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ABSTRACT 
This paper examines the importance of requiring a disk 
resource management mechanism for disconnected 
services and presents a robust system that embodies 
several features that are required of such a disconnected 
framework.  

Disconnected services in which clients access 
services in degraded mode (i.e without relying on 
network connectivity) are important for providing greater 
service availabilit y to potential clients. Because much of 
the content that requires connectivity is not cacheable, 
there is a trend towards downloading code that is “un-
trusted”, one that may place limi tless demands on the 
resources available to the client. 
  Although such resource management has a broad area 
of application, this paper takes a look at disk resource 
management for write buffering, where data are stored for 
disconnected services with the intent that they will be 
evacuated at a later time. In this paper we explore a per-
service popularity algorithm to address the write buffering 
problem effectively. In doing so, we present a system that 
implements an ‘automatic’ disk resource management 
poli cy and examine how it performs relative to the more 
rudimentary techniques already in use. As a result, we 
discuss how our system provides greater service 
availabilit y by allowing flexibilit y in the introduction of 
new services while also providing greater disk access to 
existing ones. 
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1. INTRODUCTION 
This paper presents a disk resource management 
mechanism for scalable disconnected access to web 
services and explains the importance of requiring such a 
resource management system for services that execute in 
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disconnected mode. We focus on environments that 
utilize write buffering to support disconnected operation 
by allowing services to write data to disk with the intent 
that the data shall be evacuated sometime in the future 
[8,10]. 

There is an increasing demand for services clients 
subscribe to that do not require network connectivity for 
their execution. Active Names [1] is an infrastructure that 
supports such services that are location independent – 
meaning their execution may occur anywhere in the 
network (client, proxy, server etc). Although extensible, 
such services may be potential resource hogs where their 
execution could place limitless demands on resources 
launching commonly known denial of service attacks. The 
disk is one such resource that may be a potential target of 
such attacks.  Disk resource management presents a 
greater challenge due to the additional need of 
guaranteeing persistent storage of data where disk space is 
not as easily revocable as memory or network bandwidth. 
Greater caution is therefore required to ensure that only 
space consumed by malicious services is reclaimed. Since 
we specifically address the issue of write buffering that 
deals with sensitive data, unli ke a disk cache, we 
therefore must guarantee data persistence for services. 
The key challenge is therefore to create a balance between 
disk limits and our desired abstraction of infinite 
persistence.  
 In this paper, we propose a disk resource/write 
buffering management system for a resource management 
framework that supports disconnected access to web 
services. The system uses a per-service popularity 
algorithm combined with per-service data eviction rates to 
produce a system that manages disk allocations across 
different services. Specificall y, the system monitors client 
trends in service usage and assigns priorities to each 
service based on the information gathered. In the event 
that the priorities of services decrease, disk space is 
reclaimed from the services as a function of their data 
evacuation rates. Using these capabilities, the system has 
the abil ity to set limits for each service and 
proportionately allocate space to each of them. The 
system described in this paper is dynamic; it continually 
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adjusts and re-calculates limits for different services and 
increases/decreases service allocations.  
  The contribution of this paper is a novel algorithm for 
building an effective disk resource management 
mechanism that may be used as the base for more 
comprehensive and robust systems capable of providing 
complete protection and security against denial of service 
attacks, while at the same time providing greater 
availabilit y per service. However, as we discuss later in 
the paper, the ideal notion of infinite persistence is not 
attainable, forcing us to eventually relax rules on 
persistence, as a trade-off for greater control. 

The rest of this paper is structured as follows: In the 
next section we discuss our motivation for pursuing 
research in this area. Then we briefly describe some of the 
traditional techniques that have been used to build a 
system for such disconnected environments, followed by 
detailed sections of the prototype system, its 
implementation, and experimental analysis of its 
performance and interaction. Then we finally discuss 
some of the system limitations and conclude with a 
section on future work.  
  
2. MOTIVATION  
There are a number of factors that motivate the 
development of a disk resource management system for 
write buffering. These are discussed separately in the 
following paragraphs. 

