
Model Che
king for an Exe
utable Subset of UMLFei Xie1 Vladimir Levin2 James C. Browne11 Department of Computer S
ien
esUniversity of Texas at AustinAustin, TX 78712, USAffeixie, browneg�
s.utexas.edu 2 Computing S
ien
es Resear
h CenterBell LaboratoriesMurray Hill, NJ 07974, USAlevin�resear
h.bell-labs.
omAbstra
tThis paper presents an approa
h to model
he
king soft-ware system designs spe
i�ed in an exe
utable subset ofUML, xUML. The approa
h is enabled by the exe
utionsemanti
s of xUML and is based on automati
 transla-tion from xUML to S/R [5℄, the input language of theCOSPAN [5℄ model
he
ker. Translation algorithms arede�ned and des
ribed, whi
h
over
lass models, statemodels of
lasses, a
tions asso
iated with states in statemodels, exe
ution semanti
s, et
. The translation at-tempts to redu
e the state spa
e of the resulting S/Rmodel that is to be veri�ed by COSPAN. An xUML levellogi
 for spe
ifying properties to be
he
ked is de�ned.Automated support is provided for translating propertiesspe
i�ed in the logi
 to S/R representations and mappingerror tra
es generated by COSPAN to xUML representa-tions. The approa
h is illustrated by some results from averi�
ation study of a simpli�ed robot
ontrol system.1 Introdu
tion and OverviewThe Uni�ed Modeling Language (UML) [14℄ is the stan-dard spe
i�
ation language for obje
t-oriented softwaresystem designs. However, the a
tions asso
iated withstates or transitions in standard UML state
harts arespe
i�ed only as uninterpreted strings. Therefore, theUML model of a system design is neither exe
utable nor
ompilable to an exe
utable program in a programminglanguage. As a result validation and veri�
ation of thesystem design has to be deferred until the system (or atleast its
omponents) is implemented in a programminglanguage.The Obje
t Management Group (OMG) has �nalizeda proposal for A
tion Semanti
s for UML [15℄, submit-ted by the A
tion Semanti
s Consortium [1℄. Combin-ing the proposed a
tion semanti
s and an appropriatesubset of UML de�nes a spe
i�
ation language for exe-
utable obje
t-oriented software system designs. There

are
ommer
ial produ
ts that implement subsets of UMLwith a
tion semanti
s following the proposed a
tion se-manti
s. xUML [6, 18℄ is one of these subsets. AnxUML model representing a software system design is ex-e
utable; therefore it
an be tested for both fun
tionalityand performan
e via simulation, and also
an be formallyveri�ed through model
he
king. This paper presents anapproa
h to model
he
king xUML models, gives the de-tails of the automati
 translation of xUML models toS/R [5℄ models that
an be veri�ed by the COSPAN [5℄model
he
ker, and illustrates the approa
h with some re-sults from a veri�
ation study of a simpli�ed robot
ontrolsystem. The steps in the approa
h are:a. A system design is spe
i�ed in xUML as an exe-
utable model;b. The xUML model is tested by exe
ution with a dis-
rete event simulator;
. A property to be
he
ked against the system designis spe
i�ed in an xUML level logi
;d. The xUML model and the property are automati-
ally translated to a model and a query in the S/Rautomaton language by an xUML-to-S/R translator;e. The S/R query is automati
ally
he
ked against theS/R model by COSPAN;f. If a query fails, an error tra
k is generated byCOSPAN and is automati
ally translated into an er-ror report in the name spa
e of the xUML model.Steps
, d, and f are the subje
t of this paper.The model
he
ker, COSPAN, implements theautomata-theoreti
 approa
h to model
he
king [7℄. Un-der this approa
h, a system is modeled by an L-!-automaton [7℄ P , where P is represented as a syn
hronousparallel
omposition P = P1
 P2
 : : :
 Pk of
ompo-nents (all modeled as L-!-automata). The query to be
he
ked is also represented by an L-!-automaton T . Ver-i�
ation
onsists of the automata language
ontainmenttest L(P) � L(T), whether the language of P is
ontainedin the language of T .We have sele
ted COSPAN, whi
h has syn
hronousparallel semanti
s, as our veri�
ation engine be
ause1

