
Model Cheking for an Exeutable Subset of UMLFei Xie1 Vladimir Levin2 James C. Browne11 Department of Computer SienesUniversity of Texas at AustinAustin, TX 78712, USAffeixie, browneg�s.utexas.edu 2 Computing Sienes Researh CenterBell LaboratoriesMurray Hill, NJ 07974, USAlevin�researh.bell-labs.omAbstratThis paper presents an approah to model heking soft-ware system designs spei�ed in an exeutable subset ofUML, xUML. The approah is enabled by the exeutionsemantis of xUML and is based on automati transla-tion from xUML to S/R [5℄, the input language of theCOSPAN [5℄ model heker. Translation algorithms arede�ned and desribed, whih over lass models, statemodels of lasses, ations assoiated with states in statemodels, exeution semantis, et. The translation at-tempts to redue the state spae of the resulting S/Rmodel that is to be veri�ed by COSPAN. An xUML levellogi for speifying properties to be heked is de�ned.Automated support is provided for translating propertiesspei�ed in the logi to S/R representations and mappingerror traes generated by COSPAN to xUML representa-tions. The approah is illustrated by some results from averi�ation study of a simpli�ed robot ontrol system.1 Introdution and OverviewThe Uni�ed Modeling Language (UML) [14℄ is the stan-dard spei�ation language for objet-oriented softwaresystem designs. However, the ations assoiated withstates or transitions in standard UML stateharts arespei�ed only as uninterpreted strings. Therefore, theUML model of a system design is neither exeutable norompilable to an exeutable program in a programminglanguage. As a result validation and veri�ation of thesystem design has to be deferred until the system (or atleast its omponents) is implemented in a programminglanguage.The Objet Management Group (OMG) has �nalizeda proposal for Ation Semantis for UML [15℄, submit-ted by the Ation Semantis Consortium [1℄. Combin-ing the proposed ation semantis and an appropriatesubset of UML de�nes a spei�ation language for exe-utable objet-oriented software system designs. There

are ommerial produts that implement subsets of UMLwith ation semantis following the proposed ation se-mantis. xUML [6, 18℄ is one of these subsets. AnxUML model representing a software system design is ex-eutable; therefore it an be tested for both funtionalityand performane via simulation, and also an be formallyveri�ed through model heking. This paper presents anapproah to model heking xUML models, gives the de-tails of the automati translation of xUML models toS/R [5℄ models that an be veri�ed by the COSPAN [5℄model heker, and illustrates the approah with some re-sults from a veri�ation study of a simpli�ed robot ontrolsystem. The steps in the approah are:a. A system design is spei�ed in xUML as an exe-utable model;b. The xUML model is tested by exeution with a dis-rete event simulator;. A property to be heked against the system designis spei�ed in an xUML level logi;d. The xUML model and the property are automati-ally translated to a model and a query in the S/Rautomaton language by an xUML-to-S/R translator;e. The S/R query is automatially heked against theS/R model by COSPAN;f. If a query fails, an error trak is generated byCOSPAN and is automatially translated into an er-ror report in the name spae of the xUML model.Steps , d, and f are the subjet of this paper.The model heker, COSPAN, implements theautomata-theoreti approah to model heking [7℄. Un-der this approah, a system is modeled by an L-!-automaton [7℄ P , where P is represented as a synhronousparallel omposition P = P1
 P2
 : : :
 Pk of ompo-nents (all modeled as L-!-automata). The query to beheked is also represented by an L-!-automaton T . Ver-i�ation onsists of the automata language ontainmenttest L(P) � L(T), whether the language of P is ontainedin the language of T .We have seleted COSPAN, whih has synhronousparallel semantis, as our veri�ation engine beause1

