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tIn this paper we apply a formal approa
h for the derivation of denselinear algebra algorithms to the triangular Sylvester equation. The re-sult is a large family of provably 
orre
t algorithms. By using a 
odingstyle that re
e
ts the algorithms as they are naturally presented, the
orre
tness of the algorithms 
arries through to the 
orre
tness of theimplementations. Analyti
ally motivated heuristi
s are used to sub-sequently 
hoose members from the family that 
an be expe
ted toyield high performan
e. Finally, we report performan
e on the Intel(R) Pentium III pro
essor that is superior to that reported previouslyin the literature for this operation.1 Introdu
tionIn a re
ent paper the Formal Linear Algebra Methods Environment (FLA-ME) was introdu
ed [10℄. FLAME is both a systemati
 approa
h for deriving(dense) linear algebra algorithms and a library for the implementation of theresulting algorithms. The rationale is that by formally deriving algorithms,
orre
tness 
an be asserted. Moreover, by providing a framework for 
odingthat mirrors the derived algorithms, the opportunity for the introdu
tion of
oding errors is greatly redu
ed and thus the 
orre
tness of the algorithms
arries through to the implementations. In that paper the simple example ofLU fa
torization was used to illustrate the basi
 te
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demonstrate the versatility of FLAME by 
on
entrating on a more 
omplexlinear algebra operation, the solution of a triangular Sylvester equation.While the solution of the triangular Sylvester equation is a well-studiedproblem, this paper presents a number of 
ontributions:� An illustration of the appli
ation of FLAME to a problem arising in
ontrol theory.� The derivation of a large family of provably 
orre
t algorithms whi
hin
ludes, as a small subset, algorithms that are 
losely related to knowntraditional methods as well as re
ently proposed re
ursive algorithms.� An analysis that provides heuristi
s for 
omposing members of thefamily to yield the best performan
e.� A demonstration of performan
e that is superior to any previouslyreported.Altogether, dozens of new, high-performan
e, algorithms and implementa-tions are given.While this paper is written to be self-
ontained, it is highly re
ommendedthat the reader 
onsults the earlier paper on FLAME as well as a re
entpaper that gives theoreti
al insight into high-performan
e matrix multipli-
ation algorithms [9℄. This paper is stru
tured as follows: In Se
tion 2, wereview the triangular Sylvester equation and traditional algorithms for itssolution. We derive algorithms that are 
losely related to traditional algo-rithms in Se
tion 3, and a more general family in Se
tion 4. In Se
tion 5 wedes
ribe insights that we use to identify 
andidates from the family that arelikely to yield the best performan
e. Performan
e results on an Intel (R)Pentium III pro
essor are given in Se
tion 6. Con
luding remarks follow inthe �nal se
tion.2 The triangular Sylvester equationConsider the Sylvester equationAX +XB = C; (1)where A is an m�m matrix, B is n� n, C and X are m� n, and X is thesought-after solution. Let �(A) = f�i gmi=1 and �(B) = f�j gnj=1 denote,respe
tively, the eigenspe
tra of A and B; then (1) has a (unique) solutionif and only if �i + �j 6= 0 for all i = 1; : : : ;m and j = 1; : : : ; n. For further2



details on the existen
e of solutions of the Sylvester equation and numeri
alsolvers see, e.g., [3, 7, 11℄.Sylvester equations have numerous appli
ations in 
ontrol theory, signalpro
essing, �ltering, image restoration, the de
oupling of ordinary and par-tial di�erential equations, and blo
k-diagonalization of matri
es; see, e.g.,[1, 5, 8, 14℄. Also note that B = AT yields the Lyapunov equation su
h thateverything derived here 
an be used (and simpli�ed) for this type of equa-tions playing a vital role in many areas of 
omputer-aided 
ontrol systemdesign.Here we fo
us on the triangular 
ase of the Sylvester equation where the
oeÆ
ient matri
es, A and B, are upper triangular. (Though any or bothof these matri
es 
ould have been redu
ed instead to lower triangular form,the study of these other 
ases leads to algorithms similar to those des
ribedin this paper.) This triangular form is a \by-produ
t" obtained, e.g., in thesolver developed in [3℄. In their algorithm, the 
oeÆ
ient matri
es are �rstredu
ed to the S
hur form using the QR algorithm [8℄, and the 
orrespondingtransformation matri
es are applied to C. The triangular Sylvester equationthus obtained is solved using a ba
k-substitution pro
edure similar to a tri-angular linear system with multiple right-hand sides. The 
ost of solving thetriangular Sylvester equation of dimension m� n, using a traditional serial(non-blo
ked) algorithm, is m2n+mn2 
oating point operations [8℄. On
ethis triangular equation is solved, the inverse transformations are applied tore
over the solution of the original equation.If all matri
es in the equation have real entries and only real arithmeti
is desired, the QR algorithm 
an be used to obtain the real S
hur (or quasi-triangular) form of the 
oeÆ
ient matri
es, a blo
k upper triangular formwith 1� 1 or 2� 2 diagonal blo
ks 
orresponding respe
tively to real eigen-values or pairs of 
omplex eigenvalues of the matri
es.Blo
ked algorithms usually obtain a higher performan
e in modern 
om-puters by rearranging the 
omputations as possible in terms of matrix mul-tipli
ation [6℄. LAPACK [2℄ is a library that illustrates the bene�ts of re-formulating algorithms to be ri
h in matrix-matrix produ
ts. Some of thelatest resear
h on high-performan
e implementation of matrix multipli
ationis embodied in the pa
kages atlas [15℄, phipa
 [4℄, and itxgemm [9℄.Blo
ked algorithms for solving the triangular Sylvester equation 
an eas-ily be derived from the serial algorithms and are usually 
omposed of twonested loops whi
h iterate over blo
ks of 
olumns and rows of the solutionmatrix. For ea
h iteration of the inner loop a new blo
k of the solution isobtained. Depending on the algorithm, some updates may be needed beforea new blo
k of the solution is obtained (leading to a lazy algorithm, whi
h3



