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Abstract— We develop an end-to-end model for packet inter-arrival times of flows in the Internet. Our model illustrates
that under asymptotic conditions of high network utilization, (1) packet inter-arrival times of flows become heavy-tailed after
they traverse a large number of hops, and (2) the aggregate ofsuch flows is a long-range dependent self-similar process. We
validate our model through extensive simulations and derive the region of applicability—with respect to non-asymptotic settings
of network utilization, heterogeneity in traffic composition, and number of hops that a flow traverses—of our model. We find
that for flows that contribute significant amount (� 10%) to the cumulative bit rate of the aggregate, the observations yielded
by the model hold at relatively low levels of network utilization (30-40%), small number of network hops (4-6), and moderate
levels of heterogeneity in packet sizes and bandwidth requirements of flows.

1 Introduction

Simplicity of implementation is central to the design of scalable, high-performance networks. Hence, high-performance
routers have traditionally used First-In-First-Out (FIFO) packet scheduling algorithm. FIFO scheduling, unfor-
tunately, does not provide isolation across flows; bursty traffic arrival from a flow can affect significantly the
performance—delay, jitter, and loss—observed by other flows.

A number of analytical models have been proposed for characterizing delay and jitter performance of flows in
FIFO networks [5, 17, 16, 20, 23, 22, 25]. However, primarilydue to the complexity of the analysis involved, most
of these studies do not provide closed-form characterization of end-to-end delay and jitter properties (see Section 9
for a detailed discussion on related work).

The aim of this paper is to provide a closed-form end-to-end analysis for flows in FIFO networks. For the
remainder of this paper, we refer to aflow as a traffic stream, all packets of which traverse the same network path
from the source to the destination. A wide variety of traffic streams—such as label-switched paths (LSP) in Multi-
protocol Label Switching (MPLS) networks, Virtual PrivateNetwork (VPN) tunnels, and Virtual Circuits (VC) in
ATM networks—fit this definition of a flow. Even in the current Internet, TCP, UDP and other best-effort traffic
streams can be approximated as flows as long as route changes are not frequent.

We model the inter-arrival time between packets at the destination for individual flows under asymptotic condi-
tions of network utilization and number of hops. Our model yields the following key insights.� The variance in inter-arrival times for individual flows tends to infinity in the asymptotic case, indicating that

flows becomeheavy-tailedafter traversing a network of FIFO routers.�Currently at Intel Corporation
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� The aggregation of flows becomes a long-range dependent self-similar process.

A particularly interesting and deceptively simple type of flow is one that is shaped to aconstant bit-rate(CBR)—
with constant packet inter-arrival times and packet sizes—at the source. It is widely believed that (1) shaping flows to
CBR at the source and (2) ensuring that the bandwidth available at each node to the CBR aggregate is at least as large
as the cumulative rate requirement of the CBR flows results ina satisfactory end-to-end delay and jitter. The above
philosophy, in fact, is the basis of the Virtual Leased Line service model proposed in the context of Differentiated
Services (DiffServ) networks [13, 19]. We demonstrate that, at high network utilization, even CBR flows become
heavy tailed after traversing a few hops. Hence, shaping flows to CBR benefits only in networks that operate at low
levels of utilization. We further show that at low network utilization, shaping sources to constant packet sizes is
sufficient to reduce the asymptotic burstiness; shaping sources to constant inter-arrival times is not necessary.

We validate our model through extensive simulations and derive the region of applicability—with respect to non-
asymptotic network and traffic parameters—of the model. We find that although the model predicts the behavior of
flows in the asymptotic case, for flows that contribute significant amount (� 10%) to the cumulative bit rate of the
aggregate, the observations yielded by the model hold at relatively low levels of network utilization (30-40%), small
number of network hops (4-6), and moderate levels of heterogeneity in the packet sizes and bandwidth requirements
of the flows. We argue that, in many instances, a flow—such as one that represents a VPN tunnel between two sites
of an enterprise—does occupy significant fraction (10-20%)of the bit rate allocated for VPN services at routers.
Our simulation results predict that such flows will become heavy-tailed at relatively low levels of network utilization
and after traversing a small number of network hops; further, all of the micro-flows that get multiplexed onto such
tunnels will themselves become heavy-tailed.

Finally, we point out several important implications of carrying heavy-tailed flows and long-range dependent self-
similar aggregates in a network. We argue that a client receiving a heavy-tailed multimedia flow either perceives
poor performance or requires large amount of buffers to smooth out the heavy tails. Long-range dependence of traffic
aggregates, on the other hand, has several implications on network queuing delays and packet losses. We conclude
that operating a network so as to maintain its traffic outsidethe heavy-tailed and long-range dependence domain is
highly desirable.

