*

Experimental Evaluation of a New Shortest Path Algorithm

Seth Pettie, Vijaya Ramachandran, and Srinath Sridhar
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712
{seth,vlr,srinath}@cs.utexas.edu

UTCS TR-01-37
December 11, 2001

Abstract

We evaluate the practical efficiency of a new shortest path algorithm for undirected graphs which
was developed by the first two authors. This algorithm works on the fundamental comparison-addition
model.

Theoretically, this new algorithm out-performs Dijkstra’s algorithm on sparse graphs for the all-pairs
shortest path problem, and more generally, for the problem of computing single-source shortest paths
from w(1) different sources. Our extensive experimental analysis demonstrates that this is also the case
in practice. We present results which show the new algorithm to run faster than Dijkstra’s on a variety
of sparse graphs when the number of vertices ranges from a few thousand to a few million, and when
computing single-source shortest paths from as few as three different sources.

1 Introduction

The shortest paths problem on graphs is one of the most widely-studied combinatorial optimization problems.
Given an edge-weighted graph, a path from a vertex u to a vertex v is a shortest path if its total length
is minimum among all u-to-v paths. The complexity of finding shortest paths seems to depend upon how
the problem is formulated and what kinds of assumptions we place on the graph, its edge-lengths and the
machine model. Most shortest path algorithms for graphs can be well-categorized by the following choices.

1. Whether shortest paths are computed from a single source vertex to all other vertices (SSSP), or
between all pairs of vertices (APSP). One should also consider the intermediate problem of computing
shortest paths from multiple specified sources (MSSP).

2. Whether the edge lengths are non-negative or arbitrary.
3. Whether the graph is directed or undirected.

4. Whether shortest paths are computed using just comparison € addition operations, or whether they are
computed assuming a specific edge-length representation (typically integers in binary) and operations
specific to that representation. Comparison-addition based algorithms are necessarily general and they
work when edge-lengths are either integers or real numbers.

*This work was supported by Texas Advanced Research Program Grant 003658-0029-1999 and NSF Grant CCR-9988160.
Seth Pettie was also supported by an MCD Graduate Fellowship.

There is a wealth of literature on variations of the shortest path problem,' however despite such intense
research, very few of the results beyond the classical algorithms of Dijkstra, Bellman-Ford, Floyd-Warshall,
and min-plus matrix multiplication [AHU74, CLR90] work with real-valued edge-lengths using only compar-
isons and additions.?

Previous experimental studies of shortest path algorithms [CGR96, GS97, GO1b] focussed on very re-
stricted classes of inputs, where the edge lengths were assumed to be uniformly distributed, relatively small
integers. This approach may be preferable for a specific application, however any algorithm implemented
for more general use must be robust. By robust we mean that it makes no assumptions on the distribution
of inputs, and minimal assumptions on the programming interface to the input (in the case of shortest path
problems this leads naturally to the comparison-addition model); we elaborate on this in Section 2. A fact
which many find startling is that Dijkstra’s 1959 algorithm is still the best robust SSSP & APSP algorithm
for positively-weighted sparse directed graphs.

In this paper we evaluate the performance of the recent undirected shortest path algorithm of Pettie &
Ramachandran [PR0O2], henceforth the PR algorithm. The PR algorithm is a robust, comparison-addition
based algorithm for solving undirected SSSP from multiple specified sources (MSSP). It works by pre-
computing a certain structure called the ‘component hierarchy’, or CH (first proposed by Thorup [Tho99],
for use with integer edge lengths) in time O(m+nlogn). Once the CH is constructed SSSP is solved from any
source in O(ma(m,n)) time, where «a is the very slow-growing inverse-Ackermann function. Theoretically
this algorithm is asymptotically faster than Dijkstra’s when the number of sources is w(1) and the number
of edges is o(nlogn).

The PR algorithm (as well as [Tho99, Hag00]) can also tolerate a dynamic graph in some circumstances.
If a component hierarchy is constructed for a graph G, SSSP can be solved in O(ma(m,n)) time on any
graph G' derived from G by altering each edge weight by up to a constant factor.