COSPAN implements multiple state spa
e redu
tion al-gorithms and one of these algorithms, Symboli
 Veri�
a-tion [12℄, is not readily implementable in model
he
k-ers with asyn
hronous interleaving semanti
s. COSPANalso enables Partial Order Redu
tion [20, 4, 17℄ throughStati
 Partial Order Redu
tion [8℄. Integration of Stati
Partial Order Redu
tion with Symboli
 Veri�
ation yieldsa potentially powerful method for state spa
e redu
tionnot readily implementable in model
he
kers with asyn-
hronous interleaving semanti
s (See Se
t. 4.1). Wewill, in a later paper, analyze the
ir
umstan
es whereea
h state spa
e redu
tion algorithm is most e�e
tive.COSPAN, be
ause of its parallel exe
ution semanti
s,may also o�er advantages for model
he
king system de-signs with true parallel semanti
s.The
ore of our approa
h is the automati
 translationof xUML models with asyn
hronous interleaving exe
u-tion semanti
s, dynami

reation and deletion of
lass in-stan
es, and potentially unbounded state spa
es to S/Rmodels with syn
hronous parallel exe
ution semanti
s, astati
 set of intera
ting pro
esses, and �nite state spa
es.Model transformations leading to S/R models with min-imal state spa
es form another major part of our work.Resear
h on model
he
king software systems has beenmainly fo
used on system representations at either de-sign level or programming language implementation level.Model
he
king designs fa
ilitates early dete
tion of de-sign errors while model
he
king implementations [16, 21℄may un
over errors introdu
ed in the implementationphase. In this resear
h, model
he
king is applied to ex-e
utable designs whi
h have not yet been implementedbut for whi
h implementations
an be manually
oded orautomati
ally generated by dire
t
ompilation based on aprede�ned ar
hite
ture. Due to spa
e limitation, we only
ompare with the most
losely related resear
h. We judgethe most
losely related resear
h to be the automati
 veri-�
ation tool for UML from the University of Mi
higan [2℄,and the vUML tool [11℄. Both tools translate and verifyUML models based on ad ho
 exe
ution semanti
s whi
hdid not in
lude a
tion semanti
s. Neither supports for-mulation of properties to be
he
ked on the UML modellevel. We also addressed translation of generalization re-lationships between
lasses in UML models. There is alsoprevious work on verifying UML state
harts [3, 9, 13℄ bytranslating state
harts into veri�able languages.The rest of this paper is organized as follows: in Se
-tion 2 a brief overview of the semanti
s of xUML and S/Ris given. Se
tion 3 presents the major algorithms in theautomati
 translation from xUML to S/R. Model trans-formations redu
ing state spa
es are dis
ussed in Se
tion4. Se
tion 5 introdu
es the automati
 analysis supportthat fa
ilitates model
he
king xUML models. Se
tion6 illustrates our approa
h by model
he
king the xUMLmodel of a simpli�ed robot
ontrol system. Con
lusions

and future work are given in Se
tion 7.2 Semanti
s of xUML and S/RThe semanti
 gap between asyn
hronous xUML modelsand syn
hronous S/R models makes the xUML-to-S/Rtranslation a signi�
ant translation pro
ess. To fa
ili-tate easier understanding of the translation algorithms,we brie
y sket
h the semanti
s of xUML and S/R.2.1 xUML Semanti
sCurrently our translator is able to translate a signi�
antsubset of xUML. Modeled under the
urrent translatablesubset, a system is
omposed of instan
es of
lasses, whi
hare either a
tive, having dynami
 behaviors, or passive,having no dynami
 behaviors and used to store data.There
an be asso
iation and generalization relationshipsamong
lasses. A large system
an be re
ursively parti-tioned into pa
kages, whi
h are groups of
lasses
losely
oupled by asso
iations and generalizations.2.1.1 State ModelsBehaviors of the instan
es of an a
tive
lass are spe
i�edby a state model that
onsists of:� States. A state is a stage in the state model.� Message types. Ea
h message type de�nes a kindof messages that instan
es of the
lass
an re
eiveduring system exe
ution.� Transitions. A transition spe
i�es whi
h new stateis a
hieved when an instan
e of the
lass in a givenstate re
eives a message of a parti
ular type.� A
tions. An a
tion is an a
tivity or operation that isasso
iated with a state and must be exe
uted whenan instan
e arrives in that state.2.1.2 A
tionsA
tions
an be divided into �ve
ategories as follows:� Read or write a
tions that read or write attributes of
lass instan
es, or dynami
ally
reate or delete
lassinstan
es.� Computation a
tions that perform various mathe-mati
al
al
ulations.� Messaging a
tions that send messages to a
tive
lassinstan
es.� Composite a
tions that are
ontrol stru
tures andre
ursive stru
tures that permit
omplex a
tions tobe
omposed from simpler a
tions.� Colle
tion a
tions that apply other a
tions to
ol-le
tions of elements, avoiding expli
it indexing andextra
ting of elements from these
olle
tions.2

