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tWe evaluate the pra
ti
al eÆ
ien
y of a new shortest path algorithm for undire
ted graphs whi
hwas developed by the �rst two authors. This algorithm works on the fundamental 
omparison-additionmodel.Theoreti
ally, this new algorithm out-performs Dijkstra's algorithm on sparse graphs for the all-pairsshortest path problem, and more generally, for the problem of 
omputing single-sour
e shortest pathsfrom !(1) di�erent sour
es. Our extensive experimental analysis demonstrates that this is also the 
asein pra
ti
e. We present results whi
h show the new algorithm to run faster than Dijkstra's on a varietyof sparse graphs when the number of verti
es ranges from a few thousand to a few million, and when
omputing single-sour
e shortest paths from as few as three di�erent sour
es.1 Introdu
tionThe shortest paths problem on graphs is one of the most widely-studied 
ombinatorial optimization problems.Given an edge-weighted graph, a path from a vertex u to a vertex v is a shortest path if its total lengthis minimum among all u-to-v paths. The 
omplexity of �nding shortest paths seems to depend upon howthe problem is formulated and what kinds of assumptions we pla
e on the graph, its edge-lengths and thema
hine model. Most shortest path algorithms for graphs 
an be well-
ategorized by the following 
hoi
es.1. Whether shortest paths are 
omputed from a single sour
e vertex to all other verti
es (SSSP), orbetween all pairs of verti
es (APSP). One should also 
onsider the intermediate problem of 
omputingshortest paths from multiple spe
i�ed sour
es (MSSP).2. Whether the edge lengths are non-negative or arbitrary.3. Whether the graph is dire
ted or undire
ted.4. Whether shortest paths are 
omputed using just 
omparison & addition operations, or whether they are
omputed assuming a spe
i�
 edge-length representation (typi
ally integers in binary) and operationsspe
i�
 to that representation. Comparison-addition based algorithms are ne
essarily general and theywork when edge-lengths are either integers or real numbers.�This work was supported by Texas Advan
ed Resear
h Program Grant 003658-0029-1999 and NSF Grant CCR-9988160.Seth Pettie was also supported by an MCD Graduate Fellowship.1



There is a wealth of literature on variations of the shortest path problem,1 however despite su
h intenseresear
h, very few of the results beyond the 
lassi
al algorithms of Dijkstra, Bellman-Ford, Floyd-Warshall,and min-plus matrix multipli
ation [AHU74, CLR90℄ work with real-valued edge-lengths using only 
ompar-isons and additions.2Previous experimental studies of shortest path algorithms [CGR96, GS97, G01b℄ fo
ussed on very re-stri
ted 
lasses of inputs, where the edge lengths were assumed to be uniformly distributed, relatively smallintegers. This approa
h may be preferable for a spe
i�
 appli
ation, however any algorithm implementedfor more general use must be robust. By robust we mean that it makes no assumptions on the distributionof inputs, and minimal assumptions on the programming interfa
e to the input (in the 
ase of shortest pathproblems this leads naturally to the 
omparison-addition model); we elaborate on this in Se
tion 2. A fa
twhi
h many �nd startling is that Dijkstra's 1959 algorithm is still the best robust SSSP & APSP algorithmfor positively-weighted sparse dire
ted graphs.In this paper we evaluate the performan
e of the re
ent undire
ted shortest path algorithm of Pettie &Rama
handran [PR02℄, hen
eforth the PR algorithm. The PR algorithm is a robust, 
omparison-additionbased algorithm for solving undire
ted SSSP from multiple spe
i�ed sour
es (MSSP). It works by pre-
omputing a 
ertain stru
ture 
alled the `
omponent hierar
hy', or CH (�rst proposed by Thorup [Tho99℄,for use with integer edge lengths) in time O(m+n logn). On
e the CH is 
onstru
ted SSSP is solved from anysour
e in O(m�(m;n)) time, where � is the very slow-growing inverse-A
kermann fun
tion. Theoreti
allythis algorithm is asymptoti
ally faster than Dijkstra's when the number of sour
es is !(1) and the numberof edges is o(n logn).The PR algorithm (as well as [Tho99, Hag00℄) 
an also tolerate a dynami
 graph in some 
ir
umstan
es.If a 
omponent hierar
hy is 
onstru
ted for a graph G, SSSP 
an be solved in O(m�(m;n)) time on anygraph G0 derived from G by altering ea
h edge weight by up to a 
onstant fa
tor.As mentioned above, there are only a few shortest path algorithms that work on the 
omparison-additionmodel, and there is only one robust algorithm in dire
t 
ompetition with PR, namely Dijkstra's. TheBellman-Ford, Floyd-Warshall, and min-plus matrix multipli