The rest of the paper is organized as follows. We define related concepts in Section 2. In Section 3, we formulate
the problem of end-to-end analysis of packet inter-arrivaltimes of flows. In Sections 4 and 5, we present the models
for individual flows and flow aggregates, respectively. We discuss the benefits, if any, of shaping sources to CBR in
Section 6. In Section 7, we describe our simulation setup andpresent simulation results. We discuss the impact of
heavy-tailedness and long-range dependence on the design of networks in Section 8. We discuss the related work in
Section 9, and summarize our conclusions in Section 10.

2 Background

In this section, we first summarize the concepts of self-similarity, long-range dependence and heavy-tailed flow and
then discuss the tests used to detect the presence of these properties in a time series.

2.1 Concepts

Self-similarity: Consider a time seriesY (t). Y (t) is self-similar iff,Y (t) � m�HY (mt)
That is,Y (t) is identically distributed asY (mt) with a scaling factorm�H , wherem > 0 andH 2 [0; 1℄ is
known as theHurst parameter.

LetX(t) define increments on Y(t):X(t) = Y (t+ 1)� Y (t). If Y (t) has stationary increments, then it can
be shown thatX � m1�HXm, whereXm = (X(0) + X(1) : : : X(m)) = m . WhenH > 1=2, it can be
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shown that the variance ofXm dies out at a sub-linear rate with increase inm:V ar(Xm) = m2H�2 V ar(X)
Self-similar processes are oftenlong-range dependent– we define this concept next.

Long-range Dependence:Long-range dependenceof a processfXig refers to the property that its auto-covariance
function does not sum up to a finite quantity. LetE[Xi℄ = �V ar(Xi) = �2�i = E[(Xi � �)(X0 � �)℄=�2
ThenX is long-range dependentiff: Xi �i =1
The most commonly encountered form of such long-range dependent�k in communication networks is hy-
perbolic and is given by: �k = 
k2H�2; k !1
whereH > 1=2 and
 is a constant. This form of�k corresponds to that of a second-order self-similar process
[26].

Heavy-tailed Flows: A flow is said to beheavy-tailed iffP (J > x) = 
(x)x��; x!1; 0 < � < 2 (1)

where the random variableJ denotes the packet inter-arrival time of the flow and
(x) is a slowly varying
function asx!1. Slow variation can be stated as:limx!1 
(tx)
(x) = 1;8t > 0
For all practical purposes,
(x) can be approximated by a constant. It can be shown thatV ar(J) = 1.
If � < 1, it can also be shown thatE[J ℄ = 1. The association between heavy-tailedness and long-range
dependent self-similarity is discussed in Section 5.

2.2 Tests for Heavy Tails and Long-range Dependent Self-sim ilarity

The literature contains the following tests for identifying heavy-tailedness and long-range dependent self-similarity.

1. LLCD Test:The log-log complementary distribution (LLCD) test is usedto detect the presence of heavy tails
in a source. The complementary distribution of the packet inter-arrival time (Prob(J > x)) is plotted on a
log-log scale. From Equation (1), it can be seen that for a heavy-tailed source, after some value ofx, the
distribution should look like a straight line with slope��.

2. Hill Test: LetU1; U2; : : : ; Un denote the packet inter-arrival times of a given flow in ascending order. TheHill
function,hill(k), for the flow is defined by:hill(k) = "i=k�1Xi=0 k�1log Un�iUn�k #�1
A source is said to be heavy-tailed with parameter� if hill(k) stabilizes to� after some value ofk.
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Figure 1 : Network Model

3. Variance-time test:This test determines if a processfXig is self-similar and long-range dependent. The
logarithm of the variance of the aggregated (averaged) processfXmi g is plotted versus the logarithm of the
aggregation level,m. A least-squares line is fitted on the data, and the slope (2H � 2) provides an estimate
of H. If the slope is greater than�1, thenH > 1=2, indicating that the data is self-similar and long-range
dependent.

3 Problem Formulation

Consider a network that carries flows between source-destination pairs. In this paper, a flow is considered to be any
traffic stream, all packets of which traverse the same path, from the source to the destination, through the network.
We assume all flows in the network are independent of each other. This is a reasonable assumption in large-scale
networks with diverse routing. LetfR1; : : : ; RHg denote the routers along a path of lengthH through this network.
We consider networks where each routerRh employs FIFO scheduling to arbitrate access to the link bandwidth.
Very large router buffers are assumed which guarantee no loss of packets. Let�h be the utilization of the output link
of routerRh.

