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Abstract

We establish a commuting diagram that relates two models of the Java
Virtual Machine (JVM). The first model, M3, supports much of Java, in-
cluding classes, objects, and dynamic method resolution. The second
model, M4, builds upon M3 by adding threads, monitors, and synchro-
nized methods. We describe a theorem, Main, that asserts that running
certain “single-threaded” states on M4 is equivalent to transforming those
states to the domain of M3, running the transformed state there, and
translating the result back to the domain of M4. We define the criteria
we use to determine if the resulting states are equivalent, and we define
our notion of “single-threaded”. We then discuss a few lessons learned
during the development of Main

1 A Description of M3 and M4

M3 and M4 are both models of the Java Virtual Machine (JVM). They are
respectively the third and fourth members of a series of machines approaching
the JVM in complexity. (Sun’s specification of the JVM can be found in [2]).
M3 supports much of the functionality of the JVM, including many bytecodes
(such as ADD, IFEQ, MUL, etc). M3 supports classes, with fields and methods.
Setting and retrieving the fields of objects in the heap respect inheritance, as
does method invocation.

M4 builds upon M3 by supporting multiple threads of execution in a way that
is consistent with Sun’s specification of the JVM found in [2]. Synchronization
between threads is provided via synchronized methods and synchronized blocks.
(For a description of Java’s thread synchronization mechanisms, see [1]). M4
adds two new bytecodes: MONITORENTER and MONITOREXIT, which allow the
JVM to access monitors located in every Java object in the heap. These monitors
will be described in further detail below. For a complete description of M4, see
[3]-

In M4, a state consists of three components: the thread table, the heap, and
the class table. We describe each in turn. When we use the word “table” here



we generally mean a list of pairs in which “keys” (which might be thought of
as constituting the left-hand column of the table) are paired with “values” (the
right-hand column of the table). Such a table is a map from the keys to the
corresponding values.

The thread table maps thread numbers to threads. Each thread consists of
three components: a call stack, a flag indicating whether the thread is scheduled,
and the heap address of an object of class Thread in the heap uniquely associated
with this thread. We discuss the heap below.

The call stack is a list of frames treated as a stack (the first element of the
list is the topmost frame). Each frame contains five components: a program
counter and the bytecoded method body, a table associating variable names
with values, a stack, and a synchronization flag indicating whether the method
currently executing is synchronized. Unlike the JVM, the local variables of a
method are referenced by symbolic names rather than positions.

The heap is a table associating heap addresses with instance objects. An
instance object is a table. The keys of an instance object are the successive
classes in the superclass chain of the object. The value of each such key is
another table, mapping the immediate field names of the class to their values.
The structure of heap addresses is unimportant but they can be distinguished
from integers and other data types. In our model a heap address is a list of the
form (REF i), where i is a natural number. One point where our model differs
from the JVM is that in our model the NEW instruction is completely responsible
for the object’s instantiation; all fields are initialized to 0. Classes in our model
do not have separate constructors.

Finally, the class table is a table mapping class names to class descriptions.
A class description contains a list of its superclass names, a list of its immediate
fields, and a list of its methods. We do not model syntactic typing in our
machine, though we could. Thus, our list of fields is just a simple list of field
names (strings) rather than, say, a table mapping field names to signatures. A
method is a list containing a method name, the names of the formal parameters
of the method, a synchronization status flag, and a list of bytecoded instructions.
Our model omits signatures and the access modes of methods.

Bytecoded instructions are represented abstractly as lists consisting of a
symbolic opcode name followed by zero or more operands. For example, (LOAD
X) is the instruction that pushes the value of local variable X onto the stack
in the current frame. (ADD) pops two items off the stack in the current frame
and pushes their sum. (IFEQ 12) pops an item off the stack and if it is O,
increments the program counter by 12; otherwise it increments it by 1. The
similarity of these instructions to certain JVM instructions should be obvious,
as should be the differences: we ignore the different types of LOAD (e.g., ILOAD,
DLOAD, etc.) and ADD instructions, we ignore the finite range of integer data, and
we count program counter offsets in number of instructions rather than number
of bytes. These and most of the other discrepancies between the current model
and the JVM are matters of detail that would not change the basic structure of
the model to fix and do not impact our ability to use the model to study proof
techniques.



(defun execute-PUSH (inst th s)
(modify th s
:pc (+ 1 (pc (top-frame s th)))
:stack (push (argl inst)
(stack (top-frame s th)))))

Table 1: execute-PUSH

For those readers curious to see how we define the semantics of such opera-
tions in ACL2, see Table 1. It contains the definition of the function execute-PUSH
which we use to give semantics to the PUSH instruction. The instruction (PUSH
3) is comparable to ICONST_3 or BIPUSH 3 on the JVM.

The function takes three arguments, named inst, s, and th. The first is the
list expression denoting the instruction. The first element of inst will always be
the symbol PUSH and the second is the constant that is to be pushed on the stack
of the current frame. The second argument of execute-PUSH, s, is the JVM
state, consisting of a thread table, a heap and a class table. The third argument,
th, is the number of the thread that is to be “stepped.” Execute-PUSH returns
the state obtained by executing the PUSH instruction in the given thread of s. It
creates that state with the function make-state, which takes three arguments:
the thread table, the heap and the class table of the state to be returned. The
last two components of the new state above are the same as those in s. The
thread table is modified by replacing the entry for th by another entry. That
entry’s call stack is obtained by replacing the topmost frame of the current call
stack (notice we push a frame onto a stack obtained by popping one off). In the
new frame, the program counter is advanced by 1, the locals remain unchanged,
the constant (extracted from inst using the function argl) is pushed on the
stack, and the method program and synchronization flag are unchanged.

The most complicated instruction formalized in our model is INVOKEVIRTUAL.

An example INVOKEVIRTUAL instruction on our machine is represented by the list
structure (INVOKEVIRTUAL "ColoredPoint" "move" 2). Note that in place
of the JVM’s signature we provide only the number of parameters, since we
consistently ignore type issues in this model. We paraphrase the definition of
execute-INVOKEVIRTUAL by describing the state it creates from an instruction
of the form below, a state s, and a thread number th.
(INVOKEVIRTUAL ¢ name n): Let ref be the item n deep in the stack. This
is expected to be a heap reference to an instance object, obj. Let class be
the class of this object (the first key in the table, i.e., the name of the most
specific class in the object’s class hierarchy). Use the function lookup-method
to determine from the class-table of s the closest method with name name in
class or its superclass chain. Let formals and body be the formal parameters
and bytecoded body of the closest method. Let formals’ be formals with the
new symbol THIS added to the front.

Create a new call stack, cs’, from the call stack of thread th in s by replacing
the topmost frame by a new frame in which the program counter has been



incremented by one and n + 1 items have been popped off the stack. Create
another call stack, cs”, by pushing a new frame onto c¢s’. This new frame should
have a program counter of 0 and an empty stack. The locals of the new frame
should bind formals’ to the topmost n + 1 items removed from the stack in s
(above), the deepest of which is bound to THIS. The bytecoded body of the
frame should be body. We will use ¢s’ and c¢s” in various cases below and we
will not be interested in cs” unless the closest method is non-native. Consider
the following cases.

e The closest method is native: We support only two native methods,
"start" and "stop" from the "Object" class. We describe only the first
here. In this case, obj should include the class "Thread" in its super-
class chain. The new state constructed by the "start" method has the
same heap and class table as s. The thread table is changed in two ways.
First, the call stack of th is replaced by cs' above (stepping over the
INVOKEVIRTUAL). Second, the thread th' uniquely associated with obj is
changed so that its scheduled flag is SCHEDULED.

e The closest method is a synchronized method: Fetch the contents of the
"monitor" and "mcount" fields in the "Object" class of 0bj. If the mcount
is 0 or the mcount is non-0 but the monitor is th, then we say obj is
“available” to th. If obj is available to th, then the new state is obtained
from s by replacing the call stack with cs” after setting the sync-flg
component of the top frame to LOCKED, and by replacing the heap of s
with a heap in which the "mcount" field of the object at ref has been
incremented by one and the "monitor" field has been set to th. If, on
the other hand, obj is unavailable, then the “new” state is s itself. Thus,
the thread hangs at the INVOKEVIRTUAL instruction until obj becomes
available. We do not specify the scheduler; instead, our model allows all
possible interleavings of thread executions and some thread states (as the
one just described) make no change if stepped before progress is possible.

e Otherwise, the new state is obtained from s by replacing the call stack with
cs” after setting the sync-flg component of the top frame to UNLOCKED.

Given execute-PUSH, the reader can presumably imagine how this description
is coded in ACL2.

We formalize a variety of instructions in this style, including POP, LOAD,
STORE, ADD, MUL, GOTO, IFEQ, IFGT, RETURN, XRETURN, NEW, GETFIELD, PUTFIELD,
MONITORENTER, and MONITOREXIT. For each such opcode op we define an ACL2
function execute-op that takes the instruction, current state, and thread num-
ber and returns the next state.

We then define step to be the function that takes a state and a thread
number and executes the next instruction in the given thread, provided that
thread exists and is SCHEDULED. Step is essentially a “big switch” on the opcode
of the instruction indicated by the program counter and method body in the
top frame of the call stack of the given thread.



Finally we define run to take a “schedule” and a state and return the result
of stepping the state according to the given schedule. A schedule is just a list of
numbers, indicating which thread is to be stepped next. That is, our model puts
no constraints on the JVM thread scheduler; however stepping a non-existent,
UNSCHEDULED, or otherwise blocked thread is a no-op. We find it convenient also
to define (runn n schedule s) to run the first n steps of schedule starting in
state s.

The complete ACL2 source text for our machine is available from http://-
WWW.cs.utexas.edu/users/moore/publications/m4/index.html.

Our model omits many features of the JVM. Among the more glaring omis-
sions are accurate support for the JVM primitive data types like ints, doubles,
arrays, etc., support for syntactic typing both in the naming convention in the
instruction set (e.g., IADD versus DADD) and field and method signatures, class
loading and initialization, INVOKESTATIC (with the concomitant requirement
that classes have representative instance objects in the heap upon which syn-
chronization can be arranged), exception handling, and errors. Experience with
other commercial microprocessor models leads us to believe that these features
could be added to our model without fundamentally changing its basic struc-
ture. There is no doubt that they greatly complicate the model and would
complicate proofs about programs that use the features in question. That is
one of the reasons we left them out. Our model is adequate however as a vehicle
for studying basic mechanized proof techniques for dealing with Java programs,
including multi-threaded applications.

2 A Commuting Diagram Between M3 and M4

Proving properties of a multi-threaded system is complicated by the fact that the
threads can interact in numerous ways. The exact inter-leavings of the threads
is not known before runtime, and so all possible interactions must be considered
in proving its correctness. It would be beneficial to separate the threads, prove
each of them correct independently of the other threads, and then conclude that
the resulting multi-threaded state is correct. Often this is impossible, since the
threads are intertwined and depend on each other. However, if it were known
that the threads did not destructively interfere with each other, then each thread
could be proved correct independently of the others. This is the driving force
behind our commuting diagram Main, which is given below.

(m3 (upsched sched))

Ss y 84
UIJT UPT ldown
S L S

(m4 sched)

The formal expression of this diagram is presented at the end of this section,
but for now consider a multi-threaded state S;. Running the state according



to schedule sched results in a new state S;. We have defined a function up
that transforms certain types of “single-threaded” M4 states into M3 states. A
predicate singp determines if a state is “single-threaded”. Currently, “single-
threaded” states are those states in which no Thread objects have their start
or stop methods invoked, only thread 0 is scheduled, and in which there are no
synchronized or native methods. This definition is obviously restrictive, and our
hope is that in time the singp predicate can be generalized to recognize other
states that meet its criteria yet have multiple scheduled threads, for instance.
Some of its restrictions have to do with the transformation into an M3 state,
since M3 does not support native or synchronized methods, for example.

Given the up function, an M4 state is transformed (with loss of information
about the non-scheduled threads) into an M3 state, which is then run via the m3
machine and the component of the schedule that relates to thread 0 (sched?).
The resulting state can be transformed in a straightforward way back into an
M4 state via down. That resulting state is the same as S} in terms of thread 0,
however information about the unscheduled threads is lost.

We now present the definitions of up, down, singp, almost-equal, and the
commuting diagram Main.

(defun up (s)
(m3: :make-state (car (binding O (m4::thread-table s)))
(m4: :heap s)
(m4::class-table s)))

Up transforms M4 states into M3 states. Note that the class-tables and heaps
are the same in both cases, and that only thread 0 is lifted out of the thread
table and set as M3’s call-stack.

(defun down (s)

(m4: :make-state (bind O (list (m3::call-stack s)
>JVM: : SCHEDULED
nil)

nil)
(m3: :heap s)
(m3::class-table s)))

Down is naturally the opposite of up, taking M3’s call-stack and setting it
as the only element of M4’s thread-table. The heap and class-table remain
unchanged.

