
Flexible High-Performane Matrix Multiply via aSelf-Modifying Runtime CodeGreg HenryIntel Corp.Computational Software Laboratory5350 NE Elam Young Pkwy, Bldg EY2-03Hillsboro, OR 97124-6461greg.henry�intel.om503-696-3878Deember 5, 2001AbstratWith the advent of arhitetures with multiple levels of memory hierarhies, the questfor high performane implementation of ommonly used linear algebra operations has be-ome progressively more omplex. Fortunately, reent researh has shown that a largelass of suh operations an be implemented in a relatively portable fashion provided ahigh-performane matrix-matrix multipliation routine is available for a given arhiteture.More reently yet it has been shown that the matrix-matrix multipliation itself an beimplemented in a portable fashion provided a high-performane \inner kernel" is avail-able. This inner kernel performs the matrix-matrix multipliation of small submatries insuh a way that data movement between ahes and registers is arefully amortized. Inreent years, approahes like those pursued in the ATLAS and PHiPAC projets have usedautomati generation, at build time, of matrix-matrix multiply inner kernels. In this pa-per, we present the idea of using an inner kernel that, at run-time, is self-modifying. Theadvantages of using a self-modifying inner kernel at run-time inlude performane gains,minimizing the amount of ode to maintain, and a redution in the memory footprint of theexeutable. In addition to a thorough disussion of the issues a�eting the inner kernel wepresent performane results for an implementation on the Intel Pentium (R) III proessor.1 IntrodutionArhitetures with memory hierarhies help overome the problem that often data movementis slow ompared to omputation. If data brought into the low end (registers, ahe) is reusedto a signi�ant degree, then the data traÆ between the layers of the hierarhy is dereased.In linear algebra, programmers hope to write portable and modular ode that an exploit a1



memory hierarhy. The BLAS (Basi Linear Algebra Subroutines) [5℄ allow this eÆieny andportability, sine new mahines are often released with an optimized BLAS library. The BLAShave di�erent levels of data reuse, with the most signi�ant being matrix-matrix multipliation.Often, linear algebra developers will try to luster several matrix updates to apply a bunh ofthem simultaneously, in order to pik a BLAS routine with greater reuse. A modi�ed \blok"algorithm results. Linear Algebra libraries like LAPACK [2℄ and FLAME [7℄ that employ blokalgorithms have replaed older libraries suh as LINPACK [4℄ and EISPACK [13℄ for the samedense linear algebra problems. On a mahine with hierarhial memory, a bloked algorithmthat alls the BLAS is often preferable, even if it involves marginally more arithmeti.Arguably, the signi�ant BLAS kernel is matrix-matrix multipliation [6℄ or GEMM (GEneralMatrix times Matrix). GEMM is usually the fastest and simplest of all the BLAS. Furthermore,all of the faster BLAS an be written in terms of GEMM ([1, 9, 12℄.) It has also been observedthat GEMM itself an be eÆiently implemented in terms of an inner kernel whih performs amatrix-matrix multipliation on subbloks of the matrix [1, 3, 14℄. Our examples are with thedouble preision (real*8) version of GEMM alled DGEMM [5℄. There have been numerous papers andtehniques based on optimizing DGEMM (for example, [10, 1, 14, 3, 8℄.) All of these papers share asingle thing in ommon. They all implement outer loops around a fast inner kernel. ATLAS [14℄and PHiPAC [3℄ attempt to use the target omputer and its ompiler to generate a fast innerkernel at build time. Henry [10℄ tried to use alternate data strutures to make the inner kernelrun even faster. ITXGEMM [8℄ attempted to use mathematis to model the memory hierarhyin order to �nd the most eÆient bloking strategy, and had the interesting feature of treatingeah level of the memory hierarhy as a separate problem. DGEMM itself is de�ned by the generalmatrix-matrix multipliation of C = �op(A)op(B) + �Cwhere op(X) equals X or XT , C 2 <m�n, op(A) 2 <m�k, and op(B) 2 <k�n.In this work, we onentrate on the innermost kernel, so it is only neessary to onsider asingle loop order, and a single set of bloking parameters. We shall denote mb, nb, and kb as thebloksizes for m, n, and k respetively. All of the above GEMM optimization approahes dependon somehow obtaining a fast inner kernel similar to C  ATB + C with bloksizes mb, nb andkb replaing m;n and k. Determining how to blok DGEMM outside the innermost kernel helps toditate what perentage of the innermost kernel performane is obtainable for a larger matrix. Ifthe innermost kernel runs slowly, suÆe to say that the resulting