl))(defun lass-del-superlasses (dl)31

(nth 1 dl))(defun lass-del-fields (dl)(nth 2 dl))140 (defun lass-del-methods (dl)(nth 3 dl))(defun base-lass-def ()(list (make-lass-del "Objet"145 nil'("monitor" "mount" "wait-set")nil)(make-lass-del "Thread"'("Objet")150 nil'(("run" () nil(JVM::RETURN))("start" () nil ())("stop" () nil ())))))155 (defun make-lass-def (list-of-lass-dels)(append (base-lass-def) list-of-lass-dels)); ---160 ; Thread Tables;; A "thread table" might be used to represent threads in m4. It onsists of; a referene, a all stak, a flag to indiate whether its all-stak; should be stepped by the sheduler, and a ref to the original objet165 ; in the heap.;; Thread table:; ((n . (all-stak flag reverse-ref)); (n+1 . (all-stak flag reverse-ref)))170 ;; The flags 'JMV::SCHEDULED and 'JVM::UNSCHEDULED oorespond to two of the four states; threads an be in (aording to [O'Reily℄). For our model, this will; suffie.175 (defun make-tt (all-stak)(bind 0 (list all-stak 'JVM::SCHEDULED nil) nil))(defun modify-tt (th all-stak status tt)(bind th (list all-stak status (all-stak-rref th tt)) tt))180 (defun addto-tt (all-stak status heapRef tt)(bind (len tt) (list all-stak status heapRef) tt))32

(defun mod-thread-sheduling (th shed tt)185 (let* ((thrd (binding th tt))(olds (ar thrd))(oldhr (addr thrd))(newTH (list olds shed oldhr)))(bind th newTH tt)))190 (defun shedule-thread (th tt)(mod-thread-sheduling th 'JVM::SCHEDULED tt))(defun unshedule-thread (th tt)195 (mod-thread-sheduling th 'JVM::UNSCHEDULED tt))(defun rrefToThread (ref tt)(ond ((endp tt) nil)((equal ref (adddr (ar tt))) (aar tt))200 (t (rrefToThread ref (dr tt))))); --; Helper funtion for determining if an objet is a 'Thread' objet205 (defun in-list (item list)(ond ((endp list) nil)((equal item (ar list)) t)(t (in-list item (dr list)))))210 (defun isThreadObjet? (lass-name lass-table)(let* ((lass (bound? lass-name lass-table))(psupers (lass-del-superlasses lass))(supers (ons lass-name psupers)))(or (in-list "Thread" supers)215 (in-list "ThreadGroup" supers)))); --; Helper funtions for loking and unloking objets220 ; lok-objet and unlok-objet will obtain a lok on an instane; of an objet, using th as the loking id (a thread owns a lok). If th; already has a lok on an objet, then the mount of the objet is; inremented. Likewise if you unlok an objet with mount > 0, then; the lok will be deremented. Note: you must make sure that th an225 ; and should get the lok, sine this funtion will blindly go ahead and; get the lok(defun lok-objet (th obj-ref heap)33

(let* ((obj-ref-num (adr obj-ref))230 (instane (binding (adr obj-ref) heap))(obj-fields (binding "Objet" instane))(new-mount (+ 1 (binding "mount" obj-fields)))(new-obj-fields(bind "monitor" th235 (bind "mount" new-mount obj-fields)))(new-objet (bind "Objet" new-obj-fields instane)))(bind obj-ref-num new-objet heap)))(defun unlok-objet (th obj-ref heap)240 (let* ((obj-ref-num (adr obj-ref))(instane (binding (adr obj-ref) heap))(obj-fields (binding "Objet" instane))(old-mount (binding "mount" obj-fields))(new-mount (ACL2::max 0 (- old-mount 1)))245 (new-monitor (if (zp new-mount)0th))(new-obj-fields(bind "monitor" new-monitor250 (bind "mount" new-mount obj-fields)))(new-objet (bind "Objet" new-obj-fields instane)))(bind obj-ref-num new-objet heap))); objetLokable? is used to determine if th an unlok instane. This255 ; ours when either mount is zero (nobody has a lok), or mount is; greater than zero, but monitor is equal to th. This means that th; already has a lok on the objet, and when the objet is loked yet again,; monitor will remain the same, but mount will be inremented.;260 ; objetUnLokable? determins if a thread an unlok an objet (ie if it; has a lok on that objet)(defun objetLokable? (instane th)(let* ((obj-fields (binding "Objet" instane))(monitor (binding "monitor" obj-fields))265 (mount (binding "mount" obj-fields)))(or (zp mount)(equal monitor th))))(defun objetUnLokable? (instane th)270 (let* ((obj-fields (binding "Objet" instane))(monitor (binding "monitor" obj-fields)))(equal monitor th))); ---34

275 ; Frames(defun make-frame (p loals stak program syn-flg)(list p loals stak program syn-flg))280 (defun top-frame (th s) (top (all-stak th s)))(defun p (frame) (nth 0 frame))(defun loals (frame) (nth 1 frame))(defun stak (frame) (nth 2 frame))285 (defun program (frame) (nth 3 frame))(defun syn-flg (frame) (nth 4 frame))(defthm frames(and290 (equal (p (make-frame p l s prog syn-flg)) p)(equal (loals (make-frame p l s prog syn-flg)) l)(equal (stak (make-frame p l s prog syn-flg)) s)(equal (program (make-frame p l s prog syn-flg)) prog)(equal (syn-flg (make-frame p l s prog syn-flg)) syn-flg)))295 (in-theory (disable make-frame p loals stak program syn-flg)); ---; Method Delarations300 ; The methods omponent of a lass delaration is a list of method definitions.; A method definition is a list of the form; (name formals syn-status . program)305 ; We never build these delarations but just enter list onstants for them,; Note the similarity to our old notion of a program definition. We; will use strings to name methods now.310 ; syn-status is 't' if the method is synhronized, 'nil' if not; Method definitions will be onstruted by expressions suh as:; (Note: all of the symbols below are understood to be in the pkg "JVM".)315 ; ("move" (dx dy) nil; (load this); (load this); (getfield "Point" "x")320 ; (load dx) 35

