
Formal Derivation of Algorithms:The Triangular Sylvester EquationEnrique S. Quintana-Ort��� Robert A. van de GeijnySeptember 18, 2001AbstratIn this paper we apply a formal approah for the derivation of denselinear algebra algorithms to the triangular Sylvester equation. The re-sult is a large family of provably orret algorithms. By using a odingstyle that reets the algorithms as they are naturally presented, theorretness of the algorithms arries through to the orretness of theimplementations. Analytially motivated heuristis are used to sub-sequently hoose members from the family that an be expeted toyield high performane. Finally, we report performane on the Intel(R) Pentium III proessor that is superior to that reported previouslyin the literature for this operation.1 IntrodutionIn a reent paper the Formal Linear Algebra Methods Environment (FLA-ME) was introdued [10℄. FLAME is both a systemati approah for deriving(dense) linear algebra algorithms and a library for the implementation of theresulting algorithms. The rationale is that by formally deriving algorithms,orretness an be asserted. Moreover, by providing a framework for odingthat mirrors the derived algorithms, the opportunity for the introdution ofoding errors is greatly redued and thus the orretness of the algorithmsarries through to the implementations. In that paper the simple example ofLU fatorization was used to illustrate the basi tehniques. In this paper, we�Departamento de Ingenier��a y Cienia de Computadores, Universidad Jaume I,12.080{Castell�on, Spain, quintana�i.uji.esyDepartment of Computer Sienes, The University of Texas at Austin, Austin, TX78712, rvdg�s.utexas.edu 1

demonstrate the versatility of FLAME by onentrating on a more omplexlinear algebra operation, the solution of a triangular Sylvester equation.While the solution of the triangular Sylvester equation is a well-studiedproblem, this paper presents a number of ontributions:� An illustration of the appliation of FLAME to a problem arising inontrol theory.� The derivation of a large family of provably orret algorithms whihinludes, as a small subset, algorithms that are losely related to knowntraditional methods as well as reently proposed reursive algorithms.� An analysis that provides heuristis for omposing members of thefamily to yield the best performane.� A demonstration of performane that is superior to any previouslyreported.Altogether, dozens of new, high-performane, algorithms and implementa-tions are given.While this paper is written to be self-ontained, it is highly reommendedthat the reader onsults the earlier paper on FLAME as well as a reentpaper that gives theoretial insight into high-performane matrix multipli-ation algorithms [9℄. This paper is strutured as follows: In Setion 2, wereview the triangular Sylvester equation and traditional algorithms for itssolution. We derive algorithms that are losely related to traditional algo-rithms in Setion 3, and a more general family in Setion 4. In Setion 5 wedesribe insights that we use to identify andidates from the family that arelikely to yield the best performane. Performane results on an Intel (R)Pentium III proessor are given in Setion 6. Conluding remarks follow inthe �nal setion.2 The triangular Sylvester equationConsider the Sylvester equationAX +XB = C; (1)where A is an m�m matrix, B is n� n, C and X are m� n, and X is thesought-after solution. Let �(A) = f�i gmi=1 and �(B) = f�j gnj=1 denote,respetively, the eigenspetra of A and B; then (1) has a (unique) solutionif and only if �i + �j 6= 0 for all i = 1; : : : ;m and j = 1; : : : ; n. For further2

details on the existene of solutions of the Sylvester equation and numerialsolvers see, e.g., [3, 7, 11℄.Sylvester equations have numerous appliations in ontrol theory, signalproessing, �ltering, image restoration, the deoupling of ordinary and par-tial di�erential equations, and blok-diagonalization of matries; see, e.g.,[1, 5, 8, 14℄. Also note that B = AT yields the Lyapunov equation suh thateverything derived here an be used (and simpli�ed) for this type of equa-tions playing a vital role in many areas of omputer-aided ontrol systemdesign.Here we fous on the triangular ase of the Sylvester equation where theoeÆient matries, A and B, are upper triangular. (Though any or bothof these matries ould have been redued instead to lower triangular form,the study of these other ases leads to algorithms similar to those desribedin this paper.) This triangular form is a \by-produt" obtained, e.g., in thesolver developed in [3℄. In their algorithm, the oeÆient matries are �rstredued to the Shur form using the QR algorithm [8℄, and the orrespondingtransformation matries are applied to C. The triangular Sylvester equationthus obtained is solved using a bak-substitution proedure similar to a tri-angular linear system with multiple right-hand sides. The ost of solving thetriangular Sylvester equation of dimension m� n, using a traditional serial(non-bloked) algorithm, is m2n+mn2 oating point operations [8℄. Onethis triangular equation is solved, the inverse transformations are applied toreover the solution of the original equation.If all matries in the equation have real entries and only real arithmetiis desired, the QR algorithm an be used to obtain the real Shur (or quasi-triangular) form of the oeÆient matries, a blok upper triangular formwith 1� 1 or 2� 2 diagonal bloks orresponding respetively to real eigen-values or pairs of omplex eigenvalues of the matries.Bloked algorithms usually obtain a higher performane in modern om-puters by rearranging the omputations as possible in terms of matrix mul-tipliation [6℄. LAPACK [2℄ is a library that illustrates the bene�ts of re-formulating algorithms to be rih in matrix-matrix produts. Some of thelatest researh on high-performane implementation of matrix multipliationis embodied in the pakages atlas [15℄, phipa [4℄, and itxgemm [9℄.Bloked algorithms for solving the triangular Sylvester equation an eas-ily be derived from the serial algorithms and are usually omposed of twonested loops whih iterate over bloks of olumns and rows of the solutionmatrix. For eah iteration of the inner loop a new blok of the solution isobtained. Depending on the algorithm, some updates may be needed beforea new blok of the solution is obtained (leading to a lazy algorithm, whih3