Divide the time-axis intovery smallslots. Consider a flowf (referred to astagged flow) that traverses the above
path. Let the random variableJh represent the inter-packet separation (IPS) of this flow as its packets leave routerRh (see Figure 1). LetJ0 represent the inter-packet separation of the flow at the source. We assume that the meanEJ0 and the varianceV ar(J0) for the inter-packet separation of the tagged flow at the source are finite.

Let the random variableXjh denote the time it takes to service the cross-traffic that enters routerRh during thejth
time-slot after the arrival of a packet of flowf . Then the following relationship exists betweenJh�1, Jh andXjh:Jh = I +X1h + : : :+XJh�1�Ih (2)

where,I represents the index of the last time-slot after the arrivalof a tagged packet but prior to the arrival of the
next tagged packet, at which the queue becomes empty. We assume thatXjh is independent ofJh�1 – which is a
reasonable assumption in a network with diverse routing anda large number of input links carrying independent
cross-traffic.

Note thatEXjh = �h. For simplicity of analysis we assume that the cross-trafficcharacteristics are uniform over
all routers. Henceforth, for simplicity of exposition, we shall therefore denoteXjh asXj and�h as�. In the steady
state, letXjh � X. Then� = EX. Let�2 = V ar(X).

Let �k denote the auto-covariance in the cross-traffic that arrives at time instances separated byk time-slots, that
is �k = E[(Xj � �)(Xj+k � �)℄=�2
Notice that with the assumed independence of flows, the auto-covariance of the cross-traffic at a particular lagk is
approximately the average of the auto-covariances at the same lag of the various cross-traffic flows present. Further,
for most flows, the auto-covariance is a decreasing functionof k. Hence, if the cross-traffic aggregates a large
number of flows, then it is safe to assume that�k is a strictly monotonically decreasing function ofk. The following
lemma states how this assumption leads to a property of�k that we use in our analysis.
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Lemma 1 If �k is a strictly monotonically decreasing function, then
Pmk=1 �k is a sub-linear function inm.

Proof:
Pmk=1 �k cannot be super-linear due to the monotonically decreasingproperty. Suppose it is linear, that is, letPmk=1 �k = 
1m+ 
2 for some
1; 
2 2 R; 
1 > 0. Differencing both sides w.r.t.m, we obtain:�m�1 = 
1, which

violates the strictly monotonically decreasing property.
Our objective in this paper is to modelJh under these traffic and network conditions.

4 Model for a Tagged Flow

Let Sj = X1 + ::+Xj andN = Jh � I. ThenJh+1 = I +X1 + ::+XJh�I= I + SN
It is easy to see thatX andI (and thereforeX andN ) are not independent. Due to multiplexing of traffic from
various links, the IPS of the tagged flowJh can be assumed to be independent of the cross-traffic intensity X and
thereforeI. Then, EJh+1 = EI +ESN (3)V ar(Jh+1) = V ar(SN ) + V ar(I) + 2Cov(SN ; I) (4)

Further, ESN = Xn E[X1 + ::+XnjN = n℄p(n)= Xn nE[X jN = n℄p(n)= E[NX ℄= E[(Jh � I)X ℄ (5)V ar(SN )= E[SN �ESN ℄2= E[SN �NE[X jN ℄ +NE[X jN ℄�ESN ℄2= E[SN �NE[X jN ℄℄2 +E[NE[X jN ℄�ESN ℄2+2E[(SN �NE[X jN ℄)(NE[X jN ℄�ESN )℄ (6)

The first term in (6) simplifies to:E[SN �NE[X jN ℄℄2=Xn E 24 nXj=1(Xj �E[X jN ℄)352 p(n)= E[(N + 2(N � 1)�(N)1 + ::+ 2�(N)N�1)V ar(X jN)℄ (7)

Here,�(N)i = E[(Xi+j � E[XjN ℄)(Xj � E[XjN ℄)℄=V ar(XjN). By the assumption that�(N)i is a strictly mono-
tonically decreasing function ofi, and using Lemma 1, we can show that (7) does not contain anyV ar(N) term.