First, current web technologies (Java Applets, Script-
lets, etc) do not provide the infrastructure needed to 
support disconnect access to web services [2]. Although 
Java Applets and Script-lets allow code to be downloaded 
to the client, these technologies are too restrictive. They 
prevent access to disk completely by un-trusted code. 
These technologies therefore do not provide the necessary 
tools that are required by disconnected 
services/extensions, aimed at increasing service 
availabilit y for potential clients. 

Second, as mentioned earlier, the write buffering 
model is harder to attain then other techniques such as 
disk caching. The diff iculty primaril y stems from the need 
to provide data persistence guarantees for write buffers. 
Current options have a number of limitations since they a) 
prevent disk access as a result of enforcing limits, b) 
arbitraril y evacuate data, c) and do not implement 
controls that lead to denial of service attacks [2]. Such 
characteristics prevent construction of useful services 
aimed at providing greater availability. 

Third, web service workloads and the large number 
of services that a client may access [2] introduce hundreds 
of un-trusted extensions that contend for resources 
including disk. This creates a need to provide controlled 
access for such environments to prevent situations leading 
to service starvation or denial of service. Mobile 
services/extensions that provide disconnected access for 
clients use techniques such as pre-fetching, hoarding 

[9,11], write buffering and message queues [8,10] in order 
to provide maximum availability for clients that access 
these services in degraded mode. These techniques may 
use the disk aggressively and if not controlled could 
completely fill the disk, preventing other services from 
utilizing it. This phenomenon, termed a denial of service 
attack, can render the disk completely inaccessible. 
Therefore, the focus of this paper is to build a system to 
guard against such hostile services and prevent such 
malicious attacks from establi shing their presence. 

Finally, many of the existing systems that provide 
disk resource management capabili ties require a lot of 
user intervention to manage the system. Such systems are 
highly undesirable both for the end-user and for the 
extensions that utilize the system. This necessitates the 
design of a disk resource management mechanism that 
provides ‘automatic’ resource management without 
extensive hand tuning. 

 
3. TRADITIONAL PROGRAMMING MODELS 
Given all the challenges discussed in the previous section, 
our goal is to build a system that models the behavior of 
an ideal prototype that fulfill s the need for disk resource 
management in a write buffering environment. But before 
presenting our proposal to this problem, it is worthwhile 
explaining some of the traditional techniques that have 
been used to tackle this problem, as follow-up of the 
characteristics discussed in the motivation section of this 
paper.  

The two most popular poli cies that have been used 
widely to provide resource management across multiple 
services are static and demand based allocation. Their 
description and limitations are discussed further. 
 
3.1 STATIC POLICY 
Static allocation is an approach that gives an equal share 
of disk space to all services. The allocation per service is 
pre-determined and does not change over time. Thus, 
every service, regardless of popularity, is given the same 
amount of space on disk. 
 
LIMITATIONS. First, this scheme could cause denial of 
service attacks. For example, if the fixed share of disk 
given to each service is too large, it could prevent 
introduction of new services in the system, causing denial 
of service. Second, this scheme yields poor disk space 
utilization whereby services that may not require a lot of 
disk space are given enormous amounts to account for 
their fair share of the disk. If on the other hand the fixed 
amount is too small, this scheme may prevent 
construction of useful services (e.g. Disconnected 
Hotmail) that require a greater amount of space on disk, 
even though these services may be most valuable to the 
client. Finally, this scheme also requires significant hand 
tuning on the user’s part to decide what allocation size to 
use for a particular disconnected environment in order to  
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maximize the number of popular services that may be 
available to the user. 
 
3.2 DEMAND-BASED POLICY 
Demand-based allocation improves upon the static 
allocation scheme by allowing an open-ended policy 
whereby services that access disk more often are given 
more space. Examples are LRU and LFU for cache 
replacement [2]. In such cases, a program that accesses 
more data is given more space or increasing allocations. 
Such an approach also fulfill s the requirements for self-
tuning. However, this poli cy also does not fully meet the 
requirements for a system that may be deployed in a 
disconnected environment.  
 
LIMITATIONS. First, this type of poli cy encourages denial 
of service attacks where deviant services increasing 
accesses are rewarded with increasing allocations until the 
disk is completely exhausted. Since the purpose of the 
disk management system is to protect against such 
malicious services, such behavior is intolerable for disk 
resource management systems operating in a disconnected 
environment.    