; (add); (putfield "Point" "x") ; this.x = this.x + dx;; (load :this); (load :this)325 ; (getfield "Point" "y"); (load dy); (add); (putfield "Point" "y") ; this.y = this.y + dy;; (push 1)330 ; (xreturn))) ; return 1;; Provided this method is defined in the lass "Point" it an be invoked by; (invokevirtual "Point" "move" 2)335 ; This assumes that the stak, at the time of invoation, ontains an; referene to an objet of type "Point" and two numbers, dx and dy.; If a method delaration has an empty list for the program (ie- there are340 ; no byteodes assoiated with the method), then the method is onsidered; native. Native methods are normally written in something like C or; assembly language. The JVM would normally ensure that the orret number; and type of arguments are passed to the native method, and would then hand; over ontrol to C. In our model, we simply "hardwire" invokevirtual to345 ; to handle these methods.; * Note that a method in Java will never have 0 byteodes, sine even if; it has no body, it will onsist of at least the (xreturn) byteode.; The aessors for methods are:350 (defun method-name (m)(nth 0 m))(defun method-formals (m)(nth 1 m))355 (defun method-syn (m)(nth 2 m))(defun method-program (m)(dddr m))(defun method-isNative? (m)360 (equal '(NIL)(method-program m))); The Standard Modify365 (defun suppliedp (key args)(ond ((endp args) nil) 36

((equal key (ar args)) t)(t (suppliedp key (dr args)))))370 (defun atual (key args)(ond ((endp args) nil)((equal key (ar args)) (adr args))(t (atual key (dr args)))))375 (defmaro modify (th s &rest args)(list 'make-state(ond((or (suppliedp :all-stak args)(suppliedp :p args)380 (suppliedp :loals args)(suppliedp :stak args)(suppliedp :program args)(suppliedp :syn-flg args)(suppliedp :status args))385 (list 'modify-ttth(ond ((suppliedp :all-stak args)(atual :all-stak args))((and (suppliedp :status args)390 (null (ddr args)))(list 'all-stak th s))(t(list 'push(list 'make-frame395 (if (suppliedp :p args)(atual :p args)(list 'p (list 'top-frame th s)))(if (suppliedp :loals args)(atual :loals args)400 (list 'loals (list 'top-frame th s)))(if (suppliedp :stak args)(atual :stak args)(list 'stak (list 'top-frame th s)))(if (suppliedp :program args)405 (atual :program args)(list 'program (list 'top-frame th s)))(if (suppliedp :syn-flg args)(atual :syn-flg args)(list 'syn-flg (list 'top-frame th s))))410 (list 'pop (list 'all-stak th s)))))(if (suppliedp :status args)(atual :status args)37

''JVM::SCHEDULED)(list 'thread-table s)))415 ((suppliedp :thread-table args)(atual :thread-table args))(t (list 'thread-table s)))(if (suppliedp :heap args)(atual :heap args)420 (list 'heap s))(if (suppliedp :lass-table args)(atual :lass-table args)(list 'lass-table s))))425 ; ---; (PUSH onst) Instrution(defun exeute-PUSH (inst th s)(modify th s430 :p (+ 1 (p (top-frame th s))):stak (push (arg1 inst)(stak (top-frame th s))))); ---435 ; (POP) Instrution(defun exeute-POP (inst th s)(delare (ignore inst))(modify th s440 :p (+ 1 (p (top-frame th s))):stak (pop (stak (top-frame th s))))); ---; (LOAD var) Instrution445 (defun exeute-LOAD (inst th s)(modify th s:p (+ 1 (p (top-frame th s))):stak (push (binding (arg1 inst)450 (loals (top-frame th s)))(stak (top-frame th s))))); ---; (STORE var) Instrution455 (defun exeute-STORE (inst th s)(modify th s:p (+ 1 (p (top-frame th s)))38

:loals (bind (arg1 inst)460 (top (stak (top-frame th s)))(loals (top-frame th s))):stak (pop (stak (top-frame th s))))); ---465 ; (DUP) Instrution(defun exeute-DUP (inst th s)(delare (ignore inst))(modify th s470 :p (+ 1 (p (top-frame th s))):stak (push (top (stak (top-frame th s)))(stak (top-frame th s))))); ---475 ; (ADD) Instrution(defun exeute-ADD (inst th s)(delare (ignore inst))(modify th s480 :p (+ 1 (p (top-frame th s))):stak (push (+ (top (pop (stak (top-frame th s))))(top (stak (top-frame th s))))(pop (pop (stak (top-frame th s)))))))485 ; ---; (SUB) Instrution(defun exeute-SUB (inst th s)(delare (ignore inst))490 (modify th s:p (+ 1 (p (top-frame th s))):stak (push (- (top (pop (stak (top-frame th s))))(top (stak (top-frame th s))))(pop (pop (stak (top-frame th s)))))))495 ; ---; (MUL) Instrution(defun exeute-MUL (inst th s)500 (delare (ignore inst))(modify th s:p (+ 1 (p (top-frame th s))):stak (push (* (top (pop (stak (top-frame th s))))(top (stak (top-frame th s))))39

505 (pop (pop (stak (top-frame th s))))))); ---; (GOTO p) Instrution510 (defun exeute-GOTO (inst th s)(modify th s:p (+ (arg1 inst) (p (top-frame th s))))); ---515 ; (IFEQ p) Instrution(defun exeute-IFEQ (inst th s)(modify th s:p (if (equal (top (stak (top-frame th s))) 0)520 (+ (arg1 inst) (p (top-frame th s)))(+ 1 (p (top-frame th s)))):stak (pop (stak (top-frame th s))))); ---525 ; (IFNE p) Instrution(defun exeute-IFNE (inst th s)(modify th s:p (if (equal (top (stak (top-frame th s))) 0)530 (+ 1 (p (top-frame th s)))(+ (arg1 inst) (p (top-frame th s)))):stak (pop (stak (top-frame th s))))); ---535 ; (IFGT p) Instrution(defun exeute-IFGT (inst th s)(modify th s:p (if (> (top (stak (top-frame th s))) 0)540 (+ (arg1 inst) (p (top-frame th s)))(+ 1 (p (top-frame th s)))):stak (pop (stak (top-frame th s))))); ---545 ; (IFLT p) Instrution(defun exeute-IFLT (inst th s)(modify th s:p (if (< (top (stak (top-frame th s))) 0)550 (+ (arg1 inst) (p (top-frame th s)))40

