The University of Texas at Austin, Department of Computer Sciences. Technical Report CS-TR-01-40. October 2001.

A Memory Accounting Interface for The
Java Programming L anguage:

Mirza Beg, Mike Dahlin
beg@alumni.utexas.net, dahlin@cs.utexas.edu
Department of Computer Sciences
The University of Texasat Austin

ABSTRACT

Widespread use of the Internet infrastructure for
deploying services creaes new issues and raises rious
concens regarding the seaurity of their exeaution
environment. ldeas of employing dynamic distributed
systems for mourting e-services on the web are gaining
strength. The main idea behind their proposed design is
the use of distributed extensions. This permits exeaution
of untrusted service mde & clients, content distribution
service madhines or proxies, in order to make the dynamic
services more dfedive.

Over the past few yeas Java has surfacedl as an
attradive option for constructing web services and
programming their exeaution environment. Java provides
the caability of automatic memory operations but fail s to
provide an acourting interface In order to make the
services more seaure the language needs a robust resource
acounting interface

This paper discuses the design and implementation of a
memory acounting interface @ a key component of
resource management. We discuss the design,
implementation and isaues regarding the implementation
of this g/stem. To consider its pradicd application, we
evaluate the performance and acairacy of this g/stem.

KEYWORDS
Java, Resource Management, Seaurity, Bytewde
Rewriting, Mobil e Services, Un-trusted Code.

1. INTRODUCTION

This paper examines the advantages and pradicdity of a
memory management interfacefor Java. The objed is to
lower the denial of servicerisk which has escdated due to
incressing we of adive services over the web, the
circulation of untrusted code from unreli able sources and
of posshly aggressve intentions. This adivity can pose a
potential seaurity threa on both the dient side and server
side likewise, espedally in the presence of mobile service
code [13].

* This work was supparted in part the Texas Advanced Technology Program, the
Texas Advanced Reseach Program, and a grant from Novell. Dahlin was aso
suppated by an NSF CAREER award (CCR-9733842 and an Alfred P. Sloan
Research Fell owship.

Java has surfacal as an appropriate choice for creding
extensible services and deploying them on the Internet.
This extension demands the Java Runtime Environment to
provide alequate seaurity as well as a fair distribution of
resources among services. Java @plets are a prime
example of downloadable mntent exeauting on a dient.
Disallowing access to the disk and network connedivity
to this pieceof un-trusted code by exeauting it in a black
box environment does proted the user from a potential
seaurity bread, not from denial-of-service. For example,
there ae no limits to the anount of memory this code can
use, thus allowing it to utilize memory resources at its
discretion. This senario ill ustrates a potential threa of
denia-of-service by crashing the browser. Simply
consuming the avail able memory would render the VM
unable to function normally. Similarly server extensions
can pose a even greder threa to service providers. Java
servlets are an example of such extensions. Such
uploadable mntent can potentially disable the server to a
state where it is no longer cgpable of processng any
further requests.

In the aurrent implementation of Java (version 1.3) [9]
an interface for memory resource management is absent
i.e. a system using Java & its exeaution environment is
unable to control resource distribution between services.
Unless the Java runtime ewvironment has the aility to
asociate memory allocations to their alocaing codelets
(through their respedive threals) can limit memory
consumption, the task of deploying extensible systems
seamsimpradicd.

In this paper we propcse amemory management system
for Java. This interface acounts for hegp memory on a
per thread basis. The system is designed to associate dl
allocaed live objeds to their respedive dl ocating threads
and hence acount for the total memory allocaed by eah
thread. In addition the system sets limits on memory
consumption for ead threal. The system also terminates
threads of misbehaving code.

The main contribution of the paper is to motivate the
incorporation of a memory management module in the
Java Runtime Environment. The goal here is to show that
this can be done without modifying the underlying
structure of the Java Virtual Madhine. Including such an
interfacein the runtime environment can be done with a

Page 1

ressonable overhead and this is demonstrated by the
performance of the prototype system.

The rest of the paper is gructured as foll ows. In the next
sedion we discuss the motivating fadors for our work.
Then we describe the achitedure of the prototype
system, this sdion is followed by a sedion on
experimental results. In the following sedions we discuss
the isaues with the aurrent implementation, some related
and ongoing work, and we onclude by evaluating the
pradicd appli cations of the system.