 

Keeping these ideas in mind, the next section discusses 
the requirements for an ideal system executing in a write 
buffer environment, capable of dividing disk perfectly 
among competing services. 
 
4. AN IDEAL SYSTEM 
In this section we outline the requirements of an ideal disk 
resource management system that solves write buffering 
in a disconnected environment.  
 
1. Persistent Storage. The system should never discard 

data until the data have been successfully written to the 
server. 

2.  No Denial of Service. Every service is allocated its 
fairshare of the disk (i.e. if a service s with priority p(s) 
attempts to write, that write should succeed unless the 
disk is full and the service has already consumed 
P(s)/sum(p) of the disk, where sum(p) is the sum of all 
service priorities). 

3. Automatic. The policy should be flexible and require 
minimum hand tuning by the end-user. 

4. Work conserving allocations. The system should 
never reject a write unless disk is full or if doing so will 
force later write requests to be rejected. Thus, if a 
service is not using and will not use its full space, then 
the excess space should be allocated to other services 
(to provide ill usion of infinite disk). 

 
These requirements, however, are not pragmatic because 
it is not entirely possible to build systems that provide 
such guarantees. For example, work conserving 
allocations require future knowledge of a service’s 
allocation characteristics where guessing incorrectly 
could violate either requirements of persistent storage or 
no denial of service.  
 
5. PROPERTIES OF THE SYSTEM 
The system implemented as a result attempts to imitate 
the ideal system but relaxes some of the requirements 
mentioned above. The fundamental properties of the 
system are, 
 
1. Persistent storage. We relax requirements by 

guaranteeing protection of data if the service promises 
to evacuate its data at a certain rate, specified by the 
service itself. 

2. No Denial of service. Upper limits, (also known as 
soft-limits), are implemented in the system to 
approximate fairshare by controlling the amount of 
data that each service may write to disk. 

3. Automatic. The client is not required to manually 
configure the system specifically for different 
environments since the system is inherently 
environment independent. 

4. Work conserving allocations. The system implements 
work conserving allocations by comparing the write 
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rates of services with their evacuation rates. Based on 
these rates, the system decides whether the excess space 
of one service may be utili zed by another service. 

 
The fundamental property of our system is that is uses the 
evacuation rate of services to solve the dilemma of 
persistence vs. denial of service and work conservation. 
The key idea is evacuation bandwidth. The evacuation 
bandwidth for a service is defined as the rate at which a 
service’s data are successfully written to their destination. 
In such a system, a service with a particular priority 
promises an evacuation bandwidth that is used in 
combination with the priority to define an upper limit on 
the space that may be util ized by the service at any given 
point in time. Thus after, if a service fail s to meet the 
evacuation bandwidth it promised or its priority 
decreases, subsequent requests for increased allocation by 
the service are rejected. Any “excess” data (greater than 
the soft limit) that is accumulated as a result is evacuated 
at a rate equal to the evacuation bandwidth promised by 
the service. This prevents the system from arbitraril y 
discarding data for a service due to abrupt changes in 
service priority. It also allocates more space to those 
services that promise to evacuate at a higher rate then the 
average incoming bandwidth of data to the buffer. The 
following sections describe in more detail the poli cies, 
architecture, and implementation of the system. 
 
6. PROTOTYPE SYSTEM 
The system we present here attempts to forge a 
compromise between static allocation that does not 
require any knowledge of services and dynamic allocation 
that requires unrealistic knowledge about services. The 
result is a system that provides approximate, albeit not 
perfect, allocations of disk to the various extensions 
executing on the client. 
 The proposed system framework is based on two 
policies that in combination provide an ideal framework 
for implementing disk resource management for write 
buffering. The next section describes these poli cies in 
greater detail. 

 
6.1 POLICY 
This section outlines two of the major poli cies 
implemented by the write buffering system. These 
policies are outlined below. 