(+ 1 (p (top-frame th s)))):stak (pop (stak (top-frame th s))))); ---555 ; (GETFIELD "lass" "field") Instrution(defun deref (ref heap)(binding (adr ref) heap))560 (defun field-value (lass-name field-name instane)(binding field-name(binding lass-name instane)))(defun exeute-GETFIELD (inst th s)565 (let* ((lass-name (arg1 inst))(field-name (arg2 inst))(instane (deref (top (stak (top-frame th s))) (heap s)))(field-value (field-value lass-name field-name instane)))(modify th s570 :p (+ 1 (p (top-frame th s))):stak (push field-value(pop (stak (top-frame th s))))))); ---575 ; (PUTFIELD "lass" "field") Instrution(defun set-instane-field (lass-name field-name value instane)(bind lass-name(bind field-name value580 (binding lass-name instane))instane))(defun exeute-PUTFIELD (inst th s)(let* ((lass-name (arg1 inst))585 (field-name (arg2 inst))(value (top (stak (top-frame th s))))(instane (deref (top (pop (stak (top-frame th s)))) (heap s)))(address (adr (top (pop (stak (top-frame th s)))))))(modify th s590 :p (+ 1 (p (top-frame th s))):stak (pop (pop (stak (top-frame th s)))):heap (bind address(set-instane-field lass-namefield-name595 valueinstane)41

(heap s))))); ---600 ; (INVOKEVIRTUAL "lass" "name" n) Instrution(defun bind-formals (rformals stak)(if (endp rformals)nil605 (ons (ons (ar rformals) (top stak))(bind-formals (dr rformals) (pop stak)))))(defun popn (n stak)(if (zp n)610 stak(popn (- n 1) (pop stak))))(defun lass-name-of-ref (ref heap)(ar (ar (deref ref heap))))615 (defun lookup-method-in-superlasses (name lasses lass-table)(ond ((endp lasses) nil)(t (let* ((lass-name (ar lasses))(lass-del (bound? lass-name lass-table))620 (method (bound? name (lass-del-methods lass-del))))(if methodmethod(lookup-method-in-superlasses name (dr lasses)lass-table))))))625 (defun lookup-method (name lass-name lass-table)(lookup-method-in-superlasses name(ons lass-name(lass-del-superlasses630 (bound? lass-name lass-table)))lass-table))(defun exeute-INVOKEVIRTUAL (inst th s)(let* ((method-name (arg2 inst))635 (nformals (arg3 inst))(obj-ref (top (popn nformals (stak (top-frame th s)))))(instane (deref obj-ref (heap s)))(obj-lass-name (lass-name-of-ref obj-ref (heap s)))(losest-method640 (lookup-method method-nameobj-lass-name(lass-table s)))42

(vars (ons 'jvm::this (method-formals losest-method)))(prog (method-program losest-method))645 (s1 (modify th s:p (+ 1 (p (top-frame th s))):stak (popn (len vars)(stak (top-frame th s)))))(tThread (rrefToThread obj-ref (thread-table s))))650 (ond((method-isNative? losest-method)(ond ((equal method-name "start")(modify tThread s1:status 'JVM::SCHEDULED))655 ((equal method-name "stop")(modify tThread s1:status 'JVM::UNSCHEDULED))(t s)))((and (method-syn losest-method)660 (objetLokable? instane th))(modify th s1:all-stak(push (make-frame 0(reverse665 (bind-formals (reverse vars)(stak (top-frame th s))))nilprog'JVM::LOCKED)670 (all-stak th s1)):heap (lok-objet th obj-ref (heap s))))((method-syn losest-method)s)(t675 (modify th s1:all-stak(push (make-frame 0(reverse(bind-formals (reverse vars)680 (stak (top-frame th s))))nilprog'JVM::UNLOCKED)(all-stak th s1)))))))685 ; ---; (NEW "lass") Instrution 43

(defun build-lass-field-bindings (field-names)690 (if (endp field-names)nil(ons (ons (ar field-names) 0)(build-lass-field-bindings (dr field-names)))))695 (defun build-lass-objet-field-bindings ()'(("monitor" . 0) ("monitor-ount" . 0) ("wait-set" . nil)))(defun build-immediate-instane-data (lass-name lass-table)(ons lass-name700 (build-lass-field-bindings(lass-del-fields(bound? lass-name lass-table)))))(defun build-an-instane (lass-names lass-table)705 (if (endp lass-names)nil(ons (build-immediate-instane-data (ar lass-names) lass-table)(build-an-instane (dr lass-names) lass-table))))710 (defun exeute-NEW (inst th s)(let* ((lass-name (arg1 inst))(lass-table (lass-table s))(losest-method (lookup-method "run" lass-name lass-table))(prog (method-program losest-method))715 (new-objet (build-an-instane(ons lass-name(lass-del-superlasses(bound? lass-name lass-table)))lass-table))720 (new-address (len (heap s)))(s1 (modify th s:p (+ 1 (p (top-frame th s))):stak (push (list 'JVM::REF new-address)(stak (top-frame th s)))725 :heap (bind new-address new-objet (heap s)))))(if (isThreadObjet? lass-name lass-table)(modify nil s1:thread-table(addto-tt730 (push(make-frame 0(list (ons 'JVM::THIS (list 'JVM::REF new-address)))nilprog44

735 'JVM::UNLOCKED)nil)'JVM::UNSCHEDULED(list 'JVM::REF new-address)(thread-table s1)))740 s1))); ---; (RETURN) Instrution - Void Return745 (defun exeute-RETURN (inst th s)(delare (ignore inst))(let* ((obj-ref (binding 'JVM::THIS (loals (top-frame th s)))))(modify th s750 :all-stak (pop (all-stak th s)):heap (if (equal (syn-flg (top-frame th s)) 'JVM::LOCKED)(unlok-objet th obj-ref (heap s))(heap s)))))755 ; ---; (XRETURN) Instrution - return 1 thing of arbitrary type(defun exeute-XRETURN (inst th s)(delare (ignore inst))760 (let* ((val (top (stak (top-frame th s))))(obj-ref (binding 'JVM::THIS (loals (top-frame th s))))(s1 (modify th s:all-stak (pop (all-stak th s)):heap (if (equal (syn-flg (top-frame th s)) 'JVM::LOCKED)765 (unlok-objet th obj-ref (heap s))(heap s)))))(modify th s1:stak (push val (stak (top-frame th s1))))))770 ; ---; (MONITORENTER) Instrution(defun exeute-MONITORENTER (inst th s)775 (delare (ignore inst))(let* ((obj-ref (top (stak (top-frame th s))))(instane (deref obj-ref (heap s))))(ond((objetLokable? instane th)780 (modify th s 45

