
A Systemati Approah to the Design and Analysis ofLinear Algebra AlgorithmsbyJohn Andrew Gunnels, B.S., M.S.
DissertationPresented to the Faulty of the Graduate Shool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDotor of Philosophy

The University of Texas at AustinDeember 2001

AbstratOver the last two deades, muh progress has been made in the area of the high-performane sequential and parallel implementation of dense linear algebra operations. Atwhat time an we on�dently state that we truly understand this problem area and whatform might evidene in support of this assertion take? It is our thesis that if we fous thisquestion on the software arhiteture of libraries for dense linear algebra operations, we anlaim to have reahed the point where, for a restrited lass of problems, we understandthis area. In this dissertation, we provide evidene in support of this assertion by outlininga systemati and partially automated approah to the derivation and high-performaneimplementation of a large lass of dense linear algebra operations.We have arrived at a onlusion that the answer is to apply formal derivation teh-niques from Computing Siene to the development of high-performane linear algebra li-braries. The resulting approah has resulted in an aesthetially pleasing, oherent ode thatfailitates performane analysis, intelligent modularity, and the enforement of program or-retness via assertions. In this dissertation, we illustrate this observation by looking at thedevelopment of the Formal Linear Algebra Methods Environment (FLAME) for implement-ing linear algebra algorithms.We believe that traditional methods of implementation do not reet the naturalmanner in whih an algorithm is either lassi�ed or derived. To remedy this disrepany,we propose the use of a small set of abstrations that an be used to design and implementlinear algebra algorithms in a simple and straightforward manner. These abstrations maybe expressed in a sript language that an be ompiled into eÆient exeutable ode. Weextend this approah to parallel implementations without adding substantial omplexity.It should also be possible to translate these sripts into analytial equations thatreet their performane pro�les. These pro�les may allow software designers to systemat-ially optimize their algorithms for a given mahine or to meet a partiular resoure goal.Given the more systemati approah to deriving and implementing algorithms that is faili-tated by better abstration and lassi�ation tehniques, this sort of analysis an be shownto be systematially derivable and automated.

Contents
Chapter 1 Introdution 11.1 Motivation . 21.2 Our Approah . 31.2.1 Reent Insights . 31.2.2 A Solution: The Big Piture . 41.3 Researh Contributions . 71.3.1 Systematizing Development . 71.3.2 Domain-Spei� Languages . 71.3.3 Automated Code and Analysis Generation 81.4 Related Work: Integrated Systems . 81.4.1 MultiMATLAB . 81.4.2 PSI . 91.4.3 FALCON . 91.4.4 Broadway . 91.5 Overview of Dissertation . 101.5.1 Design: FLAME (Chapter 2) . 101.5.2 A Domain-Spei� Language: PLAWright (Chapter 3) 101.5.3 Code Generation (Chapter 4) . 111.5.4 Performane (Chapter 5) . 111.5.5 Conlusion (Chapter 6) . 11Chapter 2 Systemati Derivation of Variants 122.1 Introdution . 122.2 Overview . 132.3 Bakground . 132.3.1 The Corretness of Loops . 152.4 A Case Study: LU Fatorization . 162.4.1 A lassial derivation . 172.4.2 But what is the loop-invariant? . 182.4.3 Lazy algorithm . 212.4.4 Row-lazy algorithm . 261

2.4.5 Column-lazy algorithm . 262.4.6 Row-olumn-lazy algorithm . 282.4.7 Eager algorithm . 282.5 A Reipe for Deriving Algorithms . 292.6 Enoding the Algorithm in C . 302.6.1 Classi implementation with the BLAS 302.6.2 The algorithm is the ode . 302.6.3 Positive features of the FLAME approah 342.6.4 But what about Fortran? . 352.6.5 Proving the implementation orret 352.7 LU Fatorization with Partial Pivoting . 362.7.1 Notation . 362.7.2 Derivation of the invariants . 372.7.3 Derivation of the eager algorithm . 382.7.4 Implementation . 412.8 Experiments . 422.8.1 Produtivity experiment . 422.8.2 Aessibility experiment . 432.8.3 Performane experiment . 432.9 Related Work . 452.10 Chapter Summary . 46Chapter 3 From Variant to Multiple Versions 483.1 Motivation . 483.1.1 Coding Matrix Algorithms: The Sequential World 483.1.2 Coding Matrix Algorithms: Extending to Parallel 493.1.3 Proposed Solution . 503.1.4 Where PLAWright Fits In . 543.2 Issues . 543.2.1 Abstration . 553.2.2 A Domain-Spei� Language for Linear Algebra 603.2.3 Parallel Speializations and Extensions 643.3 Related Work . 683.3.1 Library-Based Abstrations . 683.3.2 Programming Environments . 693.4 Chapter Summary . 69Chapter 4 Automated Code Generation 704.1 Motivation for Automating Library Linkage 714.2 Issues in Library Linkage . 724.2.1 A (Fititious) Linking Library . 724.2.2 Reduing a Sript . 764.2.3 Annotating a Library . 772