COSPAN implements multiple state spae redution al-gorithms and one of these algorithms, Symboli Veri�a-tion [12℄, is not readily implementable in model hek-ers with asynhronous interleaving semantis. COSPANalso enables Partial Order Redution [20, 4, 17℄ throughStati Partial Order Redution [8℄. Integration of StatiPartial Order Redution with Symboli Veri�ation yieldsa potentially powerful method for state spae redutionnot readily implementable in model hekers with asyn-hronous interleaving semantis (See Set. 4.1). Wewill, in a later paper, analyze the irumstanes whereeah state spae redution algorithm is most e�etive.COSPAN, beause of its parallel exeution semantis,may also o�er advantages for model heking system de-signs with true parallel semantis.The ore of our approah is the automati translationof xUML models with asynhronous interleaving exeu-tion semantis, dynami reation and deletion of lass in-stanes, and potentially unbounded state spaes to S/Rmodels with synhronous parallel exeution semantis, astati set of interating proesses, and �nite state spaes.Model transformations leading to S/R models with min-imal state spaes form another major part of our work.Researh on model heking software systems has beenmainly foused on system representations at either de-sign level or programming language implementation level.Model heking designs failitates early detetion of de-sign errors while model heking implementations [16, 21℄may unover errors introdued in the implementationphase. In this researh, model heking is applied to ex-eutable designs whih have not yet been implementedbut for whih implementations an be manually oded orautomatially generated by diret ompilation based on aprede�ned arhiteture. Due to spae limitation, we onlyompare with the most losely related researh. We judgethe most losely related researh to be the automati veri-�ation tool for UML from the University of Mihigan [2℄,and the vUML tool [11℄. Both tools translate and verifyUML models based on ad ho exeution semantis whihdid not inlude ation semantis. Neither supports for-mulation of properties to be heked on the UML modellevel. We also addressed translation of generalization re-lationships between lasses in UML models. There is alsoprevious work on verifying UML stateharts [3, 9, 13℄ bytranslating stateharts into veri�able languages.The rest of this paper is organized as follows: in Se-tion 2 a brief overview of the semantis of xUML and S/Ris given. Setion 3 presents the major algorithms in theautomati translation from xUML to S/R. Model trans-formations reduing state spaes are disussed in Setion4. Setion 5 introdues the automati analysis supportthat failitates model heking xUML models. Setion6 illustrates our approah by model heking the xUMLmodel of a simpli�ed robot ontrol system. Conlusions

and future work are given in Setion 7.2 Semantis of xUML and S/RThe semanti gap between asynhronous xUML modelsand synhronous S/R models makes the xUML-to-S/Rtranslation a signi�ant translation proess. To faili-tate easier understanding of the translation algorithms,we briey sketh the semantis of xUML and S/R.2.1 xUML SemantisCurrently our translator is able to translate a signi�antsubset of xUML. Modeled under the urrent translatablesubset, a system is omposed of instanes of lasses, whihare either ative, having dynami behaviors, or passive,having no dynami behaviors and used to store data.There an be assoiation and generalization relationshipsamong lasses. A large system an be reursively parti-tioned into pakages, whih are groups of lasses loselyoupled by assoiations and generalizations.2.1.1 State ModelsBehaviors of the instanes of an ative lass are spei�edby a state model that onsists of:� States. A state is a stage in the state model.� Message types. Eah message type de�nes a kindof messages that instanes of the lass an reeiveduring system exeution.� Transitions. A transition spei�es whih new stateis ahieved when an instane of the lass in a givenstate reeives a message of a partiular type.� Ations. An ation is an ativity or operation that isassoiated with a state and must be exeuted whenan instane arrives in that state.2.1.2 AtionsAtions an be divided into �ve ategories as follows:� Read or write ations that read or write attributes oflass instanes, or dynamially reate or delete lassinstanes.� Computation ations that perform various mathe-matial alulations.� Messaging ations that send messages to ative lassinstanes.� Composite ations that are ontrol strutures andreursive strutures that permit omplex ations tobe omposed from simpler ations.� Colletion ations that apply other ations to ol-letions of elements, avoiding expliit indexing andextrating of elements from these olletions.2

