
A Commuting Diagram Relating Threaded andNon-threaded JVM ModelsGeorge M. PorterFa
ulty Adviser: J Strother Moore, Ph.D.April 16, 2001Abstra
tWe establish a
ommuting diagram that relates two models of the JavaVirtual Ma
hine (JVM). The �rst model, M3, supports mu
h of Java, in-
luding
lasses, obje
ts, and dynami
 method resolution. The se
ondmodel, M4, builds upon M3 by adding threads, monitors, and syn
hro-nized methods. We des
ribe a theorem, Main, that asserts that running
ertain \single-threaded" states on M4 is equivalent to transforming thosestates to the domain of M3, running the transformed state there, andtranslating the result ba
k to the domain of M4. We de�ne the
riteriawe use to determine if the resulting states are equivalent, and we de�neour notion of \single-threaded". We then dis
uss a few lessons learnedduring the development of Main1 A Des
ription of M3 and M4M3 and M4 are both models of the Java Virtual Ma
hine (JVM). They arerespe
tively the third and fourth members of a series of ma
hines approa
hingthe JVM in
omplexity. (Sun's spe
i�
ation of the JVM
an be found in [2℄).M3 supports mu
h of the fun
tionality of the JVM, in
luding many byte
odes(su
h as ADD, IFEQ, MUL, et
). M3 supports
lasses, with �elds and methods.Setting and retrieving the �elds of obje
ts in the heap respe
t inheritan
e, asdoes method invo
ation.M4 builds upon M3 by supporting multiple threads of exe
ution in a way thatis
onsistent with Sun's spe
i�
ation of the JVM found in [2℄. Syn
hronizationbetween threads is provided via syn
hronized methods and syn
hronized blo
ks.(For a des
ription of Java's thread syn
hronization me
hanisms, see [1℄). M4adds two new byte
odes: MONITORENTER and MONITOREXIT, whi
h allow theJVM to a

ess monitors lo
ated in every Java obje
t in the heap. These monitorswill be des
ribed in further detail below. For a
omplete des
ription of M4, see[3℄. In M4, a state
onsists of three
omponents: the thread table, the heap, andthe
lass table. We des
ribe ea
h in turn. When we use the word \table" here1

we generally mean a list of pairs in whi
h \keys" (whi
h might be thought ofas
onstituting the left-hand
olumn of the table) are paired with \values" (theright-hand
olumn of the table). Su
h a table is a map from the keys to the
orresponding values.The thread table maps thread numbers to threads. Ea
h thread
onsists ofthree
omponents: a
all sta
k, a
ag indi
ating whether the thread is s
heduled,and the heap address of an obje
t of
lass Thread in the heap uniquely asso
iatedwith this thread. We dis
uss the heap below.The
all sta
k is a list of frames treated as a sta
k (the �rst element of thelist is the topmost frame). Ea
h frame
ontains �ve
omponents: a program
ounter and the byte
oded method body, a table asso
iating variable nameswith values, a sta
k, and a syn
hronization
ag indi
ating whether the method
urrently exe
uting is syn
hronized. Unlike the JVM, the lo
al variables of amethod are referen
ed by symboli
 names rather than positions.The heap is a table asso
iating heap addresses with instan
e obje
ts. Aninstan
e obje
t is a table. The keys of an instan
e obje
t are the su

essive
lasses in the super
lass
hain of the obje
t. The value of ea
h su
h key isanother table, mapping the immediate �eld names of the
lass to their values.The stru
ture of heap addresses is unimportant but they
an be distinguishedfrom integers and other data types. In our model a heap address is a list of theform (REF i), where i is a natural number. One point where our model di�ersfrom the JVM is that in our model the NEW instru
tion is
ompletely responsiblefor the obje
t's instantiation; all �elds are initialized to 0. Classes in our modeldo not have separate
onstru
tors.Finally, the
lass table is a table mapping
lass names to
lass des
riptions.A
lass des
ription
ontains a list of its super
lass names, a list of its immediate�elds, and a list of its methods. We do not model synta
ti
 typing in ourma
hine, though we
ould. Thus, our list of �elds is just a simple list of �eldnames (strings) rather than, say, a table mapping �eld names to signatures. Amethod is a list
ontaining a method name, the names of the formal parametersof the method, a syn
hronization status
ag, and a list of byte
oded instru
tions.Our model omits signatures and the a

ess modes of methods.Byte
oded instru
tions are represented abstra
tly as lists
onsisting of asymboli
 op
ode name followed by zero or more operands. For example, (LOADX) is the instru
tion that pushes the value of lo
al variable X onto the sta
kin the
urrent frame. (ADD) pops two items o� the sta
k in the
urrent frameand pushes their sum. (IFEQ 12) pops an item o� the sta
k and if it is 0,in
rements the program
ounter by 12; otherwise it in
rements it by 1. Thesimilarity of these instru
tions to
ertain JVM instru
tions should be obvious,as should be the di�eren
es: we ignore the di�erent types of LOAD (e.g., ILOAD,DLOAD, et
.) and ADD instru
tions, we ignore the �nite range of integer data, andwe
ount program
ounter o�sets in number of instru
tions rather than numberof bytes. These and most of the other dis
repan
ies between the
urrent modeland the JVM are matters of detail that would not
hange the basi
 stru
ture ofthe model to �x and do not impa
t our ability to use the model to study proofte
hniques. 2

(defun exe
ute-PUSH (inst th s)(modify th s:p
 (+ 1 (p
 (top-frame s th))):sta
k (push (arg1 inst)(sta
k (top-frame s th)))))Table 1: exe
ute-PUSHFor those readers
urious to see how we de�ne the semanti
s of su
h opera-tions in ACL2, see Table 1. It
ontains the de�nition of the fun
tion exe
ute-PUSHwhi
h we use to give semanti
s to the PUSH instru
tion. The instru
tion (PUSH3) is
omparable to ICONST 3 or BIPUSH 3 on the JVM.The fun
tion takes three arguments, named inst, s, and th. The �rst is thelist expression denoting the instru
tion. The �rst element of inst will always bethe symbol PUSH and the se
ond is the
onstant that is to be pushed on the sta
kof the
urrent frame. The se
ond argument of exe
ute-PUSH, s, is the JVMstate,
onsisting of a thread table, a heap and a
lass table. The third argument,th, is the number of the thread that is to be \stepped." Exe
ute-PUSH returnsthe state obtained by exe
uting the PUSH instru
tion in the given thread of s. It
reates that state with the fun
tion make-state, whi
h takes three arguments:the thread table, the heap and the
lass table of the state to be returned. Thelast two
omponents of the new state above are the same as those in s. Thethread table is modi�ed by repla
ing the entry for th by another entry. Thatentry's
all sta
k is obtained by repla
ing the topmost frame of the
urrent
allsta
k (noti
e we push a frame onto a sta
k obtained by popping one o�). In thenew frame, the program
ounter is advan
ed by 1, the lo
als remain un
hanged,the
onstant (extra
ted from inst using the fun
tion arg1) is pushed on thesta
k, and the method program and syn
hronization
ag are un
hanged.The most
ompli
ated instru
tion formalized in our model is INVOKEVIRTUAL.An example INVOKEVIRTUAL instru
tion on our ma
hine is represented by the liststru
ture (INVOKEVIRTUAL "ColoredPoint" "move" 2). Note that in pla
eof the JVM's signature we provide only the number of parameters, sin
e we
onsistently ignore type issues in this model. We paraphrase the de�nition ofexe
ute-INVOKEVIRTUAL by des
ribing the state it
reates from an instru
tionof the form below, a state s , and a thread number th.(INVOKEVIRTUAL
 name n): Let ref be the item n deep in the sta
k. Thisis expe
ted to be a heap referen
e to an instan
e obje
t, obj . Let
lass bethe
lass of this obje
t (the �rst key in the table, i.e., the name of the mostspe
i�

lass in the obje
t's
lass hierar
hy). Use the fun
tion lookup-methodto determine from the
lass-table of s the
losest method with name name in
lass or its super
lass
hain. Let formals and body be the formal parametersand byte
oded body of the
losest method. Let formals 0 be formals with thenew symbol THIS added to the front.Create a new
all sta
k,
s 0, from the
all sta
k of thread th in s by repla
ingthe topmost frame by a new frame in whi
h the program
ounter has been3

in
remented by one and n + 1 items have been popped o� the sta
k. Createanother
all sta
k,
s 00, by pushing a new frame onto
s 0. This new frame shouldhave a program
ounter of 0 and an empty sta
k. The lo
als of the new frameshould bind formals 0 to the topmost n + 1 items removed from the sta
k in s(above), the deepest of whi
h is bound to THIS. The byte
oded body of theframe should be body . We will use
s 0 and
s 00 in various
ases below and wewill not be interested in
s 00 unless the
losest method is non-native. Considerthe following
ases.� The
losest method is native: We support only two native methods,"start" and "stop" from the "Obje
t"
lass. We des
ribe only the �rsthere. In this
ase, obj should in
lude the
lass "Thread" in its super-
lass
hain. The new state
onstru
ted by the "start" method has thesame heap and
lass table as s . The thread table is
hanged in two ways.First, the
all sta
k of th is repla
ed by
s 0 above (stepping over theINVOKEVIRTUAL). Se
ond, the thread th 0 uniquely asso
iated with obj is
hanged so that its s
heduled
ag is SCHEDULED.� The
losest method is a syn
hronized method: Fet
h the
ontents of the"monitor" and "m
ount" �elds in the "Obje
t"
lass of obj . If the m
ountis 0 or the m
ount is non-0 but the monitor is th, then we say obj is\available" to th . If obj is available to th, then the new state is obtainedfrom s by repla
ing the
all sta
k with
s 00 after setting the syn
-flg
omponent of the top frame to LOCKED, and by repla
ing the heap of swith a heap in whi
h the "m
ount" �eld of the obje
t at ref has beenin
remented by one and the "monitor" �eld has been set to th. If, onthe other hand, obj is unavailable, then the \new" state is s itself. Thus,the thread hangs at the INVOKEVIRTUAL instru
tion until obj be
omesavailable. We do not spe
ify the s
heduler; instead, our model allows allpossible interleavings of thread exe
utions and some thread states (as theone just des
ribed) make no
hange if stepped before progress is possible.� Otherwise, the new state is obtained from s by repla
ing the
all sta
k with
s 00 after setting the syn
-flg
omponent of the top frame to UNLOCKED.Given exe
ute-PUSH, the reader
an presumably imagine how this des
riptionis
oded in ACL2.We formalize a variety of instru
tions in this style, in
luding POP, LOAD,STORE, ADD, MUL, GOTO, IFEQ, IFGT, RETURN, XRETURN, NEW, GETFIELD, PUTFIELD,MONITORENTER, and MONITOREXIT. For ea
h su
h op
ode op we de�ne an ACL2fun
tion exe
ute-op that takes the instru
tion,
urrent state, and thread num-ber and returns the next state.We then de�ne step to be the fun
tion that takes a state and a threadnumber and exe
utes the next instru
tion in the given thread, provided thatthread exists and is SCHEDULED. Step is essentially a \big swit
h" on the op
odeof the instru
tion indi
ated by the program
ounter and method body in thetop frame of the
all sta
k of the given thread.4

Finally we de�ne run to take a \s
hedule" and a state and return the resultof stepping the state a

ording to the given s
hedule. A s
hedule is just a list ofnumbers, indi
ating whi
h thread is to be stepped next. That is, our model putsno
onstraints on the JVM thread s
heduler; however stepping a non-existent,UNSCHEDULED, or otherwise blo
ked thread is a no-op. We �nd it
onvenient alsoto de�ne (runn n s
hedule s) to run the �rst n steps of s
hedule starting instate s.The
omplete ACL2 sour
e text for our ma
hine is available from http://-www.
s.utexas.edu/users/moore/publi
ations/m4/index.html.Our model omits many features of the JVM. Among the more glaring omis-sions are a

urate support for the JVM primitive data types like ints, doubles,arrays, et
., support for synta
ti
 typing both in the naming
onvention in theinstru
tion set (e.g., IADD versus DADD) and �eld and method signatures,
lassloading and initialization, INVOKESTATIC (with the
on
omitant requirementthat
lasses have representative instan
e obje
ts in the heap upon whi
h syn-
hronization
an be arranged), ex
eption handling, and errors. Experien
e withother
ommer
ial mi
ropro
essor models leads us to believe that these features
ould be added to our model without fundamentally
hanging its basi
 stru
-ture. There is no doubt that they greatly
ompli
ate the model and would
ompli
ate proofs about programs that use the features in question. That isone of the reasons we left them out. Our model is adequate however as a vehi
lefor studying basi
 me
hanized proof te
hniques for dealing with Java programs,in
luding multi-threaded appli
ations.2 A Commuting Diagram Between M3 and M4Proving properties of a multi-threaded system is
ompli
ated by the fa
t that thethreads
an intera
t in numerous ways. The exa
t inter-leavings of the threadsis not known before runtime, and so all possible intera
tions must be
onsideredin proving its
orre
tness. It would be bene�
ial to separate the threads, proveea
h of them
orre
t independently of the other threads, and then
on
lude thatthe resulting multi-threaded state is
orre
t. Often this is impossible, sin
e thethreads are intertwined and depend on ea
h other. However, if it were knownthat the threads did not destru
tively interfere with ea
h other, then ea
h thread
ould be proved
orre
t independently of the others. This is the driving for
ebehind our
ommuting diagram Main, whi
h is given below.S3 (m3 (ups
hed s
hed))�������������! S03upx?? upx?? ??ydownS4 �������!(m4 s
hed) S04The formal expression of this diagram is presented at the end of this se
tion,but for now
onsider a multi-threaded state S4. Running the state a

ording5

to s
hedule s
hed results in a new state S04. We have de�ned a fun
tion upthat transforms
ertain types of \single-threaded" M4 states into M3 states. Apredi
ate singp determines if a state is \single-threaded". Currently, \single-threaded" states are those states in whi
h no Thread obje
ts have their startor stop methods invoked, only thread 0 is s
heduled, and in whi
h there are nosyn
hronized or native methods. This de�nition is obviously restri
tive, and ourhope is that in time the singp predi
ate
an be generalized to re
ognize otherstates that meet its
riteria yet have multiple s
heduled threads, for instan
e.Some of its restri
tions have to do with the transformation into an M3 state,sin
e M3 does not support native or syn
hronized methods, for example.Given the up fun
tion, an M4 state is transformed (with loss of informationabout the non-s
heduled threads) into an M3 state, whi
h is then run via the m3ma
hine and the
omponent of the s
hedule that relates to thread 0 (s
hed').The resulting state
an be transformed in a straightforward way ba
k into anM4 state via down. That resulting state is the same as S04 in terms of thread 0,however information about the uns
heduled threads is lost.We now present the de�nitions of up, down, singp, almost-equal, and the
ommuting diagram Main.(defun up (s)(m3::make-state (
ar (binding 0 (m4::thread-table s)))(m4::heap s)(m4::
lass-table s)))Up transforms M4 states into M3 states. Note that the
lass-tables and heapsare the same in both
ases, and that only thread 0 is lifted out of the threadtable and set as M3's
all-sta
k.(defun down (s)(m4::make-state (bind 0 (list (m3::
all-sta
k s)'JVM::SCHEDULEDnil)nil)(m3::heap s)(m3::
lass-table s)))Down is naturally the opposite of up, taking M3's
all-sta
k and setting itas the only element of M4's thread-table. The heap and
lass-table remainun
hanged.(defun singp (s)(and (at-most-thread0-s
heduledp (thread-table s))(asso
-equal 0 (thread-table s))(equal (
addr (asso
-equal 0 (thread-table s)))'JVM::SCHEDULED)(no-starts-in-frames (
ar (binding 0 (thread-table s))))(no-starts-in-
lass-table (
lass-table s))6

