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tWith the advent of ar
hite
tures with multiple levels of memory hierar
hies, the questfor high performan
e implementation of 
ommonly used linear algebra operations has be-
ome progressively more 
omplex. Fortunately, re
ent resear
h has shown that a large
lass of su
h operations 
an be implemented in a relatively portable fashion provided ahigh-performan
e matrix-matrix multipli
ation routine is available for a given ar
hite
ture.More re
ently yet it has been shown that the matrix-matrix multipli
ation itself 
an beimplemented in a portable fashion provided a high-performan
e \inner kernel" is avail-able. This inner kernel performs the matrix-matrix multipli
ation of small submatri
es insu
h a way that data movement between 
a
hes and registers is 
arefully amortized. Inre
ent years, approa
hes like those pursued in the ATLAS and PHiPAC proje
ts have usedautomati
 generation, at build time, of matrix-matrix multiply inner kernels. In this pa-per, we present the idea of using an inner kernel that, at run-time, is self-modifying. Theadvantages of using a self-modifying inner kernel at run-time in
lude performan
e gains,minimizing the amount of 
ode to maintain, and a redu
tion in the memory footprint of theexe
utable. In addition to a thorough dis
ussion of the issues a�e
ting the inner kernel wepresent performan
e results for an implementation on the Intel Pentium (R) III pro
essor.1 Introdu
tionAr
hite
tures with memory hierar
hies help over
ome the problem that often data movementis slow 
ompared to 
omputation. If data brought into the low end (registers, 
a
he) is reusedto a signi�
ant degree, then the data traÆ
 between the layers of the hierar
hy is de
reased.In linear algebra, programmers hope to write portable and modular 
ode that 
an exploit a1



memory hierar
hy. The BLAS (Basi
 Linear Algebra Subroutines) [5℄ allow this eÆ
ien
y andportability, sin
e new ma
hines are often released with an optimized BLAS library. The BLAShave di�erent levels of data reuse, with the most signi�
ant being matrix-matrix multipli
ation.Often, linear algebra developers will try to 
luster several matrix updates to apply a bun
h ofthem simultaneously, in order to pi
k a BLAS routine with greater reuse. A modi�ed \blo
k"algorithm results. Linear Algebra libraries like LAPACK [2℄ and FLAME [7℄ that employ blo
kalgorithms have repla
ed older libraries su
h as LINPACK [4℄ and EISPACK [13℄ for the samedense linear algebra problems. On a ma
hine with hierar
hi
al memory, a blo
ked algorithmthat 
alls the BLAS is often preferable, even if it involves marginally more arithmeti
.Arguably, the signi�
ant BLAS kernel is matrix-matrix multipli
ation [6℄ or GEMM (GEneralMatrix times Matrix). GEMM is usually the fastest and simplest of all the BLAS. Furthermore,all of the faster BLAS 
an be written in terms of GEMM ([1, 9, 12℄.) It has also been observedthat GEMM itself 
an be eÆ
iently implemented in terms of an inner kernel whi
h performs amatrix-matrix multipli
ation on subblo
ks of the matrix [1, 3, 14℄. Our examples are with thedouble pre
ision (real*8) version of GEMM 
alled DGEMM [5℄. There have been numerous papers andte
hniques based on optimizing DGEMM (for example, [10, 1, 14, 3, 8℄.) All of these papers share asingle thing in 
ommon. They all implement outer loops around a fast inner kernel. ATLAS [14℄and PHiPAC [3℄ attempt to use the target 
omputer and its 
ompiler to generate a fast innerkernel at build time. Henry [10℄ tried to use alternate data stru
tures to make the inner kernelrun even faster. ITXGEMM [8℄ attempted to use mathemati
s to model the memory hierar
hyin order to �nd the most eÆ
ient blo
king strategy, and had the interesting feature of treatingea
h level of the memory hierar
hy as a separate problem. DGEMM itself is de�ned by the generalmatrix-matrix multipli
ation of C = �op(A)op(B) + �Cwhere op(X) equals X or XT , C 2 <m�n, op(A) 2 <m�k, and op(B) 2 <k�n.In this work, we 
on
entrate on the innermost kernel, so it is only ne
essary to 
onsider asingle loop order, and a single set of blo
king parameters. We shall denote mb, nb, and kb as theblo
ksizes for m, n, and k respe
tively. All of the above GEMM optimization approa
hes dependon somehow obtaining a fast inner kernel similar to C  ATB + C with blo
ksizes mb, nb andkb repla
ing m;n and k. Determining how to blo
k DGEMM outside the innermost kernel helps todi
tate what per
entage of the innermost kernel performan
e is obtainable for a larger matrix. Ifthe innermost kernel runs slowly, suÆ
e to say that the resulting DGEMM will run slowly as well.We refer the reader to Gunnels et. al. [8℄ for one example of blo
king outside the inner kernel.Sin
e this paper will detail how to make fast performing inner kernels, we end our introdu
-tion with a brief des
ription of exa
tly what makes a fast performing inner kernel. All of ourmodi�
ations will be based on the simple design illustrated here. Eventually, we will show howmaking the inner kernel self-modifying enhan
es performan
e and 
ode reliability.In pra
ti
e, on the Intel Pentium R
 III pro
essor, ideal results were observed when the inner-most loop was with mb = 4, nb = 1, and kb = 64. This makes sense, be
ause the innermost kernelis blo
ked for the registers, and there are only 8 available double pre
ision registers available onthe Intel Pentium III pro
essor. Sin
e the 
a
he line is of size 32 bytes, it is 
onvenient to blo
kfor at least mb = 4 doubles. One 
ould also write fast kernels with mb = 2 and nb = 2 (making
ertain to 
all it an even number of times). 2