DGEMM will run slowly as well.We refer the reader to Gunnels et. al. [8℄ for one example of bloking outside the inner kernel.Sine this paper will detail how to make fast performing inner kernels, we end our introdu-tion with a brief desription of exatly what makes a fast performing inner kernel. All of ourmodi�ations will be based on the simple design illustrated here. Eventually, we will show howmaking the inner kernel self-modifying enhanes performane and ode reliability.In pratie, on the Intel Pentium R III proessor, ideal results were observed when the inner-most loop was with mb = 4, nb = 1, and kb = 64. This makes sense, beause the innermost kernelis bloked for the registers, and there are only 8 available double preision registers available onthe Intel Pentium III proessor. Sine the ahe line is of size 32 bytes, it is onvenient to blokfor at least mb = 4 doubles. One ould also write fast kernels with mb = 2 and nb = 2 (makingertain to all it an even number of times). 2



A key observation is that the mb = 4 and nb = 1 innermost loop is best when unrolled inthe kb dimension. There are several reasons for this. The most obvious of whih is avoidingloop overheads. But there are also subtle reasons involving reduing the number of instrutionsduring the setion of ode near the stores and inreasing the number of instrutions to inludesome reordering instrutions elsewhere. The only way to set up a loop on this arhiteture tohave a di�erent struture at di�erent plaes is to unroll it and set the struture manually.Final performane turns out to be based on some of the following �ne details:� Unrolling the loop� Simplifying the instrutions around the store{ In-lining the � parameter{ Minimizing data movement (if kb is less than the ideal size, try to pik kb as lose tothe ideal size as possible.)� Choosing a row bloking (on m) to be at least 8 when kb is small enough. (Choosingmore than 8, depending on how large kb is, may run into instrution ahe problems sineeverything is unrolled. A general rule of them on the Intel Pentium III proessor is a loadis typially 6 bytes, and a multiply and add are 2 bytes eah, so not exeeding the 16 KbyteL1 instrution ahe generally means making ertain things are not unrolled past 8� 64.)All our inner kernels will be based with the above fats in mind.We introdue the idea here to use an inner kernel that, at run-time, is self-modifying. Weshow in Setion 2 how the number of variations of possible inner kernels otherwise ould leadto a ode explosion. We propose to address this problem with a self-modifying kernel. Ourself-modifying kernel leads to advantages, inluding minimizing the amount of ode to maintain,and reduing the memory footprint of the exeutable. It also leads to performane advantages,in both uniformity and peaks, and those are detailed in Setion 3. We end the paper with someonlusions in Setion 4.2 Many Inner Kernel Cases2.1 Code ExplosionGiven the information in the previous setion, it is possible to onstrut a single well optimizedinner kernel for DGEMM. The problem arises when one realizes that to support all ases of DGEMM,there may arise a need for many suh kernels.For example, suppose we deide the innermost kernel for our optimal DGEMM is with mb = 8(expliitly unrolled twie suh that really mb = 4) nb = 1 and kb = 64. What should happen ifsomeone should want to solve the problem with m = 4 or k < 64 or � = 0? We now detail whatis typially done to resolve this problem.A library will typially write kernels for k = 64, and then k = 32, k = 16, k = 8, k = 4, k = 2,k = 1, and then should a DGEMM all require say k = 63, solve the problem as follows: �rst do3



a kb = 32, then kb = 16, then kb = 8, then kb = 4, and then �nish the problem by iteratingover kb = 2 or kb = 1. Sometimes the bottom end (small kb) of the spetrum will be replaed byhigh-level ompiled ode, or odes that are not unrolled. There are two strong shortomings tothis approah:1. The Mop rate performane for kb = 4 is muh worse than kb = 32, and in general anytime one uses a smaller kb, the data reuse dereases, and the performane drops. Eventhough the kb = 4 represents 1/8 the work, it may also run at 1/3 the speed, thus slowingdown a k = 36 by ten to thirty perent or so. 1 In fat, with this approah, even thoughk = 36 has better data re-use one typially observes it to run ten to thirty perent slower(in terms of Mop performane) than k = 32.2. The border ases may not have the same level of optimization, either beause it is ompiledode, or not unrolled ompletely, or the developers did not have the time to pay too loseattention to all the speial ases.Of ourse, from a library developer's viewpoint, this is bad news beause