(defun singp (s)
(and (at-most-threadO-scheduledp (thread-table s))
(assoc-equal 0 (thread-table s))
(equal (caddr (assoc-equal O (thread-table s)))
> JVM: : SCHEDULED)
(no-starts-in-frames (car (binding O (thread-table s))))
(no-starts-in-class-table (class-table s))



(no-bytecodex-in-frames

?JVM: :MONITORENTER (car (binding O (thread-table s))))
(no-bytecodex-in-class-table

>JVM: :MONITORENTER (class-table s))
(no-bytecodex-in-frames

?JVM: :MONITOREXIT (car (binding O (thread-table s))))
(no-bytecodex-in-class-table

>JVM: :MONITOREXIT (class-table s))
(no-locked-frames-in-frames

(car (binding O (thread-table s))))
(no-locked-frames-in-class-table (class-table s))
(no-other-native-methods-in-class-table (class-table s))))

Singp is the formal definition of a predicate that identifies “single-threaded”
M4 states. Let us consider each of its conjuncts. The first three assert that the
M4 state has exactly one scheduled thread, namely thread 0. The next two
conjuncts ensure that there are no methods named start or stop invoked on
any objects in the state. Following that are four conjuncts that check for the
bytecodes MONITORENTER and MONITOREXIT. These bytecodes are not allowed
since M3 does not support them. Following the four checks just described are
two conjuncts that check that there are no synchronized methods. Again, since
M3 does not support synchronized methods, we cannot allow our M4 state to
contain synchronized methods. Lastly, singp asserts that there are no native
methods in the M4 state, since again M3 does not support native methods.

There is one last definition needed before we can present the commutative
diagram. Recall that up and down are not exact inverses, since up loses in-
formation (it discards all threads except thread 0). Thus we cannot say that
(down (up s)) = s. It is the case that (down (up s)) is the same as s, in the
sense that the heaps are the same, the class-tables are the same, and thread 0
is the same. The only difference is that s may have many unscheduled threads,
while (down (up s)) has only one scheduled thread, thread 0. We formulate a
predicate almost-equal that captures this meaning of “equal.”

(defun almost-equal (s4 s4p)
(and (equal (call-stack O s4p)
(call-stack 0 s4))
(equal (heap s4) (heap s4p))
(equal (class-table s4) (class-table s4p))))

We now present the formal definition of our commutative diagram, Main:

(defthm main
(implies (singp s)
(almost-equal (down (m3::m3 (up s) (upsched sch)))
(m4 s sch)))
:hints
(("Goal" :in-theory (disable down up upsched



m3::m3 m4 almost-equal singp)
:use ((:instance 12 (s (m4 s sch)))))))

2.1 Using the Diagram to Port a Theorem from M3 to
M4

Imagine that you have a theorem about a property of an M3 state. How can
you apply this theorem to an M4 state, given Main? In the short discussion to
follow, we will describe the process of using Main to bring a given theorem over
to the domain of M4. As a specific example, we will port a theorem about the
Factorial function:

(defthm fact-is-correct
(implies (poised-to-invoke-fact sO n)
(equal
(m3 (fact-clock n) s0)
(make-state
(push (make-frame
(+ 1 (pc (top-frame s0)))
(locals (top-frame s0))
(push (acl2::factorial n)
(pop (pop (stack (top-frame s0)))))
(program (top-frame s0))
> JVM: : UNLOCKED)
(pop (call-stack s0)))
(heap s0)
(class-table s0))))
:hints (("Goal"
:induct (fact-is-correct-hint sO n))))

This theorem says that if a state sO is poised to invoke the fact instance
method (recall we do not have INVOKESTATIC) on an integer n, the result is
the same as if we had pushed n! onto the stack (removing the instance object’s
reference) and incremented the pc. In other words, we are stating that the
JVM bytecodes that comprise the Fact method correctly carry out the factorial
function.

Bringing this theorem to the domain of M4 involves several steps, some of
which relate specifically to our factorial example, while others are “generic”
and apply to any theorems we might try to port to M4. There are two basic
theorems that we must prove related to Factorial:

e First, we must show that the (poised-to-invoke-fact sO n) given as
a hypothesis in the above theorem is a result of establishing a similar
property (m4::poised-to-invoke-fact 0 s n). We do this via:

(defthm conditionl



(implies (m4::poised-to-invoke-fact O s n)
(m3: :poised-to-invoke-fact (up s) n))
thints (("Goal" :in-theory (enable m3::top))))

e Once that is established, we must show that the (fact-clock n) men-

tioned in fact-is-correct is equal to the schedule that we give our M4
state. This is done via our second condition:

(defthm condition2

(equal (upsched (fact-sched 0 n)) (m3::fact-clock n))
:hints (("Goal" :in-theory (enable m3::c+-revealed))))

Once these two conditions are satisfied, then a series of lemmas that are not
specific to Factorial can establish the M4 version of our M3 theorem:

(defthm fact-is-correct
(implies (and (singp sO)
(poised-to-invoke-fact O sO n))
(almost-equal
(m4 (fact-sched O n) sO0)
(make-state
(modify-tt O

(push (make-frame

(+ 1 (pc (top-frame 0 s0)))
(locals (top-frame O s0))
(push (acl2::factorial n)
(pop
(pop
(stack (top-frame 0 s0)))))
(program (top-frame 0 s0))
? jvm: : UNLOCKED)
(pop (call-stack 0 s0)))
’jvm: :scheduled
(thread-table s0))
(heap s0)

(class-table s0))))
:hints ...)

One of those lemmas relates m3: :top-frame to m4::top-frame in such a
way that we know that the top frame of an M3 state is equal to the top frame

of the Oth thread of the M4 state obtained by using up. A similar theorem is
made about call-stack.



3 The Proof of 'Main’

3.1 Three Lemmas

To prove the commuting diagram, we had to first prove three lemmas, L1, L2,
and L3. The proofs of these lemmas will be described in detail below, but first
we will present them and try to motivate their role in establishing Main. Then,
we will prove Main given the lemmas. Finally, we will describe their proofs.

Lemma L1.
(singp s) = (m3 (up s) (upsched sch)) = (up (m4 s sch))

In many respects L1 is the hardest of the three lemmas to prove, since it
relates M3 and M4 states. L1 says that transforming a “single-threaded” M4
state s to the domain of M3 and running it with the appropriate schedule is the
same as running s on M4, and then transforming it to the domain of M3.

Upsched is an ACL2 function that turns an M4 schedule into an M3 schedule,
by stepping the machine the exact number of times O appears in sch.

Lemma L2.
(singp s) = (down (up s)) = s

The most straight-forward of the three lemmas, L2 relates down to up, in the
sense of almost-equal (~).

Lemma L3.
(singp s) = (singp (m4 s sch))

L3 simply says that “single-threadedness” is preserved over the machine M4.
This lemma is important since without it, we would be unable to reason about
the machine after its first step.

3.2 The Derivation of “Main”

Recall the statement of Main:

Theorem Main.
(singp s0) = (down (m3 (up sO) (upsched sch))) ~ (m4 sO sch)

Proof:
Assume

[1] (singp SO)

By L3 we have
[2] (singp (m4 sO sch))

10



Thus, by L1 and [1] we have
[3] (m3 (up sO0) (upsched sch)) = (up (m4 sO sch))

Applying down to both sides of [3] gives
[4] (down (m3 (up sO) (upsched sch))

[5] (down (up (m4 sO sch)))

By L2 and [2] we get
[5] (down (up (m4 sO sch)))

~
~

[6] (m4 sO sch)

Thus, [4] ~ [6].

Q.E.D.

Having derived ’Main’, we now turn our attention to each of the three lemmas
in turn.

3.3 L1

Recall the definition of lemma L1. L1 asserts that if a state s is “single-threaded”
according to singp, then running s on machine m4 and transforming it to the
domain of M3 is the same as transforming s to the domain of M3 and running
it (with the appropriate schedule). To prove such a statement, we follow the
design of the machines themselves. First, note that the machines m3 and m4
execute via repeated step operations. Thus, we prove a step version of lemma
L1, and then generalize it to the machine via induction. The step lemma we
prove is given by:

Lemma. Ll-lemma2:
(implies (singp s)
(equal (M3::step3 (up s))
(up (step4 0 s5))))

Step3 and step4 both act as large “switch” statements, fetching the next
bytecode and executing the related EXECUTE-op function on the state, where
op is the name of the bytecode. Thus to prove the theorem above, we define
and prove lemmas for each bytecode. We then disable the definitions of the
EXECUTE-op functions, and L1-lemma2 follows from the fact that step3 and
step4 open up into a case for each bytecode, and we have lemmas already proven
for each of these cases. Let us consider the lemma related to the bytecode ADD.

Lemma. Ll-lemma2-EXECUTE-ADD:
(implies (singp s)
(equal (M3::EXECUTE-ADD inst (up s))

11



(up (M4::EXECUTE-ADD inst O s))))

Most of the bytecodes such as ADD and PUSH were proved with minimal dif-
ficulty. The notable exception was INVOKEVIRTUAL, which had to be treated
differently, due in part to its sophistication, and in part to its role in the ac-
tivation of threads in the JVM. Recall that in Java, threads are created via
instantiating objects of the Thread class (or implementing the Runnable inter-
face, although our model does not support interfaces). The threads created by
instantiating those objects do not start out scheduled, they must explicitly be
started via invoking their start methods. Invoking their stop methods causes
them to become unscheduled. To preserve “single-threadedness”, we must pre-
vent threads from changing their scheduled status. Currently, we achieve this
by preventing the invocation of any method named start or stop. Note this
restriction in the statement of L1-1emma-EXECUTE-INVOKEVIRTUAL:

Lemma. Ll-lemma-EXECUTE-INVOKEVIRTUAL:
(implies (and (singp s)
(not (equal (caddr inst) "start"))
(not (equal (caddr inst) "stop")))
(equal (M3::EXECUTE-INVOKEVIRTUAL inst (up s))
(up (M4::EXECUTE-INVOKEVIRTUAL inst O s))))

To prove the above lemma, we had to establish the fact that singp does in-
deed assert that no start or stop methods are invoked anywhere in the program
(and thus the second and third hypotheses are satisfied). Singp uses recursive
functions to check that start and stop methods are not invoked anywhere in
the class-table or thread-table. To admit 11-lemma-EXECUTE-INVOKEVIRTUAL,
we thus had to prove that those recursive functions established that any instruc-
tion that INVOKEVIRTUAL has the opportunity to execute is not start or stop.
We did this by relating the recursive function no-starts-in-class-table,
which appears as part of singp, to the M4 function LOOKUP-METHOD-IN--
SUPERCLASSES. Once that relation was established, it was clear that when singp
holds, LOOKUP-METHOD-IN-SUPERCLASSES will not return an instruction that
invokes start or stop methods. Thus we showed that singp established hy-
potheses two and three of L1-lemma-EXECUTE-INVOKEVIRTUAL. Once that was
completed, the lemma was admitted.

Having proved all of the bytecode-level lemmas, the step lemma given above
was admitted easily, via a case analysis. Via induction over the step lemma,
L1-lemma2 was admitted to the theorem prover.

There is one more detail related to L1 that bears inspection. The function
upsched transforms an M4 schedule (which is a list of natural numbers) into a
natural number that represents the number of times that the M3 state should
be stepped. But what of non-zero elements of sched? Upsched discards them,
and so we must show that they do not alter our “single-threaded” state. We
admit another lemma stating this very fact:

12



Lemma. Ll-lemmal:
(implies (and (singp s)
(not (equal th 0)))
(equal (step4 th s) s)))

We now turn our attention to the other two lemmas, L2 and L3.

3.4 L2

In the last step of the derivation of Main, we took advantage of the fact that if
a state s is “single-threaded”, then it is “equal” (in the almost-equal sense)
to (down (up s)). L2 establishes this fact.

Lemma. L2:
(implies (singp s)
(almost-equal (down (up s)) s))

The proof follows in a straight-forward manner from the definitions of up,
down, and almost-equal.

3.5 L3

L3 establishes the fact that “single-threadedness” is preserved over the machine
m4. Since L2 and L3 have singp as a hypothesis, it is important that we establish
that singp is preserved over step4. Otherwise, once we step the machine, we
can no longer apply lemmas L1 and L2.

The proof for L3 is very similar to the proof of L1. First, we must prove the
step-version of lemma:

Lemma. L3-lemma:
(implies (singp s)
(singp (step4 th s)))

From L3-1lemma, we use induction to establish L3. We prove the step-version
of L3 as we did with L1, namely we prove the property over each of the bytecodes.
By then disabling the definitions of each of the EXECUTE-op functions, L3-lemma
opens into a case for each bytecode, for which we have our bytecode-level proofs
completed. An example of a straightforward bytecode that we prove is given by
ADD:

Lemma. L3-lemma-EXECUTE-ADD:
(implies (singp s)
(singp (execute-add inst 0 s))))

As before, we had to treat INVOKEVIRTUAL specially. In a manner simi-
lar to L1, we related the recursive functions given in singp to the method
that INVOKEVIRTUAL is called to act on. After establishing that singp ensures

13



that INVOKEVIRTUAL only gets “well formed” methods, we were able to admit
L3-lemma-EXECUTE-INVOKEVIRTUAL. Once this was accomplished, we could es-
tablish L3-1emma, and thus L3.

Proving the three lemmas led directly to the proof of Main, following the
proof outline given above.

4 Discussion

The previous section presented the proof of Main. We now discuss several
problems we encountered in trying to prove Main, and show how their solutions
made their way into the final statement of Main and its proof. We will also
include unexpected results that only came to light during the proof attempt.