As mentioned above, there are only a few shortest path algorithms that work on the comparison-addition
model, and there is only one robust algorithm in direct competition with PR, namely Dijkstra’s. The
Bellman-Ford, Floyd-Warshall, and min-plus matrix multiplication algorithms handle negative edge lengths
and as a consequence are considerably less efficient than the PR algorithm (quadratic time for SSSP and cubic
for APSP). The fastest implementation [Tak92] of Fredman’s algorithm [F76] for APSP also takes almost
cubic time. The average-case algorithms in [KKP93, McG91, Jak91, MT87] only provide improvements on
very dense random graphs.

We evaluate the practical efficiency of the PR algorithm for the MSSP problem on undirected graphs
by comparing it with Dijkstra’s algorithm. The MSSP problem generalizes the SSSP-APSP extremes, and
could be more relevant in some practical scenarios. For instance, a recent algorithm of Thorup [Tho01] for
the graphic facility location and k-median problems performs SSSP computations from a polylog number of
sources. Our experiments indicate quite convincingly that the Pettie-Ramachandran algorithm outperforms
Dijkstra on sparse graphs when computing SSSP from a sufficient number of sources, as few as 3 or 4 in
several cases. We obtained this result across all classes of sparse graphs that we considered except for
the so-called ‘long grids’ [CGR96]. We also compare the PR algorithm to breadth first search, a natural
lower bound on SSSP and a useful routine to normalize the running times of shortest path algorithms across
different architectures. We elaborate on this and other aspects of our results in Section 6. Clearly, our results
also apply to the APSP problem, and they show that the PR algorithm outperforms Dijkstra’s algorithm
for the APSP problem on sparse graphs.

The rest of the paper is organized as follows. In Section 2 we delineate the scope of our study. In Section
3 we give an overview of Dijkstra’s algorithm and the PR algorithm. Section 4 describes the design choices
we made in implementing the two algorithms. Section 5 describes our experimental set-up, and Section 5.1
the types of graphs we used. Section 6 provides our results. Section 7 ends with a discussion.

LFor an up-to-date survey of shortest path algorithms, see Zwick [Z01] (an updated version is available on-line).
2Some exceptions to this rule are Fredman’s min-plus matrix multiplication algorithm [F76] and several algorithms with
good average-case performance: [MT87, KKP93, KS98, Mey01, G01]

2 Scope of this Work

The focus of this paper is robust shortest path algorithms, so it is worthwhile to state here exactly what we
mean by the term. A robust shortest path algorithm should be robust with respect to:

Input format. The algorithm should work with minimal assumptions on the input format and the program-
ming “hooks” to manipulate the input. The assumption that edge-lengths are subject to comparison
and addition operations is minimal since these operations are both necessary and sufficient to solve
shortest path problem.

Graph type. The algorithm should work well on all graph sizes & topologies. It should not depend on the
graph being overly structured (e.g. grids) or overly random (e.g. the G, ,, distr.).

Edge-length distribution. The algorithm should not be adversely affected by the range or distribution
on edge-lengths, nor should it depend upon the edge-lengths being chosen independently at random.

Some may object to the first criterion because, at some level, edge lengths are represented as ints or
doubles; one might as well assume such an input. This is not quite true. For instance, the LEDA platform
[MN99] uses different types for rationals, high-precision floating point numbers, and ‘real’ numbers with
provable accuracy guarantees, and Java has similar types BigDecimal and Biglnteger. A robust algorithm
can be used with all such types with little or no modification, and can be ported to different platforms with
minimal modifications.

The bottom line is that robust algorithms are fit for use in a general setting where the format and
distribution of inputs is unknown and/or varies. Nothing precludes the use of other specialized shortest
path algorithms (indeed, those tailored to small integer weights, e.g. [GS97], will likely be faster), however,
depending solely on such an algorithm is clearly unwise.

In our experiments we focus primarily on classes of sparse graphs, which we define as having an edge-to-
vertex ratio less than logn. Sparse graphs frequently arise naturally; e.g. all planar and grid-like graphs are
sparse, and the evidence shows the ‘web graph’ also to be sparse. Denser graphs are important as well, but
as a practical matter the SSSP problem has essentially been solved: Dijkstra’s algorithm runs in linear time
for densities greater than logn. The “sorting bottleneck” in Dijkstra’s algorithm is only apparent for sparse
graphs.

