On Applying Mobile Agents to Network Management

Huaiyu Liu!, Marian Nodine?

! Department of Computer Sciences,
University of Texas at Austin,
Austin, TX 78712, USA.
Email: huaiyu@cs.utexas.edu
2 Telcordia Technologies,

106 E. 6°"St., Austin TX 78701
Email: nodine@research.telcordia.com

Abstract. The inscalability and inflexibility problems suffered by the traditional
Network Management System(NMS) have been addressed in many research projects.
Mobile agent technology is a promising approach to the design of a distributed NMS.
In this report, we first investigated the benefits of applying mobile agents to network
management. After evaluating several popular mobile agent platforms, we selected
the JADE system and upon it, designed a general architecture of a NMS based on
mobile agents.

1 Introduction

Network Management is a critical issue in today’s rapidly changing environment. Currently,
NMSs are based on centralized client/server frameworks. Management agents!, the servers
in the framework that provide a fixed set of operations, are installed in the managed devices.
A management center, the client in the framework, routinely polls the managed devices to
monitor and control the network.

However, the exponential growth of the Internet is overwhelming management centers.
For example, due to the fact that one cannot predict the future operational conditions and
situations, it is better off to let management centers to decide the management operations.
Therefore, the management agent on each managed device, an integral and permanent part
of the managed device’s software, is typically kept small, with minimal functionality, and
implementing a few mechanisms. Policies of monitoring and controlling networks are left
to management centers. This carries the potential of creating too much network traffic
between the management center and managed devices as well as placing large processing
load on the management centers. Moreover, a management agent often does not provide
a single operation that matches a task of a management center exactly. The management
center must invoke a sequence of server operations on each of the managed nodes, which
brings intermediate data or irrelevant data across the network on each operation. As we
can see, such a framework moves inherently distributed operations to a centralized site, and
thus suffers problems such as inscalability and inflexibility.

The ever increasing heterogeneous network is also a great challenge to today’s network
managers. It requires that a network manager have greater knowledge and increased training.
Also, the network management tools are becoming more diverse. Besides the NMSs such as
HP OpenView, which is mainly based on SNMP, there are many other stand alone tools.
Examples of such tools are Traceroute, which can trace the route from a node to another

! In the SNMP protocol, there are processes running on network devices and performing the
network management functions requested by a management center. These processes are called
management agents. However, they are different from the agent concept we discuss in this report.
In order to distinguish them, we use management agents to refer to the agents defined in SNMP.
Agents or mobile agents, discussed in this report, refer to the agent concept commonly accepted
by the agent community: an autonomous entity that is able to learn, cooperate and move.

node; netimer [12], which estimates bottleneck bandwidth of a path; and Treno[11], which
measures the single stream bulk transfer capacity over an Internet path, etc. To manage a
network successfully, a manager needs to have the expertise to know which tools to use and
which data to analyze under different circumstances.

Recently, mobile agents have been proposed [8] as one approach to realize a distributed
NMS. Instead of a centralized and usually very large application that encodes the complete
intelligence of the system, a number of relatively small systems, mobile agents, cooperate
to do the job of network management. A mobile agent is a computational entity that is
autonomous and can move between locations in a heterogeneous network. Mobile agents
may exchange their viewpoints and provide strategies. When necessary, they can migrate to
remote machines to do some local operations or dispatch other agents to perform sub-tasks.
Mobile agents also introduce a new software and communication architecture, which is more
efficient than the client/server model and allow rapid development of distributed network
management applications.

Currently there are many mobile agent platforms available that provide migration mech-
anisms to enable agents to move from one node to another. There are also many network
management, monitoring and diagnosis tools, as mentioned above, each of which performs a
certain kind of task. A network manager needs to excute some combination of these tasks to
locate, diagnose and solve network problems. Therefore, it is highly desirable to integrate the
mobile agent platform with management tools into a system that does not suffer the problem
of inscalability and releases a network manager from routine but complicated management
tasks. In such a system, some agents encapsulate existing tools that perform monitoring
or diagnosis functions. When necessary, they will migrate to other locations to stay close
to some other agents or applications with which they are interacting. Agents need to have
some intelligence so that they can collaborate together to provide a solution, simulating the
process a manager combining tools together to find solutions. Therefore, we are aiming at
designing a NMS based on mobile agents, which integrate the mobile agent platforms with
the existing management tools, and adding some intelligence to the agents so that they can
cooperate together to either find out what causes the problem in the network, or provide a
solution.