postpones mu
h of the work) or after it is 
omputed (an eager algorithm insu
h 
ase).As an example, we next present a traditional row-lazy/
olumn-eagerblo
ked triangular Sylvester equation solver. Assume A is partitioned intobm � bm blo
ks, Ai;j, i; j = 1; : : : ;m=bm, and B is partitioned into bn �bn blo
ks, Bi;j, i; j = 1; : : : ; n=bn. Hereafter, we assume that m and nare integer multiples of bm and bn, respe
tively. These partitions indu
e
onformal partitions of X and C into bm � bn blo
ks. Setting both bm andbn to 1 leads to element-wise algorithms, while setting only one of themprodu
es row-oriented or 
olumn-oriented variants.The algorithm is stated in Figure 1, where we borrow the 
olon notationfrom matlab. This algorithm 
an easily be modi�ed to overwrite C with thesolution of the equation. The Sylvester equation arising at ea
h iteration ofthe inner loop is usually solved using a non-blo
ked, row-oriented or 
olumn-oriented version of the algorithm. Noti
e that, just before a new blo
kof the solution is obtained, the 
orresponding blo
k-row of C is updatedwith respe
t to the previous blo
ks of X in the same blo
k-
olumn, leadingto a row-lazy updating s
heme. On the other hand, when this new blo
kis 
omputed, it is used to update the remaining blo
ks of C in the sameblo
k-row in a 
olumn-eager updating s
heme. Three more variants of thealgorithm are obtained by rearranging the updates to be row-lazy/eager and
olumn-lazy/eager [13℄.for i = m=bm : �1 : 1for j = 1 : n=bnCi;j = Ci;j �Ai;i+1:m=bmXi;i+1:m=bm;jsolve Ai;iXi;j +Xi;jBj;j = Ci;jCi;j+1:n=nb = Ci;j+1:n=nb �Xi;jBj;j+1:n=nbendendFigure 1: Row-lazy/
olumn-eager blo
ked triangular Sylvester equationsolver.Re
ursive variants of these solvers have been re
ently developed in [12℄.Brie
y, a re
ursive algorithm employs the same algorithm for solving theSylvester equation in the inner loop, but uses a smaller dimension of theblo
k sizes bm and bn. The higher eÆ
ien
y of these algorithms is obtainedby de
oupling the dimensions of the blo
ks for the matrix multipli
ationsfrom those of the Sylvester equations. The goal is to perform as mu
h4



of the 
omputation in terms of matrix multipli
ations as is possible, whilemaximizing the size of the matri
es involved in these produ
ts.3 Row- or Column-Oriented AlgorithmsWe �rst derive two blo
k-row oriented (with respe
t to matrix C) solvers bypartitioning only the �rst of the 
oeÆ
ient matri
es, A (see Subse
tion 3.1).Analogous blo
k-
olumn oriented versions are obtained by partitioning Binstead of A, as suggested in Subse
tion 3.2.3.1 Blo
k-row oriented solversLet us 
onsider equation (1) where, in order to redu
e the number of ma-tri
es, we want to overwrite matrix C with the solution of the equation,X. We start our derivation of blo
k-row oriented algorithms by partitioningmatrix A into four quadrantsA!  ATL ATRABL = 0 ABR ! ;where ABR is a km � km blo
k. The indi
es fTLg, fTRg, fBLg, and fBRgstand for top-left, top-right, bottom-left, and bottom-right, respe
tively.A

ordingly, we next apply a 
onformal partition to X and C by blo
ks ofrows X !  XTXB ! ; C !  CTCB ! ;where XB and CB are km � n blo
ks. Here fTg and fBg stand for top andbottom, respe
tively.With these partitionings, equation (1) 
an be rewritten as ATL ATR0 ABR ! XTXB !+  XTXB !B =  CTCB ! ;and multiplying out the left-hand-side of the matrix equation, we obtain thefollowing equalitiesATLXT +ATRXB +XTB = CT ;ABRXB +XBB = CB :5



Thus, the 
omputation of X requires solving two di�erent Sylvester equa-tions and performing a matrix update on CT , whi
h we designate as follows:
(XT ) � ATLXT +XTB = CT ;
(XB) � ABRXB +XBB = CB ;�CT � CT  CT �ATRXB : (2)Noti
e that there are data dependen
ies whi
h indu
e a stri
t order on thesequen
e of operations. First, the solution of 
(XB) is obtained, then theupdate �CT is 
omputed and, �nally, 
(XT ) is solved.The FLAME approa
h to deriving algorithms based on these partition-ings starts by 
onsidering the following two questions:i) What part of the 
omputation has already been performed at a 
ertainstage (iteration)? The answer is a 
ondition that is 
alled the loop-invariant for the algorithm.ii) How 
an we advan
e the 
omputation so that the loop-invariant is sat-is�ed at the beginning of the next stage? The answer to this questionyields the updates (to the matrix) that 
omprise the body of the loop.To answer the �rst question we 
onsider a 
ertain (intermediate) situa-tion (
ase) where some of the operations in (2) have been performed. Theinstan
es where no operations have been performed or all of them are alreadyperformed are not 
onsidered valid intermediate 
ases. With three di�erentoperations and the data dependen
ies, we have only two valid 
ases:Case Operations 
ompleted Current 
ontents of CR1 
(XB)  CTXB !R2 �CT , 
(XB)  CT �ATRXBXB !The 
urrent 
ontent of C (right-most 
olumn) be
omes the 
ondition thatde�nes the loop-invariant of the algorithm.Now, in order to answer the se
ond question, we derive the steps thatallow the 
omputation of X to pro
eed forward (up) by bm rows, i.e., theoperations that will allow the loop-invariant to be satis�ed at the beginningof the next iteration. To derive these steps, we repartition matrix A as ATL ATR0 ABR !! 0B� A00 A01 A020 A11 A120 0 A22 1CA ;6