The second term in (6) simplifies to:E[NE[X jN ℄�ESN ℄2= E[NE[X jN ℄�E[NE[X jN ℄℄℄2= V ar(NE[X jN ℄)= V ar((Jh � I)E[X jI ℄)= V ar(Jh)E[E[X jI ℄2℄ +EJhV ar(E[X jI ℄)+V ar(IE[X jI ℄)� 2Cov(JhE[X jI ℄; IE[X jI ℄) (8)
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The third term in (6) simplifies to:E[(SN �NE[X jN ℄)(NE[X jN ℄�ESN )℄=Xn E " nXi=1X i �NE[X jN ℄# (nE[X jN ℄�ESN )p(n)=Xn E " nXi=1(X i �E[X jN ℄)# (nE[X jN ℄�ESN )p(n)= 0 (9)

From Equations (6), (7), (8) and (9), we have:V ar(SN )= V ar(Jh)E[E[X jI ℄2℄ +EJhV ar(E[X jI ℄) +V ar(IE[X jI ℄) � 2Cov(JhE[X jI ℄; IE[X jI ℄) +E[(N + 2(N � 1)�(N)1 + ::+ 2�(N)N�1)V ar(X jN)℄ (10)

From Equations (10) and (4), we have:V ar(Jh+1)= V ar(Jh)E[E[X jI ℄2℄ +EJhV ar(E[X jI ℄)+V ar(IE[X jI ℄)� 2Cov(JhE[X jI ℄; IE[X jI ℄)+E[(N + 2(N � 1)�(N)1 + ::+ 2�(N)N�1)V ar(X jN)℄+V ar(I) + 2Cov(SN ; I) (11)

For the limiting distributionJ = limh!1 Jh, we then haveV ar(J) = f(X; I; J)1�E[E[X jI ℄2℄ (12)

wheref(X; I; J) is the collection of all but the first term in the right-hand side of (11).
Consider the behavior of (12) as the utilization asymptotically approaches1. AsEX ! 1, we haveEI ! 0. ButI � 0 always. Therefore,I ! 0. In this limiting scenario, several terms inf(X; I; J) go to zero. We then have:limEX!1V ar(J)= limEX!1 E[(J + 2(J � 1)�(J)1 + ::+ 2�(J)J�1)V ar(X)℄1� (EX)2= 1

Thus, the variance of the tagged flow grows in an unbounded manner as it traverses a large number of hopsH in the
network with utilization� arbitrarily close to one. From Equations (3) and (5), we getlimEX!1EJh+1 = limEX!1EI +ESJh�I= limEX!1EI +E[(Jh � I)X ℄= EJh
Thus, we see that limEX!1EJ = EJ0
Thus, the limiting distribution of the inter-packet separation of the tagged flow has a finite mean and infinite variance
under asymptotic conditions. Lemma 2 shows that when the marginal distribution of such a random variableJ is
well defined, it is heavy-tailed.
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Lemma 2 If J > 0; EJ <1 andV ar(J) =1 then,P (J > x) = 
(x)x��; x!1
where1 < � < 2 and
(x) is slowly varying.

Proof: Consider V�(x) = Z xx0 y�pJ (y)dy 0 < x0 < x <1
where,pJ(y) is the probability density function forJ . Observe that, fory, the inter-packet separation represented in
time slots: V�(x) � V�+Æ(x) 8Æ > 0 (13)

SinceEJ <1 andV ar(J) =1, we havelimx!1V1(x) <1 and limx!1V2(x) =1 (14)

From (13) and (14), we can conclude:9� : 1 < � � 2; limx!1V�(x) =1 and8Æ > 0; limx!1V��Æ(x) <1 (15)

In [4](p.331,Th. 8.1.2) put� = 0 and use the converse implication. i.e, let,limx!1 x� R1x pJ(y)dyV�(x) = 

We assume thatpJ(y) is well-defined so that
 exists and0 � 
 �1. From [4] and (15), we then haveP (J > x) = 
(x)x��; x!1 (16)� = �1 + 
� 2 [0; �℄
where,
(x) is slowly varying. From (16),EJ < 1, andV ar(J) = 1, it can be shown that we must have1 < � < 2. Thus, P (J > x) = 
(x)x��; x!1; 1 < � < 2 (17)

Hence the inter-packet separation of individual flows becomes heavy-tailed in the limit.
Let J� be the limiting distribution of the inter-arrival time (time between the arrival of the first bits of two con-

secutive packets of the tagged flow). LetP represent the distribution of the time it takes to transmit atagged packet
(for simplicity of analysis, all link capacities are assumed to be equal). Then,J� = J + PV arJ� = V arJ + V arP + 2E[JP ℄� 2EJEP (18)