2.MOTIVATION

Two main fadors have motivated the development of this
prototype system. The first being the &sence of a
resource management interface in the language
spedficaion. Seowond being the need for additional
seaurity, which is esentia for stable exeadtion
environments. We gather most of our motivation from the
intended use of Java for extensible environments. In order
to be pradicd, such environments need to control the
access to resources and be @le to enforce limits on
consumption.

A leaing example of extensible service deployment
would be the Active Names System [2], which all ows un-
trusted code to exeaute dynamicdly over the network
with the intention of improving avail ability of wide-area
services. In this gstem a dient can upload service
extensions to customize the available services. This
uploaded code is then available to a large group of other
potential clients employing the same system for accessng
web services whether through a simple web browser or a
more sophisticaed mode. The important thing to note
here is that both the system core and the uploaded code
are being exeauted on the same Virtual Machine. They are
esentialy running in different seaurity domains yet there
isno distinction between the two as far as resource acces
is concerned. Hence the system is susceptible to denial-
of-service dtadks unless a resource management unit is
added to improve and restrict resource distribution and
consumption.

The @sence of a resource management interface ca
have serious consequences bath for the service provider
and the end-user. The un-trusted codelet can exhaust the
available memory and cause starvation in all other
applicaions exeauting on the system. Such an attadk can
not only cause denia-of-service by not alowing other
reguests to be processed by the system but can also lead
to a system wide aash and prevent new processes from
initi ating.

From the end-users point of view it would be desirable
to have amemory management interfacethat the system
can wse to prevent untrusted code from using excessve
memory in order to prevent the denial-of-service dtadks
on the dient side. The potentia threa to the end-user
comes primarily from web applets and aher

downloadable Java ntent. Code with malicious
intentions can overwhelm the system by extensively
consuming memory and passbly resulting in applicaion
fail ures and even system crashes, in the worst scenario.

Denia-of-service dtacks can disable asystem through
all the resources available to the un-trusted code. To ded
with these atadks work is currently being done for the
management disk and network resources[3].

3. PRELUDE TO SYSTEM IMPLEMENTATION

The implementation of the memory management interface
could be simpler if the @de was trusted and the
programmers could be trusted to send notificaions for
memory manipulations. Unfortunately there ae a few
problems with this approac. Firstly, we canot trust the
programmer. Sewndly, even if we did trust the
programmer there is always the risk of human error. And
lastly, the processis entirely mechanicd.

Keeing the @ove-mentioned limitations in mind, we
dedded upon an automated module, bytecode-rewrite, to
rewrite the @mpiled java ".class files to insert the
notification cal badks to the memory manager. The detail s
of bytecode rewriting are discussd in Sedion 4.3,
explaining the engineaing of these modificaions.

4. MEMORY MANAGEMENT: THE PROPOSED
INTERFACE

Faced with the challenges discussed in Sedion 2, our goal
is to construct a flexible Memory Management Interface
without modifying the eisting structure of the Java
Virtua Madine. Modfying the JVM would mean
saaificing the portabilit y of java cde.

Memory acourting in this g/stem is acomplished
through bytecode engineeing; by adding motificaions
signals upon state danges in hegp memory. This is
acomplished by inserting appropriate bytecode
instructions at seleded places in the origina classes in
order to maintain information about memory consumption
recorded on a per-thread basis.

Our implementation consists of three main components:
A memory accounting module, that provides an
acountability interfacefor hegp memory, a management
policy module that uses a padlicy to set limits to memory
consumption and enforces them, and a bytecode-rewriting
module that inserts cdlbadks in appropriate locaions in
the mde. These modules are individualy discussd in the
following subsedions.

4.1 MEMORY ACCOUNTING

The objedive of the memory management interfaceis to
know, at any given time, the amount of memory
consumed by ead individua threal currently exeauting
in the system.

Page 2

This interface is designed to receve notifications for
any adivity in the hegp memory of the system. This
means that when an objed is alocaed in the memory
space a notification is snt to the Memory Manager. A
similar netificalion is ent upon objeda de-alocation.
These notificaions are receved as function cdls to the
Memory Manager, within which these signals are handled
appropriately.