This report, is a summary of our work at the first stage, in which we researched on
whether mobile agents is a feasible solution to network management, evaluated existing
mobile agent platforms and finally, and designed a general system architecture.

The rest of this report is organized as follows. In Section 2, we discuss the benefits
of using mobile agents. In Section 3, we review related works on different approaches of
network management systems. In Section 4, we evaluate several mobile agent platforms and
choose one that is close to our purpose. We present a general architecture of a NMS based
on mobile agents in Section 5 and conclude in Section 6. In this report, we are targeting at
intra-domain network management.

2 Motivation

In general, there are several advantages of using mobile agents [6]. To discuss the benefits
of applying mobile agents to network management, we first present two examples.

2.1 Motivating Examples

Example 1: Unreliable links In some cases, a subnet is connected to a network via a
satellite or a microwave link. To manage the devices in this subnet, a network manager
needs to connect to them through the satellite link and do some operations. If the link
becomes disconnected during the operation, then the operation likely will fail and have to
be restarted when the connection is available again. Even if the connection is up during the
operations, the management data transmitted through the link may cause link congestion,

since a satellite link is usually of low bandwidth. The same thing could happen if a manager
uses a mobile computer to perform some management tasks.

Example 2: Monitoring an ISP system The second example is about a management
system that monitors an ISP network, as illustrated in Figure 1 [1]. There are two key
components of an ISP system that supports modem-based dial-in access to the residential
subscribers: the Points of Presence (POPs) and a server farm.

DNS Server
Aduthentication Server

Web Server

Main Serve

Fig.1. An ISP monitoring system

— Points of Presence: A site established by an ISP to house equipment through which
subscribers are connected to the Internet. It is composed of modems and terminal servers.

— ISP Server Farm: A location that houses servers that support applications such as Web,
Email, and News that subscribers access. Infrastructure services such as domain name
service (DNS), user authentication service, etc., are also located here.

Typically, the POPs are geographically distributed. To monitor POP equipments, the
management center, which is located at the server farm, polls each POP site periodically.
This will not only generate a great amount of traffic to the management center, but also
suffer great latencies — polling hundreds of sites which may be hundreds of miles away can
not be finished very quickly. Also, suppose a link between the server farm and one of the
POP site is down, or is highly congested, then querying information of that POP site may
fail. Status of that POP site while the link is down will be unavailable. More importantly,
problems at the POPs can not be addressed in a timely manner, even when the nature of
the problem at the POPs is evident.

Another kind of measurements performed by the ISP monitoring system are service
quality measurements. In order to keep track of the subscriber-perceived performance, some
monitoring agents® are used to make active measurements to assess the availability of ser-
vices, such as the Web services. However, those agents are placed inside the ISP server
farm, close to the servers. As a result, they can not provide an accurate view of subscriber-
perceived performance since the impact of networks interconnecting the ISP’s POP sites to
the server farm is not reflected in the measurement.

2 They are similar to the concept of agents defined in SNMP.

2.2 Reasons for mobile agents

Mobile agents can help to solve the problems mentioned in the above section.?

Disconnected operation By disconnected operation, we mean an operation that need to
be carried out even if the connection is down. Since in a wireless network, links are often
of low-bandwidth or high-latency, it is common for a mobile computer to disconnect from
the network and reconnect some time later. Even in a wired network, connections may go
down if some links in between are highly congested. In such circumstances, mobile agents
are even more advantageous.

Let us consider example 1 again. To manage devices via an unstable link, for example,
the satellite link, a mobile agent, which encapsulates the task, can be dispatched and sent
to the subnet in the other side of the link. Then, the agent can perform tasks locally even if
the connection is down. Once the link is up again, the agent can report back from the subset
what it found and what it did. Also in the same case, the simple ability of agents to migrate
and operate at the other side of the link helps avoid extensive use of a low-bandwidth link
and reduce latency.

Dynamic deployment As discussed above, a management agent in a managed node nor-
mally only provides a fixed set of operations. If the management agent does not provide a
single operation that matches a requirement from its management center, either the man-
agement center must invoke a sequence of operations, or the management agent needs to be
upgraded. The first option brings intermediate data across the network on every operation,
potentially wasting network bandwidth. The second option is impractical in most cases,
since the network management demands may change over time and one can not always
try to match the demands by programming and updating the management agents on each
managed node.