:p (+ 1 (p (top-frame th s))):stak (pop (stak (top-frame th s))):heap (lok-objet th obj-ref (heap s))))(t s))))785 ; ---; (MONITOREXIT) Instrution(defun exeute-MONITOREXIT (inst th s)790 (delare (ignore inst))(let* ((obj-ref (top (stak (top-frame th s))))(instane (deref obj-ref (heap s))))(ond((objetUnLokable? instane th)795 (modify th s:p (+ 1 (p (top-frame th s))):stak (pop (stak (top-frame th s))):heap (unlok-objet th obj-ref (heap s))))(t s))))800 ; ---; Putting it all together(defun next-inst (th s)805 (nth (p (top-frame th s))(program (top-frame th s))))(defun do-inst (inst th s)(ase (op-ode inst)810 (JVM::PUSH (exeute-PUSH inst th s))(JVM::POP (exeute-POP inst th s))(JVM::LOAD (exeute-LOAD inst th s))(JVM::STORE (exeute-STORE inst th s))(JVM::DUP (exeute-DUP inst th s))815 (JVM::ADD (exeute-ADD inst th s))(JVM::SUB (exeute-SUB inst th s))(JVM::MUL (exeute-MUL inst th s))(JVM::GOTO (exeute-GOTO inst th s))(JVM::IFEQ (exeute-IFEQ inst th s))820 (JVM::IFNE (exeute-IFNE inst th s))(JVM::IFLT (exeute-IFLT inst th s))(JVM::IFGT (exeute-IFGT inst th s))(JVM::INVOKEVIRTUAL (exeute-INVOKEVIRTUAL inst th s))(JVM::RETURN (exeute-RETURN inst th s))825 (JVM::XRETURN (exeute-XRETURN inst th s))(JVM::NEW (exeute-NEW inst th s))46

(JVM::GETFIELD (exeute-GETFIELD inst th s))(JVM::PUTFIELD (exeute-PUTFIELD inst th s))(JVM::MONITORENTER (exeute-MONITORENTER inst th s))830 (JVM::MONITOREXIT (exeute-MONITOREXIT inst th s))(JVM::HALT s)(otherwise s)))(defun step4 (th s)835 (if (equal (all-stak-status th s) 'JVM::SCHEDULED)(do-inst (next-inst th s) th s)s))(defun m4 (shed s)840 (if (endp shed)s(m4 (dr shed) (step4 (ar shed) s))))

47

C The proof sript1 ;; Commutative diagram between M3 and M4; George Porter;5 ; $Id: ommute-diagram.lisp,v 1.12 2001/04/10 03:44:16 george Exp $; up transforms an M4 state into an M3 state, with some loss of information;10 ; (ld "ommute-diagram.lisp" :ld-pre-eval-print t)#|(inlude-book "/v/hank/v113/george/sr/thesis/m3")15 (inlude-book "/v/hank/v113/george/sr/thesis/m4")(ertify-book "ommute-diagram" 2)|#(in-pakage "M4")20 (defun up (s)(m3::make-state (ar (binding 0 (m4::thread-table s)))(m4::heap s)(m4::lass-table s)))25 ; down transforms an M3 state into an M4 state;(defun down (s)(m4::make-state (bind 0 (list (m3::all-stak s) 'JVM::SCHEDULED nil) nil)30 (m3::heap s)(m3::lass-table s))); upshed transforms an M4 shedule into an M3 one(defun upshed (sh)35 (if (endp sh)0(if (equal (ar sh) 0)(+ 1 (upshed (dr sh)))(upshed (dr sh)))))40 ; almost-equal is our relation omparing M3 and M4 states, ignoring; unsheduled threads;(defun thread0-sheduled (tt)48

45 (let* ((thd0 (binding 0 tt))(flag (adr thd0)))(and (true-listp thd0)(equal flag 'JVM::SCHEDULED))))50 #|(defun no-threads-sheduled (tt)(ond ((endp tt) t)((equal (addr (ar tt)) 'JVM::SCHEDULED) nil)(t (no-threads-sheduled (dr tt)))))55 (defun only-thread0-sheduledp (tt)(and (thread0-sheduled tt)(no-threads-sheduled (dr tt))))|#60 (defun at-most-thread0-sheduledp (tt)(ond ((endp tt) t)((equal (aar tt) 0) (at-most-thread0-sheduledp (dr tt)))(t (and (not (equal (addr (ar tt)) 'JVM::SCHEDULED))65 (at-most-thread0-sheduledp (dr tt))))))(defun almost-equal (s4 s4p)(and (equal (all-stak 0 s4p)(all-stak 0 s4)) ; all-staks equal70 ; (at-most-thread0-sheduledp (thread-table s4)); (at-most-thread0-sheduledp (thread-table s4p))(equal (heap s4) (heap s4p)) ; heaps equal(equal (lass-table s4) (lass-table s4p)))) ; lass tables equal75 ; singp is our prediate that determines if a state is single threaded;; no-starts-in-lass-table helper funtions;80 (defun hek-byteodes-in-method (byteodes)(ond ((endp byteodes) t)((and (equal (aar byteodes) 'JVM::INVOKEVIRTUAL)(or (equal (addar byteodes) "start")(equal (addar byteodes) "stop")))85 nil)(t (hek-byteodes-in-method (dr byteodes)))))(defun hek-methods-for-start (method-list)(if (endp method-list)90 t 49

(and (hek-byteodes-in-method (dddr (ar method-list)))(hek-methods-for-start (dr method-list)))))(defun no-starts-in-lass (lass)95 (hek-methods-for-start (adddr lass)))(defun no-starts-in-lass-table (table)(if (endp table)t100 (and (no-starts-in-lass (ar table))(no-starts-in-lass-table (dr table))))); no-byteodex-in-frames helpers105 (defun hek-byteodex-in-method (opode byteodes)(ond ((endp byteodes) t)((equal (ar (ar byteodes)) opode) nil)(t (hek-byteodex-in-method opode (dr byteodes)))))110 (defun hek-methods-for-byteodex (opode method-list)(if (endp method-list)t(and (hek-byteodex-in-method opode (dddr (ar method-list)))(hek-methods-for-byteodex opode (dr method-list)))))115 (defun no-byteodex-in-lass (opode lass)(hek-methods-for-byteodex opode (adddr lass)))(defun no-byteodex-in-lass-table (opode table)120 (if (endp table)t(and (no-byteodex-in-lass opode (ar table))(no-byteodex-in-lass-table opode (dr table)))))125 ; no-starts-in-frames helper funtions;(defun no-starts-in-frames (frames)(if (endp frames)130 t(and (hek-byteodes-in-method (program (ar frames)))(no-starts-in-frames (dr frames)))))(defun no-byteodex-in-frames (opode frames)135 (if (endp frames)t 50

