
Experimental Evaluation of a New Shortest Path Algorithm�Seth Pettie, Vijaya Ramahandran, and Srinath SridharDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712fseth,vlr,srinathg�s.utexas.eduUTCS TR-01-37Deember 11, 2001AbstratWe evaluate the pratial eÆieny of a new shortest path algorithm for undireted graphs whihwas developed by the �rst two authors. This algorithm works on the fundamental omparison-additionmodel.Theoretially, this new algorithm out-performs Dijkstra's algorithm on sparse graphs for the all-pairsshortest path problem, and more generally, for the problem of omputing single-soure shortest pathsfrom !(1) di�erent soures. Our extensive experimental analysis demonstrates that this is also the asein pratie. We present results whih show the new algorithm to run faster than Dijkstra's on a varietyof sparse graphs when the number of verties ranges from a few thousand to a few million, and whenomputing single-soure shortest paths from as few as three di�erent soures.1 IntrodutionThe shortest paths problem on graphs is one of the most widely-studied ombinatorial optimization problems.Given an edge-weighted graph, a path from a vertex u to a vertex v is a shortest path if its total lengthis minimum among all u-to-v paths. The omplexity of �nding shortest paths seems to depend upon howthe problem is formulated and what kinds of assumptions we plae on the graph, its edge-lengths and themahine model. Most shortest path algorithms for graphs an be well-ategorized by the following hoies.1. Whether shortest paths are omputed from a single soure vertex to all other verties (SSSP), orbetween all pairs of verties (APSP). One should also onsider the intermediate problem of omputingshortest paths from multiple spei�ed soures (MSSP).2. Whether the edge lengths are non-negative or arbitrary.3. Whether the graph is direted or undireted.4. Whether shortest paths are omputed using just omparison & addition operations, or whether they areomputed assuming a spei� edge-length representation (typially integers in binary) and operationsspei� to that representation. Comparison-addition based algorithms are neessarily general and theywork when edge-lengths are either integers or real numbers.�This work was supported by Texas Advaned Researh Program Grant 003658-0029-1999 and NSF Grant CCR-9988160.Seth Pettie was also supported by an MCD Graduate Fellowship.1

There is a wealth of literature on variations of the shortest path problem,1 however despite suh intenseresearh, very few of the results beyond the lassial algorithms of Dijkstra, Bellman-Ford, Floyd-Warshall,and min-plus matrix multipliation [AHU74, CLR90℄ work with real-valued edge-lengths using only ompar-isons and additions.2Previous experimental studies of shortest path algorithms [CGR96, GS97, G01b℄ foussed on very re-strited lasses of inputs, where the edge lengths were assumed to be uniformly distributed, relatively smallintegers. This approah may be preferable for a spei� appliation, however any algorithm implementedfor more general use must be robust. By robust we mean that it makes no assumptions on the distributionof inputs, and minimal assumptions on the programming interfae to the input (in the ase of shortest pathproblems this leads naturally to the omparison-addition model); we elaborate on this in Setion 2. A fatwhih many �nd startling is that Dijkstra's 1959 algorithm is still the best robust SSSP & APSP algorithmfor positively-weighted sparse direted graphs.In this paper we evaluate the performane of the reent undireted shortest path algorithm of Pettie &Ramahandran [PR02℄, heneforth the PR algorithm. The PR algorithm is a robust, omparison-additionbased algorithm for solving undireted SSSP from multiple spei�ed soures (MSSP). It works by pre-omputing a ertain struture alled the `omponent hierarhy', or CH (�rst proposed by Thorup [Tho99℄,for use with integer edge lengths) in time O(m+n logn). One the CH is onstruted SSSP is solved from anysoure in O(m�(m;n)) time, where � is the very slow-growing inverse-Akermann funtion. Theoretiallythis algorithm is asymptotially faster than Dijkstra's when the number of soures is !