4.2.4 Produing Output . 774.3 Implementation: An Automated Library . 774.3.1 Tools Employed . 784.3.2 PLAPACK: A Target Library . 784.3.3 Compiling PLAWright . 794.3.4 Annotating the Library: Funtionality Provided 804.3.5 Produing Output . 824.3.6 A Realized Constrution . 824.3.7 Libraries . 844.3.8 Library Binding . 854.4 Experimental Results . 854.4.1 Generating Parallel LU Fatorization 854.5 Chapter Summary . 91Chapter 5 Automati Analysis of an Implementation 925.1 Motivation . 925.2 Issues . 965.2.1 Why Performane Is Important . 965.2.2 Why Performane Analysis Is Important 965.2.3 Conveniene vs. Performane . 985.2.4 Traditional Approahes . 995.2.5 Problems with Traditional Approahes 995.2.6 A New Approah . 995.2.7 Coupling Code and Performane . 1005.3 Contributions of the Systemati Underpinnings 1035.3.1 Modularity of the Analyti Harness 1045.4 Implementation: Automated Analysis . 1065.4.1 An Analysis-Ready Sript . 1065.4.2 Explanation of Sript Extensions and Line-Cost Estimates 1065.4.3 Analytial Result . 1085.4.4 The Use ofMathematia Module[℄s . 1095.4.5 Performane Estimates: Disrete Formulae 1095.4.6 Closed-Form Expressions . 1105.4.7 More Pratial Conerns . 1105.4.8 Load Balane . 1115.5 Related Work . 1125.5.1 Monolithi Analysis . 1125.5.2 Ad-ho/Component Sums Based Analysis 1125.6 Experimental Results . 1135.6.1 Automated Analysis Generation . 1135.6.2 Analysis vs. Witnessed Performane 1135.6.3 Experiments: A Summary . 1173

5.7 Chapter Summary . 120Chapter 6 Conlusion 1216.1 Design: FLAME . 1216.2 Language: PLAWright . 1226.3 Automated Code Generation: PLANalyzer 1236.4 Automated Analysis: plANALYZER . 1236.5 An Integrated System: FLAME and PLANALYZER 124Bibliography 125Vita 131

4

Chapter 1IntrodutionOur laim is that it is possible to reate a system wherein one an ode dense linear algebraroutines in a very high-level, domain-spei� language and still attain near-peak perfor-mane on distributed-memory parallel arhitetures. This dissertation provides evidenesupporting this laim and desribes the impliations of suh a system. Our thesis an beexpressed as follows:� We have disovered how to systematially derive a restrited lass of linear algebraalgorithms using formal derivation tehniques.� For this lass of algorithms, ompiler tools an be employed to redue a domain-spei�program to a list of operational requirements.� In this domain, requirements an be paired to the funtionality provided by a set oflibrary routines if the annotations used to express those servies are ompatible withthe requirements.� For this lass of algorithms, performane estimates of onstruted routines an bemade highly aurate if the underlying library is layered orretly and the languageused to desribe performane harateristis is suitably exible.The domain under study in this dissertation is restrited to a subset of dense linearalgebra problems. This lass inludes the level-3 BLAS routines [25, 39℄, matrix fatorizationroutines [44℄, and kernels involved in ontrol theory [65, 64℄. While this set of algorithmsdoes not over the gamut of dense linear algebra, it does omprise a useful, ore set.This hapter begins with an historial overview that summarizes the evolution oflinear algebra software libraries. This is followed by a brief treatment of the insights that ledus to the work presented here. We then explain how this work advanes the state-of-the-art.After itemizing the ontributions of our researh, we present a summary of other researhe�orts whose goals are similar to our own. The �nal setion of this hapter presents anoutline of the dissertation. 1

