Formal Derivation of Algorithms:
The Triangular Sylvester Equation

Enrique S. Quintana-Orti* Robert A. van de Geijn'

September 18, 2001

Abstract

In this paper we apply a formal approach for the derivation of dense
linear algebra algorithms to the triangular Sylvester equation. The re-
sult is a large family of provably correct algorithms. By using a coding
style that reflects the algorithms as they are naturally presented, the
correctness of the algorithms carries through to the correctness of the
implementations. Analytically motivated heuristics are used to sub-
sequently choose members from the family that can be expected to
yield high performance. Finally, we report performance on the Intel
(R) Pentium IIT processor that is superior to that reported previously
in the literature for this operation.

1 Introduction

In a recent paper the Formal Linear Algebra Methods Environment (FLA-
ME) was introduced [10]. FLAME is both a systematic approach for deriving
(dense) linear algebra algorithms and a library for the implementation of the
resulting algorithms. The rationale is that by formally deriving algorithms,
correctness can be asserted. Moreover, by providing a framework for coding
that mirrors the derived algorithms, the opportunity for the introduction of
coding errors is greatly reduced and thus the correctness of the algorithms
carries through to the implementations. In that paper the simple example of
LU factorization was used to illustrate the basic techniques. In this paper, we

*Departamento de Ingenierfa y Ciencia de Computadores, Universidad Jaume I,
12.080—Castellén, Spain, quintana@icc.uji.es

fDepartment of Computer Sciences, The University of Texas at Austin, Austin, TX
78712, rvdgQ@cs.utexas.edu

demonstrate the versatility of FLAME by concentrating on a more complex
linear algebra operation, the solution of a triangular Sylvester equation.

While the solution of the triangular Sylvester equation is a well-studied
problem, this paper presents a number of contributions:

e An illustration of the application of FLAME to a problem arising in
control theory.

e The derivation of a large family of provably correct algorithms which
includes, as a small subset, algorithms that are closely related to known
traditional methods as well as recently proposed recursive algorithms.

e An analysis that provides heuristics for composing members of the
family to yield the best performance.

e A demonstration of performance that is superior to any previously
reported.

Altogether, dozens of new, high-performance, algorithms and implementa-
tions are given.

While this paper is written to be self-contained, it is highly recommended
that the reader consults the earlier paper on FLAME as well as a recent
paper that gives theoretical insight into high-performance matrix multipli-
cation algorithms [9]. This paper is structured as follows: In Section 2, we
review the triangular Sylvester equation and traditional algorithms for its
solution. We derive algorithms that are closely related to traditional algo-
rithms in Section 3, and a more general family in Section 4. In Section 5 we
describe insights that we use to identify candidates from the family that are
likely to yield the best performance. Performance results on an Intel (R)
Pentium IIT processor are given in Section 6. Concluding remarks follow in
the final section.

2 The triangular Sylvester equation
Consider the Sylvester equation

AX +XB =0, (1)
where A is an m X m matrix, B is n x n, C' and X are m x n, and X is the
sought-after solution. Let A(A) = {«; }]%; and A(B) = {5, }]_, denote,

respectively, the eigenspectra of A and B; then (1) has a (unique) solution
if and only if o; +8; #0 for alli =1,...,m and j = 1,...,n. For further

details on the existence of solutions of the Sylvester equation and numerical
solvers see, e.g., [3, 7, 11].

Sylvester equations have numerous applications in control theory, signal
processing, filtering, image restoration, the decoupling of ordinary and par-
tial differential equations, and block-diagonalization of matrices; see, e.g.,
[1, 5, 8, 14]. Also note that B = A’ yields the Lyapunov equation such that
everything derived here can be used (and simplified) for this type of equa-
tions playing a vital role in many areas of computer-aided control system
design.

Here we focus on the triangular case of the Sylvester equation where the
coefficient matrices, A and B, are upper triangular. (Though any or both
of these matrices could have been reduced instead to lower triangular form,
the study of these other cases leads to algorithms similar to those described
in this paper.) This triangular form is a “by-product” obtained, e.g., in the
solver developed in [3]. In their algorithm, the coefficient matrices are first
reduced to the Schur form using the QR algorithm [8], and the corresponding
transformation matrices are applied to C'. The triangular Sylvester equation
thus obtained is solved using a back-substitution procedure similar to a tri-
angular linear system with multiple right-hand sides. The cost of solving the
triangular Sylvester equation of dimension m X n, using a traditional serial
(non-blocked) algorithm, is m?n + mn? floating point operations [8]. Once
this triangular equation is solved, the inverse transformations are applied to
recover the solution of the original equation.

If all matrices in the equation have real entries and only real arithmetic
is desired, the QR algorithm can be used to obtain the real Schur (or quasi-
triangular) form of the coefficient matrices, a block upper triangular form
with 1 x 1 or 2 x 2 diagonal blocks corresponding respectively to real eigen-
values or pairs of complex eigenvalues of the matrices.

Blocked algorithms usually obtain a higher performance in modern com-
puters by rearranging the computations as possible in terms of matrix mul-
tiplication [6]. LAPACK [2] is a library that illustrates the benefits of re-
formulating algorithms to be rich in matrix-matrix products. Some of the
latest research on high-performance implementation of matrix multiplication
is embodied in the packages ATLAS [15], PHIPAC [4], and ITXGEMM [9].