where A11 is an bm�bm blo
k. The parameter bm determines the granularityof our blo
k-row oriented algorithm. By setting bm = 1 we obtain a non-blo
ked row-oriented algorithm. (If A is quasi-triangular, bm 
an be variedduring the 
omputation so that a 2�2 diagonal blo
k is not divided betweentwo diagonal blo
ks in this last partition.) Conformally, apply the followingrepartitions to X and C XTXB !! 0B� X0X1X2 1CA ;  CTCB !! 0B� C0C1C2 1CA ;where X1 and C1 are bm�n blo
ks. The double lines in these partitioningsindi
ate how far the 
omputation has progressed.3.1.1 Lazy algorithmIf we wish to maintain 
ondition R1, we assume that X2 is 
urrently avail-able, while C2 and A22 have been used for this purpose. Moving the 
om-putation forward by bm rows therefore is equivalent to moving the doublelines up by bm rows, so that X1 is also available. In other words, we knowthat 
urrently C holds  CTXB ! = 0B� C0C1X2 1CA :Now, 
onsider that the 
omputation has e�e
tively moved forward bybm rows, leading to ATL ATR0 ABR !! 0B� A00 A01 A020 A11 A120 0 A22 1CA ; XTXB !! 0B� X0X1X2 1CA ;  CTCB !! 0B� C0C1C2 1CA :Noti
e that after the lines have moved, we need the 
ontents of C to be
ome CTXB ! = 0B� C0X1X2 1CA :7



The question now is, for 
ase R1, what is the sequen
e of operations whi
hallows the 
omputation to move forward while maintaining the indi
atedloop-invariant. As the Sylvester equation for X2 was already solved at thebeginning of the stage, we 
on
lude that we need only to perform the oper-ations: C1  C1 �A12X2;A11X1 +X1B = C1:This pro
edure leads us to an algorithm that 
an be 
lassi�ed as \lazy".Before 
omputing a new blo
k-row of X, this blo
k is updated with respe
tto the blo
k-rows of X that have been previously 
omputed. The algorithmis stated in Figure 2. To illustrate how the FLAME library allows 
ode tomirror the derived algorithm, thus largely inheriting the proven 
orre
tness,an implementation using FLAME is given in Figure 4.For those more 
omfortable with traditional algorithms, this is equivalentto the solver in Figure 3 (left). The lazy algorithms just presented, in theFLAME and the traditional formulations, are spe
ial 
ases of the algorithmin Figure 1, with bn = n.3.1.2 Eager algorithmThe eager variant of the algorithm is obtained from 
ase R2, as we shownext. In this 
ase the 
omputation has pro
eeded forward to solve 
(XB)and perform the update �CT . Thus, C 
urrently 
ontains: CT �ATRXBXB ! = 0B� C0 �A02X2C1 �A12X2X2 1CA :With the boundaries of the 
omputation moved forward by bm rows, theloop-invariant that must be satis�ed for the next stage is given by CT �ATRXBXB ! = 0B� C0 �A02X2 �A01X1X1X2 1CAThus, in order to move the 
omputation forward while maintaining the loop-invariant for this 
ase, we 
on
lude that we need to perform the followingoperations: A11X1 +X1B = C1;C0  C0 �A01X1:8



Algorithm 1 C  X, where AX +XB = C(Blo
k-row oriented)partitionA! � ATL ATR0 ABR � ; C ! � CTCB � ;where ABR is 0� 0 and CB is 0� ndo until CB is 0� ndetermine blo
k size bmrepartition� ATL ATR0 ABR �!0� A00 A01 A020 A11 A120 0 A22 1A ; � CTCB �!0� C0C1C2 1Awhere A11 is bm � bm and C1 is bm � nLazy variant:C1  C1 �A12X2C1  X1; whereA11X1 +X1B = C1 Eager variant:C1  X1; whereA11X1 +X1B = C1C0  C0 �A01X1
ontinue with� ATL ATR0 ABR � 0� A00 A01 A020 A11 A120 0 A22 1A ; � CTCB � 0� C0C1C2 1AenddoFigure 2: Lazy and eager row-blo
k oriented triangular Sylvester equationsolvers derived from R1 (lazy) and R2 (eager).for i = m=bm : �1 : 1Lazy variant: Eager variant:Ci;: = Ci;: �Ai;i+1:m=bmXi+1:m=bm;: solve Ai;iXi;: +Xi;:B = Ci;:solve Ai;iXi;: +Xi;:B = Ci;: C1:i�1;: = C1:i�1;: �A1:i�1;iXi;:endFigure 3: Lazy and eager traditional row-blo
k oriented triangular Sylvesterequation solvers. 9