2.1.3 GeneralizationsUnder a generalization, sub
lasses inherit the attributesand message types (if de�ned) of the super
lass, but thesub
lasses do not inherit the state model of the super
lass.Every a
tive sub
lass de�nes its own state model.2.1.4 Exe
ution Semanti
sThe exe
ution semanti
s of xUML is an asyn
hronous in-terleaving semanti
s with the following properties:� Creation and Deletion of Class Instan
es. Class in-stan
es
an be
reated either stati
ally at systeminitialization, or dynami
ally during system exe
u-tion. An a
tive
lass instan
e having a born-to-diestate model deletes itself when it enters a termina-tion state. A passive
lass instan
e
an be deletedby a
tions exe
uted by a
tive
lass instan
es.� Asyn
hronous Message Passing. A
tive
lass in-stan
es
ommuni
ate with ea
h other through asyn-
hronously message passing. Every a
tive
lass in-stan
e has a private message queue that is FIFO andin�nite. All messages dire
ted to an a
tive
lass in-stan
e are kept in its message queue after being gen-erated and before being
onsumed.� A
tive Class Instan
e S
heduling. An a
tive
lassinstan
e is ready to be s
heduled for exe
ution if ei-ther it has entered its
urrent state and is ready toexe
ute the asso
iated a
tion of the
urrent state, orit has �nished the a
tion of its
urrent state and isready to perform a state transition that is enabledby the �rst message in its private message queue.At any given point of a system exe
ution, exa
tly onea
tive
lass instan
e is nondeterministi
ally s
hed-uled to exe
ute from among all a
tive
lass instan
esthat are ready. The s
heduled a
tive
lass instan
eeither performs a state transition by
onsuming the�rst message in its private message queue, or exe-
utes the a
tion asso
iated with its
urrent state.Both the exe
ution of an a
tion and the performan
eof a state transition are run-to-
ompletion.� Disposition of Unexpe
ted Messages. When a
lassinstan
e noti
es the �rst message in its messagequeue is unexpe
ted in its
urrent state, it
an
hooseto ignore the message or to
ag a system error. Themessage disposition rules are re
orded in the messagedisposition table of ea
h state model.2.2 S/R Semanti
sIn the S/R automaton language, a system is
omposed ofsyn
hronously intera
ting pro
esses. In the following dis-
ussion, all \pro
esses" refer to S/R pro
esses. A pro
essrepresents an L-!-automaton and
onsists of:

� State Variables. The
urrent state of the pro
essis determined by the
urrent values of all its statevariables. The state spa
e of the pro
ess is boundedby the ranges of all its state variables.� Sele
tion Variables. Sele
tion variables de�ne sele
-tions, the outputs of the pro
ess. At ea
h state, thevalue of a sele
tion variable is nondeterministi
allysele
ted from a set of values possible in that state.� Inputs. Ea
h pro
ess imports a subset of all the se-le
tion variables of other pro
esses as its inputs.� State Transition Predi
ates. State transition pred-i
ates spe
ify how the pro
ess
hanges its state byupdating its state variables as fun
tions of its
ur-rent state, sele
tion variables, and inputs.� Sele
tion Rules. Sele
tion rules assign values to se-le
tion variables as fun
tions of state variables. Su
ha fun
tion is nondeterministi
 if several values arepossible for one sele
tion variable in some state.2.2.1 Sele
tion/Resolution ModelThe system exe
ution model of S/R, namely the \sele
-tion/resolution" model [7℄, is a
lo
k-driven syn
hronousexe
ution model, under whi
h a system of pro
esses be-haves in a two-phase pro
edure every logi
al
lo
k
y
le,as shown in Figure 1:
P1 P2 Pk

. . .

. . .

Process Selections

Process StateResolution Phase

Selection PhaseFigure 1: Sele
tion/Resolution Model� [1: Sele
tion Phase℄ Ea
h pro
ess \sele
ts" a valuepossible in its
urrent state for ea
h of its sele
tionvariables. The values of all the sele
tion variablesof all the pro
esses form the global sele
tion of thesystem.� [2: Resolution Phase℄ Ea
h pro
ess \resolves" the
urrent global sele
tion by updating its state vari-ables upon enabled state transition predi
ates andmoving to a new state.The
ommuni
ation between pro
esses is syn
hronous:every pro
ess posts its sele
tions through its sele
tionvariables in the sele
tion phase of a
lo
k
y
le and in-puts the sele
tions from other pro
esses in the resolutionphase of the same
lo
k
y
le.3 Automati
 Translation ofxUML Models to S/R ModelsThe automati
 translation of an xUML model must yieldan S/R model that is not only semanti
ally faithful tothe xUML model but also with a �nite and �xed state3