(and (hek-byteodex-in-method opode (program (ar frames)))(no-byteodex-in-frames opode (dr frames)))))140 ; no-loked-frames helper funtions(defun no-loked-frames-in-frames (frames)(if (endp frames)t145 (and (not (equal (m4::syn-flg (ar frames)) 'JVM::LOCKED))(no-loked-frames-in-frames (dr frames)))))(defun hek-methods-for-loked-frames (method-list)(if (endp method-list)150 t(and (equal (method-syn (ar method-list)) NIL)(hek-methods-for-loked-frames (dr method-list)))))(defun no-loked-frames-in-lass-table (table)155 (if (endp table)t(and (hek-methods-for-loked-frames (adddr (ar table)))(no-loked-frames-in-lass-table (dr table)))))160 ; We now define the onept that the lass table ontains no native; methods other than (possibly) "start" and "stop".(defun hek-other-native-methods (method-list)(if (endp method-list)165 t(if (or (equal (ar (ar method-list)) "start")(equal (ar (ar method-list)) "stop"))(hek-other-native-methods (dr method-list))(and (not (method-isnative? (ar method-list)))170 (hek-other-native-methods (dr method-list))))))(defun no-other-native-methods-in-lass (lass)(hek-other-native-methods (adddr lass)))175 (defun no-other-native-methods-in-lass-table (table)(if (endp table)t(and (no-other-native-methods-in-lass (ar table))(no-other-native-methods-in-lass-table (dr table)))))180 (defun singp (s)(and (at-most-thread0-sheduledp (thread-table s))51

(asso-equal 0 (thread-table s))(equal (addr (asso-equal 0 (thread-table s))) 'JVM::SCHEDULED)185 (equal (adddr (asso-equal 0 (thread-table s))) nil)(no-starts-in-frames (ar (binding 0 (thread-table s))))(no-starts-in-lass-table (lass-table s))(no-byteodex-in-frames'JVM::MONITORENTER (ar (binding 0 (thread-table s))))190 (no-byteodex-in-lass-table'JVM::MONITORENTER (lass-table s))(no-byteodex-in-frames'JVM::MONITOREXIT (ar (binding 0 (thread-table s))))(no-byteodex-in-lass-table195 'JVM::MONITOREXIT (lass-table s))(no-loked-frames-in-frames (ar (binding 0 (thread-table s))))(no-loked-frames-in-lass-table (lass-table s))(no-other-native-methods-in-lass-table (lass-table s))))200 ; Theorems; --; l2 shows that down and up are inverses, in an "almost-equal" sense(defthm l2205 (implies (singp s)(almost-equal (down (up s)) s)):rule-lasses nil); --210 ; l3 - singp is preserved over stepping(defthm asso-equal-bind(equal (asso-equal th1 (bind th2 x alist))(if (equal th1 th2)215 (ons th1 x)(asso-equal th1 alist))))(defthm at-most-thread0-sheduledp-bind(implies (at-most-thread0-sheduledp tt)220 (at-most-thread0-sheduledp (bind 0 entry tt))))(defthm l3-lemma-EXECUTE-DUP(implies (singp s)(singp (exeute-dup inst 0 s))))225 (defthm l3-lemma-EXECUTE-ADD(implies (singp s)(singp (exeute-add inst 0 s))))52

230 (defthm l3-lemma-EXECUTE-PUSH(implies (singp s)(singp (EXECUTE-PUSH inst 0 s))))(defthm l3-lemma-EXECUTE-POP(implies (singp s)235 (singp (EXECUTE-POP inst 0 s))))(defthm l3-lemma-EXECUTE-LOAD(implies (singp s)(singp (EXECUTE-LOAD inst 0 s))))240 (defthm l3-lemma-EXECUTE-STORE(implies (singp s)(singp (EXECUTE-STORE inst 0 s))))245 (defthm l3-lemma-EXECUTE-SUB(implies (singp s)(singp (EXECUTE-SUB inst 0 s))))(defthm l3-lemma-EXECUTE-MUL250 (implies (singp s)(singp (EXECUTE-MUL inst 0 s))))(defthm l3-lemma-EXECUTE-GOTO(implies (singp s)255 (singp (EXECUTE-GOTO inst 0 s))))(defthm l3-lemma-EXECUTE-IFEQ(implies (singp s)(singp (EXECUTE-IFEQ inst 0 s))))260 (defthm l3-lemma-EXECUTE-IFNE(implies (singp s)(singp (EXECUTE-IFNE inst 0 s))))265 (defthm l3-lemma-EXECUTE-IFLT(implies (singp s)(singp (EXECUTE-IFLT inst 0 s))))(defthm l3-lemma-EXECUTE-IFGT270 (implies (singp s)(singp (EXECUTE-IFGT inst 0 s)))); In the following, we were sometimes tempted to write (nth 2 ...) or (nth 3 ...); and other times tempted to write (addr ...) or (adddr ...). We will just53

275 ; rewrite away all the NTHs of onstants with this rule.(defthm nth-opener(and (equal (nth 0 x) (ar x))(implies (and (syntaxp (quotep i))280 (integerp i)(<= 0 i))(equal (nth (+ 1 i) x)(nth i (dr x))))))(in-theory (disable nth))285 (defthm at-most-thread0-sheduledp-bind-2(implies (and (at-most-thread0-sheduledp tt)(equal (adr x) 'JVM::UNSCHEDULED))(at-most-thread0-sheduledp (bind th x tt))))290 (defthm no-starts-in-lass-table-implies-hek-methods-for-start(implies (no-starts-in-lass-table t)(hek-methods-for-start (adddr (asso-equal lass t)))))295 (defthm hek-methods-for-start-implies-hek-byteodes-in-method(implies (hek-methods-for-start methods)(hek-byteodes-in-method (dddr (asso-equal method methods)))))(defthm hek-methods-for-start-implies-hek-byteodes-in-method-2300 (implies (no-starts-in-lass-table t)(hek-byteodes-in-method(dddr(LOOKUP-METHOD-IN-SUPERCLASSESmethod305 lassest))))); We repeat this for hek-byteodex-in-method.310 (defthm no-byteodex-in-lass-table-implies-no-byteodex-in-lass(implies (no-byteodex-in-lass-table opode t)(hek-methods-for-byteodex opode (adddr (asso-equal lass t)))))(defthm hek-methods-for-byteodex-implies-hek-byteodex-in-method315 (implies (hek-methods-for-byteodex opode methods)(hek-byteodex-in-method opode (dddr (asso-equal method methods)))))(defthm hek-methods-for-byteodex-implies-hek-byteodex-in-method-2(implies (no-byteodex-in-lass-table opode t)320 (hek-byteodex-in-method54