2.1.3 GeneralizationsUnder a generalization, sublasses inherit the attributesand message types (if de�ned) of the superlass, but thesublasses do not inherit the state model of the superlass.Every ative sublass de�nes its own state model.2.1.4 Exeution SemantisThe exeution semantis of xUML is an asynhronous in-terleaving semantis with the following properties:� Creation and Deletion of Class Instanes. Class in-stanes an be reated either statially at systeminitialization, or dynamially during system exeu-tion. An ative lass instane having a born-to-diestate model deletes itself when it enters a termina-tion state. A passive lass instane an be deletedby ations exeuted by ative lass instanes.� Asynhronous Message Passing. Ative lass in-stanes ommuniate with eah other through asyn-hronously message passing. Every ative lass in-stane has a private message queue that is FIFO andin�nite. All messages direted to an ative lass in-stane are kept in its message queue after being gen-erated and before being onsumed.� Ative Class Instane Sheduling. An ative lassinstane is ready to be sheduled for exeution if ei-ther it has entered its urrent state and is ready toexeute the assoiated ation of the urrent state, orit has �nished the ation of its urrent state and isready to perform a state transition that is enabledby the �rst message in its private message queue.At any given point of a system exeution, exatly oneative lass instane is nondeterministially shed-uled to exeute from among all ative lass instanesthat are ready. The sheduled ative lass instaneeither performs a state transition by onsuming the�rst message in its private message queue, or exe-utes the ation assoiated with its urrent state.Both the exeution of an ation and the performaneof a state transition are run-to-ompletion.� Disposition of Unexpeted Messages. When a lassinstane noties the �rst message in its messagequeue is unexpeted in its urrent state, it an hooseto ignore the message or to ag a system error. Themessage disposition rules are reorded in the messagedisposition table of eah state model.2.2 S/R SemantisIn the S/R automaton language, a system is omposed ofsynhronously interating proesses. In the following dis-ussion, all \proesses" refer to S/R proesses. A proessrepresents an L-!-automaton and onsists of:

� State Variables. The urrent state of the proessis determined by the urrent values of all its statevariables. The state spae of the proess is boundedby the ranges of all its state variables.� Seletion Variables. Seletion variables de�ne sele-tions, the outputs of the proess. At eah state, thevalue of a seletion variable is nondeterministiallyseleted from a set of values possible in that state.� Inputs. Eah proess imports a subset of all the se-letion variables of other proesses as its inputs.� State Transition Prediates. State transition pred-iates speify how the proess hanges its state byupdating its state variables as funtions of its ur-rent state, seletion variables, and inputs.� Seletion Rules. Seletion rules assign values to se-letion variables as funtions of state variables. Suha funtion is nondeterministi if several values arepossible for one seletion variable in some state.2.2.1 Seletion/Resolution ModelThe system exeution model of S/R, namely the \sele-tion/resolution" model [7℄, is a lok-driven synhronousexeution model, under whih a system of proesses be-haves in a two-phase proedure every logial lok yle,as shown in Figure 1:
P1 P2 Pk

. . .

. . .

Process Selections

Process StateResolution Phase

Selection PhaseFigure 1: Seletion/Resolution Model� [1: Seletion Phase℄ Eah proess \selets" a valuepossible in its urrent state for eah of its seletionvariables. The values of all the seletion variablesof all the proesses form the global seletion of thesystem.� [2: Resolution Phase℄ Eah proess \resolves" theurrent global seletion by updating its state vari-ables upon enabled state transition prediates andmoving to a new state.The ommuniation between proesses is synhronous:every proess posts its seletions through its seletionvariables in the seletion phase of a lok yle and in-puts the seletions from other proesses in the resolutionphase of the same lok yle.3 Automati Translation ofxUML Models to S/R ModelsThe automati translation of an xUML model must yieldan S/R model that is not only semantially faithful tothe xUML model but also with a �nite and �xed state3