spa
e. The translation algorithms are given in detail sin
ethe translation is di�erent from previous translations inthat it targets the S/R automaton language with a syn-
hronous exe
ution model and in
ludes the translation ofa
tion semanti
s. The algorithms enable model
he
kingof substantial and signi�
ant xUML models.3.1 TranslatingClass Instan
es to Pro
essesA
lass instan
e, either a
tive or passive, is translated toa pro
ess. The private message queue of every a
tive
lassinstan
e is modeled by a separate pro
ess. Attributes ofa
lass instan
e are translated to the state variables ofthe pro
ess
orresponding to the
lass instan
e.3.2 SimulatingAsyn
hrony with Syn
hronyTo translate xUML models to S/R models, we simulateasyn
hronous exe
ution semanti
s of xUML models withsyn
hronous exe
ution semanti
s of S/R models.3.2.1 Modeling Asyn
hronous Message PassingAsyn
hronous message passing between a
tive
lass in-stan
es is simulated by syn
hronous
ommuni
ation be-tween pro
esses through modeling the private messagequeue of every a
tive
lass instan
e as a separate pro-
ess. Let pro
esses IP1 and IP2 model two a
tive
lassinstan
es and pro
esses QP1 and QP2 model their
orre-sponding private message queues. A message, m, is sentfrom IP1 to IP2 asyn
hronously as shown in Figure 2:
IP2IP1

2

QP1 QP2

3
1Figure 2: Modeling Asyn
hronous Communi
ation� [1: IP1 ! QP2℄ IP1 passes m to QP2 through syn-
hronous
ommuni
ation.� [2: Bu�ered℄ QP2 keeps m until IP2 is ready for
onsuming a message and m is the �rst message inthe queue modeled by QP2.� [3: QP2 ! IP2℄ QP2 passes m to IP2 through syn-
hronous
ommuni
ation.Message types de�ned in an a
tive
lass are mapped to
onstants in the S/R model. These
onstants de�ne anenumeration type whi
h establishes the value range of thestate variables that are de
lared in the pro
esses model-ing message queues of instan
es of the
lass and used tore
ord the types of the messages kept in the queues.

3.2.2 Modeling Asyn
hronous Exe
utionThe asyn
hronous exe
ution semanti
s of xUML is simu-lated by the syn
hronous exe
ution semanti
s of S/R:� Every pro
ess modeling an a
tive
lass instan
e hasa sele
tion variable, ready, whi
h indi
ates whetherthe a
tive obje
t instan
e modeled is ready for ex-e
uting an xUML a
tion, or performing an xUMLstate transition.� A global s
heduler, also modeled by a pro
ess, inputsthe ready variables from all the pro
esses modelinga
tive
lass instan
es. When a res
heduling o

urs,the global s
heduler nondeterministi
ally s
hedules apro
ess from among all the pro
esses modeling thea
tive
lass instan
es that are ready. The globals
heduler has a sele
tion variable, s
heduled, and the
urrent value of s
heduled indi
ates whi
h a
tive
lassinstan
e is
urrently s
heduled.� All the pro
esses modeling a
tive
lass instan
es in-put s
heduled from the global s
heduler. Only thepro
ess that models the s
heduled a
tive
lass in-stan
e
an perform an S/R state transition
orre-sponding to an xUML a
tion or an xUML state tran-sition in the state model of the s
heduled a
tive
lassinstan
e. All other pro
esses modeling a
tive
lassinstan
es follow a self-loop S/R state transition ba
kto their
urrent S/R states.3.2.3 Handling Unexpe
ted MessagesWhen a pro
ess modeling the message queue of a
lassinstan
e en
ounters a message that is to be ignored, it de-queues and dis
ards the message. During model
he
king,a system error
ag
aused by an unexpe
ted message willbe
aught by an automati
ally generated safety property.The translator generates su
h a safety property based onthe message disposition tables for state models.3.3 Translating State ModelsThe behavior of an a
tive
lass instan
e is spe
i�ed byits state model that
onsists of states, a
tions, and statetransitions. Figure 3 illustrates a state from an xUMLstate model with its asso
iated a
tion and transitions.
Counting

C1: Idle

counter = counter + 1;
if (counter==10) counter = 0;

Outgoing State Transition

Transition Enabling Message Type

Incoming State TransitionState Action

Figure 3: An Sample xUML State4

To translate a state model, the translator �rst
on-stru
ts the
ontrol
ow graph of the state model. In the
ontrol
ow graph, an a
tion asso
iated with a state ispartitioned into primitive blo
ks. A primitive blo
k
on-sists of one or more sub-a
tions of the a
tion. Two ad-ja
ent
ontrol points bra
ket either a primitive blo
k ora state transition. Figure 4 illustrates the
ontrol
ow
counter == 10