int FLA_Syl_Lazy_Blo
k-Row( FLA_Obj A, FLA_Obj B, FLA_Obj C, int bm ){ // De
laration of lo
al obje
ts...FLA_Part_2x2( A, &ATL, /**/ &ATR,/* ********** */&ABL, /**/ &ABR,/* with */ 0, /* by */ 0, /* submatrix */ FLA_BR );FLA_Part_2x1( C, &CT,/**/&CB,/* with length */ 0, /* submatrix */ FLA_BOTTOM );while ( FLA_Obj_length( CT ) != 0 ){FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, &A01, /**/ &A02,/**/ &A10, &A11, /**/ &A12,/* ******** */ /* ********************* */ABL, /**/ ABR, &A20, &A21, /**/ &A22,/* with */ bm, /* by */ bm, /* A11 split from */ FLA_TL );FLA_Repart_2x1_to_3x1( CT, &C0,&C1,/**/ /**/CB, &C2,/* with length */ bm, /* C1 split from */ FLA_TOP );/* ***************************************************************** *//* C1 <- C1 - A12 X2 */FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE,MINUS_ONE, A12, C2, ONE, C1 );/* C1 <- X1, where X1 solves A11 X1 + X1 B = C1 */FLA_Syl_level2( A11, B, C1 );/* ****************************************************************** */FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, /**/ A01, A02,/* ********** */ /* ******************* *//**/ A10, /**/ A11, A12,&ABL, /**/ &ABR, A20, /**/ A21, A22,/* with A11 added to submatrix */ FLA_BR );FLA_Cont_with_3x1_to_2x1( &CT, C0,/**/ /**/C1,&CB, C2,/* with C1 added to submatrix */ FLA_BOTTOM );// Free lo
al obje
ts...}Figure 4: Lazy blo
k-row oriented triangular Sylvester equation solver im-plemented using FLAME. 10



The algorithm is stated in Figure 2 and is equivalent to the traditional eagervariant shown in Figure 3 (right).3.1.3 Proving 
orre
tness and 
ostThe following theorems proves the 
orre
tness of the the lazy and eagerblo
k-row oriented algorithms and present their 
omputational 
ost.Theorem 1 The lazy and eager blo
k-row oriented triangular Sylvester equ-ation solvers in Figure 2 overwrite matrix C with the solution of the trian-gular Sylvester equation AX +XB = C.Proof. The following table summarizes the 
ontents of matrix C atvarious stages of the lazy algorithm:Stage Contents CommentBefore entering the loop  CTXB ! where XB has 0 rows, and thusCT = CAt the beginningof iteration k,k = 0; 1; 2; : : : ;m=bm � 1  CTXB ! where XB has kbm rows andCT has m� kbm rows.Upon exiting the loop  CTXB ! where CT has 0 rows and thusXB = XNoti
e also that the algorithm advan
es by bm > 0 rows at ea
h iteration,until CT is 0� n, and thus it is guaranteed to terminate. At the end of the�nal iteration the loop-invariant will also hold and therefore the 
ontents ofC will be those of 
(XB) = X.The proof for the eager algorithm is similar. 2Theorem 2 The lazy and eager blo
k-row oriented triangular Sylvester equ-ation solvers in Figure 2 both require m2n+mn2 
oating point operations.Proof. We prove the theorem for the 
ase where bm is 
onstant.In the algorithms in Figure 2 the size of CB in
reases from bm � n to(m� bm)� n, while the size of ABR in
reases from bm � bm to (m� bm)�(m � bm). Assuming CB 
urrently is km � n, and ABR is thus 
urrently
11



km � km, the di�erent parts of the matri
es have the following dimensions:�m bm kmz}|{A00 z}|{A01 z}|{A020 A11 A120 0 A22 g �mgbmgkm nz}|{C0C1C2 g �mgbmgkmHere, �m = m� km � bm.The number of 
oating point operations required to move the 
omputationforward by bm rows in the lazy and eager versions of the algorithm is givenby �C1 � C1  C1 �A12X2 2bmkmn
(X1) � A11X1 +X1B = C1 b2mn+ bmn2�C0 � C0  C0 �A01X1 2bmkm�nFor simpli
ity we negle
t the lower order terms in the 
omputation of the
ost of the algorithms. If we 
onsider the algorithm to iterate for k =0; 1; 2; : : : ;m=bm � 1, then km = kbm. Table 1 reports the 
ost of thesethree operations and the overall 
ost of the algorithms, proving the theorem.Operation CostLazy variant Eager variant�C1 Pm=bm�1k=0 (2bmkmn) � {m2n
(X1) Pm=bm�1k=0 �b2mn+ bmn2� � Pm=bm�1k=0 �b2mn+ bmn2� �mn2 mn2�C0 { Pm=bm�1k=0 (2bmkm�n) �m2nTotal m2n+mn2 m2n+mn2Table 1: Cost of the lazy and eager blo
k-row oriented triangular Sylvesterequation solvers derived from R1 (lazy) and R2 (eager). 2Noti
e that if the triangular Sylvester equations arising in the blo
k-row oriented algorithms are solved using a traditional, non-blo
ked solver,m � n, and bm � m, half the 
omputation is in operations involving smallerSylvester equations and the other half is in matrix multipli
ations.12



3.2 Blo
k-
olumn oriented solversBy partitioning B instead of A, we obtain \symmetri
" algorithms whi
h
ompute the solution X by 
olumn blo
ks.4 A Family of Blo
ked AlgorithmsIn this se
tion we show that a partitioning of both 
oeÆ
ient matri
es leadsto a family of sixteen di�erent blo
ked solvers.Consider starting our derivation of blo
ked algorithms by partitioningboth 
oeÆ
ient matri
es into four quadrantsA!  ATL ATR0 ABR ! ; B !  BTL BTR0 BBR ! ;where ABR is a km� km blo
k and BTL is a kn� kn blo
k. A

