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Abstract— We develop an end-to-end model for packet inter-arrivarof flows in the Internet. Our model illustrates
that under asymptotic conditions of high network utilinati (1) packet inter-arrival times of flows become heaviethafter
they traverse a large number of hops, and (2) the aggregatechfflows is a long-range dependent self-similar process. W
validate our model through extensive simulations and @g¢he region of applicability—with respect to non-asymiateéttings
of network utilization, heterogeneity in traffic compositi and number of hops that a flow traverses—of our model. Vige fin
that for flows that contribute significant amourt (0%) to the cumulative bit rate of the aggregate, the obsenayielded
by the model hold at relatively low levels of network utiliican (30-40%), small number of network hops (4-6), and matker
levels of heterogeneity in packet sizes and bandwidth reqments of flows.

1 Introduction

Simplicity of implementation is central to the design oflatéde, high-performance networks. Hence, high-perforraan
routers have traditionally used First-In-First-Out (FIF@acket scheduling algorithm. FIFO scheduling, unfor-
tunately, does not provide isolation across flows; bursaffitr arrival from a flow can affect significantly the
performance—delay, jitter, and loss—observed by otherdlow

A number of analytical models have been proposed for cheniaittg delay and jitter performance of flows in
FIFO networks [5, 17, 16, 20, 23, 22, 25]. However, primadlye to the complexity of the analysis involved, most
of these studies do not provide closed-form characteozaif end-to-end delay and jitter properties (see Section 9
for a detailed discussion on related work).

The aim of this paper is to provide a closed-form end-to-endlyesis for flows in FIFO networks. For the
remainder of this paper, we refer tdlaw as a traffic stream, all packets of which traverse the sanveonletpath
from the source to the destination. A wide variety of traffiteams—such as label-switched paths (LSP) in Multi-
protocol Label Switching (MPLS) networks, Virtual Privatietwork (VPN) tunnels, and Virtual Circuits (VC) in
ATM networks—fit this definition of a flow. Even in the currenitérnet, TCP, UDP and other best-effort traffic
streams can be approximated as flows as long as route chaegest frequent.

We model the inter-arrival time between packets at the migstin for individual flows under asymptotic condi-
tions of network utilization and number of hops. Our modelgs the following key insights.

e The variance in inter-arrival times for individual flows tento infinity in the asymptotic case, indicating that
flows becomdneavy-tailedafter traversing a network of FIFO routers.
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e The aggregation of flows becomes a long-range dependertiselar process.

A particularly interesting and deceptively simple type aiiflis one that is shaped tocanstant bit-ratg CBR)—
with constant packet inter-arrival times and packet sizatthe source. Itis widely believed that (1) shaping flows to
CBR at the source and (2) ensuring that the bandwidth avaitteach node to the CBR aggregate is at least as large
as the cumulative rate requirement of the CBR flows resuléssatisfactory end-to-end delay and jitter. The above
philosophy, in fact, is the basis of the Virtual Leased Lieevi&ce model proposed in the context of Differentiated
Services (DiffServ) networks [13, 19]. We demonstrate,thahigh network utilization, even CBR flows become
heavy tailed after traversing a few hops. Hence, shapingsftov€ BR benefits only in networks that operate at low
levels of utilization. We further show that at low networkligation, shaping sources to constant packet sizes is
sufficient to reduce the asymptotic burstiness; shapingcesuo constant inter-arrival times is not necessary.

We validate our model through extensive simulations antveléine region of applicability—with respect to non-
asymptotic network and traffic parameters—of the model. W thhat although the model predicts the behavior of
flows in the asymptotic case, for flows that contribute sigarit amount£ 10%) to the cumulative bit rate of the
aggregate, the observations yielded by the model holdatfwrely low levels of network utilization (30-40%), small
number of network hops (4-6), and moderate levels of hetreity in the packet sizes and bandwidth requirements
of the flows. We argue that, in many instances, a flow—such aglat represents a VPN tunnel between two sites
of an enterprise—does occupy significant fraction (10-20¥%dhe bit rate allocated for VPN services at routers.
Our simulation results predict that such flows will becomavyetailed at relatively low levels of network utilization
and after traversing a small number of network hops; furthkkof the micro-flows that get multiplexed onto such
tunnels will themselves become heavy-tailed.