(1) and the numberof edges is o(n logn).The PR algorithm (as well as [Tho99, Hag00℄) an also tolerate a dynami graph in some irumstanes.If a omponent hierarhy is onstruted for a graph G, SSSP an be solved in O(m�(m;n)) time on anygraph G0 derived from G by altering eah edge weight by up to a onstant fator.As mentioned above, there are only a few shortest path algorithms that work on the omparison-additionmodel, and there is only one robust algorithm in diret ompetition with PR, namely Dijkstra's. TheBellman-Ford, Floyd-Warshall, and min-plus matrix multipliation algorithms handle negative edge lengthsand as a onsequene are onsiderably less eÆient than the PR algorithm (quadrati time for SSSP and ubifor APSP). The fastest implementation [Tak92℄ of Fredman's algorithm [F76℄ for APSP also takes almostubi time. The average-ase algorithms in [KKP93, MG91, Jak91, MT87℄ only provide improvements onvery dense random graphs.We evaluate the pratial eÆieny of the PR algorithm for the MSSP problem on undireted graphsby omparing it with Dijkstra's algorithm. The MSSP problem generalizes the SSSP-APSP extremes, andould be more relevant in some pratial senarios. For instane, a reent algorithm of Thorup [Tho01℄ forthe graphi faility loation and k-median problems performs SSSP omputations from a polylog number ofsoures. Our experiments indiate quite onviningly that the Pettie-Ramahandran algorithm outperformsDijkstra on sparse graphs when omputing SSSP from a suÆient number of soures, as few as 3 or 4 inseveral ases. We obtained this result aross all lasses of sparse graphs that we onsidered exept forthe so-alled `long grids' [CGR96℄. We also ompare the PR algorithm to breadth �rst searh, a naturallower bound on SSSP and a useful routine to normalize the running times of shortest path algorithms arossdi�erent arhitetures. We elaborate on this and other aspets of our results in Setion 6. Clearly, our resultsalso apply to the APSP problem, and they show that the PR algorithm outperforms Dijkstra's algorithmfor the APSP problem on sparse graphs.The rest of the paper is organized as follows. In Setion 2 we delineate the sope of our study. In Setion3 we give an overview of Dijkstra's algorithm and the PR algorithm. Setion 4 desribes the design hoieswe made in implementing the two algorithms. Setion 5 desribes our experimental set-up, and Setion 5.1the types of graphs we used. Setion 6 provides our results. Setion 7 ends with a disussion.1For an up-to-date survey of shortest path algorithms, see Zwik [Z01℄ (an updated version is available on-line).2Some exeptions to this rule are Fredman's min-plus matrix multipliation algorithm [F76℄ and several algorithms withgood average-ase performane: [MT87, KKP93, KS98, Mey01, G01℄
2

2 Sope of this WorkThe fous of this paper is robust shortest path algorithms, so it is worthwhile to state here exatly what wemean by the term. A robust shortest path algorithm should be robust with respet to:Input format. The algorithm should work with minimal assumptions on the input format and the program-ming \hooks" to manipulate the input. The assumption that edge-lengths are subjet to omparisonand addition operations is minimal sine these operations are both neessary and suÆient to solveshortest path problem.Graph type. The algorithm should work well on all graph sizes & topologies. It should not depend on thegraph being overly strutured (e.g. grids) or overly random (e.g. the Gn;m distr.).Edge-length distribution. The algorithm should not be adversely a�eted by the range or distributionon edge-lengths, nor should it depend upon the edge-lengths being hosen independently at random.Some may objet to the �rst riterion beause, at some level, edge lengths are represented as ints ordoubles; one might as well assume suh an input. This is not quite true. For instane, the LEDA platform[MN99℄ uses di�erent types for rationals, high-preision oating point numbers, and `real' numbers withprovable auray guarantees, and Java has similar types BigDeimal and BigInteger. A robust algorithman be used with all suh types with little or no modi�ation, and an be ported to di�erent platforms withminimal modi�ations.The bottom line is that robust algorithms are �t for use in a general setting where the format anddistribution of inputs is unknown and/or varies. Nothing preludes the use of other speialized shortestpath algorithms (indeed, those tailored to small integer weights, e.g. [GS97℄, will likely be faster), however,depending solely on suh an algorithm is learly unwise.In our experiments we fous primarily on lasses of sparse graphs, whih we de�ne as having an edge-to-vertex ratio less than logn. Sparse graphs frequently arise naturally; e.g. all planar and grid-like graphs aresparse, and the evidene shows the `web graph' also to be sparse. Denser graphs are important as well, butas a pratial matter the SSSP problem has essentially been solved: Dijkstra's algorithm runs in linear timefor densities greater