Blocked algorithms for solving the triangular Sylvester equation can eas-
ily be derived from the serial algorithms and are usually composed of two
nested loops which iterate over blocks of columns and rows of the solution
matrix. For each iteration of the inner loop a new block of the solution is
obtained. Depending on the algorithm, some updates may be needed before
a new block of the solution is obtained (leading to a lazy algorithm, which

postpones much of the work) or after it is computed (an eager algorithm in
such case).

As an example, we next present a traditional row-lazy/column-eager
blocked triangular Sylvester equation solver. Assume A is partitioned into
by, X by, blocks, A;;, i,j = 1,...,m/by, and B is partitioned into b, x
b, blocks, B;;, i,j = 1,...,n/b,. Hereafter, we assume that m and n
are integer multiples of b, and b,, respectively. These partitions induce
conformal partitions of X and C' into b, X b, blocks. Setting both b, and
by, to 1 leads to element-wise algorithms, while setting only one of them
produces row-oriented or column-oriented variants.

The algorithm is stated in Figure 1, where we borrow the colon notation
from MATLAB. This algorithm can easily be modified to overwrite C with the
solution of the equation. The Sylvester equation arising at each iteration of
the inner loop is usually solved using a non-blocked, row-oriented or column-
oriented version of the algorithm. Notice that, just before a new block
of the solution is obtained, the corresponding block-row of C' is updated
with respect to the previous blocks of X in the same block-column, leading
to a row-lazy updating scheme. On the other hand, when this new block
is computed, it is used to update the remaining blocks of C' in the same
block-row in a column-eager updating scheme. Three more variants of the
algorithm are obtained by rearranging the updates to be row-lazy /eager and
column-lazy /eager [13].

for i=m/b, :—1:1
for j=1:n/b,
Cij = Cijj — Aijit1:m/bm Xijit 1im/bm,j
solve A;;Xi;+ Xi;Bj;=Ci;
Oi,j+1:n/nb = Ci,j+1:n/nb - Xi,ij,j+1:n/nb
end
end

Figure 1: Row-lazy/column-eager blocked triangular Sylvester equation
solver.

Recursive variants of these solvers have been recently developed in [12].
Briefly, a recursive algorithm employs the same algorithmm for solving the
Sylvester equation in the inner loop, but uses a smaller dimension of the
block sizes b, and b,,. The higher efficiency of these algorithms is obtained
by decoupling the dimensions of the blocks for the matrix multiplications
from those of the Sylvester equations. The goal is to perform as much

of the computation in terms of matrix multiplications as is possible, while
maximizing the size of the matrices involved in these products.

3 Row- or Column-Oriented Algorithms

We first derive two block-row oriented (with respect to matrix C) solvers by
partitioning only the first of the coefficient matrices, A (see Subsection 3.1).
Analogous block-column oriented versions are obtained by partitioning B
instead of A, as suggested in Subsection 3.2.

3.1 Block-row oriented solvers

Let us consider equation (1) where, in order to reduce the number of ma-
trices, we want to overwrite matrix C' with the solution of the equation,
X.

We start our derivation of block-row oriented algorithms by partitioning
matrix A into four quadrants

A—>< Arr HATR>7

Apr =0 Apr

where Agpg is a k;, X ky, block. The indices {T'L}, {T R}, {BL}, and {BR}
stand for top-left, top-right, bottom-left, and bottom-right, respectively.
Accordingly, we next apply a conformal partition to X and C by blocks of

TOwWSs
X C
X (=), ¢ [=%),
Xp Cp

where Xp and Cp are k;,, X n blocks. Here {T'} and {B} stand for top and
bottom, respectively.
With these partitionings, equation (1) can be rewritten as

() (5 - (5) (60)
+ B= :
0 HABR XB XB CB

and multiplying out the left-hand-side of the matrix equation, we obtain the
following equalities

Arp Xt +ArrXp + X0 B = Cf,
AprXp+XpB = C;.

Thus, the computation of X requires solving two different Sylvester equa-
tions and performing a matrix update on Cp, which we designate as follows:

QXr) = ArpXr+XeB =Crp,
Q(X@) = AprXp+ XgB =Cp, (2)
CT = CT — CT — ATRXB-

Notice that there are data dependencies which induce a strict order on the
sequence of operations. First, the solution of (X p) is obtained, then the
update Cr is computed and, finally, Q(X7) is solved.

The FLAME approach to deriving algorithms based on these partition-
ings starts by counsidering the following two questions:

i) What part of the computation has already been performed at a certain
stage (iteration)? The answer is a condition that is called the loop-
invariant for the algorithm.

ii) How can we advance the computation so that the loop-invariant is sat-
isfied at the beginning of the next stage? The answer to this question
yields the updates (to the matrix) that comprise the body of the loop.

To answer the first question we consider a certain (intermediate) situa-
tion (case) where some of the operations in (2) have been performed. The
instances where no operations have been performed or all of them are already
performed are not considered valid intermediate cases. With three different
operations and the data dependencies, we have only two valid cases:

‘ Case H Operations completed ‘ Current contents of C' ‘
Cr
R1 QX
(XB) < X5)
Cr — ArrXp >

Xp

R2 Cr, UXp) (

The current content of C' (right-most column) becomes the condition that
defines the loop-invariant of the algorithm.

