A Systematic Approach to the Design and Analysis of
Linear Algebra Algorithms
by

John Andrew Gunnels, B.S., M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2001

Abstract

Over the last two decades, much progress has been made in the area of the high-
performance sequential and parallel implementation of dense linear algebra operations. At
what time can we confidently state that we truly understand this problem area and what
form might evidence in support of this assertion take? It is our thesis that if we focus this
question on the software architecture of libraries for dense linear algebra operations, we can
claim to have reached the point where, for a restricted class of problems, we understand
this area. In this dissertation, we provide evidence in support of this assertion by outlining
a systematic and partially automated approach to the derivation and high-performance
implementation of a large class of dense linear algebra operations.

We have arrived at a conclusion that the answer is to apply formal derivation tech-
niques from Computing Science to the development of high-performance linear algebra li-
braries. The resulting approach has resulted in an aesthetically pleasing, coherent code that
facilitates performance analysis, intelligent modularity, and the enforcement of program cor-
rectness via assertions. In this dissertation, we illustrate this observation by looking at the
development of the Formal Linear Algebra Methods Environment (FLAME) for implement-
ing linear algebra algorithms.

We believe that traditional methods of implementation do not reflect the natural
manner in which an algorithm is either classified or derived. To remedy this discrepancy,
we propose the use of a small set of abstractions that can be used to design and implement
linear algebra algorithms in a simple and straightforward manner. These abstractions may
be expressed in a script language that can be compiled into efficient executable code. We
extend this approach to parallel implementations without adding substantial complexity.

It should also be possible to translate these scripts into analytical equations that
reflect their performance profiles. These profiles may allow software designers to systemat-
ically optimize their algorithms for a given machine or to meet a particular resource goal.
Given the more systematic approach to deriving and implementing algorithms that is facili-
tated by better abstraction and classification techniques, this sort of analysis can be shown
to be systematically derivable and automated.

Contents

Chapter 1 Introduction 1
1.1 Motivation L e 2
1.2 Our Approach 3

1.2.1 Recent Insights L 3
1.2.2 A Solution: The Big Picture 4
1.3 Research Contributions 7
1.3.1 Systematizing Development 7
1.3.2 Domain-Specific Languages 7
1.3.3 Automated Code and Analysis Generation 8
1.4 Related Work: Integrated Systems 8
1.4.1 MultiMATLAB o 8
1.4.2 PST . . .o 9
1.4.3 TFALCON e 9
144 Broadway e 9
1.5 Overview of Dissertation 10
1.5.1 Design: FLAME (Chapter 2) 10
1.5.2 A Domain-Specific Language: PLAWright (Chapter 3) 10
1.5.3 Code Generation (Chapter 4) 11
1.5.4 Performance (Chapter 5) 11
1.5.5 Conclusion (Chapter 6) 11

Chapter 2 Systematic Derivation of Variants 12
2.1 Introduction e e 12
2.2 OVErvIEW oo e e 13
2.3 Background 13

2.3.1 The Correctness of Loops 15
2.4 A Case Study: LU Factorization 16
241 A classical derivation oo 17
2.4.2 But what is the loop-invariant? 18
24.3 Lazyalgorithm 21
244 Row-lazy algorithmo oo 26

2.4.5 Column-lazy algorithm 26

2.4.6 Row-column-lazy algorithm 28
2.4.7 Eager algorithm oo 28

2.5 A Recipe for Deriving Algorithms 29
2.6 Encoding the Algorithm in C 30
2.6.1 Classic implementation with the BLAS 30
2.6.2 The algorithm ésthecode 30
2.6.3 Positive features of the FLAME approach 34
2.6.4 But what about Fortran? 35
2.6.5 Proving the implementation correct, 35

2.7 LU Factorization with Partial Pivoting 36
2.7.1 Notation. e 36
2.7.2 Derivation of the invariants 37
2.7.3 Derivation of the eager algorithm 38
2.7.4 TImplementation 41

2.8 Experiments. e 42
2.8.1 Productivity experimento 42
2.8.2 Accessibility experiment, Lo 43
2.8.3 Performance experimento Lo 43