postpones muh of the work) or after it is omputed (an eager algorithm insuh ase).As an example, we next present a traditional row-lazy/olumn-eagerbloked triangular Sylvester equation solver. Assume A is partitioned intobm � bm bloks, Ai;j, i; j = 1; : : : ;m=bm, and B is partitioned into bn �bn bloks, Bi;j, i; j = 1; : : : ; n=bn. Hereafter, we assume that m and nare integer multiples of bm and bn, respetively. These partitions indueonformal partitions of X and C into bm � bn bloks. Setting both bm andbn to 1 leads to element-wise algorithms, while setting only one of themprodues row-oriented or olumn-oriented variants.The algorithm is stated in Figure 1, where we borrow the olon notationfrom matlab. This algorithm an easily be modi�ed to overwrite C with thesolution of the equation. The Sylvester equation arising at eah iteration ofthe inner loop is usually solved using a non-bloked, row-oriented or olumn-oriented version of the algorithm. Notie that, just before a new blokof the solution is obtained, the orresponding blok-row of C is updatedwith respet to the previous bloks of X in the same blok-olumn, leadingto a row-lazy updating sheme. On the other hand, when this new blokis omputed, it is used to update the remaining bloks of C in the sameblok-row in a olumn-eager updating sheme. Three more variants of thealgorithm are obtained by rearranging the updates to be row-lazy/eager andolumn-lazy/eager [13℄.for i = m=bm : �1 : 1for j = 1 : n=bnCi;j = Ci;j �Ai;i+1:m=bmXi;i+1:m=bm;jsolve Ai;iXi;j +Xi;jBj;j = Ci;jCi;j+1:n=nb = Ci;j+1:n=nb �Xi;jBj;j+1:n=nbendendFigure 1: Row-lazy/olumn-eager bloked triangular Sylvester equationsolver.Reursive variants of these solvers have been reently developed in [12℄.Briey, a reursive algorithm employs the same algorithm for solving theSylvester equation in the inner loop, but uses a smaller dimension of theblok sizes bm and bn. The higher eÆieny of these algorithms is obtainedby deoupling the dimensions of the bloks for the matrix multipliationsfrom those of the Sylvester equations. The goal is to perform as muh4

of the omputation in terms of matrix multipliations as is possible, whilemaximizing the size of the matries involved in these produts.3 Row- or Column-Oriented AlgorithmsWe �rst derive two blok-row oriented (with respet to matrix C) solvers bypartitioning only the �rst of the oeÆient matries, A (see Subsetion 3.1).Analogous blok-olumn oriented versions are obtained by partitioning Binstead of A, as suggested in Subsetion 3.2.3.1 Blok-row oriented solversLet us onsider equation (1) where, in order to redue the number of ma-tries, we want to overwrite matrix C with the solution of the equation,X. We start our derivation of blok-row oriented algorithms by partitioningmatrix A into four quadrantsA! ATL ATRABL = 0 ABR ! ;where ABR is a km � km blok. The indies fTLg, fTRg, fBLg, and fBRgstand for top-left, top-right, bottom-left, and bottom-right, respetively.Aordingly, we next apply a onformal partition to X and C by bloks ofrows X ! XTXB ! ; C ! CTCB ! ;where XB and CB are km � n bloks. Here fTg and fBg stand for top andbottom, respetively.With these partitionings, equation (1) an be rewritten as ATL ATR0 ABR ! XTXB !+ XTXB !B = CTCB ! ;and multiplying out the left-hand-side of the matrix equation, we obtain thefollowing equalitiesATLXT +ATRXB +XTB = CT ;ABRXB +XBB = CB :5

Thus, the omputation of X requires solving two di�erent Sylvester equa-tions and performing a matrix update on CT , whih we designate as follows:
(XT) � ATLXT +XTB = CT ;
(XB) � ABRXB +XBB = CB ;�CT � CT CT �ATRXB : (2)Notie that there are data dependenies whih indue a strit order on thesequene of operations. First, the solution of
(XB) is obtained, then theupdate �CT is omputed and, �nally,
(XT) is solved.The FLAME approah to deriving algorithms based on these partition-ings starts by onsidering the following two questions:i) What part of the omputation has already been performed at a ertainstage (iteration)? The answer is a ondition that is alled the loop-invariant for the algorithm.ii) How an we advane the omputation so that the loop-invariant is sat-is�ed at the beginning of the next stage? The answer to this questionyields the updates (to the matrix) that omprise the body of the loop.To answer the �rst question we onsider a ertain (intermediate) situa-tion (ase) where some of the operations in (2) have been performed. Theinstanes where no operations have been performed or all of them are alreadyperformed are not onsidered valid intermediate ases. With three di�erentoperations and the data dependenies, we have only two valid ases:Case Operations ompleted Current ontents of CR1
(XB) CTXB !R2 �CT ,
(XB) CT �ATRXBXB !The urrent ontent of C (right-most olumn) beomes the ondition thatde�nes the loop-invariant of the algorithm.Now, in order to answer the seond question, we derive the steps thatallow the omputation of X to proeed forward (up) by bm rows, i.e., theoperations that will allow the loop-invariant to be satis�ed at the beginningof the next iteration. To derive these steps, we repartition matrix A as ATL ATR0 ABR !! 0B� A00 A01 A020 A11 A120 0 A22 1CA ;6