4.1 Packages and Identifiers

One of the most surprising and interesting behaviors we discovered while prov-
ing Main relates to the way ACL2 handles packages. We defined the machines
M3 and M4 in packages M3 and M4, respectively. As the proof of Main de-
veloped, we realized that certain identifiers in our states were not global, but
rather grounded in a certain package. Consider for example identifiers such as
LOAD, PUSH, THIS, and LOCKED. In reality, in the M4 model these are M4: : LOAD,
M4: :PUSH, M4::THIS, and M4::LOCKED. But in the M3 model, the identifiers
are represented by M3: :LOAD, M3: : PUSH, M3: : THIS, and M3: :LOCKED. When we
tried to draw a correspondence between an M3 program and an M4 program
that look identical, we realized that in fact they are not! Consider the following
M3 program fragment:

(NEW "Alpha")
(PUSH 1)
(PUSH 2)
(ADD)

(STORE A4)
(LOAD A)

Now the program is really represented by:

(M3::NEW "Alpha")

(M3::PUSH 1)
(M3::PUSH 2)
(M3::ADD)

(M3::STORE A)
(M3::LDAD A)

But in M4 each of the instructions are in the M4 package. To continue this
idea, we realized that in a given program when we refer to THIS in the M3
package, we mean for that to be the same THIS in the M4 package. To correct
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this problem, we define a new package JVM. We always refer to identifiers in the
JVM package, so that from either M3 or M4 we can refer to the same logical
object, for example JVM: : THIS.

We had not considered this behavior before starting on the proof, and in fact
did not realize it until deep into the proof attempt. This is one of the benefits
to using formal proof techniques—they are often a good way to discover the
unknown behaviors of a given formal system.

A perfect example of this fact relates to a careless mistake we made during
the definition of M4. In M3, there is a DUP bytecode, which duplicates the item
on the top of the stack of the topmost frame in the call-stack. By our omission,
there was no such operation in M4, and so ACL2 failed on the proof attempt,
trying to relate an M4 state to an M3 state in which the DUP bytecode had been
executed. Since M4 had no DUP bytecode, this relation was doomed to failure.
Once we added DUP to M4, the proof went through.

Some would suggest that if we had been more careful, this failure would have
been avoided. They are right. However, attempting to live a life free of mistakes
is hopeless, and so a technique like automatic proof checking is a valuable aid
in finding and correcting mistakes.

4.2 Thread Scheduling

When we first started thinking about Main, we realized that our multithreaded
states could have at most one scheduled thread. This restriction was the first
to make up singp. It wasn’t until we failed to prove L1 that we realized that
we had to make a stronger statement. To admit Main, we had to make sure
that exactly one thread is scheduled in a given state. Why is this restriction
necessary?

Recall that stepping an unscheduled thread in M4 has no effect (it is a “no-
op”). Note that M3 behaves differently, in that each step in fact modifies the
machine. Consider an M4 state in which no thread is scheduled. Stepping any
of its threads leave the state unchanged, since m4 will not step unscheduled
threads. On the other hand, transforming the state to the domain of M3 and
stepping it there will modify the state, since all scheduling information is lost
during the translation.

So for this reason we had to tighten our definition of “single-threaded”. This
addition can be seen in the third conjunct of singp.

4.3 Omissions from singp

There were three additional refinements made to singp during the development
of Main. Each of these refinements prevented features of M4 from interfering
with the translation of multithreaded states to the domain of M3.

First, we had to prevent “single-threaded” states from containing native
methods (other than start and stop, which are explicitly forbidden). M3 does
not support native methods, and so it is impossible to translate states that
depend on native methods to the domain of M3.
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Secondly, we disallowed synchronized methods from our M4 states. Re-
member that when a synchronized method is invoked, the JVM automatically
obtains locks on the instance object. M3 does not support monitors, and so it
would be unable to obtain these locks. One idea would be to make synchro-
nized method invocation behave just like non-synchronized method invocation
on M3. If this were the case then invoking synchronized methods on M4 would
change the heap (in terms of the monitor in the instance object), however there
would be no analogous modification to the M3 heap. We feel that keeping the
synchronized methods would thus be unsatisfactory, since the heap would be
treated differently between M3 and M4.

The last omission is related to the second, namely we overlooked MONITOR-
ENTER and MONITOREXIT. Again, we could have made these bytecodes no-ops
on M3, however we would be in a situation where these bytecodes modify the
heap in M4, yet leave the heap unchanged in M3. In reality MONITORENTER
and MONITOREXIT change the heaps in ways that the threads cannot detect.
(In Java there is no way to determine the status of a given monitor—they are
opaque objects). As mentioned in the following section, it might be beneficial to
introduce a more powerful up that can modify M4 heaps into forms that work
better with M3.

Each of these refinements tightened our notion of “single-threadedness”, and
once they were introduced, we were able to establish Main.

4.4 A Faulty call-stack-rref

During the development of Main, we decided to alter the order of arguments to
M4. During this process, we overlooked call-stack-rref, a function used
by M4. This function, given a thread and a thread-table, returns a refer-
ence to the thread’s associated object in the heap. Interestingly, the faulty
call-stack-rref did not prevent M4 or Main from certifying properly. The
presence of the bug was only discovered during an attempt to find a state Sy
that satisfies both of the hypotheses of the theorem about Factorial. Before this
attempt was made, the hypotheses were in fact unsatisfiable, and thus the theo-
rem was vacuous! Lucky for us the faulty function did not cause other problems
in the certification process, and once the bug was discovered and repaired we
were able to recertify all of our books. We now know that there is at least one
state (namely Sp) that satisfies the hypotheses of our theorem about Factorial.

5 Suggestions for future work

During the development of Main, we thought of several opportunities to improve
our work. We present them in the hopes that our work will become more
applicable to “real-world” applications involving multithreaded JVM programs.

An obvious place to begin improving our theorem is in the definition of
singp. Recall that singp acts as a predicate that identifies “single-threaded”
states. Currently, the methods used to make that determination are somewhat
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crude. We prevent our program from invoking methods called start or stop.
We do not allow synchronized methods. What singp is really looking for are
states in which the threads do not interfere with each other. Currently, there are
states that meet that criteria that singp rejects. For example, consider a state
in which several threads are all scheduled, yet none of them modify the heap.
It would be profitable to increase the sophistication in which singp decides if a
given state is “single-threaded”. This would allow more states to pass through
singp.

Another avenue of improvement involves the translation of states between
M3 and M4. Recall that currently, up and down do not modify the class-table or
heap of the state they are transforming. Furthermore, they modify the thread-
table only in that up lifts out thread 0, and down constructs a thread-table from
an M3 call-stack. It would be advantageous to increase the sophistication of
these two functions. Perhaps up could modify the heap in a way that removes
all monitors from the objects. Since we already know that the state in question
is “single-threaded”, we would not have to worry about contention of locks. If we
had such an up, then we would be able to add MONITORENTER and MONITOREXIT
to M3, making them no-ops. Thus we could then remove singp’s restrictions
about states that contain those bytecodes.

These two additions to our model and our proof would certainly improve
the utility of Main. We hope that, in time, they will be added to Main and the
JVM model.

6 Acknowledgments

I would like to thank those who have helped and supported me while learning
ACL2, working on this project, and writing this paper. I am especially grateful
to J Strother Moore, for spending countless hours with me on M4 and this proof,
for developing the theorems that allow Main to port theorems from M3 to M4,
and for supporting me in my educational goals. I would also like to thank Bob
Boyer for his advice and aid, and for reading this paper. Finally, I would like
to thank my family for their 22 years of constant love and support.

References

[1] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

[2] T. Lindholm and F. Yellin. The Java Virtual Machine Specification (Second
Edition). Addison-Wesley, 1999.

[3] J S. Moore and G. Porter. An executable formal JVM thread model. In
Proceedings of the USENIX Java Virtual Machine Research and Technology
Symposium, April 2001.

17



10

15

20

25

30

35

40

A

M3

; Abstract Machine 3

; M3 is M2 except that we now have the heap, classes and invokevirtual.

; $Id: m3.lisp,v 1.13 2001/04/10 03:45:41 george Exp $

#
(defpkg "JVM" ’(nil t))

(defpkg "M3"
(set-difference-equal
(union-eq ’ (ASSOC-EQUAL LEN NTH ZP SYNTAXP
QUOTEP FIX NFIX EO-ORDINALP EO-ORD-<)
(union-eq *acl2-exports*
*common-lisp-symbols-from-main-lisp-package*))
> (PC PROGRAM PUSH POP REVERSE STEP ++)))

(certify-book "m3" 2)
| #
(in-package "M3")
; Utilities
; Stacks
(defun push (obj stack) (cons obj stack))
(defun top (stack) (car stack))
(defun pop (stack) (cdr stack))
(defthm stacks

(and (equal (top (push x s)) x)

(equal (pop (push x s)) s)))

(in-theory (disable push top pop))

; Alists
(defun bound? (x alist) (assoc-equal x alist))

(defun bind (x y alist)
(cond ((endp alist) (list (coms x y)))
((equal x (car (car alist)))
(cons (cons x y) (cdr alist)))
(t (cons (car alist) (bind x y (cdr alist))))))
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(defun binding (x alist) (cdr (assoc-equal x alist)))

; Instructions

(defun op-code (inst) (car inst))

(defun argl (inst) (car (cdr inst)))

(defun arg2 (inst) (car (cdr (cdr inst))))
(defun arg3 (inst) (car (cdr (cdr (cdr inst)))))

; M3 States
(defun make-state (call-stack heap class-table)
(1ist call-stack heap class-table))

(defun call-stack (s) (nth O s))
(defun heap (s) (nth 1 s))
(defun class-table (s) (nth 2 s))

(defthm states
(and (equal (call-stack (make-state cs h c)) cs)
(equal (heap (make-state cs h c)) h)
(equal (class-table (make-state cs h c)) c)))

(in-theory (disable make-state call-stack heap class-table))

; Frames
(defun top-frame (s) (top (call-stack s)))

(defun pc (frame) (nth O frame))
(defun locals (frame) (nth 1 frame))
(defun stack (frame) (nth 2 frame))
(defun program (frame) (nth 3 frame))
(defun sync-flg (frame) (nth 4 frame))

(defun make-frame (pc locals stack program sync-flg)
(1ist pc locals stack program sync-flg))

(defthm frames
(and
(equal (pc (make-frame pc 1 s prog sync-flg)) pc)
(equal (locals (make-frame pc 1 s prog sync-flg)) 1)
(equal (stack (make-frame pc 1 s prog sync-flg)) s)
(equal (program (make-frame pc 1 s prog sync-flg)) prog)
(equal (sync-flg (make-frame pc 1 s prog sync-flg)) sync-flg)))

(in-theory (disable make-frame pc locals stack program sync-flg))

(defun next-inst (s)
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(nth (pc (top-frame s)) (program (top-frame s))))

; Class Declarations
(defun make-class-decl (name superclasses fields methods)
(list name superclasses fields methods))

(defun class-decl-name (dcl)
(nth 0 dcl))
(defun class-decl-superclasses (dcl)
(nth 1 dcl))
(defun class-decl-fields (dcl)
(nth 2 dcl))
(defun class-decl-methods (dcl)
(nth 3 dcl))

; This is a base set of classes that are ’built in’ to M3 states
(defun base-class-def ()
(1ist (make-class-decl "Object"
nil
’("monitor" "mcount" '"wait-set')
nil)
(make-class-decl "Thread"
>("Object™")
nil
>(("run" () nil
(jvm: :return))
("start" () nil ())
("stop" () nil ()))))

(defun make-class-def (list-of-class-decls)
(append (base-class-def) list-of-class-decls))

(defun method-name (m)
(nth 0 m))

(defun method-formals (m)
(nth 1 m))

(defun method-sync (m)
(nth 2 m))

(defun method-program (m)
(cdddr m))

; The Standard Modify
(defun suppliedp (key args)

(cond ((endp args) nil)
((equal key (car args)) t)
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(t (suppliedp key (cdr args)))))

(defun actual (key args)
(cond ((endp args) nil)
((equal key (car args)) (cadr args))
(t (actual key (cdr args)))))

(defmacro modify (s &rest args)
(1ist ’make-state
(cond ((suppliedp :call-stack args)
(actual :call-stack args))
((or (suppliedp :pc args)
(suppliedp :locals args)
(suppliedp :stack args)
(suppliedp :program args)
(suppliedp :sync-flg args))
(1ist ’push
(list ’make-frame
(if (suppliedp :pc args)
(actual :pc args)
(l1ist ’pc (list ’top-frame s)))
(if (suppliedp :locals args)
(actual :locals args)
(list ’locals (list ’top-frame s)))
(if (suppliedp :stack args)
(actual :stack args)
(1ist ’stack (list ’top-frame s)))
(if (suppliedp :program args)
(actual :program args)
(l1ist ’program (list ’top-frame s)))
(if (suppliedp :sync-flg args)
(actual :sync-flg args)
(1ist ’sync-flg (list ’top-frame s))))
(1ist ’pop (list ’call-stack s))))
(t (list ’call-stack s)))
(if (suppliedp :heap args)
(actual :heap args)
(list ’heap s))
(if (suppliedp :class-table args)
(actual :class-table args)
(l1ist ’class-table s))))

; (PUSH const)
(defun execute-PUSH (inst s)
(modify s
:pc (+ 1 (pc (top-frame s)))
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:stack (push (argl inst) (stack (top-frame s)))))