Finally, we point out several important implications ofrgang heavy-tailed flows and long-range dependent self-
similar aggregates in a network. We argue that a client veweia heavy-tailed multimedia flow either perceives
poor performance or requires large amount of buffers to smmat the heavy tails. Long-range dependence of traffic
aggregates, on the other hand, has several implicationstarork queuing delays and packet losses. We conclude
that operating a network so as to maintain its traffic outtideheavy-tailed and long-range dependence domain is
highly desirable.

The rest of the paper is organized as follows. We define @klatacepts in Section 2. In Section 3, we formulate
the problem of end-to-end analysis of packet inter-artivaés of flows. In Sections 4 and 5, we present the models
for individual flows and flow aggregates, respectively. Weedss the benefits, if any, of shaping sources to CBR in
Section 6. In Section 7, we describe our simulation setuppaesent simulation results. We discuss the impact of
heavy-tailedness and long-range dependence on the ddsighwmrks in Section 8. We discuss the related work in
Section 9, and summarize our conclusions in Section 10.

2 Background

In this section, we first summarize the concepts of selfiaiity, long-range dependence and heavy-tailed flow and
then discuss the tests used to detect the presence of tlugseti@s in a time series.

2.1 Concepts
Self-similarity: Consider a time serieg(t). Y (t) is self-similar iff
Y (t) ~ m~ 7Y (mt)

That is,Y (t) is identically distributed a¥ (mt) with a scaling factom ¥, wherem > 0 andH € [0,1] is
known as théHurst parameter.

Let X (¢) define increments on Y()X (¢) = Y (¢ + 1) — Y (¢). If Y (¢) has stationary increments, then it can
be shown thatX ~ m!=# X™ whereX™ = (X(0) + X(1)...X(m)) / m . WhenH > 1/2, it can be



shown that the variance of™ dies out at a sub-linear rate with increaserin
Var(X™) = m?272 Var(X)
Self-similar processes are oftemg-range dependert we define this concept next.

Long-range Dependence:Long-range dependenad a procesg X; } refers to the property that its auto-covariance
function does not sum up to a finite quantity. Let

EX;] = p
Var(X;) = o’
pi = E[(Xi—p)(Xo— p)l/o?

ThenX is long-range dependeift:
D opi=o0
The most commonly encountered form of such long-range aEpeip; in communication networks is hy-
perbolic and is given by:
o =ck?T2 k= o0

whereH > 1/2 andc is a constant. This form gf;, corresponds to that of a second-order self-similar process
[26].

Heavy-tailed Flows: A flow is said to beheavy-tailed iff
PJ>z)=c(z)z%z—00,0<a<?2 1)

where the random variablé denotes the packet inter-arrival time of the flow aitd) is a slowly varying
function ast — oo. Slow variation can be stated as:

im c(tx)
zlaoo c(x)

=1,vVt>0

For all practical purposes;(xz) can be approximated by a constant. It can be shownWthatJ) = oo.
If « < 1, it can also be shown thd[J] = co. The association between heavy-tailedness and long-range
dependent self-similarity is discussed in Section 5.

2.2 Tests for Heavy Tails and Long-range Dependent Self-sim ilarity
The literature contains the following tests for identifyiheavy-tailedness and long-range dependent self-sityilar

1. LLCD Test:The log-log complementary distribution (LLCD) test is usedietect the presence of heavy tails
in a source. The complementary distribution of the packietr{arrival time Prob(J > x)) is plotted on a
log-log scale. From Equation (1), it can be seen that for ay&giled source, after some value of the
distribution should look like a straight line with slopex.

2. Hill Test: LetUy, Us, . .., U, denote the packet inter-arrival times of a given flow in adagmnorder. TheHill
function, hill(k), for the flow is defined by:

1 -1

i=k— U
Rill(k) = [ > k—llogU
=0

n—i
n—=k

A source is said to be heavy-tailed with parametdf hill(k) stabilizes tax after some value of.
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Figure 1 : Network Model

3. Variance-time test:This test determines if a proce$x;} is self-similar and long-range dependent. The
logarithm of the variance of the aggregated (averaged)gssicX;" } is plotted versus the logarithm of the
aggregation levekn. A least-squares line is fitted on the data, and the sIpfE{ 2) provides an estimate
of H. If the slope is greater tharl, thenH > 1/2, indicating that the data is self-similar and long-range
dependent.