where A11 is an bm�bm blok. The parameter bm determines the granularityof our blok-row oriented algorithm. By setting bm = 1 we obtain a non-bloked row-oriented algorithm. (If A is quasi-triangular, bm an be variedduring the omputation so that a 2�2 diagonal blok is not divided betweentwo diagonal bloks in this last partition.) Conformally, apply the followingrepartitions to X and C XTXB !! 0B� X0X1X2 1CA ; CTCB !! 0B� C0C1C2 1CA ;where X1 and C1 are bm�n bloks. The double lines in these partitioningsindiate how far the omputation has progressed.3.1.1 Lazy algorithmIf we wish to maintain ondition R1, we assume that X2 is urrently avail-able, while C2 and A22 have been used for this purpose. Moving the om-putation forward by bm rows therefore is equivalent to moving the doublelines up by bm rows, so that X1 is also available. In other words, we knowthat urrently C holds CTXB ! = 0B� C0C1X2 1CA :Now, onsider that the omputation has e�etively moved forward bybm rows, leading to ATL ATR0 ABR !! 0B� A00 A01 A020 A11 A120 0 A22 1CA ; XTXB !! 0B� X0X1X2 1CA ; CTCB !! 0B� C0C1C2 1CA :Notie that after the lines have moved, we need the ontents of C to beome CTXB ! = 0B� C0X1X2 1CA :7

The question now is, for ase R1, what is the sequene of operations whihallows the omputation to move forward while maintaining the indiatedloop-invariant. As the Sylvester equation for X2 was already solved at thebeginning of the stage, we onlude that we need only to perform the oper-ations: C1 C1 �A12X2;A11X1 +X1B = C1:This proedure leads us to an algorithm that an be lassi�ed as \lazy".Before omputing a new blok-row of X, this blok is updated with respetto the blok-rows of X that have been previously omputed. The algorithmis stated in Figure 2. To illustrate how the FLAME library allows ode tomirror the derived algorithm, thus largely inheriting the proven orretness,an implementation using FLAME is given in Figure 4.For those more omfortable with traditional algorithms, this is equivalentto the solver in Figure 3 (left). The lazy algorithms just presented, in theFLAME and the traditional formulations, are speial ases of the algorithmin Figure 1, with bn = n.3.1.2 Eager algorithmThe eager variant of the algorithm is obtained from ase R2, as we shownext. In this ase the omputation has proeeded forward to solve
(XB)and perform the update �CT . Thus, C urrently ontains: CT �ATRXBXB ! = 0B� C0 �A02X2C1 �A12X2X2 1CA :With the boundaries of the omputation moved forward by bm rows, theloop-invariant that must be satis�ed for the next stage is given by CT �ATRXBXB ! = 0B� C0 �A02X2 �A01X1X1X2 1CAThus, in order to move the omputation forward while maintaining the loop-invariant for this ase, we onlude that we need to perform the followingoperations: A11X1 +X1B = C1;C0 C0 �A01X1:8

Algorithm 1 C X, where AX +XB = C(Blok-row oriented)partitionA! � ATL ATR0 ABR � ; C ! � CTCB � ;where ABR is 0� 0 and CB is 0� ndo until CB is 0� ndetermine blok size bmrepartition� ATL ATR0 ABR �!0� A00 A01 A020 A11 A120 0 A22 1A ; � CTCB �!0� C0C1C2 1Awhere A11 is bm � bm and C1 is bm � nLazy variant:C1 C1 �A12X2C1 X1; whereA11X1 +X1B = C1 Eager variant:C1 X1; whereA11X1 +X1B = C1C0 C0 �A01X1ontinue with� ATL ATR0 ABR � 0� A00 A01 A020 A11 A120 0 A22 1A ; � CTCB � 0� C0C1C2 1AenddoFigure 2: Lazy and eager row-blok oriented triangular Sylvester equationsolvers derived from R1 (lazy) and R2 (eager).for i = m=bm : �1 : 1Lazy variant: Eager variant:Ci;: = Ci;: �Ai;i+1:m=bmXi+1:m=bm;: solve Ai;iXi;: +Xi;:B = Ci;:solve Ai;iXi;: +Xi;:B = Ci;: C1:i�1;: = C1:i�1;: �A1:i�1;iXi;:endFigure 3: Lazy and eager traditional row-blok oriented triangular Sylvesterequation solvers. 9