1.1 MotivationAdvanes in software engineering for sienti� appliations have often been led by teh-niques developed for libraries for dense linear algebra operations. The �rst suh pakageto ahieve widespread use and to embody new tehniques in software engineering was EIS-PACK [68℄. The mid-1970s witnessed the introdution of the Basi Linear Algebra Subpro-grams (BLAS) [55℄. This version of the BLAS was a set of vetor operations (now known aslevel-1 BLAS) that allowed libraries to attain high performane on omputers possessing aat memory while remaining portable between platforms. This library and its well-de�nedinterfae simultaneously enhaned ode modularity and readability. The �rst suessfullibrary to exploit these BLAS was LINPACK [22℄.By the late 1980s, it was reognized that in order to overome the gap between pro-essor and memory performane on modern miroproessors it was neessary to reformulatematrix operations in terms of level-2 (matrix-vetor multipliation) and level-3 (matrix-matrix multipliation-like) BLAS operations [26, 25℄. First released in the early 1990s,LAPACK [5℄ is a high-performane pakage for linear algebra operations. LAPACK is aportable library that provides a funtionality that is a superset of both LINPACK and EIS-PACK. The LAPACK library heavily utilizes the level-3 BLAS and evines high performaneon essentially all sequential and shared-memory arhitetures.A major simpli�ation in the implementation of the level-3 BLAS stemmed fromthe observation that they an be ast in terms of optimized matrix-matrix multipliation [1,47, 52℄. The performane of the resulting libraries was omparable to that of the optimized,assembly-oded, vendor-supplied BLAS in many ases. Further, the implementations weremore portable than previous BLAS libraries beause they were written in Fortran. In thoseases where the ode was not performane transportable (i.e. where these BLAS did notompile into eÆient assembly ode), the ideas behind this researh simpli�ed the task ofhand-oding the level-3 BLAS library.With the advent of distributed-memory parallel arhitetures, LAPACK was nolonger suÆient for the needs of high-performane sienti� omputing. LAPACK workedwell with high-performane shared-memory systems, but was not written to be ompatiblewith distributed-memory arhitetures. Distributed-memory arhitetures depend upon theappliations and libraries to expliitly manage the physially distint memories attahed tothe omputational proessors (nodes) of the system. Thus, a parallel version of LAPACK,SaLAPACK [15℄, was developed. A major design goal of the SaLAPACK projet was topreserve and re-use as muh ode from LAPACK as possible. Thus, all layers in the SaLA-PACK software arhiteture were designed to resemble analogous layers in the LAPACKsoftware arhiteture. This deision was motivated by the fat that LAPACK had provenitself both robust and eÆient. However, this deision ompliated the implementation ofSaLAPACK. The introdution of data distribution aross memories reated a omplia-tion analogous to that of reating and maintaining the data strutures required for storingsparse matries. The mapping from indies to matrix element(s) was no longer a simpleone. Combining this ompliation with the monolithi struture of the software led to ode2