 
6.1.1 Popularity 
Our proposed system implements a per-service popularity 
poli cy to approximate the fairshare for each service. 
Although the poli cy does not “perfectly” predict the 
fairshare, per-service popularity predictions come very 
close to the actual fairshare values for each service. The 
per-service popularity poli cy is based on the intuition that 
commonly accessed services are more valuable to end-
users than those less frequently accessed. Thus our system 

assigns a priority to each service and charges services 
disk space based on their priority as measured by the 
request-tracking module shown in Figure 1. This 
constructs a dynamic system, where changing priorities 
(due to request changes) translate into changing 
allocations, thus satisfying the goal of self-tuning. Per-
service popularity therefore assigns more important 
services more space than those less important.  But this 
poli cy alone does not fulfill the requirements of a write 
buffer system since it lacks the idea of data persistence 
because abrupt changes in priority could result in loss of 
crucial service data. The solution to this problem is 
establi shed through the idea of evacuation bandwidth. 
 
6.1.2 Evacuation Bandwidth 
Our system also applies the notion of evacuation 
bandwidth in deciding whether particular services may 
access the disk or not. Services executing in the system 
supply a promised minimum evacuation bandwidth that 
they must evacuate data at.  The main idea here is to use 
promised evacuation bandwidth as a means of predicting 
when data will be written to the server. Since we are not 
able to predict the precise bandwidth by which services 
will write data to the server, we let the each service decide 
the rate at which it can evacuate its data. Thus, if a service 
promises a very high evacuation bandwidth, then it may 
lose its data and conversely, if the service promises a 
lower evacuation bandwidth, its corresponding allocation 
would be lower. This mechanism thus prevents loss of 
crucial data for a service that meets its promises by 
ensuring that the data are evacuated only after they have 
been written to the server. How this technique is applied 
in the buffer system is discussed in later sections. 

 
    Therefore, the above policies, when combined, 
produce the necessary ingredients to build a system that 
implements write buffering in a hostile environment of 
un-trusted code. The popularity-based policy lends itself 
to a poli cy discussed by Chandra et.al [2], that provides a 
generic resource management poli cy for a system that 
allocates disk in proportion to service popularity, focusing 
mainly on systems that util ize the disk as a cache. 
 
7. SYSTEM ARCHITECTURE 
This section details the techniques used in the 
implementation of the write buffer system. Although the 
system matches the characteristics mentioned in the 
properties section very closely, we have restricted the 
promised evacuation bandwidth to be fixed across all 
services in-order to simpli fy the system. It may however 
be enhanced to allow service specified evacuation 
bandwidths, which is discussed in detail in the future 
work section of this paper.  
 
Initial Condition. Any service that accesses the buffer 
system is initiall y given a minimum amount of disk space. 
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The system also enforces a minimum acceptable 
evacuation bandwidth requirement at which every service 
must evacuate. This bandwidth is precisely the promised 
evacuation bandwidth that is identical across all services 
accessing the system. Every service, thus by default, 
promises this minimum evacuation bandwidth. The buffer 
also enforces a maximum evacuation time/eviction timeout 
that is fixed across all services that each service must 
evacuate its data in. 

 
Write Requirements/Minimum System Guarantees.  In 
this system, writes by service/extensions succeed if the 
services meet the minimum system guarantees discussed 
here. If a service that accesses the system wishes to write 
data to disk, the measured bandwidth by the system for 
that particular service must be greater then or equal to the 
minimum acceptable evacuation bandwidth specified by 
the buffer and provided that the service has space to write 
data to disk. If the evacuation bandwidth is lower than the 
minimum evacuation bandwidth, the write is blocked. 
This makes the system more robust since it is capable of 
filtering out those services that use the system 
irresponsibly or maliciously. 