opode(dddr(LOOKUP-METHOD-IN-SUPERCLASSESmethod325 lassest))))); ---; We now have a similar argument to show that no invoked method is330 ; synhronized.(defthm no-loked-frames-in-lass-table-implies-not-method-syn(implies (NO-LOCKED-FRAMES-IN-CLASS-TABLE t)(not (CADDR335 (ASSOC-EQUAL method(adddr (ASSOC-EQUAL lass t)))))))(defthm no-loked-frames-in-lass-table-implies-not-method-syn-lookup-method(implies (NO-LOCKED-FRAMES-IN-CLASS-TABLE t)340 (not (CADDR(LOOKUP-METHOD-IN-SUPERCLASSES method superlasses t)))))(defthm l3-lemma-EXECUTE-INVOKEVIRTUAL345 (implies (and (singp s)(not (equal (addr inst) "start"))(not (equal (addr inst) "stop")))(singp (EXECUTE-INVOKEVIRTUAL inst 0 s))))350 (defthm l3-lemma-EXECUTE-RETURN(implies (singp s)(singp (EXECUTE-RETURN inst 0 s))))(defthm l3-lemma-EXECUTE-XRETURN355 (implies (singp s)(singp (EXECUTE-XRETURN inst 0 s))))(defthm len-bind(equal (len (bind 0 v alist))360 (if (asso-equal 0 alist) (len alist) (+ 1 (len alist)))))(defthm asso-equal-implies-non-0-len(implies (asso-equal key alist)(not (equal 0 (len alist)))))365 (defthm l3-lemma-EXECUTE-NEW 55

(implies (singp s)(singp (EXECUTE-NEW inst 0 s))))370 (defthm l3-lemma-EXECUTE-GETFIELD(implies (singp s)(singp (EXECUTE-GETFIELD inst 0 s))))(defthm l3-lemma-EXECUTE-PUTFIELD375 (implies (singp s)(singp (EXECUTE-PUTFIELD inst 0 s)))); We don't really need these, beause singp implies there are none of these; instrutions. But in fat singp is preserved by them, so we prove these for380 ; future use.(defthm l3-lemma-EXECUTE-MONITORENTER(implies (singp s)(singp (EXECUTE-MONITORENTER inst 0 s))))385 (defthm l3-lemma-EXECUTE-MONITOREXIT(implies (singp s)(singp (EXECUTE-MONITOREXIT inst 0 s))))390 (defthm only-thread-0-sheduled-lemma(IMPLIES (AND (AT-MOST-THREAD0-SCHEDULEDP tt)(EQUAL (CADDR (ASSOC-EQUAL TH tt))'JVM::SCHEDULED))(EQUAL TH 0))395 :rule-lasses nil)(defthm only-thread-0-sheduled(implies (and (SINGP S)(EQUAL (CADDR (ASSOC-EQUAL TH (THREAD-TABLE S)))400 'JVM::SCHEDULED))(equal th 0)):hints (("Goal" :use (:instane only-thread-0-sheduled-lemma(tt (thread-table s))))):rule-lasses nil)405 ; The next two lemmas are used to prove the lemma next-inst-not-start,; whih is needed in l3-lemma to prove the 2nd hyp of the l3-lemma; invokevirtual ase.410 (defthm next-inst-not-start-lemma2-start(IMPLIES (and (CHECK-BYTECODES-IN-METHOD program)56

(equal (ar (NTH PC program)) 'JVM::INVOKEVIRTUAL))(NOT (EQUAL (CADDR (NTH PC program))415 "start"))):hints (("Goal" :in-theory (enable nth))))(defthm next-inst-not-start-lemma2-stop(IMPLIES (and (CHECK-BYTECODES-IN-METHOD program)420 (equal (ar (NTH PC program)) 'JVM::INVOKEVIRTUAL))(NOT (EQUAL (CADDR (NTH PC program))"stop"))):hints (("Goal" :in-theory (enable nth))))425 (defthm next-inst-not-start-lemma1-start(implies(and (NO-STARTS-IN-FRAMES s)(equal (ar (NTH p (program (ar s)))) 'JVM::INVOKEVIRTUAL))(not (equal (addr (NTH p (program (ar s)))) "start")))430 :hints (("Goal" :in-theory (enable nth))))(defthm next-inst-not-start-lemma1-stop(implies(and (NO-STARTS-IN-FRAMES s)435 (equal (ar (NTH p (program (ar s)))) 'JVM::INVOKEVIRTUAL))(not (equal (addr (NTH p (program (ar s)))) "stop"))):hints (("Goal" :in-theory (enable nth))))(defthm next-inst-not-start440 (implies(and (singp s)(equal (ar (NTH p (program(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S))))))'JVM::INVOKEVIRTUAL))445 (not (equal (addr (NTH p (program(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S))))))"start"))))(defthm next-inst-not-stop450 (implies(and (singp s)(equal (ar (NTH p (program(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S))))))'JVM::INVOKEVIRTUAL))455 (not (equal (addr (NTH p (program(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S))))))"stop")))) 57

; in order to relieve the 2nd hyp of the l3 INVOKVIRTUAL lemma.460 (defthm l3-lemma(implies (singp s)(singp (step4 th s))):hints465 (("Goal":use (:instane only-thread-0-sheduled(s s)(th th)):in-theory470 (disable EXECUTE-PUSHEXECUTE-POPEXECUTE-LOADEXECUTE-STOREEXECUTE-DUP475 EXECUTE-ADDEXECUTE-SUBEXECUTE-MULEXECUTE-GOTOEXECUTE-IFEQ480 EXECUTE-IFNEEXECUTE-IFLTEXECUTE-IFGTEXECUTE-INVOKEVIRTUALEXECUTE-RETURN485 EXECUTE-XRETURNEXECUTE-NEWEXECUTE-GETFIELDEXECUTE-PUTFIELDEXECUTE-MONITORENTER490 EXECUTE-MONITOREXITsingp))))(defthm l3(implies (singp s) (singp (m4 shed s)))495 :hints (("Goal" :in-theory (disable step4 singp))))(defthm state-deomposition-m4(iff (equal (M4::make-state tt1 h1 t1)(M4::make-state tt2 h2 t2))500 (and (equal tt1 tt2)(equal h1 h2)(equal t1 t2))):hints(("Goal" 58

505 :in-theory (enable M4::make-state))))(defthm state-deomposition-m3(iff (equal (M3::make-state s1 h1 t1)(M3::make-state s2 h2 t2))510 (and (equal s1 s2)(equal h1 h2)(equal t1 t2))):hints(("Goal"515 :in-theory (enable M3::make-state))))(defthm ompare-m3-and-m4-make-frame(iff (equal (m3::make-frame p1 loals1 stak1 program1 syn1)(m4::make-frame p2 loals2 stak2 program2 syn2))520 (and (equal p1 p2)(equal loals1 loals2)(equal stak1 stak2)(equal program1 program2)(equal syn1 syn2)))525 :hints(("Goal":in-theory (enable m3::make-frame m4::make-frame))))(defthm m3-p-is-m4-p530 (equal (m3::p x) (m4::p x)):hints(("Goal":in-theory (enable m3::p m4::p))))535 (defthm m3-loals-is-m4-loals(equal (m3::loals x) (m4::loals x)):hints(("Goal":in-theory (enable m3::loals m4::loals))))540 (defthm m3-stak-is-m4-stak(equal (m3::stak x) (m4::stak x)):hints(("Goal"545 :in-theory (enable m3::stak m4::stak))))(defthm m3-program-is-m4-program(equal (m3::program x) (m4::program x)):hints550 (("Goal" 59