Mobile agents can help in such cases — a new operation or an updated program can be
implemented as a mobile agent and the mobile agent, in turn, is sent from the management
center to the managed nodes. The agent can then execute locally on the managed nodes
and return the result to the management center. Such uses of mobile agents are examples
of dynamic deployment, where an application dynamically installs software on some remote
host. Besides mobile agents, there are some other approaches to dynamic deployment. The
drawback of those approaches is that it is often difficult for a dynamically-deployed compo-
nent to deploy subcomponents, or for the component to re-deploy itself. Mobile agents, on
the other hand, can handle both situations easily.

Consider the ISP example described above, to get a measurement that is close to the
subscriber-perceived performance, the measurement needs to be made at each POP. How-
ever, considering an ISP may have hundreds of POPs, installing and updating the measure-
ment tool at each POP would be a big burden to a network manager. With the help of
mobile agents, installing a new tool can be carried out by sending out a mobile agent, which
encapsulates the new tool. Similarly, the updating of tools can be accomplished by stopping
old agents and dispatching new agents.

Conservation of bandwidth One of the problem of the traditional client/server network
management model is it often creates much more network traffic than necessary. To illustrate
this, we make the following comparison.

Suppose there are several network servers, such as web servers, that are located in the
same subnet. A mangement center is located at another subnet, which is a few hops away

% In this report, we assume that mobile agents work at the application layer, since they will be
dispatched and managed by network management centers, which run at the application layer.
Another reason for the assumption is that the current avaliable mobile agent platforms are also
implemented at the application layer.

M anagement @ @ M anagement
Center Center
e A BN feem AN
-7 e) RS e s B N RN
¢ R N ENRNESN \ c I \\\D N
\ /A,»/,/ i ’, A\\\\/A L /:;/”x ' 2o)
ST U = S N v Teeu_ o7 e
e A AN £ ‘ -
— - e
=— . ——N = . ——N c (& ——1\
Network Servers Network Servers
(C)) (b)

A: Request for data B: Intermediate data C: Mobile agent D: Final results

Fig. 2. A comparison of two kinds of NMS.
from those servers. The management center wants to get some statistical data from log
files kept at each server. It is undesirable to implement statistic computations on each
server, since computations required by the management center are unpredictable and may be
different each time. Therefore, the management center has to go to each network server, fetch
the log files, which are commonly in the size of hundreds of kilobytes or several megabytes,
to perform its desired computation. The management center may be only interested in a
small amount of data inside the log files, but nevertheless, the whole files have to travel
several hops from the managed nodes(the servers) to the management center. This wastes
large amount of network bandwidth.

Mobile agents, on the other hand, do not waste bandwidth unnecessarily. They can
migrate from the management center to the managed nodes, perform operations on the
managed nodes locally and only send the final results, which is most likely a few percent of
a log file, back to the management center, as depicted in Figure 2(b). Typically, a mobile
agent is in the size of a few kilobytes. Therefore, by sending small piece of code to a big
chunk of data instead of the opposite way, network bandwidth can be saved significantly.

From the above example, we can see that mobile agents not only help with conserving
bandwidth, but also can tailor the returned information to meet the current interest of the
management center.

3 Related Work

3.1 Smart Packets

Active network [5] is a framework within which users inject programs contained in messages
into a network. The programs will be executed at each router or switch they traverse. The
goal of active network is to increase the programmability of computer networks and network
components. Smart Packets [4], an active network project in BNN, puts active network
technology into the network management to make managed nodes programmable. A smart
packet consists of a Smart Packet header followed by payload. Based on an IP option in the
packet header, the Router Alert option, a router can determine whether a packet is a Smart
Packet. If it is, the router will process the datagram content of that packet and execute the
program inside the packet.

Smart Packets share some ideas with building a NMS based on mobile agents. They are
both aimed at breaking the traditional client/server network management model, distribut-
ing management tasks, reducing traffic, and shortening the control loop. However, they are
implemented at different layers. Unlike a mobile agent that runs at the application layer,
Smart Packets work at the network layer and thus can take advantages of network services.
No special migration mechanism is needed in an active network — packets are forwarded by
routers. Smart packets are executed by intermediate routers along a path and therefore, can
report useful information of each router in that path without extra mechanisms. Working
at the network layer also makes a smart packet be able to access MIB information more
efficiently.