(no-byte
odex-in-frames'JVM::MONITORENTER (
ar (binding 0 (thread-table s))))(no-byte
odex-in-
lass-table'JVM::MONITORENTER (
lass-table s))(no-byte
odex-in-frames'JVM::MONITOREXIT (
ar (binding 0 (thread-table s))))(no-byte
odex-in-
lass-table'JVM::MONITOREXIT (
lass-table s))(no-lo
ked-frames-in-frames(
ar (binding 0 (thread-table s))))(no-lo
ked-frames-in-
lass-table (
lass-table s))(no-other-native-methods-in-
lass-table (
lass-table s))))Singp is the formal de�nition of a predi
ate that identi�es \single-threaded"M4 states. Let us
onsider ea
h of its
onjun
ts. The �rst three assert that theM4 state has exa
tly one s
heduled thread, namely thread 0. The next two
onjun
ts ensure that there are no methods named start or stop invoked onany obje
ts in the state. Following that are four
onjun
ts that
he
k for thebyte
odes MONITORENTER and MONITOREXIT. These byte
odes are not allowedsin
e M3 does not support them. Following the four
he
ks just des
ribed aretwo
onjun
ts that
he
k that there are no syn
hronized methods. Again, sin
eM3 does not support syn
hronized methods, we
annot allow our M4 state to
ontain syn
hronized methods. Lastly, singp asserts that there are no nativemethods in the M4 state, sin
e again M3 does not support native methods.There is one last de�nition needed before we
an present the
ommutativediagram. Re
all that up and down are not exa
t inverses, sin
e up loses in-formation (it dis
ards all threads ex
ept thread 0). Thus we
annot say that(down (up s)) = s. It is the
ase that (down (up s)) is the same as s, in thesense that the heaps are the same, the
lass-tables are the same, and thread 0is the same. The only di�eren
e is that s may have many uns
heduled threads,while (down (up s)) has only one s
heduled thread, thread 0. We formulate apredi
ate almost-equal that
aptures this meaning of \equal."(defun almost-equal (s4 s4p)(and (equal (
all-sta
k 0 s4p)(
all-sta
k 0 s4))(equal (heap s4) (heap s4p))(equal (
lass-table s4) (
lass-table s4p))))We now present the formal de�nition of our
ommutative diagram, Main:(defthm main(implies (singp s)(almost-equal (down (m3::m3 (up s) (ups
hed s
h)))(m4 s s
h))):hints(("Goal" :in-theory (disable down up ups
hed7

m3::m3 m4 almost-equal singp):use ((:instan
e l2 (s (m4 s s
h)))))))2.1 Using the Diagram to Port a Theorem from M3 toM4Imagine that you have a theorem about a property of an M3 state. How
anyou apply this theorem to an M4 state, given Main? In the short dis
ussion tofollow, we will des
ribe the pro
ess of using Main to bring a given theorem overto the domain of M4. As a spe
i�
 example, we will port a theorem about theFa
torial fun
tion:(defthm fa
t-is-
orre
t(implies (poised-to-invoke-fa
t s0 n)(equal(m3 (fa
t-
lo
k n) s0)(make-state(push (make-frame(+ 1 (p
 (top-frame s0)))(lo
als (top-frame s0))(push (a
l2::fa
torial n)(pop (pop (sta
k (top-frame s0)))))(program (top-frame s0))'JVM::UNLOCKED)(pop (
all-sta
k s0)))(heap s0)(
lass-table s0)))):hints (("Goal":indu
t (fa
t-is-
orre
t-hint s0 n))))This theorem says that if a state s0 is poised to invoke the fa
t instan
emethod (re
all we do not have INVOKESTATIC) on an integer n, the result isthe same as if we had pushed n! onto the sta
k (removing the instan
e obje
t'sreferen
e) and in
remented the p
. In other words, we are stating that theJVM byte
odes that
omprise the Fa
t method
orre
tly
arry out the fa
torialfun
tion.Bringing this theorem to the domain of M4 involves several steps, some ofwhi
h relate spe
i�
ally to our fa
torial example, while others are \generi
"and apply to any theorems we might try to port to M4. There are two basi
theorems that we must prove related to Fa
torial:� First, we must show that the (poised-to-invoke-fa
t s0 n) given asa hypothesis in the above theorem is a result of establishing a similarproperty (m4::poised-to-invoke-fa
t 0 s n). We do this via:(defthm
ondition1 8

(implies (m4::poised-to-invoke-fa
t 0 s n)(m3::poised-to-invoke-fa
t (up s) n)):hints (("Goal" :in-theory (enable m3::top))))� On
e that is established, we must show that the (fa
t-
lo
k n) men-tioned in fa
t-is-
orre
t is equal to the s
hedule that we give our M4state. This is done via our se
ond
ondition:(defthm
ondition2(equal (ups
hed (fa
t-s
hed 0 n)) (m3::fa
t-
lo
k n)):hints (("Goal" :in-theory (enable m3::
+-revealed))))On
e these two
onditions are satis�ed, then a series of lemmas that are notspe
i�
 to Fa
torial
an establish the M4 version of our M3 theorem:(defthm fa
t-is-
orre
t(implies (and (singp s0)(poised-to-invoke-fa
t 0 s0 n))(almost-equal(m4 (fa
t-s
hed 0 n) s0)(make-state(modify-tt 0(push (make-frame(+ 1 (p
 (top-frame 0 s0)))(lo
als (top-frame 0 s0))(push (a
l2::fa
torial n)(pop(pop(sta
k (top-frame 0 s0)))))(program (top-frame 0 s0))'jvm::UNLOCKED)(pop (
all-sta
k 0 s0)))'jvm::s
heduled(thread-table s0))(heap s0)(
lass-table s0)))):hints ...)One of those lemmas relates m3::top-frame to m4::top-frame in su
h away that we know that the top frame of an M3 state is equal to the top frameof the 0th thread of the M4 state obtained by using up. A similar theorem ismade about
all-sta
k.
9

3 The Proof of 'Main'3.1 Three LemmasTo prove the
ommuting diagram, we had to �rst prove three lemmas, L1, L2,and L3. The proofs of these lemmas will be des
ribed in detail below, but �rstwe will present them and try to motivate their role in establishing Main. Then,we will prove Main given the lemmas. Finally, we will des
ribe their proofs.Lemma L1.(singp s)) (m3 (up s) (ups
hed s
h)) = (up (m4 s s
h))In many respe
ts L1 is the hardest of the three lemmas to prove, sin
e itrelates M3 and M4 states. L1 says that transforming a \single-threaded" M4state s to the domain of M3 and running it with the appropriate s
hedule is thesame as running s on M4, and then transforming it to the domain of M3.Ups
hed is an ACL2 fun
tion that turns an M4 s
hedule into an M3 s
hedule,by stepping the ma
hine the exa
t number of times 0 appears in s
h.Lemma L2.(singp s)) (down (up s)) � sThe most straight-forward of the three lemmas, L2 relates down to up, in thesense of almost-equal (�).Lemma L3.(singp s)) (singp (m4 s s
h))L3 simply says that \single-threadedness" is preserved over the ma
hine M4.This lemma is important sin
e without it, we would be unable to reason aboutthe ma
hine after its �rst step.3.2 The Derivation of \Main"Re
all the statement of Main:Theorem Main.(singp s0)) (down (m3 (up s0) (ups
hed s
h))) � (m4 s0 s
h)Proof:Assume[1℄ (singp S0)By L3 we have[2℄ (singp (m4 s0 s
h)) 10

Thus, by L1 and [1℄ we have[3℄ (m3 (up s0) (ups
hed s
h)) = (up (m4 s0 s
h))Applying down to both sides of [3℄ gives[4℄ (down (m3 (up s0) (ups
hed s
h))=[5℄ (down (up (m4 s0 s
h)))By L2 and [2℄ we get[5℄ (down (up (m4 s0 s
h)))�[6℄ (m4 s0 s
h)Thus, [4℄ � [6℄.Q.E.D.Having derived 'Main', we now turn our attention to ea
h of the three lemmasin turn.3.3 L1Re
all the de�nition of lemma L1. L1 asserts that if a state s is \single-threaded"a

ording to singp, then running s on ma
hine m4 and transforming it to thedomain of M3 is the same as transforming s to the domain of M3 and runningit (with the appropriate s
hedule). To prove su
h a statement, we follow thedesign of the ma
hines themselves. First, note that the ma
hines m3 and m4exe
ute via repeated step operations. Thus, we prove a step version of lemmaL1, and then generalize it to the ma
hine via indu
tion. The step lemma weprove is given by:Lemma. L1-lemma2:(implies (singp s)(equal (M3::step3 (up s))(up (step4 0 s))))Step3 and step4 both a
t as large \swit
h" statements, fet
hing the nextbyte
ode and exe
uting the related EXECUTE-op fun
tion on the state, whereop is the name of the byte
ode. Thus to prove the theorem above, we de�neand prove lemmas for ea
h byte
ode. We then disable the de�nitions of theEXECUTE-op fun
tions, and L1-lemma2 follows from the fa
t that step3 andstep4 open up into a
ase for ea
h byte
ode, and we have lemmas already provenfor ea
h of these
ases. Let us
onsider the lemma related to the byte
ode ADD.Lemma. L1-lemma2-EXECUTE-ADD:(implies (singp s)(equal (M3::EXECUTE-ADD inst (up s))11

(up (M4::EXECUTE-ADD inst 0 s))))Most of the byte
odes su
h as ADD and PUSH were proved with minimal dif-�
ulty. The notable ex
eption was INVOKEVIRTUAL, whi
h had to be treateddi�erently, due in part to its sophisti
ation, and in part to its role in the a
-tivation of threads in the JVM. Re
all that in Java, threads are
reated viainstantiating obje
ts of the Thread
lass (or implementing the Runnable inter-fa
e, although our model does not support interfa
es). The threads
reated byinstantiating those obje
ts do not start out s
heduled, they must expli
itly bestarted via invoking their start methods. Invoking their stop methods
ausesthem to be
ome uns
heduled. To preserve \single-threadedness", we must pre-vent threads from
hanging their s
heduled status. Currently, we a
hieve thisby preventing the invo
ation of any method named start or stop. Note thisrestri
tion in the statement of L1-lemma-EXECUTE-INVOKEVIRTUAL:Lemma. L1-lemma-EXECUTE-INVOKEVIRTUAL:(implies (and (singp s)(not (equal (
addr inst) "start"))(not (equal (
addr inst) "stop")))(equal (M3::EXECUTE-INVOKEVIRTUAL inst (up s))(up (M4::EXECUTE-INVOKEVIRTUAL inst 0 s))))To prove the above lemma, we had to establish the fa
t that singp does in-deed assert that no start or stopmethods are invoked anywhere in the program(and thus the se
ond and third hypotheses are satis�ed). Singp uses re
ursivefun
tions to
he
k that start and stop methods are not invoked anywhere inthe
lass-table or thread-table. To admit l1-lemma-EXECUTE-INVOKEVIRTUAL,we thus had to prove that those re
ursive fun
tions established that any instru
-tion that INVOKEVIRTUAL has the opportunity to exe
ute is not start or stop.We did this by relating the re
ursive fun
tion no-starts-in-
lass-table,whi
h appears as part of singp, to the M4 fun
tion LOOKUP-METHOD-IN--SUPERCLASSES. On
e that relation was established, it was
lear that when singpholds, LOOKUP-METHOD-IN-SUPERCLASSES will not return an instru
tion thatinvokes start or stop methods. Thus we showed that singp established hy-potheses two and three of L1-lemma-EXECUTE-INVOKEVIRTUAL. On
e that was
ompleted, the lemma was admitted.Having proved all of the byte
ode-level lemmas, the step lemma given abovewas admitted easily, via a
ase analysis. Via indu
tion over the step lemma,L1-lemma2 was admitted to the theorem prover.There is one more detail related to L1 that bears inspe
tion. The fun
tionups
hed transforms an M4 s
hedule (whi
h is a list of natural numbers) into anatural number that represents the number of times that the M3 state shouldbe stepped. But what of non-zero elements of s
hed? Ups
hed dis
ards them,and so we must show that they do not alter our \single-threaded" state. Weadmit another lemma stating this very fa
t:12