A key observation is that the mb = 4 and nb = 1 innermost loop is best when unrolled inthe kb dimension. There are several reasons for this. The most obvious of whi
h is avoidingloop overheads. But there are also subtle reasons involving redu
ing the number of instru
tionsduring the se
tion of 
ode near the stores and in
reasing the number of instru
tions to in
ludesome reordering instru
tions elsewhere. The only way to set up a loop on this ar
hite
ture tohave a di�erent stru
ture at di�erent pla
es is to unroll it and set the stru
ture manually.Final performan
e turns out to be based on some of the following �ne details:� Unrolling the loop� Simplifying the instru
tions around the store{ In-lining the � parameter{ Minimizing data movement (if kb is less than the ideal size, try to pi
k kb as 
lose tothe ideal size as possible.)� Choosing a row blo
king (on m) to be at least 8 when kb is small enough. (Choosingmore than 8, depending on how large kb is, may run into instru
tion 
a
he problems sin
eeverything is unrolled. A general rule of them on the Intel Pentium III pro
essor is a loadis typi
ally 6 bytes, and a multiply and add are 2 bytes ea
h, so not ex
eeding the 16 KbyteL1 instru
tion 
a
he generally means making 
ertain things are not unrolled past 8� 64.)All our inner kernels will be based with the above fa
ts in mind.We introdu
e the idea here to use an inner kernel that, at run-time, is self-modifying. Weshow in Se
tion 2 how the number of variations of possible inner kernels otherwise 
ould leadto a 
ode explosion. We propose to address this problem with a self-modifying kernel. Ourself-modifying kernel leads to advantages, in
luding minimizing the amount of 
ode to maintain,and redu
ing the memory footprint of the exe
utable. It also leads to performan
e advantages,in both uniformity and peaks, and those are detailed in Se
tion 3. We end the paper with some
on
lusions in Se
tion 4.2 Many Inner Kernel Cases2.1 Code ExplosionGiven the information in the previous se
tion, it is possible to 
onstru
t a single well optimizedinner kernel for DGEMM. The problem arises when one realizes that to support all 
ases of DGEMM,there may arise a need for many su
h kernels.For example, suppose we de
ide the innermost kernel for our optimal DGEMM is with mb = 8(expli
itly unrolled twi
e su
h that really mb = 4) nb = 1 and kb = 64. What should happen ifsomeone should want to solve the problem with m = 4 or k < 64 or � = 0? We now detail whatis typi
ally done to resolve this problem.A library will typi
ally write kernels for k = 64, and then k = 32, k = 16, k = 8, k = 4, k = 2,k = 1, and then should a DGEMM 
all require say k = 63, solve the problem as follows: �rst do3