Therefore, ifEP <1 andV arJ !1, thenV arJ� !1.
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5 Aggregation of Flows

In [18, 27] it has been shown that the superposition of heavy-tailed on-off flows, with strictly alternating off- and
on-periods, converges to Fractional Brownian Motion (FBM)as the number of flows grows large. Our model shows
that individual flows become heavy-tailed under asymptoticconditions. The cross-traffic, which is a superposition
of such flows, therefore converges to FBM. FBM is a self-similar process with Hurst parameterH = 3� �2
Since1 < � < 2 in (17), it can be seen that for the cross-trafficX, 1 > H > 1=2. Thus the cross-trafficX is a
long-range dependent FBM process.

The auto-covariance of such a cross-traffic�k, is [18]:�k = ((k + 1)2H � 2k2H + (k � 1)2H)=2
6 Does it Help to Shape Sources to CBR?

We have seen that in the asymptotic limits, traffic arrival ata node in the network becomes very bursty. It is widely
believed that such burstiness can be eliminated or reduced by shaping individual flows to a constant bit-rate (CBR)
at the edge of the network, and ensuring that the sum of bit-rates of CBR flows at any node in the network does
not exceed the available bandwidth. In fact, this conjecture is at the heart of the design of the Virtual Leased Line
service model proposed in the context of Differentiated Services networks [13, 19]. Unfortunately, several recent
studies have shown that the lack-of-burstiness property ofCBR flows is not maintained once the CBR flows traverse
a network of FIFO routers [10, 24]. In what follows, we analyze the CBR tagged traffic case using the model
developed in Section 4. For the analysis, we define theincreasing convex orderingof two random variables,�i
x as
follows:

Definition 1 X �i
x Y iff for all increasing convex functionsh(), E[h(X)℄ � E[h(Y )℄.
Lemma 3 If EX = EY andV arY = 0, thenX �i
x Y .

Proof: Let h() be a convex function. Then,Eh(X) = Px h(x)p(x) � h(Px xp(x)) = h(EX) = h(EY ) =Eh(Y ). Hence,X �i
x Y .

From (18) and (12) we have:V arJ� = f(X; I; J)1�E[E[X jI ℄2℄ + V arP + 2E[JP ℄� 2EJEP
Notice thatE[E[XjI℄℄ = EX andV ar(EX) = 0. Applying Lemma 3, we therefore getE[XjI℄ �i
x EX. Since
the square function is increasing and convex, this implies thatE[E[XjI℄2℄ � (EX)2. It follows thatV arJ� � f(X; I; J)1� (EX)2 + V arP + 2E[JP ℄� 2EJEP (19)

For a CBR flow,V arP = 0 andV arJ�0 = 0. Therefore, for CBR flows, we derive the following observations from
(19):� WhenEX is large, the first term in (19) dominates the right hand side.V arP affects the asymptotic inter-

arrival time only ifEX is small. Hence, shaping sources to CBR is beneficial only in networks that operate at
low levels of utilization.� V arJ�0 does not play a role in the asymptotic burstiness as long as itis finite, butV arP does. It follows
that at low network utilization, shaping sources to constant packet sizes is sufficient to reduce the asymptotic
burstiness; shaping sources to constant bit rate is not necessary.
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Figure 2 : Simulation environment: network topology and router architecture

7 Experimental Validation and Analysis

We conduct a simulation study of networks with traffic inputs, with two objectives: (1) to validate under asymp-
totic conditions, the model developed in Sections 4 and 5; and (2) to identify the set of non-asymptotic network
settings (for various traffic compositions) where the predicted heavy-tailedness of individual flow becomes visible.
To conduct these experiments we have developed a network simulator using CSIM [2].

7.1 Simulation Environment

7.1.1 Network Topology

For our experiments, we consider a linear, multi-hop network topology (see Figure 2(a)). This network model is
fairly general and has been used in literature [11, 15, 16, 28]. Let Mn denote a linear, multi-hop network topology
with n routers, and letRi (i 2 [1; n℄) denote theith router in the topology. Given such a topology, we are interested
in the end-to-end performance of thetagged flow—a flow that enters the network topology at routerR1 and traverses
the multi-hop network topologyMn. While traversing the network, the tagged flow interacts with aggregates of
flows (referred to as thecross traffic) that enter and depart the network at each router along the path.