:in-theory (enable m3::program m4::program))))(defthm m3-syn-flg-is-m4-syn-flg(equal (m3::syn-flg x) (m4::syn-flg x))555 :hints(("Goal":in-theory (enable m3::syn-flg m4::syn-flg)))); L1560 ; L1-lemma1(defthm l1-lemma1-not-0-is-not-shed(implies (and (at-most-thread0-sheduledp tt)(not (equal th 0)))565 (not (equal (addr (asso-equal th tt))'JVM::SCHEDULED))))(defthm l1-lemma1(implies (and (singp s)570 (not (equal th 0)))(equal (step4 th s) s))); L1-lemma2(defthm l1-lemma2-EXECUTE-DUP575 (implies (singp s)(equal (M3::EXECUTE-DUP inst (up s))(up (M4::EXECUTE-DUP inst 0 s)))):hints(("Goal"580 :in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-ADD(implies (singp s)(equal (M3::EXECUTE-ADD inst (up s))585 (up (M4::EXECUTE-ADD inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))590 (defthm l1-lemma2-EXECUTE-PUSH(implies (singp s)(equal (M3::EXECUTE-PUSH inst (up s))(up (M4::EXECUTE-PUSH inst 0 s)))):hints595 (("Goal":in-theory (enable M3::pop M3::push M3::top))))60

(defthm l1-lemma2-EXECUTE-POP(implies (singp s)600 (equal (M3::EXECUTE-POP inst (up s))(up (M4::EXECUTE-POP inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))605 (defthm l1-lemma2-EXECUTE-LOAD(implies (singp s)(equal (M3::EXECUTE-LOAD inst (up s))(up (M4::EXECUTE-LOAD inst 0 s))))610 :hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))(defthm m3-bind-is-m4-bind615 (equal (m3::bind x y list)(m4::bind x y list)))(defthm l1-lemma2-EXECUTE-STORE(implies (singp s)620 (equal (M3::EXECUTE-STORE inst (up s))(up (M4::EXECUTE-STORE inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))625 ; (in-theory (disable m3-bind-is-m4-bind))(defthm l1-lemma2-EXECUTE-SUB(implies (singp s)630 (equal (M3::EXECUTE-SUB inst (up s))(up (M4::EXECUTE-SUB inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))635 (defthm l1-lemma2-EXECUTE-MUL(implies (singp s)(equal (M3::EXECUTE-MUL inst (up s))(up (M4::EXECUTE-MUL inst 0 s))))640 :hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))61

(defthm l1-lemma2-EXECUTE-GOTO645 (implies (singp s)(equal (M3::EXECUTE-GOTO inst (up s))(up (M4::EXECUTE-GOTO inst 0 s)))):hints(("Goal"650 :in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-IFEQ(implies (singp s)(equal (M3::EXECUTE-IFEQ inst (up s))655 (up (M4::EXECUTE-IFEQ inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))660 (defthm l1-lemma2-EXECUTE-IFNE(implies (singp s)(equal (M3::EXECUTE-IFNE inst (up s))(up (M4::EXECUTE-IFNE inst 0 s)))):hints665 (("Goal":in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-IFLT(implies (singp s)670 (equal (M3::EXECUTE-IFLT inst (up s))(up (M4::EXECUTE-IFLT inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))675 (defthm l1-lemma2-EXECUTE-IFGT(implies (singp s)(equal (M3::EXECUTE-IFGT inst (up s))(up (M4::EXECUTE-IFGT inst 0 s))))680 :hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-GETFIELD685 (implies (singp s)(equal (M3::EXECUTE-GETFIELD inst (up s))(up (M4::EXECUTE-GETFIELD inst 0 s)))):hints 62

(("Goal"690 :in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-PUTFIELD(implies (singp s)(equal (M3::EXECUTE-PUTFIELD inst (up s))695 (up (M4::EXECUTE-PUTFIELD inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top m3-bind-is-m4-bind))))700 (defthm no-other-native-methods-in-lass-table-implies-no-natives(implies (and (no-other-native-methods-in-lass-table t)(not (equal method "start"))(not (equal method "stop")))(NOT705 (EQUAL'(NIL)(CDDDR(ASSOC-EQUALmethod710 (CADDDR (ASSOC-EQUAL lass t))))))))(defthm no-other-native-methods-in-lass-table-implies-no-natives-lookup-method(implies (and (no-other-native-methods-in-lass-table t)(not (equal method "start"))715 (not (equal method "stop")))(NOT(EQUAL'(NIL)(CDDDR720 (LOOKUP-METHOD-IN-SUPERCLASSESmethodsuperlassest))))))725 (defthm m3-popn-is-m4-popn(equal (m3::popn n stak)(m4::popn n stak)):hints (("Goal" :in-theory (enable m3::pop m4::pop))))730 (defthm asso-equal-modify-tt(equal (asso-equal th (modify-tt th s status tt))(list th s status (all-stak-rref th tt))))63

735 (defthm all-stak-make-state-modify-tt(equal (all-stak th (make-state (modify-tt th s status tt) heap t))s):hints (("Goal" :in-theory (enable make-state))))740 (defthm m3-reverse-is-m4-reverse(equal (m3::reverse x)(m4::reverse x)))(defthm m3-bind-formals-is-m4-bind-formals745 (equal (m3::bind-formals rformals stak)(m4::bind-formals rformals stak)):hints (("Goal" :in-theory (enable m3::pop m4::pop m3::top m4::top))))(defthm M3-LOOKUP-METHOD-IN-SUPERCLASSES-is-M4-LOOKUP-METHOD-IN-SUPERCLASSES750 (equal (M3::LOOKUP-METHOD-IN-SUPERCLASSES method superlasses t)(M4::LOOKUP-METHOD-IN-SUPERCLASSES method superlasses t)))(defthm l1-lemma-EXECUTE-INVOKEVIRTUAL(implies (and (singp s)755 (not (equal (addr inst) "start"))(not (equal (addr inst) "stop")))(equal (M3::EXECUTE-INVOKEVIRTUAL inst (up s))(up (M4::EXECUTE-INVOKEVIRTUAL inst 0 s)))):hints760 (("Goal":in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-RETURN(implies (singp s)765 (equal (M3::EXECUTE-return inst (up s))(up (M4::EXECUTE-return inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))770 (defthm l1-lemma2-EXECUTE-XRETURN(implies (singp s)(equal (M3::EXECUTE-xreturn inst (up s))(up (M4::EXECUTE-xreturn inst 0 s))))775 :hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))780 (defthm M3-BUILD-CLASS-FIELD-BINDINGS-IS-M4-BUILD-CLASS-FIELD-BINDINGS64