3 Overview of the algorithms

Dijkstra’s algorithm [Dij59] for SSSP (see [CLR90] or [AHUT74]) visits the vertices in order of increasing
distance from the source. It maintains a set S of visited vertices whose distance from the source has been
established, and a tentative distance D(v) to each unvisited vertex v. D(v) is an upper bound on the actual
distance to v, denoted d(v); it is the length of the shortest path from the source to v in the subgraph induced
by S U {v}. Dijkstra’s algorithm repeatedly finds the unvisited vertex with minimum tentative distance,
adds it to the set S and updates D-values appropriately.

Rather than giving a description of the Pettie-Ramachandran [PR02] algorithm (which is somewhat
involved), we will instead describe the component hierarchy approach put forward by Thorup [Tho99].
Suppose that we are charged with finding all vertices within distance b of the source, that is, all v such
that d(v) € [0,b). One method is to run Dijkstra’s algorithm (which visits vertices in order of their d-value)
until a vertex with d-value outside [0, b) is visited. Thorup observed that if we choose ¢ < b and find the graph
G consisting of edges shorter than ¢, the connected components of Gy, say G;, can be dealt with separately
in the following sense. We can simulate which vertices Dijkstra’s algorithm would visit for each connected
component in G, first over the interval [0,¢), then [¢t,2t), [2¢, 3t), up to [L%Jt, b). It is shown in [Tho99] (see
also [PR02]) that these separate subproblems do not “interfere” with each other in a technical sense. The
subproblems generated by Thorup’s approach are solved recursively. The component hierarchy is a rooted
tree which represents how the graph is decomposed; it is determined by the underlying graph and choices of ¢
made in the algorithm. The basic procedure in component hierarchy-based algorithms [Tho99, Hag00, PR02]
is Visit(z,), which takes a component hierarchy node z and an interval I, and visits all vertices in the
subgraph corresponding to whose d-values lie in I.

4 Design Choices

4.1 Dijkstra’s Algorithm

We use a pairing heap [F+86] to implement the priority queue in Dijkstra’s algorithm. We made this choice
based on the results reported in [MS94] for minimum spanning tree (MST) algorithms. In that experiment the
pairing heap was found to be superior to the Fibonacci heap (the choice for the theoretical bound), as well as
d-ary heaps, relaxed heaps and splay heaps in implementations of the Prim-Dijkstra MST algorithm.® Since
the Prim-Dijkstra MST algorithm has the same structure as Dijkstra’s SSSP algorithm (Dijkstra presents
both of these algorithms together in his classic paper [Dij59]), the pairing heap appears to be the right choice
for this algorithm.

The experimental studies by Goldberg [CGR96, GS97, GO1b] have used buckets to implement the heap
in Dijkstra’s algorithm. However, the bucketing strategy they used applies only to integer weights. The
bucketing strategies in [Mey01l, GO1] could apply to arbitrary real edge weights, but they are specifically
geared to good performance on edge-weights uniformly distributed in some interval. The method in [GO01]
can be shown to have bad performance on some natural inputs.* In contrast we are evaluating robust,
general-purpose algorithms that function in the comparison-addition model.

We experimented with two versions of Dijkstra’s algorithm, one which places all vertices on the heap
initially with key value co (the traditional method), and the other that keeps on the heap only vertices
known to be at finite distance from the source. For sparse graphs one would expect the heap to contain
fewer vertices if the second method is used, resulting in a better running time. This is validated by our
experimental data. The second method out-performed the first one in all graphs that we tested, so we report
results only for the second method.

4.2 Pettie-Ramachandran Algorithm

The primary consideration in [PR02] was asymptotic running time. In our implementation of this algorithm
we make several simplifications and adjustments which are more practical but may deteriorate the worst-case
asymptotic performance of the algorithm.

1. Finding MST:

The [PR0O2] algorithm either assumes the MST is found in O(m + nlogn) time (for the multi-source
case) or, for the single source case, in optimal time using the algorithm of [PR00]. Since, for multiple
sources, we both find and sort the MST edges, we chose to use Kruskal’s MST algorithm, which runs
in O(mlogn) time but does both of these tasks in one pass. Some of our data on larger and denser
graphs suggests that it may be better to use the Prim-Dijkstra MST algorithm, which is empirically
faster than Kruskal’s [MS94], followed by a step to sort only the MST edges.