Now, in order to answer the second question, we derive the steps that
allow the computation of X to proceed forward (up) by b, rows, i.e., the
operations that will allow the loop-invariant to be satisfied at the beginning
of the next iteration. To derive these steps, we repartition matrix A as

Ao | Aot || Aoz
(%“%) — 0 | Ay || A
s) \TT0 T

)

where Ay is an by, X by, block. The parameter b,,, determines the granularity
of our block-row oriented algorithm. By setting b,, = 1 we obtain a non-
blocked row-oriented algorithm. (If A is quasi-triangular, b, can be varied
during the computation so that a 2 x 2 diagonal block is not divided between
two diagonal blocks in this last partition.) Conformally, apply the following
repartitions to X and C

Xo Co
X C
=)= | X |, =] | Ci |,
Xp Cp

Xy Cy

where X; and C] are by, X n blocks. The double lines in these partitionings
indicate how far the computation has progressed.
3.1.1 Lazy algorithm

If we wish to maintain condition R1, we assume that X2 is currently avail-
able, while Cy and Ay have been used for this purpose. Moving the com-
putation forward by b, rows therefore is equivalent to moving the double
lines up by b, rows, so that X; is also available. In other words, we know

that currently C holds
Co
Xp =

Xo

Now, consider that the computation has effectively moved forward by
by, rows, leading to

App || Arg Ago || Ao1 | Aoy
0 1 Apr - 0 || A1 | A2 |
0 0 | Ay
Xy Xo Or Co
)~ =) (@)=
b X3 b Co

Notice that after the lines have moved, we need the contents of C' to become

CT_?;O
Xz | !

Xo

The question now is, for case R1, what is the sequence of operations which
allows the computation to move forward while maintaining the indicated
loop-invariant. As the Sylvester equation for Xy was already solved at the
beginning of the stage, we conclude that we need only to perform the oper-
ations:

Ci < C1 — Ap Xy,
A1 Xq+X1B = Ch.

This procedure leads us to an algorithm that can be classified as “lazy”.
Before computing a new block-row of X, this block is updated with respect
to the block-rows of X that have been previously computed. The algorithm
is stated in Figure 2. To illustrate how the FLAME library allows code to
mirror the derived algorithm, thus largely inheriting the proven correctness,
an implementation using FLAME is given in Figure 4.

For those more comfortable with traditional algorithms, this is equivalent
to the solver in Figure 3 (left). The lazy algorithms just presented, in the
FLAME and the traditional formulations, are special cases of the algorithm
in Figure 1, with b, = n.

3.1.2 Eager algorithm

The eager variant of the algorithm is obtained from case R2, as we show
next. In this case the computation has proceeded forward to solve Q(Xp)
and perform the update Cp. Thus, C currently contains:

Co — Ap X
S R I ey oy
Xp X,

With the boundaries of the computation moved forward by b, rows, the
loop-invariant that must be satisfied for the next stage is given by

Co — A Xo — Apy X
Cr— ArpXp \ 0 02X2 0141
Xz X;

Thus, in order to move the computation forward while maintaining the loop-
invariant for this case, we conclude that we need to perform the following
operations:

ApnXi+ X4B = 01,
Co — Co — A01X1.

Algorithm 1 C + X, where AX + XB =C
(Block-row oriented)

partition
A_><ATL Arr >, C_)<CT >7
0 ABr B
where Apr is0x0and Cg is 0 X n
do until Cp is 0 x n
determine block size b,,

repartition
Aoo | Ao1 || Aoz Co
A A C
(TUA—> N arnreal <0_> N e
BR 0 | 0 || Az2 B Cs
where A1; is b,, X b,, and Ci is b, X 1
Lazy variant: FEager variant:
C1 <+ C1— A1 Xo C1 + X1, where
C1 eXl,where A X1+ X1B=0C;
AnXhi+XhB=0C, Co+ Co— A Xy
continue with
A A A C
Arp || Arr 00 || 01 | 02 Cr 0
0 1 — 0 A | A) C <~ C:
Br 0 0 | A L Cs

enddo

Figure 2: Lazy and eager row-block oriented triangular Sylvester equation
solvers derived from R1 (lazy) and R2 (eager).

for i =m/b, :—1:1

Lazy variant: Eager variant:
Ci. =Ci; — A it 1:m/bm Xit1:m/bn,; | SOLve A;; X;. + X;.B = C;,
solve A;;X;.+ X;.B = C;,; Cri-1,; = Cri—1, — A1:i—1,i X ;

end

Figure 3: Lazy and eager traditional row-block oriented triangular Sylvester
equation solvers.

int FLA_Syl_Lazy_Block-Row(FLA_Obj A, FLA_Obj B, FLA_Obj C, int bm)
{

// Declaration of local objects...

FLA_Part_2x2(A, &ATL, /*x/ &ATR,
/% kkkkkkkkkk k[
&ABL, /*x/ &ABR,

/* with */ 0, /* by */ 0, /* submatrix */ FLA_BR);

FLA_Part_2x1(C, &CT,
/*x/
&CB,

/* with length */ 0, /* submatrix */ FLA_BOTTOM);

while (FLA_Obj_length(CT) != 0){

FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, &AO1, /*x/ &A02,
/*x/ &A10, &A11, /**x/ &A12,

[* kkkkkkkk k/ /% kkkkskokskokokokokkokkokkokkokokk ok /

ABL, /**x/ ABR, &A20, &A21, /**/ &A22,

/* with */ bm, /* by */ bm, /* A1l split from */ FLA_TL);

FLA_Repart_2x1_to_3x1(CT, &CO,
&C1,

/xx/ /xx/

CB, &C2,

/* with length */ bm, /* Cl split from */ FLA_TOP);
[% sksksorok ks sk ok Rk sk kR KK R KK S KK SR KK SRR KRR R KK SRR R Kk