; (POP)
(defun execute-POP (inst s)
(declare (ignore inst))
(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (pop (stack (top-frame s)))))

; (LOAD var)
(defun execute-LOAD (inst s)
(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (push (binding (argl inst)
(locals (top-frame s)))
(stack (top-frame s)))))

; (STORE var)
(defun execute-STORE (inst s)
(modify s
:pc (+ 1 (pc (top-frame s)))
:locals (bind (argl inst)
(top (stack (top-frame s)))
(locals (top-frame s)))
:stack (pop (stack (top-frame s)))))

; (DUP)
(defun execute-DUP (inst s)
(declare (ignore inst))
(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (push (top (stack (top-frame s))) (stack (top-frame s)))))

; (ADD)
(defun execute-ADD (inst s)
(declare (ignore inst))
(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (push (+ (top (pop (stack (top-frame s))))
(top (stack (top-frame s))))
(pop (pop (stack (top-frame s)))))))

; (SUB)

(defun execute-SUB (inst s)
(declare (ignore inst))
(modify s
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:pc (+ 1 (pc (top-frame s)))
:stack (push (- (top (pop (stack (top-frame s))))
(top (stack (top-frame s))))
(pop (pop (stack (top-frame s)))))))

; (MUL)
(defun execute-MUL (inst s)
(declare (ignore inst))
(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (push (* (top (pop (stack (top-frame s))))
(top (stack (top-frame s))))
(pop (pop (stack (top-frame s)))))))

; (GOTO n)
(defun execute-GOTO (inst s)
(modify s
:pc (+ (argl inst) (pc (top-frame s)))))

; (IFEQ n)
(defun execute-IFEQ (inst s)
(modify s
:pc (if (equal (top (stack (top-frame s))) 0)
(+ (argl inst) (pc (top-frame s)))
(+ 1 (pc (top-frame s))))
:stack (pop (stack (top-frame s)))))

; (IFNE n)
(defun execute-IFNE (inst s)
(modify s
:pc (if (equal (top (stack (top-frame s))) 0)
(+ 1 (pc (top-frame s)))
(+ (argl inst) (pc (top-frame s))))
:stack (pop (stack (top-frame s)))))

; (IFGT n)
(defun execute-IFGT (inst s)
(modify s
:pc (if (> (top (stack (top-frame s))) 0)
(+ (argl inst) (pc (top-frame s)))
(+ 1 (pc (top-frame s))))
:stack (pop (stack (top-frame s)))))

; (IFLT n)

(defun execute-IFLT (inst s)
(modify s
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:pc (if (< (top (stack (top-frame s))) 0)
(+ (argl inst) (pc (top-frame s)))
(+ 1 (pc (top-frame s))))
:stack (pop (stack (top-frame s)))))

; (NEW class)
(defun build-class-field-bindings (field-names)
(if (endp field-names)
nil
(cons (cons (car field-names) 0)
(build-class-field-bindings (cdr field-names)))))

(defun build-immediate-instance-data (class-name class-table)
(cons class-name
(build-class-field-bindings
(class-decl-fields
(bound? class-name class-table)))))

(defun build-an-instance (class-names class-table)
(if (endp class-names)
nil
(cons (build-immediate-instance-data (car class-names) class-table)
(build-an-instance (cdr class-names) class-table))))

(defun execute-NEW (inst s)
(let* ((class-name (argl inst))
(class-table (class-table s))
(new-object (build-an-instance
(cons class-name
(class-decl-superclasses
(bound? class-name class-table)))
class-table))
(new-address (len (heap s))))
(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (push (list ’JVM::REF new-address)
(stack (top-frame s)))
:heap (bind new-address new-object (heap s)))))

; (GETFIELD class field)
(defun deref (ref heap)
(binding (cadr ref) heap))

(defun field-value (class-name field-name instance)

(binding field-name
(binding class-name instance)))
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(defun execute-GETFIELD (inst s)
(let* ((class-name (argl inst))
(field-name (arg2 inst))
(instance (deref (top (stack (top-frame s))) (heap s)))
(field-value (field-value class-name field-name instance)))
(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (push field-value
(pop (stack (top-frame s)))))))

; (PUTFIELD class field)
(defun set-instance-field (class-name field-name value instance)
(bind class-name
(bind field-name value
(binding class-name instance))
instance))

(defun execute-PUTFIELD (inst s)
(let* ((class-name (argl inst))
(field-name (arg2 inst))
(value (top (stack (top-frame s))))
(instance (deref (top (pop (stack (top-frame s)))) (heap s)))
(address (cadr (top (pop (stack (top-frame s)))))))
(modify s
:pc (+ 1 (pc (top-frame s)))
:stack (pop (pop (stack (top-frame s))))
:heap (bind address
(set-instance-field class-name
field-name
value
instance)

(heap s)))))

; (INVOKEVIRTUAL class method n)
(defun reverse (1lst)
(if (consp 1lst)
(append (reverse (cdr 1st)) (list (car 1st)))
nil))

(defun bind-formals (rformals stack)
(if (endp rformals)
nil
(cons (cons (car rformals) (top stack))
(bind-formals (cdr rformals) (pop stack)))))
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(defun popn (n stack)
(if (zp n)
stack
(popn (- n 1) (pop stack))))

(defun class-name-of-ref (ref heap)
(car (car (deref ref heap))))

(defun lookup-method-in-superclasses (name classes class-table)
(cond ((endp classes) nil)
(t (let* ((class-name (car classes))
(class-decl (bound? class-name class-table))
(method (bound? name (class-decl-methods class-decl))))
(if method
method
(lookup-method-in-superclasses name (cdr classes)
class-table))))))

(defun lookup-method (name class-name class-table)
(lookup-method-in-superclasses name
(cons class-name
(class-decl-superclasses
(bound? class-name class-table)))
class-table))

(defun execute-INVOKEVIRTUAL (inst s)
(let* ((method-name (arg2 inst))
(nformals (arg3 inst))
(obj-ref (top (popn nformals (stack (top-frame s)))))
(obj-class-name (class-name-of-ref obj-ref (heap s)))
(closest-method
(lookup-method method-name
obj-class-name
(class-table s)))
(vars (cons ’JVM::THIS (method-formals closest-method)))
(prog (method-program closest-method))
(s1 (modify s
i:pc (+ 1 (pc (top-frame s)))
:stack (popn (len vars) (stack (top-frame s))))))
(modify si1
:call-stack
(push (make-frame O
(reverse
(bind-formals (reverse vars)
(stack (top-frame s))))
nil
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prog
> JVM: : UNLOCKED)

(call-stack s1)))))

; (XRETURN)
(defun execute-XRETURN (inst s)

(declare (ignore inst))

(let ((val (top (stack (top-frame s))))

(s1 (modify s

:call-stack (pop (call-stack s)))))

(modify si1
:stack (push val (stack (top-frame s1))))))

; (RETURN)

(defun execute-RETURN (inst s)

(declare (ignore inst))

(modify s
:call-stack (pop (call-stack s))))

; The M3 Run Level
(defun do-inst (inst s)
(case (op-code inst)

(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:
(JVM:

:PUSH
:POP
:LOAD
:STORE
:DUP

:ADD

:SUB

:MUL
:GOTO

: IFEQ

: IFNE
:IFGT
IFLT
:NEW
:GETFIELD
:PUTFIELD
: INVOKEVIRTUAL
:XRETURN
:RETURN
(otherwise

(defun step3 (s)
(do-inst (next-inst s) s))

s)))

(execute-PUSH
(execute-POP
(execute-LOAD
(execute-STORE
(execute-DUP
(execute—-ADD
(execute-SUB
(execute-MUL
(execute-GOTO
(execute-IFEQ
(execute-IFNE
(execute-IFGT
(execute-IFLT
(execute-NEW
(execute-GETFIELD
(execute-PUTFIELD
(execute-INVOKEVIRTUAL
(execute—-XRETURN
(execute-RETURN
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(defun m3 (n s)
(if (zp n)
s
(m3 (- n 1) (step3 s))))

; Compile it all.
; (comp t)

; The idea is that a JVM programmer will do something like
; (in-package "JVM")

; and then he will type a program that looks like:

; ("fact" (n) nil (load this) ...)

; and really he has created

; ("fact" (n) nil (jvm::load jvm::this) ...)
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M4

; M4.1lisp

; J Strother Moore <moore@cs.utexas.edu>

; George Porter <george@cs.utexas.edu>

; $Id: m4.lisp,v 1.11 2001/04/10 03:45:41 george Exp $

#
(defpkg "JVM" ’(nil t))

(DEFPKG "M4"
(set-difference-equal
(union-eq ’ (ASSOC-EQUAL LEN NTH ZP SYNTAXP
QUOTEP FIX NFIX EO-ORDINALP EO-ORD-<)
(union-eq *acl2-exports*
*common-lisp-symbols-from-main-lisp-package*))
> (PC PROGRAM PUSH POP REVERSE STEP ++)))

(certify-book "m4" 2)

| #

; Notes:

; Do JVM objects have an mcount field? Can the user set them with

; (putfield "Object" "mcount")? This machine allows that, which
; can screw up monitors.

; Abstract Machine 4 - by George Porter and J Moore
; $Id: m4.lisp,v 1.11 2001/04/10 03:45:41 george Exp $

(in-package "M4")

; Utilities

(defun push (obj stack) (cons obj stack))
(defun top (stack) (car stack))
(defun pop (stack) (cdr stack))

#]
(defthm stacks
(and (equal (top (push x s)) x)
(equal (pop (push x s)) s)))
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(in-theory (disable push top pop))
; Imported from ACL2.

(defun assoc-equal (x alist)
(cond ((endp alist) nil)
((equal x (car (car alist)))
(car alist))
(t (assoc-equal x (cdr alist)))))
| #

(defun bound? (x alist) (assoc-equal x alist))

(defun bind (x y alist)
(cond ((endp alist) (list (coms x y)))
((equal x (car (car alist)))
(cons (cons x y) (cdr alist)))
(t (cons (car alist) (bind x y (cdr alist))))))

(defun binding (x alist) (cdr (assoc-equal x alist)))

(defun op-code (inst) (car inst))

(defun argl (inst) (car (cdr inst)))

(defun arg2 (inst) (car (cdr (cdr inst))))
(defun arg3 (inst) (car (cdr (cdr (cdr inst)))))

; Imported from ACL2
#|
(defun nth (i 1lst)
(if (zp 1)
(car 1st)
(nth (- i 1) (cdr 1st))))

(defun zp (1)
(if (integerp i) (<=1i 0) t))
| #

(defun reverse (x)
(if (comsp x)
(append (reverse (cdr x)) (list (car x)))
nil))
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(defun make-state (thread-table heap class-table)
(1ist thread-table heap class-table))

(defun thread-table (s) (nth O s))

(defun heap (s) (nth 1 s))

(defun class-table (s) (nth 2 s))

(defthm states
(and (equal (thread-table (make-state tt h c)) tt)
(equal (heap (make-state tt h c)) h)
(equal (class-table (make-state tt h c)) c)))

(defthm states2
(and (equal (thread-table (list tt h c)) tt)
(equal (heap (list tt h c¢)) h)
(equal (class-table (list tt h c)) c)))

(in-theory (disable make-state thread-table heap class-table))

(defun call-stack (th s)
(car (binding th (thread-table s))))

(defun call-stack-status (th s)
(cadr (binding th (thread-table s))))

(defun call-stack-rref (th tt)
(caddr (binding th tt)))

; Class Declarations and the Class Table

; The class table of a state is an alist. Each entry in a class table is
a "class declaration" and is of the form

; (class-name super-class-names fields defs)
; Note that the definition below of the Thread class includes a ’run’ method,
;  which most applications will override. The definition is consistent

;  with the default run method provided by the Thread class [0’reily page xxx]

(defun make-class-decl (name superclasses fields methods)
(list name superclasses fields methods))

(defun class-decl-name (dcl)

(nth 0 dcl))
(defun class-decl-superclasses (dcl)
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(nth 1 dcl))

(defun class-decl-fields (dcl)
(nth 2 dcl))

(defun class-decl-methods (dcl)
(nth 3 dcl))

(defun base-class-def ()
(1ist (make-class-decl "Object"
nil
> ("monitor
nil)
(make-class-decl "Thread"
’("Object")
nil
>(("run" () nil
(JVM: :RETURN) )
("start" () nil ())
("stop" ) nil ()))))

" "mcount" "wait-set")

(defun make-class-def (list-of-class-decls)
(append (base-class-def) list-of-class-decls))

; Thread Tables

; A "thread table" might be used to represent threads in m4. It consists of
; a reference, a call stack, a flag to indicate whether its call-stack

; should be stepped by the scheduler, and a ref to the original object

;  in the heap.

; Thread table:
; ((m . (call-stack flag reverse-ref))
; (n+1 . (call-stack flag reverse-ref)))

; The flags ’JMV::SCHEDULED and ’JVM::UNSCHEDULED coorespond to two of the four states
; threads can be in (according to [0’Reily]). For our model, this will
; suffice.