spae. The translation algorithms are given in detail sinethe translation is di�erent from previous translations inthat it targets the S/R automaton language with a syn-hronous exeution model and inludes the translation ofation semantis. The algorithms enable model hekingof substantial and signi�ant xUML models.3.1 TranslatingClass Instanes to ProessesA lass instane, either ative or passive, is translated toa proess. The private message queue of every ative lassinstane is modeled by a separate proess. Attributes ofa lass instane are translated to the state variables ofthe proess orresponding to the lass instane.3.2 SimulatingAsynhrony with SynhronyTo translate xUML models to S/R models, we simulateasynhronous exeution semantis of xUML models withsynhronous exeution semantis of S/R models.3.2.1 Modeling Asynhronous Message PassingAsynhronous message passing between ative lass in-stanes is simulated by synhronous ommuniation be-tween proesses through modeling the private messagequeue of every ative lass instane as a separate pro-ess. Let proesses IP1 and IP2 model two ative lassinstanes and proesses QP1 and QP2 model their orre-sponding private message queues. A message, m, is sentfrom IP1 to IP2 asynhronously as shown in Figure 2:
IP2IP1

2

QP1 QP2

3
1Figure 2: Modeling Asynhronous Communiation� [1: IP1 ! QP2℄ IP1 passes m to QP2 through syn-hronous ommuniation.� [2: Bu�ered℄ QP2 keeps m until IP2 is ready foronsuming a message and m is the �rst message inthe queue modeled by QP2.� [3: QP2 ! IP2℄ QP2 passes m to IP2 through syn-hronous ommuniation.Message types de�ned in an ative lass are mapped toonstants in the S/R model. These onstants de�ne anenumeration type whih establishes the value range of thestate variables that are delared in the proesses model-ing message queues of instanes of the lass and used toreord the types of the messages kept in the queues.

3.2.2 Modeling Asynhronous ExeutionThe asynhronous exeution semantis of xUML is simu-lated by the synhronous exeution semantis of S/R:� Every proess modeling an ative lass instane hasa seletion variable, ready, whih indiates whetherthe ative objet instane modeled is ready for ex-euting an xUML ation, or performing an xUMLstate transition.� A global sheduler, also modeled by a proess, inputsthe ready variables from all the proesses modelingative lass instanes. When a resheduling ours,the global sheduler nondeterministially shedules aproess from among all the proesses modeling theative lass instanes that are ready. The globalsheduler has a seletion variable, sheduled, and theurrent value of sheduled indiates whih ative lassinstane is urrently sheduled.� All the proesses modeling ative lass instanes in-put sheduled from the global sheduler. Only theproess that models the sheduled ative lass in-stane an perform an S/R state transition orre-sponding to an xUML ation or an xUML state tran-sition in the state model of the sheduled ative lassinstane. All other proesses modeling ative lassinstanes follow a self-loop S/R state transition bakto their urrent S/R states.3.2.3 Handling Unexpeted MessagesWhen a proess modeling the message queue of a lassinstane enounters a message that is to be ignored, it de-queues and disards the message. During model heking,a system error ag aused by an unexpeted message willbe aught by an automatially generated safety property.The translator generates suh a safety property based onthe message disposition tables for state models.3.3 Translating State ModelsThe behavior of an ative lass instane is spei�ed byits state model that onsists of states, ations, and statetransitions. Figure 3 illustrates a state from an xUMLstate model with its assoiated ation and transitions.
Counting

C1: Idle

counter = counter + 1;
if (counter==10) counter = 0;

Outgoing State Transition

Transition Enabling Message Type

Incoming State TransitionState Action

Figure 3: An Sample xUML State4

To translate a state model, the translator �rst on-struts the ontrol ow graph of the state model. In theontrol ow graph, an ation assoiated with a state ispartitioned into primitive bloks. A primitive blok on-sists of one or more sub-ations of the ation. Two ad-jaent ontrol points braket either a primitive blok ora state transition. Figure 4 illustrates the ontrol ow
counter == 10