/% Cl1 <= C1 - A12 X2 %/
FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NDO_TRANSPOSE,
MINUS_ONE, A12, C2, ONE, C1);

/* C1 <- X1, where X1 solves A1l X1 + X1 B = C1 */
FLA_Syl_level2(Al11, B, C1);

/* 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 5k 5k 3k 3k 3k 3k 3k ok 3k 3k ok 3k 3k 3k %k 3k %k %k k k ok k */

FLA_Cont_with_3x3_to_2x2(&ATL, /*x/ &ATR, A00, /**/ AO1, A02,
/% kkkkkkkkokk k[/% kkkkkskskokokkkkkokkkkkk ok /

/x%/ A10, /*x*/ All, A12,

&ABL, /**/ &ABR, A20, /*x*/ A21, A22,

/* with A1l added to submatrix */ FLA_BR);

FLA_Cont_with_3x1_to_2x1(&CT, co,
YELY) /xx/

Cc1,

&CB, c2,

/* with C1 added to submatrix */ FLA_BOTTOM);

// Free local objects...

Figure 4: Lazy block-row oriented triangular Sylvester equation solver im-
plemented using FLAME.

10

The algorithm is stated in Figure 2 and is equivalent to the traditional eager
variant shown in Figure 3 (right).

3.1.3 Proving correctness and cost

The following theorems proves the correctness of the the lazy and eager
block-row oriented algorithms and present their computational cost.

Theorem 1 The lazy and eager block-row oriented triangular Sylvester equ-
ation solvers in Figure 2 overwrite matriz C with the solution of the trian-
gular Sylvester equation AX + XB =C.

Proof. The following table summarizes the contents of matriz C' at
various stages of the lazy algorithm:

‘ Stage ‘ Contents ‘ Comment ‘

C
Before entering the loop (XT > where Xp has 0 rows, and thus
B Cr=C

C
At the beginning (XT > where Xp has kb, rows and
of iteration k, B Cr has m — kb, rows.

k=0,1,2,...,m/by — 1

C
Upon exiting the loop (XT > where C'p has 0 rows and thus
B
Xp=X

Notice also that the algorithm advances by by, > 0 rows at each iteration,
until Cp is 0 X n, and thus it is guaranteed to terminate. At the end of the
final iteration the loop-invariant will also hold and therefore the contents of
C will be those of U(Xp) = X.

The proof for the eager algorithm is similar. a

Theorem 2 The lazy and eager block-row oriented triangular Sylvester equ-
ation solvers in Figure 2 both require m?n 4+ mn? floating point operations.

Proof. We prove the theorem for the case where by, is constant.

In the algorithms in Figure 2 the size of Cp increases from by, X n to
(m — by,) X n, while the size of Apg increases from by, X by, to (m — by) X
(m — by,). Assuming Cp currently is ky,, X n, and Apgr is thus currently

11

km X kp,, the different parts of the matrices have the following dimensions:

m b km
PN NS
Ao | Ao1 || Aoz

0| A || Az
0] 0 [Az

tm

}om
tem

0
~~

Cg }m
Gy Yo,
Cy Yem

Here, m =m — k,;, — by,
The number of floating point operations required to move the computation
forward by by, rows in the lazy and eager versions of the algorithm is given

by

Ol = Cl — Cl — A12X2 mekmn
Q(Xl) = A11X1 + XlB = Cl b?nn + meL2
OO = CO — C() — A01X1 mekmﬁ

neglect the lower order terms in the computation of the
If we consider the algorithm to iterate for k =

For simplicity we
cost of the algorithms.

0,1,2,...,m/b,, — 1, then k,, = kby,. Table I reports the cost of these
three operations and the overall cost of the algorithms, proving the theorem.
Operation Cost
Lazy variant | Eager variant
Cy || Syt (2bkinn) = -
m2n
Q(X1) | Splem T (B2 4 bmn?) & | Sl (0 + bun?) &
mn mn
Co - Zm/bm ! (20 ki) =
m2n
Total m2n + mn? m2n + mn?

Table 1: Cost of the lazy and eager block-row oriented triangular Sylvester
equation solvers derived from R1 (lazy) and R2 (eager).

|

Notice that if the triangular Sylvester equations arising in the block-
row oriented algorithms are solved using a traditional, non-blocked solver,
m &~ n, and b, < m, half the computation is in operations involving smaller
Sylvester equations and the other half is in matrix multiplications.

12

3.2 Block-column oriented solvers

By partitioning B instead of A, we obtain “symmetric” algorithms which
compute the solution X by column blocks.

4 A Family of Blocked Algorithms

In this section we show that a partitioning of both coefficient matrices leads
to a family of sixteen different blocked solvers.

Consider starting our derivation of blocked algorithms by partitioning
both coefficient matrices into four quadrants

A ATL ATR BTL BTR
— , B— ,
0 ABR 0 BBR

where Appg is a ky, X k,;, block and Bry is a k,, X k, block. Accordingly, we
next apply a conformal partition to X and C

X Xrp || Xrr o Cre || Orr
Xpr || Xgr)’ CpL | Csr)’

where Xpg;, and Cpy, are k,,, X k, blocks.
Now, (1) becomes

(Arp | Arr) < Xry | Xorr > N (Xry | Xrr > (Bry | Brr)
0 | ABr Xpr || XBr Xpe || XBr 0 | Bar
Cri || Crr

Car || CBr

b

where, multiplying out the left-hand-side of the matrix equation, we obtain
the following equalities

ArpXrp + XrpBr, = Crp — ArrXpy,

ArpXrr + XrrBpr = Crr— ArpXpr — X1 Brrg,
AprXprL +XpLBr, = Cpp,
AprXBr + XprBpr = Cpr — XBLBrR.