However, Smart Packets have disadvantages in real applications. First, successful func-
tioning of Active Networks requires support from routers. A router needs to be able to
tell whether a packet is an active packet and also needs to install execution environments

for active packets. Even without considering security issues, upgrading a router to support
active networks is much more difficult than upgrading a host to support mobile agents.

Secondly, as discussed above, smart packets work with routers and switches. However,
managing a network not only means the management of routers or switches, but also the
management of network servers, such as a web server, and common hosts. The ability of
managing the latter is something missing in Smart Packets, since they are implemented in
the network layer.

A third concern is, there is a major design decision in Smart Packets that a program
sent in a packet must be completely self-contained, which means that the packets cannot
be fragmented. This frees routers from the need to keep persistent state for active packets.
However, as a result, it constrains the program to be expressed under 1 Kbyte in length.
This is a strong requirement. Although BNN develops special programming languages that
can encode a program in a much shorter length, it is unlikely that 1 Kbyte is enough for
expressing all useful management programs. If we consider the case that a packet not only
need to carry a program, but also some data resulting from the processing of the program
on routers, or a certificate for authentication purpose, the space left for a program is even
more limited.

3.2 Management systems based on static agents

[1] describes an ISP performance and service management system. In this system, there
is a diagnostic measurement server(DMS) serving as a host for monitoring agents that
make measurement of service qualities at each POP. There are also some monitoring agents
operating on the ISP servers to track resource and service usage. Such a system distributes
management tasks across the agents. However, all the DMS and the agents reside inside the
ISP’s server farm, and monitor devices in the server farm as well as in each POP, so this is
still a centralized management model. Since the agents are statically installed, they lack the
flexibilities discussed in section 2. Moreover, even though called as agents, the agents in [1]
are different from the agents discussed in this report.

3.3 Other related works

There are several research projects that develope mobile agent frameworks for distributed
network management [2] [3]. These works focus more on building platforms, while we are
interested in integrating an existing platform with some tools to build a NMS based on
mobile agents. In [9], agents are used to develop a system for QoS management, which is
another application of agent technology for network management.

4 [Evaluations of Mobile Agent Platforms

Before comparing the existing agent platforms, we will first look at what NMS requires
from a mobile agent platform. First of all, security is a big concern in network management
systems, since these systems can provide a view into the entire corporate network.

Second, the platform should provide a dispatching mechanism so that whenever nec-
essary, an agent can dispatch some other agents to perform sub-tasks. For example, if a
network manager finds that a web-server is not reachable from his machine, then he may
initiate an agent, tell the agent about the unreachbility and ask it to find out what could be
wrong between his machine and the web-server. The unreachability can be caused by many
reasons: one of the links in between may be down; some router/switch along the path may
be highly congested; the HT'TP socket of the web server may be unreachable; or there may
be a problem with the server software. The agent, initiated by the manager, can dispatch
several mobile agents, each acting as a different diagnosis tool: a Traceroute agent to find
out the nodes in between the two machines; a PING agent to test the livability of each node

in between; a SNMP agent to get network statistics using the SNMP protocol; and a client
agent to test the performance of the web-server, etc.

A third requirement is support of standard ontology, agent languages and various kinds
of message passing mechanisms. These are the standards for a network manager to express
management tasks, or for agent communications.

4.1 Standards: FIPA and MASIF

Many mobile agent platforms have been developed in recent years. All these systems have the
same general architecture, as shown in Figure 3: a server on each machine accepts incoming
agents, starts an appropriate execution environment, loads the agent’s state information into
the environment and resumes agent execution. Nevertheless, they take different approaches
regarding implementation languages, communication protocols and platform functionalities.
In order to achieve inter-operability between platforms, two standards of agent technology
have been established. One is the Foundations for Intelligent Physical Agents(FIPA) [13]
developed by the FIPA organization, the other is the Mobile Agent System Inter-operability
Facility (MASIF) [14], developed by the Object Management Group(OMG).

3. A contacts with
B and sends the seridlized

L An Agent dedides code and state of the agent.
to move from
/
and restarts the agent

2. A contacts
the Registry to

get thelocation
of B.

,,

T Aget N
Sever B |4, B authenticates

Fig. 3. An general architecture of agent platforms

FIPA and MASIF are different in many aspects [7]. In general, the differences can be
characterized by the extent to which they focus on agent mobility and the semantic richness
of their communication protocols. The focus of MASIF is mainly on the inter-operability
of agent systems to support the mobility of agents. It has no specifications for agent com-
munications. Instead, it relies on the CORBA object communication mechanism to provide
communication services, which are in the form of remote procedure calls.