3 Problem Formulation

Consider a network that carries flows between source-@gstimpairs. In this paper, a flow is considered to be any
traffic stream, all packets of which traverse the same patim the source to the destination, through the network.
We assume all flows in the network are independent of eachr. ofiies is a reasonable assumption in large-scale
networks with diverse routing. L€tR;, ..., Ry} denote the routers along a path of lengththrough this network.
We consider networks where each rouf®y employs FIFO scheduling to arbitrate access to the link wadtt.
Very large router buffers are assumed which guarantee smfgzackets. Lef;, be the utilization of the output link

of routerRy,.

Divide the time-axis intovery smalislots. Consider a floy (referred to asagged flow that traverses the above
path. Let the random variabl®, represent the inter-packet separation (IPS) of this flovisagdckets leave router
Ry, (see Figure 1). Leifly represent the inter-packet separation of the flow at theceo/e assume that the mean
E Jy and the varianc® ar(Jy) for the inter-packet separation of the tagged flow at thecgoare finite.

Let the random variablé&] denote the time it takes to service the cross-traffic tharemouterR;, during the;
time-slot after the arrival of a packet of flofv Then the following relationship exists betweén 1, J; andX,{:

Jp=T+Xp+...+ X1 @)

where, I represents the index of the last time-slot after the arova tagged packet but prior to the arrival of the
next tagged packet, at which the queue becomes empty. WmashatX,{ is independent off, ; — which is a
reasonable assumption in a network with diverse routingafatge number of input links carrying independent
cross-traffic.

Note thatE X} = p;,. For simplicity of analysis we assume that the cross-trafii@racteristics are uniform over
all routers. Henceforth, for simplicity of exposition, weadl therefore denota',{ asX’ andpy, asp. In the steady
state, letX] ~ X. Theny = EX. Leto? = Var(X).

Let pr, denote the auto-covariance in the cross-traffic that ar@tdime instances separatediiime-slots, that
is

pi = Bl(X7 — p)(X7TF — p)] /0

Notice that with the assumed independence of flows, the @utariance of the cross-traffic at a particular latp
approximately the average of the auto-covariances at the $&g of the various cross-traffic flows present. Further,
for most flows, the auto-covariance is a decreasing funatfoh. Hence, if the cross-traffic aggregates a large
number of flows, then it is safe to assume thats a strictly monotonically decreasing functionfofThe following
lemma states how this assumption leads to a properpy tiat we use in our analysis.



Lemma 1 If py is a strictly monotonically decreasing function, thel}* ; p, is a sub-linear function imn.

Proof: Y 7' ; px cannot be super-linear due to the monotonically decreasiogerty. Suppose it is linear, that is, let

Yohe1 pr = cam + co for somecy, c2 € R, ¢; > 0. Differencing both sides w.r.tn, we obtain:p,,_1 = c;, which

violates the strictly monotonically decreasing property. |
Our objective in this paper is to modéj under these traffic and network conditions.

4 Model for a Tagged Flow

LetS; = X'+ ..+ X7/ andN = J, — I. Then
Jpyr = T+ X1+ + X071
= I+ Sy

It is easy to see thaX andI (and thereforeX and N) are not independent. Due to multiplexing of traffic from
various links, the IPS of the tagged flafy can be assumed to be independent of the cross-traffic ittekisand
thereforel. Then,

EJyy1 = EI+ESy )
Var(Jp+1) = Var(Sn)+ Var(l) +2Cov(Sw, I) 4)
Further,
ESy =

E:E[X1 + ..+ X"|N =n]p(n)

= S nEXIN = nlp(n)

= E[NX]
= B[y - 1)X] (5)

<

ar(Sn)
E[Sy — ESn]?

E[Sy — NE[X|N]+ NE[X|N] — ESN]?

E[Sy — NE[X|N]? + E[NE[X|N] - ESn]?

+2E[(Sy — NE[X|N])(NE[X|N| - ESN)] (6)

The first term in (6) simplifies to:
E[Sy — NE[X|N]]

:;E

= B[(N +2(N = 1)pi™ + .. + 200" )Var(X|N)] (7)

ji=

> - E[XIN])] p(n)