(defun make-tt (call-stack)
(bind 0 (1list call-stack ’JVM::SCHEDULED nil) nil))

(defun modify-tt (th call-stack status tt)
(bind th (list call-stack status (call-stack-rref th tt)) tt))

(defun addto-tt (call-stack status heapRef tt)
(bind (len tt) (list call-stack status heapRef) tt))
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(defun mod-thread-scheduling (th sched tt)
(let* ((thrd (binding th tt))
(oldcs (car thrd))
(oldhr (caddr thrd))
(newTH (list oldcs sched oldhr)))
(bind th newTH tt)))

(defun schedule-thread (th tt)
(mod-thread-scheduling th ’JVM::SCHEDULED tt))

(defun unschedule-thread (th tt)
(mod-thread-scheduling th ’JVM: :UNSCHEDULED tt))

(defun rrefToThread (ref tt)
(cond ((endp tt) nil)
((equal ref (cadddr (car tt))) (caar tt))
(t (rrefToThread ref (cdr tt)))))

; Helper function for determining if an object is a ’Thread’ object

(defun in-list (item list)
(cond ((endp list) nil)
((equal item (car list)) t)
(t (in-list item (cdr list)))))

(defun isThreadObject? (class-name class-table)
(let* ((class (bound? class-name class-table))
(psupers (class-decl-superclasses class))
(supers (cons class-name psupers)))
(or (in-list "Thread" supers)
(in-1ist "ThreadGroup" supers))))

; Helper functions for locking and unlocking objects

; lock-object and unlock-object will obtain a lock on an instance

; of an object, using th as the locking id (a thread owns a lock). If th
; already has a lock on an object, then the mcount of the object is

; incremented. Likewise if you unlock an object with mcount > O, then

;  the lock will be decremented. Note: you must make sure that th can

;  and should get the lock, since this function will blindly go ahead and
;  get the lock

(defun lock-object (th obj-ref heap)
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(let* ((obj-ref-num (cadr obj-ref))
230 (instance (binding (cadr obj-ref) heap))
(obj-fields (binding "Object" instance))
(new-mcount (+ 1 (binding "mcount" obj-fields)))
(new-obj-fields
(bind "monitor" th
235 (bind "mcount" new-mcount obj-fields)))
(new-object (bind "Object" new-obj-fields instance)))
(bind obj-ref-num new-object heap)))

(defun unlock-object (th obj-ref heap)
240 (let* ((obj-ref-num (cadr obj-ref))
(instance (binding (cadr obj-ref) heap))
(obj-fields (binding "Object" instance))
(old-mcount (binding '"mcount" obj-fields))
(new-mcount (ACL2::max O (- old-mcount 1)))
245 (new-monitor (if (zp new-mcount)
0
th))
(new-obj-fields
(bind "monitor" new-monitor
250 (bind "mcount" new-mcount obj-fields)))
(new-object (bind "Object" new-obj-fields instance)))
(bind obj-ref-num new-object heap)))

; objectLockable? is used to determine if th can unlock instance. This
255 ; occurs when either mcount is zero (nobody has a lock), or mcount is
; greater than zero, but monitor is equal to th. This means that th
; already has a lock on the object, and when the object is locked yet again,
; monitor will remain the same, but mcount will be incremented.

260 ; objectUnLockable? determins if a thread can unlock an object (ie if it
; has a lock on that object)
(defun objectLockable? (instance th)
(let* ((obj-fields (binding "Object" instance))
(monitor (binding "monitor" obj-fields))
265 (mcount (binding "mcount" obj-fields)))
(or (zp mcount)
(equal monitor th))))

(defun objectUnLockable? (instance th)
270 (let* ((obj-fields (binding "Object" instance))
(monitor (binding "monitor" obj-fields)))
(equal monitor th)))



275 ; Frames

(defun make-frame (pc locals stack program sync-flg)
(1ist pc locals stack program sync-flg))

280 (defun top-frame (th s) (top (call-stack th s)))

(defun pc (frame) (nth O frame))
(defun locals (frame) (nth 1 frame))
(defun stack (frame) (nth 2 frame))
285  (defun program (frame) (nth 3 frame))
(defun sync-flg (frame) (nth 4 frame))

(defthm frames
(and
290 (equal (pc (make-frame pc 1 s prog sync-flg)) pc)
(equal (locals (make-frame pc 1 s prog sync-flg)) 1)
(equal (stack (make-frame pc 1 s prog sync-flg)) s)
(equal (program (make-frame pc 1 s prog sync-flg)) prog)
(equal (sync-flg (make-frame pc 1 s prog sync-flg)) sync-flg)))

295
(in-theory (disable make-frame pc locals stack program sync-flg))
; Method Declarations
300
; The methods component of a class declaration is a list of method definitioms.
; A method definition is a list of the form
; (name formals sync-status . program)
305
; We never build these declarations but just enter list constants for them,
; Note the similarity to our old notion of a program definition. We
; Will use strings to name methods now.
310
; sync-status is ’t’ if the method is synchronized, ’nil’ if not
; Method definitions will be constructed by expressions such as:
; (Note: all of the symbols below are understood to be in the pkg "JVM".)
315
; ("move" (dx dy) nil
; (load this)
; (load this)
; (getfield "Point" "x")
320 ; (load dx)
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; (add)

; (putfield "Point" "x") ; this.x = this.x + dx;
; (load :this)

; (load :this)

; (getfield "Point" "y")

; (load dy)

; (add)

; (putfield "Point" "y") ; this.y = this.y + dy;
; (push 1)

; (xreturn))) ; return 1;

; Provided this method is defined in the class "Point" it can be invoked by
; (invokevirtual "Point" "move'" 2)

; This assumes that the stack, at the time of invocation, contains an
; reference to an object of type "Point" and two numbers, dx and dy.

; If a method declaration has an empty list for the program (ie- there are

; no bytecodes associated with the method), then the method is considered

; native. Native methods are normally written in something like C or

; assembly language. The JVM would normally ensure that the correct number
; and type of arguments are passed to the native method, and would then hand
; over control to C. In our model, we simply "hardwire" invokevirtual to

; to handle these methods.

;  * Note that a method in Java will never have O bytecodes, since even if

; it has no body, it will consist of at least the (xreturn) bytecode.

; The accessors for methods are:

(defun method-name (m)
(nth 0 m))

(defun method-formals (m)
(nth 1 m))

(defun method-sync (m)
(nth 2 m))

(defun method-program (m)
(cdddr m))

(defun method-isNative? (m)
(equal ’ (NIL)

(method-program m)))

; The Standard Modify

(defun suppliedp (key args)
(cond ((endp args) nil)
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((equal key (car args)) t)
(t (suppliedp key (cdr args)))))

(defun actual (key args)
(cond ((endp args) nil)
((equal key (car args)) (cadr args))
(t (actual key (cdr args)))))

(defmacro modify (th s &rest args)
(1ist ’make-state
(cond
((or (suppliedp :call-stack args)
(suppliedp :pc args)
(suppliedp :locals args)
(suppliedp :stack args)
(suppliedp :program args)
(suppliedp :sync-flg args)
(suppliedp :status args))
(1ist ’modify-tt
th
(cond ((suppliedp :call-stack args)
(actual :call-stack args))
((and (suppliedp :status args)
(null (cddr args)))
(list ’call-stack th s))
(t
(1ist ’push
(list ’make-frame
(if (suppliedp :pc args)
(actual :pc args)
(1ist ’pc (list ’top-frame th s)))
(if (suppliedp :locals args)
(actual :locals args)
(1ist ’locals (list ’top-frame th s)))
(if (suppliedp :stack args)
(actual :stack args)
(1ist ’stack (list ’top-frame th s)))
(if (suppliedp :program args)
(actual :program args)
(list ’program (list ’top-frame th s)))
(if (suppliedp :sync-flg args)
(actual :sync-flg args)
(1ist ’sync-flg (list ’top-frame th s))))
(1ist ’pop (list ’call-stack th s)))))
(if (suppliedp :status args)
(actual :status args)
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?? JVM: : SCHEDULED)
(list ’thread-table s)))
((suppliedp :thread-table args)
(actual :thread-table args))
(t (list ’thread-table s)))
(if (suppliedp :heap args)
(actual :heap args)
(list ’heap s))
(if (suppliedp :class-table args)
(actual :class-table args)
(list ’class-table s))))

; (PUSH const) Instruction

(defun execute-PUSH (inst th s)
(modify th s
:pc (+ 1 (pc (top-frame th s)))
:stack (push (argl inst)
(stack (top-frame th s)))))

; (POP) Instruction

(defun execute-POP (inst th s)
(declare (ignore inst))
(modify th s
:pc (+ 1 (pc (top-frame th s)))
:stack (pop (stack (top-frame th s)))))

; (LOAD var) Instruction

(defun execute-LOAD (inst th s)
(modify th s
:pc (+ 1 (pc (top-frame th s)))
:stack (push (binding (argl inst)
(locals (top-frame th s)))
(stack (top-frame th s)))))

; (STORE var) Instruction
(defun execute-STORE (inst th s)

(modify th s
:pc (+ 1 (pc (top-frame th s)))
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:locals (bind (argl inst)
460 (top (stack (top-frame th s)))
(locals (top-frame th s)))
:stack (pop (stack (top-frame th s)))))

465 ; (DUP) Instruction

(defun execute-DUP (inst th s)
(declare (ignore inst))
(modify th s
470 :pc (+ 1 (pc (top-frame th s)))
:stack (push (top (stack (top-frame th s)))
(stack (top-frame th s)))))

475 ; (ADD) Instruction

(defun execute-ADD (inst th s)
(declare (ignore inst))
(modify th s
480 :pc (+ 1 (pc (top-frame th s)))
:stack (push (+ (top (pop (stack (top-frame th s))))
(top (stack (top-frame th s))))
(pop (pop (stack (top-frame th s)))))))

485 T
; (SUB) Instruction

(defun execute-SUB (inst th s)
(declare (ignore inst))
490 (modify th s
:pc (+ 1 (pc (top-frame th s)))
:stack (push (- (top (pop (stack (top-frame th s))))
(top (stack (top-frame th s))))
(pop (pop (stack (top-frame th s)))))))
495

; (MUL) Instruction

(defun execute-MUL (inst th s)
500 (declare (ignore inst))
(modify th s
:pc (+ 1 (pc (top-frame th s)))
:stack (push (* (top (pop (stack (top-frame th s))))
(top (stack (top-frame th s))))
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(pop (pop (stack (top-frame th s)))))))

; (GOTO pc) Instruction

(defun execute-GOTO (inst th s)
(modify th s
:pc (+ (argl inst) (pc (top-frame th s)))))

; (IFEQ pc) Instruction

(defun execute-IFEQ (inst th s)
(modify th s
:pc (if (equal (top (stack (top-frame th s))) 0)
(+ (argl inst) (pc (top-frame th s)))
(+ 1 (pc (top-frame th s))))
:stack (pop (stack (top-frame th s)))))

; (IFNE pc) Instruction

(defun execute-IFNE (inst th s)
(modify th s
:pc (if (equal (top (stack (top-frame th s))) 0)
(+ 1 (pc (top-frame th s)))
(+ (argl inst) (pc (top-frame th s))))
:stack (pop (stack (top-frame th s)))))

; (IFGT pc) Instruction

(defun execute-IFGT (inst th s)
(modify th s
:pc (if (> (top (stack (top-frame th s))) 0)
(+ (argl inst) (pc (top-frame th s)))
(+ 1 (pc (top-frame th s))))
:stack (pop (stack (top-frame th s)))))

; (IFLT pc) Instruction

(defun execute-IFLT (inst th s)
(modify th s
:pc (if (< (top (stack (top-frame th s))) 0)
(+ (argl inst) (pc (top-frame th s)))
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(+ 1 (pc (top-frame th s))))
:stack (pop (stack (top-frame th s)))))

555 ; (GETFIELD '"class" '"field") Instruction

(defun deref (ref heap)
(binding (cadr ref) heap))

560 (defun field-value (class-name field-name instance)
(binding field-name
(binding class-name instance)))

(defun execute-GETFIELD (inst th s)
565 (let* ((class-name (argl inst))
(field-name (arg2 inst))
(instance (deref (top (stack (top-frame th s))) (heap s)))
(field-value (field-value class-name field-name instance)))
(modify th s
570 :pc (+ 1 (pc (top-frame th s)))
:stack (push field-value
(pop (stack (top-frame th s)))))))

575 ; (PUTFIELD '"class" '"field") Instruction

(defun set-instance-field (class-name field-name value instance)
(bind class-name
(bind field-name value
580 (binding class-name instance))
instance))

(defun execute-PUTFIELD (inst th s)
(let* ((class-name (argl inst))
585 (field-name (arg2 inst))
(value (top (stack (top-frame th s))))
(instance (deref (top (pop (stack (top-frame th s)))) (heap s)))
(address (cadr (top (pop (stack (top-frame th s)))))))
(modify th s
590 :pc (+ 1 (pc (top-frame th s)))
:stack (pop (pop (stack (top-frame th s))))
:heap (bind address
(set-instance-field class-name
field-name
595 value
instance)
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(heap s)))))

600 ; (INVOKEVIRTUAL "class" '"name'" n) Instruction

(defun bind-formals (rformals stack)
(if (endp rformals)
nil
605 (cons (cons (car rformals) (top stack))
(bind-formals (cdr rformals) (pop stack)))))

(defun popn (n stack)
(if (zp n)
610 stack
(popn (- n 1) (pop stack))))

(defun class-name-of-ref (ref heap)
(car (car (deref ref heap))))