counter = counter + 1

Consuming

false

C1: Idle

true

Control Point 2

counter = 0

Control Point 4

Control Point 5

State Transition

Control Point 1

Control Point 3

Primitive Blocks

Figure 4: Control Flow Graph Segmentgraph segment
orresponding to the state with its asso-
iated a
tion and transitions in Figure 3. The primitiveblo
k between Control Point 1 and 2 in Figure 4,
ounter=
ounter + 1,
onsists of three sub-a
tions: a read a
-tion, a plus a
tion, and a write a
tion.Partitioning of the a
tion asso
iated with a state intoprimitive blo
ks must preserve the run-to-
ompletion se-manti
s. For instan
e, all the primitive blo
ks betweenControl Points 1 and 4 in Figure 4
ompose the a
tion inFigure 3 and form a run-to-
ompletion unit that must beexe
uted without interruption. Therefore supplementalinformation is atta
hed to the
ontrol points.The state model, based on its
ontrol
ow graph, istranslated to semanti

onstru
ts of the pro
ess modelingthe a
tive
lass instan
e as follows:� A state variable $ of enumeration type is de�ned inthe pro
ess and ea
h
ontrol point in the
ontrol
owgraph is one-to-one mapped to a value in the valuerange of $.� The primitive blo
k or state transition immediatelyfollowing a
ontrol point is mapped to a set of statetransition predi
ates or sele
tion rules that dependon the value of $
orresponding to the
ontrol point.The S/R pro
ess segments resulting from the state withits asso
iated a
tion and outgoing transition in Figure 3are shown in Figure 5. For example, the primitive blo
k,
ounter = 0, following Control Point 3 is mapped to twostate transition predi
ates that are enabled when $ hasthe value of
p3 and the pro
ess is s
heduled by the globals
heduler: One transition predi
ate sets the state variable
orresponding to
ounter to 0 (Line 9); The other updates$ from
p3 to
p4 (Line 16). The outgoing state transitionis mapped to a state transition predi
ate that updates $from
p4 to
p5 when enabled (Line 17).

A pro
ess may take several sele
tion/resolution
y
lesto perform a state a
tion of the
lass instan
e it modelsif the a
tion is partitioned into several primitive blo
ks.In order to guarantee the run-to-
ompletion semanti
s ofa
tions, a sele
tion variable, in a
tion, is de�ned in thepro
ess, as shown in Figure 5. On
e in a
tion is true, thepro
ess is s
heduled
ontinuously by the global s
heduleruntil the pro
ess sets in a
tion to false. in a
tion is setto false if and only if $ has a value
orresponding to a
ontrol point following by a state transition or the �rstprimitive blo
k of an a
tion; otherwise it is set to true.3.4 Translating A
tionsComputation a
tions of xUML are straightforwardlytranslated to their S/R
ounterparts. The translation ofa
tions of other types is elaborated below.3.4.1 Read or Write A
tionsIntra-instan
e attribute reads (writes) are mapped to ref-eren
es to (state transition rules for) the
orrespondingstate variables.An inter-instan
e attribute read is simulated as follows:The pro
ess modeling the owner of the attribute outputsthe value of the attribute through one of its sele
tion vari-ables and the sele
tion variable is input by the pro
essmodeling the reader.Translation of inter-instan
e attribute writes is more
omplex be
ause state variables of a pro
ess
annot bedire
tly updated by other pro
esses. Let the pro
ess seg-ment in Figure 5 belong to a pro
ess, PX , whi
h modelsa
lass instan
e, X . Let the attribute of X , modeled by
ounter, be a

essed by a write a
tion from another
lassinstan
e, Y , and the
ontrol point before the write a
-tion is
p. The inter-instan
e write a
tion is simulatedas follows: A sele
tion variable,
ounter Y , is de�ned inthe pro
ess, PY , whi
h models Y . A state transitionrule updating
ounter, asgn
ounter -> PY.
ounter Y ?(S
heduler.Sele
tion = PY) * (PY.$ =
p), is added toPX . When PY.$=
p and PY is s
heduled, in the next
lo
k
y
le PY sets
ounter Y to the value to be writ-ten to
ounter. In the same
lo
k
y
le, PX instead ofdoing a self-loop state transition, resolves the state tran-sition rule and sets
ounter to the value of
ounter Ythat is input by PX from PY . This is an extension tothe s
heduling rules in Se
tion 3.3.2, whi
h enables thetranslation of inter-instan
e writes.3.4.2 Messaging A
tionsA messaging a
tion is mapped to a state transition pred-i
ate and a set of sele
tion rules. The state transitionpredi
ate updates $ from the
ontrol point immediatelybefore the a
tion to the
ontrol point immediately after5

Selection Variable
ready_indicator
& Its updating Selection Rules

stvar $: (..., cp1, cp2, cp3, cp4, ...) 1

selvar __in_action : boolean
asgn __in_action := ... | true ? ($ = cp1) | false ? ($ = cp4) | ...