a kb = 32, then kb = 16, then kb = 8, then kb = 4, and then �nish the problem by iteratingover kb = 2 or kb = 1. Sometimes the bottom end (small kb) of the spe
trum will be repla
ed byhigh-level 
ompiled 
ode, or 
odes that are not unrolled. There are two strong short
omings tothis approa
h:1. The M
op rate performan
e for kb = 4 is mu
h worse than kb = 32, and in general anytime one uses a smaller kb, the data reuse de
reases, and the performan
e drops. Eventhough the kb = 4 represents 1/8 the work, it may also run at 1/3 the speed, thus slowingdown a k = 36 by ten to thirty per
ent or so. 1 In fa
t, with this approa
h, even thoughk = 36 has better data re-use one typi
ally observes it to run ten to thirty per
ent slower(in terms of M
op performan
e) than k = 32.2. The border 
ases may not have the same level of optimization, either be
ause it is 
ompiled
ode, or not unrolled 
ompletely, or the developers did not have the time to pay too 
loseattention to all the spe
ial 
ases.Of 
ourse, from a library developer's viewpoint, this is bad news be
ause one has just gonefrom one major inner kernel to log(kb). Sometimes even more kernels arise depending on theperforman
e 
urve over k. For example, if k = 64 runs twenty per
ent faster than k = 32, onemay feel the need to develop even more inner kernels, say a k = 48, just to help �ll in some gaps.Granted, this is not a 
on
ern for when the optimal kernel does not need to be unrolled.However, there are other 
on
erns besides unrolling.One needs to 
onsider values of �. As mentioned earlier, inserting a arbitrary multipli
ationof � may be in the 
riti
al path of the stores, and slow down the resulting 
ode 
ompared tothe 
ase where � is zero or one. Now we have three 
ases: � arbitrary, � zero, and � one. Notethat sin
e � = 1 is the most 
ommon 
ase, it may be a performan
e penalty to simply use the� arbitrary 
ase that runs slower. As an added 
ompli
ation, DGEMM spe
i�
ation requires thatwhen � is zero, that the matrix be overwritten and not that it simply get multiplied by zerobefore the add. This may seem like the same thing, until one remembers that C may start o�the 
omputation �lled with NaNs (not 
oating point numbers), and be sent into a DGEMM 
allwith � = 0 and expe
t that the result be legitimate values. Simply multiplying a NaN timeszero does not yield zero, so these are not the same thing.Of 
ourse, � and kb are not the only variables. The pre
ision of the routine (real*8 as opposed toreal*4) makes a di�eren
e, even if the inner kernel approa
h is identi
al between the two routines!The problem is exasperated when one 
onsiders pi
king mb optimally, or perhaps 
hoosing � mayend up making a di�eren
e in performan
e (
learly this is ar
hite
turally dependent just as �sensitivity is). Another variable might be whether or not the data is aligned. Changing theinstru
tions to deal with unaligned data is minor, but 
an easily double or triple the numberof inner kernels one would want in a perfe
t world. Even if one implemented dozens of kernels1In greater detail, if the k = 32 kernel solves a problem with a �xed m;n = 1000 in 8 se
onds (whi
h translatesto a rate of 8 M
ops), there is no reason to believe that the k = 4 kernel will maintain the same M
op rate andsolve a problem with the same m;n = 1000 in one se
ond. Be
ause the data re-use for k = 4 is not as good, itmight instead take 4 se
onds (2 M
ops). Now the k = 36 kernel uses a k = 32 and k = 4 and therefore takes8 + 4 = 12 se
onds total to do m = n = 1000, whi
h represents 6 M
ops. This is 33 per
ent slower than thek = 32 kernel, even though theoreti
ally we would expe
t k = 36 to run faster and be more eÆ
ient than k = 32.4