ation algorithms handle negative edge lengthsand as a 
onsequen
e are 
onsiderably less eÆ
ient than the PR algorithm (quadrati
 time for SSSP and 
ubi
for APSP). The fastest implementation [Tak92℄ of Fredman's algorithm [F76℄ for APSP also takes almost
ubi
 time. The average-
ase algorithms in [KKP93, M
G91, Jak91, MT87℄ only provide improvements onvery dense random graphs.We evaluate the pra
ti
al eÆ
ien
y of the PR algorithm for the MSSP problem on undire
ted graphsby 
omparing it with Dijkstra's algorithm. The MSSP problem generalizes the SSSP-APSP extremes, and
ould be more relevant in some pra
ti
al s
enarios. For instan
e, a re
ent algorithm of Thorup [Tho01℄ forthe graphi
 fa
ility lo
ation and k-median problems performs SSSP 
omputations from a polylog number ofsour
es. Our experiments indi
ate quite 
onvin
ingly that the Pettie-Rama
handran algorithm outperformsDijkstra on sparse graphs when 
omputing SSSP from a suÆ
ient number of sour
es, as few as 3 or 4 inseveral 
ases. We obtained this result a
ross all 
lasses of sparse graphs that we 
onsidered ex
ept forthe so-
alled `long grids' [CGR96℄. We also 
ompare the PR algorithm to breadth �rst sear
h, a naturallower bound on SSSP and a useful routine to normalize the running times of shortest path algorithms a
rossdi�erent ar
hite
tures. We elaborate on this and other aspe
ts of our results in Se
tion 6. Clearly, our resultsalso apply to the APSP problem, and they show that the PR algorithm outperforms Dijkstra's algorithmfor the APSP problem on sparse graphs.The rest of the paper is organized as follows. In Se
tion 2 we delineate the s
ope of our study. In Se
tion3 we give an overview of Dijkstra's algorithm and the PR algorithm. Se
tion 4 des
ribes the design 
hoi
eswe made in implementing the two algorithms. Se
tion 5 des
ribes our experimental set-up, and Se
tion 5.1the types of graphs we used. Se
tion 6 provides our results. Se
tion 7 ends with a dis
ussion.1For an up-to-date survey of shortest path algorithms, see Zwi
k [Z01℄ (an updated version is available on-line).2Some ex
eptions to this rule are Fredman's min-plus matrix multipli
ation algorithm [F76℄ and several algorithms withgood average-
ase performan
e: [MT87, KKP93, KS98, Mey01, G01℄
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2 S
ope of this WorkThe fo
us of this paper is robust shortest path algorithms, so it is worthwhile to state here exa
tly what wemean by the term. A robust shortest path algorithm should be robust with respe
t to:Input format. The algorithm should work with minimal assumptions on the input format and the program-ming \hooks" to manipulate the input. The assumption that edge-lengths are subje
t to 
omparisonand addition operations is minimal sin
e these operations are both ne
essary and suÆ
ient to solveshortest path problem.Graph type. The algorithm should work well on all graph sizes & topologies. It should not depend on thegraph being overly stru
tured (e.g. grids) or overly random (e.g. the Gn;m distr.).Edge-length distribution. The algorithm should not be adversely a�e
ted by the range or distributionon edge-lengths, nor should it depend upon the edge-lengths being 
hosen independently at random.Some may obje
t to the �rst 
riterion be
ause, at some level, edge lengths are represented as ints ordoubles; one might as well assume su
h an input. This is not quite true. For instan
e, the LEDA platform[MN99℄ uses di�erent types for rationals, high-pre
ision 
oating point numbers, and `real' numbers withprovable a

ura
y guarantees, and Java has similar types BigDe
imal and BigInteger. A robust algorithm
an be used with all su
h types with little or no modi�
ation, and 
an be ported to di�erent platforms withminimal modi�
ations.The bottom line is that robust algorithms are �t for use in a general setting where the format anddistribution of inputs is unknown and/or varies. Nothing pre
ludes the use of other spe
ialized shortestpath algorithms (indeed, those tailored to small integer weights, e.g. [GS97℄, will likely be faster), however,depending solely on su
h an algorithm is 
learly unwise.In our experiments we fo
us primarily on 
lasses of sparse graphs, whi
h we de�ne as having an edge-to-vertex ratio less than logn. Sparse graphs frequently arise naturally; e.g. all planar and grid-like graphs aresparse, and the eviden
e shows the `web graph' also to be sparse. Denser graphs are important as well, butas a pra
ti
al matter the SSSP problem has essentially been solved: Dijkstra's algorithm runs in linear timefor densities greater than logn. The \sorting bottlene