615
(defun lookup-method-in-superclasses (name classes class-table)
(cond ((endp classes) nil)
(t (let* ((class-name (car classes))
(class-decl (bound? class-name class-table))
620 (method (bound? name (class-decl-methods class-decl))))
(if method
method
(lookup-method-in-superclasses name (cdr classes)
class-table))))))
625

(defun lookup-method (name class-name class-table)
(lookup-method-in-superclasses name
(cons class-name
(class-decl-superclasses
630 (bound? class-name class-table)))
class-table))

(defun execute-INVOKEVIRTUAL (inst th s)
(let* ((method-name (arg2 inst))
635 (nformals (arg3 inst))
(obj-ref (top (popn nformals (stack (top-frame th s)))))
(instance (deref obj-ref (heap s)))
(obj-class-name (class-name-of-ref obj-ref (heap s)))
(closest-method
640 (lookup-method method-name
obj-class-name
(class-table s)))
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(vars (cons ’jvm::this (method-formals closest-method)))
(prog (method-program closest-method))
645 (s1 (modify th s
:pc (+ 1 (pc (top-frame th s)))
:stack (popn (len vars)
(stack (top-frame th s)))))
(tThread (rrefToThread obj-ref (thread-table s))))
650 (cond
((method-isNative? closest-method)
(cond ((equal method-name '"start")
(modify tThread si
:status ’JVM::SCHEDULED) )
655 ((equal method-name "stop")
(modify tThread si
:status ’JVM::UNSCHEDULED) )
(t 8)))
((and (method-sync closest-method)
660 (objectLockable? instance th))
(modify th si1
:call-stack
(push (make-frame O
(reverse
665 (bind-formals (reverse vars)
(stack (top-frame th s))))
nil
prog
?JVM: : LOCKED)
670 (call-stack th s1))
:heap (lock-object th obj-ref (heap s))))
((method-sync closest-method)

s)
(t
675 (modify th si
:call-stack
(push (make-frame O
(reverse
(bind-formals (reverse vars)
680 (stack (top-frame th s))))
nil
prog

> JVM: : UNLOCKED)
(call-stack th s1)))))))
685

; (NEW "class") Instruction
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(defun build-class-field-bindings (field-names)
690 (if (endp field-names)
nil
(cons (cons (car field-names) 0)
(build-class-field-bindings (cdr field-names)))))

695  (defun build-class-object-field-bindings ()
>(("monitor" . 0) ("monitor-count" . 0) ("wait-set" . nil)))

(defun build-immediate-instance-data (class-name class-table)
(cons class-name
700 (build-class-field-bindings
(class-decl-fields
(bound? class-name class-table)))))

(defun build-an-instance (class-names class-table)
705 (if (endp class-names)
nil
(cons (build-immediate-instance-data (car class-names) class-table)
(build-an-instance (cdr class-names) class-table))))

710  (defun execute-NEW (inst th s)
(let* ((class-name (argl inst))
(class-table (class-table s))
(closest-method (lookup-method "run" class-name class-table))
(prog (method-program closest-method))
715 (new-object (build-an-instance
(cons class-name
(class-decl-superclasses
(bound? class-name class-table)))
class-table))
720 (new-address (len (heap s)))
(s1 (modify th s
:pc (+ 1 (pc (top-frame th s)))
:stack (push (list ’JVM::REF new-address)
(stack (top-frame th s)))
725 :heap (bind new-address new-object (heap s)))))
(if (isThreadObject? class-name class-table)
(modify nil si
:thread-table
(addto-tt
730 (push
(make-frame O
(list (cons ’JVM::THIS (list ’JVM::REF new-address)))
nil

prog
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735 > JVM: : UNLOCKED)
nil)
?>JVM: : UNSCHEDULED
(list ’JVM::REF new-address)
(thread-table s1)))
740 s1)))

; (RETURN) Instruction - Void Return
745
(defun execute-RETURN (inst th s)
(declare (ignore inst))
(let* ((obj-ref (binding ’JVM::THIS (locals (top-frame th s)))))
(modify th s
750 :call-stack (pop (call-stack th s))
theap (if (equal (sync-flg (top-frame th s)) ’JVM::LOCKED)
(unlock-object th obj-ref (heap s))
(heap s)))))

755} mmm e
; (XRETURN) Instruction - return 1 thing of arbitrary type

(defun execute-XRETURN (inst th s)
(declare (ignore inst))
760 (let* ((val (top (stack (top-frame th s))))
(obj-ref (binding ’JVM::THIS (locals (top-frame th s))))
(s1 (modify th s
:call-stack (pop (call-stack th s))
theap (if (equal (sync-flg (top-frame th s)) ’JVM::LOCKED)
765 (unlock-object th obj-ref (heap s))
(heap s)))))
(modify th si1
:stack (push val (stack (top-frame th s1))))))

770

; (MONITORENTER) Instruction

(defun execute-MONITORENTER (inst th s)
775 (declare (ignore inst))
(let* ((obj-ref (top (stack (top-frame th s))))
(instance (deref obj-ref (heap s))))
(cond
((objectLockable? instance th)
780 (modify th s
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:pc (+ 1 (pc (top-frame th s)))
:stack (pop (stack (top-frame th s)))
:heap (lock-object th obj-ref (heap s))))
(t s))))
785

; (MONITOREXIT) Instruction

(defun execute-MONITOREXIT (inst th s)
790 (declare (ignore inst))
(let* ((obj-ref (top (stack (top-frame th s))))
(instance (deref obj-ref (heap s))))
(cond
((objectUnLockable? instance th)
795 (modify th s
:pc (+ 1 (pc (top-frame th s)))
:stack (pop (stack (top-frame th s)))
:heap (unlock-object th obj-ref (heap s))))
(t s))))
800

; Putting it all together

(defun next-inst (th s)
805 (nth (pc (top-frame th s))
(program (top-frame th s))))

(defun do-inst (inst th s)
(case (op-code inst)

810 (JVM: : PUSH (execute-PUSH inst th s))
(JVM: :POP (execute-POP inst th s))
(JVM: :LOAD (execute-LOAD inst th s))
(JVM: : STORE (execute-STORE inst th s))
(JVM: :DUP (execute-DUP inst th s))

815 (JVM: : ADD (execute-ADD inst th s))
(JVM: : SUB (execute-SUB inst th s))
(JVM: : MUL (execute-MUL inst th s))
(JVM: :GOTOD (execute-GOTO inst th s))
(JVM: : IFEQ (execute-IFEQ inst th s))

820 (JVM: : IFNE (execute-IFNE inst th s))
(JVM: : IFLT (execute-IFLT inst th s))
(JVM: : IFGT (execute-IFGT inst th s))
(JVM: : INVOKEVIRTUAL (execute-INVOKEVIRTUAL inst th s))
(JVM: :RETURN (execute-RETURN inst th s))

825 (JVM: : XRETURN (execute-XRETURN inst th s))
(JVM: :NEW (execute-NEW inst th s))
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(JVM:
(JVM: :
(JVM:
830 (JVM: :
(JVM:

:GETFIELD

PUTFIELD

:MONITORENTER

MONITOREXIT

:HALT

(otherwise s)))

(defun step4 (th s)
835 (if (equal (call-stack-status th s) ’JVM::SCHEDULED)
(do-inst (next-inst th s) th s)

s))

(defun m4 (sched s)
840 (if (endp sched)

S

(execute-GETFIELD inst th s))
(execute-PUTFIELD inst th s))
(execute-MONITORENTER inst th s))
(execute-MONITOREXIT inst th s))
s)

(m4 (cdr sched) (step4 (car sched) s))))

47



10

15

20

25

30

35

40

’

#

The proof script

Commutative diagram between M3 and M4
George Porter

$Id: commute-diagram.lisp,v 1.12 2001/04/10 03:44:16 george Exp $

up transforms an M4 state into an M3 state, with some loss of information

(1d "commute-diagram.lisp" :1ld-pre-eval-print t)

(include-book "/v/hank/v113/george/src/thesis/m3")
(include-book "/v/hank/v113/george/src/thesis/m4")
(certify-book "commute-diagram" 2)

| #

(in-package "M4")

(defun up (s)

’

(m3: :make-state (car (binding O (m4::thread-table s)))
(m4: :heap s)
(m4::class-table s)))

; down transforms an M3 state into an M4 state

(defun down (s)

)

(m4: :make-state (bind 0 (list (m3::call-stack s) ’JVM::SCHEDULED nil) nil)
(m3: :heap s)
(m3::class-table s)))

upsched transforms an M4 schedule into an M3 one

(defun upsched (sch)

)

’

(if (endp sch)
0
(if (equal (car sch) 0)
(+ 1 (upsched (cdr sch)))
(upsched (cdr sch)))))

; almost-equal is our relation comparing M3 and M4 states, ignoring

unscheduled threads

(defun threadO-scheduled (tt)
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45

50

55

60

65

70

75

80

85

90

(let* ((thdO (binding O tt))
(flag (cadr thd0)))
(and (true-listp thdO)
(equal flag ’JVM::SCHEDULED))))

#]|
(defun no-threads-scheduled (tt)
(cond ((endp tt) t)
((equal (caddr (car tt)) ’JVM::SCHEDULED) nil)
(t (no-threads-scheduled (cdr tt)))))

(defun only-threadO-scheduledp (tt)
(and (threadO-scheduled tt)
(no-threads-scheduled (cdr tt))))
| #

(defun at-most-threadO-scheduledp (tt)
(cond ((endp tt) t)
((equal (caar tt) 0) (at-most-threadO-scheduledp (cdr tt)))
(t (and (not (equal (caddr (car tt)) ’>JVM::SCHEDULED))
(at-most-thread0O-scheduledp (cdr tt))))))

(defun almost-equal (s4 s4p)
(and (equal (call-stack O s4p)
(call-stack O s4)) ; call-stacks equal
; (at-most-threadO-scheduledp (thread-table s4))
; (at-most-threadO-scheduledp (thread-table s4p))
(equal (heap s4) (heap s4p)) ; heaps equal

(equal (class-table s4) (class-table s4p)))) ; class tables equal

; singp is our predicate that determines if a state is single threaded

; no-starts-in-class-table helper functions

(defun check-bytecodes-in-method (bytecodes)
(cond ((endp bytecodes) t)
((and (equal (caar bytecodes) ’JVM::INVOKEVIRTUAL)
(or (equal (caddar bytecodes) "start")
(equal (caddar bytecodes) '"stop")))
nil)
(t (check-bytecodes-in-method (cdr bytecodes)))))

(defun check-methods-for-start (method-list)

(if (endp method-list)
t
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(and (check-bytecodes-in-method (cdddr (car method-list)))
(check-methods-for-start (cdr method-1list)))))

(defun no-starts-in-class (class)
95 (check-methods-for-start (cadddr class)))

(defun no-starts-in-class-table (ctable)
(if (endp ctable)
t
100 (and (no-starts-in-class (car ctable))
(no-starts-in-class-table (cdr ctable)))))

; no-bytecodex-in-frames helpers

105  (defun check-bytecodex-in-method (opcode bytecodes)
(cond ((endp bytecodes) t)
((equal (car (car bytecodes)) opcode) nil)
(t (check-bytecodex-in-method opcode (cdr bytecodes)))))

110  (defun check-methods-for-bytecodex (opcode method-list)
(if (endp method-list)
t
(and (check-bytecodex-in-method opcode (cdddr (car method-list)))
(check-methods-for-bytecodex opcode (cdr method-list)))))

115
(defun no-bytecodex-in-class (opcode class)
(check-methods-for-bytecodex opcode (cadddr class)))
(defun no-bytecodex-in-class-table (opcode ctable)
120 (if (endp ctable)
t
(and (no-bytecodex-in-class opcode (car ctable))
(no-bytecodex-in-class-table opcode (cdr ctable)))))
125 ; no-starts-in-frames helper functions

’

(defun no-starts-in-frames (frames)
(if (endp frames)
130 t
(and (check-bytecodes-in-method (program (car frames)))
(no-starts-in-frames (cdr frames)))))

(defun no-bytecodex-in-frames (opcode frames)

135 (if (endp frames)
t
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140

145

150

155

160

165

170

175

180

(and (check-bytecodex-in-method opcode (program (car frames)))
(no-bytecodex-in-frames opcode (cdr frames)))))

; no-locked-frames helper functions

(defun no-locked-frames-in-frames (frames)
(if (endp frames)
t
(and (not (equal (m4::sync-flg (car frames)) ’JVM::LOCKED))
(no-locked-frames-in-frames (cdr frames)))))

(defun check-methods-for-locked-frames (method-list)
(if (endp method-list)
t
(and (equal (method-sync (car method-list)) NIL)
(check-methods-for-locked-frames (cdr method-list)))))

(defun no-locked-frames-in-class-table (ctable)
(if (endp ctable)
t
(and (check-methods-for-locked-frames (cadddr (car ctable)))
(no-locked-frames-in-class-table (cdr ctable)))))

; We now define the concept that the class table contains no native
; methods other than (possibly) "start" and "stop".