 
Limit Calculation.  In such a system, allocations are 
based on the soft limit of a given service. This system 
utilizes dynamic limits that vary from service to service 
and access to access. In order for this system to work and 
prevent denial of service, the limits are assigned in a way 
that creates meaningful division of disk across the various 
services. This system calculates the limit for a particular 
service by considering its priority and its evacuation 
bandwidth. Specificall y, the soft limit for each service’s 
space is equal to, 
 
  Soft limit = CP*PEB*MET*k 
 
Where CP    = Current Priority, 
     PEB  = Promised Evacuation Bandwidth, 
     MET = Maximum Evacuation Time, 
        k     = Current Scaling Factor 

 
Allocation Increase Requirements.  The buffer system 
uses the soft limit for a particular service to decide 
whether extra space should be allocated to the service or 
not. If the service meets the minimum system guarantees 
mentioned above, the write succeeds. But if the service 
requires more space to write its data to disk, then the 
buffer refers to the services soft limit. If the soft limit for 
the service is greater than the services current allocation 
plus the current request size, the write succeeds and the 
service is granted enough space to fulfill it s request. If 
however, the total space is larger, the write is rejected.  
 
Disk Scaling.  The buffer system assigns limits to the 
services based on their priorities and their promised 

evacuation bandwidth. In such an environment, at any 
given moment when the buffer succeeds a write request to 
the disk, the sum total of all the allocations may exceed 
the disk space present. In such a scenario, the buffer 
system must scale down the allocation amount for all of 
the services to account for the larger total allocated space 
on disk. In this manner, every service still receives its 
fairshare of disk space whilst not the exceeding the total 
space available by the buffer. 
 
Data Eviction Requirements.  The current system gives 
services a lot of flexibilit y in evacuating their data. 
Specifically, it implements a per-transmit failure warning 
to the service to notify the service of possible data 
eviction. We describe the interval between the time a 
service stops transmitting its data and the time at which 
part of its data is discarded as the eviction timeout for the 
system. Under the current implementation, this timeout is 
fixed across all services but may be enhanced later to 
allow variable timeouts across each of the services. 
 
Data Eviction Amount. Under the current system 
implementation, if a service is punished for not 
evacuating its data on time, its space is reduced to its 
current limit calculated by the system. This is correct 
since at any given point we would want all services to 
consume less than or equal to the limit currently 
calculated by the system. 

 
Network Disconnections. The buffer system also 
monitors network connectivity and verifies if the buffer is 
connected to the network. If the buffer at any given 
moment disconnects from the network, the time period for 
which it remains disconnected is not charged towards the 
service data’s time on disk. If however, for any particular 
service or group of services, the data destinations/target 
remote servers are unreachable, the time for the data on 
disk is charged towards the service data’s time on disk 
and if it exceeds the eviction timeout, the space allocation 
for the particular service or group of services is reduced 
as mentioned above. We anticipate improvements to this 
part of the system as well . These improvements are 
discussed in later sections of this paper. 
 
8. SYSTEM IMPLEMENTATION 
Using the above mentioned system logistics; our goal is to 
build an effective write buffer management system that 
fulfill s all the requirements already discussed. 
 As mentioned earlier, write buffering is achieved in 
this system by applying the evacuation bandwidth and 
per-service popularity poli cies. Using these policies, we 
have built a system that meets most if not all of the 
requirements stated in section 5 of this paper. 

The Buffer System uses a hierarchical approach of 
dividing the components of the system where the 
services/extensions issue write requests through a single  
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interface to the buffer system. The Write Buffer system 
implementation consists of essentiall y three main 
components: Write Buffer Interface Module, Writer 
Module, Sender Module. These components are 
individually discussed in the subsections following this 
one. 

 
8.1 WRITER 
The Writer Module sends write requests by different 
services to the buffer system. The Writer is the only 
interface that the services interact act with. Requests 
specificall y consist of Service Name, Data to be written to 
Disk, and Destination to send the data. All services 
communicate with the Write Buffer Interface through the 
Writer.  

The Writer although part of the Write Buffer system, 
operates independently of the Buffer system and is solely 
used to transfer write requests to the Buffer system. The 
transmission is done by opening connections to the write 
buffer interface that waits for write requests from writers. 
Under this infrastructure, every write request by a service 
constitutes a separate Writer Module that transmits the 
request to the Write Buffer Interface.   
 