k" in Dijkstra's algorithm is only apparent for sparsegraphs.3 Overview of the algorithmsDijkstra's algorithm [Dij59℄ for SSSP (see [CLR90℄ or [AHU74℄) visits the verti
es in order of in
reasingdistan
e from the sour
e. It maintains a set S of visited verti
es whose distan
e from the sour
e has beenestablished, and a tentative distan
e D(v) to ea
h unvisited vertex v. D(v) is an upper bound on the a
tualdistan
e to v, denoted d(v); it is the length of the shortest path from the sour
e to v in the subgraph indu
edby S [ fvg. Dijkstra's algorithm repeatedly �nds the unvisited vertex with minimum tentative distan
e,adds it to the set S and updates D-values appropriately.Rather than giving a des
ription of the Pettie-Rama
handran [PR02℄ algorithm (whi
h is somewhatinvolved), we will instead des
ribe the 
omponent hierar
hy approa
h put forward by Thorup [Tho99℄.Suppose that we are 
harged with �nding all verti
es within distan
e b of the sour
e, that is, all v su
hthat d(v) 2 [0; b). One method is to run Dijkstra's algorithm (whi
h visits verti
es in order of their d-value)until a vertex with d-value outside [0; b) is visited. Thorup observed that if we 
hoose t < b and �nd the graphGt 
onsisting of edges shorter than t, the 
onne
ted 
omponents of Gt, say Gt, 
an be dealt with separatelyin the following sense. We 
an simulate whi
h verti
es Dijkstra's algorithm would visit for ea
h 
onne
ted
omponent in Gt, �rst over the interval [0; t), then [t; 2t), [2t; 3t), up to [b bt 
t; b). It is shown in [Tho99℄ (seealso [PR02℄) that these separate subproblems do not \interfere" with ea
h other in a te
hni
al sense. Thesubproblems generated by Thorup's approa
h are solved re
ursively. The 
omponent hierar
hy is a rootedtree whi
h represents how the graph is de
omposed; it is determined by the underlying graph and 
hoi
es of tmade in the algorithm. The basi
 pro
edure in 
omponent hierar
hy-based algorithms [Tho99, Hag00, PR02℄is Visit(x; I), whi
h takes a 
omponent hierar
hy node x and an interval I , and visits all verti
es in thesubgraph 
orresponding to x whose d-values lie in I . 3



4 Design Choi
es4.1 Dijkstra's AlgorithmWe use a pairing heap [F+86℄ to implement the priority queue in Dijkstra's algorithm. We made this 
hoi
ebased on the results reported in [MS94℄ for minimum spanning tree (MST) algorithms. In that experiment thepairing heap was found to be superior to the Fibona

i heap (the 
hoi
e for the theoreti
al bound), as well asd-ary heaps, relaxed heaps and splay heaps in implementations of the Prim-Dijkstra MST algorithm.3 Sin
ethe Prim-Dijkstra MST algorithm has the same stru
ture as Dijkstra's SSSP algorithm (Dijkstra presentsboth of these algorithms together in his 
lassi
 paper [Dij59℄), the pairing heap appears to be the right 
hoi
efor this algorithm.The experimental studies by Goldberg [CGR96, GS97, G01b℄ have used bu
kets to implement the heapin Dijkstra's algorithm. However, the bu
keting strategy they used applies only to integer weights. Thebu
keting strategies in [Mey01, G01℄ 
ould apply to arbitrary real edge weights, but they are spe
i�
allygeared to good performan
e on edge-weights uniformly distributed in some interval. The method in [G01℄
an be shown to have bad performan
e on some natural inputs.4 In 
ontrast we are evaluating robust,general-purpose algorithms that fun
tion in the 
omparison-addition model.We experimented with two versions of Dijkstra's algorithm, one whi
h pla
es all verti
es on the heapinitially with key value 1 (the traditional method), and the other that keeps on the heap only verti
esknown to be at �nite distan
e from the sour
e. For sparse graphs one would expe
t the heap to 
ontainfewer verti
es if the se
ond method is used, resulting in a better running time. This is validated by ourexperimental data. The se
ond method out-performed the �rst one in all graphs that we tested, so we reportresults only for the se
ond method.4.2 Pettie-Rama
handran AlgorithmThe primary 
onsideration in [PR02℄ was asymptoti
 running time. In our implementation of this algorithmwe make several simpli�
ations and adjustments whi
h are more pra
ti
al but may deteriorate the worst-
aseasymptoti
 performan
e of the algorithm.1. Finding MST:The [PR02℄ algorithm either assumes the MST is found in O(m + n logn) time (for the multi-sour
e
ase) or, for the single sour
e 
ase, in optimal time using the algorithm of [PR00℄. Sin
e, for multiplesour
es, we both �nd and sort the MST edges, we 
hose to use Kruskal's MST algorithm, whi
h runsin O(m logn) time but does both of these tasks in one pass. Some of our data on larger and densergraphs suggests that it may be better to use the Prim-Dijkstra MST algorithm, whi