On the contrary, FIPA works on enabling agent inter-operability via standardized agent
communication and content languages. Besides the generic communication framework, FIPA
also specifies ontology and interaction protocols to support agent interaction in specific ap-
plication areas. It supports not only syntax-based inter-operability but also semantics-based
inter-operability. Agents in FIPA usually has a speech act alike communication language and
a predicate logic based language. These features of FIPA will be very useful for complex
and dynamic co-operation problems, for example, network management. Although focusing
on agent intelligence, most FIPA platforms also support agent mobility.

Our understanding is that MASIF is more like a mobile object-oriented standard, while
FIFA is more agent-oriented. Therefore, we concluded that a FIPA platform better fits our
approaches to deploying mobile agents in network management.

4.2 Comparison of the current mobile agent platforms

A comparison of some mobile agent systems can be found in [6]. However, only a few of
the systems discussed in [6] are FIPA- or MASIF-compliant. Since the general acceptance
of mobile agents for network management will depend heavily on standards, we will not
consider the platforms that are not standards compliant.

Among the standard compliant platforms, we chose three of them that are under strong
technical support, Java Agent DEvelopment Framework(JADE) [15], Grasshopper [16] and
Aglets [14]. Aglets is a MASIF compliant platform. JADE is a FIPA platform, and Grasshop-
per supports both MASIF and FIPA. All the three systems are Java-based systems. We have
installed and tried with all the three platforms.

JADE. JADE is a FIPA-compliant platform. It is strongly supported by the JADE group
at CSELT, which work with FIFA closely.

JADE is used as the basis for the LEAP kernel. LEAP is an on-going project, which
will develop an agent platform that is light-weight and executable on small devices such as
PDAs and phones. Therefore, if an application is built upon JADE, it is likely that later on
the application can be ported easily to LEAP and running on small devices. Among FIPA
platforms, currently only JADE has a micro edition that is extended to small devices.

JADE supports complex agent behaviors. It is very likely that in some cases, an agent
must be able to carry out several concurrent tasks in response to different external events.
In JADE, tasks of an agent are implemented as different kind of behaviors, such as Simple-
Behaviour, CyclicBehaviour and ParallelBehaviour. The platform also provides a scheduler
that carries out scheduling policy among all behaviors available in the ready queue. This
feature of JADE makes it easier to design an agent and its tasks, and make the management
of agents more efficient.

One drawback of JADE is that its current released version does not have security support,
which would be unacceptable to network management. However, the source is open, so we
could enhance security as needed. Furthermore, as the FIPA security sepcifications envolve,
JADE will incoporate them.

Grasshopper. Grasshopper is a mobile agent platform that is built on top of a distributed
processing environment. It is compliant to MASIF. It also supports FIPA by providing a
FIPA extension as an “add-on” package.

One of the advantages of Grasshopper is that it has a good security support built in,
which supports two kinds of security mechanisms:

— External security protects remote interactions. For this purpose, X.509 certificates and
the Secure Socket Layer (SSL) protocol are used.

— Internal security protects interfaces of agencies* and agents as well as certain agency
resources (such as the local file system) from unauthorized access. This access control
is achieved by authenticating and authorizing the owner of the accessing agent.

As a MASIF-compliant platform, Grasshopper relies on CORBA to provide some ser-
vices, such as naming services and communication services.

The FIPA extension of Grasshopper is based on FIPA97. However, FIPA97 is already con-
sidered obsolete and replaced by FIPA2000. FIPA2000 has more specifications than FIPA97,
such as the FIPA interaction protocols.As a result, Grasshopper does not have agent interac-
tion supports. In Grasshopper, Communications between agents are based on synchronous
or asynchronous communication services, which are still like remote procedure calls.

Another concern about Grasshopper is that no open source code is available except the
FIPA extension package, which will make it difficult to tailor the platform to meet our
requirements.

* In Grasshopper, an agency is the actual runtime environment for mobile and stationary agents.
The similar concepts in JADE and Aglets are called Agent Container and Aglets server.

As a result, we eliminated Grasshopper from consideration.

IBM’s Aglets. IBM’s Aglets is a popular agent platforms. It has a good reputation of
being easy to install and use. Besides, it also has security support integrated. Because of
these reasons, we also investigated Aglets even though it is a MASIF-compliant platform.