This module is responsible for keguing the aurrent state
of memory distribution in the heg. It keeps trac of all
threals in the system, the references to their live objeds
and the anount of memory consumed by these objeds
measured in bytes. When an objed is alocaed a
notification arrives at the memory manager along with the
information regarding the dlocaing thread and the size of
the objed. At thistime the dlocating threed is charged for
the space occupied by this objed. When this objed is

unreadable

Figure 1: State transitions for redaiming an objed.

de-alocaed and is colleded by the Garbage Colledor
another notificaion arrives at the memory manager,
signifying the expiration of this objed. As a response to
this cdlbadk the memory manager subtrads the space
occupied by this objed from the usage acount of its
alocdingthread.

Accounting for memory allocaed by arrays is a little
trickier. When an array all ocation notificdion is receved
aweak pointer for this array objed is saved in the acount
of the dlocating thread, in addition to incrementing its
usage by the amount of memory alocaed by this array.
Thisvaueis cdculated by multiplying the aray length to
the size of a singe aray obed. In the cae of
multidimensional arrays the dimensions are multiplied out
to cdculate the size of the aray. In the case of a primitive
array the dimension is multiplied by the @rresponding
primitive size

When the objed is no longer readable from any part of
the mde it is garbage mlleded. Figure 1 shows the state
transitions an objed goes through during its lifetime.

Weéek pointers do not obstruct de-allocaions of objeds.
Thus the aray-objeds, which are garbage wlleded, their
corresponding wed pointers turn to null. The sizes of
these aray-objeds are subtraded from the total memory
usage of the thread after they have been garbage wlleded
and the memory manager finds their referencesto be null.

4.2 MANAGEMENT POLICY

This module performs three asential functions. (i)
Registers new threads (ii) sets an upper limit to the
memory that can be consumed by a particular thread (iii)
handles overuse cdlbadks and takes appropriate adion
whenever memory usage of a particular thread exceels its
limit.

Registration. Threal registration is one of the most
important steps in memory acwuntability. When a thread
alocaes an objed in hegp memory for the first time, it is
registered with the memory manager. This registration
initiali zes the parameters in the memory manager for the
corresponding thread. The purpose of this registration is
to keep tradk of all the threads whether adive or not, that
have made use of the memory heg. This means that
threads that do not perform any dynamic memory
alocdions are not registered at all. Once the thread is
registered, the memory manager can proceed with the
memory usage data that becomes avail able.

Limits. The limits to memory consumption are set at
the time of thread registration by this pdicy module. The
limit for a particular threal is a numericd value, which
ads as an wper bound on the memory bytes that can be
consumed by this thread. The limit can be asdgned a
fixed value but a more plausible ideawould be to assgnit
avalue that is a percentage of the available free memory.
Yet a better ideais to let this limiting value be dynamic.
In service providing systems, higher limits can be set for
more popular services and lower for the least popular
ones. The schema of popularity based resource
management has been developed on the notion that
popular services should be given higher priority. Pradica
applicaion and prototype implementation of such a
system is discussed in the proposed dsk-space
management system [3]. For the purposes of the
experiments described in this paper we used constant
limits.

Enforcement. Memory overuse cdlbadks are airrently
handled by terminating the thread and fredéng the memory
resources consumed by it. This module is responsible for
acomplishing thread termination, when required. It is
important that the threads are terminated softly so that any
locks held are released before the thread is kill ed to avoid
adeallock in the system. Dr. Wallach has done a

Page 3

fw—\ Verificaion Java
N Unit Clasd_oader

Figure 2. The normal stages a simple java program goes
throughbefore it is exeauted.

{ Bytemde Rewrite Modul%

}—\ Verificaion Java
/: Unit Clasd_oader

Figure 3. The modification to the pre-rurtime stages of a
simple program to add hooks into Java byteade.

significant amount of reseach in the area of Soft
Termination in Java Runtime [1]. In the prototype
discused here we force the thread to throw a
ThreadDeahError, which releases the locks held by this
thread after which it terminates the thread.