2
3

selvar __ready_indicator : boolean
asgn __ready_indicator := ... + ($ = cp1) + ($ = cp2) + ($ = cp3)
 + (($ = cp4) * Queue.HasMsg * Scheduler.None_in_action) + ...

4
5
6

stvar counter : integer
asgn counter −>
 0 ? ($ = cp3) * (Scheduler.Scheduled = SELF)

8
9

7

10

trans
 ...

 ...
 −> cp4 : else;

 −> cp2 : else;

State Transition Predicates

12
13

16
17
18

14
15

State Variable $

State Variable counter
& Its Updating State
Transition Predicates

Updating $

Selection Variablein_action

11

& Its updating Selection Rules

 | (counter + 1) ? ($ = cp2) * (Scheduler.Scheduled = SELF)

 cp2 −> cp3 : (VALUE = 10) * (Scheduler.Scheduled = SELF)
 cp1 −> cp2 : (Scheduler.Scheduled = SELF) −> cp1 : else;

 −> cp4 : ~(VALUE = 10) * (Scheduler.Scheduled = SELF)

 cp3 −> cp4 : (Scheduler.Scheduled = SELF) −> cp3 : else;
 cp4 −> cp5 : (Queue.FirstMsg = C1) * (Scheduler.Scheduled = SELF)Figure 5: S/R Translation of the xUML State in Figure 3the a
tion. The sele
tion rules output the message anda syn
hronization signal through sele
tion variables. Thesyn
hronization signal enables the pro
ess modeling themessage queue of the re
eiver to get the message in thesame
lo
k
y
le when the sele
tion rules are enabled.3.4.3 Composite A
tionsThere are three kinds of
omposite a
tions: group a
tions,
onditional a
tions, and loop a
tions. A group a
tion is
omposed of a sequen
e of sub-a
tions and is partitionedinto one or more primitive blo
ks that are translated re-spe
tively. The translator also generates state transitionpredi
ates that advan
e $ from one primitive blo
k to thenext primitive blo
k.A
onditional a
tion is
omposed of a test, whi
h ismainly a
omputation a
tion, and several bran
hes. Ev-ery bran
h is a group a
tion and translated as dis
ussedabove. The test is translated to a set of state transi-tion predi
ates that lead to the S/R translations of thesebran
hes a

ording to the result of the test.The loop a
tion provides repeated exe
ution of a
on-tained a
tion so long as a test results in an appropriatevalue. The test is translated into two state transitionpredi
ates: Depending on the test result, one leads tothe S/R translation of the
ontained a
tion and the otherexits the loop a
tion.3.4.4 Colle
tion A
tionsA
olle
tion a
tion
an be sequential or parallel. A se-quential
olle
tion a
tion applies a sub-a
tion on elementsof a
olle
tion in sequen
e. It is unfolded into a loop a
-tion with a test
he
king whether there are still untou
hedelements in the
olle
tion, and the sub-a
tion as the
on-tained a
tion. The resulting loop a
tion is translated asdis
ussed above. A parallel
olle
tion a
tion applies a

sub-a
tion on elements of a
olle
tion in parallel. Trans-lation of the sub-a
tion is extended so that all elementsare pro
essed simultaneously.3.5 Translating GeneralizationsUnder a generalization, sub
lasses may inherit attributesand message types from super
lasses. The super
lass at-tributes inherited by sub
lasses are also mapped to statevariables of the pro
esses modeling the sub
lass instan
es.The super
lass message types are also mapped to
on-stants whi
h are in
luded in the value ranges of the statevariables that re
ord the message types in the pro
essesmodeling the message queues of the sub
lass instan
es.This solution requires no
hange to the translation of ei-ther a messaging a
tion that sends a message of a super-
lass message type to an instan
e of a sub
lass or a statetransition that
onsumes su
h a message.3.6 GuaranteeingFinite and Fixed State Spa
esMost model
he
kers in
luding COSPAN, require that themodels to be
he
ked have �nite and �xed state spa
es.Our translator
an translate xUML models with in�niteor dynami
 state spa
es if ne
essary information is pro-vided by designers through annotating the xUML modelswith an annotation language provided.3.6.1 Ranging Data TypesA
ontinuous in�nite data type, like the
oat type, isdis
retized and represented by an integer interval type.COSPAN assumes every integer variable without an ex-pli
itly given value range lies in a default range.6