13

CrL GBR
l |
QX7) Q(XBR)
l |
Crr Crr
\ /
Q(XTR)

Figure 5: Data dependencies for the partitioned triangular Sylvester matrix
equation.

We will designate these individual operations as follows:

QXry) = ArpXrr + XreBrr = Cry,
Q(Xrr) = ArprXrr+ XrrBBR = COTkR,
N(XprL) = AprXprL + XprBri = Cpi,
Q(Xpr) = AprXpr+ XprBprR = CBR, 3)
Cri, = Crp < Crp — ArrXpi,
Crr = Crr < Crr — ArrXpr,
Crr = Crr < Crr — Xr1Brrg,
Cpr = Cpr < Cpr — XprBrr.

The dependencies among the operations induce a certain order: the first
operation that must be performed is solving 2(Xpr); after that, only the
updates Crp or Cgr are possible, and so on. Figure 5 shows graphically
these data dependencies.

In order to derive blocked solvers for the triangular Sylvester equation,
we could start by considering all possible cases where some of the operations
in (3) have already been performed. However, with eight different opera-

tions, we have Z?:o ; possibilities! Luckily, due to the dependencies,

there are only sixteen valid cases, as summarized in Table 2. Notice that we
label six of these cases as symmetric.

14

Case || Operations performed Operations performed || Symm.
(Current contents of C') | (Current contents of C) || Case
c1 Cr. | Crr
QXpL) | Cer
Cri CTR Cr. | Crr
2 — 11
C (Q(XBL) (Q(AXTBL) ‘ CYBR > ¢
Cri
C3
< Q(XprL) CBR)
Q(XrrL) Crr Crr
C4 C12
< QXpr)) < Q(Xpr) | AXBR) >
Q(XTL) CTR C'TL C_’TR
Cb C13
(Q(XpL)) (Q(XpL) | AXpr)
Q(XTL) CTL CTR
14
©6 (Q(XpL) CBR) (Q(Xpr) | UXBr) > ©
o7 QXrL) | Crr
QXpr) | UXBr)
Q(XTL) CTR 7TL CTR
C8 ~ C15
< Q(XsL) | Cbr) < Q(Xpr) | UXBrR)
9 QXrr) | Crr QXrp) | Crr C16
Q(Xpr) | UXBr) QXpL) | U Xpr)
C10 Q(Xrr) | Crr,Crr
QXpr) | UXBr)

Table 2: Valid intermediate cases.

Repartition the matrices of the equation into nine blocks, as follows:

Ago | Ao || Ao2

Br 0 [0 [[Ax

B B B

Bro | Brs 00 || Bot | Bo2
0 | Bon — O || Bu | B2 |

0 0 | Bao

where A1y and By are, respectively, by, X b, and b, x b, blocks. Conformally,

15

repartition

b

Xoo || Xo1 | Xo2

(%“%) — | X || Xu1 | X2
BL |l 4R Xoo || Xo1 | X22
Coo || Co1 | Co2

(%) — | Cio | Ci1 | Cr2
BL I ~BR Cao || Co1 | Ca2

where X711 and C; are both b,, x b, blocks. Notice that, again, the double
lines mark how far (the boundaries of) the computation has progressed. For
the blocked algorithms, the solvers march in matrices X and C from the
bottom-left corner to the top-right one, moving b,, rows and b, columns
at each iteration. In A, the solvers towards the top-left corner, while in B
the direction is towards the bottom-right corner. Lower triangular matrices
A and/or B would produce all other possibilities in the direction of the
computation.

We next illustrate the derivation of a blocked algorithm resulting from a
specific case, here, C2. In this case, the current contents of C' are given by

Coo — Ap2X20 Cou | Coz
(CTL — ATRXBL H CTR > _ (ClO — A12X20 > (Cll 012 >
XBL H CBR X20 (021 ‘ 022)

)

Consider now the following repartitioning which corresponds to the next
stage where the computation has moved forward by a block of dimension
by X by,

A A A
Ay || Agg 00 H 01‘ 02
THTBR - 0 || A | A2 |
0 0 | Ay
Boo | Bo1 || Bo2
o)\ =T 0 T2a
X X X
Xpp | Xrr 00‘ 01 H 02
X—HT = | X | Xun || X2 |
Bl Bl Xog | Xo1 || Xoo
C C C
Or Il Crr 00‘ o1 H 02
C—HT — | Cio| Ci1 | Ci2
Bl Bl Cy | Co1 || Ca2

16

With this new repartitioning, we wish the contents of C' to become

< Cri — ArrXpe | Crr)

XL | Csr
Coo —(Ap2X2 | Cor —(Ag2X21 Coo
+Ap1X10) +Ap1X11)

Xy | X11 Ciz
Xoo | Xo1 C2

Therefore, in order to move the computation forward in case C2 we need to
perform the operations shown in Figure 6 (center).

Theorem 3 The algorithms in Figure 6 overwrite matriz C with the solu-
tion of the triangular Sylvester equation AX + XB = C.

Proof. The proof of this theorem is much like the one given for Theo-
rem 1. O

The next theorem derives the cost of the blocked triangular Sylvester
equation solver presented in the figure.