4.3 BYTECODE REWRITE

Byteaode engineaing hes been employed in this g/stem
to implement the notificaion medhanisms for adivity in
the memory heg. This means that the notificaions
receved by the memory manager discussed in Sedion 4.1
are inserted into the mde by this byteamde rewriting
module. Notifying function cdls are inserted in
appropriate places in the mde to detedt changes in the
state of the memory heap.

Java
CI asd oade

(ytecode Rewrite Module

Figure 4. The modifications to runtime stages when
bytecodes are written onlinei.e. at runtime

The rewriting has been accoomplished with the help of a
bytecode modificaion toolkit developed at IBM, namely
jikesBT [4]. An evaluation version of this toolkit can be
obtained from the dphaworks website. The programming
interface provided by this todkit allows the programmer
to dwell into java bytecode and experience the flavor of
the stadk based java environment [11].

The modifications to the Java dasss are mmpleted
before runtime i.e. the dases are modified after
compilation and before exeaution. These modificetions to
the dassfil es are discussed in the foll owing paragraphs

Allocation Detection. The wde for every method is
modified to send cdlbadks to the memory manager upon
every dlocaion of a Java objed or array after the
alocating instruction. This cdlbadk is made in the form
of afunction cdl to the memory manager and the required
information is pased to the interface & function
parameters. As a result of this notificaion the
acountability interface eedits this memory all ocation to
the acount of the dlocaing threal.

De-allocation Detection. Before an objed is colleced
and its gacefred, the finalizer function is cdled by the
system garbage olledor. We use this feaure in Java to
notify the memory management system of objed de-
alocaion. We insert a cdlbad to the memory manager at
the end o the finalizer code. This piece of code is
exeauted when the garbage wlledor runs the finalizer.
When this notificaion is recéved by the acounting
interface the space occupied by the wlleded ohjed is
subtraded from the dl ocaing threads acount.

Page 4

Obtaining Object Size. An additional function (public
static __sizeof()) is added to ead rewritten class to
ohtain the size of the dlocaed oljed. This is cdculated
as the sum of its fields' sizes. This function is made static
so that it can be cdled to caculate the aray sizes.

Allocating Thread. A public field (__allocator) is
added to the mde of eadt classto record the information
regarding the dlocaingthread. Thisfield isalso used asa
rewrite flag to prevent classes from being rewritten more
than once

Initialization. Constructors of non-array objeds are
modified to initialize the __ allocator field to record the
alocding thread identification. Thus when an objed is
alocaed it records its alocaing thread as being the
current thread. This information is also used when an
objed is de-allocaed to oktain allocaor identification. If
a onstructor is not present, a default constructor is
creded.

Bytecode modificaions can be acomplished before
runtime & down in Figure 2. but some environments
may require this rewriting to occur during runtime, as
shown in Figure 3. Although both approaches look
similar, moving the rewrite module one step ahea in the
exeaution schedule is difficult and gredly affeds the
performance of the system. The dalengng part in
bytecde engineaingis to maintain the consistency of the
stadk based exeaution model in Java. Thisis crucial for a
classto passthrough \erification while the dassis being
loaded for exeaution. Java Stadk Inspedion [5] provides
detail s of maintaining and seauring the stadk-based model
using a more formal approach.

4.3.1 RESTRICTIONS
The design of the system creaes ome limitations for the
programmer.

The use of finalizers has been restricted in order to sed
a bakdoa passage into memory. The finaizer has been
cdled on an objed after its un-reatability determined by
the garbage wlledor. Once the finalizer is exeauted, the
objed cannot be re-incarnated.

The use of variables inserted by the bytecode-rewrite
module is restricted. The programmer cannot use variable
or function names (__allocator, _ sizeof()). This
restriction isto prevent verification conflictsin the code.

Access to memory manager functions is restricted, so
that the user cannot trick the memory manager by sending
false notifications.

If the ade fails to comply with the @ove-mentioned
rules, it will be restricted from passng the verificaion
phase and as a result would not be loaded into the VM.

5. DISCUSSION

The memory management system proposed in this paper
was designed using the technique of bytemde
engineaing. This drategy raised certain isaues during the
implementation of the system. These isaues are discussed
in geaer detail in this sdion. Also there is this
noteworthy relationship between heg alocaions and
stack consumption, this topic dso neals me
clarificaion.