In the Aglets system, implementing a mobile agent is clear and simple. When an agent
wants to migrate, it calls the dispatch method. The Aglets system calls the agent’s onDis-
patching method, which performs application-specific cleanup, kills the agent’s threads, seri-
alizes the agent’s code and object state, and sends the code and object state to a new host.
On the new host, the system calls the agent’s onArrival method, and then calls the agent’s
run method to restart agent execution.

Aglets system also has a certain level of security support. It supports intra-domain
authentication, agents authorizations and integrity-checked communications.

— Intra-domain authentication
Aglets servers in the same domain share the same secret. Based on the secret, a server
can authenticate an agent that originates from the same domain.

— Authorization
After being authenticated, an agent will then be granted some access permissions based
on its identity, such as permissions to access a file or a socket, send a message or to be
loaded dynamically.

— Integrity-checked communications
The communication between two Aglets servers or two agents are also protected by
integrity-checking: a Message Integrity Code (MIC), computed by the value of the mes-
sage content and the shared secretes are sent along with the content and verified by the
receiver.

However, after careful investigation, we do not think Aglets is a satisfying platform
despite the above features. Since Aglets is a MASIF platform, it emphasizes supporting
mobility of agents as opposed to agent intelligence. The message exchanged between agents
are quite simple: a message is composed of two parts, one is a string that identifying the
type of the message and the other is the value of some argument. It it left to the agent
programmers to define the syntax or semantics of messages. Another concern is that the
mechanism supporting agent tasks in Aglets is relatively too simple. Aglets system only
provides a run method to implement tasks of an agent. Scheduling and management of
agent tasks are left to programmers. JADE, on the other hand, supports different agent
behaviors(tasks), either sequential or parallel, and provides a scheduler to schedule the
ready behaviors.

A summary of the capabilities of these platforms is shown in Table 1.
Finally, we chose JADE as our platform for the following reasons:

— It is a FIPA2000 compliant platform. Although it does not support all FIPA2000 inter-
action protocols at present, based on our interaction with JADE programmers, who are
very accessible, we expect the situation can be improved in the near future, since JADE
groups is working with FIPA organization closely. Besides, JADE also has a related
micro edition executable on small devices, LEAP.

— Compared with the other two platforms, JADE is better at supporting application-
defined content languages and ontologies, which is important to network management
applications.

— It supports complex agent behaviors.

4.3 Platform Enhancements

Although JADE is more close to our requirement, it is still not an ideal platform. For in-
stance, the current released version, JADE2.2, does not have security support built in. We

JADE Grasshopper Aglets
Standard FIPA2000 Supports MASIF and MASIF
FIPA97
Implementation|Java Java Java
Language
Source code Open source code No open source code is Open source code
available except
the FIPA package.
Security No security support in the External security support:|Intra-domain authentication,
support current released version. X.509 certificates, authorization and integrity-
However, an experimental version |RMI and plain socket checked communications,
has been developed to enhance over SSL. implemented by using Java
security in JADE. Internal security support: [security APIs.
Access control
Mobility Weak mobility® Weak mobility Weak mobility
Communication|Within the same Agent Container:|{CORBA IIOP, Java Self-defined Agent Transport
mechanisms event signaling; RMI or socket Protocol and Java RMI.
Within the same JADE platform |connections. Which one
but between different Agent to use is dynamically
Containers: Java RMI; determined by the
Between different platforms: platform.
either CORBA-IIOP or HTTP.
Message FIPA interaction protocols, Synchronous Synchronous
passing such as FIPA-Query, and asynchronous. and asynchronous.
mechanisms FIPA-Contract-Net and
FIPA-Request.
Agent (1) Request the platform to Request the platform Request the platform
dispatching create an agent; system to create an to create an agent.
mechanisms (2) Use an Agent.doStart() call agent.
Ontology
and agent Yes. Yes. No.
language
support

expect that a new version of JADE will integrate security support®. Nevertheless, we need
to implement some security mechanism ourself to meet the special security requirements
of network management. Another enhancement needed is to implement more FIPA interac-
tion protocols. Protocols such as FIPA-request-when, FIPA-Brokering, FIPA-Recruiting and
FIPA-subscribe protocols are useful to network management, but have no implementations

in JADE2.2.

Table 1. Comparison of JADE, Grasshopper and Aglets

Enhancements of the platform are part of our future work.