Here,p"") = E[(X+ — E[X|N])(X’ — E[X|N])]/Var(X|N). By the assumption that"" is a strictly mono-

tonicallly decreasing function aof and using Lemma 1, we can show that (7) does not contaiVanyN) term.
The second term in (6) simplifies to:
E[NE[X|N] - ESn]?
= E[NE[X|N] — E[NE[X|N]]}?
= Var(NE[X|N])
= Var((Ju — 1) E[X|I))
= Var(Jy)E[E[X|I)?] + EJyVar(E[X|I])
+Var(IE[X|I]) — 2Cov(J,E[X|I], [E[X]|I]) 8)
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The third term in (6) simplifies to:
E[(Sy — NE[X|N])(NE[X|N] - ESy)]

:ZE
=Y B |3 (X'~ EIX|N)

=0 9)
From Equations (6), (7), (8) and (9), we have:

(nE[X|N] — ESn)p(n)

n
> X'— NE[X|N]
i=1

n

(nE[X|N] - ESn)p(n)

Var(Sn)
= Var(Jy)E[E[X|I]?]) + EJyVar(E[X|I]) +
Var(IE[X|I]) — 2Cou(J,E[X |I], IE[X|I]) +
E[(N +2(N = 1)\ + . + 20 yWar(X|N)] (10)

From Equations (10) and (4), we have:

Var(Jp+1)
= Var(Jy)E[E[X|I*] + EJ,Var(E[X|I])
+Var(IE[X|I]) — 2Cov(J, E[X|I], IE[X|I])
FE[(N +2(N = 1)p™ + ..+ 200 yWar(X|N)]
+Var(I) +2Cov(Sn, I) (11)

For the limiting distributionJ = limy,_,, Jn, We then have

_ (X1 J)
Var(J) = 1 BEXIOE EEX|IT] (12)
wheref(X, I, J) is the collection of all but the first term in the right-handesiof (11).
Consider the behavior of (12) as the utilization asympétijcapproaches. As EX — 1, we haveE' T — 0. But
I > 0 always. Thereforel — 0. In this limiting scenario, several terms ji{ X, I, J) go to zero. We then have:

lim Var(J)

EX—1
o Bl 420 =107 4+ 2057 ) Var(X))
T EXo1 1— (EX)?

= 00

Thus, the variance of the tagged flow grows in an unboundedhenas it traverses a large number of hépm the
network with utilizationy arbitrarily close to one. From Equations (3) and (5), we get

Eglfn—l}l Evnr = Eglfn—l}l El+ ESy, -1
= lim EI+E[(J,—-I)X]
EX—1
= EJ,

Thus, we see that

lim EJ = EJy
EX—1

Thus, the limiting distribution of the inter-packet sepema of the tagged flow has a finite mean and infinite variance
under asymptotic conditions. Lemma 2 shows that when thgimardistribution of such a random variableis
well defined, it is heavy-tailed.



Lemma 2 If J > 0,EJ < co andVar(J) = oo then,
P(J>z)=c(z)z™, = o0
wherel < a < 2 ande¢(x) is slowly varying.

Proof: Consider

T
VB(fE)Zf y’ps(y)dy 0<zp<z<o00
i

0

where,p;(y) is the probability density function fof. Observe that, foy, the inter-packet separation represented in
time slots:

Va(z) < Vays(x) Vo >0 (13)
SinceEJ < oo andVar(J) = oo, we have

lim Vi(z) <oo and lim Va(z) = o0 (14)

T— o0 T— 0

From (13) and (14), we can conclude:
B 1<pB<L2, ILm Va(z) = 00 and
vé >0, ILm Va—s(z) < 00 (15)
In [4](p.331,Th. 8.1.2) pux = 0 and use the converse implication. i.e, let,

i 2 [ pily)dy
m — =
T—>00 Vﬁ(a:)

We assume that;(y) is well-defined so that exists and) < v < co. From [4] and (15), we then have

PJ>z) = clx)z™, z— (16)
« = P
1+
a € [0,5]

where, ¢(z) is slowly varying. From (16)EJ < oo, andVar(J) = oo, it can be shown that we must have
1 < a<2. Thus,

PJ>z)=c(x)z™, 00, 1 <a<2 a7)

Hence the inter-packet separation of individual flows bezsimeavy-tailed in the limit.

Let J* be the limiting distribution of the inter-arrival time (terbetween the arrival of the first bits of two con-
secutive packets of the tagged flow). LE2tepresent the distribution of the time it takes to transniétgged packet
(for simplicity of analysis, all link capacities are assuinie be equal). Then,

J"'=J+P
VarJ* =VarJ + VarP + 2E[JP] — 2EJEP (18)

Therefore, ifEP < co andVarJ — oo, thenVarJ* — oo.