5.1 ISSUES

Although the objedive of building a memory
management system was to be &le to monitor memory
adivity to its entirety, there ae cetain forms of memory
adivity that the arrent system isunable to deted.

The tedchnique of sending rotifications to the
acountability interface upon every alocaion and de-
alocaion works fine for memory manipulations in the
non-system code. The problem arises when a system
objed alocaes another system objed. The system classes
are not modified to have cdlbads. These files are apart
of the standard JVM and modifying them would mean
loosening the VM standards and consequently making
this g/stem non-portable.

The system files could be modified while they are being
loaded at runtime. This would prevent us form modifying
the VM structure, but system-classloading in existing
versions of the java runtime ewironment is done
exclusively by the system classloader, preventing s
from acounting for system objeds alocaed by system
code.

The important point to note here is that non-system
objeds allocated by system classes are till acounted for
by the memory manager because their code is
continuously monitored. In conclusion we found that with
the aurrent tools g/stem code is an exception to memory
acountability.

5.2 STACK ALLOCATIONS
A dignificant point to note is that the memory manager
described in this gstem only acounts for the heg
memory utilized by the system’'s threads. It does not
acount for automatic dlocations done on the program
stadk. These dlocdions are not a cwncern here becaise
eadt Java threa has its own stadk spaceinitially set at a
default size of 2 megabytes. The limits are enforced by
the system. Program threals that overflow the dlocated
stadk will receve javalang.StadkOverFlowException.
Since the limitations on stadk space ae enforced by the
system itself and individual thread stadks cannot interfere
with ead other, the stadk spaceis not a potential target
for attadks via denial-of-service

Dynamic dlocdions creae objeds on the heg. This
memory hegp is common to all the threads runring in the
process As a mnsequence asingle thread can consume

Page 5

most of the hegp memory and cause starvation. As a result
other threads runring in the system may not be ale to
perform their functions and in severe caes the system
may not be &le to process any further requests.
Individual thread stadks cannot pose such a thred to the
system simply becaise they cannot occupy the stack
spacereserved for other threads in the system.

If it were posdble to launch denial-of-service dtads
using stak space the same technique of bytecode
engneaing could be @plied to restrict stadk
consumption. Although in the arrent runtime, limiting
stadk spaceon a per thread basis is dedt within the VM
itself.

53SYSTEM LIMITATIONS

Although the system works fine in most usual cases but
there is a way in which the acounting can be deceved.
This can be done by reincarnating the objed within the
finalizer method after the de-all ocate notification has been
sent to the memory manager. To acomplish this the
objed can passits own reference to some other locaion
which prevents the garbage wlledor from trashing it even
after it has cdled the finali zer on this objed.

To prevent this from happening and for the sake of fair
acountability, we have dedded to dsalow finalizers in
un-trusted code. To acaomplish this task a dasswithin the
untrusted code ntaining a finaizer can be prevented
from being loaded into the system.

6. EXPERIMENTSAND RESULTS

In this £dion we evaluate the performance of the system
by conducting a few tests to monitor memory
consumption by threads runring in a system.

6.1 ACCURACY

Severa experiments were mnducted to test the acerracy
of the memory management system. Each of these
experiments demonstrates the exeaution of a dominant
thread that allocaes objeds of known sizes at known
rates. Figure 5 shows the adual memory consumption of a
thread compared to its acaount with the memory manager,
plotted against time. This instance shows that the
acountability system is deteding alocaions and de-
allocdions with extreme precesson. Thisis clealy visible
viaregions of significant overlaps between the two graphs
in figure 5. This predsion owes to the fad that the thread
being monitored here dlocaes only non-system objeds
and primitive arays.