ordingly, wenext apply a 
onformal partition to X and CX !  XTL XTRXBL XBR ! ; C !  CTL CTRCBL CBR ! ;where XBL and CBL are km � kn blo
ks.Now, (1) be
omes ATL ATR0 ABR ! XTL XTRXBL XBR !+ XTL XTRXBL XBR ! BTL BTR0 BBR !=  CTL CTRCBL CBR ! ;where, multiplying out the left-hand-side of the matrix equation, we obtainthe following equalitiesATLXTL +XTLBTL = CTL �ATRXBL;ATLXTR +XTRBBR = CTR �ATRXBR �XTLBTR;ABRXBL +XBLBTL = CBL;ABRXBR +XBRBBR = CBR �XBLBTR:
13
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XTRΩ(       )
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Figure 5: Data dependen
ies for the partitioned triangular Sylvester matrixequation.We will designate these individual operations as follows:
(XTL) � ATLXTL +XTLBTL = CTL;
(XTR) � ATLXTR +XTRBBR = CTR;
(XBL) � ABRXBL +XBLBTL = CBL;
(XBR) � ABRXBR +XBRBBR = CBR;�CTL � CTL  CTL �ATRXBL;�CTR � CTR  CTR �ATRXBR;ĈTR � CTR  CTR �XTLBTR;�CBR � CBR  CBR �XBLBTR: (3)
The dependen
ies among the operations indu
e a 
ertain order: the �rstoperation that must be performed is solving 
(XBL); after that, only theupdates �CTL or �CBR are possible, and so on. Figure 5 shows graphi
allythese data dependen
ies.In order to derive blo
ked solvers for the triangular Sylvester equation,we 
ould start by 
onsidering all possible 
ases where some of the operationsin (3) have already been performed. However, with eight di�erent opera-tions, we have P8i=0  8i ! possibilities! Lu
kily, due to the dependen
ies,there are only sixteen valid 
ases, as summarized in Table 2. Noti
e that welabel six of these 
ases as symmetri
.14



Case Operations performed Operations performed Symm.(Current 
ontents of C) (Current 
ontents of C) CaseC1  CTL CTR
(XBL) CBR !C2  �CTL CTR
(XBL) CBR !  CTL CTR
(XBL) �CBR ! C11C3  �CTL CTR
(XBL) �CBR !C4  
(XTL) CTR
(XBL) CBR !  CTL CTR
(XBL) 
(XBR) ! C12C5  
(XTL) ĈTR
(XBL) CBR !  CTL �CTR
(XBL) 
(XBR) ! C13C6  
(XTL) CTR
(XBL) �CBR !  �CTL CTR
(XBL) 
(XBR) ! C14C7  
(XTL) CTR
(XBL) 
(XBR) !C8  
(XTL) ĈTR
(XBL) �CBR !  �CTL �CTR
(XBL) 
(XBR) ! C15C9  
(XTL) �CTR
(XBL) 
(XBR) !  
(XTL) ĈTR
(XBL) 
(XBR) ! C16C10  
(XTL) ĈTR; �CTR
(XBL) 
(XBR) !
Table 2: Valid intermediate 
ases.Repartition the matri
es of the equation into nine blo
ks, as follows: ATL ATR0 ABR !! 0B� A00 A01 A020 A11 A120 0 A22 1CA ; BTL BTR0 BBR !! 0B� B00 B01 B020 B11 B120 0 B22 1CA ;where A11 and B11 are, respe
tively, bm�bm and bn�bn blo
ks. Conformally,15



repartition  XTL XTRXBL XBR !! 0B� X00 X01 X02X10 X11 X12X20 X21 X22 1CA ; CTL CTRCBL CBR !! 0B� C00 C01 C02C10 C11 C12C20 C21 C22 1CA ;where X11 and C11 are both bm � bn blo
ks. Noti
e that, again, the doublelines mark how far (the boundaries of) the 
omputation has progressed. Forthe blo
ked algorithms, the solvers mar
h in matri
es X and C from thebottom-left 
orner to the top-right one, moving bm rows and bn 
olumnsat ea
h iteration. In A, the solvers towards the top-left 
orner, while in Bthe dire
tion is towards the bottom-right 
orner. Lower triangular matri
esA and/or B would produ
e all other possibilities in the dire
tion of the
omputation.We next illustrate the derivation of a blo
ked algorithm resulting from aspe
i�
 
ase, here, C2. In this 
ase, the 
urrent 
ontents of C are given by CTL �ATRXBL CTRXBL CBR ! = 0BB�  C00 �A02X20C10 �A12X20 !  C01 C02C11 C12 !X20 � C21 C22 � 1CCA :Consider now the following repartitioning whi
h 
orresponds to the nextstage where the 
omputation has moved forward by a blo
k of dimensionbm � bn  ATL ATR0 ABR !! 0B� A00 A01 A020 A11 A120 0 A22 1CA ; BTL BTR0 BBR !! 0B� B00 B01 B020 B11 B120 0 B22 1CA ; XTL XTRXBL XBR !! 0B� X00 X01 X02X10 X11 X12X20 X21 X22 1CA ; CTL CTRCBL CBR !! 0B� C00 C01 C02C10 C11 C12C20 C21 C22 1CA :16



With this new repartitioning, we wish the 
ontents of C to be
ome CTL �ATRXBL CTRXBL CBR !
= 0BBBB�  C00 �(A02X20+A01X10) C01 �(A02X21+A01X11) ! C02 X10 X11X20 X21 !  C12C22 ! 1CCCCA :Therefore, in order to move the 
omputation forward in 
ase C2 we need toperform the operations shown in Figure 6 (
enter).Theorem 3 The algorithms in Figure 6 overwrite matrix C with the solu-tion of the triangular Sylvester equation AX +XB = C.Proof. The proof of this theorem is mu
h like the one given for Theo-rem 1. 2The next theorem derives the 
ost of the blo
ked triangular Sylvesterequation solver presented in the �gure.Theorem 4 Given that matri
es X and C are m � n, A is an m � mtriangular matrix and B is an n� n triangular matrix, the blo
ked triangu-lar Sylvester equation solver in Figure 6 requires m2n+mn2 
oating pointoperations.Proof. We prove the theorem for the 
ase where the blo
ks sizes bm andbn are 
onstant.In the algorithm presented in Figure 6 the size of CBL in
reases frombm� bn to (m� bm)� (n� bn), while the size of ABR in
reases from bm� bmto (m�bm)� (m�bm), and that of BTL in
reases from bn�bn to (n�bn)�(n� bn). Assuming CBL is 
urrently km � kn, and ABR, BTL are 
urrentlykm � km and kn � kn, respe
tively, the di�erent parts of the matri
es havethe following dimensions:�m bm kmz}|{A00 z}|{A01 z}|{A020 A11 A120 0 A22 g �mgbmgkm kn bn �nz}|{B00 z}|{B01 z}|{B020 B11 B120 0 B22 gkngbng�nkn bn �nz}|{C00 z}|{C01 z}|{C02C10 C11 C12C20 C21 C22 g �mgbmgkm 17