counter = counter + 1

Consuming

false

C1: Idle

true

Control Point 2

counter = 0

Control Point 4

Control Point 5

State Transition

Control Point 1

Control Point 3

Primitive Blocks

Figure 4: Control Flow Graph Segmentgraph segment orresponding to the state with its asso-iated ation and transitions in Figure 3. The primitiveblok between Control Point 1 and 2 in Figure 4, ounter= ounter + 1, onsists of three sub-ations: a read a-tion, a plus ation, and a write ation.Partitioning of the ation assoiated with a state intoprimitive bloks must preserve the run-to-ompletion se-mantis. For instane, all the primitive bloks betweenControl Points 1 and 4 in Figure 4 ompose the ation inFigure 3 and form a run-to-ompletion unit that must beexeuted without interruption. Therefore supplementalinformation is attahed to the ontrol points.The state model, based on its ontrol ow graph, istranslated to semanti onstruts of the proess modelingthe ative lass instane as follows:� A state variable $ of enumeration type is de�ned inthe proess and eah ontrol point in the ontrol owgraph is one-to-one mapped to a value in the valuerange of $.� The primitive blok or state transition immediatelyfollowing a ontrol point is mapped to a set of statetransition prediates or seletion rules that dependon the value of $ orresponding to the ontrol point.The S/R proess segments resulting from the state withits assoiated ation and outgoing transition in Figure 3are shown in Figure 5. For example, the primitive blok,ounter = 0, following Control Point 3 is mapped to twostate transition prediates that are enabled when $ hasthe value of p3 and the proess is sheduled by the globalsheduler: One transition prediate sets the state variableorresponding to ounter to 0 (Line 9); The other updates$ from p3 to p4 (Line 16). The outgoing state transitionis mapped to a state transition prediate that updates $from p4 to p5 when enabled (Line 17).

A proess may take several seletion/resolution ylesto perform a state ation of the lass instane it modelsif the ation is partitioned into several primitive bloks.In order to guarantee the run-to-ompletion semantis ofations, a seletion variable, in ation, is de�ned in theproess, as shown in Figure 5. One in ation is true, theproess is sheduled ontinuously by the global sheduleruntil the proess sets in ation to false. in ation is setto false if and only if $ has a value orresponding to aontrol point following by a state transition or the �rstprimitive blok of an ation; otherwise it is set to true.3.4 Translating AtionsComputation ations of xUML are straightforwardlytranslated to their S/R ounterparts. The translation ofations of other types is elaborated below.3.4.1 Read or Write AtionsIntra-instane attribute reads (writes) are mapped to ref-erenes to (state transition rules for) the orrespondingstate variables.An inter-instane attribute read is simulated as follows:The proess modeling the owner of the attribute outputsthe value of the attribute through one of its seletion vari-ables and the seletion variable is input by the proessmodeling the reader.Translation of inter-instane attribute writes is moreomplex beause state variables of a proess annot bediretly updated by other proesses. Let the proess seg-ment in Figure 5 belong to a proess, PX , whih modelsa lass instane, X . Let the attribute of X , modeled byounter, be aessed by a write ation from another lassinstane, Y , and the ontrol point before the write a-tion is p. The inter-instane write ation is simulatedas follows: A seletion variable, ounter Y , is de�ned inthe proess, PY , whih models Y . A state transitionrule updating ounter, asgn ounter -> PY.ounter Y ?(Sheduler.Seletion = PY) * (PY.$ = p), is added toPX . When PY.$=p and PY is sheduled, in the nextlok yle PY sets ounter Y to the value to be writ-ten to ounter. In the same lok yle, PX instead ofdoing a self-loop state transition, resolves the state tran-sition rule and sets ounter to the value of ounter Ythat is input by PX from PY . This is an extension tothe sheduling rules in Setion 3.3.2, whih enables thetranslation of inter-instane writes.3.4.2 Messaging AtionsA messaging ation is mapped to a state transition pred-iate and a set of seletion rules. The state transitionprediate updates $ from the ontrol point immediatelybefore the ation to the ontrol point immediately after5

Selection Variable
ready_indicator
& Its updating Selection Rules

stvar $: (..., cp1, cp2, cp3, cp4, ...) 1

selvar __in_action : boolean
asgn __in_action := ... | true ? ($ = cp1) | false ? ($ = cp4) | ...

2
3

selvar __ready_indicator : boolean
asgn __ready_indicator := ... + ($ = cp1) + ($ = cp2) + ($ = cp3)
 + (($ = cp4) * Queue.HasMsg * Scheduler.None_in_action) + ...

