An Architecture for Building Federated Databases
by Example

Francois G. Barbancon, Daniel Miranker

November 14, 2001

Abstract

We define an architecture for an easy to use graphical system to
query data from multiple heterogeneous sources. The contemporary
development of computer networks and relational database systems
immediately revealed the difficulties of integrating data from multiple
heterogeneous sources. After nearly 30 years of extensive research ef-
forts and hundreds of commercially developed tools, this integration
remains a complex and labor intensive tasks.

In an informal proof [KLK91], Krishnamurthy, Litwin and Kent
demonstrated that merging data from multiple sources requires higher
order syntactic constructs to overcome schematic inconsistencies across
data sources. They deduce that first order relational languages such
as SQL or Datalog can be extended with a higher order syntax. Then
become expressive enough to describe the necessary class of transfor-
mation.

We put forth an architecture which directly contemplates the issues
of data integration with respect to the precise nature of the schematic
inconsistencies that must resolved. The primary focus is on designing
a system in a way that a naive database user may specify and effect a
solution.

1 Introduction

Federated database architectures are concerned with integrating heteroge-
neous components and transparently providing database services around a
federated database. We leave that broad perspective aside and focus on the
subproblem of specifying data federating transformations. The goal of this
architecture is to provide a framework for an interface allowing complete
semantic specification of federating queries. We surmise that with existing



or proposed data federation solutions, defining the mappings from hetero-
geneous sources to a set of federated views remains a labor intensive task.
Moreover because of the inherent complexities and cost of using existing
tools, the task is only accessible to a small group of highly trained profes-
sionals. This observation remains fully valid despite the emergence of XML
and its associated tools and languages.

Graphical interfaces (GUTs), built to specify relational queries, are avail-
able with all the major commercial databases. These are designed for desk-
top users and simplify specification of a large class of relational queries. The
graphic input available from a GUI system is insufficient however to fully
specify a data federating query as they exist in federated database systems.
The specification from graphic input is incomplete. Some of the missing
data can be interpolated, and the rest has to be extrapolated.

The approach suggested by our architecture has a lot in common with an
expert system. We propose a system capable of exploiting information from
graphic input, drawing from data mining of the data sources, and asking
the user relevant questions to fully specify a federating query. The spirit of
this approach is for the system to assist the user in taking away complex or
repetitive tasks. In counterpart, the user will provide the system some basic
knowledge about the data, which would be extremely difficult to hypothesize
correctly.

This architecture has three layers which parallel the process followed by
an engineer building an ad-hoc data federation. The first step is to rec-
ognize the relationships which exist between data in different component
databases. In effect this is analyzing and comparing the design of the com-
ponent databases. This work is done in the first layer by closely examining
the data and the meta-data. This layer draws on data mining tools to
construct relationship diagrams from existing data. These relationships are
intricately linked with the nature of the data transformations that will be
necessary or desirable when federating data.

The second layer is an interactive learning system incorporating a user
interface. It allows the user to specify data federating queries. This learning
system draws on the knowledge acquired by the data mining layer to build
a search space for its learning algorithm. The learning system incorporates
sample selection and active learning methods in order to help the user specify
the desired query as efficiently and unambiguously as possible.

The last layer is an execution engine. It executes the federating query
and is capable of materializing the federated view by drawing on the data
sources. Taken together all the layers of the architecture could enable us
to build the functional equivalent of a 'mediator’ component. This is not



however the purpose of this architecture. Rather, the execution engine is
a necessary part of an interactive learning system capable of differentiat-
ing output examples from competing hypotheses in order to solicit query
specification.

2 Motivation

2.1 Querying Multiple Databases

With the advent of the internet, every database in the world is accessible
from your own computer. This availability is pushing the demand for real-
time connectivity standards. Querying multiple databases simultaneously
has become a reality. Given a set of standard interfaces such as ODBC or
JDBC, it becomes possible to express queries that aggregate content ranging
over a set of component databases.

Building a federated view over data sources must be done by engineers
drawing on specialized tools and libraries. Tools are necessary to bridge se-
mantic schema differences. Commercial solutions to this challenge typically
range from using DOM, XSLT, or JDBC programming. Unfortunately the
use of those tools is time consuming and requires significant programming
skills. Thus a paradoxical situation has been reached. The cost of maintain-
ing networked data sources has never been lower, thanks to the explosion of
database capacities and of networks. Meanwhile, the cost of bridging het-
erogeneity in data sources has remained comparatively high. As satisfying
solutions to this problem have yet to be found, dozens, perhaps hundreds of
commercial or scientific solutions are constantly trying to fill that gap.

2.2 Why Building Queries over Multiple Databases is Hard

In 1991, Krishnamurthy, Litwin and Kent demonstrated through a real life
example, that a relational language with higher order syntax was a require-
ment to federate heterogeneous databases.

Krishnamurthy’s convincing argument is that a query defining data fed-
eration almost always needs to incorporate variables ranging over schema
elements: attribute names, table names, etc.. This requires a syntax that
can do such manipulations: a higher order syntax.

Higher order languages have been implemented. One instance is an ex-
tension of SQL named SchemaSQL ([LSS96]), contains the syntactic ele-
ments shown in Figure 1. The syntax is almost identical to SQL except for
the placement of variables where SQL would allow only constants, such as