Algorithm 2 C  X, where AX +XB = C(Blo
ked)partitionA! � ATL ATR0 ABR � ; B ! � BTL BTR0 BBR � ; C ! � CTL CTRCBL CBR � ;where ABR, BTL, and CBL are 0� 0do until CTR is 0� 0determine blo
k sizes bm and bnrepartition� ATL ATR0 ABR �!  A00 A01 A020 A11 A120 0 A22 ! ;� BTL BTR0 BBR �! B00 B01 B020 B11 B120 0 B22 ! ;� CTL CTRCBL CBR �! C00 C01 C02C10 C11 C12C20 C21 C22 ! ;where A11 is bm � bm, B11 is bn � bn, and C11 is bm � bnC1 variant:C10  C10 � A12X20C10  X10, whereA11X10 +X10B00 = C10C11  C11 �X10B01C21  C21 �X20B01C21  X21, whereA22X21 +X21B11 = C21C11  C11 � A12X21C11  X11, whereA11X11 +X11B11 = C11
C2 variant:C10  X10, whereA11X10 +X10B00 = C10C11  C11 �X10B01C21  C21 �X20B01C21  X21, whereA22X21 +X21B11 = C21C11  C11 � A12X21C11  X11, whereA11X11 +X11B11 = C11C00  C00 � A01X10C01  C01 � A01X11C01  C01 � A02X21

C3 variant:C10  X10, whereA11X10 +X10B00 = C10C11  C11 �X10B01C21  X21, whereA22X21 +X21B11 = C21C11  C11 �A12X21C11  X11, whereA11X11 +X11B11 = C11C00  C00 �A01X10C01  C01 �A01X11C01  C01 �A02X21C12  C12 �X10B02C12  C12 �X11B12C22  C22 �X21B12
ontinue with� ATL ATR0 ABR �  A00 A01 A020 A11 A120 0 A22 ! ;� BTL BTR0 BBR �  B00 B01 B020 B11 B120 0 B22 ! ;� CTL CTRCBL CBR �  C00 C01 C02C10 C11 C12C20 C21 C22 !enddoFigure 6: Blo
ked triangular Sylvester equation solvers derived from C1,C2, and C3. 18



Here, �m = m� km � bm, �n = n� kn � bn.The number of 
oating point operations required to move the 
omputationforward is given by
(X10) � A11X10 +X10B00 = C10 b2mkn + bmk2nC11  C11 �X10B01 2bmbnkn�C21 � C21  C21 �X20B01 2bnkmkn
(X21) � A22X21 +X21B11 = C21 b2nkm + bnk2mC11  C11 �A12X21 2bmbnkmA11X11 +X11B11 = C11 b2mbn + bmb2n�C00 � C00  C00 �A01X10 2bmkn �mC01  C01 �A01X11 2bmbn �m�C01 � C01  C01 �A02X21 2bnkm �mFor simpli
ity we negle
t the lower order terms in the 
omputation of the 
ostof the algorithm, whi
h leads us to 
onsider only the operations denoted as
(X10), �C21, 
(X21), �C00, and �C01. If we 
onsider the algorithm to iteratefor k = 0; 1; 2; : : : ;max(m=bm; n=bn) � 1, then km = kbm and kn = kbn.Table 3 reports the 
ost of these �ve operations and the overall 
ost of thealgorithm, proving the theorem. 2As 
ould be expe
ted, the blo
ked algorithm presents the same 
omputa-tional 
ost as the serial solver. The blo
ked algorithms for the remaining 15
ases are obtained by simply deriving the set of operations that will satisfythe loop-invariant in ea
h 
ase, and they all 
an be shown to present thesame 
ost.5 Heuristi
sIn the previous se
tion, we derived a large number of algorithms for thesolution of the triangular Sylvester equation. The question now be
omeshow to design a near-optimal implementation. In this se
tion, we presentboth theoreti
al and pra
ti
al insights that help guide the way.First, let us review observations regarding blo
ked algorithms in general.All are designed to spend a substantial part of the 
omputation in the matrixmultipli
ation (gemm) kernel. Thus, it makes sense to pi
k blo
k sizes bmand bn that allow the individual 
alls to the matrix-matrix multiply to attainthe highest performan
e, subje
t to other 
onstraints.Consider the matrix multipli
ation C  AB + C, where A is m� k, Bis k � n, and then C is m � n. In [9℄, it is shown that, for ar
hite
tures19



