
An Ar
hite
ture for Building Federated Databasesby ExampleFran�
ois G. Barban�
on, Daniel MirankerNovember 14, 2001Abstra
tWe de�ne an ar
hite
ture for an easy to use graphi
al system toquery data from multiple heterogeneous sour
es. The 
ontemporarydevelopment of 
omputer networks and relational database systemsimmediately revealed the diÆ
ulties of integrating data from multipleheterogeneous sour
es. After nearly 30 years of extensive resear
h ef-forts and hundreds of 
ommer
ially developed tools, this integrationremains a 
omplex and labor intensive tasks.In an informal proof [KLK91℄, Krishnamurthy, Litwin and Kentdemonstrated that merging data from multiple sour
es requires higherorder synta
ti
 
onstru
ts to over
ome s
hemati
 in
onsisten
ies a
rossdata sour
es. They dedu
e that �rst order relational languages su
has SQL or Datalog 
an be extended with a higher order syntax. Thenbe
ome expressive enough to des
ribe the ne
essary 
lass of transfor-mation.We put forth an ar
hite
ture whi
h dire
tly 
ontemplates the issuesof data integration with respe
t to the pre
ise nature of the s
hemati
in
onsisten
ies that must resolved. The primary fo
us is on designinga system in a way that a naive database user may spe
ify and e�e
t asolution.1 Introdu
tionFederated database ar
hite
tures are 
on
erned with integrating heteroge-neous 
omponents and transparently providing database servi
es around afederated database. We leave that broad perspe
tive aside and fo
us on thesubproblem of spe
ifying data federating transformations. The goal of thisar
hite
ture is to provide a framework for an interfa
e allowing 
ompletesemanti
 spe
i�
ation of federating queries. We surmise that with existing1



or proposed data federation solutions, de�ning the mappings from hetero-geneous sour
es to a set of federated views remains a labor intensive task.Moreover be
ause of the inherent 
omplexities and 
ost of using existingtools, the task is only a

essible to a small group of highly trained profes-sionals. This observation remains fully valid despite the emergen
e of XMLand its asso
iated tools and languages.Graphi
al interfa
es (GUIs), built to spe
ify relational queries, are avail-able with all the major 
ommer
ial databases. These are designed for desk-top users and simplify spe
i�
ation of a large 
lass of relational queries. Thegraphi
 input available from a GUI system is insuÆ
ient however to fullyspe
ify a data federating query as they exist in federated database systems.The spe
i�
ation from graphi
 input is in
omplete. Some of the missingdata 
an be interpolated, and the rest has to be extrapolated.The approa
h suggested by our ar
hite
ture has a lot in 
ommon with anexpert system. We propose a system 
apable of exploiting information fromgraphi
 input, drawing from data mining of the data sour
es, and askingthe user relevant questions to fully spe
ify a federating query. The spirit ofthis approa
h is for the system to assist the user in taking away 
omplex orrepetitive tasks. In 
ounterpart, the user will provide the system some basi
knowledge about the data, whi
h would be extremely diÆ
ult to hypothesize
orre
tly.This ar
hite
ture has three layers whi
h parallel the pro
ess followed byan engineer building an ad-ho
 data federation. The �rst step is to re
-ognize the relationships whi
h exist between data in di�erent 
omponentdatabases. In e�e
t this is analyzing and 
omparing the design of the 
om-ponent databases. This work is done in the �rst layer by 
losely examiningthe data and the meta-data. This layer draws on data mining tools to
onstru
t relationship diagrams from existing data. These relationships areintri
ately linked with the nature of the data transformations that will bene
essary or desirable when federating data.The se
ond layer is an intera
tive learning system in
orporating a userinterfa
e. It allows the user to spe
ify data federating queries. This learningsystem draws on the knowledge a
quired by the data mining layer to builda sear
h spa
e for its learning algorithm. The learning system in
orporatessample sele
tion and a
tive learning methods in order to help the user spe
ifythe desired query as eÆ
iently and unambiguously as possible.The last layer is an exe
ution engine. It exe
utes the federating queryand is 
apable of materializing the federated view by drawing on the datasour
es. Taken together all the layers of the ar
hite
ture 
ould enable usto build the fun
tional equivalent of a 'mediator' 
omponent. This is not2



however the purpose of this ar
hite
ture. Rather, the exe
ution engine isa ne
essary part of an intera
tive learning system 
apable of di�erentiat-ing output examples from 
ompeting hypotheses in order to soli
it queryspe
i�
ation.2 Motivation2.1 Querying Multiple DatabasesWith the advent of the internet, every database in the world is a

essiblefrom your own 
omputer. This availability is pushing the demand for real-time 
onne
tivity standards. Querying multiple databases simultaneouslyhas be
ome a reality. Given a set of standard interfa
es su
h as ODBC orJDBC, it be
omes possible to express queries that aggregate 
ontent rangingover a set of 
omponent databases.Building a federated view over data sour
es must be done by engineersdrawing on spe
ialized tools and libraries. Tools are ne
essary to bridge se-manti
 s
hema di�eren
es. Commer
ial solutions to this 
hallenge typi
allyrange from using DOM, XSLT, or JDBC programming. Unfortunately theuse of those tools is time 
onsuming and requires signi�
ant programmingskills. Thus a paradoxi
al situation has been rea
hed. The 
ost of maintain-ing networked data sour
es has never been lower, thanks to the explosion ofdatabase 
apa
ities and of networks. Meanwhile, the 
ost of bridging het-erogeneity in data sour
es has remained 
omparatively high. As satisfyingsolutions to this problem have yet to be found, dozens, perhaps hundreds of
ommer
ial or s
ienti�
 solutions are 
onstantly trying to �ll that gap.2.2 Why Building Queries over Multiple Databases is HardIn 1991, Krishnamurthy, Litwin and Kent demonstrated through a real lifeexample, that a relational language with higher order syntax was a require-ment to federate heterogeneous databases.Krishnamurthy's 
onvin
ing argument is that a query de�ning data fed-eration almost always needs to in
orporate variables ranging over s
hemaelements: attribute names, table names, et
.. This requires a syntax that
an do su
h manipulations: a higher order syntax.Higher order languages have been implemented. One instan
e is an ex-tension of SQL named S
hemaSQL ([LSS96℄), 
ontains the synta
ti
 ele-ments shown in Figure 1. The syntax is almost identi
al to SQL ex
ept forthe pla
ement of variables where SQL would allow only 
onstants, su
h as3