3.6.2 Simulating Class Instan
e Dynami
sIf instan
es of a
lass C,
an be dynami
ally
reated anddeleted during system exe
ution, the dynami

reationand deletion is simulated as follows:� An upper bound, N , on the number of instan
es ofC that
an
o-exist at the same time during systemexe
ution, is estimated by system designers.� The translator generates N pro
esses, P [0℄ : : : P [N�1℄. Ea
h P [i℄, 0 � i < N , models an instan
e of C.� In ea
h P [i℄, 0 � i < N , an additional state variable,alive, is used to indi
ate whether P [i℄ is
urrentlyrepresenting an existing instan
e of C. The alivevariable of ea
h P[i℄, 0 � i < N , is initialized false.� When an instan
e of C is
reated, some P [j℄, 0 � j <N , whose alive is false, is sele
ted and alive of P [j℄is set to be true. P [j℄ then parti
ipates in systemexe
ution by intera
ting with other pro
esses.� When an instan
e of C need to be deleted, alive ofthe
orresponding P [k℄, 0 � k < N , is set to be falseand P [k℄ stops intera
ting with other pro
esses.3.6.3 Managing Message Queue Over
owA message queue modeled by a pro
ess must havebounded size. This opens possibility of message queueover
ow that may a�e
t veri�
ation results. We deal withmessage queue over
ow as follows:� For ea
h message queue, an upper bound on the num-ber of messages that
an be in the queue simultane-ously is set by default or by system designers.� Pro
esses modeling the message queues are
on-stru
ted based on the upper bounds.� When the veri�
ation of a query reports false, anerror tra
k pro
essing tool is used to analyze for a
-tions that were trying to pla
e a message into a fullqueue. When there is su
h a
ase, the veri�
ationwill be invalidated and will be redone with a largersize for the message queue that was full.4 Model TransformationsRedu
ing State Spa
esState spa
e redu
tion is
riti
al to s
alable appli
ation ofmodel
he
king to xUML models. The state spa
e
om-plexities of the resulting S/R models dire
tly a�e
t thesizes of the xUML models that
an be model
he
ked.Therefore a signi�
ant part of our resear
h is devoted totransforming xUML models before translation to S/R inorder to get S/R models with minimal state spa
es.4.1 Stati
 Partial Order Redu
tionDi�erent state spa
e redu
tion algorithms are appli
ablein ea
h of the several approa
hes to model
he
king. Sym-boli
 Veri�
ation [12℄ is readily applied to syn
hronous

automata while partial order redu
tion (POR) [20, 4, 17℄is readily applied to asyn
hronous interleaving automata.POR takes advantages of the fa
t that in many
ases,when
omponents of a system are not tightly
oupled,di�erent exe
ution orders of a
tions or transitions of dif-ferent
omponents may result in the same global state.Then, under some
onditions [20, 4, 17℄, in parti
ular,when the interim global states are not relevant to theproperty being
he
ked, model
he
kers only need to ex-plore one of the possible exe
ution orders. This may rad-i
ally redu
e veri�
ation
omplexity.The asyn
hronous interleaving semanti
s of xUMLsuggests appli
ation of Stati
 Partial Order Redu
tion(SPOR) [8℄ to an xUML model prior to its translationinto S/R, whi
h transforms the xUML model by restri
t-ing its transition stru
ture with respe
t to a property tobe veri�ed (For di�erent properties, SPOR may translatean xUML model into di�erent S/R models). This enablesintegrated appli
ation of POR while applying Symboli
Veri�
ation to the resulting S/R model.4.2 Identi�
ation of Stati
 AttributesIn xUML models,
lass instan
es may have stati
 at-tributes whose values never
hange during system exe-
ution. We implemented a labeling algorithm that tagsstati
 attributes during the xUML model parsing phase.Instead of being translated to state variables, stati
 at-tributes are translated into
onstants or sele
tion vari-ables whi
h do not
ontribute to the state spa
e.4.3 Identi�
ation of Self MessagesA self message is a message that a
lass instan
e sends toitself. The messaging a
tion sending a self message andthe transition
onsuming the message are identi�ed andtranslated as a whole to a single state transition predi
ateif the exe
ution order of a
tions and state transitions
anbe preserved. An S/R state transition resulting from thestate transition predi
ate has the same e�e
t as sendingand
onsuming the message.4.4 TransformationsSupporting Symboli
 Veri�
ationIn order to symboli
ally verify an S/R model withCOSPAN, an expli
it value range must be provided forevery variable in the S/R model. An annotation languageallowing designers to provide these ranges in xUML mod-els has been implemented. We are also exploring trans-formations that lead to S/R models whose state spa
es
an be redu
ed more easily by symboli
 veri�
ation.7