Lemma. L1-lemma1:(implies (and (singp s)(not (equal th 0)))(equal (step4 th s) s)))We now turn our attention to the other two lemmas, L2 and L3.3.4 L2In the last step of the derivation of Main, we took advantage of the fa
t that ifa state s is \single-threaded", then it is \equal" (in the almost-equal sense)to (down (up s)). L2 establishes this fa
t.Lemma. L2:(implies (singp s)(almost-equal (down (up s)) s))The proof follows in a straight-forward manner from the de�nitions of up,down, and almost-equal.3.5 L3L3 establishes the fa
t that \single-threadedness" is preserved over the ma
hinem4. Sin
e L2 and L3 have singp as a hypothesis, it is important that we establishthat singp is preserved over step4. Otherwise, on
e we step the ma
hine, we
an no longer apply lemmas L1 and L2.The proof for L3 is very similar to the proof of L1. First, we must prove thestep-version of lemma:Lemma. L3-lemma:(implies (singp s)(singp (step4 th s)))From L3-lemma, we use indu
tion to establish L3. We prove the step-versionof L3 as we did with L1, namely we prove the property over ea
h of the byte
odes.By then disabling the de�nitions of ea
h of the EXECUTE-op fun
tions, L3-lemmaopens into a
ase for ea
h byte
ode, for whi
h we have our byte
ode-level proofs
ompleted. An example of a straightforward byte
ode that we prove is given byADD:Lemma. L3-lemma-EXECUTE-ADD:(implies (singp s)(singp (exe
ute-add inst 0 s))))As before, we had to treat INVOKEVIRTUAL spe
ially. In a manner simi-lar to L1, we related the re
ursive fun
tions given in singp to the methodthat INVOKEVIRTUAL is
alled to a
t on. After establishing that singp ensures13

that INVOKEVIRTUAL only gets \well formed" methods, we were able to admitL3-lemma-EXECUTE-INVOKEVIRTUAL. On
e this was a

omplished, we
ould es-tablish L3-lemma, and thus L3.Proving the three lemmas led dire
tly to the proof of Main, following theproof outline given above.4 Dis
ussionThe previous se
tion presented the proof of Main. We now dis
uss severalproblems we en
ountered in trying to prove Main, and show how their solutionsmade their way into the �nal statement of Main and its proof. We will alsoin
lude unexpe
ted results that only
ame to light during the proof attempt.4.1 Pa
kages and Identi�ersOne of the most surprising and interesting behaviors we dis
overed while prov-ing Main relates to the way ACL2 handles pa
kages. We de�ned the ma
hinesM3 and M4 in pa
kages M3 and M4, respe
tively. As the proof of Main de-veloped, we realized that
ertain identi�ers in our states were not global, butrather grounded in a
ertain pa
kage. Consider for example identi�ers su
h asLOAD, PUSH, THIS, and LOCKED. In reality, in the M4 model these are M4::LOAD,M4::PUSH, M4::THIS, and M4::LOCKED. But in the M3 model, the identi�ersare represented by M3::LOAD, M3::PUSH, M3::THIS, and M3::LOCKED. When wetried to draw a
orresponden
e between an M3 program and an M4 programthat look identi
al, we realized that in fa
t they are not! Consider the followingM3 program fragment:(NEW "Alpha")(PUSH 1)(PUSH 2)(ADD)(STORE A)(LOAD A)Now the program is really represented by:(M3::NEW "Alpha")(M3::PUSH 1)(M3::PUSH 2)(M3::ADD)(M3::STORE A)(M3::LOAD A)But in M4 ea
h of the instru
tions are in the M4 pa
kage. To
ontinue thisidea, we realized that in a given program when we refer to THIS in the M3pa
kage, we mean for that to be the same THIS in the M4 pa
kage. To
orre
t14

this problem, we de�ne a new pa
kage JVM. We always refer to identi�ers in theJVM pa
kage, so that from either M3 or M4 we
an refer to the same logi
alobje
t, for example JVM::THIS.We had not
onsidered this behavior before starting on the proof, and in fa
tdid not realize it until deep into the proof attempt. This is one of the bene�tsto using formal proof te
hniques|they are often a good way to dis
over theunknown behaviors of a given formal system.A perfe
t example of this fa
t relates to a
areless mistake we made duringthe de�nition of M4. In M3, there is a DUP byte
ode, whi
h dupli
ates the itemon the top of the sta
k of the topmost frame in the
all-sta
k. By our omission,there was no su
h operation in M4, and so ACL2 failed on the proof attempt,trying to relate an M4 state to an M3 state in whi
h the DUP byte
ode had beenexe
uted. Sin
e M4 had no DUP byte
ode, this relation was doomed to failure.On
e we added DUP to M4, the proof went through.Some would suggest that if we had been more
areful, this failure would havebeen avoided. They are right. However, attempting to live a life free of mistakesis hopeless, and so a te
hnique like automati
 proof
he
king is a valuable aidin �nding and
orre
ting mistakes.4.2 Thread S
hedulingWhen we �rst started thinking about Main, we realized that our multithreadedstates
ould have at most one s
heduled thread. This restri
tion was the �rstto make up singp. It wasn't until we failed to prove L1 that we realized thatwe had to make a stronger statement. To admit Main, we had to make surethat exa
tly one thread is s
heduled in a given state. Why is this restri
tionne
essary?Re
all that stepping an uns
heduled thread in M4 has no e�e
t (it is a \no-op"). Note that M3 behaves di�erently, in that ea
h step in fa
t modi�es thema
hine. Consider an M4 state in whi
h no thread is s
heduled. Stepping anyof its threads leave the state un
hanged, sin
e m4 will not step uns
heduledthreads. On the other hand, transforming the state to the domain of M3 andstepping it there will modify the state, sin
e all s
heduling information is lostduring the translation.So for this reason we had to tighten our de�nition of \single-threaded". Thisaddition
an be seen in the third
onjun
t of singp.4.3 Omissions from singpThere were three additional re�nements made to singp during the developmentof Main. Ea
h of these re�nements prevented features of M4 from interferingwith the translation of multithreaded states to the domain of M3.First, we had to prevent \single-threaded" states from
ontaining nativemethods (other than start and stop, whi
h are expli
itly forbidden). M3 doesnot support native methods, and so it is impossible to translate states thatdepend on native methods to the domain of M3.15

Se
ondly, we disallowed syn
hronized methods from our M4 states. Re-member that when a syn
hronized method is invoked, the JVM automati
allyobtains lo
ks on the instan
e obje
t. M3 does not support monitors, and so itwould be unable to obtain these lo
ks. One idea would be to make syn
hro-nized method invo
ation behave just like non-syn
hronized method invo
ationon M3. If this were the
ase then invoking syn
hronized methods on M4 would
hange the heap (in terms of the monitor in the instan
e obje
t), however therewould be no analogous modi�
ation to the M3 heap. We feel that keeping thesyn
hronized methods would thus be unsatisfa
tory, sin
e the heap would betreated di�erently between M3 and M4.The last omission is related to the se
ond, namely we overlooked MONITOR-ENTER and MONITOREXIT. Again, we
ould have made these byte
odes no-opson M3, however we would be in a situation where these byte
odes modify theheap in M4, yet leave the heap un
hanged in M3. In reality MONITORENTERand MONITOREXIT
hange the heaps in ways that the threads
annot dete
t.(In Java there is no way to determine the status of a given monitor{they areopaque obje
ts). As mentioned in the following se
tion, it might be bene�
ial tointrodu
e a more powerful up that
an modify M4 heaps into forms that workbetter with M3.Ea
h of these re�nements tightened our notion of \single-threadedness", andon
e they were introdu
ed, we were able to establish Main.4.4 A Faulty
all-sta
k-rrefDuring the development of Main, we de
ided to alter the order of arguments toM4. During this pro
ess, we overlooked
all-sta
k-rref, a fun
tion usedby M4. This fun
tion, given a thread and a thread-table, returns a refer-en
e to the thread's asso
iated obje
t in the heap. Interestingly, the faulty
all-sta
k-rref did not prevent M4 or Main from
ertifying properly. Thepresen
e of the bug was only dis
overed during an attempt to �nd a state S0that satis�es both of the hypotheses of the theorem about Fa
torial. Before thisattempt was made, the hypotheses were in fa
t unsatis�able, and thus the theo-rem was va
uous! Lu
ky for us the faulty fun
tion did not
ause other problemsin the
erti�
ation pro
ess, and on
e the bug was dis
overed and repaired wewere able to re
ertify all of our books. We now know that there is at least onestate (namely S0) that satis�es the hypotheses of our theorem about Fa
torial.5 Suggestions for future workDuring the development of Main, we thought of several opportunities to improveour work. We present them in the hopes that our work will be
ome moreappli
able to \real-world" appli
ations involving multithreaded JVM programs.An obvious pla
e to begin improving our theorem is in the de�nition ofsingp. Re
all that singp a
ts as a predi
ate that identi�es \single-threaded"states. Currently, the methods used to make that determination are somewhat16

rude. We prevent our program from invoking methods
alled start or stop.We do not allow syn
hronized methods. What singp is really looking for arestates in whi
h the threads do not interfere with ea
h other. Currently, there arestates that meet that
riteria that singp reje
ts. For example,
onsider a statein whi
h several threads are all s
heduled, yet none of them modify the heap.It would be pro�table to in
rease the sophisti
ation in whi
h singp de
ides if agiven state is \single-threaded". This would allow more states to pass throughsingp.Another avenue of improvement involves the translation of states betweenM3 and M4. Re
all that
urrently, up and down do not modify the
lass-table orheap of the state they are transforming. Furthermore, they modify the thread-table only in that up lifts out thread 0, and down
onstru
ts a thread-table froman M3
all-sta
k. It would be advantageous to in
rease the sophisti
ation ofthese two fun
tions. Perhaps up
ould modify the heap in a way that removesall monitors from the obje
ts. Sin
e we already know that the state in questionis \single-threaded", we would not have to worry about
ontention of lo
ks. If wehad su
h an up, then we would be able to add MONITORENTER and MONITOREXITto M3, making them no-ops. Thus we
ould then remove singp's restri
tionsabout states that
ontain those byte
odes.These two additions to our model and our proof would
ertainly improvethe utility of Main. We hope that, in time, they will be added to Main and theJVM model.6 A
knowledgmentsI would like to thank those who have helped and supported me while learningACL2, working on this proje
t, and writing this paper. I am espe
ially gratefulto J Strother Moore, for spending
ountless hours with me on M4 and this proof,for developing the theorems that allow Main to port theorems from M3 to M4,and for supporting me in my edu
ational goals. I would also like to thank BobBoyer for his advi
e and aid, and for reading this paper. Finally, I would liketo thank my family for their 22 years of
onstant love and support.Referen
es[1℄ J. Gosling, B. Joy, and G. Steele. The Java Language Spe
i�
ation. Addison-Wesley, 1996.[2℄ T. Lindholm and F. Yellin. The Java Virtual Ma
hine Spe
i�
ation (Se
ondEdition). Addison-Wesley, 1999.[3℄ J S. Moore and G. Porter. An exe
utable formal JVM thread model. InPro
eedings of the USENIX Java Virtual Ma
hine Resear
h and Te
hnologySymposium, April 2001. 17

A M31 ; Abstra
t Ma
hine 3; M3 is M2 ex
ept that we now have the heap,
lasses and invokevirtual.; $Id: m3.lisp,v 1.13 2001/04/10 03:45:41 george Exp $5 #|(defpkg "JVM" '(nil t))(defpkg "M3"10 (set-differen
e-equal(union-eq '(ASSOC-EQUAL LEN NTH ZP SYNTAXPQUOTEP FIX NFIX E0-ORDINALP E0-ORD-<)(union-eq *a
l2-exports**
ommon-lisp-symbols-from-main-lisp-pa
kage*))15 '(PC PROGRAM PUSH POP REVERSE STEP ++)))(
ertify-book "m3" 2)|#20 (in-pa
kage "M3"); Utilities25 ; Sta
ks(defun push (obj sta
k) (
ons obj sta
k))(defun top (sta
k) (
ar sta
k))(defun pop (sta
k) (
dr sta
k))30 (defthm sta
ks(and (equal (top (push x s)) x)(equal (pop (push x s)) s)))(in-theory (disable push top pop))35 ; Alists(defun bound? (x alist) (asso
-equal x alist))(defun bind (x y alist)40 (
ond ((endp alist) (list (
ons x y)))((equal x (
ar (
ar alist)))(
ons (
ons x y) (
dr alist)))(t (
ons (
ar alist) (bind x y (
dr alist))))))18

45 (defun binding (x alist) (
dr (asso
-equal x alist))); Instru
tions(defun op-
ode (inst) (
ar inst))(defun arg1 (inst) (
ar (
dr inst)))50 (defun arg2 (inst) (
ar (
dr (
dr inst))))(defun arg3 (inst) (
ar (
dr (
dr (
dr inst))))); M3 States(defun make-state (
all-sta
k heap
lass-table)55 (list
all-sta
k heap
lass-table))(defun
all-sta
k (s) (nth 0 s))(defun heap (s) (nth 1 s))(defun
lass-table (s) (nth 2 s))60 (defthm states(and (equal (
all-sta
k (make-state
s h
))
s)(equal (heap (make-state
s h
)) h)(equal (
lass-table (make-state
s h
))
)))65 (in-theory (disable make-state
all-sta
k heap
lass-table)); Frames(defun top-frame (s) (top (
all-sta
k s)))70 (defun p
 (frame) (nth 0 frame))(defun lo
als (frame) (nth 1 frame))(defun sta
k (frame) (nth 2 frame))(defun program (frame) (nth 3 frame))75 (defun syn
-flg (frame) (nth 4 frame))(defun make-frame (p
 lo
als sta
k program syn
-flg)(list p
 lo
als sta
k program syn
-flg))80 (defthm frames(and(equal (p
 (make-frame p
 l s prog syn
-flg)) p
)(equal (lo
als (make-frame p
 l s prog syn
-flg)) l)(equal (sta
k (make-frame p
 l s prog syn
-flg)) s)85 (equal (program (make-frame p
 l s prog syn
-flg)) prog)(equal (syn
-flg (make-frame p
 l s prog syn
-flg)) syn
-flg)))(in-theory (disable make-frame p
 lo
als sta
k program syn
-flg))90 (defun next-inst (s) 19

(nth (p
 (top-frame s)) (program (top-frame s)))); Class De
larations(defun make-
lass-de
l (name super
lasses fields methods)95 (list name super
lasses fields methods))(defun
lass-de
l-name (d
l)(nth 0 d
l))(defun
lass-de
l-super
lasses (d
l)100 (nth 1 d
l))(defun
lass-de
l-fields (d
l)(nth 2 d
l))(defun
lass-de
l-methods (d
l)(nth 3 d
l))105 ; This is a base set of
lasses that are 'built in' to M3 states(defun base-
lass-def ()(list (make-
lass-de
l "Obje
t"nil110 '("monitor" "m
ount" "wait-set")nil)(make-
lass-de
l "Thread"'("Obje
t")nil115 '(("run" () nil(jvm::return))("start" () nil ())("stop" () nil ())))))120 (defun make-
lass-def (list-of-
lass-de
ls)(append (base-
lass-def) list-of-
lass-de
ls))(defun method-name (m)(nth 0 m))125 (defun method-formals (m)(nth 1 m))(defun method-syn
 (m)(nth 2 m))(defun method-program (m)130 (
dddr m)); The Standard Modify(defun suppliedp (key args)135 (
ond ((endp args) nil)((equal key (
ar args)) t)20