Figure 6 shows a similar comparison for another thread
monitored by the system. This thread all ocetes both non-
system and system objeds with second level alocations.
In this instance it can be seen that the adual memory
usage @ntinues to increase whereas the acountability

1000 -

900

800 -

Actual Consumption

700 1 | *™=====Recorded Consumption
-—

600 -

500 -

Memory Space (bytes)

400 -

300 -

200 -

100 +

O e L L e L. e e e

O O A VD> PP AP DN D> PP L D
N N N M R I T M S PSP M- ML
B VAT F @S

S Sl
Time (milliseconds)

Figure 5. Actua memory consumption vs. Consumption
acording to acountability data. Non-system all ocaions.

interfaceis only able to acount for only a fradion of the
thread’s consumption. This is a demonstration of the
phenomenon discussed in Sedion 5. The memory
manager is unable to deted alocations and de-all ocations
of seaond level system objeds, which results in a huge
difference between the adual memory consumption of the
thread and the @nsumption recorded for acwuntability.
Hence the two graphs for adual and recorded
consumption are utterly disconneded. Sewond level
system all ocations can potentialy creae ascenario where
a thread that has exceeded its allocaed limit could
continue exeauting rormally.

8000 -

7000

Actual Consumption ™

|
Recorded Consumption /\1

5000 -+ — it

6000 -

4000 + —

Memory Space (bytes)

3000 - ’

2000 - /

1000 | [~

O I
© O N IHh O NN M 00 M M 0O &N 0 N M
O « W 0 « W o D N © O ™M ©
M N~ O M N~ O o

- < <« «N n

M N~ O MO N~ O ™M .
N N O O O I I <
i il

ime (miliseconds)

Figure 6. Actual memory consumption vs. Consumption
acording to acourtability data. Multiple System
alocdions.

Page 6

6.2 PERFORMANCE

Accounting for heg memory requires additional
computation on part of the system. As a dired
conseguence the system receves a dual performance
setbadk associated with memory acountability. The first
delay comes from the extra time it takes to enginee the
bytecodes and add hooks for the memory management
system. This dowdown is propartional to the size of the
file and the number of memory modifying instructions.
The second setbadk comes from the exeaution of the
additional instructions that were alded to the dasss
during byteade modificaion. This dowdown isdiredly

180000 T A crual Runtime

160000 - m Rewrite Time
140000 - m New Runtime
120000 -
100000 -
80000 +
60000 +
40000 -

20000 + .
0

14% 75%

Performance (milliseconds)

Percentage of Allocating Instructions

Figure 7. Performance analysis.

propational to the number of alocaing instructions
exeauted during the run of the system. Figure 7 shows a
graphicd depiction of these performance hits compared to
the number of alocating instructions exeaited in the
system. Statistics have shown that exeaution of a large
number of these instructions would generate mnsiderable
performance degradation. Fortunately most genera-
purpose programs have a low percentage of memory
alocdinginstructions.

7. RELATED WORK

This work is done & part of a mplete resource
management interface for Java. As discussed ealier,
using Java & a rurtime environment for deploying web
services necesstates resource ontrol and fair distribution
of these resources at the system level. In this resped
considerable dfort has been made to huild similar
interfaces to manage other resources. Other areas of
resource acounting include disk usage, network
bandwidth, CPU cycles, write buffers and the cade c.
design of a mprehensive Resource Management

Interface has already been proposed for disconneded
services [3]. In their proposal the authors have discussed
isales regarding disk and cade resourcesin grea detail .

This work is also dredly related to systems deploying
extensible services. These systems rely on Java for a
reliable exeaution environment. Work has been going on
severa projeds, which have been proposed to run un
trusted code with the system core. Such projeds include
Active Names [2], Active Networks [6] and Active
Services [7], providing services using the potential of
adive eeautable ontent. These systems rely on
exeaution of un-trusted code to provide dficient accessto
Internet services.

Moreover this work is also asciated with eff orts made
at byteamde engineaing. For example succesgul attempts
have been made & runtime optimizaions through
bytecode modifications by Joseph Hummel [10] and Lars
R. Clausen [12]. They present prime examples of
bytecode engineering applied to increase the strength of
Java, both as a programming languege and an exeaution
environment.

An attempt at Resource management for Java was also
made through the KaffeOS projed [14]. KaffeOS dedt
with the resource management isaues at the process|evel
but disregarded acourtability on a per thread basis. A
similar system was Dr. Czgkowski’'s Jres, which
discused a prototype implementation of a Resource
Accourting Interface for Java PL [8]. The Memory
Management system described in this paper differs from
the one described in Jes with resped to its dricter
adherence to the VM standards and system portability.
The prototype that we have described does not dependent
on any native ade and is built completely at user level.