(equal (M3::BUILD-CLASS-FIELD-BINDINGS fields)(M4::BUILD-CLASS-FIELD-BINDINGS fields)))(defthm M3-BUILD-AN-INSTANCE-is-M4-BUILD-AN-INSTANCE785 (equal (M3::BUILD-AN-INSTANCE lass t)(M4::BUILD-AN-INSTANCE lass t)))(defthm l1-lemma2-EXECUTE-new(implies (singp s)790 (equal (M3::EXECUTE-new inst (up s))(up (M4::EXECUTE-new inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))795 (defthm aar-up(equal (CAAR (UP S))(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S)))):hints (("Goal" :in-theory (enable M3::MAKE-STATE))))800 (defthm hek-byteodex-in-method-implies-no-monitorenter(IMPLIES (CHECK-BYTECODEX-IN-METHOD 'JVM::MONITORENTERprogram)(NOT (EQUAL (CAR (NTH p program))805 'JVM::MONITORENTER))):hints (("Goal" :in-theory (enable nth))))(defthm hek-byteodex-in-method-implies-no-monitorexit(IMPLIES (CHECK-BYTECODEX-IN-METHOD 'JVM::MONITOREXIT810 program)(NOT (EQUAL (CAR (NTH p program))'JVM::MONITOREXIT))):hints (("Goal" :in-theory (enable nth))))815 (defthm hek-byteodex-in-method-implies-no-monitorenter-instr(implies (NO-BYTECODEX-IN-FRAMES 'JVM::MONITORENTER s)(not (EQUAL (CAR (NTH (PC (CAr s))(PROGRAM (CAr s))))'JVM::MONITORENTER))))820 (defthm hek-byteodex-in-method-implies-no-monitorexit-instr(implies (NO-BYTECODEX-IN-FRAMES 'JVM::MONITOREXIT s)(not (EQUAL (CAR (NTH (PC (CAr s))(PROGRAM (CAr s))))825 'JVM::MONITOREXIT))))(defthm l1-lemma2 65

(implies (singp s)(equal (M3::step3 (up s))(up (step4 0 s))))830 :hints(("Goal":in-theory(union-theories'(m3::top m3::all-stak)835 (disable M3::EXECUTE-PUSHM4::EXECUTE-PUSHM3::EXECUTE-POPM4::EXECUTE-POPM3::EXECUTE-LOAD840 M4::EXECUTE-LOADM3::EXECUTE-STOREM4::EXECUTE-STOREM3::EXECUTE-DUPM4::EXECUTE-DUP845 M3::EXECUTE-ADDM4::EXECUTE-ADDM3::EXECUTE-SUBM4::EXECUTE-SUBM3::EXECUTE-MUL850 M4::EXECUTE-MULM3::EXECUTE-GOTOM4::EXECUTE-GOTOM3::EXECUTE-IFEQM4::EXECUTE-IFEQ855 M3::EXECUTE-IFNEM4::EXECUTE-IFNEM3::EXECUTE-IFLTM4::EXECUTE-IFLTM3::EXECUTE-IFGT860 M4::EXECUTE-IFGTM3::EXECUTE-INVOKEVIRTUALM4::EXECUTE-INVOKEVIRTUALM3::EXECUTE-RETURNM4::EXECUTE-RETURN865 M3::EXECUTE-XRETURNM4::EXECUTE-XRETURNM3::EXECUTE-NEWM4::EXECUTE-NEWM3::EXECUTE-GETFIELD870 M4::EXECUTE-GETFIELDM3::EXECUTE-PUTFIELDM4::EXECUTE-PUTFIELD66

M4::EXECUTE-MONITORENTERM4::EXECUTE-MONITOREXIT875 ; singpup)))))(inlude-book "/projets/al2/v2-5/books/arithmeti/top-with-meta")880 (defthm l1(implies (singp s)(equal (M3::m3 (upshed sh) (up s))(up (m4 sh s))))885 :hints (("Goal" :in-theory (disable singp m3::step3 m4::step4 up))))(defthm main(implies (singp s)(almost-equal (down (m3::m3 (upshed sh) (up s)))890 (m4 sh s))):hints(("Goal" :in-theory (disable down up upshed m3::m3 m4 almost-equal singp):use ((:instane l2 (s (m4 sh s)))))))895 ; --; Below are appliation independent support lemmas and theorems; that allow one to port M3 properties to M4.(defthm ondition3900 (equal (m3::top-frame (up s)) (top-frame 0 s)):hints (("Goal" :in-theory (enable m3::top))))(defthm ondition4(equal (m3::all-stak (up s)) (all-stak 0 s)))905 (defthm almost-equal-bind-0(equal (almost-equal s0 (make-state (bind 0 thread-entry thread-table) heap lass-table))(almost-equal s0 (make-state (list (ons 0 thread-entry)) heap lass-table))))910 (defthm almost-equal-ommutes(equal (almost-equal s0 s1)(almost-equal s1 s0)))(defthm heap-and-lass-table-up915 (and (equal (m3::heap (up s)) (heap s))(equal (m3::lass-table (up s)) (lass-table s))))(defthm m3-states-again 67

(and920 (implies (equal z (m3::make-state s hp t))(equal (m3::all-stak z) s))(implies (equal z (m3::make-state s hp t))(equal (m3::heap z) hp))(implies (equal z (m3::make-state s hp t))925 (equal (m3::lass-table z) t))))(defthm m3-push-and-pop(and (equal (m3::push x y) (push x y))(equal (m3::pop x) (pop x)))930 :hints (("Goal" :in-theory (enable m3::push m3::pop))))(defthm m3-make-frame-to-m4(equal (m3::make-frame s l st pr fl)(make-frame s l st pr fl))935 :hints (("Goal" :in-theory (enable m3::make-frame make-frame))))(defthm singp-implies-rref-nil(implies (singp s0)(equal (CADDDR (ASSOC-EQUAL 0 (THREAD-TABLE S0))) nil)))

68