h is empiri
allyfaster than Kruskal's [MS94℄, followed by a step to sort only the MST edges.2. Updating D-values:In [PR02℄ the D-value of an internal CH node is de�ned to be the minimumD-value over its des
endantleaves. As leaf D-values 
hange, the internal D-values must be updated. Rather than use Gabow'snear-linear time data stru
ture [G85℄, whi
h is rather 
ompli
ated, we use the na��ve method. Whenevera leaf's D-value de
reases, the new D-value is propagated up the CH until an an
estor is rea
hed withan even lower D-value. The worst-
ase time for updating a D-value is 
learly the height of CH, whi
his logR, where R is the ratio of the maximum to minimum edge-weight; on the other hand, very fewan
estors need to be updated in pra
ti
e.3. Using Dijkstra on small subproblems:The stream-lined nature of Dijkstra's algorithm makes it the preferred 
hoi
e for 
omputing shortestpaths on small graphs. For this reason we revert to Dijkstra's algorithmwhen the problem size be
omessuÆ
iently small. If Visit(x; I) is 
alled on a CH node x with fewer than � des
endant leaves, we run3This algorithm was a
tually dis
overed mu
h earlier by Jarn��k [Jar30℄.4For instan
e, where ea
h edge length is 
hosen independently from one of two uniform distributions with very di�erentranges. 4



Dijkstra's algorithm over the interval I rather than 
alling Visit re
ursively. For all the experimentsdes
ribed later, we set � = 50.4. Heaps vs. Lazy Bu
keting:The [PR02℄ algorithm implements a priority queue with a 
omparison-addition based `lazy bu
keting'stru
ture. This stru
ture provides asymptoti
 guarantees, but for pra
ti
al eÆ
ien
y we de
ided to usea standard pairing heap to implement the priority queue, augmented with an operation 
alled thresholdwhi
h simulates emptying a bu
ket. A 
all to threshold(t) returns a list of all heap elements with keysless than t. It is implemented with a simple DFS of the pairing heap. An upper bound on the time forthreshold to return k elements is O(k logn), though in pra
ti
e it is mu
h faster.5. Additional Pro
essing of CH:In [PR02, Se
tions 3 & 4℄ the CH undergoes a round of re�nement, whi
h is 
ru
ial to the asymptoti
running time of the algorithm. We did not implement these re�nements, believing their real-worldbene�ts to be negligible. However, our experiments on hierar
hi
ally stru
tured graphs (whi
h, ine�e
t, have pre-re�ned CHs) are very en
ouraging. They suggest that the re�nement step 
ould speedup the 
omputation of shortest paths, at the 
ost of more pre-
omputation.4.3 Breadth First Sear
hWe 
ompare the PR algorithm not only with Dijkstra's, but also with breadth �rst sear
h (BFS), an e�e
tivelower bound on the SSSP problem. Our BFS routine is implemented in the usual way, with a FIFO queue[CLR90℄. It �nds a shortest path (in terms of number of edges) from the sour
e to all other verti
es, and
omputes the lengths of su
h paths.5 Experimental Set-upOur main experimental platform was a SunBlade with a 400 MHz 
lo
k and 2GB DRAM and a small 
a
he(.5 MB). The large main memory allowed us to test graphs with millions of verti
es. For 
omparison purposeswe also ran our 
ode on sele
ted inputs on the following ma
hines.1. PC running Debian Linux with a 731 MHz Pentium III pro
essor and 255 MB DRAM.2. SUN Ultra 60 with a 400 MHz 
lo
k, 256 MB DRAM, and a 4 MB 
a
he.3. HP/UX J282 with 180 MHz 
lo
k, 128 MB ECC memory.5.1 Graph ClassesWe ran both algorithms on the following 
lasses of graphs.Gn;m. The distribution Gn;m assigns equal probability to all graphs with m edges on n labeled verti
es (see[ER61, Bo85℄ for stru
tural properties of Gn;m). We assign edge-lengths identi
ally and independently,using either the uniform distribution over [0; 1), or the log-uniform distribution, where edge lengthsare given the value 2q, q being uniformly distributed over [0; C) for some 
onstant C. We use C = 100.Geometri
 graphs. Here we generate n random points (the verti
es) in the unit square and 
onne
t withedges those pairs within some spe
i�ed distan
e. Edge-lengths 
orrespond to the distan
e betweenpoints. We present results for distan
e 1:5=pn, implying an average degree � 9�=4 whi
h is about 7.Very sparse graphs. These graphs are generated in two stages: we �rst generate a random spanningtree, to ensure 
onne
tedness, then generate an additional n=10 random edges. All edges-lengths areuniformly distributed.Grid graphs. In many situations the graph topology is not random at all but highly predi
table. Weexamine two 
lasses of grid graphs: pn � pn square grids and 16 � n=16 long grids, both withuniformly distributed edge-lengths [CGR96℄. 5