8. CONCLUSIONS AND FUTURE DIRECTIONS

The strategy of using byteaode engineaing to acount for
hegp memory on a per thread basis has been succes<ul
partly because of its sSmplistic low-level design.
Unfortunately, this approach becomes a limiting fador
when it comes to monitoring the internal system classes,
which we have taken as an exception. The goal of
buil ding this prototype system is to demonstrate the need
for a complete resource management interface for Java.
The memory management system proposed in this paper
seeks to patch up existing seaurity structure of the
language. We have presented a prototype system that uses
the technique of byteade rewriting to build a memory
acounting urit on top d the &isting VM model. The
intent here is to creae a more robust environment for
deploying service etensions in which untrusted code is
exeauted with a minimal overhead. Finaly, the issues and
performance statistics discussed in this paper would be
useful when incorporation of a resource interface is
considered for Java.

Page 7

ACKNOWLEDGEMENTS

We would like to espedally thank Dr. Gouda, without
whose guidance and moral suppart this thesis would not
exist.

Our appredation goes to all other people in the aeaof
reseach. To Dr. Wallach for his experimental insights
and for sharing the techniques of bytecode engine&ing.
To Amol Nayate and Bharat Chandra for helping further
demystify the oorrelations within the Active Names
System, and dstributed web servicesin general.

We owe a gread ded to Usman Shuyja and Nabed
Ahmed for their assstance during the projed, which
helped make this thesis a redity and kept me from giving
up.

Last but not leest to Dr. Dahlin: Thank you for your
patience and continuous suppat, which helped me in
more ways than | can imagine.

REFERENCES

[1] Algis Rudys, John Clements, and Dan S. Wallad.
Termination in Language-based Systems, Network and
Distributed Systems Security Symposium (San Diego,
Cadlifornia), February 2001

[2] A. Vahdat, M. Dahlin, T. Anderson and A. Aggarwal.
Active Naming Flexible Locaion and Transport of
Wide-Area Resources. In Proceealings of the Second
USENIX Symposium on Internet Tecdhnologies and
Systems, October 1999

[3] Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asm Razza, Anil Sewani.
Resource Management for scdable disconneded accessto
web services. WWW10, May 2001

[4 Chris Laffra. Jkes Byteode Todlkit.
http://mwww.al phaworks.ibm.com/ted/jikesbt

[5] Dan S. Wallach and Edward W. Felten, Understanding
Java Stadk Inspedion, 1998 |EEE Symposium on Security
and Privacy (Oakland, California), May 1998 pp. 52-63.

[6] David Wetheral, Ulana Legedza and John Guittag.
Introducing New Network Services: Why and How. In
IEEE Network Magazne, Speda isue on Active
Programmable Networks, July 1998

[7] Elan Amir, Steven McCanne, and Randy Katz. An
Active Service Framework and its Applicaion to
Redtime Multimedia Transcoding. In Procealings of
SIGCOMM, September 1998

[8] G. Czgkowski and T. von Eicken. Jres: A Resource
Accounting Interface for Java. In Procealings of 198
ACM OOPSLA Conference, October 1998

[9] Godling, J., Joy, B., and Stede, G. The Java Language
Spedficaion. Addison-Wesley, Realing, Massachusetts.
1996

[10] Joseph Hummel, Ana Azevedo, David Kolson, and
Alexandru Nicolau. Annotating the java bytemdes in
suppat of optimization. Technicd Report ICS-TR-97-01,
University of California, Irvine, Department of
Information and Computer Science, April 1997

[11] Jon Meyer, Troy Downing. Java Virtual Machine.
O'Ridly. 1997

[12] Lars R. Clausen. A java bytecode optimizer using
side-effect analysis. Concurrency: Pradice ad
Experience, November 1997.

[13] Mike Dahlin, Bharat Chandra, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asm Razzaj, Anil Sewani. Using
Mobile Extensions to Suppat Disconneded Services.
Tednicd Report TR-200020, University of Texas at
Austin.

[14] Godmar Badk, Wilson C. Hsieh, and Jay Lepreau.
Processes in KaffeOS: Isolation, resource management,
and sharing in Java. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation (OSDI
2000, San Diego, Cdlifornia, October 2000 USENIX
Asciation.

Page 8