(t (suppliedp key (
dr args)))))(defun a
tual (key args)140 (
ond ((endp args) nil)((equal key (
ar args)) (
adr args))(t (a
tual key (
dr args)))))(defma
ro modify (s &rest args)145 (list 'make-state(
ond ((suppliedp :
all-sta
k args)(a
tual :
all-sta
k args))((or (suppliedp :p
 args)(suppliedp :lo
als args)150 (suppliedp :sta
k args)(suppliedp :program args)(suppliedp :syn
-flg args))(list 'push(list 'make-frame155 (if (suppliedp :p
 args)(a
tual :p
 args)(list 'p
 (list 'top-frame s)))(if (suppliedp :lo
als args)(a
tual :lo
als args)160 (list 'lo
als (list 'top-frame s)))(if (suppliedp :sta
k args)(a
tual :sta
k args)(list 'sta
k (list 'top-frame s)))(if (suppliedp :program args)165 (a
tual :program args)(list 'program (list 'top-frame s)))(if (suppliedp :syn
-flg args)(a
tual :syn
-flg args)(list 'syn
-flg (list 'top-frame s))))170 (list 'pop (list '
all-sta
k s))))(t (list '
all-sta
k s)))(if (suppliedp :heap args)(a
tual :heap args)(list 'heap s))175 (if (suppliedp :
lass-table args)(a
tual :
lass-table args)(list '
lass-table s)))); (PUSH
onst)180 (defun exe
ute-PUSH (inst s)(modify s:p
 (+ 1 (p
 (top-frame s)))21

:sta
k (push (arg1 inst) (sta
k (top-frame s)))))185 ; (POP)(defun exe
ute-POP (inst s)(de
lare (ignore inst))(modify s:p
 (+ 1 (p
 (top-frame s)))190 :sta
k (pop (sta
k (top-frame s))))); (LOAD var)(defun exe
ute-LOAD (inst s)(modify s195 :p
 (+ 1 (p
 (top-frame s))):sta
k (push (binding (arg1 inst)(lo
als (top-frame s)))(sta
k (top-frame s)))))200 ; (STORE var)(defun exe
ute-STORE (inst s)(modify s:p
 (+ 1 (p
 (top-frame s))):lo
als (bind (arg1 inst)205 (top (sta
k (top-frame s)))(lo
als (top-frame s))):sta
k (pop (sta
k (top-frame s))))); (DUP)210 (defun exe
ute-DUP (inst s)(de
lare (ignore inst))(modify s:p
 (+ 1 (p
 (top-frame s))):sta
k (push (top (sta
k (top-frame s))) (sta
k (top-frame s)))))215 ; (ADD)(defun exe
ute-ADD (inst s)(de
lare (ignore inst))(modify s220 :p
 (+ 1 (p
 (top-frame s))):sta
k (push (+ (top (pop (sta
k (top-frame s))))(top (sta
k (top-frame s))))(pop (pop (sta
k (top-frame s)))))))225 ; (SUB)(defun exe
ute-SUB (inst s)(de
lare (ignore inst))(modify s 22

:p
 (+ 1 (p
 (top-frame s)))230 :sta
k (push (- (top (pop (sta
k (top-frame s))))(top (sta
k (top-frame s))))(pop (pop (sta
k (top-frame s))))))); (MUL)235 (defun exe
ute-MUL (inst s)(de
lare (ignore inst))(modify s:p
 (+ 1 (p
 (top-frame s))):sta
k (push (* (top (pop (sta
k (top-frame s))))240 (top (sta
k (top-frame s))))(pop (pop (sta
k (top-frame s))))))); (GOTO n)(defun exe
ute-GOTO (inst s)245 (modify s:p
 (+ (arg1 inst) (p
 (top-frame s))))); (IFEQ n)(defun exe
ute-IFEQ (inst s)250 (modify s:p
 (if (equal (top (sta
k (top-frame s))) 0)(+ (arg1 inst) (p
 (top-frame s)))(+ 1 (p
 (top-frame s)))):sta
k (pop (sta
k (top-frame s)))))255 ; (IFNE n)(defun exe
ute-IFNE (inst s)(modify s:p
 (if (equal (top (sta
k (top-frame s))) 0)260 (+ 1 (p
 (top-frame s)))(+ (arg1 inst) (p
 (top-frame s)))):sta
k (pop (sta
k (top-frame s))))); (IFGT n)265 (defun exe
ute-IFGT (inst s)(modify s:p
 (if (> (top (sta
k (top-frame s))) 0)(+ (arg1 inst) (p
 (top-frame s)))(+ 1 (p
 (top-frame s))))270 :sta
k (pop (sta
k (top-frame s))))); (IFLT n)(defun exe
ute-IFLT (inst s)(modify s 23

275 :p
 (if (< (top (sta
k (top-frame s))) 0)(+ (arg1 inst) (p
 (top-frame s)))(+ 1 (p
 (top-frame s)))):sta
k (pop (sta
k (top-frame s)))))280 ; (NEW
lass)(defun build-
lass-field-bindings (field-names)(if (endp field-names)nil(
ons (
ons (
ar field-names) 0)285 (build-
lass-field-bindings (
dr field-names)))))(defun build-immediate-instan
e-data (
lass-name
lass-table)(
ons
lass-name(build-
lass-field-bindings290 (
lass-de
l-fields(bound?
lass-name
lass-table)))))(defun build-an-instan
e (
lass-names
lass-table)(if (endp
lass-names)295 nil(
ons (build-immediate-instan
e-data (
ar
lass-names)
lass-table)(build-an-instan
e (
dr
lass-names)
lass-table))))(defun exe
ute-NEW (inst s)300 (let* ((
lass-name (arg1 inst))(
lass-table (
lass-table s))(new-obje
t (build-an-instan
e(
ons
lass-name(
lass-de
l-super
lasses305 (bound?
lass-name
lass-table)))
lass-table))(new-address (len (heap s))))(modify s:p
 (+ 1 (p
 (top-frame s)))310 :sta
k (push (list 'JVM::REF new-address)(sta
k (top-frame s))):heap (bind new-address new-obje
t (heap s))))); (GETFIELD
lass field)315 (defun deref (ref heap)(binding (
adr ref) heap))(defun field-value (
lass-name field-name instan
e)(binding field-name320 (binding
lass-name instan
e)))24

(defun exe
ute-GETFIELD (inst s)(let* ((
lass-name (arg1 inst))(field-name (arg2 inst))325 (instan
e (deref (top (sta
k (top-frame s))) (heap s)))(field-value (field-value
lass-name field-name instan
e)))(modify s:p
 (+ 1 (p
 (top-frame s))):sta
k (push field-value330 (pop (sta
k (top-frame s))))))); (PUTFIELD
lass field)(defun set-instan
e-field (
lass-name field-name value instan
e)(bind
lass-name335 (bind field-name value(binding
lass-name instan
e))instan
e))(defun exe
ute-PUTFIELD (inst s)340 (let* ((
lass-name (arg1 inst))(field-name (arg2 inst))(value (top (sta
k (top-frame s))))(instan
e (deref (top (pop (sta
k (top-frame s)))) (heap s)))(address (
adr (top (pop (sta
k (top-frame s)))))))345 (modify s:p
 (+ 1 (p
 (top-frame s))):sta
k (pop (pop (sta
k (top-frame s)))):heap (bind address(set-instan
e-field
lass-name350 field-namevalueinstan
e)(heap s)))))355 ; (INVOKEVIRTUAL
lass method n)(defun reverse (lst)(if (
onsp lst)(append (reverse (
dr lst)) (list (
ar lst)))nil))360 (defun bind-formals (rformals sta
k)(if (endp rformals)nil(
ons (
ons (
ar rformals) (top sta
k))365 (bind-formals (
dr rformals) (pop sta
k)))))25

(defun popn (n sta
k)(if (zp n)sta
k370 (popn (- n 1) (pop sta
k))))(defun
lass-name-of-ref (ref heap)(
ar (
ar (deref ref heap))))375 (defun lookup-method-in-super
lasses (name
lasses
lass-table)(
ond ((endp
lasses) nil)(t (let* ((
lass-name (
ar
lasses))(
lass-de
l (bound?
lass-name
lass-table))(method (bound? name (
lass-de
l-methods
lass-de
l))))380 (if methodmethod(lookup-method-in-super
lasses name (
dr
lasses)
lass-table))))))385 (defun lookup-method (name
lass-name
lass-table)(lookup-method-in-super
lasses name(
ons
lass-name(
lass-de
l-super
lasses(bound?
lass-name
lass-table)))390
lass-table))(defun exe
ute-INVOKEVIRTUAL (inst s)(let* ((method-name (arg2 inst))(nformals (arg3 inst))395 (obj-ref (top (popn nformals (sta
k (top-frame s)))))(obj-
lass-name (
lass-name-of-ref obj-ref (heap s)))(
losest-method(lookup-method method-nameobj-
lass-name400 (
lass-table s)))(vars (
ons 'JVM::THIS (method-formals
losest-method)))(prog (method-program
losest-method))(s1 (modify s:p
 (+ 1 (p
 (top-frame s)))405 :sta
k (popn (len vars) (sta
k (top-frame s))))))(modify s1:
all-sta
k(push (make-frame 0(reverse410 (bind-formals (reverse vars)(sta
k (top-frame s))))nil26

prog'JVM::UNLOCKED)415 (
all-sta
k s1))))); (XRETURN)(defun exe
ute-XRETURN (inst s)(de
lare (ignore inst))420 (let ((val (top (sta
k (top-frame s))))(s1 (modify s:
all-sta
k (pop (
all-sta
k s)))))(modify s1:sta
k (push val (sta
k (top-frame s1))))))425 ; (RETURN)(defun exe
ute-RETURN (inst s)(de
lare (ignore inst))(modify s430 :
all-sta
k (pop (
all-sta
k s)))); The M3 Run Level(defun do-inst (inst s)(
ase (op-
ode inst)435 (JVM::PUSH (exe
ute-PUSH inst s))(JVM::POP (exe
ute-POP inst s))(JVM::LOAD (exe
ute-LOAD inst s))(JVM::STORE (exe
ute-STORE inst s))(JVM::DUP (exe
ute-DUP inst s))440 (JVM::ADD (exe
ute-ADD inst s))(JVM::SUB (exe
ute-SUB inst s))(JVM::MUL (exe
ute-MUL inst s))(JVM::GOTO (exe
ute-GOTO inst s))(JVM::IFEQ (exe
ute-IFEQ inst s))445 (JVM::IFNE (exe
ute-IFNE inst s))(JVM::IFGT (exe
ute-IFGT inst s))(JVM::IFLT (exe
ute-IFLT inst s))(JVM::NEW (exe
ute-NEW inst s))(JVM::GETFIELD (exe
ute-GETFIELD inst s))450 (JVM::PUTFIELD (exe
ute-PUTFIELD inst s))(JVM::INVOKEVIRTUAL (exe
ute-INVOKEVIRTUAL inst s))(JVM::XRETURN (exe
ute-XRETURN inst s))(JVM::RETURN (exe
ute-RETURN inst s))(otherwise s)))455 (defun step3 (s)(do-inst (next-inst s) s)) 27

(defun m3 (n s)460 (if (zp n)s(m3 (- n 1) (step3 s)))); Compile it all.465 ; (
omp t); The idea is that a JVM programmer will do something like; (in-pa
kage "JVM"); and then he will type a program that looks like:470 ; ("fa
t" (n) nil (load this) ...); and really he has
reated475 ; ("fa
t" (n) nil (jvm::load jvm::this) ...)

28

B M41 ; M4.lisp; J Strother Moore <moore�
s.utexas.edu>; George Porter <george�
s.utexas.edu>; $Id: m4.lisp,v 1.11 2001/04/10 03:45:41 george Exp $5 #|(defpkg "JVM" '(nil t))(DEFPKG "M4"10 (set-differen
e-equal(union-eq '(ASSOC-EQUAL LEN NTH ZP SYNTAXPQUOTEP FIX NFIX E0-ORDINALP E0-ORD-<)(union-eq *a
l2-exports**
ommon-lisp-symbols-from-main-lisp-pa
kage*))15 '(PC PROGRAM PUSH POP REVERSE STEP ++)))(
ertify-book "m4" 2)|#20 ; Notes:; Do JVM obje
ts have an m
ount field? Can the user set them with; (putfield "Obje
t" "m
ount")? This ma
hine allows that, whi
h;
an s
rew up monitors.25 ; --; Abstra
t Ma
hine 4 - by George Porter and J Moore; $Id: m4.lisp,v 1.11 2001/04/10 03:45:41 george Exp $30 (in-pa
kage "M4"); ---; Utilities35 (defun push (obj sta
k) (
ons obj sta
k))(defun top (sta
k) (
ar sta
k))(defun pop (sta
k) (
dr sta
k))40 #|(defthm sta
ks(and (equal (top (push x s)) x)(equal (pop (push x s)) s)))29

45 (in-theory (disable push top pop)); Imported from ACL2.(defun asso
-equal (x alist)50 (
ond ((endp alist) nil)((equal x (
ar (
ar alist)))(
ar alist))(t (asso
-equal x (
dr alist)))))|#55 (defun bound? (x alist) (asso
-equal x alist))(defun bind (x y alist)(
ond ((endp alist) (list (
ons x y)))60 ((equal x (
ar (
ar alist)))(
ons (
ons x y) (
dr alist)))(t (
ons (
ar alist) (bind x y (
dr alist))))))(defun binding (x alist) (
dr (asso
-equal x alist)))65 (defun op-
ode (inst) (
ar inst))(defun arg1 (inst) (
ar (
dr inst)))(defun arg2 (inst) (
ar (
dr (
dr inst))))(defun arg3 (inst) (
ar (
dr (
dr (
dr inst)))))70 ; Imported from ACL2#|(defun nth (i lst)(if (zp i)75 (
ar lst)(nth (- i 1) (
dr lst))))(defun zp (i)(if (integerp i) (<= i 0) t))80 |#(defun reverse (x)(if (
onsp x)(append (reverse (
dr x)) (list (
ar x)))85 nil)); ---; States90 30

