
A Case Study in Exploiting Layers to Optimize Scientific Software

Samuel Z. Guyer Calvin Lin

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

This paper presents a case study in improving the perfor-
mance of layered scientific software usinglibrary-level opti-
mization. We augment our previous work to include a notion
of layers, and apply the technique to the three layers that make
up the PLAPACK parallel linear algebra library—a global ap-
plication level, an internal layer, and an MPI message passing
layer. We show how significant performance improvements of
10% to 180% for large matrices and 36% to 600% for small
matrices are possible for four PLAPACK applications. Our
approach works because it first exploits layer boundaries tofa-
cilitate high-level program analysis and optimization, and then
systematically dissolves layer boundaries to expose new opti-
mization opportunities. This work is presented in the context
of the Broadway compiler system, which uses an annotation
language to capture semantic information about the abstrac-
tions present in software libraries.

1 Introduction

Layering has long been used to simplify the design of soft-
ware systems. Layering helps decompose systems into man-
ageable pieces, and creates reusable modules [6]. Developers
of large scientific software systems have come to depend more
and more on layering, since such systems tend to represent
a broad spectrum of specialized programming domains. For
example, the POOMA framework consists of five layers [16],
with the higher layers representing abstractions in the prob-
lem domain, such as solvers and complete simulations, and
the lower layers representing abstractions in the implementa-
tion, such as communication, data distribution, and sequential
kernels. Many other systems are similarly layered [4].

One well known problem with layers is the performance
degradation that comes from not optimizing operations in an
end-to-end manner. These issues have been addressed in cer-
tain domains, typically by leveraging domain-specific infor-
mation about the layers. For example, systems have been
introduced to optimize layered communication protocols [1]
and toolkits for distributed computing [12]. There have been
few attempts, however, to optimize layered scientific software,
perhaps because such systems span such a broad range of do-
mains. Instead, the thrust of such systems has been to optimize
each layer or component independently.

This paper argues thatlibrary-level optimization, a
compiler-based approach for optimizing library opera-
tions [10, 11], is a promising approach for optimizing lay-

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500 3000

%
 
i
m
p
r
o
v
e
m
e
n
t
 
o
v
e
r
 
b
a
s
e
 
v
e
r
s
i
o
n

Problem size

Triangular solve
Cholesky factorization

Lyuponov solver
Rank-K update