to mat
h the most 
ommonly en
ountered 
ases, running a slightly di�erent 
ase may prove torun signi�
antly slower than a library whi
h was spe
i�
ally optimized for that pre
ise 
ase.This is the reason most libraries have some performan
e hi

ups. The only systemati
 way ofeliminating most of these hi

ups in the past has been to implement more spe
ial 
ases (
odeexplosion).Our goal is to present a self-modifying library that will automati
ally re-adjust for a largenumber of 
ases that would be too time 
onsuming to implement by hand.Consider the following list, whi
h represents a number of kernels for just one Intel pro
essor.� The size of the kb loop (possibly 64, 32, 16, 8, 4, 2, 1)� The presen
e of � (possibly one, negative one, arbitrary)� The presen
e of � (possibly one, negative one, zero, arbitrary)� Whether the data is aligned or not (8 
hoi
es: yes/no for A;B; and C)� The size of the mb loop (possibly 4, 8, 12)� The pre
ision of the routine. (one of 4 possibilities)� Conversion between A and AT (one of 2 possibilities)� Conversion between B and BT (one of 2 possibilities)Ea
h of the above 
hoi
es represents several di�erent implementations. The total number ofpossible inner kernels grows geometri
ally with the number of interesting 
hoi
es, whi
h seemsto in
rease with ea
h pro
essor release. The 
urrent observations 
ould lead to7� 3� 4� 8� 3� 4� 2� 2 = 32256possibilities. Realisti
ally, one might 
hose the 100 most likely possibilities, and simply expe
tsome 
ases that run less optimally.But the most important observation is that ea
h implementation of a given 
hoi
e di�ers onlymarginally, in some predi
table fashion, from other implementations of the same 
hoi
e.To date there have been two possible solutions, although one solution is fairly re
ent.1. The typi
al approa
h: Bite the performan
e bullet and simply implement some subset of
ases2. The let your 
omputer go 
ode 
razy approa
h: Use the 
omputer to generate the 
ases foryou and enumerate some large subset of them [3, 14℄ 22Even when it is the 
omputer that is 
oding these routines, su
h as in ATLAS, tradeo�s are made so thatonly a large subset of the 32000 routines are used.
5



The se
ond 
ase, using an approa
h su
h as taken in ATLAS [14℄, is only adequate if you
an depend on the 
ompiler to generate nearly optimal 
ode. Although they 
laim fantasti
results, our observations on the Intel ar
hite
ture is that the 
ompiled performan
e of ATLASis typi
ally slower (usually by roughly 15% or more) than what is possible. The dependen
e onthe 
ompiler is yet another 
on
ern; even though 
ompiler te
hnology 
ontinues to improve, itdoes not improve as qui
kly as new pro
essors 
ome out. Obviously, the ATLAS authors mustre
ognize this truth as well: The latest version of ATLAS (as of this writing, version 3.2) for theIntel Pentium III pro
essor require user-
ontributed hand-tuned assembly language for the IntelSSE R
 instru
tions, even though the Intel Pentium III pro
essor has been in mass produ
tion for
onsiderable time. The primary ATLAS author, Clint Whaley, distributed a note to the entireATLAS 
ommunity on September 13, 2001, in whi
h he states:G

 3.0 and RedHat 7.1's 2.96-85 g

 are absolute disasters for ATLAS... 
han
eslook fairly good that from now on, ATLAS will simply have to require an old g

 inorder to get good performan
e.This only illustrates further our worry about having a library performan
e depend entirely upona 
hanging 
ompiler. For the purposes of this paper, we used Mr. Whaley's binaries built froman earlier 
ompiler whi
h did not exhibit this problem.Enumerating all the possibilities, however, leads to a tremendous 
ode explosion, even whenits the 
omputer that is doing the 
oding. Nevertheless, this is an interesting idea: tea
h the
omputer how to write C 
ode.2.2 Code ImplosionOur approa
h is more fundamental: tea
h the 
omputer how to modify its own obje
t (ma
hinelanguage) 
ode at run time to dynami
ally 
reate the inner kernels for a math library that arespe
i�
ally optimized for the given input. In other words, one gains the performan
e bene�t ofhaving literally hundreds if not thousands of spe
ially tuned kernels at ones disposal, but theuser only has to write a single routine!The su