that was laborious to onstrut and diÆult to maintain.Reently, a number of projets have developed software for generating automati-ally tuned matrix-matrix multipliation kernels. These undertakings inlude the PHiPACprojet [11℄ and the ATLAS projet [76℄.The PHiPAC researh e�ort inluded a areful analysis of C implementations ofmatrix-matrix multipliation. By struturing the loops and memory referenes arefully,it is possible for a C ompiler to generate highly eÆient ode for this algorithm. ThePHiPAC researh team produed a software system apable of generating eÆient BLASkernels through a generate-and-test strategy. This software generator reated implemen-tations of matrix multipliation algorithms that bloked matries in every reasonable way.By exeuting these programs and monitoring the resulting performane, parameters for ahigh-performane matrix multipliation implementation ould be determined.The ATLAS projet repakaged and simpli�ed the methods developed in reatingthe PHiPAC system. In addition, the ATLAS system required less time to generate eÆientlinear algebra kernels. This eÆieny was gained by avoiding PHiPAC's exhaustive searh ofthe parameter spae involved in determining optimal matrix bloking sizes. Unfortunately,as this searh spae was redued through experiene, not by a theoretial model, it issometimes the ase that ATLAS produes ode with far less than optimal performaneharateristis [42℄.1.2 Our Approah1.2.1 Reent InsightsThe primary inspiration for muh of the work presented in this dissertation ame from ourexperiene with the Parallel Linear Algebra Pakage (PLAPACK) [74℄. PLAPACK ahievesa funtionality similar to that of SaLAPACK, targeting the same distributed-memory ar-hitetures. In ontrast to SaLAPACK, PLAPACK uses an MPI-like [38℄ approah to hideindexing and data distribution details.Work related to PLAPACK provided insights that motivated the approah presentedin Chapter 2 and Chapter 3 of this doument. Raising the level of abstration at whih oneodes redues the e�ort involved in implementing high-performane linear algebra libraryroutines.As we gained more experiene with PLAPACK, a number of themes kept reappear-ing:� The derivation of algorithms for di�erent linear algebra operations was systemati.� Similarly, the analysis of the resulting algorithms was systemati, although tediousand error-prone.� For a given linear algebra operation, di�erent algorithms provided better performaneas the sizes of operands (matries) hanged [40℄. This makes analysis neessary in orderto be able to determine when and understand why di�erent algorithms are superior.3

We disovered that, in deriving algorithms for a new operation, we were applying formalderivation methods to the domain of algorithms for dense linear algebra operations. Thisled to our work on the Formal Linear Algebra Methods Environment (FLAME), researhdetailed in Chapter 2.Linear algebra libraries are expeted to ontain routines that an deal with a broadrange of operational tasks and to be written in a form that an be ported between di�erentomputational environments. The LAPACK library ahieves both objetives by exploitingthe BLAS. However, the use of libraries suh as LAPACK has the disadvantages of requiringthe appliations programmer to perform time-onsuming, involved, soure ode optimiza-tions that are often not performane portable [50℄. The work presented in Chapter 3 andChapter 4 addresses this problem. By reating a language that allows the user to programat a level of abstration higher than that of PLAPACK, little library knowledge is requiredof the programmer. An automated ode generation system aepts programs written inthis language and produes ode that evines superior performane on distributed-memory,parallel superomputers. This is ahieved by mehanially linking the high-level programsto a funtionally-annotated version of the PLAPACK library.A simple model of a distributed-memory parallel system is used for performaneanalysis in Chapter 5. This model reets lessons learned while studying the issues relatedto the reation of high-performane matrix-matrix multipliation kernels for single proessormahines with hierarhial memories [42℄. This ontrasts with ode generation e�orts suhas PHiPAC and ATLAS, whih employ brute fore to searh a parameter spae for blokingsizes that aommodate multiple levels of memory hierarhy.Together, these experienes and insights led us to onlude that for a subset of denselinear algebra operations, the derivation, implementation, and analysis of parallel algorithmsis now a well-understood and systemati proess.1.2.2 A Solution: The Big PitureThe goal of linear algebra ode prodution is to generate eÆient ode from a lear state-ment of mathematial requirements. Our strategy for ahieving this objetive is depitedin Figure 1.1. Spei�ally, it is our aim to replae the \Human Expert" of Figure 1.2,whih reets where previous researh had led us, with systemati tehniques and auto-mated tools. The term \eÆient" overs a number of sub-goals inluding reliability, speed,and transportability. These qualities are widely onsidered the primary value metris ofsuh omputer odes. This dissertation targets the ommunity of sienti� library writers.Sine one might safely suppose that these researhers are mathematiians or have strongmathematial bakgrounds, the lear statement of mathematial requirements is a logialstarting point. The mathematial spei�ation of the problem must be known in order togenerate ode to solve that problem. In order to automate a system, this spei�ation,represented by \A = LU" in Figure 1.1, must be made expliit.The uni�ed approah to the design and development of dense linear algebra algo-rithms that is presented in this doument should be distinguished from the situation whereindevelopment is ad ho. When the development and tool sets are olleted, not designed as4