4
5
6

stvar counter : integer
asgn counter −>
 0 ? ($ = cp3) * (Scheduler.Scheduled = SELF)

8
9

7

10

trans
 ...

 ...
 −> cp4 : else;

 −> cp2 : else;

State Transition Predicates

12
13

16
17
18

14
15

State Variable $

State Variable counter
& Its Updating State
Transition Predicates

Updating $

Selection Variablein_action

11

& Its updating Selection Rules

 | (counter + 1) ? ($ = cp2) * (Scheduler.Scheduled = SELF)

 cp2 −> cp3 : (VALUE = 10) * (Scheduler.Scheduled = SELF)
 cp1 −> cp2 : (Scheduler.Scheduled = SELF) −> cp1 : else;

 −> cp4 : ~(VALUE = 10) * (Scheduler.Scheduled = SELF)

 cp3 −> cp4 : (Scheduler.Scheduled = SELF) −> cp3 : else;
 cp4 −> cp5 : (Queue.FirstMsg = C1) * (Scheduler.Scheduled = SELF)Figure 5: S/R Translation of the xUML State in Figure 3the ation. The seletion rules output the message anda synhronization signal through seletion variables. Thesynhronization signal enables the proess modeling themessage queue of the reeiver to get the message in thesame lok yle when the seletion rules are enabled.3.4.3 Composite AtionsThere are three kinds of omposite ations: group ations,onditional ations, and loop ations. A group ation isomposed of a sequene of sub-ations and is partitionedinto one or more primitive bloks that are translated re-spetively. The translator also generates state transitionprediates that advane $ from one primitive blok to thenext primitive blok.A onditional ation is omposed of a test, whih ismainly a omputation ation, and several branhes. Ev-ery branh is a group ation and translated as disussedabove. The test is translated to a set of state transi-tion prediates that lead to the S/R translations of thesebranhes aording to the result of the test.The loop ation provides repeated exeution of a on-tained ation so long as a test results in an appropriatevalue. The test is translated into two state transitionprediates: Depending on the test result, one leads tothe S/R translation of the ontained ation and the otherexits the loop ation.3.4.4 Colletion AtionsA olletion ation an be sequential or parallel. A se-quential olletion ation applies a sub-ation on elementsof a olletion in sequene. It is unfolded into a loop a-tion with a test heking whether there are still untouhedelements in the olletion, and the sub-ation as the on-tained ation. The resulting loop ation is translated asdisussed above. A parallel olletion ation applies a

sub-ation on elements of a olletion in parallel. Trans-lation of the sub-ation is extended so that all elementsare proessed simultaneously.3.5 Translating GeneralizationsUnder a generalization, sublasses may inherit attributesand message types from superlasses. The superlass at-tributes inherited by sublasses are also mapped to statevariables of the proesses modeling the sublass instanes.The superlass message types are also mapped to on-stants whih are inluded in the value ranges of the statevariables that reord the message types in the proessesmodeling the message queues of the sublass instanes.This solution requires no hange to the translation of ei-ther a messaging ation that sends a message of a super-lass message type to an instane of a sublass or a statetransition that onsumes suh a message.3.6 GuaranteeingFinite and Fixed State SpaesMost model hekers inluding COSPAN, require that themodels to be heked have �nite and �xed state spaes.Our translator an translate xUML models with in�niteor dynami state spaes if neessary information is pro-vided by designers through annotating the xUML modelswith an annotation language provided.3.6.1 Ranging Data TypesA ontinuous in�nite data type, like the oat type, isdisretized and represented by an integer interval type.COSPAN assumes every integer variable without an ex-pliitly given value range lies in a default range.6