Theorem 4 Given that matrices X and C are m X n, A is an m X m
triangular matriz and B is an n X n triangular matriz, the blocked triangu-
lar Sylvester equation solver in Figure 6 requires m?n + mn? floating point
operations.

Proof. We prove the theorem for the case where the blocks sizes by, and
b, are constant.

In the algorithm presented in Figure 6 the size of Cpyr increases from
b, X by, to (m —by,) X (n—by), while the size of Apg increases from by, X by,
to (m—by,) X (m—by,), and that of Bry, increases from by, X by, to (n—by,) X
(n —by). Assuming Cpy, is currently ky, X ky, and Agr, Brr are currently
km X kp and ky X ky, respectively, the different parts of the matrices have
the following dimensions:

m by kn kn b n
A~~~ A~~~
Ao | Aor || Aoz Boo || Boi | B2}k,
0] An | A2 b, 0] Bui | Biz }by
0 ‘ 0 H Ago }km 0 0 Byo }T_L
kn by n
A~ A~~~
Coo || Cor | Co2 Y
Cio | Cu | Ci2 }by,

Co || Co1 | Coa Yhm

17

Algorithm 2 C «+ X, where AX +XB=C

(Blocked)

partition

A A B B C C
A—>< TL TR>, B—)(TL TR)y C—>< TL TR>7

0 ABRr

0 Bpr

where Apgpgr, Brr, and Cgp are 0 X0

do until Cpr is 0 X 0

determine block sizes b, and by,

repartition
Arp || Arr ATR
0
Brp BTR
"0 [[Ber BBR
Crr CTR
"Cpr | Cr CBR

where Ajj is by, X by

Aoo Ao || Ao2
A || Ar > ,
0 | A2

Boo | Boi | Bo2

0 Bi1 | Biz >)

0 0 Bas

Coo || Co1 | Co2

Ciwo || Cu1 | Ci2 |,

Cxo || Ca1 | Caz

Bi1 is by X by, and C1y is by, X by

CpL || CBr

C1 variant:

Cro + Cro0 — A12X20

Cho < X10, where
A11X10 + X10Boo = C1o
C11 + C11 — X10Bo1

C21 < C21 — X20Bo1

Cy1 + X921, where
A22X21 + Xo1B11 = C21
Ci1 < C11 — A12 X2

Ci1 < X11, where

An X +XnuBnn =Cn

C2 variant:

CIO < XlO, where
A11X10 + X10Boo = Cio
C11 < C11 — X10Bo1

Co1 + C21 — X20Bo1

C21 < X221, where

A2 Xo1 + X21B11 = Cn1
C11 < C11 — A12 X1

C11 ¢ X11, where

A1 X1 + X11B11 =Cn
Coo + Coo — Ao1X10
Co1 <+ Co1 — Ap1 X11

Co1 < Co1 — Ap2X21

C3 variant:

010 < XIO; where
A11X10 + X10Boo = C1o
C11 < C11 — X10Bo1

Cy1 < Xo21, where
A22X21 + X21B11 = C21
Ci1 < C11 — A12 X2

C11 < X11, where
AnXn +XnBn =Cn

Coo < Coo — Ao1X10
Co1 < Co1 — Ap1 X11
Co1 < Co1 — Ap2X21

Ci2 < C12 — X10Bo2
Cr2 + C12 — X11B12
Caz < Ca2 — X21B12

continue with

(Arp || Arr >

0 ABR

+—

+

0 Bpr

Crr || Crr
CpL || CBr

(Bry || Bra >

—

enddo

Aoo || Ao1 | Aoz

0 A | A)
0 0 Ao
Boo | Bo1 || Bo2
0 | Bu1 || Biz |,
0 0 | Bz
Coo | Co1 || Coz
Cro | C11 || C12
Cao | Co1 || Ca22

Figure 6: Blocked triangular Sylvester equation solvers derived from CI,

C2, and C3.

18

Here, m=m — k,, — by, n=n—k, — by,.
The number of floating point operations required to move the computation
forward is given by

Q(X10) = AnXio+ X10Boo = Cho b2, kn + b k2
) C11 + Ci1 — X10Bo1 20mbpkn,

Co1 = Co1 < Cy1 — Xo9Bo1 20, kmkn
N(Xo1) = ApXo + X91Bi1 =0y b2k + bpkZ,
Cr < Crp — A Xy 20,0 ko,

AnXi + X1 B =Cny b2,bn + b b?

Coo = Coo « Cop — Ao1 X10 20k
Co1 < Cor — Ap1 X11 201, m

Cor = Coi < Co1 — Ape X 20 kmm

For simplicity we neglect the lower order terms in the computation of the cost
of the algorithm, which leads us to consider only the operations denoted as
Q(X10), Co1, Q(Xa1), Coo, and Coy. If we consider the algorithm to iterate
for k = 0,1,2,... ,max(m/by,n/by) — 1, then k,, = kb, and k, = kby,.
Tauble 3 reports the cost of these five operations and the overall cost of the
algorithm, proving the theorem.
(]
As could be expected, the blocked algorithm presents the same computa-
tional cost as the serial solver. The blocked algorithms for the remaining 15
cases are obtained by simply deriving the set of operations that will satisfy
the loop-invariant in each case, and they all can be shown to present the
same cost.

5 Heuristics

In the previous section, we derived a large number of algorithms for the
solution of the triangular Sylvester equation. The question now becomes
how to design a near-optimal implementation. In this section, we present
both theoretical and practical insights that help guide the way.