int FLA_Syl_Lazy_Blok-Row(FLA_Obj A, FLA_Obj B, FLA_Obj C, int bm){ // Delaration of loal objets...FLA_Part_2x2(A, &ATL, /**/ &ATR,/* ********** */&ABL, /**/ &ABR,/* with */ 0, /* by */ 0, /* submatrix */ FLA_BR);FLA_Part_2x1(C, &CT,/**/&CB,/* with length */ 0, /* submatrix */ FLA_BOTTOM);while (FLA_Obj_length(CT) != 0){FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, &A01, /**/ &A02,/**/ &A10, &A11, /**/ &A12,/* ******** */ /* ********************* */ABL, /**/ ABR, &A20, &A21, /**/ &A22,/* with */ bm, /* by */ bm, /* A11 split from */ FLA_TL);FLA_Repart_2x1_to_3x1(CT, &C0,&C1,/**/ /**/CB, &C2,/* with length */ bm, /* C1 split from */ FLA_TOP);/* *** *//* C1 <- C1 - A12 X2 */FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,MINUS_ONE, A12, C2, ONE, C1);/* C1 <- X1, where X1 solves A11 X1 + X1 B = C1 */FLA_Syl_level2(A11, B, C1);/* ** */FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, /**/ A01, A02,/* ********** */ /* ******************* *//**/ A10, /**/ A11, A12,&ABL, /**/ &ABR, A20, /**/ A21, A22,/* with A11 added to submatrix */ FLA_BR);FLA_Cont_with_3x1_to_2x1(&CT, C0,/**/ /**/C1,&CB, C2,/* with C1 added to submatrix */ FLA_BOTTOM);// Free loal objets...}Figure 4: Lazy blok-row oriented triangular Sylvester equation solver im-plemented using FLAME. 10

The algorithm is stated in Figure 2 and is equivalent to the traditional eagervariant shown in Figure 3 (right).3.1.3 Proving orretness and ostThe following theorems proves the orretness of the the lazy and eagerblok-row oriented algorithms and present their omputational ost.Theorem 1 The lazy and eager blok-row oriented triangular Sylvester equ-ation solvers in Figure 2 overwrite matrix C with the solution of the trian-gular Sylvester equation AX +XB = C.Proof. The following table summarizes the ontents of matrix C atvarious stages of the lazy algorithm:Stage Contents CommentBefore entering the loop CTXB ! where XB has 0 rows, and thusCT = CAt the beginningof iteration k,k = 0; 1; 2; : : : ;m=bm � 1 CTXB ! where XB has kbm rows andCT has m� kbm rows.Upon exiting the loop CTXB ! where CT has 0 rows and thusXB = XNotie also that the algorithm advanes by bm > 0 rows at eah iteration,until CT is 0� n, and thus it is guaranteed to terminate. At the end of the�nal iteration the loop-invariant will also hold and therefore the ontents ofC will be those of
(XB) = X.The proof for the eager algorithm is similar. 2Theorem 2 The lazy and eager blok-row oriented triangular Sylvester equ-ation solvers in Figure 2 both require m2n+mn2 oating point operations.Proof. We prove the theorem for the ase where bm is onstant.In the algorithms in Figure 2 the size of CB inreases from bm � n to(m� bm)� n, while the size of ABR inreases from bm � bm to (m� bm)�(m � bm). Assuming CB urrently is km � n, and ABR is thus urrently
11

km � km, the di�erent parts of the matries have the following dimensions:�m bm kmz}|{A00 z}|{A01 z}|{A020 A11 A120 0 A22 g �mgbmgkm nz}|{C0C1C2 g �mgbmgkmHere, �m = m� km � bm.The number of oating point operations required to move the omputationforward by bm rows in the lazy and eager versions of the algorithm is givenby �C1 � C1 C1 �A12X2 2bmkmn
(X1) � A11X1 +X1B = C1 b2mn+ bmn2�C0 � C0 C0 �A01X1 2bmkm�nFor simpliity we neglet the lower order terms in the omputation of theost of the algorithms. If we onsider the algorithm to iterate for k =0; 1; 2; : : : ;m=bm � 1, then km = kbm. Table 1 reports the ost of thesethree operations and the overall ost of the algorithms, proving the theorem.Operation CostLazy variant Eager variant�C1 Pm=bm�1k=0 (2bmkmn) � {m2n
(X1) Pm=bm�1k=0 �b2mn+ bmn2� � Pm=bm�1k=0 �b2mn+ bmn2� �mn2 mn2�C0 { Pm=bm�1k=0 (2bmkm�n) �m2nTotal m2n+mn2 m2n+mn2Table 1: Cost of the lazy and eager blok-row oriented triangular Sylvesterequation solvers derived from R1 (lazy) and R2 (eager). 2Notie that if the triangular Sylvester equations arising in the blok-row oriented algorithms are solved using a traditional, non-bloked solver,m � n, and bm � m, half the omputation is in operations involving smallerSylvester equations and the other half is in matrix multipliations.12

3.2 Blok-olumn oriented solversBy partitioning B instead of A, we obtain \symmetri" algorithms whihompute the solution X by olumn bloks.4 A Family of Bloked AlgorithmsIn this setion we show that a partitioning of both oeÆient matries leadsto a family of sixteen di�erent bloked solvers.Consider starting our derivation of bloked algorithms by partitioningboth oeÆient matries into four quadrantsA! ATL ATR0 ABR ! ; B ! BTL BTR0 BBR ! ;where ABR is a km� km blok and BTL is a kn� kn blok. Aordingly, wenext apply a onformal partition to X and CX ! XTL XTRXBL XBR ! ; C ! CTL CTRCBL CBR ! ;where XBL and CBL are km � kn bloks.Now, (1) beomes ATL ATR0 ABR ! XTL XTRXBL XBR !+ XTL XTRXBL XBR ! BTL BTR0 BBR != CTL CTRCBL CBR ! ;where, multiplying out the left-hand-side of the matrix equation, we obtainthe following equalitiesATLXTL +XTLBTL = CTL �ATRXBL;ATLXTR +XTRBBR = CTR �ATRXBR �XTLBTR;ABRXBL +XBLBTL = CBL;ABRXBR +XBRBBR = CBR �XBLBTR:
13