one has just gonefrom one major inner kernel to log(kb). Sometimes even more kernels arise depending on theperformane urve over k. For example, if k = 64 runs twenty perent faster than k = 32, onemay feel the need to develop even more inner kernels, say a k = 48, just to help �ll in some gaps.Granted, this is not a onern for when the optimal kernel does not need to be unrolled.However, there are other onerns besides unrolling.One needs to onsider values of �. As mentioned earlier, inserting a arbitrary multipliationof � may be in the ritial path of the stores, and slow down the resulting ode ompared tothe ase where � is zero or one. Now we have three ases: � arbitrary, � zero, and � one. Notethat sine � = 1 is the most ommon ase, it may be a performane penalty to simply use the� arbitrary ase that runs slower. As an added ompliation, DGEMM spei�ation requires thatwhen � is zero, that the matrix be overwritten and not that it simply get multiplied by zerobefore the add. This may seem like the same thing, until one remembers that C may start o�the omputation �lled with NaNs (not oating point numbers), and be sent into a DGEMM allwith � = 0 and expet that the result be legitimate values. Simply multiplying a NaN timeszero does not yield zero, so these are not the same thing.Of ourse, � and kb are not the only variables. The preision of the routine (real*8 as opposed toreal*4) makes a di�erene, even if the inner kernel approah is idential between the two routines!The problem is exasperated when one onsiders piking mb optimally, or perhaps hoosing � mayend up making a di�erene in performane (learly this is arhiteturally dependent just as �sensitivity is). Another variable might be whether or not the data is aligned. Changing theinstrutions to deal with unaligned data is minor, but an easily double or triple the numberof inner kernels one would want in a perfet world. Even if one implemented dozens of kernels1In greater detail, if the k = 32 kernel solves a problem with a �xed m;n = 1000 in 8 seonds (whih translatesto a rate of 8 Mops), there is no reason to believe that the k = 4 kernel will maintain the same Mop rate andsolve a problem with the same m;n = 1000 in one seond. Beause the data re-use for k = 4 is not as good, itmight instead take 4 seonds (2 Mops). Now the k = 36 kernel uses a k = 32 and k = 4 and therefore takes8 + 4 = 12 seonds total to do m = n = 1000, whih represents 6 Mops. This is 33 perent slower than thek = 32 kernel, even though theoretially we would expet k = 36 to run faster and be more eÆient than k = 32.4



to math the most ommonly enountered ases, running a slightly di�erent ase may prove torun signi�antly slower than a library whih was spei�ally optimized for that preise ase.This is the reason most libraries have some performane hiups. The only systemati way ofeliminating most of these hiups in the past has been to implement more speial ases (odeexplosion).Our goal is to present a self-modifying library that will automatially re-adjust for a largenumber of ases that would be too time onsuming to implement by hand.Consider the following list, whih represents a number of kernels for just one Intel proessor.� The size of the kb loop (possibly 64, 32, 16, 8, 4, 2, 1)� The presene of � (possibly one, negative one, arbitrary)� The presene of � (possibly one, negative one, zero, arbitrary)� Whether the data is aligned or not (8 hoies: yes/no for A;B; and C)� The size of the mb loop (possibly 4, 8, 12)� The preision of the routine. (one of 4 possibilities)� Conversion between A and AT (one of 2 possibilities)� Conversion between B and BT (one of 2 possibilities)Eah of the above hoies represents several di�erent implementations. The total number ofpossible inner kernels grows geometrially with the number of interesting hoies, whih seemsto inrease with eah proessor release. The urrent observations ould lead to7� 3� 4� 8� 3� 4� 2� 2 = 32256possibilities. Realistially, one might hose the 100 most likely possibilities, and simply expetsome ases that run less optimally.But the most important observation is that eah implementation of a given hoie di�ers onlymarginally, in some preditable fashion, from other implementations of the same hoie.To date there have been two possible solutions, although one solution is fairly reent.1. The typial approah: Bite the performane bullet and simply implement some subset ofases2. The let your omputer go ode razy approah: Use the omputer to generate the ases foryou and enumerate some large subset of them [3, 14℄ 22Even when it is the omputer that is oding these routines, suh as in ATLAS, tradeo�s are made so thatonly a large subset of the 32000 routines are used.