2.9 Related Work o 45
2.10 Chapter Summary oottt e e e 46
Chapter 3 From Variant to Multiple Versions 48
3.1 Motivation e 48
3.1.1 Coding Matrix Algorithms: The Sequential World 48
3.1.2 Coding Matrix Algorithms: Extending to Parallel 49
3.1.3 Proposed Solution o 50
3.1.4 Where PLAWright FitsIn 54

3.2 Issues 54
3.2.1 Abstraction L 55
3.2.2 A Domain-Specific Language for Linear Algebra 60
3.2.3 Parallel Specializations and Extensions 64

3.3 Related Work 68
3.3.1 Library-Based Abstractions, 68
3.3.2 Programming Environments 0oL 69

3.4 Chapter Summary L e 69
Chapter 4 Automated Code Generation 70
4.1 Motivation for Automating Library Linkage 71
4.2 TIssuesin Library Linkage 72
4.2.1 A (Fictitious) Linking Library 72
4.2.2 Reducing a Script 76
4.2.3 Annotating a Library o o 7

4.2.4 Producing Output 7

4.3 TImplementation: An Automated Library 7
4.3.1 Tools Employed. 78
4.3.2 PLAPACK: A Target Library 78
4.3.3 Compiling PLAWright 79
4.3.4 Annotating the Library: Functionality Provided 80
4.3.5 Producing Output 82
4.3.6 A Realized Construction 82
4.3.7 Libraries. 84
4.3.8 Library Binding oo 85

4.4 Experimental Results. 85
4.4.1 Generating Parallel LU Factorization 85

4.5 Chapter Summary L e e 91

Chapter 5 Automatic Analysis of an Implementation 92

5.1 Motivation 92

9.2 ISsues e e 96
5.2.1 Why Performance Is Important 96
5.2.2 Why Performance Analysis Is Important 96
5.2.3 Convenience vs. Performance, 98
5.2.4 Traditional Approaches 99
5.2.5 Problems with Traditional Approaches 99
5.2.6 A New Approach 99
5.2.7 Coupling Code and Performance 100

5.3 Contributions of the Systematic Underpinnings 103
5.3.1 Modularity of the Analytic Harness 104

5.4 TImplementation: Automated Analysis 106
5.4.1 An Analysis-Ready Script oo oo 106
5.4.2 Explanation of Script Extensions and Line-Cost Estimates 106
5.4.3 Analytical Result o 108
5.4.4 The Use of Mathematica Module[]s 109
5.4.5 Performance Estimates: Discrete Formulae 109
5.4.6 Closed-Form Expressions 110
5.4.7 More Practical Concerns 110
548 Load Balance 111

5.5 Related Work o 112
5.5.1 Monolithic Analysis 112
5.5.2 Ad-hoc/Component Sums Based Analysis 112

5.6 Experimental Results. L . o 113
5.6.1 Automated Analysis Generation 113
5.6.2 Analysis vs. Witnessed Performance 113
5.6.3 Experiments: A Summary oL 117

5.7 Chapter Summary

Chapter 6 Conclusion
6.1 Design: FLAME
6.2 Language: PLAWright
6.3 Automated Code Generation: PLANalyzer
6.4 Automated Analysis: plANALYZER
6.5 An Integrated System: FLAME and PLANALYZER

Bibliography

Vita

121
121
122
123
123
124

125

131

Chapter 1

Introduction

Our claim is that it is possible to create a system wherein one can code dense linear algebra
routines in a very high-level, domain-specific language and still attain near-peak perfor-
mance on distributed-memory parallel architectures. This dissertation provides evidence
supporting this claim and describes the implications of such a system. Our thesis can be
expressed as follows:

e We have discovered how to systematically derive a restricted class of linear algebra
algorithms using formal derivation techniques.

e For this class of algorithms, compiler tools can be employed to reduce a domain-specific
program to a list of operational requirements.

e In this domain, requirements can be paired to the functionality provided by a set of
library routines if the annotations used to express those services are compatible with
the requirements.

e For this class of algorithms, performance estimates of constructed routines can be
made highly accurate if the underlying library is layered correctly and the language
used to describe performance characteristics is suitably flexible.