XBLΩ()

TLXΩ() XBRΩ()

BRC

XTRΩ()

TRC TRC

TLC

Figure 5: Data dependenies for the partitioned triangular Sylvester matrixequation.We will designate these individual operations as follows:
(XTL) � ATLXTL +XTLBTL = CTL;
(XTR) � ATLXTR +XTRBBR = CTR;
(XBL) � ABRXBL +XBLBTL = CBL;
(XBR) � ABRXBR +XBRBBR = CBR;�CTL � CTL CTL �ATRXBL;�CTR � CTR CTR �ATRXBR;ĈTR � CTR CTR �XTLBTR;�CBR � CBR CBR �XBLBTR: (3)
The dependenies among the operations indue a ertain order: the �rstoperation that must be performed is solving
(XBL); after that, only theupdates �CTL or �CBR are possible, and so on. Figure 5 shows graphiallythese data dependenies.In order to derive bloked solvers for the triangular Sylvester equation,we ould start by onsidering all possible ases where some of the operationsin (3) have already been performed. However, with eight di�erent opera-tions, we have P8i=0 8i ! possibilities! Lukily, due to the dependenies,there are only sixteen valid ases, as summarized in Table 2. Notie that welabel six of these ases as symmetri.14

Case Operations performed Operations performed Symm.(Current ontents of C) (Current ontents of C) CaseC1 CTL CTR
(XBL) CBR !C2 �CTL CTR
(XBL) CBR ! CTL CTR
(XBL) �CBR ! C11C3 �CTL CTR
(XBL) �CBR !C4
(XTL) CTR
(XBL) CBR ! CTL CTR
(XBL)
(XBR) ! C12C5
(XTL) ĈTR
(XBL) CBR ! CTL �CTR
(XBL)
(XBR) ! C13C6
(XTL) CTR
(XBL) �CBR ! �CTL CTR
(XBL)
(XBR) ! C14C7
(XTL) CTR
(XBL)
(XBR) !C8
(XTL) ĈTR
(XBL) �CBR ! �CTL �CTR
(XBL)
(XBR) ! C15C9
(XTL) �CTR
(XBL)
(XBR) !
(XTL) ĈTR
(XBL)
(XBR) ! C16C10
(XTL) ĈTR; �CTR
(XBL)
(XBR) !
Table 2: Valid intermediate ases.Repartition the matries of the equation into nine bloks, as follows: ATL ATR0 ABR !! 0B� A00 A01 A020 A11 A120 0 A22 1CA ; BTL BTR0 BBR !! 0B� B00 B01 B020 B11 B120 0 B22 1CA ;where A11 and B11 are, respetively, bm�bm and bn�bn bloks. Conformally,15

repartition XTL XTRXBL XBR !! 0B� X00 X01 X02X10 X11 X12X20 X21 X22 1CA ; CTL CTRCBL CBR !! 0B� C00 C01 C02C10 C11 C12C20 C21 C22 1CA ;where X11 and C11 are both bm � bn bloks. Notie that, again, the doublelines mark how far (the boundaries of) the omputation has progressed. Forthe bloked algorithms, the solvers marh in matries X and C from thebottom-left orner to the top-right one, moving bm rows and bn olumnsat eah iteration. In A, the solvers towards the top-left orner, while in Bthe diretion is towards the bottom-right orner. Lower triangular matriesA and/or B would produe all other possibilities in the diretion of theomputation.We next illustrate the derivation of a bloked algorithm resulting from aspei� ase, here, C2. In this ase, the urrent ontents of C are given by CTL �ATRXBL CTRXBL CBR ! = 0BB� C00 �A02X20C10 �A12X20 ! C01 C02C11 C12 !X20 � C21 C22 � 1CCA :Consider now the following repartitioning whih orresponds to the nextstage where the omputation has moved forward by a blok of dimensionbm � bn ATL ATR0 ABR !! 0B� A00 A01 A020 A11 A120 0 A22 1CA ; BTL BTR0 BBR !! 0B� B00 B01 B020 B11 B120 0 B22 1CA ; XTL XTRXBL XBR !! 0B� X00 X01 X02X10 X11 X12X20 X21 X22 1CA ; CTL CTRCBL CBR !! 0B� C00 C01 C02C10 C11 C12C20 C21 C22 1CA :16