5 Aggregation of Flows

In [18, 27] it has been shown that the superposition of heaiged on-off flows, with strictly alternating off- and
on-periods, converges to Fractional Brownian Motion (FBMdXhe number of flows grows large. Our model shows
that individual flows become heavy-tailed under asymptodicditions. The cross-traffic, which is a superposition
of such flows, therefore converges to FBM. FBM is a self-amirocess with Hurst parameter

33—«
2

Sincel < a < 2in (17), it can be seen that for the cross-trafic 1 > H > 1/2. Thus the cross-traffiX is a

long-range dependent FBM process.
The auto-covariance of such a cross-trafficis [18]:

or = ((k+1)27 —2k*H 4 (k- 1)%H)/2

H =

6 Does it Help to Shape Sources to CBR?

We have seen that in the asymptotic limits, traffic arrivad abde in the network becomes very bursty. It is widely
believed that such burstiness can be eliminated or redugstidping individual flows to a constant bit-rate (CBR)
at the edge of the network, and ensuring that the sum of tatraf CBR flows at any node in the network does
not exceed the available bandwidth. In fact, this conjectsrat the heart of the design of the Virtual Leased Line
service model proposed in the context of Differentiatedviees networks [13, 19]. Unfortunately, several recent
studies have shown that the lack-of-burstiness proper§BiR flows is not maintained once the CBR flows traverse
a network of FIFO routers [10, 24]. In what follows, we anaythe CBR tagged traffic case using the model
developed in Section 4. For the analysis, we definartbieasing convex orderingf two random variables; ;.. as
follows:

Definition 1 X >;., Y iff for all increasing convex functions(), E[h(X)] > E[h(Y)].
Lemma 3 If EX = EY andVarY =0, thenX >;.. Y.

Proof: Let h() be a convex function. TherEh(X) = >, h(z)p(xz) > h(>,zp(z)) = R(EX) = h(EY) =
Eh(Y). Hence X >, Y. [ |
From (18) and (12) we have:
* f(X7 Iv J)
Ve = TR
Notice thatE[E[X |I]] = EX andVar(EX) = 0. Applying Lemma 3, we therefore gét[ X |I] >;., EX. Since
the square function is increasing and convex, this imphasE[E[X |I]?] > (EX)2. It follows that

* f(X7I7J)
> L0 g )
VarJ™ > | (EX)?

+VarP + 2E[JP| - 2EJEP

+VarP + 2E[JP| - 2EJEP (19)

Fora CBR flowVarP = 0 andVarJ; = 0. Therefore, for CBR flows, we derive the following obserwas from
(29):

e WhenEX is large, the first term in (19) dominates the right hand sider P affects the asymptotic inter-
arrival time only if EX is small. Hence, shaping sources to CBR is beneficial onlefwaorks that operate at
low levels of utilization.

e VarJg does not play a role in the asymptotic burstiness as long iadfiitite, butVarP does. It follows
that at low network utilization, shaping sources to consgetket sizes is sufficient to reduce the asymptotic
burstiness; shaping sources to constant bit rate is nossaige
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Figure 2 : Simulation environment: network topology and router &sztiure

7 Experimental Validation and Analysis

We conduct a simulation study of networks with traffic inpuisth two objectives: (1) to validate under asymp-
totic conditions, the model developed in Sections 4 and 8;(&h to identify the set of non-asymptotic network
settings (for various traffic compositions) where the preti heavy-tailedness of individual flow becomes visible.
To conduct these experiments we have developed a netwothkesonusing CSIM [2].

7.1 Simulation Environment
7.1.1 Network Topology

For our experiments, we consider a linear, multi-hop netwopology (see Figure 2(a)). This network model is
fairly general and has been used in literature [11, 15, 1B, 2& M,, denote a linear, multi-hop network topology
with n routers, and leR; (i € [1,n]) denote th&®” router in the topology. Given such a topology, we are intexes
in the end-to-end performance of ttagged flow—a flow that enters the network topology at rouRrand traverses
the multi-hop network topology/,,. While traversing the network, the tagged flow interactshveiggregates of
flows (referred to as theross traffi that enter and depart the network at each router along the pa

We model each router in this network as havingpput ports (i, ..., I,) andp output ports Qy,...,0p). The
network topologyM,, consists ofn routers such that, for all (1 < ¢ < n — 1), the output porD; of router R;
is connected to the input poft of router R; ;. The tagged flow enters the network through porof router R;.
Through each ports, ..., I, of router R;, aggregates enter the network, &g of each of these aggregates are
routed to output por0; (see Figure 2(b)). In addition, the tagged flow entering irgmrt 7; of R; is routed to
its output portO;. Thus, for each router, the traffic routed to the output grconsists of: (1) The tagged traffic
(entering the router from poft); and (2)1/p of the flows entering from input ports, . . ., I,,. All of the remaining
traffic entering through the input ports is routed to output® O, . . ., Op.