(defun make-state (thread-table heap
lass-table)(list thread-table heap
lass-table))(defun thread-table (s) (nth 0 s))(defun heap (s) (nth 1 s))95 (defun
lass-table (s) (nth 2 s))(defthm states(and (equal (thread-table (make-state tt h
)) tt)(equal (heap (make-state tt h
)) h)100 (equal (
lass-table (make-state tt h
))
)))(defthm states2(and (equal (thread-table (list tt h
)) tt)(equal (heap (list tt h
)) h)105 (equal (
lass-table (list tt h
))
)))(in-theory (disable make-state thread-table heap
lass-table))(defun
all-sta
k (th s)110 (
ar (binding th (thread-table s))))(defun
all-sta
k-status (th s)(
adr (binding th (thread-table s))))115 (defun
all-sta
k-rref (th tt)(
addr (binding th tt))); ---120 ; Class De
larations and the Class Table; The
lass table of a state is an alist. Ea
h entry in a
lass table is; a "
lass de
laration" and is of the form125 ; (
lass-name super-
lass-names fields defs); Note that the definition below of the Thread
lass in
ludes a 'run' method,; whi
h most appli
ations will override. The definition is
onsistent; with the default run method provided by the Thread
lass [O'reily page xxx℄130 (defun make-
lass-de
l (name super
lasses fields methods)(list name super
lasses fields methods))(defun
lass-de
l-name (d
l)135 (nth 0 d
l))(defun
lass-de
l-super
lasses (d
l)31

(nth 1 d
l))(defun
lass-de
l-fields (d
l)(nth 2 d
l))140 (defun
lass-de
l-methods (d
l)(nth 3 d
l))(defun base-
lass-def ()(list (make-
lass-de
l "Obje
t"145 nil'("monitor" "m
ount" "wait-set")nil)(make-
lass-de
l "Thread"'("Obje
t")150 nil'(("run" () nil(JVM::RETURN))("start" () nil ())("stop" () nil ())))))155 (defun make-
lass-def (list-of-
lass-de
ls)(append (base-
lass-def) list-of-
lass-de
ls)); ---160 ; Thread Tables;; A "thread table" might be used to represent threads in m4. It
onsists of; a referen
e, a
all sta
k, a flag to indi
ate whether its
all-sta
k; should be stepped by the s
heduler, and a ref to the original obje
t165 ; in the heap.;; Thread table:; ((n . (
all-sta
k flag reverse-ref)); (n+1 . (
all-sta
k flag reverse-ref)))170 ;; The flags 'JMV::SCHEDULED and 'JVM::UNSCHEDULED
oorespond to two of the four states; threads
an be in (a

ording to [O'Reily℄). For our model, this will; suffi
e.175 (defun make-tt (
all-sta
k)(bind 0 (list
all-sta
k 'JVM::SCHEDULED nil) nil))(defun modify-tt (th
all-sta
k status tt)(bind th (list
all-sta
k status (
all-sta
k-rref th tt)) tt))180 (defun addto-tt (
all-sta
k status heapRef tt)(bind (len tt) (list
all-sta
k status heapRef) tt))32

(defun mod-thread-s
heduling (th s
hed tt)185 (let* ((thrd (binding th tt))(old
s (
ar thrd))(oldhr (
addr thrd))(newTH (list old
s s
hed oldhr)))(bind th newTH tt)))190 (defun s
hedule-thread (th tt)(mod-thread-s
heduling th 'JVM::SCHEDULED tt))(defun uns
hedule-thread (th tt)195 (mod-thread-s
heduling th 'JVM::UNSCHEDULED tt))(defun rrefToThread (ref tt)(
ond ((endp tt) nil)((equal ref (
adddr (
ar tt))) (
aar tt))200 (t (rrefToThread ref (
dr tt))))); --; Helper fun
tion for determining if an obje
t is a 'Thread' obje
t205 (defun in-list (item list)(
ond ((endp list) nil)((equal item (
ar list)) t)(t (in-list item (
dr list)))))210 (defun isThreadObje
t? (
lass-name
lass-table)(let* ((
lass (bound?
lass-name
lass-table))(psupers (
lass-de
l-super
lasses
lass))(supers (
ons
lass-name psupers)))(or (in-list "Thread" supers)215 (in-list "ThreadGroup" supers)))); --; Helper fun
tions for lo
king and unlo
king obje
ts220 ; lo
k-obje
t and unlo
k-obje
t will obtain a lo
k on an instan
e; of an obje
t, using th as the lo
king id (a thread owns a lo
k). If th; already has a lo
k on an obje
t, then the m
ount of the obje
t is; in
remented. Likewise if you unlo
k an obje
t with m
ount > 0, then; the lo
k will be de
remented. Note: you must make sure that th
an225 ; and should get the lo
k, sin
e this fun
tion will blindly go ahead and; get the lo
k(defun lo
k-obje
t (th obj-ref heap)33

(let* ((obj-ref-num (
adr obj-ref))230 (instan
e (binding (
adr obj-ref) heap))(obj-fields (binding "Obje
t" instan
e))(new-m
ount (+ 1 (binding "m
ount" obj-fields)))(new-obj-fields(bind "monitor" th235 (bind "m
ount" new-m
ount obj-fields)))(new-obje
t (bind "Obje
t" new-obj-fields instan
e)))(bind obj-ref-num new-obje
t heap)))(defun unlo
k-obje
t (th obj-ref heap)240 (let* ((obj-ref-num (
adr obj-ref))(instan
e (binding (
adr obj-ref) heap))(obj-fields (binding "Obje
t" instan
e))(old-m
ount (binding "m
ount" obj-fields))(new-m
ount (ACL2::max 0 (- old-m
ount 1)))245 (new-monitor (if (zp new-m
ount)0th))(new-obj-fields(bind "monitor" new-monitor250 (bind "m
ount" new-m
ount obj-fields)))(new-obje
t (bind "Obje
t" new-obj-fields instan
e)))(bind obj-ref-num new-obje
t heap))); obje
tLo
kable? is used to determine if th
an unlo
k instan
e. This255 ; o

urs when either m
ount is zero (nobody has a lo
k), or m
ount is; greater than zero, but monitor is equal to th. This means that th; already has a lo
k on the obje
t, and when the obje
t is lo
ked yet again,; monitor will remain the same, but m
ount will be in
remented.;260 ; obje
tUnLo
kable? determins if a thread
an unlo
k an obje
t (ie if it; has a lo
k on that obje
t)(defun obje
tLo
kable? (instan
e th)(let* ((obj-fields (binding "Obje
t" instan
e))(monitor (binding "monitor" obj-fields))265 (m
ount (binding "m
ount" obj-fields)))(or (zp m
ount)(equal monitor th))))(defun obje
tUnLo
kable? (instan
e th)270 (let* ((obj-fields (binding "Obje
t" instan
e))(monitor (binding "monitor" obj-fields)))(equal monitor th))); ---34

275 ; Frames(defun make-frame (p
 lo
als sta
k program syn
-flg)(list p
 lo
als sta
k program syn
-flg))280 (defun top-frame (th s) (top (
all-sta
k th s)))(defun p
 (frame) (nth 0 frame))(defun lo
als (frame) (nth 1 frame))(defun sta
k (frame) (nth 2 frame))285 (defun program (frame) (nth 3 frame))(defun syn
-flg (frame) (nth 4 frame))(defthm frames(and290 (equal (p
 (make-frame p
 l s prog syn
-flg)) p
)(equal (lo
als (make-frame p
 l s prog syn
-flg)) l)(equal (sta
k (make-frame p
 l s prog syn
-flg)) s)(equal (program (make-frame p
 l s prog syn
-flg)) prog)(equal (syn
-flg (make-frame p
 l s prog syn
-flg)) syn
-flg)))295 (in-theory (disable make-frame p
 lo
als sta
k program syn
-flg)); ---; Method De
larations300 ; The methods
omponent of a
lass de
laration is a list of method definitions.; A method definition is a list of the form; (name formals syn
-status . program)305 ; We never build these de
larations but just enter list
onstants for them,; Note the similarity to our old notion of a program definition. We; will use strings to name methods now.310 ; syn
-status is 't' if the method is syn
hronized, 'nil' if not; Method definitions will be
onstru
ted by expressions su
h as:; (Note: all of the symbols below are understood to be in the pkg "JVM".)315 ; ("move" (dx dy) nil; (load this); (load this); (getfield "Point" "x")320 ; (load dx) 35

; (add); (putfield "Point" "x") ; this.x = this.x + dx;; (load :this); (load :this)325 ; (getfield "Point" "y"); (load dy); (add); (putfield "Point" "y") ; this.y = this.y + dy;; (push 1)330 ; (xreturn))) ; return 1;; Provided this method is defined in the
lass "Point" it
an be invoked by; (invokevirtual "Point" "move" 2)335 ; This assumes that the sta
k, at the time of invo
ation,
ontains an; referen
e to an obje
t of type "Point" and two numbers, dx and dy.; If a method de
laration has an empty list for the program (ie- there are340 ; no byte
odes asso
iated with the method), then the method is
onsidered; native. Native methods are normally written in something like C or; assembly language. The JVM would normally ensure that the
orre
t number; and type of arguments are passed to the native method, and would then hand; over
ontrol to C. In our model, we simply "hardwire" invokevirtual to345 ; to handle these methods.; * Note that a method in Java will never have 0 byte
odes, sin
e even if; it has no body, it will
onsist of at least the (xreturn) byte
ode.; The a

essors for methods are:350 (defun method-name (m)(nth 0 m))(defun method-formals (m)(nth 1 m))355 (defun method-syn
 (m)(nth 2 m))(defun method-program (m)(
dddr m))(defun method-isNative? (m)360 (equal '(NIL)(method-program m))); The Standard Modify365 (defun suppliedp (key args)(
ond ((endp args) nil) 36

((equal key (
ar args)) t)(t (suppliedp key (
dr args)))))370 (defun a
tual (key args)(
ond ((endp args) nil)((equal key (
ar args)) (
adr args))(t (a
tual key (
dr args)))))375 (defma
ro modify (th s &rest args)(list 'make-state(
ond((or (suppliedp :
all-sta
k args)(suppliedp :p
 args)380 (suppliedp :lo
als args)(suppliedp :sta
k args)(suppliedp :program args)(suppliedp :syn
-flg args)(suppliedp :status args))385 (list 'modify-ttth(
ond ((suppliedp :
all-sta
k args)(a
tual :
all-sta
k args))((and (suppliedp :status args)390 (null (
ddr args)))(list '
all-sta
k th s))(t(list 'push(list 'make-frame395 (if (suppliedp :p
 args)(a
tual :p
 args)(list 'p
 (list 'top-frame th s)))(if (suppliedp :lo
als args)(a
tual :lo
als args)400 (list 'lo
als (list 'top-frame th s)))(if (suppliedp :sta
k args)(a
tual :sta
k args)(list 'sta
k (list 'top-frame th s)))(if (suppliedp :program args)405 (a
tual :program args)(list 'program (list 'top-frame th s)))(if (suppliedp :syn
-flg args)(a
tual :syn
-flg args)(list 'syn
-flg (list 'top-frame th s))))410 (list 'pop (list '
all-sta
k th s)))))(if (suppliedp :status args)(a
tual :status args)37

''JVM::SCHEDULED)(list 'thread-table s)))415 ((suppliedp :thread-table args)(a
tual :thread-table args))(t (list 'thread-table s)))(if (suppliedp :heap args)(a
tual :heap args)420 (list 'heap s))(if (suppliedp :
lass-table args)(a
tual :
lass-table args)(list '
lass-table s))))425 ; ---; (PUSH
onst) Instru
tion(defun exe
ute-PUSH (inst th s)(modify th s430 :p
 (+ 1 (p
 (top-frame th s))):sta
k (push (arg1 inst)(sta
k (top-frame th s))))); ---435 ; (POP) Instru
tion(defun exe
ute-POP (inst th s)(de
lare (ignore inst))(modify th s440 :p
 (+ 1 (p
 (top-frame th s))):sta
k (pop (sta
k (top-frame th s))))); ---; (LOAD var) Instru
tion445 (defun exe
ute-LOAD (inst th s)(modify th s:p
 (+ 1 (p
 (top-frame th s))):sta
k (push (binding (arg1 inst)450 (lo
als (top-frame th s)))(sta
k (top-frame th s))))); ---; (STORE var) Instru
tion455 (defun exe
ute-STORE (inst th s)(modify th s:p
 (+ 1 (p
 (top-frame th s)))38

:lo
als (bind (arg1 inst)460 (top (sta
k (top-frame th s)))(lo
als (top-frame th s))):sta
k (pop (sta
k (top-frame th s))))); ---465 ; (DUP) Instru
tion(defun exe
ute-DUP (inst th s)(de
lare (ignore inst))(modify th s470 :p
 (+ 1 (p
 (top-frame th s))):sta
k (push (top (sta
k (top-frame th s)))(sta
k (top-frame th s))))); ---475 ; (ADD) Instru
tion(defun exe
ute-ADD (inst th s)(de
lare (ignore inst))(modify th s480 :p
 (+ 1 (p
 (top-frame th s))):sta
k (push (+ (top (pop (sta
k (top-frame th s))))(top (sta
k (top-frame th s))))(pop (pop (sta
k (top-frame th s)))))))485 ; ---; (SUB) Instru
tion(defun exe
ute-SUB (inst th s)(de
lare (ignore inst))490 (modify th s:p
 (+ 1 (p
 (top-frame th s))):sta
k (push (- (top (pop (sta
k (top-frame th s))))(top (sta
k (top-frame th s))))(pop (pop (sta
k (top-frame th s)))))))495 ; ---; (MUL) Instru
tion(defun exe
ute-MUL (inst th s)500 (de
lare (ignore inst))(modify th s:p
 (+ 1 (p
 (top-frame th s))):sta
k (push (* (top (pop (sta
k (top-frame th s))))(top (sta
k (top-frame th s))))39

505 (pop (pop (sta
k (top-frame th s))))))); ---; (GOTO p
) Instru
tion510 (defun exe
ute-GOTO (inst th s)(modify th s:p
 (+ (arg1 inst) (p
 (top-frame th s))))); ---515 ; (IFEQ p
) Instru
tion(defun exe
ute-IFEQ (inst th s)(modify th s:p
 (if (equal (top (sta
k (top-frame th s))) 0)520 (+ (arg1 inst) (p
 (top-frame th s)))(+ 1 (p
 (top-frame th s)))):sta
k (pop (sta
k (top-frame th s))))); ---525 ; (IFNE p
) Instru
tion(defun exe
ute-IFNE (inst th s)(modify th s:p
 (if (equal (top (sta
k (top-frame th s))) 0)530 (+ 1 (p
 (top-frame th s)))(+ (arg1 inst) (p
 (top-frame th s)))):sta
k (pop (sta
k (top-frame th s))))); ---535 ; (IFGT p
) Instru
tion(defun exe
ute-IFGT (inst th s)(modify th s:p
 (if (> (top (sta
k (top-frame th s))) 0)540 (+ (arg1 inst) (p
 (top-frame th s)))(+ 1 (p
 (top-frame th s)))):sta
k (pop (sta
k (top-frame th s))))); ---545 ; (IFLT p
) Instru
tion(defun exe
ute-IFLT (inst th s)(modify th s:p
 (if (< (top (sta
k (top-frame th s))) 0)550 (+ (arg1 inst) (p
 (top-frame th s)))40