First, let us review observations regarding blocked algorithms in general.
All are designed to spend a substantial part of the computation in the matrix
multiplication (GEMM) kernel. Thus, it makes sense to pick block sizes by,
and b,, that allow the individual calls to the matrix-matrix multiply to attain
the highest performance, subject to other constraints.

Consider the matrix multiplication C' < AB + C, where A is m x k, B
is k x n, and then C is m x n. In [9], it is shown that, for architectures

19

Operation Cost
/by > n/by | /b, > m[bn,
bm—1
B S (9,) +
- O ki) R | chToe or g
Cat || opynt 2 kzm by, (2bnknm) &
“3bn, 2,3
n/bp—1 _
oo (2bp k) + "
= m/by—1 _ " 2b k m
Coo | Sl b (2bmrnn) ~ bz,’% o () &
2 3
mn2 bm::n2 + bé’i,g 3bm
5 Sl 20k ~ ’,?/gm (2 k) ~
COI bmmnz Qb%ﬂls bnm
bT} 3b2 3bm
n/b,—1 B
k=0 (b k) m/bm 1 2
m Z b kn ~
Q(X10) Z;n/z/b 1(ng) ~ (bmbz)
b 3b2
mn? — 3b: _
n/bp—1 (b 2) ~ m//bm1 (b k,%l) +
W) | i il (bum?)
3b2 m2n _ 2%7;::3
Total m2n—|—mn2 m n+mn2

Table 3: Cost of the blocked triangular Sylvester equation solver derived
from C2.

with two levels of cache memory, there are two block sizes that influence
the performance of GEMM: b; and by, which are related to the size of the
L1 and L2 caches, respectively. In Table 4 we show how the three matrix
dimensions, m, n, and k affect performance of GEMM. Where it says “large”
in the table, the larger the dimensions, the better the performance.

Logic suggests that we attempt to minimize the amount of computation
in the solution of the smaller Sylvester equations that show up in the body of
the loop, thereby maximizing the amount of computation in GEMM at this
level (notice that each of these smaller Sylvester equations can be solved
using the same algorithm, generating a recursion with multiple levels). In
Section 3 we mentioned that the block-row oriented algorithms spend ap-
proximately half of the computation in these sub-problems. By symmetry,

20

‘ Shape ‘ Performance ‘

2 of m,n, k large

1of m,n,k =bo Pest
I ofm,n,k large 1
2of m,n,k =by

2ol m,n,k = by !
1of m,nk =by

Tolm,n,k =0y

2of m,n,k =0b Good
IT<m,n,k<b Worse
T or more of m,n,k = 1 Worst

Table 4: Factors affecting the performance of the matrix multiplication.

the same is true for the block-column oriented algorithms. We now show
that, if the block sizes are chosen carefully, the blocked algorithms spend
only a third of the computation in the sub-problems.

Consider the part of the total computational cost that is spent in solving
the Sylvester equations in the body of the loop if we apply, e.g., the algorithm
derived for C2, with b,,,b, < m,n. (Here we can assume without loss of
generality that m/b,, > n/b,.) At each iteration of the algorithm we need to

solve two large Sylvester equations, for 2(X9) and (X5;), with an overall

bn®
3by,

point arithmetic operations). The question therefore becomes what are the

computational cost (see Table 3) of mn? + (%—Z’“ — 2) flops (floating-
values of by, and b, that minimize this value, i.e., ming, 5.} %—Z’ (%—’ZZ — 2).
This minimum is attained for b,, = b, and, in this case, approximately a
third of the computation is spent in the sub-problems. We can conclude
that we should pursue the use of square block sizes.

Let us revisit the observations made regarding the matrix-matrix multi-
ply. The following table explains a simple heuristic:

21

Heuristic 1
Case Strategy Comment
m | n

large | large || blocked with | Calls to GEMM involve two large di-

by, = by, = by mensions and one equal to bs.
by | large || block-column Calls to GEMM involve one large di-
with b, = by mension and two equal to bs.
large | be block-row with | Calls to GEMM involve one large di-
by = by mension and two equal to bs.
by by blocked with | Calls to GEMM involve two dimensions
b = by, = b1 equal to by and one equal to b;.
by b block-column Calls to GEMM involve one dimension
with b,, = by equal to by and two equal to b;.
b1 b1 any Note that little computation is left;

blocking is less important.

By choosing different blocked and/or block-row and block-column oriented
algorithms at the different levels, a large family of different hybrid algorithms
is specified by the above table.

We now present a second heuristic. Consider the top-level blocking. If
one takes b, = b, = b, then two thirds of the computation will be in matrix
multiplication. If, on the other hand, one considers a block-row oriented
algorithm, with block size by, = bs, then only half of the computation is in
terms of the matrix-matrix multiply. However, in this second alternative,
one of the dimensions involved in the matrix-matrix multiply always equals
by, one always equals n, and the third ranges from small to large (C2 acts
as an eager algorithm). A similar observation can be made for a block-
column oriented algorithm. By contrast, if a blocked algorithm is used, one
dimension always equals by while two of the dimensions range from small
to large or vice-versa. Furthermore, when blocked algorithms are used, a
larger number of calls to GEMM are made. Thus, in practice, we can expect
the calls to GEMM employed by the block-row or block-column algorithms to
attain higher performance than the calls employed by the blocked algorithms
when b,, = b, = by. Thus, a second heuristic becomes

22

Heuristic 2

Case Strategy Comment
m | n

large | large || block-row with | Calls to GEMM involve two large di-

b=0by mensions and one equal to bs.
by | large || block-column Calls to GEMM involve one large di-
with b = by mension and two equal to bs.
large | be block-row with | Calls to GEMM involve one large di-
b=0by mension and two equal to bs.
by by block-row with | Calls to GEMM involve two dimensions
b="0b; equal to by and one equal to b;.
by b block-column Calls to GEMM involve one dimension
with b =b; equal to by and two equal to b;.
b1 b1 any Note that little computation is left;

blocking is less important.