The domain under study in this dissertation is restricted to a subset of dense linear
algebra problems. This class includes the level-3 BLAS routines [25, 39], matrix factorization
routines [44], and kernels involved in control theory [65, 64]. While this set of algorithms
does not cover the gamut of dense linear algebra, it does comprise a useful, core set.

This chapter begins with an historical overview that summarizes the evolution of
linear algebra software libraries. This is followed by a brief treatment of the insights that led
us to the work presented here. We then explain how this work advances the state-of-the-art.
After itemizing the contributions of our research, we present a summary of other research
efforts whose goals are similar to our own. The final section of this chapter presents an
outline of the dissertation.

1.1 Motivation

Advances in software engineering for scientific applications have often been led by tech-
niques developed for libraries for dense linear algebra operations. The first such package
to achieve widespread use and to embody new techniques in software engineering was EIS-
PACK [68]. The mid-1970s witnessed the introduction of the Basic Linear Algebra Subpro-
grams (BLAS) [55]. This version of the BLAS was a set of vector operations (now known as
level-1 BLAS) that allowed libraries to attain high performance on computers possessing a
flat memory while remaining portable between platforms. This library and its well-defined
interface simultaneously enhanced code modularity and readability. The first successful
library to exploit these BLAS was LINPACK [22].

By the late 1980s, it was recognized that in order to overcome the gap between pro-
cessor and memory performance on modern microprocessors it was necessary to reformulate
matrix operations in terms of level-2 (matrix-vector multiplication) and level-3 (matrix-
matrix multiplication-like) BLAS operations [26, 25]. First released in the early 1990s,
LAPACK [5] is a high-performance package for linear algebra operations. LAPACK is a
portable library that provides a functionality that is a superset of both LINPACK and EIS-
PACK. The LAPACK library heavily utilizes the level-3 BLAS and evinces high performance
on essentially all sequential and shared-memory architectures.

A major simplification in the implementation of the level-3 BLAS stemmed from
the observation that they can be cast in terms of optimized matrix-matrix multiplication [1,
47, 52]. The performance of the resulting libraries was comparable to that of the optimized,
assembly-coded, vendor-supplied BLAS in many cases. Further, the implementations were
more portable than previous BLAS libraries because they were written in Fortran. In those
cases where the code was not performance transportable (i.e. where these BLAS did not
compile into efficient assembly code), the ideas behind this research simplified the task of
hand-coding the level-3 BLAS library.

With the advent of distributed-memory parallel architectures, LAPACK was no
longer sufficient for the needs of high-performance scientific computing. LAPACK worked
well with high-performance shared-memory systems, but was not written to be compatible
with distributed-memory architectures. Distributed-memory architectures depend upon the
applications and libraries to explicitly manage the physically distinct memories attached to
the computational processors (nodes) of the system. Thus, a parallel version of LAPACK,
ScaLAPACK [15], was developed. A major design goal of the ScaLAPACK project was to
preserve and re-use as much code from LAPACK as possible. Thus, all layers in the ScalLA-
PACK software architecture were designed to resemble analogous layers in the LAPACK
software architecture. This decision was motivated by the fact that LAPACK had proven
itself both robust and efficient. However, this decision complicated the implementation of
ScaLAPACK. The introduction of data distribution across memories created a complica-
tion analogous to that of creating and maintaining the data structures required for storing
sparse matrices. The mapping from indices to matrix element(s) was no longer a simple
one. Combining this complication with the monolithic structure of the software led to code

that was laborious to construct and difficult to maintain.

Recently, a number of projects have developed software for generating automati-
cally tuned matrix-matrix multiplication kernels. These undertakings include the PHiPAC
project [11] and the ATLAS project [76].

The PHiPAC research effort included a careful analysis of C implementations of
matrix-matrix multiplication. By structuring the loops and memory references carefully,
it is possible for a C compiler to generate highly efficient code for this algorithm. The
PHIiPAC research team produced a software system capable of generating efficient BLAS
kernels through a generate-and-test strategy. This software generator created implemen-
tations of matrix multiplication algorithms that blocked matrices in every reasonable way.
By executing these programs and monitoring the resulting performance, parameters for a
high-performance matrix multiplication implementation could be determined.