(+ 1 (p
 (top-frame th s)))):sta
k (pop (sta
k (top-frame th s))))); ---555 ; (GETFIELD "
lass" "field") Instru
tion(defun deref (ref heap)(binding (
adr ref) heap))560 (defun field-value (
lass-name field-name instan
e)(binding field-name(binding
lass-name instan
e)))(defun exe
ute-GETFIELD (inst th s)565 (let* ((
lass-name (arg1 inst))(field-name (arg2 inst))(instan
e (deref (top (sta
k (top-frame th s))) (heap s)))(field-value (field-value
lass-name field-name instan
e)))(modify th s570 :p
 (+ 1 (p
 (top-frame th s))):sta
k (push field-value(pop (sta
k (top-frame th s))))))); ---575 ; (PUTFIELD "
lass" "field") Instru
tion(defun set-instan
e-field (
lass-name field-name value instan
e)(bind
lass-name(bind field-name value580 (binding
lass-name instan
e))instan
e))(defun exe
ute-PUTFIELD (inst th s)(let* ((
lass-name (arg1 inst))585 (field-name (arg2 inst))(value (top (sta
k (top-frame th s))))(instan
e (deref (top (pop (sta
k (top-frame th s)))) (heap s)))(address (
adr (top (pop (sta
k (top-frame th s)))))))(modify th s590 :p
 (+ 1 (p
 (top-frame th s))):sta
k (pop (pop (sta
k (top-frame th s)))):heap (bind address(set-instan
e-field
lass-namefield-name595 valueinstan
e)41

(heap s))))); ---600 ; (INVOKEVIRTUAL "
lass" "name" n) Instru
tion(defun bind-formals (rformals sta
k)(if (endp rformals)nil605 (
ons (
ons (
ar rformals) (top sta
k))(bind-formals (
dr rformals) (pop sta
k)))))(defun popn (n sta
k)(if (zp n)610 sta
k(popn (- n 1) (pop sta
k))))(defun
lass-name-of-ref (ref heap)(
ar (
ar (deref ref heap))))615 (defun lookup-method-in-super
lasses (name
lasses
lass-table)(
ond ((endp
lasses) nil)(t (let* ((
lass-name (
ar
lasses))(
lass-de
l (bound?
lass-name
lass-table))620 (method (bound? name (
lass-de
l-methods
lass-de
l))))(if methodmethod(lookup-method-in-super
lasses name (
dr
lasses)
lass-table))))))625 (defun lookup-method (name
lass-name
lass-table)(lookup-method-in-super
lasses name(
ons
lass-name(
lass-de
l-super
lasses630 (bound?
lass-name
lass-table)))
lass-table))(defun exe
ute-INVOKEVIRTUAL (inst th s)(let* ((method-name (arg2 inst))635 (nformals (arg3 inst))(obj-ref (top (popn nformals (sta
k (top-frame th s)))))(instan
e (deref obj-ref (heap s)))(obj-
lass-name (
lass-name-of-ref obj-ref (heap s)))(
losest-method640 (lookup-method method-nameobj-
lass-name(
lass-table s)))42

(vars (
ons 'jvm::this (method-formals
losest-method)))(prog (method-program
losest-method))645 (s1 (modify th s:p
 (+ 1 (p
 (top-frame th s))):sta
k (popn (len vars)(sta
k (top-frame th s)))))(tThread (rrefToThread obj-ref (thread-table s))))650 (
ond((method-isNative?
losest-method)(
ond ((equal method-name "start")(modify tThread s1:status 'JVM::SCHEDULED))655 ((equal method-name "stop")(modify tThread s1:status 'JVM::UNSCHEDULED))(t s)))((and (method-syn

losest-method)660 (obje
tLo
kable? instan
e th))(modify th s1:
all-sta
k(push (make-frame 0(reverse665 (bind-formals (reverse vars)(sta
k (top-frame th s))))nilprog'JVM::LOCKED)670 (
all-sta
k th s1)):heap (lo
k-obje
t th obj-ref (heap s))))((method-syn

losest-method)s)(t675 (modify th s1:
all-sta
k(push (make-frame 0(reverse(bind-formals (reverse vars)680 (sta
k (top-frame th s))))nilprog'JVM::UNLOCKED)(
all-sta
k th s1)))))))685 ; ---; (NEW "
lass") Instru
tion 43

(defun build-
lass-field-bindings (field-names)690 (if (endp field-names)nil(
ons (
ons (
ar field-names) 0)(build-
lass-field-bindings (
dr field-names)))))695 (defun build-
lass-obje
t-field-bindings ()'(("monitor" . 0) ("monitor-
ount" . 0) ("wait-set" . nil)))(defun build-immediate-instan
e-data (
lass-name
lass-table)(
ons
lass-name700 (build-
lass-field-bindings(
lass-de
l-fields(bound?
lass-name
lass-table)))))(defun build-an-instan
e (
lass-names
lass-table)705 (if (endp
lass-names)nil(
ons (build-immediate-instan
e-data (
ar
lass-names)
lass-table)(build-an-instan
e (
dr
lass-names)
lass-table))))710 (defun exe
ute-NEW (inst th s)(let* ((
lass-name (arg1 inst))(
lass-table (
lass-table s))(
losest-method (lookup-method "run"
lass-name
lass-table))(prog (method-program
losest-method))715 (new-obje
t (build-an-instan
e(
ons
lass-name(
lass-de
l-super
lasses(bound?
lass-name
lass-table)))
lass-table))720 (new-address (len (heap s)))(s1 (modify th s:p
 (+ 1 (p
 (top-frame th s))):sta
k (push (list 'JVM::REF new-address)(sta
k (top-frame th s)))725 :heap (bind new-address new-obje
t (heap s)))))(if (isThreadObje
t?
lass-name
lass-table)(modify nil s1:thread-table(addto-tt730 (push(make-frame 0(list (
ons 'JVM::THIS (list 'JVM::REF new-address)))nilprog44

735 'JVM::UNLOCKED)nil)'JVM::UNSCHEDULED(list 'JVM::REF new-address)(thread-table s1)))740 s1))); ---; (RETURN) Instru
tion - Void Return745 (defun exe
ute-RETURN (inst th s)(de
lare (ignore inst))(let* ((obj-ref (binding 'JVM::THIS (lo
als (top-frame th s)))))(modify th s750 :
all-sta
k (pop (
all-sta
k th s)):heap (if (equal (syn
-flg (top-frame th s)) 'JVM::LOCKED)(unlo
k-obje
t th obj-ref (heap s))(heap s)))))755 ; ---; (XRETURN) Instru
tion - return 1 thing of arbitrary type(defun exe
ute-XRETURN (inst th s)(de
lare (ignore inst))760 (let* ((val (top (sta
k (top-frame th s))))(obj-ref (binding 'JVM::THIS (lo
als (top-frame th s))))(s1 (modify th s:
all-sta
k (pop (
all-sta
k th s)):heap (if (equal (syn
-flg (top-frame th s)) 'JVM::LOCKED)765 (unlo
k-obje
t th obj-ref (heap s))(heap s)))))(modify th s1:sta
k (push val (sta
k (top-frame th s1))))))770 ; ---; (MONITORENTER) Instru
tion(defun exe
ute-MONITORENTER (inst th s)775 (de
lare (ignore inst))(let* ((obj-ref (top (sta
k (top-frame th s))))(instan
e (deref obj-ref (heap s))))(
ond((obje
tLo
kable? instan
e th)780 (modify th s 45

:p
 (+ 1 (p
 (top-frame th s))):sta
k (pop (sta
k (top-frame th s))):heap (lo
k-obje
t th obj-ref (heap s))))(t s))))785 ; ---; (MONITOREXIT) Instru
tion(defun exe
ute-MONITOREXIT (inst th s)790 (de
lare (ignore inst))(let* ((obj-ref (top (sta
k (top-frame th s))))(instan
e (deref obj-ref (heap s))))(
ond((obje
tUnLo
kable? instan
e th)795 (modify th s:p
 (+ 1 (p
 (top-frame th s))):sta
k (pop (sta
k (top-frame th s))):heap (unlo
k-obje
t th obj-ref (heap s))))(t s))))800 ; ---; Putting it all together(defun next-inst (th s)805 (nth (p
 (top-frame th s))(program (top-frame th s))))(defun do-inst (inst th s)(
ase (op-
ode inst)810 (JVM::PUSH (exe
ute-PUSH inst th s))(JVM::POP (exe
ute-POP inst th s))(JVM::LOAD (exe
ute-LOAD inst th s))(JVM::STORE (exe
ute-STORE inst th s))(JVM::DUP (exe
ute-DUP inst th s))815 (JVM::ADD (exe
ute-ADD inst th s))(JVM::SUB (exe
ute-SUB inst th s))(JVM::MUL (exe
ute-MUL inst th s))(JVM::GOTO (exe
ute-GOTO inst th s))(JVM::IFEQ (exe
ute-IFEQ inst th s))820 (JVM::IFNE (exe
ute-IFNE inst th s))(JVM::IFLT (exe
ute-IFLT inst th s))(JVM::IFGT (exe
ute-IFGT inst th s))(JVM::INVOKEVIRTUAL (exe
ute-INVOKEVIRTUAL inst th s))(JVM::RETURN (exe
ute-RETURN inst th s))825 (JVM::XRETURN (exe
ute-XRETURN inst th s))(JVM::NEW (exe
ute-NEW inst th s))46

(JVM::GETFIELD (exe
ute-GETFIELD inst th s))(JVM::PUTFIELD (exe
ute-PUTFIELD inst th s))(JVM::MONITORENTER (exe
ute-MONITORENTER inst th s))830 (JVM::MONITOREXIT (exe
ute-MONITOREXIT inst th s))(JVM::HALT s)(otherwise s)))(defun step4 (th s)835 (if (equal (
all-sta
k-status th s) 'JVM::SCHEDULED)(do-inst (next-inst th s) th s)s))(defun m4 (s
hed s)840 (if (endp s
hed)s(m4 (
dr s
hed) (step4 (
ar s
hed) s))))

47

C The proof s
ript1 ;; Commutative diagram between M3 and M4; George Porter;5 ; $Id:
ommute-diagram.lisp,v 1.12 2001/04/10 03:44:16 george Exp $; up transforms an M4 state into an M3 state, with some loss of information;10 ; (ld "
ommute-diagram.lisp" :ld-pre-eval-print t)#|(in
lude-book "/v/hank/v113/george/sr
/thesis/m3")15 (in
lude-book "/v/hank/v113/george/sr
/thesis/m4")(
ertify-book "
ommute-diagram" 2)|#(in-pa
kage "M4")20 (defun up (s)(m3::make-state (
ar (binding 0 (m4::thread-table s)))(m4::heap s)(m4::
lass-table s)))25 ; down transforms an M3 state into an M4 state;(defun down (s)(m4::make-state (bind 0 (list (m3::
all-sta
k s) 'JVM::SCHEDULED nil) nil)30 (m3::heap s)(m3::
lass-table s))); ups
hed transforms an M4 s
hedule into an M3 one(defun ups
hed (s
h)35 (if (endp s
h)0(if (equal (
ar s
h) 0)(+ 1 (ups
hed (
dr s
h)))(ups
hed (
dr s
h)))))40 ; almost-equal is our relation
omparing M3 and M4 states, ignoring; uns
heduled threads;(defun thread0-s
heduled (tt)48

45 (let* ((thd0 (binding 0 tt))(flag (
adr thd0)))(and (true-listp thd0)(equal flag 'JVM::SCHEDULED))))50 #|(defun no-threads-s
heduled (tt)(
ond ((endp tt) t)((equal (
addr (
ar tt)) 'JVM::SCHEDULED) nil)(t (no-threads-s
heduled (
dr tt)))))55 (defun only-thread0-s
heduledp (tt)(and (thread0-s
heduled tt)(no-threads-s
heduled (
dr tt))))|#60 (defun at-most-thread0-s
heduledp (tt)(
ond ((endp tt) t)((equal (
aar tt) 0) (at-most-thread0-s
heduledp (
dr tt)))(t (and (not (equal (
addr (
ar tt)) 'JVM::SCHEDULED))65 (at-most-thread0-s
heduledp (
dr tt))))))(defun almost-equal (s4 s4p)(and (equal (
all-sta
k 0 s4p)(
all-sta
k 0 s4)) ;
all-sta
ks equal70 ; (at-most-thread0-s
heduledp (thread-table s4)); (at-most-thread0-s
heduledp (thread-table s4p))(equal (heap s4) (heap s4p)) ; heaps equal(equal (
lass-table s4) (
lass-table s4p)))) ;
lass tables equal75 ; singp is our predi
ate that determines if a state is single threaded;; no-starts-in-
lass-table helper fun
tions;80 (defun
he
k-byte
odes-in-method (byte
odes)(
ond ((endp byte
odes) t)((and (equal (
aar byte
odes) 'JVM::INVOKEVIRTUAL)(or (equal (
addar byte
odes) "start")(equal (
addar byte
odes) "stop")))85 nil)(t (
he
k-byte
odes-in-method (
dr byte
odes)))))(defun
he
k-methods-for-start (method-list)(if (endp method-list)90 t 49