5 Owur approach

5.1 An architecture

In this section, we introduce an architecture of a NMS based on mobile agents. Before

discussing about the architecture, we introduce the following concepts:

— Role: A management task is defined as a set of roles. A role can be executed by one

instance, or several instances of an agent”.

— Matchmaker [10]: Responsible for matching roles to agents by specific criteria. A match-
maker is different from a DF defined in FIPA. It matches an abstract role description
to some agent instances, instead of being given an AID (ID of an agent, including its

name and address) and searching for the corresponding agent.
— Agent factory: A repository of codes of agents.

® There are two kinds of migration [6]: (1) Weak mobility, where the system only captures an

agent’s object state and code before agent migration. (2) Strong mobility, where the system
captures an agent’s object state, code and control state before migration, allowing an agent to

continue execution from the exact point at which it left off.

6 By private conversations, we were told that the JADE group has already developed an experi-

mental multiuser version, in which a security model is defined.
" In this report, an agent instance means a currently running instance of an agent.

10

Agent Factory

I . ! - —0
, Listsof agent,
| descriptions || Agent code deposit

Fig. 4. An architecture of network management based on mobile agents

— Role dispatcher: Resposible for deciding how many agent instances are needed to execute
a role and dispatching those agent instances. A role dispatcher is corresponding to one
role.

The architecture is shown in Figure 4.

1. A network manager submits his management request to the system. The request, in-
cluding some necessary input arguments, is expressed according to some ontology.

2. A task manager, receives the request and initiates a management task. The task may
be decomposed to a set of nested roles. Then, the task manager invokes several role
dispatchers, each representing one role.

3. A role dispatcher decides the number of agent instances needed. It then contacts the
matchmaker, sends it the description of the role it represents and the number of agent
instances it requires, and ask the matchmaker to match the role to agent instances.

4. The matchmaker does the matching based on the agent pool, in which registrations of
agent instances are stored.

e If a role is matched successfully, the matchmaker will return a list, which contains
descriptions of agent instances to the role dispatcher. The name and locations of an
agent instance and the protocol, ontology and languages it uses are contained in the
list.

e If no agent instance can be matched to the role, then the matchmaker contacts the
agent factory to create instances the appropriate agent. The agent factory returns
a description of that agent.

5. If the role is matched successfully to some agent instances, the role dispatcher will
negotiate with those agent instances, requesting them to perform actions. An agent
instance may or may not accept an assigned action, based on some conditions.

. The role dispatcher repeated step 4 and 5 until it has a complete set of agent instances.

7. Later on, agent instances who have accepted the assigned jobs return results, including
possible failures, to the corresponding role dispatcher. The role dispatcher then collects
all the results and return them to the task manager.

8. After processing the results returned from the all the role dispatchers, the task manager
present the results to the network manager.

[=2]

The dash arrow in Figure 4 means that some of the new created agent instances will
register themselves with the matchmaker. During the registration, an agent needs to send

11

the matchmaker its name and current location, the service it provides, and the protocol,
ontology and language it uses. Not all the new created agent instances will register with
the matchmaker. For instance, there is no need for a PING agent instance, which sends out
testing packets to a node to test the reachability of that node, to keep running in the system
and waiting for requests. Such an instance can be initiated whenever needed.

The step 0 in Figure 4 indicates the process of depositing agent code into the agent
factory. In section 3.3, we have discussed about the existing management tools. In order to
integrate them with our agent base NMS, we need first to convert these tools into agents.
After being developed, the agents(code) need to be deposited in the agent factory. At the
same time, the name, service, protocol, ontology and languages of an agent need to be
registered with the agent factory.

This architecture is designed upon the JADE platform. Therefore, creation, deletion and
migration of an agent are supported by the underlying Agent Management System(AMS).
In the architecture, the task manager, matchmaker and role dispatchers can be implemented
as agents. Therefore, requests and responses between them can be implemented by using
the FIPA interaction protocols.

— The task manager can use FIPA-Request or FIPA-subscribe protocols communicate with
role dispatchers.

— Role dispatchers can use FIPA-Query protocol to interact with matchmaker.

— Role dispatchers can use FIPA-Request or FIPA-subscribe protocols request agent in-
stances to execute actions and inform it the results.