2. Updating D-values:

In [PRO2] the D-value of an internal CH node is defined to be the minimum D-value over its descendant
leaves. As leaf D-values change, the internal D-values must be updated. Rather than use Gabow’s
near-linear time data structure [G85], which is rather complicated, we use the naive method. Whenever
a leaf’s D-value decreases, the new D-value is propagated up the CH until an ancestor is reached with
an even lower D-value. The worst-case time for updating a D-value is clearly the height of CH, which
is log R, where R is the ratio of the maximum to minimum edge-weight; on the other hand, very few
ancestors need to be updated in practice.

3. Using Dijkstra on small subproblems:

The stream-lined nature of Dijkstra’s algorithm makes it the preferred choice for computing shortest
paths on small graphs. For this reason we revert to Dijkstra’s algorithm when the problem size becomes
sufficiently small. If Visit(z,I) is called on a CH node z with fewer than v descendant leaves, we run

3This algorithm was actually discovered much earlier by Jarnik [Jar30].
4For instance, where each edge length is chosen independently from one of two uniform distributions with very different
ranges.

Dijkstra’s algorithm over the interval I rather than calling Visit recursively. For all the experiments
described later, we set v = 50.

4. Heaps vs. Lazy Bucketing:

The [PRO2] algorithm implements a priority queue with a comparison-addition based ‘lazy bucketing’
structure. This structure provides asymptotic guarantees, but for practical efficiency we decided to use
a standard pairing heap to implement the priority queue, augmented with an operation called threshold
which simulates emptying a bucket. A call to threshold(t) returns a list of all heap elements with keys
less than ¢. It is implemented with a simple DFS of the pairing heap. An upper bound on the time for
threshold to return % elements is O(klogn), though in practice it is much faster.

5. Additional Processing of CH:

In [PRO2, Sections 3 & 4] the CH undergoes a round of refinement, which is crucial to the asymptotic
running time of the algorithm. We did not implement these refinements, believing their real-world
benefits to be negligible. However, our experiments on hierarchically structured graphs (which, in
effect, have pre-refined CHs) are very encouraging. They suggest that the refinement step could speed
up the computation of shortest paths, at the cost of more pre-computation.

4.3 Breadth First Search

We compare the PR algorithm not only with Dijkstra’s, but also with breadth first search (BFS), an effective
lower bound on the SSSP problem. Our BFS routine is implemented in the usual way, with a FIFO queue
[CLR90]. It finds a shortest path (in terms of number of edges) from the source to all other vertices, and
computes the lengths of such paths.

5 Experimental Set-up

Our main experimental platform was a SunBlade with a 400 MHz clock and 2GB DRAM and a small cache
(.5 MB). The large main memory allowed us to test graphs with millions of vertices. For comparison purposes
we also ran our code on selected inputs on the following machines.

1. PC running Debian Linux with a 731 MHz Pentium III processor and 255 MB DRAM.
2. SUN Ultra 60 with a 400 MHz clock, 256 MB DRAM, and a 4 MB cache.
3. HP/UX J282 with 180 MHz clock, 128 MB ECC memory.

5.1 Graph Classes

We ran both algorithms on the following classes of graphs.

Gy,m- The distribution G, ,,, assigns equal probability to all graphs with m edges on n labeled vertices (see
[ER61, Bo85] for structural properties of G, ,,). We assign edge-lengths identically and independently,
using either the uniform distribution over [0,1), or the log-uniform distribution, where edge lengths
are given the value 27, ¢ being uniformly distributed over [0, C) for some constant C. We use C' = 100.

Geometric graphs. Here we generate n random points (the vertices) in the unit square and connect with
edges those pairs within some specified distance. Edge-lengths correspond to the distance between
points. We present results for distance 1.5/4/n, implying an average degree ~ 97 /4 which is about 7.

Very sparse graphs. These graphs are generated in two stages: we first generate a random spanning
tree, to ensure connectedness, then generate an additional n/10 random edges. All edges-lengths are
uniformly distributed.

Grid graphs. In many situations the graph topology is not random at all but highly predictable. We
examine two classes of grid graphs: \/n x /n square grids and 16 x n/16 long grids, both with
uniformly distributed edge-lengths [CGR96].