(and (
he
k-byte
odes-in-method (
dddr (
ar method-list)))(
he
k-methods-for-start (
dr method-list)))))(defun no-starts-in-
lass (
lass)95 (
he
k-methods-for-start (
adddr
lass)))(defun no-starts-in-
lass-table (
table)(if (endp
table)t100 (and (no-starts-in-
lass (
ar
table))(no-starts-in-
lass-table (
dr
table))))); no-byte
odex-in-frames helpers105 (defun
he
k-byte
odex-in-method (op
ode byte
odes)(
ond ((endp byte
odes) t)((equal (
ar (
ar byte
odes)) op
ode) nil)(t (
he
k-byte
odex-in-method op
ode (
dr byte
odes)))))110 (defun
he
k-methods-for-byte
odex (op
ode method-list)(if (endp method-list)t(and (
he
k-byte
odex-in-method op
ode (
dddr (
ar method-list)))(
he
k-methods-for-byte
odex op
ode (
dr method-list)))))115 (defun no-byte
odex-in-
lass (op
ode
lass)(
he
k-methods-for-byte
odex op
ode (
adddr
lass)))(defun no-byte
odex-in-
lass-table (op
ode
table)120 (if (endp
table)t(and (no-byte
odex-in-
lass op
ode (
ar
table))(no-byte
odex-in-
lass-table op
ode (
dr
table)))))125 ; no-starts-in-frames helper fun
tions;(defun no-starts-in-frames (frames)(if (endp frames)130 t(and (
he
k-byte
odes-in-method (program (
ar frames)))(no-starts-in-frames (
dr frames)))))(defun no-byte
odex-in-frames (op
ode frames)135 (if (endp frames)t 50

(and (
he
k-byte
odex-in-method op
ode (program (
ar frames)))(no-byte
odex-in-frames op
ode (
dr frames)))))140 ; no-lo
ked-frames helper fun
tions(defun no-lo
ked-frames-in-frames (frames)(if (endp frames)t145 (and (not (equal (m4::syn
-flg (
ar frames)) 'JVM::LOCKED))(no-lo
ked-frames-in-frames (
dr frames)))))(defun
he
k-methods-for-lo
ked-frames (method-list)(if (endp method-list)150 t(and (equal (method-syn
 (
ar method-list)) NIL)(
he
k-methods-for-lo
ked-frames (
dr method-list)))))(defun no-lo
ked-frames-in-
lass-table (
table)155 (if (endp
table)t(and (
he
k-methods-for-lo
ked-frames (
adddr (
ar
table)))(no-lo
ked-frames-in-
lass-table (
dr
table)))))160 ; We now define the
on
ept that the
lass table
ontains no native; methods other than (possibly) "start" and "stop".(defun
he
k-other-native-methods (method-list)(if (endp method-list)165 t(if (or (equal (
ar (
ar method-list)) "start")(equal (
ar (
ar method-list)) "stop"))(
he
k-other-native-methods (
dr method-list))(and (not (method-isnative? (
ar method-list)))170 (
he
k-other-native-methods (
dr method-list))))))(defun no-other-native-methods-in-
lass (
lass)(
he
k-other-native-methods (
adddr
lass)))175 (defun no-other-native-methods-in-
lass-table (
table)(if (endp
table)t(and (no-other-native-methods-in-
lass (
ar
table))(no-other-native-methods-in-
lass-table (
dr
table)))))180 (defun singp (s)(and (at-most-thread0-s
heduledp (thread-table s))51

(asso
-equal 0 (thread-table s))(equal (
addr (asso
-equal 0 (thread-table s))) 'JVM::SCHEDULED)185 (equal (
adddr (asso
-equal 0 (thread-table s))) nil)(no-starts-in-frames (
ar (binding 0 (thread-table s))))(no-starts-in-
lass-table (
lass-table s))(no-byte
odex-in-frames'JVM::MONITORENTER (
ar (binding 0 (thread-table s))))190 (no-byte
odex-in-
lass-table'JVM::MONITORENTER (
lass-table s))(no-byte
odex-in-frames'JVM::MONITOREXIT (
ar (binding 0 (thread-table s))))(no-byte
odex-in-
lass-table195 'JVM::MONITOREXIT (
lass-table s))(no-lo
ked-frames-in-frames (
ar (binding 0 (thread-table s))))(no-lo
ked-frames-in-
lass-table (
lass-table s))(no-other-native-methods-in-
lass-table (
lass-table s))))200 ; Theorems; --; l2 shows that down and up are inverses, in an "almost-equal" sense(defthm l2205 (implies (singp s)(almost-equal (down (up s)) s)):rule-
lasses nil); --210 ; l3 - singp is preserved over stepping(defthm asso
-equal-bind(equal (asso
-equal th1 (bind th2 x alist))(if (equal th1 th2)215 (
ons th1 x)(asso
-equal th1 alist))))(defthm at-most-thread0-s
heduledp-bind(implies (at-most-thread0-s
heduledp tt)220 (at-most-thread0-s
heduledp (bind 0 entry tt))))(defthm l3-lemma-EXECUTE-DUP(implies (singp s)(singp (exe
ute-dup inst 0 s))))225 (defthm l3-lemma-EXECUTE-ADD(implies (singp s)(singp (exe
ute-add inst 0 s))))52

230 (defthm l3-lemma-EXECUTE-PUSH(implies (singp s)(singp (EXECUTE-PUSH inst 0 s))))(defthm l3-lemma-EXECUTE-POP(implies (singp s)235 (singp (EXECUTE-POP inst 0 s))))(defthm l3-lemma-EXECUTE-LOAD(implies (singp s)(singp (EXECUTE-LOAD inst 0 s))))240 (defthm l3-lemma-EXECUTE-STORE(implies (singp s)(singp (EXECUTE-STORE inst 0 s))))245 (defthm l3-lemma-EXECUTE-SUB(implies (singp s)(singp (EXECUTE-SUB inst 0 s))))(defthm l3-lemma-EXECUTE-MUL250 (implies (singp s)(singp (EXECUTE-MUL inst 0 s))))(defthm l3-lemma-EXECUTE-GOTO(implies (singp s)255 (singp (EXECUTE-GOTO inst 0 s))))(defthm l3-lemma-EXECUTE-IFEQ(implies (singp s)(singp (EXECUTE-IFEQ inst 0 s))))260 (defthm l3-lemma-EXECUTE-IFNE(implies (singp s)(singp (EXECUTE-IFNE inst 0 s))))265 (defthm l3-lemma-EXECUTE-IFLT(implies (singp s)(singp (EXECUTE-IFLT inst 0 s))))(defthm l3-lemma-EXECUTE-IFGT270 (implies (singp s)(singp (EXECUTE-IFGT inst 0 s)))); In the following, we were sometimes tempted to write (nth 2 ...) or (nth 3 ...); and other times tempted to write (
addr ...) or (
adddr ...). We will just53

275 ; rewrite away all the NTHs of
onstants with this rule.(defthm nth-opener(and (equal (nth 0 x) (
ar x))(implies (and (syntaxp (quotep i))280 (integerp i)(<= 0 i))(equal (nth (+ 1 i) x)(nth i (
dr x))))))(in-theory (disable nth))285 (defthm at-most-thread0-s
heduledp-bind-2(implies (and (at-most-thread0-s
heduledp tt)(equal (
adr x) 'JVM::UNSCHEDULED))(at-most-thread0-s
heduledp (bind th x tt))))290 (defthm no-starts-in-
lass-table-implies-
he
k-methods-for-start(implies (no-starts-in-
lass-table
t)(
he
k-methods-for-start (
adddr (asso
-equal
lass
t)))))295 (defthm
he
k-methods-for-start-implies-
he
k-byte
odes-in-method(implies (
he
k-methods-for-start methods)(
he
k-byte
odes-in-method (
dddr (asso
-equal method methods)))))(defthm
he
k-methods-for-start-implies-
he
k-byte
odes-in-method-2300 (implies (no-starts-in-
lass-table
t)(
he
k-byte
odes-in-method(
dddr(LOOKUP-METHOD-IN-SUPERCLASSESmethod305
lasses
t))))); We repeat this for
he
k-byte
odex-in-method.310 (defthm no-byte
odex-in-
lass-table-implies-no-byte
odex-in-
lass(implies (no-byte
odex-in-
lass-table op
ode
t)(
he
k-methods-for-byte
odex op
ode (
adddr (asso
-equal
lass
t)))))(defthm
he
k-methods-for-byte
odex-implies-
he
k-byte
odex-in-method315 (implies (
he
k-methods-for-byte
odex op
ode methods)(
he
k-byte
odex-in-method op
ode (
dddr (asso
-equal method methods)))))(defthm
he
k-methods-for-byte
odex-implies-
he
k-byte
odex-in-method-2(implies (no-byte
odex-in-
lass-table op
ode
t)320 (
he
k-byte
odex-in-method54

op
ode(
dddr(LOOKUP-METHOD-IN-SUPERCLASSESmethod325
lasses
t))))); ---; We now have a similar argument to show that no invoked method is330 ; syn
hronized.(defthm no-lo
ked-frames-in-
lass-table-implies-not-method-syn
(implies (NO-LOCKED-FRAMES-IN-CLASS-TABLE
t)(not (CADDR335 (ASSOC-EQUAL method(
adddr (ASSOC-EQUAL
lass
t)))))))(defthm no-lo
ked-frames-in-
lass-table-implies-not-method-syn
-lookup-method(implies (NO-LOCKED-FRAMES-IN-CLASS-TABLE
t)340 (not (CADDR(LOOKUP-METHOD-IN-SUPERCLASSES method super
lasses
t)))))(defthm l3-lemma-EXECUTE-INVOKEVIRTUAL345 (implies (and (singp s)(not (equal (
addr inst) "start"))(not (equal (
addr inst) "stop")))(singp (EXECUTE-INVOKEVIRTUAL inst 0 s))))350 (defthm l3-lemma-EXECUTE-RETURN(implies (singp s)(singp (EXECUTE-RETURN inst 0 s))))(defthm l3-lemma-EXECUTE-XRETURN355 (implies (singp s)(singp (EXECUTE-XRETURN inst 0 s))))(defthm len-bind(equal (len (bind 0 v alist))360 (if (asso
-equal 0 alist) (len alist) (+ 1 (len alist)))))(defthm asso
-equal-implies-non-0-len(implies (asso
-equal key alist)(not (equal 0 (len alist)))))365 (defthm l3-lemma-EXECUTE-NEW 55

(implies (singp s)(singp (EXECUTE-NEW inst 0 s))))370 (defthm l3-lemma-EXECUTE-GETFIELD(implies (singp s)(singp (EXECUTE-GETFIELD inst 0 s))))(defthm l3-lemma-EXECUTE-PUTFIELD375 (implies (singp s)(singp (EXECUTE-PUTFIELD inst 0 s)))); We don't really need these, be
ause singp implies there are none of these; instru
tions. But in fa
t singp is preserved by them, so we prove these for380 ; future use.(defthm l3-lemma-EXECUTE-MONITORENTER(implies (singp s)(singp (EXECUTE-MONITORENTER inst 0 s))))385 (defthm l3-lemma-EXECUTE-MONITOREXIT(implies (singp s)(singp (EXECUTE-MONITOREXIT inst 0 s))))390 (defthm only-thread-0-s
heduled-lemma(IMPLIES (AND (AT-MOST-THREAD0-SCHEDULEDP tt)(EQUAL (CADDR (ASSOC-EQUAL TH tt))'JVM::SCHEDULED))(EQUAL TH 0))395 :rule-
lasses nil)(defthm only-thread-0-s
heduled(implies (and (SINGP S)(EQUAL (CADDR (ASSOC-EQUAL TH (THREAD-TABLE S)))400 'JVM::SCHEDULED))(equal th 0)):hints (("Goal" :use (:instan
e only-thread-0-s
heduled-lemma(tt (thread-table s))))):rule-
lasses nil)405 ; The next two lemmas are used to prove the lemma next-inst-not-start,; whi
h is needed in l3-lemma to prove the 2nd hyp of the l3-lemma; invokevirtual
ase.410 (defthm next-inst-not-start-lemma2-start(IMPLIES (and (CHECK-BYTECODES-IN-METHOD program)56

(equal (
ar (NTH PC program)) 'JVM::INVOKEVIRTUAL))(NOT (EQUAL (CADDR (NTH PC program))415 "start"))):hints (("Goal" :in-theory (enable nth))))(defthm next-inst-not-start-lemma2-stop(IMPLIES (and (CHECK-BYTECODES-IN-METHOD program)420 (equal (
ar (NTH PC program)) 'JVM::INVOKEVIRTUAL))(NOT (EQUAL (CADDR (NTH PC program))"stop"))):hints (("Goal" :in-theory (enable nth))))425 (defthm next-inst-not-start-lemma1-start(implies(and (NO-STARTS-IN-FRAMES
s)(equal (
ar (NTH p
 (program (
ar
s)))) 'JVM::INVOKEVIRTUAL))(not (equal (
addr (NTH p
 (program (
ar
s)))) "start")))430 :hints (("Goal" :in-theory (enable nth))))(defthm next-inst-not-start-lemma1-stop(implies(and (NO-STARTS-IN-FRAMES
s)435 (equal (
ar (NTH p
 (program (
ar
s)))) 'JVM::INVOKEVIRTUAL))(not (equal (
addr (NTH p
 (program (
ar
s)))) "stop"))):hints (("Goal" :in-theory (enable nth))))(defthm next-inst-not-start440 (implies(and (singp s)(equal (
ar (NTH p
 (program(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S))))))'JVM::INVOKEVIRTUAL))445 (not (equal (
addr (NTH p
 (program(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S))))))"start"))))(defthm next-inst-not-stop450 (implies(and (singp s)(equal (
ar (NTH p
 (program(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S))))))'JVM::INVOKEVIRTUAL))455 (not (equal (
addr (NTH p
 (program(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S))))))"stop")))) 57

; in order to relieve the 2nd hyp of the l3 INVOKVIRTUAL lemma.460 (defthm l3-lemma(implies (singp s)(singp (step4 th s))):hints465 (("Goal":use (:instan
e only-thread-0-s
heduled(s s)(th th)):in-theory470 (disable EXECUTE-PUSHEXECUTE-POPEXECUTE-LOADEXECUTE-STOREEXECUTE-DUP475 EXECUTE-ADDEXECUTE-SUBEXECUTE-MULEXECUTE-GOTOEXECUTE-IFEQ480 EXECUTE-IFNEEXECUTE-IFLTEXECUTE-IFGTEXECUTE-INVOKEVIRTUALEXECUTE-RETURN485 EXECUTE-XRETURNEXECUTE-NEWEXECUTE-GETFIELDEXECUTE-PUTFIELDEXECUTE-MONITORENTER490 EXECUTE-MONITOREXITsingp))))(defthm l3(implies (singp s) (singp (m4 s
hed s)))495 :hints (("Goal" :in-theory (disable step4 singp))))(defthm state-de
omposition-m4(iff (equal (M4::make-state tt1 h1
t1)(M4::make-state tt2 h2
t2))500 (and (equal tt1 tt2)(equal h1 h2)(equal
t1
t2))):hints(("Goal" 58