ess of the self-modifying library is that instead of writing all the di�erent 
ombinationsof implementations for all 
hoi
es, one tea
hes the 
omputer how to manipulate one kernelimplementation into another. One programs the algorithm to 
hange a kb = 17 size loop into akb = 15 size loop. For ea
h 
hoi
e (size of the kb loop, �, �, whether the data is aligned or not,et
..), a default option is implemented. Then ea
h 
hoi
e is addressed independentally, and thealgorithm we suggest is taught the ne
essary manipulations to modify the default option intoany of the other options.We illustrate this with an example. Consider the 
hoi
e of whether the C data is aligned or not.On many, but not all, modern ar
hite
tures, the alignment of the data 
an have a serious impa
ton performan
e. For the Intel Pentium III pro
essor, it suÆ
es that the data be 8-byte aligned.For the Intel Pentium(R) 4 pro
essor, if the data is 16-byte aligned, signi�
ant performan
eenhan
ements 
an be made. Be
ause there are signi�
ant performan
e enhan
ements for aligneddata on the Pentium 4, the inner kernels should be written to assume the data is aligned. Thesoftware developer then has an obvious 
hoi
e: dupli
ate every kernel for the 
ase where C is not6



aligned, or simply 
opy C into an aligned bu�er, su�ering a performan
e penalty (possibly) forthat 
opy. For large matri
es, the 
ost of the 
opy is immaterial, but for an outer produ
t updatewhere k is small and m and n are large, and C is unaligned, this 
ost be
omes as expensive asthe matrix multiply itself.The self-modi�
ation runtime te
hnique would address this example as follows. The defaultoption for the 
hoi
e of whether C is aligned or not would be aligned, be
ause that is fastest.The di�eren
e in the obje
t 
ode between an aligned load and an unaligned load is only one byte(the same 
an be said of stores). The default obje
t 
ode 
an be a

essed as a data array usingstandard C pointer manipulation. On
e as a data array, it 
an be 
opied and manipulated. The
orre
t lo
ation for the loads and stores of C 
an be found merely as a fun
tion of any inputs(m, k, et
..) that are unrolled. The byte(s) in question 
an be 
hanged to the new values, andthe resulting obje
t 
ode suddenly works with unaligned data.In pra
ti
e, the same modi�
ation te
hniques are applied to ea
h and every 
hoi
e, ex
eptwhen the inputs happen to mat
h the default options. By treating ea
h 
hoi
e separately, theproblem be
omes tra
table. The result is the way a human typi
ally thinks about a problem: ata high level on how ea
h problem di�ers. A human typi
ally understands that there are many
ombinations of possibilities, but does not bother to pay learn or pay attention to every singleone, and instead just learns how to manipulate one into another.Instead of having 80, 100, or 32000 di�erent kernels, or some subset and the possibility ofnever having all 
ases of interest being optimized, one develops a single routine and tea
hes the
omputer the same human understanding of what 
hanges one 
ode into another. The resultingmanipulations are so fast they 
an be done at run time, when some of the information be
omesavailable. Instead of requiring the user to have the spa
e to in
lude the possibly hundreds ofroutines just in 
ase one of them might be useful, this is more a \just in time" type of self-modi�
ation that 
an be done a runtime.Let us now 
onsider one of the more interesting 
hoi
es: the size of the unrolled kb loop. We
all our single routine single inner kernel for 
omputing ATB.Suppose single inner kernel is optimized for mb = 8 (two sets of mb = 4) and kb = 64.Suppose during run time a routine is passed in where k = 5, or perhaps where k = 5 is ne
essary.At the start of the DGEMM 
all, it should be possible to determine in advan
e what routines willbe ne
essary for the duration of that DGEMM 
all. (One might want to 
reate multiple 
opies ofour modi�able kernel for this reason.) We re
ommend 
reating the routines at the start of theDGEMM 
all be
ause an inner kernel may end up being 
alled many times, and there is no reasonto remold it into the same thing ea
h time.Suppose one wanted to stop the 
omputation after the �fth unrolled blo
k so that our be
omesa kernel on ATB with the leading dimension of A still 64, but unrolled to k = 5. There are reallytwo 
hoi
es:1. JUMP Modi�
ation Overwrite the next blo
k with minor 
lean-up followed by a jumpto the end of the loop.2. Rewrite Modi�
ation Overwrite the next blo
k with minor 
lean-up followed by the endof the loop (thus shortening the binary obje
t array).The se
ond solution is fastest, but involves 
hanging the most obje
t 
ode. The �rst solution7