3.6.2 Simulating Class Instane DynamisIf instanes of a lass C, an be dynamially reated anddeleted during system exeution, the dynami reationand deletion is simulated as follows:� An upper bound, N , on the number of instanes ofC that an o-exist at the same time during systemexeution, is estimated by system designers.� The translator generates N proesses, P [0℄ : : : P [N�1℄. Eah P [i℄, 0 � i < N , models an instane of C.� In eah P [i℄, 0 � i < N , an additional state variable,alive, is used to indiate whether P [i℄ is urrentlyrepresenting an existing instane of C. The alivevariable of eah P[i℄, 0 � i < N , is initialized false.� When an instane of C is reated, some P [j℄, 0 � j <N , whose alive is false, is seleted and alive of P [j℄is set to be true. P [j℄ then partiipates in systemexeution by interating with other proesses.� When an instane of C need to be deleted, alive ofthe orresponding P [k℄, 0 � k < N , is set to be falseand P [k℄ stops interating with other proesses.3.6.3 Managing Message Queue OverowA message queue modeled by a proess must havebounded size. This opens possibility of message queueoverow that may a�et veri�ation results. We deal withmessage queue overow as follows:� For eah message queue, an upper bound on the num-ber of messages that an be in the queue simultane-ously is set by default or by system designers.� Proesses modeling the message queues are on-struted based on the upper bounds.� When the veri�ation of a query reports false, anerror trak proessing tool is used to analyze for a-tions that were trying to plae a message into a fullqueue. When there is suh a ase, the veri�ationwill be invalidated and will be redone with a largersize for the message queue that was full.4 Model TransformationsReduing State SpaesState spae redution is ritial to salable appliation ofmodel heking to xUML models. The state spae om-plexities of the resulting S/R models diretly a�et thesizes of the xUML models that an be model heked.Therefore a signi�ant part of our researh is devoted totransforming xUML models before translation to S/R inorder to get S/R models with minimal state spaes.4.1 Stati Partial Order RedutionDi�erent state spae redution algorithms are appliablein eah of the several approahes to model heking. Sym-boli Veri�ation [12℄ is readily applied to synhronous

automata while partial order redution (POR) [20, 4, 17℄is readily applied to asynhronous interleaving automata.POR takes advantages of the fat that in many ases,when omponents of a system are not tightly oupled,di�erent exeution orders of ations or transitions of dif-ferent omponents may result in the same global state.Then, under some onditions [20, 4, 17℄, in partiular,when the interim global states are not relevant to theproperty being heked, model hekers only need to ex-plore one of the possible exeution orders. This may rad-ially redue veri�ation omplexity.The asynhronous interleaving semantis of xUMLsuggests appliation of Stati Partial Order Redution(SPOR) [8℄ to an xUML model prior to its translationinto S/R, whih transforms the xUML model by restrit-ing its transition struture with respet to a property tobe veri�ed (For di�erent properties, SPOR may translatean xUML model into di�erent S/R models). This enablesintegrated appliation of POR while applying SymboliVeri�ation to the resulting S/R model.4.2 Identi�ation of Stati AttributesIn xUML models, lass instanes may have stati at-tributes whose values never hange during system exe-ution. We implemented a labeling algorithm that tagsstati attributes during the xUML model parsing phase.Instead of being translated to state variables, stati at-tributes are translated into onstants or seletion vari-ables whih do not ontribute to the state spae.4.3 Identi�ation of Self MessagesA self message is a message that a lass instane sends toitself. The messaging ation sending a self message andthe transition onsuming the message are identi�ed andtranslated as a whole to a single state transition prediateif the exeution order of ations and state transitions anbe preserved. An S/R state transition resulting from thestate transition prediate has the same e�et as sendingand onsuming the message.4.4 TransformationsSupporting Symboli Veri�ationIn order to symbolially verify an S/R model withCOSPAN, an expliit value range must be provided forevery variable in the S/R model. An annotation languageallowing designers to provide these ranges in xUML mod-els has been implemented. We are also exploring trans-formations that lead to S/R models whose state spaesan be redued more easily by symboli veri�ation.7