Operation Costm=bm � n=bn n=bn > m=bm�C21 Pn=bn�1k=0 (2bnkmkn) �2bmn33bn Pm=bm�1k=0 (2bnkmkn)+Pn=bn�1k=m=bm (2bnknm) �mn2 � b2nm33b2m�C00 Pn=bn�1k=0 (2bmkn �m)+Pm=bm�1k=n=bn (2bm �mn) �mn2 � bmmn2bn + b2mn33b2n Pm=bm�1k=0 (2bmkn �m) �bnm33bm�C01 Pn=bn�1k=0 (2bnkm �m) �bmmn2bn � 2b2mn33b2n Pm=bm�1k=0 (2bmkn �m) �bnm33bm
(X10) Pn=bn�1k=0 �bmk2n�+Pm=bm�1k=n=bn �bmn2� �mn2 � 2bmn33bn Pm=bm�1k=0 �bmk2n� �b2nm33b2m
(X21) Pn=bn�1k=0 �bnk2m� �b2mn33b2n Pm=bm�1k=0 �bnk2m�+Pn=bn�1k=m=bm �bnm2� �m2n� 2bnm33bmTotal m2n+mn2 m2n+mn2Table 3: Cost of the blo
ked triangular Sylvester equation solver derivedfrom C2.with two levels of 
a
he memory, there are two blo
k sizes that in
uen
ethe performan
e of gemm: b1 and b2, whi
h are related to the size of theL1 and L2 
a
hes, respe
tively. In Table 4 we show how the three matrixdimensions, m, n, and k a�e
t performan
e of gemm. Where it says \large"in the table, the larger the dimensions, the better the performan
e.Logi
 suggests that we attempt to minimize the amount of 
omputationin the solution of the smaller Sylvester equations that show up in the body ofthe loop, thereby maximizing the amount of 
omputation in gemm at thislevel (noti
e that ea
h of these smaller Sylvester equations 
an be solvedusing the same algorithm, generating a re
ursion with multiple levels). InSe
tion 3 we mentioned that the blo
k-row oriented algorithms spend ap-proximately half of the 
omputation in these sub-problems. By symmetry,20



Shape Performan
e2 of m;n; k large1 of m;n; k = b2 Best1 of m;n; k large2 of m;n; k = b2 "2 of m;n; k = b21 of m;n; k = b1 #1 of m;n; k = b22 of m;n; k = b1 Good1 < m;n; k � b1 Worse1 or more of m;n; k = 1 WorstTable 4: Fa
tors a�e
ting the performan
e of the matrix multipli
ation.the same is true for the blo
k-
olumn oriented algorithms. We now showthat, if the blo
k sizes are 
hosen 
arefully, the blo
ked algorithms spendonly a third of the 
omputation in the sub-problems.Consider the part of the total 
omputational 
ost that is spent in solvingthe Sylvester equations in the body of the loop if we apply, e.g., the algorithmderived for C2, with bm; bn � m;n. (Here we 
an assume without loss ofgenerality that m=bm � n=bn.) At ea
h iteration of the algorithm we need tosolve two large Sylvester equations, for 
(X10) and 
(X21), with an overall
omputational 
ost (see Table 3) of mn2 + bmn33bn � bmbn � 2� 
ops (
oating-point arithmeti
 operations). The question therefore be
omes what are thevalues of bm and bn that minimize this value, i.e., minfbm;bng bmbn � bmbn � 2�.This minimum is attained for bm = bn and, in this 
ase, approximately athird of the 
omputation is spent in the sub-problems. We 
an 
on
ludethat we should pursue the use of square blo
k sizes.Let us revisit the observations made regarding the matrix-matrix multi-ply. The following table explains a simple heuristi
:
21



Heuristi
 1Case Strategy Commentm nlarge large blo
ked withbm = bn = b2 Calls to gemm involve two large di-mensions and one equal to b2.b2 large blo
k-
olumnwith bn = b2 Calls to gemm involve one large di-mension and two equal to b2.large b2 blo
k-row withbm = b2 Calls to gemm involve one large di-mension and two equal to b2.b2 b2 blo
ked withbm = bn = b1 Calls to gemm involve two dimensionsequal to b2 and one equal to b1.b1 b2 blo
k-
olumnwith bn = b1 Calls to gemm involve one dimensionequal to b2 and two equal to b1.b1 b1 any Note that little 
omputation is left;blo
king is less important.By 
hoosing di�erent blo
ked and/or blo
k-row and blo
k-
olumn orientedalgorithms at the di�erent levels, a large family of di�erent hybrid algorithmsis spe
i�ed by the above table.We now present a se
ond heuristi
. Consider the top-level blo
king. Ifone takes bm = bn = b2, then two thirds of the 
omputation will be in matrixmultipli
ation. If, on the other hand, one 
onsiders a blo
k-row orientedalgorithm, with blo
k size bm = b2, then only half of the 
omputation is interms of the matrix-matrix multiply. However, in this se
ond alternative,one of the dimensions involved in the matrix-matrix multiply always equalsb2, one always equals n, and the third ranges from small to large (C2 a
tsas an eager algorithm). A similar observation 
an be made for a blo
k-
olumn oriented algorithm. By 
ontrast, if a blo
ked algorithm is used, onedimension always equals b2 while two of the dimensions range from smallto large or vi
e-versa. Furthermore, when blo
ked algorithms are used, alarger number of 
alls to gemm are made. Thus, in pra
ti
e, we 
an expe
tthe 
alls to gemm employed by the blo
k-row or blo
k-
olumn algorithms toattain higher performan
e than the 
alls employed by the blo
ked algorithmswhen bm = bn = b2. Thus, a se
ond heuristi
 be
omes
22