than logn. The \sorting bottlenek" in Dijkstra's algorithm is only apparent for sparsegraphs.3 Overview of the algorithmsDijkstra's algorithm [Dij59℄ for SSSP (see [CLR90℄ or [AHU74℄) visits the verties in order of inreasingdistane from the soure. It maintains a set S of visited verties whose distane from the soure has beenestablished, and a tentative distane D(v) to eah unvisited vertex v. D(v) is an upper bound on the atualdistane to v, denoted d(v); it is the length of the shortest path from the soure to v in the subgraph induedby S [fvg. Dijkstra's algorithm repeatedly �nds the unvisited vertex with minimum tentative distane,adds it to the set S and updates D-values appropriately.Rather than giving a desription of the Pettie-Ramahandran [PR02℄ algorithm (whih is somewhatinvolved), we will instead desribe the omponent hierarhy approah put forward by Thorup [Tho99℄.Suppose that we are harged with �nding all verties within distane b of the soure, that is, all v suhthat d(v) 2 [0; b). One method is to run Dijkstra's algorithm (whih visits verties in order of their d-value)until a vertex with d-value outside [0; b) is visited. Thorup observed that if we hoose t < b and �nd the graphGt onsisting of edges shorter than t, the onneted omponents of Gt, say Gt, an be dealt with separatelyin the following sense. We an simulate whih verties Dijkstra's algorithm would visit for eah onnetedomponent in Gt, �rst over the interval [0; t), then [t; 2t), [2t; 3t), up to [b bt t; b). It is shown in [Tho99℄ (seealso [PR02℄) that these separate subproblems do not \interfere" with eah other in a tehnial sense. Thesubproblems generated by Thorup's approah are solved reursively. The omponent hierarhy is a rootedtree whih represents how the graph is deomposed; it is determined by the underlying graph and hoies of tmade in the algorithm. The basi proedure in omponent hierarhy-based algorithms [Tho99, Hag00, PR02℄is Visit(x; I), whih takes a omponent hierarhy node x and an interval I , and visits all verties in thesubgraph orresponding to x whose d-values lie in I . 3

4 Design Choies4.1 Dijkstra's AlgorithmWe use a pairing heap [F+86℄ to implement the priority queue in Dijkstra's algorithm. We made this hoiebased on the results reported in [MS94℄ for minimum spanning tree (MST) algorithms. In that experiment thepairing heap was found to be superior to the Fibonai heap (the hoie for the theoretial bound), as well asd-ary heaps, relaxed heaps and splay heaps in implementations of the Prim-Dijkstra MST algorithm.3 Sinethe Prim-Dijkstra MST algorithm has the same struture as Dijkstra's SSSP algorithm (Dijkstra presentsboth of these algorithms together in his lassi paper [Dij59℄), the pairing heap appears to be the right hoiefor this algorithm.The experimental studies by Goldberg [CGR96, GS97, G01b℄ have used bukets to implement the heapin Dijkstra's algorithm. However, the buketing strategy they used applies only to integer weights. Thebuketing strategies in [Mey01, G01℄ ould apply to arbitrary real edge weights, but they are spei�allygeared to good performane on edge-weights uniformly distributed in some interval. The method in [G01℄an be shown to have bad performane on some natural inputs.4 In ontrast we are evaluating robust,general-purpose algorithms that funtion in the omparison-addition model.We experimented with two versions of Dijkstra's algorithm, one whih plaes all verties on the heapinitially with key value 1 (the traditional method), and the other that keeps on the heap only vertiesknown to be at �nite distane from the soure. For sparse graphs one would expet the heap to ontainfewer verties if the seond method is used, resulting in a better running time. This is validated by ourexperimental data. The seond method out-performed the �rst one in all graphs that we tested, so we reportresults only for the seond method.4.2 Pettie-Ramahandran AlgorithmThe primary onsideration in [PR02℄ was asymptoti running time. In our implementation of this algorithmwe make several simpli�ations and adjustments whih are more pratial but may deteriorate the worst-aseasymptoti performane of the algorithm.1. Finding MST:The [PR02℄ algorithm either assumes the MST is found in O(m + n logn) time (for the multi-sourease) or, for the single soure ase, in optimal time using the algorithm of [PR00℄. Sine, for multiplesoures, we both �nd and sort the MST edges, we hose to use Kruskal's MST algorithm, whih runsin O(m logn) time but does both of these tasks in one pass. Some of our data on larger and densergraphs suggests that it may be