We model each router in this network as havingp input ports (I1; : : : ; Ip) andp output ports (O1; : : : ; Op). The
network topologyMn consists ofn routers such that, for alli (1 � i � n � 1), the output portO1 of routerRi
is connected to the input portI1 of routerRi+1. The tagged flow enters the network through portI1 of routerR1.
Through each portI2; : : : ; Ip of routerRi, aggregates enter the network, and1=p of each of these aggregates are
routed to output portO1 (see Figure 2(b)). In addition, the tagged flow entering input port I1 of Ri is routed to
its output portO1. Thus, for each router, the traffic routed to the output portO1 consists of: (1) The tagged traffic
(entering the router from portI1); and (2)1=p of the flows entering from input portsI2; : : : ; Ip. All of the remaining
traffic entering through the input ports is routed to output ports,O2; : : : ; Op.

The above topology ensures that: (1) the tagged flow that enters the network at routerR1 is routed all the way
through the multi-hop networkMn, and (2) the cross traffic entering the network at routerRi (i 2 [1; n℄) interferes
with the transmission of the tagged traffic for a single hop, and leaves the network at routerRi+1. This topology
facilitates experimentation with different compositionsof the cross traffic and different network depths. We have
conducted experiments forp ranging from8 to 32. We present results for experiments withp = 8; these results also
hold for higher values ofp.

7.1.2 Traffic Sources

We consider two kinds of traffic flows.
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� CBR flows: CBR is one of the more popular traffic models. Flows with CBR transmissions have been used
commonly while transporting voice and video across packet networks, in ATM networks, and in the Virtual
Leased Line service in DiffServ networks.� Non-CBR flows: Most traffic sources in the current Internet are not CBR in nature. In fact, the following
empirical evidence suggests that a sub-exponential distribution of packet inter-arrival times may model sources
in the current Internet well.

– WWW traffic forms a major portion of traffic on the Internet. The inactiveoff times that form the tail of
the inter-arrival times of the WWW traffic are shown to have a sub-exponential nature [7].

– telnetpacket inter-arrival times have been shown to have a sub-exponential distribution [21].

For these traffic sources,� is chosen to be3, in order to ensure that the variance of the inter-arrival times at
the source is finite.We thus ensure that the input traffic to the network is not heavy-tailed.

7.1.3 Modeling Heterogeneity in Cross Traffic

The extent to which cross traffic entering each router affects the characteristics of tagged flows depends on the
burstinessof the cross traffic. Burstiness in cross-traffic results from: (1) super-positioning of flows, (2) traffic
distortions that result from flows traversing through multiple routers in a network, and (3) heterogeneity in the
average inter-arrival times across various flows.

To reasonably approximate traffic distortions, we model thecross traffic entering at each router in the network as
consisting of an aggregate of two types of flows: (1) flows thatare at the beginning of their routes or have traversed
through asmall (M1 or M2) number of routers, and (2) flows that are at the end of their routes or have traversed
through alarge (M20) number of hops. This model closely approximates the current Internet where each backbone
router is a small number of hops away from some set of hosts while being far away from some others.

To capture heterogeneity, we consider two classes of cross-traffic flows—flows with large and small average
packet inter-arrival times at the source. We quantify the heterogeneity in the cross-traffic flows in terms ofinter-
arrival time ratio (IATR), which refers to the ratio of the average packet inter-arrival times at the source for these
two classes. We derive the two flow classes in three ways.

1. CBR flows with heterogeneous packet sizes: We consider CBR flows with same bandwidth requirement but
with packet sizes chosen uniformly from two intervals.

2. CBR flows with heterogeneous bit rates: We consider flows with fixed packet sizes but with bandwidth re-
quirements chosen uniformly from two intervals.

3. Flows with heterogeneous sub-exponential inter-arrival times: The average inter-arrival times of the flows are
chosen uniformly from two intervals. Packet sizes are chosen according to an empirically-derived distribu-
tion [1].

7.2 Model Validation Under Near-asymptotic Conditions

To validate the model presented in Sections 4 and 5, we simulate a network setting where the tagged flow traverses
a 20 hop topology with40 Mbps links operating at90% utilization. We select a tagged flow with 100 Byte packet
size and 4 Mbps bandwidth requirement. We consider cross traffic with an IATR of 500.

Figure 3 shows theLLCD plots of the inter-packet times of the tagged flow after it hastraversed the network with
the three traffic settings. The slope (i.e., the value of�) of the selected region on all of theLLCD plots is between1 and2. Figure 4 plots theHill function for the inter-arrival times of the tagged flow obtained for the three traffic
settings. The figures illustrate that theHill plots stabilize to a value between1 and2, indicating that the values of�
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