(defun check-other-native-methods (method-list)
(if (endp method-list)
t
(if (or (equal (car (car method-list)) '"start")
(equal (car (car method-list)) "stop"))
(check-other-native-methods (cdr method-list))
(and (not (method-isnative? (car method-list)))
(check-other-native-methods (cdr method-list))))))

(defun no-other-native-methods-in-class (class)
(check-other-native-methods (cadddr class)))

(defun no-other-native-methods-in-class-table (ctable)
(if (endp ctable)
t
(and (no-other-native-methods-in-class (car ctable))
(no-other-native-methods-in-class-table (cdr ctable)))))

(defun singp (s)
(and (at-most-threadO-scheduledp (thread-table s))
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(assoc-equal O (thread-table s))
(equal (caddr (assoc-equal O (thread-table s))) ’JVM::SCHEDULED)
185 (equal (cadddr (assoc-equal O (thread-table s))) nil)
(no-starts-in-frames (car (binding O (thread-table s))))
(no-starts-in-class-table (class-table s))
(no-bytecodex-in-frames
?JVM: :MONITORENTER (car (binding O (thread-table s))))
190 (no-bytecodex-in-class-table
>JVM: :MONITORENTER (class-table s))
(no-bytecodex-in-frames
?JVM: :MONITOREXIT (car (binding O (thread-table s))))
(no-bytecodex-in-class-table
195 >JVM: :MONITOREXIT (class-table s))
(no-locked-frames-in-frames (car (binding O (thread-table s))))
(no-locked-frames-in-class-table (class-table s))
(no-other-native-methods-in-class-table (class-table s))))

200 ; Theorems

; 12 shows that down and up are inverses, in an "almost-equal'" sense
(defthm 12
205 (implies (singp s)
(almost-equal (down (up s)) s))
:rule-classes nil)

210 ; 13 - singp is preserved over stepping

(defthm assoc-equal-bind
(equal (assoc-equal thl (bind th2 x alist))
(if (equal thl th2)
215 (cons thil x)
(assoc-equal thl alist))))

(defthm at-most-thread0-scheduledp-bind
(implies (at-most-threadO-scheduledp tt)
220 (at-most-threadO-scheduledp (bind O entry tt))))

(defthm 13-lemma-EXECUTE-DUP
(implies (singp s)
(singp (execute-dup inst 0 s))))
225
(defthm 13-lemma-EXECUTE-ADD
(implies (singp s)
(singp (execute-add inst 0 s))))
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230

235

240

245

250

255

260

265

270

(defthm 13-lemma-EXECUTE-PUSH
(implies (singp s)

(singp (EXECUTE-PUSH inst 0 s))))

(defthm 13-lemma-EXECUTE-POP
(implies (singp s)

(singp (EXECUTE-POP inst O s))))

(defthm 13-lemma-EXECUTE-LOAD
(implies (singp s)

(singp (EXECUTE-LOAD inst 0 s))))

(defthm 13-lemma-EXECUTE-STORE
(implies (singp s)

(singp (EXECUTE-STORE inst 0 s))))

(defthm 13-lemma-EXECUTE-SUB
(implies (singp s)

(singp (EXECUTE-SUB inst O s))))

(defthm 13-lemma-EXECUTE-MUL
(implies (singp s)

(singp (EXECUTE-MUL inst O s))))

(defthm 13-lemma-EXECUTE-GOTO
(implies (singp s)
(singp (EXECUTE-GOTO

(defthm 13-lemma-EXECUTE-IFEQ
(implies (singp s)
(singp (EXECUTE-IFEQ

(defthm 13-lemma-EXECUTE-IFNE
(implies (singp s)
(singp (EXECUTE-IFNE

(defthm 13-lemma-EXECUTE-IFLT
(implies (singp s)
(singp (EXECUTE-IFLT

(defthm 13-lemma-EXECUTE-IFGT
(implies (singp s)

inst O

inst O

inst O

inst O

s))))

s))))

s))))

s))))

(singp (EXECUTE-IFGT inst O s))))

; In the following, we were sometimes tempted to write (nth 2
; and other times tempted to write (caddr ...) or (cadddr ..
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275 ; rewrite away all the NTHs of constants with this rule.

(defthm nth-opener
(and (equal (nth 0 x) (car x))
(implies (and (syntaxp (quotep i))
280 (integerp i)
(<= 0 1))
(equal (nth (+ 1 i) x)
(nth i (cdr x))))))
(in-theory (disable nth))

285
(defthm at-most-threadO-scheduledp-bind-2
(implies (and (at-most-threadO-scheduledp tt)
(equal (cadr x) °’JVM::UNSCHEDULED))
(at-most-threadO-scheduledp (bind th x tt))))
290

(defthm no-starts-in-class-table-implies-check-methods-for-start
(implies (no-starts-in-class-table ct)
(check-methods-for-start (cadddr (assoc-equal class ct)))))

295 (defthm check-methods-for-start-implies-check-bytecodes-in-method
(implies (check-methods-for-start methods)
(check-bytecodes-in-method (cdddr (assoc-equal method methods)))))

(defthm check-methods-for-start-implies-check-bytecodes-in-method-2
300 (implies (no-starts-in-class-table ct)
(check-bytecodes-in-method
(cdddr
(LODKUP-METHOD-IN-SUPERCLASSES
method
305 classes

ct)))))
; We repeat this for check-bytecodex-in-method.

310 (defthm no-bytecodex-in-class-table-implies-no-bytecodex-in-class
(implies (no-bytecodex-in-class-table opcode ct)
(check-methods-for-bytecodex opcode (cadddr (assoc-equal class ct)))))

(defthm check-methods-for-bytecodex-implies-check-bytecodex-in-method
315 (implies (check-methods-for-bytecodex opcode methods)
(check-bytecodex-in-method opcode (cdddr (assoc-equal method methods)))))

(defthm check-methods-for-bytecodex-implies-check-bytecodex-in-method-2

(implies (no-bytecodex-in-class-table opcode ct)
320 (check-bytecodex-in-method
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325

330

335

340

345

350

355

360

365

opcode
(cdddr
(LOOKUP-METHOD-IN-SUPERCLASSES
method
classes

ct)))))

; We now have a similar argument to show that no invoked method is
; synchronized.

(defthm no-locked-frames-in-class-table-implies-not-method-sync
(implies (NO-LOCKED-FRAMES-IN-CLASS-TABLE ct)
(not (CADDR
(ASSOC-EQUAL method
(cadddr (ASSOC-EQUAL class ct)))))))

(defthm no-locked-frames-in-class-table-implies-not-method-sync-lookup-method
(implies (NO-LOCKED-FRAMES-IN-CLASS-TABLE ct)
(not (CADDR
(LOOKUP-METHOD-IN-SUPERCLASSES method superclasses ct)))))

(defthm 13-lemma-EXECUTE-INVOKEVIRTUAL
(implies (and (singp s)
(not (equal (caddr inst) "start"))
(not (equal (caddr inst) "stop")))
(singp (EXECUTE-INVOKEVIRTUAL inst O s))))

(defthm 13-lemma-EXECUTE-RETURN
(implies (singp s)
(singp (EXECUTE-RETURN inst O s))))

(defthm 13-lemma-EXECUTE-XRETURN
(implies (singp s)
(singp (EXECUTE-XRETURN inst 0 s))))

(defthm len-bind
(equal (len (bind O v alist))
(if (assoc-equal 0 alist) (len alist) (+ 1 (len alist)))))
(defthm assoc-equal-implies-non-0-len
(implies (assoc-equal key alist)

(not (equal O (len alist)))))

(defthm 13-lemma-EXECUTE-NEW

95



370

375

380

385

390

395

400

405

410

(implies (singp s)
(singp (EXECUTE-NEW inst O s))))

(defthm 13-lemma-EXECUTE-GETFIELD
(implies (singp s)
(singp (EXECUTE-GETFIELD inst O s))))

(defthm 13-lemma-EXECUTE-PUTFIELD
(implies (singp s)
(singp (EXECUTE-PUTFIELD inst O s))))

; We don’t really need these, because singp implies there are none of these
; ilnstructions. But in fact singp is preserved by them, so we prove these for
; future use.

(defthm 13-lemma-EXECUTE-MONITORENTER
(implies (singp s)
(singp (EXECUTE-MONITORENTER inst O s))))

(defthm 13-lemma-EXECUTE-MONITOREXIT
(implies (singp s)
(singp (EXECUTE-MONITOREXIT inst O s))))

(defthm only-thread-0-scheduled-lemma
(IMPLIES (AND (AT-MOST-THREADO-SCHEDULEDP tt)
(EQUAL (CADDR (ASSOC-EQUAL TH tt))
> JVM: : SCHEDULED) )
(EQUAL TH 0))
:rule-classes nil)

(defthm only-thread-O-scheduled
(implies (and (SINGP S)
(EQUAL (CADDR (ASSOC-EQUAL TH (THREAD-TABLE S)))
?JVM: : SCHEDULED) )
(equal th 0))
thints (("Goal" :use (:instance only-thread-O-scheduled-lemma
(tt (thread-table s)))))
:rule-classes nil)

; The next two lemmas are used to prove the lemma next-inst-not-start,
; which is needed in 13-lemma to prove the 2nd hyp of the 13-lemma
; invokevirtual case.

(defthm next-inst-not-start-lemma2-start
(IMPLIES (and (CHECK-BYTECODES-IN-METHOD program)
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(equal (car (NTH PC program)) ’JVM::INVOKEVIRTUAL))
(NOT (EQUAL (CADDR (NTH PC program))
415 "start")))
thints (("Goal" :in-theory (enable nth))))

(defthm next-inst-not-start-lemma2-stop
(IMPLIES (and (CHECK-BYTECODES-IN-METHOD program)
420 (equal (car (NTH PC program)) °’JVM::INVOKEVIRTUAL))
(NOT (EQUAL (CADDR (NTH PC program))
"stop")))
:hints (("Goal" :in-theory (enable nth))))

425 (defthm next-inst-not-start-lemmal-start
(implies
(and (NO-STARTS-IN-FRAMES cs)
(equal (car (NTH pc (program (car cs)))) ’JVM::INVOKEVIRTUAL))
(not (equal (caddr (NTH pc (program (car cs)))) "start")))
430 :hints (("Goal" :in-theory (enable nth))))

(defthm next-inst-not-start-lemmal-stop
(implies
(and (NO-STARTS-IN-FRAMES cs)
435 (equal (car (NTH pc (program (car cs)))) ’JVM::INVOKEVIRTUAL))
(not (equal (caddr (NTH pc (program (car cs)))) "stop")))
thints (("Goal" :in-theory (enable nth))))

(defthm next-inst-not-start
440 (implies
(and (singp s)
(equal (car (NTH pc (program
(CAADR (ASSOC-EQUAL O (THREAD-TABLE S))))))

?JVM: : INVOKEVIRTUAL))

445 (not (equal (caddr (NTH pc (program

(CAADR (ASSOC-EQUAL O (THREAD-TABLE S))))))

"start"))))

(defthm next-inst-not-stop
450 (implies
(and (singp s)
(equal (car (NTH pc (program
(CAADR (ASSOC-EQUAL O (THREAD-TABLE S))))))

>JVM: : INVOKEVIRTUAL))

455 (not (equal (caddr (NTH pc (program

(CAADR (ASSOC-EQUAL O (THREAD-TABLE S))))))

"stop"))))
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; in order to relieve the 2nd hyp of the 13 INVOKVIRTUAL lemma.

460
(defthm 13-lemma
(implies (singp s)
(singp (step4 th s)))
:hints
465 (("Goal"
:use (:instance only-thread-O-scheduled
(s s)
(th th))

:in-theory

470 (disable EXECUTE-PUSH
EXECUTE-POP
EXECUTE-LOAD
EXECUTE-STORE
EXECUTE-DUP

475 EXECUTE-ADD
EXECUTE-SUB
EXECUTE-MUL
EXECUTE-GOTO
EXECUTE-IFEQ

480 EXECUTE-IFNE
EXECUTE-IFLT
EXECUTE-IFGT
EXECUTE-INVOKEVIRTUAL
EXECUTE-RETURN

485 EXECUTE-XRETURN
EXECUTE-NEW
EXECUTE-GETFIELD
EXECUTE-PUTFIELD
EXECUTE-MONITORENTER

490 EXECUTE-MONITOREXIT
singp))))
(defthm 13
(implies (singp s) (singp (m4 sched s)))
495 thints (("Goal" :in-theory (disable step4 singp))))

(defthm state-decomposition-m4
(iff (equal (M4::make-state ttl hl ctl)
(M4: :make-state tt2 h2 ct2))
500 (and (equal ttl tt2)

(equal hl h2)
(equal ctl ct2)))

:hints

(("Goal"
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505

510

515

520

525

530

535

540

545

550

:in-theory (enable M4::make-state))))

(defthm state-decomposition-m3
(iff (equal (M3::make-state csl hl ctl)
(M3: :make-state cs2 h2 ct2))
(and (equal csl cs2)
(equal hl h2)
(equal ctl ct2)))
:hints
(("Goal"
:in-theory (enable M3::make-state))))

(defthm compare-m3-and-m4-make-frame
(iff (equal (m3::make-frame pcl localsl stackl programl syncl)
(m4: :make-frame pc2 locals2 stack2 program2 sync2))
(and (equal pcl pc2)
(equal localsl locals2)
(equal stackl stack2)
(equal programl program?2)
(equal syncl sync2)))
:hints
(("Goal"
:in-theory (enable m3::make-frame mé4::make-frame))))

(defthm m3-pc-is-m4-pc
(equal (m3::pc x) (m4::pc x))
:hints
(("Goal"
:in-theory (enable m3::pc m4::pc))))