5.2 Future work

Since our work is still in the beginning stage, the system architecture shown in Figure 4 is
still in the process of evolution. We are seeking good solutions for several problems, which
includes:

— How to categorize agents into two groups so that instances of one group of agents, when
being created, will register with the matchmaker but instances of the other group of
agents will not? By registering with the matchmaker, an agent instance can advertise
its services to other agent instances. Then, next time when an instance of the same agent
is needed, there is no need to create a new one, but to “reuse” the existing instance. In
this way, overhead of creating, deleting and migrating of an agent is avoided. Besides,
it is necessary to have some agent running in the system and providing services, for
instance, monitoring the status of a part of the network. On the other hand, if some
type of agents are used infrequently, for instance, only once per day, then keeping an
running instance of that agent in the system is not economic.

— How to organize the agent factory and the agent pool so that matchmaking can be
carried out efficiently?

— Ontologies need to be defined in step 0 and step 1. Agent content languages are needed
in step 2 to step 11. The languages defined in FIPA, the SLO, SL1 and SL2, are not
enough for our purpose. Therefore, we need to define our own content languages.

6 Conclusion

Currently, there are many mobile agent platforms, but few systems that integrate a mobile
agent platform and network management tools have been developed. We have researched
the feasibility of such systems and concluded that applying mobile agents technology to
network management systems has several advantages. Mobile agents can help dealing with
the problems of unreliable links, dynamic deployment and bandwidth conservation. Among
the standards compliant platforms, we choose the JADE system, since it is more close to
our purpose. Based upon JADE, we design a general architecture of a mobile agents based
NMS and will continue working on it. Our future work includes enhancing the platform,
improving the system design and implementing a prototype system.

12

References

10.

11.

12.
13.
14.
15.
16.

17.
18.

. S. Ramanthan, E. Perry. The Value of a Systematic Approach to Measurement and Analysis:
An ISP Case Study, HPL-98-171, Hewlett-Packard, 1999.

. G.Susilo, A.Bieszczad, B.Pagurek. Infrastructure for Advanced Network Management based
on Mobile Code, Proc. of the IEEE/IFIP Network Operation and Management Symposium
(NOMS’98), New Orleans, Luisiana, February 1998.

. H.Ku, G.W.R.Luderer, B.Subbiah. An Intelligent Mobile Agent Framework for Distributed Net-
work Management, Globla Telecommunications Conference, 1997.

. B.Schwartz, A.W.Jackson, W.T.Strayer, W.Zhou, R.D.Rockwell, C.Partridge. Smart Packets
for Active Networks, OpenArch, March 1999.

. D.L.Tennenhouse, D.J.Wetherall, Towards an active network architecture, ACM Computer
Communication Review, vol.26, No.2, April 1996.

. Robert S. Gray and George Cybenko and David Kotz and Daniela Rus. Mobile agents: Moti-
vations and State of the Art, Technical Report TR2000-365, Department of Computer Science,
Dartmouth College, 2000.

. Agents Technology in Europe,
http://www.infowin.org/ACTS/ANALYSYS/PRODUCTS/THEMATIC/AGENTS/toc.htm.

. A.Bieszczad, B.Pagurek, T.White, Mobile Agents for Network Management, IEEE Communi-
cations Survey, http://www.comsoc.org/pubs/surveys, 4th Quarter 1998, Vol 1, No 1.

. H.de Meer, A.Puliafito, O.Tomarchio, Management of QoS with Software Agents, Cybernetics

and Systems: An International Journal, 29(5):499-524, July-August 1998.

A.Cassandra, D.Chandrasekara and M.Nodine Capability-based Agent Matchmaking, Proceed-

ings of the International Conference on Autonomous Agents, June, 2000.

M.Mathis and J.Mahdavi, Diagnosing Internet Congestion with a transport layer performance

tool, Proceedings of the Second Grace Hopper Celebration of Women in Computing Conference,

Sept. 1997.

K.Lai and M.Baker, Nettimer: A Tool for Measuring Bottleneck Link Bandwidth, USENIX

Synposium on Internet Topology and Systems, March 2001.

The Foundation for Intelligent Physical Agents (FIPA),

http://www.fipa.org/about/index.html.

Mobile Agent System Inter-operability Facility(MASIF),

http://www.fokus.gmd.de/research/cc/ecco/masif/.

Java Agent DEvelopment Framework, http://sharon.cselt.it/projects/jade/.

Grasshopper, http://www.grasshopper.de/index.html.

FIPA-OS, http://fipa-os.sourceforge.net/.

Aglet Software Developement Kit, http://www.trl.ibm.com/aglets/.

13