shall be dis
ussed in a bit more detail be
ause of the wonderful observation that only a few bytesof data need to be modi�ed.Typi
ally there may be some 
leanup asso
iated with either of these. It is our experien
e thatthis is extremely small.Obviously, a loop that assumes � = 1 and � = 0 is signi�
antly more simple than a loop thatassumes nothing about � and �. Be
ause the store to C is usually a bottlene
k, removing theseextra instru
tions makes for a mu
h faster routine. That is, the bottlene
k of the memory a

essis more signi�
ant than just the extra instru
tions. Removing them then yields a double bene�t,and the resulting performan
e is optimal.To 
omplete the pi
ture, suppose m = n = k = 300 and � = 2:3 and � = 4:9. One might need3 inner kernels to pull this o� e�e
tively:� One tuned for � arbitrary and kb = 64� One tuned for � = 1 and kb = 64� One tuned for � = 1 and kb = 44 (300 mod 64).Usually, one 
an resolve any one DGEMM 
all with up to 4 inner kernels. Using these self-modifyingte
hniques, one 
an 
reate all four of these inner kernels on
e at the start of the DGEMM 
all. Thisamortizes their already extremely inexpensive self-modi�
ation time with the time it takes to dothe entire DGEMM. The jump modi�
ation ne
essary to 
hange the kb = 64 
ode into a kb = 44
ode was only the writing of 18-bytes. Over the 
ost of an entire DGEMM, the manipulation ofthose 18-bytes wasn't even observable (it turned out to be less than other noises between runs.)It is for this reason that we re
ommend 
reating multiple 
opies of the same array for severaldi�erent modi�
ations at any one given time. In our Intel Pentium III implementation, we keeptra
k of ea
h modi�
ation that was done, and have a \least re
ently used" 
a
hing poli
y on theinner kernels. If a request is made for a routine that has already been 
reated, the pointer to afun
tion (really the appropriate array) gets passed ba
k to the DGEMM level and no modi�
ationsare required at all. To prevent two di�erent threads from overwriting the same array, a simple\test and set" me
hanism is implemented, so only one thread 
an have modi�
ation rights to anarray at a time, however several threads 
ould go ahead and use the array. However, we havealso experimented with rewrite modi�
ations that 
reate kernels as they go, and so never haveto worry about a 
a
hing poli
y. Although this was more 
ostly to do, it still was on the orderof manipulating an extra 5K array next to the 
ost of manipulating several large matri
es.3 Experiments with the New Approa
hIn Figure 1, we see DGEMM performan
e as k varies on an Intel Pentium III pro
essor running a 2.2-12 Linux kernel at 600 Mhz.. The problem size was �xed at m = n = 960 and this was the 'NT'
ase of DGEMM: C  A960�k(B960�k)T . Ea
h data point was run �ve times and the best was taken.Before ea
h run, all the data was reinitialized and a one megabyte array was read so that the
a
hes would hopefully always be in the same state for s
ienti�
 
onsisten
y. To further test this,ea
h library was run against itself, and the varian
e between the timings done in this experiment8