better to use the Prim-Dijkstra MST algorithm, whih is empiriallyfaster than Kruskal's [MS94℄, followed by a step to sort only the MST edges.2. Updating D-values:In [PR02℄ the D-value of an internal CH node is de�ned to be the minimumD-value over its desendantleaves. As leaf D-values hange, the internal D-values must be updated. Rather than use Gabow'snear-linear time data struture [G85℄, whih is rather ompliated, we use the na��ve method. Whenevera leaf's D-value dereases, the new D-value is propagated up the CH until an anestor is reahed withan even lower D-value. The worst-ase time for updating a D-value is learly the height of CH, whihis logR, where R is the ratio of the maximum to minimum edge-weight; on the other hand, very fewanestors need to be updated in pratie.3. Using Dijkstra on small subproblems:The stream-lined nature of Dijkstra's algorithm makes it the preferred hoie for omputing shortestpaths on small graphs. For this reason we revert to Dijkstra's algorithmwhen the problem size beomessuÆiently small. If Visit(x; I) is alled on a CH node x with fewer than � desendant leaves, we run3This algorithm was atually disovered muh earlier by Jarn��k [Jar30℄.4For instane, where eah edge length is hosen independently from one of two uniform distributions with very di�erentranges. 4

Dijkstra's algorithm over the interval I rather than alling Visit reursively. For all the experimentsdesribed later, we set � = 50.4. Heaps vs. Lazy Buketing:The [PR02℄ algorithm implements a priority queue with a omparison-addition based `lazy buketing'struture. This struture provides asymptoti guarantees, but for pratial eÆieny we deided to usea standard pairing heap to implement the priority queue, augmented with an operation alled thresholdwhih simulates emptying a buket. A all to threshold(t) returns a list of all heap elements with keysless than t. It is implemented with a simple DFS of the pairing heap. An upper bound on the time forthreshold to return k elements is O(k logn), though in pratie it is muh faster.5. Additional Proessing of CH:In [PR02, Setions 3 & 4℄ the CH undergoes a round of re�nement, whih is ruial to the asymptotirunning time of the algorithm. We did not implement these re�nements, believing their real-worldbene�ts to be negligible. However, our experiments on hierarhially strutured graphs (whih, ine�et, have pre-re�ned CHs) are very enouraging. They suggest that the re�nement step ould speedup the omputation of shortest paths, at the ost of more pre-omputation.4.3 Breadth First SearhWe ompare the PR algorithm not only with Dijkstra's, but also with breadth �rst searh (BFS), an e�etivelower bound on the SSSP problem. Our BFS routine is implemented in the usual way, with a FIFO queue[CLR90℄. It �nds a shortest path (in terms of number of edges) from the soure to all other verties, andomputes the lengths of suh paths.5 Experimental Set-upOur main experimental platform was a SunBlade with a 400 MHz lok and 2GB DRAM and a small ahe(.5 MB). The large main memory allowed us to test graphs with millions of verties. For omparison purposeswe also ran our ode on seleted inputs on the following mahines.1. PC running Debian Linux with a 731 MHz Pentium III proessor and 255 MB DRAM.2. SUN Ultra 60 with a 400 MHz lok, 256 MB DRAM, and a 4 MB ahe.3. HP/UX J282 with 180 MHz lok, 128 MB ECC memory.5.1 Graph ClassesWe ran both algorithms on the following lasses of graphs.Gn;m. The distribution Gn;m assigns equal probability to all graphs with m edges on n labeled verties (see[ER61, Bo85℄ for strutural properties of Gn;m). We assign edge-lengths identially and independently,using either the uniform distribution over [0; 1), or the log-uniform distribution, where edge lengthsare given the value 2q, q being uniformly distributed over [0; C) for some onstant C. We use C = 100.Geometri graphs. Here we generate n random points (the verties) in the unit square and onnet withedges those pairs within some spei�ed distane. Edge-lengths orrespond to the distane betweenpoints. We present results for distane 1:5=pn, implying an average degree � 9�=4 whih is about 7.Very sparse graphs. These graphs are generated in two stages: we �rst generate a random spanningtree, to ensure onnetedness, then generate an additional n=10 random edges. All edges-lengths areuniformly distributed.Grid graphs. In many situations the graph topology is not random at all but highly preditable. Weexamine two lasses of grid graphs: pn � pn square grids and 16 � n=16 long grids, both withuniformly distributed edge-lengths [CGR96℄. 5