Heuristi
 2Case Strategy Commentm nlarge large blo
k-row withb = b2 Calls to gemm involve two large di-mensions and one equal to b2.b2 large blo
k-
olumnwith b = b2 Calls to gemm involve one large di-mension and two equal to b2.large b2 blo
k-row withb = b2 Calls to gemm involve one large di-mension and two equal to b2.b2 b2 blo
k-row withb = b1 Calls to gemm involve two dimensionsequal to b2 and one equal to b1.b1 b2 blo
k-
olumnwith b = b1 Calls to gemm involve one dimensionequal to b2 and two equal to b1.b1 b1 any Note that little 
omputation is left;blo
king is less important.This se
ond heuristi
 does not require blo
ked algorithms. However,we now show that by pi
king bm and bn 
arefully, some blo
ked algorithms
an be used to implement the se
ond heuristi
 in a parti
ularly elegantfashion. Noti
e that by setting bm = m or bn = n, some of the 
ases of theblo
ked algorithms be
ome either blo
k-
olumn or blo
k-row algorithms,respe
tively:Resulting algorithm Casesbm = m bn = nLazy blo
k-
olumn C1, C2, C4, C5 {Eager blo
k-
olumn C3, C6, C8, C11 {Lazy blo
k-row { C1, C11, C12, C13Eager blo
k-row { C2, C3, C14, C15Noti
e that four variants, C1, C2, C3, and C11, have the property thatby pi
king the blo
k sizes 
arefully, they 
an be
ome either blo
k-row orblo
k-
olumn algorithms. For these variants, the following strategy willautomati
ally generate an algorithm whi
h 
onforms the se
ond heuristi
:re
ursively 
all the given algorithm with, progressively, the blo
k sizes b2�n,b2 � b2, b1 � b2, b1 � b1, followed by some strategy for solving the smallb1 � b1 Sylvester equation sub-problems that remain at the lowest level ofthe re
ursion. For example, we 
an employ the same algorithm to redu
e thesub-problem to a 
ertain size, b0 � n, apply an additional level of re
ursionto redu
e it further to b0 � b0, and solve this square sub-problems using anon-blo
ked algorithm. 23



6 Experimental ResultsIn this se
tion we report the performan
e attained by our algorithms as therate of 
omputations a
hieved in millions of 
ops per se
ond (MFLOPS/se
).We 
onsider here triangular Sylvester equations of dimensionm�n, and anoperation 
ount of m2n+mn2 
ops.We report performan
e on an Intel (R) Pentium III (650 MHz) pro
essorwith a 16 Kbyte L1 data 
a
he and a 256 Kbyte L2 
a
he running RedHatLinux 7.1. All 
omputations were performed in 64-bit (double pre
ision)arithmeti
, and the same options were used when 
ompiling the di�erentimplementations.We analyze performan
e for �ve di�erent implementations, indi
ated bythe 
urves marked as follows:unb: Eager 
olumn-oriented implementation using Fortran-77. (We alsoimplemented eager/lazy and row-/
olumn-oriented variants, but theresults were inferior for those). Due to the poor performan
e of thisapproa
h we only report results for the smaller problem sizes.Trad. blo
ked: Row-eager/
olumn-eager blo
ked implementation of thesolver using using Fortran-77, similar to that in Figure 1. (We alsoimplemented all other variants; their performan
e proved inferior).C1, C2, and C3: Our implementations of the solvers using FLAME andthe heuristi
s des
ribed in the previous se
tion. At the lowest levelof the re
ursion, the sub-problems are 
omputed using the unblo
ked(unb) solver. For itxgemm we determined b0, b1, and b2 experimen-tally to be 16, 64, and 128, respe
tively. For atlas these values were,respe
tively, 20, 40, and 120. The reason for the di�eren
e betweenthe blo
k sizes for itxgemm and atlas lies in the details of the im-plementations of these pa
kages [9℄.Although we implemented all blo
ked, blo
k-row, and blo
k-
olumn algo-rithms, we only present results for C1, C2, and C3, as C11 is symmetri
 withC2, the remaining blo
ked algorithms obtained slightly worse performan
e.Also we already argued that the blo
k-row and blo
k-
olumn algorithms arespe
ial 
ases of C1, C2, C3, and C11.Figure 7 reports the performan
e for these algorithms using itxgemm(top) and atlas r3.2 (bottom). We also in
lude the performan
e of thegemm routine for a matrix multipli
ation with k = b2 (a rank-k update) forreferen
e. We only report the results using the se
ond heuristi
 des
ribed in24



the previous se
tion, with blo
k sizes b2�n, b2� b2, b1� b2, b1� b1, b0� b1,and b0 � b0, for the di�erent levels of the re
ursion.For the largest problem sizes, the performan
e attained by our algo-rithms using the se
ond heuristi
 is 
lose to 90% of that a
hieved for thematrix-matrix multiply kernel in itxgemm (around 530 MFLOPS/se
.).The same kernel from atlas a
hieves a somewhat lower performan
e (510MFLOPS/se
.), whi
h partially explains the lower performan
e of the solverswhen this gemm kernel is employed.Figure 8 reports the performan
e of the best solver (that derived fromC3) using both Heuristi
 1 and Heuristi
 2. It appears that on this ar
hi-te
ture the algorithms bene�t from the larger matrix sizes involved in the
alls to gemm in Heuristi
 2.Although not reported here, our solvers, when linked to atlas R3.2,obtain performan
e similar to that reported in [12℄ when we adjust for thedi�erent 
lo
k rate of the pro
essor on whi
h they performed their experi-ments.7 Con
luding RemarksIn this paper, we have made a number of 
ontributions to the solution ofthe triangular Sylvester equation. These in
lude:� The systemati
 derivation and proof of 
orre
tness of a family of al-gorithms using the FLAME approa
h.� The implementation of the family using the FLAME library.� A heuristi
 for 
omposing high-performan
e implementations frommem-bers of the family of algorithms.� A demonstration of ex
ellent performan
e.� Altogether, we have presented dozens of new algorithms for the solu-tion of this problem.Many of our observations 
an be extended to blo
ked algorithms fordense linear algebra operations in general. These in
lude:� The FLAME approa
h is a powerful tool for the derivation of provably
orre
t blo
ked algorithms.� The FLAME library provides a prototype environment for the rapidimplementation of su
h algorithms.25