The ATLAS project repackaged and simplified the methods developed in creating
the PHiPAC system. In addition, the ATLAS system required less time to generate efficient
linear algebra kernels. This efficiency was gained by avoiding PHiPAC’s exhaustive search of
the parameter space involved in determining optimal matrix blocking sizes. Unfortunately,
as this search space was reduced through experience, not by a theoretical model, it is
sometimes the case that ATLAS produces code with far less than optimal performance
characteristics [42].

1.2 Owur Approach

1.2.1 Recent Insights

The primary inspiration for much of the work presented in this dissertation came from our
experience with the Parallel Linear Algebra Package (PLAPACK) [74]. PLAPACK achieves
a functionality similar to that of ScaLAPACK, targeting the same distributed-memory ar-
chitectures. In contrast to ScaLAPACK, PLAPACK uses an MPI-like [38] approach to hide
indexing and data distribution details.

Work related to PLAPACK provided insights that motivated the approach presented
in Chapter 2 and Chapter 3 of this document. Raising the level of abstraction at which one
codes reduces the effort involved in implementing high-performance linear algebra library
routines.

As we gained more experience with PLAPACK, a number of themes kept reappear-

ing:
e The derivation of algorithms for different linear algebra operations was systematic.

e Similarly, the analysis of the resulting algorithms was systematic, although tedious
and error-prone.

e For a given linear algebra operation, different algorithms provided better performance
as the sizes of operands (matrices) changed [40]. This makes analysis necessary in order
to be able to determine when and understand why different algorithms are superior.

We discovered that, in deriving algorithms for a new operation, we were applying formal
derivation methods to the domain of algorithms for dense linear algebra operations. This
led to our work on the Formal Linear Algebra Methods Environment (FLAME), research
detailed in Chapter 2.

Linear algebra libraries are expected to contain routines that can deal with a broad
range of operational tasks and to be written in a form that can be ported between different
computational environments. The LAPACK library achieves both objectives by exploiting
the BLAS. However, the use of libraries such as LAPACK has the disadvantages of requiring
the applications programmer to perform time-consuming, involved, source code optimiza-
tions that are often not performance portable [50]. The work presented in Chapter 3 and
Chapter 4 addresses this problem. By creating a language that allows the user to program
at a level of abstraction higher than that of PLAPACK, little library knowledge is required
of the programmer. An automated code generation system accepts programs written in
this language and produces code that evinces superior performance on distributed-memory,
parallel supercomputers. This is achieved by mechanically linking the high-level programs
to a functionally-annotated version of the PLAPACK library.

A simple model of a distributed-memory parallel system is used for performance
analysis in Chapter 5. This model reflects lessons learned while studying the issues related
to the creation of high-performance matrix-matrix multiplication kernels for single processor
machines with hierarchical memories [42]. This contrasts with code generation efforts such
as PHiPAC and ATLAS, which employ brute force to search a parameter space for blocking
sizes that accommodate multiple levels of memory hierarchy.

Together, these experiences and insights led us to conclude that for a subset of dense
linear algebra operations, the derivation, implementation, and analysis of parallel algorithms
is now a well-understood and systematic process.

1.2.2 A Solution: The Big Picture

The goal of linear algebra code production is to generate efficient code from a clear state-
ment of mathematical requirements. Our strategy for achieving this objective is depicted
in Figure 1.1. Specifically, it is our aim to replace the “Human Expert” of Figure 1.2,
which reflects where previous research had led us, with systematic techniques and auto-
mated tools. The term “efficient” covers a number of sub-goals including reliability, speed,
and transportability. These qualities are widely considered the primary value metrics of
such computer codes. This dissertation targets the community of scientific library writers.
Since one might safely suppose that these researchers are mathematicians or have strong
mathematical backgrounds, the clear statement of mathematical requirements is a logical
starting point. The mathematical specification of the problem must be known in order to
generate code to solve that problem. In order to automate a system, this specification,
represented by “A = LU” in Figure 1.1, must be made explicit.

The unified approach to the design and development of dense linear algebra algo-
rithms that is presented in this document should be distinguished from the situation wherein
development is ad hoc. When the development and tool sets are collected, not designed as