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The seond ase, using an approah suh as taken in ATLAS [14℄, is only adequate if youan depend on the ompiler to generate nearly optimal ode. Although they laim fantastiresults, our observations on the Intel arhiteture is that the ompiled performane of ATLASis typially slower (usually by roughly 15% or more) than what is possible. The dependene onthe ompiler is yet another onern; even though ompiler tehnology ontinues to improve, itdoes not improve as quikly as new proessors ome out. Obviously, the ATLAS authors mustreognize this truth as well: The latest version of ATLAS (as of this writing, version 3.2) for theIntel Pentium III proessor require user-ontributed hand-tuned assembly language for the IntelSSE R instrutions, even though the Intel Pentium III proessor has been in mass prodution foronsiderable time. The primary ATLAS author, Clint Whaley, distributed a note to the entireATLAS ommunity on September 13, 2001, in whih he states:G 3.0 and RedHat 7.1's 2.96-85 g are absolute disasters for ATLAS... haneslook fairly good that from now on, ATLAS will simply have to require an old g inorder to get good performane.This only illustrates further our worry about having a library performane depend entirely upona hanging ompiler. For the purposes of this paper, we used Mr. Whaley's binaries built froman earlier ompiler whih did not exhibit this problem.Enumerating all the possibilities, however, leads to a tremendous ode explosion, even whenits the omputer that is doing the oding. Nevertheless, this is an interesting idea: teah theomputer how to write C ode.2.2 Code ImplosionOur approah is more fundamental: teah the omputer how to modify its own objet (mahinelanguage) ode at run time to dynamially reate the inner kernels for a math library that arespei�ally optimized for the given input. In other words, one gains the performane bene�t ofhaving literally hundreds if not thousands of speially tuned kernels at ones disposal, but theuser only has to write a single routine!The suess of the self-modifying library is that instead of writing all the di�erent ombinationsof implementations for all hoies, one teahes the omputer how to manipulate one kernelimplementation into another. One programs the algorithm to hange a kb = 17 size loop into akb = 15 size loop. For eah hoie (size of the kb loop, �, �, whether the data is aligned or not,et..), a default option is implemented. Then eah hoie is addressed independentally, and thealgorithm we suggest is taught the neessary manipulations to modify the default option intoany of the other options.We illustrate this with an example. Consider the hoie of whether the C data is aligned or not.On many, but not all, modern arhitetures, the alignment of the data an have a serious impaton performane. For the Intel Pentium III proessor, it suÆes that the data be 8-byte aligned.For the Intel Pentium(R) 4 proessor, if the data is 16-byte aligned, signi�ant performaneenhanements an be made. Beause there are signi�ant performane enhanements for aligneddata on the Pentium 4, the inner kernels should be written to assume the data is aligned. Thesoftware developer then has an obvious hoie: dupliate every kernel for the ase where C is not6



aligned, or simply opy C into an aligned bu�er, su�ering a performane penalty (possibly) forthat opy. For large matries, the ost of the opy is immaterial, but for an outer produt updatewhere k is small and m and n are large, and C is unaligned, this ost beomes as expensive asthe matrix multiply itself.The self-modi�ation runtime tehnique would address this example as follows. The defaultoption for the hoie of whether C is aligned or not would be aligned, beause that is fastest.The di�erene in the objet ode between an aligned load and an unaligned load is only one byte(the same an be said of stores). The default objet ode an be aessed as a data array usingstandard C pointer manipulation. One as a data array, it an be opied and manipulated. Theorret loation for the loads and stores of C an be found merely as a funtion of any inputs(m, k, et..) that are unrolled. The byte(s) in question an be hanged to the new values, andthe resulting objet ode suddenly works with unaligned data.In pratie, the same modi�ation tehniques are applied to eah and every hoie, exeptwhen the inputs happen to math the default options. By treating eah hoie separately, theproblem beomes tratable. The result is the way a human typially thinks about a problem: ata high level on how eah problem di�ers. A human typially understands that there are manyombinations of possibilities, but does not bother to pay learn or pay attention to every singleone, and instead just learns how to manipulate one into another.Instead of having 80, 100, or 32000 di�erent kernels, or some subset