With this new repartitioning, we wish the ontents of C to beome CTL �ATRXBL CTRXBL CBR !
= 0BBBB� C00 �(A02X20+A01X10) C01 �(A02X21+A01X11) ! C02 X10 X11X20 X21 ! C12C22 ! 1CCCCA :Therefore, in order to move the omputation forward in ase C2 we need toperform the operations shown in Figure 6 (enter).Theorem 3 The algorithms in Figure 6 overwrite matrix C with the solu-tion of the triangular Sylvester equation AX +XB = C.Proof. The proof of this theorem is muh like the one given for Theo-rem 1. 2The next theorem derives the ost of the bloked triangular Sylvesterequation solver presented in the �gure.Theorem 4 Given that matries X and C are m � n, A is an m � mtriangular matrix and B is an n� n triangular matrix, the bloked triangu-lar Sylvester equation solver in Figure 6 requires m2n+mn2 oating pointoperations.Proof. We prove the theorem for the ase where the bloks sizes bm andbn are onstant.In the algorithm presented in Figure 6 the size of CBL inreases frombm� bn to (m� bm)� (n� bn), while the size of ABR inreases from bm� bmto (m�bm)� (m�bm), and that of BTL inreases from bn�bn to (n�bn)�(n� bn). Assuming CBL is urrently km � kn, and ABR, BTL are urrentlykm � km and kn � kn, respetively, the di�erent parts of the matries havethe following dimensions:�m bm kmz}|{A00 z}|{A01 z}|{A020 A11 A120 0 A22 g �mgbmgkm kn bn �nz}|{B00 z}|{B01 z}|{B020 B11 B120 0 B22 gkngbng�nkn bn �nz}|{C00 z}|{C01 z}|{C02C10 C11 C12C20 C21 C22 g �mgbmgkm 17

Algorithm 2 C X, where AX +XB = C(Bloked)partitionA! � ATL ATR0 ABR � ; B ! � BTL BTR0 BBR � ; C ! � CTL CTRCBL CBR � ;where ABR, BTL, and CBL are 0� 0do until CTR is 0� 0determine blok sizes bm and bnrepartition� ATL ATR0 ABR �! A00 A01 A020 A11 A120 0 A22 ! ;� BTL BTR0 BBR �! B00 B01 B020 B11 B120 0 B22 ! ;� CTL CTRCBL CBR �! C00 C01 C02C10 C11 C12C20 C21 C22 ! ;where A11 is bm � bm, B11 is bn � bn, and C11 is bm � bnC1 variant:C10 C10 � A12X20C10 X10, whereA11X10 +X10B00 = C10C11 C11 �X10B01C21 C21 �X20B01C21 X21, whereA22X21 +X21B11 = C21C11 C11 � A12X21C11 X11, whereA11X11 +X11B11 = C11
C2 variant:C10 X10, whereA11X10 +X10B00 = C10C11 C11 �X10B01C21 C21 �X20B01C21 X21, whereA22X21 +X21B11 = C21C11 C11 � A12X21C11 X11, whereA11X11 +X11B11 = C11C00 C00 � A01X10C01 C01 � A01X11C01 C01 � A02X21

C3 variant:C10 X10, whereA11X10 +X10B00 = C10C11 C11 �X10B01C21 X21, whereA22X21 +X21B11 = C21C11 C11 �A12X21C11 X11, whereA11X11 +X11B11 = C11C00 C00 �A01X10C01 C01 �A01X11C01 C01 �A02X21C12 C12 �X10B02C12 C12 �X11B12C22 C22 �X21B12ontinue with� ATL ATR0 ABR � A00 A01 A020 A11 A120 0 A22 ! ;� BTL BTR0 BBR � B00 B01 B020 B11 B120 0 B22 ! ;� CTL CTRCBL CBR � C00 C01 C02C10 C11 C12C20 C21 C22 !enddoFigure 6: Bloked triangular Sylvester equation solvers derived from C1,C2, and C3. 18

Here, �m = m� km � bm, �n = n� kn � bn.The number of oating point operations required to move the omputationforward is given by
(X10) � A11X10 +X10B00 = C10 b2mkn + bmk2nC11 C11 �X10B01 2bmbnkn�C21 � C21 C21 �X20B01 2bnkmkn
(X21) � A22X21 +X21B11 = C21 b2nkm + bnk2mC11 C11 �A12X21 2bmbnkmA11X11 +X11B11 = C11 b2mbn + bmb2n�C00 � C00 C00 �A01X10 2bmkn �mC01 C01 �A01X11 2bmbn �m�C01 � C01 C01 �A02X21 2bnkm �mFor simpliity we neglet the lower order terms in the omputation of the ostof the algorithm, whih leads us to onsider only the operations denoted as
(X10), �C21,
(X21), �C00, and �C01. If we onsider the algorithm to iteratefor k = 0; 1; 2; : : : ;max(m=bm; n=bn) � 1, then km = kbm and kn = kbn.Table 3 reports the ost of these �ve operations and the overall ost of thealgorithm, proving the theorem. 2As ould be expeted, the bloked algorithm presents the same omputa-tional ost as the serial solver. The bloked algorithms for the remaining 15ases are obtained by simply deriving the set of operations that will satisfythe loop-invariant in eah ase, and they all an be shown to present thesame ost.5 HeuristisIn the previous setion, we derived a large number of algorithms for thesolution of the triangular Sylvester equation. The question now beomeshow to design a near-optimal implementation. In this setion, we presentboth theoretial and pratial insights that help guide the way.First, let us review observations regarding bloked algorithms in general.All are designed to spend a substantial part of the omputation in the matrixmultipliation (gemm) kernel. Thus, it makes sense to pik blok sizes bmand bn that allow the individual alls to the matrix-matrix multiply to attainthe highest performane, subjet to other onstraints.Consider the matrix multipliation C AB + C, where A is m� k, Bis k � n, and then C is m � n. In [9℄, it is shown that, for arhitetures19