This second heuristic does not require blocked algorithms. However,
we now show that by picking b, and b, carefully, some blocked algorithms
can be used to implement the second heuristic in a particularly elegant
fashion. Notice that by setting b,, = m or b, = n, some of the cases of the
blocked algorithms become either block-column or block-row algorithms,
respectively:

Resulting algorithm Cases

b =m | b, =n
Lazy block-column C1, C2, C4, Cb
Eager block-column || C3, C6, C8, C11 -
Lazy block-row - C1, C11, C12, C13
Eager block-row - C2, C3, Cl14, C15

Notice that four variants, Cl, C2, C3, and C11, have the property that
by picking the block sizes carefully, they can become either block-row or
block-column algorithms. For these variants, the following strategy will
automatically generate an algorithm which conforms the second heuristic:
recursively call the given algorithm with, progressively, the block sizes by x n,
ba X ba, by X ba, by x by, followed by some strategy for solving the small
b1 x by Sylvester equation sub-problems that remain at the lowest level of
the recursion. For example, we can employ the same algorithm to reduce the
sub-problem to a certain size, by X n, apply an additional level of recursion
to reduce it further to by x by, and solve this square sub-problems using a
non-blocked algorithm.

23

6 Experimental Results

In this section we report the performance attained by our algorithms as the
rate of computations achieved in millions of flops per second (MFLOPS /sec).
We consider here triangular Sylvester equations of dimension m X n, and an
operation count of m?n 4+ mn? flops.

We report performance on an Intel (R) Pentium III (650 MHz) processor
with a 16 Kbyte L1 data cache and a 256 Kbyte L2 cache running RedHat
Linux 7.1. All computations were performed in 64-bit (double precision)
arithmetic, and the same options were used when compiling the different
implementations.

We analyze performance for five different implementations, indicated by
the curves marked as follows:

unb: Eager column-oriented implementation using Fortran-77. (We also
implemented eager/lazy and row-/column-oriented variants, but the
results were inferior for those). Due to the poor performance of this
approach we only report results for the smaller problem sizes.

Trad. Dblocked: Row-eager/column-eager blocked implementation of the
solver using using Fortran-77, similar to that in Figure 1. (We also
implemented all other variants; their performance proved inferior).

Cl, C2, and C3: Our implementations of the solvers using FLAME and
the heuristics described in the previous section. At the lowest level
of the recursion, the sub-problems are computed using the unblocked
(unb) solver. For ITXGEMM we determined by, by, and by experimen-
tally to be 16, 64, and 128, respectively. For ATLAS these values were,
respectively, 20, 40, and 120. The reason for the difference between
the block sizes for ITXGEMM and ATLAS lies in the details of the im-
plementations of these packages [9].

Although we implemented all blocked, block-row, and block-column algo-
rithms, we only present results for C1, C2, and C3, as C11 is symmetric with
C2, the remaining blocked algorithms obtained slightly worse performance.
Also we already argued that the block-row and block-column algorithms are
special cases of C1, C2, C3, and C11.

Figure 7 reports the performance for these algorithms using ITXGEMM
(top) and ATLAS R3.2 (bottom). We also include the performance of the
GEMM routine for a matrix multiplication with k£ = b, (a rank-k update) for
reference. We only report the results using the second heuristic described in

24

the previous section, with block sizes by X 1, by X by, by X by, by X by, by X by,
and by X by, for the different levels of the recursion.

For the largest problem sizes, the performance attained by our algo-
rithms using the second heuristic is close to 90% of that achieved for the
matrix-matrix multiply kernel in ITXGEMM (around 530 MFLOPS/sec.).
The same kernel from ATLAS achieves a somewhat lower performance (510
MFLOPS/sec.), which partially explains the lower performance of the solvers
when this GEMM kernel is employed.

Figure 8 reports the performance of the best solver (that derived from
C3) using both Heuristic 1 and Heuristic 2. It appears that on this archi-
tecture the algorithms benefit from the larger matrix sizes involved in the
calls to GEMM in Heuristic 2.

Although not reported here, our solvers, when linked to ATLAS R3.2,
obtain performance similar to that reported in [12] when we adjust for the
different clock rate of the processor on which they performed their experi-
ments.

7 Concluding Remarks

In this paper, we have made a number of contributions to the solution of
the triangular Sylvester equation. These include:

e The systematic derivation and proof of correctness of a family of al-
gorithms using the FLAME approach.

e The implementation of the family using the FLAME library.

e A heuristic for composing high-performance implementations from mem-
bers of the family of algorithms.

e A demonstration of excellent performance.

e Altogether, we have presented dozens of new algorithms for the solu-
tion of this problem.

Many of our observations can be extended to blocked algorithms for
dense linear algebra operations in general. These include:

e The FLAME approach is a powerful tool for the derivation of provably
correct blocked algorithms.

e The FLAME library provides a prototype environment for the rapid
implementation of such algorithms.

25

