
An Arhiteture for Building Federated Databasesby ExampleFran�ois G. Barban�on, Daniel MirankerNovember 14, 2001AbstratWe de�ne an arhiteture for an easy to use graphial system toquery data from multiple heterogeneous soures. The ontemporarydevelopment of omputer networks and relational database systemsimmediately revealed the diÆulties of integrating data from multipleheterogeneous soures. After nearly 30 years of extensive researh ef-forts and hundreds of ommerially developed tools, this integrationremains a omplex and labor intensive tasks.In an informal proof [KLK91℄, Krishnamurthy, Litwin and Kentdemonstrated that merging data from multiple soures requires higherorder syntati onstruts to overome shemati inonsistenies arossdata soures. They dedue that �rst order relational languages suhas SQL or Datalog an be extended with a higher order syntax. Thenbeome expressive enough to desribe the neessary lass of transfor-mation.We put forth an arhiteture whih diretly ontemplates the issuesof data integration with respet to the preise nature of the shematiinonsistenies that must resolved. The primary fous is on designinga system in a way that a naive database user may speify and e�et asolution.1 IntrodutionFederated database arhitetures are onerned with integrating heteroge-neous omponents and transparently providing database servies around afederated database. We leave that broad perspetive aside and fous on thesubproblem of speifying data federating transformations. The goal of thisarhiteture is to provide a framework for an interfae allowing ompletesemanti spei�ation of federating queries. We surmise that with existing1



or proposed data federation solutions, de�ning the mappings from hetero-geneous soures to a set of federated views remains a labor intensive task.Moreover beause of the inherent omplexities and ost of using existingtools, the task is only aessible to a small group of highly trained profes-sionals. This observation remains fully valid despite the emergene of XMLand its assoiated tools and languages.Graphial interfaes (GUIs), built to speify relational queries, are avail-able with all the major ommerial databases. These are designed for desk-top users and simplify spei�ation of a large lass of relational queries. Thegraphi input available from a GUI system is insuÆient however to fullyspeify a data federating query as they exist in federated database systems.The spei�ation from graphi input is inomplete. Some of the missingdata an be interpolated, and the rest has to be extrapolated.The approah suggested by our arhiteture has a lot in ommon with anexpert system. We propose a system apable of exploiting information fromgraphi input, drawing from data mining of the data soures, and askingthe user relevant questions to fully speify a federating query. The spirit ofthis approah is for the system to assist the user in taking away omplex orrepetitive tasks. In ounterpart, the user will provide the system some basiknowledge about the data, whih would be extremely diÆult to hypothesizeorretly.This arhiteture has three layers whih parallel the proess followed byan engineer building an ad-ho data federation. The �rst step is to re-ognize the relationships whih exist between data in di�erent omponentdatabases. In e�et this is analyzing and omparing the design of the om-ponent databases. This work is done in the �rst layer by losely examiningthe data and the meta-data. This layer draws on data mining tools toonstrut relationship diagrams from existing data. These relationships areintriately linked with the nature of the data transformations that will beneessary or desirable when federating data.The seond layer is an interative learning system inorporating a userinterfae. It allows the user to speify data federating queries. This learningsystem draws on the knowledge aquired by the data mining layer to builda searh spae for its learning algorithm. The learning system inorporatessample seletion and ative learning methods in order to help the user speifythe desired query as eÆiently and unambiguously as possible.The last layer is an exeution engine. It exeutes the federating queryand is apable of materializing the federated view by drawing on the datasoures. Taken together all the layers of the arhiteture ould enable usto build the funtional equivalent of a 'mediator' omponent. This is not2



however the purpose of this arhiteture. Rather, the exeution engine isa neessary part of an interative learning system apable of di�erentiat-ing output examples from ompeting hypotheses in order to soliit queryspei�ation.2 Motivation2.1 Querying Multiple DatabasesWith the advent of the internet, every database in the world is aessiblefrom your own omputer. This availability is pushing the demand for real-time onnetivity standards. Querying multiple databases simultaneouslyhas beome a reality. Given a set of standard interfaes suh as ODBC orJDBC, it beomes possible to express queries that aggregate ontent rangingover a set of omponent databases.Building a federated view over data soures must be done by engineersdrawing on speialized tools and libraries. Tools are neessary to bridge se-manti shema di�erenes. Commerial solutions to this hallenge typiallyrange from using DOM, XSLT, or JDBC programming. Unfortunately theuse of those tools is time onsuming and requires signi�ant programmingskills. Thus a paradoxial situation has been reahed. The ost of maintain-ing networked data soures has never been lower, thanks to the explosion ofdatabase apaities and of networks. Meanwhile, the ost of bridging het-erogeneity in data soures has remained omparatively high. As satisfyingsolutions to this problem have yet to be found, dozens, perhaps hundreds ofommerial or sienti� solutions are onstantly trying to �ll that gap.2.2 Why Building Queries over Multiple Databases is HardIn 1991, Krishnamurthy, Litwin and Kent demonstrated through a real lifeexample, that a relational language with higher order syntax was a require-ment to federate heterogeneous databases.Krishnamurthy's onvining argument is that a query de�ning data fed-eration almost always needs to inorporate variables ranging over shemaelements: attribute names, table names, et.. This requires a syntax thatan do suh manipulations: a higher order syntax.Higher order languages have been implemented. One instane is an ex-tension of SQL named ShemaSQL ([LSS96℄), ontains the syntati ele-ments shown in Figure 1. The syntax is almost idential to SQL exept forthe plaement of variables where SQL would allow only onstants, suh as3