Operation Costm=bm � n=bn n=bn > m=bm�C21 Pn=bn�1k=0 (2bnkmkn) �2bmn33bn Pm=bm�1k=0 (2bnkmkn)+Pn=bn�1k=m=bm (2bnknm) �mn2 � b2nm33b2m�C00 Pn=bn�1k=0 (2bmkn �m)+Pm=bm�1k=n=bn (2bm �mn) �mn2 � bmmn2bn + b2mn33b2n Pm=bm�1k=0 (2bmkn �m) �bnm33bm�C01 Pn=bn�1k=0 (2bnkm �m) �bmmn2bn � 2b2mn33b2n Pm=bm�1k=0 (2bmkn �m) �bnm33bm
(X10) Pn=bn�1k=0 �bmk2n�+Pm=bm�1k=n=bn �bmn2� �mn2 � 2bmn33bn Pm=bm�1k=0 �bmk2n� �b2nm33b2m
(X21) Pn=bn�1k=0 �bnk2m� �b2mn33b2n Pm=bm�1k=0 �bnk2m�+Pn=bn�1k=m=bm �bnm2� �m2n� 2bnm33bmTotal m2n+mn2 m2n+mn2Table 3: Cost of the bloked triangular Sylvester equation solver derivedfrom C2.with two levels of ahe memory, there are two blok sizes that inuenethe performane of gemm: b1 and b2, whih are related to the size of theL1 and L2 ahes, respetively. In Table 4 we show how the three matrixdimensions, m, n, and k a�et performane of gemm. Where it says \large"in the table, the larger the dimensions, the better the performane.Logi suggests that we attempt to minimize the amount of omputationin the solution of the smaller Sylvester equations that show up in the body ofthe loop, thereby maximizing the amount of omputation in gemm at thislevel (notie that eah of these smaller Sylvester equations an be solvedusing the same algorithm, generating a reursion with multiple levels). InSetion 3 we mentioned that the blok-row oriented algorithms spend ap-proximately half of the omputation in these sub-problems. By symmetry,20

Shape Performane2 of m;n; k large1 of m;n; k = b2 Best1 of m;n; k large2 of m;n; k = b2 "2 of m;n; k = b21 of m;n; k = b1 #1 of m;n; k = b22 of m;n; k = b1 Good1 < m;n; k � b1 Worse1 or more of m;n; k = 1 WorstTable 4: Fators a�eting the performane of the matrix multipliation.the same is true for the blok-olumn oriented algorithms. We now showthat, if the blok sizes are hosen arefully, the bloked algorithms spendonly a third of the omputation in the sub-problems.Consider the part of the total omputational ost that is spent in solvingthe Sylvester equations in the body of the loop if we apply, e.g., the algorithmderived for C2, with bm; bn � m;n. (Here we an assume without loss ofgenerality that m=bm � n=bn.) At eah iteration of the algorithm we need tosolve two large Sylvester equations, for
(X10) and
(X21), with an overallomputational ost (see Table 3) of mn2 + bmn33bn � bmbn � 2� ops (oating-point arithmeti operations). The question therefore beomes what are thevalues of bm and bn that minimize this value, i.e., minfbm;bng bmbn � bmbn � 2�.This minimum is attained for bm = bn and, in this ase, approximately athird of the omputation is spent in the sub-problems. We an onludethat we should pursue the use of square blok sizes.Let us revisit the observations made regarding the matrix-matrix multi-ply. The following table explains a simple heuristi:
21

Heuristi 1Case Strategy Commentm nlarge large bloked withbm = bn = b2 Calls to gemm involve two large di-mensions and one equal to b2.b2 large blok-olumnwith bn = b2 Calls to gemm involve one large di-mension and two equal to b2.large b2 blok-row withbm = b2 Calls to gemm involve one large di-mension and two equal to b2.b2 b2 bloked withbm = bn = b1 Calls to gemm involve two dimensionsequal to b2 and one equal to b1.b1 b2 blok-olumnwith bn = b1 Calls to gemm involve one dimensionequal to b2 and two equal to b1.b1 b1 any Note that little omputation is left;bloking is less important.By hoosing di�erent bloked and/or blok-row and blok-olumn orientedalgorithms at the di�erent levels, a large family of di�erent hybrid algorithmsis spei�ed by the above table.We now present a seond heuristi. Consider the top-level bloking. Ifone takes bm = bn = b2, then two thirds of the omputation will be in matrixmultipliation. If, on the other hand, one onsiders a blok-row orientedalgorithm, with blok size bm = b2, then only half of the omputation is interms of the matrix-matrix multiply. However, in this seond alternative,one of the dimensions involved in the matrix-matrix multiply always equalsb2, one always equals n, and the third ranges from small to large (C2 atsas an eager algorithm). A similar observation an be made for a blok-olumn oriented algorithm. By ontrast, if a bloked algorithm is used, onedimension always equals b2 while two of the dimensions range from smallto large or vie-versa. Furthermore, when bloked algorithms are used, alarger number of alls to gemm are made. Thus, in pratie, we an expetthe alls to gemm employed by the blok-row or blok-olumn algorithms toattain higher performane than the alls employed by the bloked algorithmswhen bm = bn = b2. Thus, a seond heuristi beomes
22