and the possibility ofnever having all ases of interest being optimized, one develops a single routine and teahes theomputer the same human understanding of what hanges one ode into another. The resultingmanipulations are so fast they an be done at run time, when some of the information beomesavailable. Instead of requiring the user to have the spae to inlude the possibly hundreds ofroutines just in ase one of them might be useful, this is more a \just in time" type of self-modi�ation that an be done a runtime.Let us now onsider one of the more interesting hoies: the size of the unrolled kb loop. Weall our single routine single inner kernel for omputing ATB.Suppose single inner kernel is optimized for mb = 8 (two sets of mb = 4) and kb = 64.Suppose during run time a routine is passed in where k = 5, or perhaps where k = 5 is neessary.At the start of the DGEMM all, it should be possible to determine in advane what routines willbe neessary for the duration of that DGEMM all. (One might want to reate multiple opies ofour modi�able kernel for this reason.) We reommend reating the routines at the start of theDGEMM all beause an inner kernel may end up being alled many times, and there is no reasonto remold it into the same thing eah time.Suppose one wanted to stop the omputation after the �fth unrolled blok so that our beomesa kernel on ATB with the leading dimension of A still 64, but unrolled to k = 5. There are reallytwo hoies:1. JUMP Modi�ation Overwrite the next blok with minor lean-up followed by a jumpto the end of the loop.2. Rewrite Modi�ation Overwrite the next blok with minor lean-up followed by the endof the loop (thus shortening the binary objet array).The seond solution is fastest, but involves hanging the most objet ode. The �rst solution7



shall be disussed in a bit more detail beause of the wonderful observation that only a few bytesof data need to be modi�ed.Typially there may be some leanup assoiated with either of these. It is our experiene thatthis is extremely small.Obviously, a loop that assumes � = 1 and � = 0 is signi�antly more simple than a loop thatassumes nothing about � and �. Beause the store to C is usually a bottlenek, removing theseextra instrutions makes for a muh faster routine. That is, the bottlenek of the memory aessis more signi�ant than just the extra instrutions. Removing them then yields a double bene�t,and the resulting performane is optimal.To omplete the piture, suppose m = n = k = 300 and � = 2:3 and � = 4:9. One might need3 inner kernels to pull this o� e�etively:� One tuned for � arbitrary and kb = 64� One tuned for � = 1 and kb = 64� One tuned for � = 1 and kb = 44 (300 mod 64).Usually, one an resolve any one DGEMM all with up to 4 inner kernels. Using these self-modifyingtehniques, one an reate all four of these inner kernels one at the start of the DGEMM all. Thisamortizes their already extremely inexpensive self-modi�ation time with the time it takes to dothe entire DGEMM. The jump modi�ation neessary to hange the kb = 64 ode into a kb = 44ode was only the writing of 18-bytes. Over the ost of an entire DGEMM, the manipulation ofthose 18-bytes wasn't even observable (it turned out to be less than other noises between runs.)It is for this reason that we reommend reating multiple opies of the same array for severaldi�erent modi�ations at any one given time. In our Intel Pentium III implementation, we keeptrak of eah modi�ation that was done, and have a \least reently used" ahing poliy on theinner kernels. If a request is made for a routine that has already been reated, the pointer to afuntion (really the appropriate array) gets passed bak to the DGEMM level and no modi�ationsare required at all. To prevent two di�erent threads from overwriting the same array, a simple\test and set" mehanism is implemented, so only one thread an have modi�ation rights to anarray at a time, however several threads ould go ahead and use the array. However, we havealso experimented with rewrite modi�ations that reate kernels as they go, and so never haveto worry about a ahing poliy. Although this was more ostly to do, it still was on the orderof manipulating an extra 5K array next to the ost of manipulating several large matries.3 Experiments with the New ApproahIn Figure 1, we see DGEMM performane as k varies on an Intel Pentium III proessor running a 2.2-12 Linux kernel at 600 Mhz.. The problem size was �xed at m = n = 960 and this was the 'NT'ase of DGEMM: C  A960�k(B960�k)T . Eah data point was run �ve times and the best was taken.Before eah run, all the data was reinitialized and a one megabyte array was read so that theahes would hopefully always be in the same state for sienti� onsisteny. To further test this,eah library was run against itself, and the variane between the timings done in this experiment8