5 Analysis Support and Tools5.1 xUML-level Property Spe
i�
ationSpe
i�
ation of properties to be
he
ked is a
riti
al fa
-tor in e�e
tive model
he
king. E�e
tive model
he
k-ing of xUML models by software engineers requires thatthe properties to be
he
ked be spe
i�ed in an xUMLlevel logi
. But COSPAN only a

epts input queries for-mulated in S/R. Therefore we have de�ned an xUMLlevel property spe
i�
ation logi
, provided an interfa
efor spe
ifying xUML level properties in this logi
, andimplemented a translator for xUML level properties toS/R queries.A property formulated in this logi

onsists of de
lara-tions of propositional logi
 predi
ates over xUML model
onstru
ts and de
larations of temporal predi
ates. Thetemporal predi
ates are de
lared by instantiating a set oftemplates. A template
onsists of a temporal logi
 opera-tor and a pattern of arguments. Ea
h temporal predi
ateis an instantiation of some template where ea
h argumentis a propositional logi
 expression built up from the pre-viously de
lared propositional predi
ates. Spa
e does notpermit display of the full set of temporal logi
 templatesbut an example property is given in Se
tion 6 and thefull spe
i�
ation of the logi

an be found on at the url,http://www.
s.utexas.edu/users/feixie/xUML.5.2 Post-Pro
essing of Error Tra
ksWhen a query fails on an S/R model, COSPAN generatesan error tra
k spe
ifying an exe
ution tra
e that is in
on-sistent with the query. We provided a translator thatautomati
ally maps the error tra
k to an error report inthe xUML notation. The error report
onsists of an ex-e
ution tra
e of the
orresponding xUML model, whi
hviolates the
orresponding xUML level property.6 Case StudyA real-world appli
ation used to illustrate our approa
hand validate the xUML-to-S/R translator is a robot
on-trol system[19℄. Currently a simpli�ed version of therobot
ontrol system, whi
h is able to
ontrol a robotwith one arm, has been veri�ed. There are two jointson the arm and at the end of the arm is an end e�e
-tor that moves around and performs designated fun
tionssu
h as grabbing. The movement of the end e�e
tor re-quires the two joints
hange their angle positions. Twomajor roboti
s algorithms are implemented in the system:� Robot Control AlgorithmGiven a target position of the end e�e
tor, every joint
al
ulates its target angle position. If the target an-gle position of every joint is less than or equal to its

physi
al angle limit, the end e�e
tor pro
eeds to thetarget position; otherwise, a fault re
overy is invoked.� Fault Re
overy AlgorithmWhen a fault re
overy is invoked, the angle positionof the joint that violates the physi
al
onstraint isset to its physi
al angle limit while the other joint isrequired to re
al
ulate its target angle position.
Joint_ID

EE_ID
JCH_ID
limit
current_angle
acknowledgement

Arm_ID

Joint

2

2 2

2
1

Joint_Checker

JCH_ID
counter

1
1

EE_ID
max_x
max_y
max_z
status
c_p_x
c_p_y
c_p_z
c_p_alpha
c_p_beta
c_p_theta
max_alpha
max_beta
max_theta

End_Effector

ee_reference
delta

Arm_ID
transformer

Arm

TS_ID
J_ID
new_angle1
new_angle2
status

Trial_Configuration

1

1

Recovery_ID
JCH_ID
recovery_status

Recovery

1

Figure 6: Class Model of Robot Control SystemThere are 6
lasses, shown in Figure 6, in the xUMLmodel of the simpli�ed robot
ontrol system. Class Jointhas two instan
es while every other
lass has one instan
e.In total, the seven
lass instan
es have 44 attributes,and 31 message types four of whi
h have asso
iated dataitems. A typi
al state model, the state model of the Joint
lass, is shown in Figure 7. It
onsists of 7 states and 11state transitions. States have asso
iated a
tions that
anbe fairly
ompli
ated.The xUML model was automati
ally translated into anS/R model (not shown due to spa
e limitation). In theS/R model, there are 15 pro
esses, 74 state variables, and129 sele
tion variables in total. During the translation,19 attributes are identi�ed as stati
 and translated intosele
tion variables instead of state variables. The 74 statevariables are
ategorized by usage as follows:� 7 re
ording the
urrent states of
lass instan
es;� 25 modeling non-stati
 attributes;� 42 simulating the message queues of
lass instan
es.42 state variables are used to en
ode the message queuesof the
lass instan
es, whi
h is inevitable no matter whatkind of model
he
kable language into whi
h the xUMLmodel is translated be
ause under the asyn
hronous mes-sage passing me
hanism, the lo
al state of ea
h messagequeue
ontributes to the global state of the whole system.About 20 di�erent properties have been
he
ked againstthe xUML model [19℄. Here we use a safety property todemonstrate how a property is de�ned and
he
ked. Thesystem design requires the robot
ontrol algorithm andfault re
over algorithm work
ooperatively. The safetyproperty spe
i�es a
oordination between the two algo-rithms: when a fault re
overy has been invoked, the se
-ond joint
annot move into the \Move EE" state. Theproperty is de�ned as follows:8