Heuristi 2Case Strategy Commentm nlarge large blok-row withb = b2 Calls to gemm involve two large di-mensions and one equal to b2.b2 large blok-olumnwith b = b2 Calls to gemm involve one large di-mension and two equal to b2.large b2 blok-row withb = b2 Calls to gemm involve one large di-mension and two equal to b2.b2 b2 blok-row withb = b1 Calls to gemm involve two dimensionsequal to b2 and one equal to b1.b1 b2 blok-olumnwith b = b1 Calls to gemm involve one dimensionequal to b2 and two equal to b1.b1 b1 any Note that little omputation is left;bloking is less important.This seond heuristi does not require bloked algorithms. However,we now show that by piking bm and bn arefully, some bloked algorithmsan be used to implement the seond heuristi in a partiularly elegantfashion. Notie that by setting bm = m or bn = n, some of the ases of thebloked algorithms beome either blok-olumn or blok-row algorithms,respetively:Resulting algorithm Casesbm = m bn = nLazy blok-olumn C1, C2, C4, C5 {Eager blok-olumn C3, C6, C8, C11 {Lazy blok-row { C1, C11, C12, C13Eager blok-row { C2, C3, C14, C15Notie that four variants, C1, C2, C3, and C11, have the property thatby piking the blok sizes arefully, they an beome either blok-row orblok-olumn algorithms. For these variants, the following strategy willautomatially generate an algorithm whih onforms the seond heuristi:reursively all the given algorithm with, progressively, the blok sizes b2�n,b2 � b2, b1 � b2, b1 � b1, followed by some strategy for solving the smallb1 � b1 Sylvester equation sub-problems that remain at the lowest level ofthe reursion. For example, we an employ the same algorithm to redue thesub-problem to a ertain size, b0 � n, apply an additional level of reursionto redue it further to b0 � b0, and solve this square sub-problems using anon-bloked algorithm. 23

6 Experimental ResultsIn this setion we report the performane attained by our algorithms as therate of omputations ahieved in millions of ops per seond (MFLOPS/se).We onsider here triangular Sylvester equations of dimensionm�n, and anoperation ount of m2n+mn2 ops.We report performane on an Intel (R) Pentium III (650 MHz) proessorwith a 16 Kbyte L1 data ahe and a 256 Kbyte L2 ahe running RedHatLinux 7.1. All omputations were performed in 64-bit (double preision)arithmeti, and the same options were used when ompiling the di�erentimplementations.We analyze performane for �ve di�erent implementations, indiated bythe urves marked as follows:unb: Eager olumn-oriented implementation using Fortran-77. (We alsoimplemented eager/lazy and row-/olumn-oriented variants, but theresults were inferior for those). Due to the poor performane of thisapproah we only report results for the smaller problem sizes.Trad. bloked: Row-eager/olumn-eager bloked implementation of thesolver using using Fortran-77, similar to that in Figure 1. (We alsoimplemented all other variants; their performane proved inferior).C1, C2, and C3: Our implementations of the solvers using FLAME andthe heuristis desribed in the previous setion. At the lowest levelof the reursion, the sub-problems are omputed using the unbloked(unb) solver. For itxgemm we determined b0, b1, and b2 experimen-tally to be 16, 64, and 128, respetively. For atlas these values were,respetively, 20, 40, and 120. The reason for the di�erene betweenthe blok sizes for itxgemm and atlas lies in the details of the im-plementations of these pakages [9℄.Although we implemented all bloked, blok-row, and blok-olumn algo-rithms, we only present results for C1, C2, and C3, as C11 is symmetri withC2, the remaining bloked algorithms obtained slightly worse performane.Also we already argued that the blok-row and blok-olumn algorithms arespeial ases of C1, C2, C3, and C11.Figure 7 reports the performane for these algorithms using itxgemm(top) and atlas r3.2 (bottom). We also inlude the performane of thegemm routine for a matrix multipliation with k = b2 (a rank-k update) forreferene. We only report the results using the seond heuristi desribed in24

the previous setion, with blok sizes b2�n, b2� b2, b1� b2, b1� b1, b0� b1,and b0 � b0, for the di�erent levels of the reursion.For the largest problem sizes, the performane attained by our algo-rithms using the seond heuristi is lose to 90% of that ahieved for thematrix-matrix multiply kernel in itxgemm (around 530 MFLOPS/se.).The same kernel from atlas ahieves a somewhat lower performane (510MFLOPS/se.), whih partially explains the lower performane of the solverswhen this gemm kernel is employed.Figure 8 reports the performane of the best solver (that derived fromC3) using both Heuristi 1 and Heuristi 2. It appears that on this arhi-teture the algorithms bene�t from the larger matrix sizes involved in thealls to gemm in Heuristi 2.Although not reported here, our solvers, when linked to atlas R3.2,obtain performane similar to that reported in [12℄ when we adjust for thedi�erent lok rate of the proessor on whih they performed their experi-ments.7 Conluding RemarksIn this paper, we have made a number of ontributions to the solution ofthe triangular Sylvester equation. These inlude:� The systemati derivation and proof of orretness of a family of al-gorithms using the FLAME approah.� The implementation of the family using the FLAME library.� A heuristi for omposing high-performane implementations frommem-bers of the family of algorithms.� A demonstration of exellent performane.� Altogether, we have presented dozens of new algorithms for the solu-tion of this problem.Many of our observations an be extended to bloked algorithms fordense linear algebra operations in general. These inlude:� The FLAME approah is a powerful tool for the derivation of provablyorret bloked algorithms.� The FLAME library provides a prototype environment for the rapidimplementation of suh algorithms.25