5 Analysis Support and Tools5.1 xUML-level Property Spei�ationSpei�ation of properties to be heked is a ritial fa-tor in e�etive model heking. E�etive model hek-ing of xUML models by software engineers requires thatthe properties to be heked be spei�ed in an xUMLlevel logi. But COSPAN only aepts input queries for-mulated in S/R. Therefore we have de�ned an xUMLlevel property spei�ation logi, provided an interfaefor speifying xUML level properties in this logi, andimplemented a translator for xUML level properties toS/R queries.A property formulated in this logi onsists of delara-tions of propositional logi prediates over xUML modelonstruts and delarations of temporal prediates. Thetemporal prediates are delared by instantiating a set oftemplates. A template onsists of a temporal logi opera-tor and a pattern of arguments. Eah temporal prediateis an instantiation of some template where eah argumentis a propositional logi expression built up from the pre-viously delared propositional prediates. Spae does notpermit display of the full set of temporal logi templatesbut an example property is given in Setion 6 and thefull spei�ation of the logi an be found on at the url,http://www.s.utexas.edu/users/feixie/xUML.5.2 Post-Proessing of Error TraksWhen a query fails on an S/R model, COSPAN generatesan error trak speifying an exeution trae that is inon-sistent with the query. We provided a translator thatautomatially maps the error trak to an error report inthe xUML notation. The error report onsists of an ex-eution trae of the orresponding xUML model, whihviolates the orresponding xUML level property.6 Case StudyA real-world appliation used to illustrate our approahand validate the xUML-to-S/R translator is a robot on-trol system[19℄. Currently a simpli�ed version of therobot ontrol system, whih is able to ontrol a robotwith one arm, has been veri�ed. There are two jointson the arm and at the end of the arm is an end e�e-tor that moves around and performs designated funtionssuh as grabbing. The movement of the end e�etor re-quires the two joints hange their angle positions. Twomajor robotis algorithms are implemented in the system:� Robot Control AlgorithmGiven a target position of the end e�etor, every jointalulates its target angle position. If the target an-gle position of every joint is less than or equal to its

physial angle limit, the end e�etor proeeds to thetarget position; otherwise, a fault reovery is invoked.� Fault Reovery AlgorithmWhen a fault reovery is invoked, the angle positionof the joint that violates the physial onstraint isset to its physial angle limit while the other joint isrequired to realulate its target angle position.
Joint_ID

EE_ID
JCH_ID
limit
current_angle
acknowledgement

Arm_ID

Joint

2

2 2

2
1

Joint_Checker

JCH_ID
counter

1
1

EE_ID
max_x
max_y
max_z
status
c_p_x
c_p_y
c_p_z
c_p_alpha
c_p_beta
c_p_theta
max_alpha
max_beta
max_theta

End_Effector

ee_reference
delta

Arm_ID
transformer

Arm

TS_ID
J_ID
new_angle1
new_angle2
status

Trial_Configuration

1

1

Recovery_ID
JCH_ID
recovery_status

Recovery

1

Figure 6: Class Model of Robot Control SystemThere are 6 lasses, shown in Figure 6, in the xUMLmodel of the simpli�ed robot ontrol system. Class Jointhas two instanes while every other lass has one instane.In total, the seven lass instanes have 44 attributes,and 31 message types four of whih have assoiated dataitems. A typial state model, the state model of the Jointlass, is shown in Figure 7. It onsists of 7 states and 11state transitions. States have assoiated ations that anbe fairly ompliated.The xUML model was automatially translated into anS/R model (not shown due to spae limitation). In theS/R model, there are 15 proesses, 74 state variables, and129 seletion variables in total. During the translation,19 attributes are identi�ed as stati and translated intoseletion variables instead of state variables. The 74 statevariables are ategorized by usage as follows:� 7 reording the urrent states of lass instanes;� 25 modeling non-stati attributes;� 42 simulating the message queues of lass instanes.42 state variables are used to enode the message queuesof the lass instanes, whih is inevitable no matter whatkind of model hekable language into whih the xUMLmodel is translated beause under the asynhronous mes-sage passing mehanism, the loal state of eah messagequeue ontributes to the global state of the whole system.About 20 di�erent properties have been heked againstthe xUML model [19℄. Here we use a safety property todemonstrate how a property is de�ned and heked. Thesystem design requires the robot ontrol algorithm andfault reover algorithm work ooperatively. The safetyproperty spei�es a oordination between the two algo-rithms: when a fault reovery has been invoked, the se-ond joint annot move into the \Move EE" state. Theproperty is de�ned as follows:8