505 :in-theory (enable M4::make-state))))(defthm state-de
omposition-m3(iff (equal (M3::make-state
s1 h1
t1)(M3::make-state
s2 h2
t2))510 (and (equal
s1
s2)(equal h1 h2)(equal
t1
t2))):hints(("Goal"515 :in-theory (enable M3::make-state))))(defthm
ompare-m3-and-m4-make-frame(iff (equal (m3::make-frame p
1 lo
als1 sta
k1 program1 syn
1)(m4::make-frame p
2 lo
als2 sta
k2 program2 syn
2))520 (and (equal p
1 p
2)(equal lo
als1 lo
als2)(equal sta
k1 sta
k2)(equal program1 program2)(equal syn
1 syn
2)))525 :hints(("Goal":in-theory (enable m3::make-frame m4::make-frame))))(defthm m3-p
-is-m4-p
530 (equal (m3::p
 x) (m4::p
 x)):hints(("Goal":in-theory (enable m3::p
 m4::p
))))535 (defthm m3-lo
als-is-m4-lo
als(equal (m3::lo
als x) (m4::lo
als x)):hints(("Goal":in-theory (enable m3::lo
als m4::lo
als))))540 (defthm m3-sta
k-is-m4-sta
k(equal (m3::sta
k x) (m4::sta
k x)):hints(("Goal"545 :in-theory (enable m3::sta
k m4::sta
k))))(defthm m3-program-is-m4-program(equal (m3::program x) (m4::program x)):hints550 (("Goal" 59

:in-theory (enable m3::program m4::program))))(defthm m3-syn
-flg-is-m4-syn
-flg(equal (m3::syn
-flg x) (m4::syn
-flg x))555 :hints(("Goal":in-theory (enable m3::syn
-flg m4::syn
-flg)))); L1560 ; L1-lemma1(defthm l1-lemma1-not-0-is-not-s
hed(implies (and (at-most-thread0-s
heduledp tt)(not (equal th 0)))565 (not (equal (
addr (asso
-equal th tt))'JVM::SCHEDULED))))(defthm l1-lemma1(implies (and (singp s)570 (not (equal th 0)))(equal (step4 th s) s))); L1-lemma2(defthm l1-lemma2-EXECUTE-DUP575 (implies (singp s)(equal (M3::EXECUTE-DUP inst (up s))(up (M4::EXECUTE-DUP inst 0 s)))):hints(("Goal"580 :in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-ADD(implies (singp s)(equal (M3::EXECUTE-ADD inst (up s))585 (up (M4::EXECUTE-ADD inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))590 (defthm l1-lemma2-EXECUTE-PUSH(implies (singp s)(equal (M3::EXECUTE-PUSH inst (up s))(up (M4::EXECUTE-PUSH inst 0 s)))):hints595 (("Goal":in-theory (enable M3::pop M3::push M3::top))))60

(defthm l1-lemma2-EXECUTE-POP(implies (singp s)600 (equal (M3::EXECUTE-POP inst (up s))(up (M4::EXECUTE-POP inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))605 (defthm l1-lemma2-EXECUTE-LOAD(implies (singp s)(equal (M3::EXECUTE-LOAD inst (up s))(up (M4::EXECUTE-LOAD inst 0 s))))610 :hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))(defthm m3-bind-is-m4-bind615 (equal (m3::bind x y list)(m4::bind x y list)))(defthm l1-lemma2-EXECUTE-STORE(implies (singp s)620 (equal (M3::EXECUTE-STORE inst (up s))(up (M4::EXECUTE-STORE inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))625 ; (in-theory (disable m3-bind-is-m4-bind))(defthm l1-lemma2-EXECUTE-SUB(implies (singp s)630 (equal (M3::EXECUTE-SUB inst (up s))(up (M4::EXECUTE-SUB inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))635 (defthm l1-lemma2-EXECUTE-MUL(implies (singp s)(equal (M3::EXECUTE-MUL inst (up s))(up (M4::EXECUTE-MUL inst 0 s))))640 :hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))61

(defthm l1-lemma2-EXECUTE-GOTO645 (implies (singp s)(equal (M3::EXECUTE-GOTO inst (up s))(up (M4::EXECUTE-GOTO inst 0 s)))):hints(("Goal"650 :in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-IFEQ(implies (singp s)(equal (M3::EXECUTE-IFEQ inst (up s))655 (up (M4::EXECUTE-IFEQ inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))660 (defthm l1-lemma2-EXECUTE-IFNE(implies (singp s)(equal (M3::EXECUTE-IFNE inst (up s))(up (M4::EXECUTE-IFNE inst 0 s)))):hints665 (("Goal":in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-IFLT(implies (singp s)670 (equal (M3::EXECUTE-IFLT inst (up s))(up (M4::EXECUTE-IFLT inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))675 (defthm l1-lemma2-EXECUTE-IFGT(implies (singp s)(equal (M3::EXECUTE-IFGT inst (up s))(up (M4::EXECUTE-IFGT inst 0 s))))680 :hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-GETFIELD685 (implies (singp s)(equal (M3::EXECUTE-GETFIELD inst (up s))(up (M4::EXECUTE-GETFIELD inst 0 s)))):hints 62

(("Goal"690 :in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-PUTFIELD(implies (singp s)(equal (M3::EXECUTE-PUTFIELD inst (up s))695 (up (M4::EXECUTE-PUTFIELD inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top m3-bind-is-m4-bind))))700 (defthm no-other-native-methods-in-
lass-table-implies-no-natives(implies (and (no-other-native-methods-in-
lass-table
t)(not (equal method "start"))(not (equal method "stop")))(NOT705 (EQUAL'(NIL)(CDDDR(ASSOC-EQUALmethod710 (CADDDR (ASSOC-EQUAL
lass
t))))))))(defthm no-other-native-methods-in-
lass-table-implies-no-natives-lookup-method(implies (and (no-other-native-methods-in-
lass-table
t)(not (equal method "start"))715 (not (equal method "stop")))(NOT(EQUAL'(NIL)(CDDDR720 (LOOKUP-METHOD-IN-SUPERCLASSESmethodsuper
lasses
t))))))725 (defthm m3-popn-is-m4-popn(equal (m3::popn n sta
k)(m4::popn n sta
k)):hints (("Goal" :in-theory (enable m3::pop m4::pop))))730 (defthm asso
-equal-modify-tt(equal (asso
-equal th (modify-tt th
s status tt))(list th
s status (
all-sta
k-rref th tt))))63

735 (defthm
all-sta
k-make-state-modify-tt(equal (
all-sta
k th (make-state (modify-tt th
s status tt) heap
t))
s):hints (("Goal" :in-theory (enable make-state))))740 (defthm m3-reverse-is-m4-reverse(equal (m3::reverse x)(m4::reverse x)))(defthm m3-bind-formals-is-m4-bind-formals745 (equal (m3::bind-formals rformals sta
k)(m4::bind-formals rformals sta
k)):hints (("Goal" :in-theory (enable m3::pop m4::pop m3::top m4::top))))(defthm M3-LOOKUP-METHOD-IN-SUPERCLASSES-is-M4-LOOKUP-METHOD-IN-SUPERCLASSES750 (equal (M3::LOOKUP-METHOD-IN-SUPERCLASSES method super
lasses
t)(M4::LOOKUP-METHOD-IN-SUPERCLASSES method super
lasses
t)))(defthm l1-lemma-EXECUTE-INVOKEVIRTUAL(implies (and (singp s)755 (not (equal (
addr inst) "start"))(not (equal (
addr inst) "stop")))(equal (M3::EXECUTE-INVOKEVIRTUAL inst (up s))(up (M4::EXECUTE-INVOKEVIRTUAL inst 0 s)))):hints760 (("Goal":in-theory (enable M3::pop M3::push M3::top))))(defthm l1-lemma2-EXECUTE-RETURN(implies (singp s)765 (equal (M3::EXECUTE-return inst (up s))(up (M4::EXECUTE-return inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))770 (defthm l1-lemma2-EXECUTE-XRETURN(implies (singp s)(equal (M3::EXECUTE-xreturn inst (up s))(up (M4::EXECUTE-xreturn inst 0 s))))775 :hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))780 (defthm M3-BUILD-CLASS-FIELD-BINDINGS-IS-M4-BUILD-CLASS-FIELD-BINDINGS64

(equal (M3::BUILD-CLASS-FIELD-BINDINGS fields)(M4::BUILD-CLASS-FIELD-BINDINGS fields)))(defthm M3-BUILD-AN-INSTANCE-is-M4-BUILD-AN-INSTANCE785 (equal (M3::BUILD-AN-INSTANCE
lass
t)(M4::BUILD-AN-INSTANCE
lass
t)))(defthm l1-lemma2-EXECUTE-new(implies (singp s)790 (equal (M3::EXECUTE-new inst (up s))(up (M4::EXECUTE-new inst 0 s)))):hints(("Goal":in-theory (enable M3::pop M3::push M3::top))))795 (defthm
aar-up(equal (CAAR (UP S))(CAADR (ASSOC-EQUAL 0 (THREAD-TABLE S)))):hints (("Goal" :in-theory (enable M3::MAKE-STATE))))800 (defthm
he
k-byte
odex-in-method-implies-no-monitorenter(IMPLIES (CHECK-BYTECODEX-IN-METHOD 'JVM::MONITORENTERprogram)(NOT (EQUAL (CAR (NTH p
 program))805 'JVM::MONITORENTER))):hints (("Goal" :in-theory (enable nth))))(defthm
he
k-byte
odex-in-method-implies-no-monitorexit(IMPLIES (CHECK-BYTECODEX-IN-METHOD 'JVM::MONITOREXIT810 program)(NOT (EQUAL (CAR (NTH p
 program))'JVM::MONITOREXIT))):hints (("Goal" :in-theory (enable nth))))815 (defthm
he
k-byte
odex-in-method-implies-no-monitorenter-instr(implies (NO-BYTECODEX-IN-FRAMES 'JVM::MONITORENTER
s)(not (EQUAL (CAR (NTH (PC (CAr
s))(PROGRAM (CAr
s))))'JVM::MONITORENTER))))820 (defthm
he
k-byte
odex-in-method-implies-no-monitorexit-instr(implies (NO-BYTECODEX-IN-FRAMES 'JVM::MONITOREXIT
s)(not (EQUAL (CAR (NTH (PC (CAr
s))(PROGRAM (CAr
s))))825 'JVM::MONITOREXIT))))(defthm l1-lemma2 65

(implies (singp s)(equal (M3::step3 (up s))(up (step4 0 s))))830 :hints(("Goal":in-theory(union-theories'(m3::top m3::
all-sta
k)835 (disable M3::EXECUTE-PUSHM4::EXECUTE-PUSHM3::EXECUTE-POPM4::EXECUTE-POPM3::EXECUTE-LOAD840 M4::EXECUTE-LOADM3::EXECUTE-STOREM4::EXECUTE-STOREM3::EXECUTE-DUPM4::EXECUTE-DUP845 M3::EXECUTE-ADDM4::EXECUTE-ADDM3::EXECUTE-SUBM4::EXECUTE-SUBM3::EXECUTE-MUL850 M4::EXECUTE-MULM3::EXECUTE-GOTOM4::EXECUTE-GOTOM3::EXECUTE-IFEQM4::EXECUTE-IFEQ855 M3::EXECUTE-IFNEM4::EXECUTE-IFNEM3::EXECUTE-IFLTM4::EXECUTE-IFLTM3::EXECUTE-IFGT860 M4::EXECUTE-IFGTM3::EXECUTE-INVOKEVIRTUALM4::EXECUTE-INVOKEVIRTUALM3::EXECUTE-RETURNM4::EXECUTE-RETURN865 M3::EXECUTE-XRETURNM4::EXECUTE-XRETURNM3::EXECUTE-NEWM4::EXECUTE-NEWM3::EXECUTE-GETFIELD870 M4::EXECUTE-GETFIELDM3::EXECUTE-PUTFIELDM4::EXECUTE-PUTFIELD66

M4::EXECUTE-MONITORENTERM4::EXECUTE-MONITOREXIT875 ; singpup)))))(in
lude-book "/proje
ts/a
l2/v2-5/books/arithmeti
/top-with-meta")880 (defthm l1(implies (singp s)(equal (M3::m3 (ups
hed s
h) (up s))(up (m4 s
h s))))885 :hints (("Goal" :in-theory (disable singp m3::step3 m4::step4 up))))(defthm main(implies (singp s)(almost-equal (down (m3::m3 (ups
hed s
h) (up s)))890 (m4 s
h s))):hints(("Goal" :in-theory (disable down up ups
hed m3::m3 m4 almost-equal singp):use ((:instan
e l2 (s (m4 s
h s)))))))895 ; --; Below are appli
ation independent support lemmas and theorems; that allow one to port M3 properties to M4.(defthm
ondition3900 (equal (m3::top-frame (up s)) (top-frame 0 s)):hints (("Goal" :in-theory (enable m3::top))))(defthm
ondition4(equal (m3::
all-sta
k (up s)) (
all-sta
k 0 s)))905 (defthm almost-equal-bind-0(equal (almost-equal s0 (make-state (bind 0 thread-entry thread-table) heap
lass-table))(almost-equal s0 (make-state (list (
ons 0 thread-entry)) heap
lass-table))))910 (defthm almost-equal-
ommutes(equal (almost-equal s0 s1)(almost-equal s1 s0)))(defthm heap-and-
lass-table-up915 (and (equal (m3::heap (up s)) (heap s))(equal (m3::
lass-table (up s)) (
lass-table s))))(defthm m3-states-again 67

(and920 (implies (equal z (m3::make-state
s hp
t))(equal (m3::
all-sta
k z)
s))(implies (equal z (m3::make-state
s hp
t))(equal (m3::heap z) hp))(implies (equal z (m3::make-state
s hp
t))925 (equal (m3::
lass-table z)
t))))(defthm m3-push-and-pop(and (equal (m3::push x y) (push x y))(equal (m3::pop x) (pop x)))930 :hints (("Goal" :in-theory (enable m3::push m3::pop))))(defthm m3-make-frame-to-m4(equal (m3::make-frame
s l
 st pr fl)(make-frame
s l
 st pr fl))935 :hints (("Goal" :in-theory (enable m3::make-frame make-frame))))(defthm singp-implies-rref-nil(implies (singp s0)(equal (CADDDR (ASSOC-EQUAL 0 (THREAD-TABLE S0))) nil)))

68