(defthm m3-locals-is-m4-locals
(equal (m3::locals x) (m4::locals x))
:hints
(("Goal"
:in-theory (enable m3::locals m4::locals))))

(defthm m3-stack-is-m4-stack
(equal (m3::stack x) (m4::stack x))
:hints
(("Goal"
:in-theory (enable m3::stack mé::stack))))

(defthm m3-program-is-m4-program
(equal (m3::program x) (mé4::program x))
:hints
(("Goal"
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555

560

565

570

575

580

585

590

595

:in-theory (enable m3::program mé4::program))))

(defthm m3-sync-flg-is-m4-sync-flg
(equal (m3::sync-flg x) (m4::sync-flg x))
:hints
(("Goal"
:in-theory (enable m3::sync-flg m4::sync-£flg))))

; L1

; Ll-lemmal
(defthm 11-lemmal-not-O-is-not-sched
(implies (and (at-most-threadO-scheduledp tt)
(not (equal th 0)))
(not (equal (caddr (assoc-equal th tt))
?JVM: : SCHEDULED))))

(defthm 11-lemmal
(implies (and (singp s)
(not (equal th 0)))
(equal (step4 th s) s)))

; Ll-lemma2
(defthm 11-lemma2-EXECUTE-DUP
(implies (singp s)
(equal (M3::EXECUTE-DUP inst (up s))
(up (M4::EXECUTE-DUP inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-ADD
(implies (singp s)
(equal (M3::EXECUTE-ADD inst (up s))
(up (M4::EXECUTE-ADD inst 0 s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-PUSH
(implies (singp s)
(equal (M3::EXECUTE-PUSH inst (up s))
(up (M4::EXECUTE-PUSH inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))
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600

605

610

615

620

625

630

635

640

(defthm 11-lemma2-EXECUTE-POP
(implies (singp s)
(equal (M3::EXECUTE-POP inst (up s))
(up (M4::EXECUTE-POP inst 0 s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-LOAD
(implies (singp s)
(equal (M3::EXECUTE-LOAD inst (up s))
(up (M4::EXECUTE-LOAD inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm m3-bind-is-m4-bind
(equal (m3::bind x y list)
(m4::bind x y 1list)))

(defthm 11-lemma2-EXECUTE-STORE
(implies (singp s)
(equal (M3::EXECUTE-STORE inst (up s))
(up (M4::EXECUTE-STORE inst 0 s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

; (in-theory (disable m3-bind-is-m4-bind))

(defthm 11-lemma2-EXECUTE-SUB
(implies (singp s)
(equal (M3::EXECUTE-SUB inst (up s))
(up (M4::EXECUTE-SUB inst 0 s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-MUL
(implies (singp s)
(equal (M3::EXECUTE-MUL inst (up s))
(up (M4::EXECUTE-MUL inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))
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645

650

655

660

665

670

675

680

685

(defthm 11-lemma2-EXECUTE-GOTO
(implies (singp s)
(equal (M3::EXECUTE-GOTO inst (up s))
(up (M4::EXECUTE-GOTO inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-IFEQ
(implies (singp s)
(equal (M3::EXECUTE-IFEQ inst (up s))
(up (M4::EXECUTE-IFEQ inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-IFNE
(implies (singp s)
(equal (M3::EXECUTE-IFNE inst (up s))
(up (M4::EXECUTE-IFNE inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-IFLT
(implies (singp s)
(equal (M3::EXECUTE-IFLT inst (up s))
(up (M4::EXECUTE-IFLT inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-IFGT
(implies (singp s)
(equal (M3::EXECUTE-IFGT inst (up s))
(up (M4::EXECUTE-IFGT inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-GETFIELD
(implies (singp s)
(equal (M3::EXECUTE-GETFIELD inst (up s))

(up (M4::EXECUTE-GETFIELD inst O s))))

:hints
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(("Goal"
690 :in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-PUTFIELD
(implies (singp s)
(equal (M3::EXECUTE-PUTFIELD inst (up s))
695 (up (M4::EXECUTE-PUTFIELD inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top m3-bind-is-m4-bind))))

700 (defthm no-other-native-methods-in-class-table-implies-no-natives
(implies (and (no-other-native-methods-in-class-table ct)
(not (equal method '"start"))
(not (equal method '"stop")))
(NOT
705 (EQUAL
?(NIL)
(CDDDR
(ASSOC-EQUAL
method
710 (CADDDR (ASSOC-EQUAL class ct))))))))

(defthm no-other-native-methods-in-class-table-implies-no-natives-lookup-method
(implies (and (no-other-native-methods-in-class-table ct)
(not (equal method '"start"))
715 (not (equal method '"stop")))
(NOT
(EQUAL
’ (NIL)
(CDDDR
720 (LODKUP-METHOD-IN-SUPERCLASSES
method
superclasses

ct))))))

725  (defthm m3-popn-is-m4-popn
(equal (m3::popn n stack)
(m4: :popn n stack))
thints (("Goal" :in-theory (enable m3::pop m4::pop))))

730 (defthm assoc-equal-modify-tt

(equal (assoc-equal th (modify-tt th cs status tt))
(1ist th cs status (call-stack-rref th tt))))
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735

740

745

750

755

760

765

770

775

780

(defthm call-stack-make-state-modify-tt
(equal (call-stack th (make-state (modify-tt th cs status tt) heap ct))
cs)
thints (("Goal" :in-theory (enable make-state))))

(defthm m3-reverse-is-mé4-reverse
(equal (m3::reverse x)
(m4: :reverse x)))

(defthm m3-bind-formals-is-m4-bind-formals
(equal (m3::bind-formals rformals stack)
(m4: :bind-formals rformals stack))

:hints (("Goal" :in-theory (enable m3::pop mé4::pop m3::top mé::top))))

(defthm M3-LOOKUP-METHOD-IN-SUPERCLASSES-is-M4-L00KUP-METHOD-IN-SUPERCLASSES
(equal (M3::LOOKUP-METHOD-IN-SUPERCLASSES method superclasses ct)
(M4 : : LOOKUP-METHOD-IN-SUPERCLASSES method superclasses ct)))

(defthm 11-lemma-EXECUTE-INVOKEVIRTUAL

(implies (and (singp s)

(not (equal (caddr inst) "start"))

(not (equal (caddr inst) "stop")))

(equal (M3::EXECUTE-INVOKEVIRTUAL inst (up s))
(up (M4::EXECUTE-INVOKEVIRTUAL inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-RETURN
(implies (singp s)
(equal (M3::EXECUTE-return inst (up s))
(up (M4::EXECUTE-return inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm 11-lemma2-EXECUTE-XRETURN
(implies (singp s)
(equal (M3::EXECUTE-xreturn inst (up s))
(up (M4::EXECUTE-xreturn inst O s))))
thints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))

(defthm M3-BUILD-CLASS-FIELD-BINDINGS-IS-M4-BUILD-CLASS-FIELD-BINDINGS
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(equal (M3::BUILD-CLASS-FIELD-BINDINGS fields)
(M4 : :BUILD-CLASS-FIELD-BINDINGS fields)))

(defthm M3-BUILD-AN-INSTANCE-is-M4-BUILD-AN-INSTANCE
785 (equal (M3::BUILD-AN-INSTANCE class ct)
(M4: :BUILD-AN-INSTANCE class ct)))

(defthm 11-lemma2-EXECUTE-new
(implies (singp s)
790 (equal (M3::EXECUTE-new inst (up s))
(up (M4::EXECUTE-new inst O s))))
:hints
(("Goal"
:in-theory (enable M3::pop M3::push M3::top))))
795
(defthm caar-up
(equal (CAAR (UP S))
(CAADR (ASSOC-EQUAL O (THREAD-TABLE S))))
thints (("Goal" :in-theory (enable M3::MAKE-STATE))))
800
(defthm check-bytecodex-in-method-implies-no-monitorenter
(IMPLIES (CHECK-BYTECODEX-IN-METHOD ’JVM::MONITORENTER
program)
(NOT (EQUAL (CAR (NTH pc program))
805 »JVM: :MONITORENTER)))
thints (("Goal" :in-theory (enable nth))))

(defthm check-bytecodex-in-method-implies-no-monitorexit
(IMPLIES (CHECK-BYTECODEX-IN-METHOD ’JVM::MONITOREXIT
810 program)
(NOT (EQUAL (CAR (NTH pc program))
?JVM: :MONITOREXIT)))
:hints (("Goal" :in-theory (enable nth))))

815 (defthm check-bytecodex-in-method-implies-no-monitorenter-instr
(implies (NO-BYTECODEX-IN-FRAMES ’JVM::MONITORENTER cs)
(not (EQUAL (CAR (NTH (PC (CAr cs))
(PROGRAM (CAr cs))))
> JVM: :MONITORENTER))))
820
(defthm check-bytecodex-in-method-implies-no-monitorexit-instr
(implies (NO-BYTECODEX-IN-FRAMES ’JVM::MONITOREXIT cs)
(not (EQUAL (CAR (NTH (PC (CAr cs))
(PROGRAM (CAr cs))))
825 > JVM: :MONITOREXIT))))
(defthm 11-lemma2
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(implies (singp s)
(equal (M3::step3 (up s))
(up (step4 0 s))))
830 :hints
(("Goal"
:in-theory
(union-theories
>(m3::top m3::call-stack)
835 (disable M3::EXECUTE-PUSH
M4: :EXECUTE-PUSH
M3: :EXECUTE-POP
M4: :EXECUTE-POP
M3: :EXECUTE-LOAD
840 M4: :EXECUTE-LOAD
M3: :EXECUTE-STORE
M4 : :EXECUTE-STORE
M3: :EXECUTE-DUP
M4 : :EXECUTE-DUP
845 M3: :EXECUTE-ADD
M4 : :EXECUTE-ADD
M3: :EXECUTE-SUB
M4 : :EXECUTE-SUB
M3: :EXECUTE-MUL
850 M4 : :EXECUTE-MUL
M3: :EXECUTE-GOTO
M4: :EXECUTE-GOTO
M3: :EXECUTE-IFEQ
M4 : :EXECUTE-IFEQ
855 M3: :EXECUTE-IFNE
M4 : :EXECUTE-IFNE
M3: :EXECUTE-IFLT
M4: :EXECUTE-IFLT
M3: :EXECUTE-IFGT
860 M4: :EXECUTE-IFGT
M3: :EXECUTE-INVOKEVIRTUAL
M4 : :EXECUTE-INVOKEVIRTUAL
M3: :EXECUTE-RETURN
M4 : :EXECUTE-RETURN
865 M3: :EXECUTE-XRETURN
M4 : :EXECUTE-XRETURN
M3: :EXECUTE-NEW
M4 : :EXECUTE-NEW
M3: :EXECUTE-GETFIELD
870 M4: :EXECUTE-GETFIELD
M3: :EXECUTE-PUTFIELD
M4 : : EXECUTE-PUTFIELD
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875

880

885

890

895

900

905

910

915

M4 : :EXECUTE-MONITORENTER
M4 : :EXECUTE-MONITOREXIT
; singp
up
)))))

(include-book "/projects/acl2/v2-5/books/arithmetic/top-with-meta")

(defthm 11
(implies (singp s)
(equal (M3::m3 (upsched sch) (up s))
(up (m4 sch s))))
:hints (("Goal" :in-theory (disable singp m3::step3 m4::step4 up))))

(defthm main
(implies (singp s)
(almost-equal (down (m3::m3 (upsched sch) (up s)))
(m4 sch s)))
:hints
(("Goal" :in-theory (disable down up upsched m3::m3 m4 almost-equal singp)
:use ((:instance 12 (s (m4 sch s)))))))

; Below are application independent support lemmas and theorems
; that allow one to port M3 properties to M4.

(defthm condition3
(equal (m3::top-frame (up s)) (top-frame O s))
:hints (("Goal" :in-theory (enable m3::top))))

(defthm condition4
(equal (m3::call-stack (up s)) (call-stack O s)))

(defthm almost-equal-bind-0
(equal (almost-equal sO (make-state (bind O thread-entry thread-table) heap class-tabl
(almost-equal sO (make-state (list (cons O thread-entry)) heap class-table))))

(defthm almost-equal-commutes
(equal (almost-equal sO sl1)
(almost-equal s1 s0)))
(defthm heap-and-class-table-up
(and (equal (m3::heap (up s)) (heap s))
(equal (m3::class-table (up s)) (class-table s))))

(defthm m3-states-again
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920

925

930

935

(and

(implies (equal z (m3::make-state cs hp ct))
(equal (m3::call-stack z) cs))

(implies (equal z (m3::make-state cs hp ct))
(equal (m3::heap z) hp))

(implies (equal z (m3::make-state cs hp ct))
(equal (m3::class-table z) ct))))

(defthm m3-push-and-pop
(and (equal (m3::push x y) (push x y))
(equal (m3::pop x) (pop x)))
:hints (("Goal" :in-theory (enable m3::push m3::pop))))

(defthm m3-make-frame-to-m4
(equal (m3::make-frame cs lc st pr fl)
(make-frame cs lc st pr f1))
:hints (("Goal" :in-theory (enable m3::make-frame make-frame))))

(defthm singp-implies-rref-nil

(implies (singp sO)
(equal (CADDDR (ASSOC-EQUAL O (THREAD-TABLE S0))) nil)))
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