The above topology ensures that: (1) the tagged flow thatsttie network at routeR; is routed all the way
through the multi-hop networRZ,,, and (2) the cross traffic entering the network at rolg(i € [1, n]) interferes
with the transmission of the tagged traffic for a single hop Eeaves the network at routé;; ;. This topology
facilitates experimentation with different compositiooisthe cross traffic and different network depths. We have
conducted experiments fprranging froms8 to 32. We present results for experiments with= 8; these results also
hold for higher values op.

7.1.2 Traffic Sources

We consider two kinds of traffic flows.



e CBR flows CBR is one of the more popular traffic models. Flows with CB&smissions have been used
commonly while transporting voice and video across packéwvorks, in ATM networks, and in the Virtual
Leased Line service in DiffServ networks.

e Non-CBR flows Most traffic sources in the current Internet are not CBR itura In fact, the following
empirical evidence suggests that a sub-exponentiallalision of packet inter-arrival times may model sources
in the current Internet well.

— WWW traffic forms a major portion of traffic on the Internet. & mactiveoff times that form the tail of
the inter-arrival times of the WWW traffic are shown to haveaib-sxponential nature [7].

— telnetpacket inter-arrival times have been shown to have a subrexpial distribution [21].

For these traffic sources, is chosen to b8, in order to ensure that the variance of the inter-arrivakes at
the source is finiteWe thus ensure that the input traffic to the network is not r¢aned.

7.1.3 Modeling Heterogeneity in Cross Traffic

The extent to which cross traffic entering each router adféloe characteristics of tagged flows depends on the
burstinessof the cross traffic. Burstiness in cross-traffic resultsniro(1) super-positioning of flows, (2) traffic
distortions that result from flows traversing through npid#tirouters in a network, and (3) heterogeneity in the
average inter-arrival times across various flows.

To reasonably approximate traffic distortions, we modelttoss traffic entering at each router in the network as
consisting of an aggregate of two types of flows: (1) flows #ratat the beginning of their routes or have traversed
through asmall (M or M>) number of routers, and (2) flows that are at the end of theitesoor have traversed
through darge (M) number of hops. This model closely approximates the cuirgarnet where each backbone
router is a small number of hops away from some set of hostie\whing far away from some others.

To capture heterogeneity, we consider two classes of trafiis flows—flows withlarge and small average
packet inter-arrival times at the source. We quantify theetogieneity in the cross-traffic flows in termsiofer-
arrival time ratio (IATR), which refers to the ratio of the average packet waeival times at the source for these
two classes. We derive the two flow classes in three ways.

1. CBR flows with heterogeneous packet si2&e consider CBR flows with same bandwidth requirement but
with packet sizes chosen uniformly from two intervals.

2. CBR flows with heterogeneous bit raté&/e consider flows with fixed packet sizes but with bandwidth r
quirements chosen uniformly from two intervals.

3. Flows with heterogeneous sub-exponential inter-arrivfalels The average inter-arrival times of the flows are
chosen uniformly from two intervals. Packet sizes are ch@szording to an empirically-derived distribu-
tion [1].

7.2 Model Validation Under Near-asymptotic Conditions

To validate the model presented in Sections 4 and 5, we sienalaetwork setting where the tagged flow traverses
a 20 hop topology withd0 Mbps links operating a0% utilization. We select a tagged flow with 100 Byte packet
size and 4 Mbps bandwidth requirement. We consider crofictndath an IATR of 500.

Figure 3 shows thé LC D plots of the inter-packet times of the tagged flow after itthagersed the network with
the three traffic settings. The slope (i.e., the value)obf the selected region on all of tHel.C' D plots is between
1 and2. Figure 4 plots theHill function for the inter-arrival times of the tagged flow ob&il for the three traffic
settings. The figures illustrate that th&I! plots stabilize to a value betweérand2, indicating that the values af
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