8.2 WRITE BUFFER INTERFACE 
The Write Buffer Interface module is the most important 
component in the whole system. This module performs 
the following functions. (i) Registers services/receives 
write requests from Writers (ii ) Sinks data to/evicts data 
from disk. (iii) Receives network status notifications and 
(iv) handles callbacks from the Sender, taking appropriate 
actions when necessary. The Write Buffer interface stores 
service histories at two levels in the hierarchy, the service 
level and the disk level. The service level maintains a 
hash table database of service specific information 
including service priority, measured evacuation 
bandwidth etc. The disk level is managed by a Disk 
Manager that contains a database that stores service  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

allocations on disk and file specific information for the 
data on disk. Both these repositories are utilized by the 
write buffer interface to provide the necessary 
functionality described earlier. 

 
Service Registration. When the Write Buffer Interface 
receives a request from the Writer, it registers the service 
to record its history.  This is done by inserting the service 
specific information into the hash table of histories and 
updating the allocation data structure as well . Next time a 
write request is received from the same service, the Buffer 
System refers to the service history to decide whether 
service writes succeed or not.      
 
Processing Writes. When the Write Buffer Interface 
receives a write request from a service past the first time 
the service accessed the disk, it first checks to see if it 
meets the minimum system guarantees. If so, it writes the 
data for the service to disk. If the request is larger than the 
space allocated to the service, the buffer calculates the 
services current soft limit. If the services aggregate space 
does not exceed its calculated soft limit (section 7), the 
write succeeds, else it is rejected. 

 
Network Status Notifications. The Write Buffer 
Interface system maintains a persistent pinging module 
that periodically checks for network connectivity and 
notifies the buffer system if there are network changes. 
These notifications allow the buffer system to decide 
whether to charge disk allocation time to the services or 
not.  
 
Sender Notifications. The Write Buffer Interface also 
receives notifications from the sender on whether a send 
for a service succeeded or not. If sends are successful, the 
write buffer interface de-allocates the corresponding data 
from disk. If unsuccessful, the buffer interface charges the 
time to the service data’s time on disk. 
      

 
Disk 

Service Writer 

Buffer Interface 

II . Write Request 

Figure 2. Steps I - II I show how a successful write 
request propagates through the system. 

III . Write Succeeds 

I. Write to disk 

Buffer Interface 

Network 

Network Status 

Figure 3. Shows the buffer interface interaction with the 
rest of the components. 
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8.3 SENDER 
Sending in this system is achieved by creating a separate 
thread that is dedicated to sending any data on disk to the 
desired destination. The Sender specificall y, 
(i) Queries the system to see if there are any data to be 
sent, (ii) Queries the network for connectivity, and (iii ) 
Sends notifications to the write buffer interface notifying 
it whether attempted sends were successful or not. 

 
Querying Data. The Sender queries for files by simply 
looking up the Disk Manager database that contains 
service names along with their corresponding data. If data 
are available to send, the sender sends the data (in the 
form of files) for the service in a linear fashion. 
 
Write Buffer Notifications. Whenever the Sender 
attempts to send data for a particular service, it notifies 
the Write Buffer Interface on whether the send was 
successful or not. The Write Buffer Interface receives 
these notifications and takes the appropriate actions.   

 
Query Network.  The Sender also queries the network 
before attempting to send any data. This prevents the 
sender from trying to send data during periods of 
disconnection. 

 
9. EXPERIMENTS  
In this section we analyze the behavior of the system by 
conducting simulations to observe the changes in 
allocations of the services with respect to time. By 
observing these micro-benchmarks we are able to 
determine if the system behaves according to 
specification. 

 
9.1 MICRO-BENCHMARKS 
This section details several experiments that were 
performed to analyze the system behavior with respect to 
the expected behavior of the system. Each of the 
individual benchmarks is discussed in detail in the 
sections that follow. 
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Figure 5. Shows how the priority for a program changes 
over time. 
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Figure 6. Shows how the allocations change for a single 
service. Corresponding priority ill ustrated in Figure 5. 
 

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140

Time (seconds)

A
llo

ca
ti

o
n

s 
(b

yt
es

)

Remote Server Disconnects

 
 

Figure 7. Illustrates system behavior against malicious 
services. Corresponding priority ill ustrated in Figure 5. 

 
 

HIGH BANDWIDTH SERVICE    
In this section we describe the most basic execution of the 
system where a service maintains a consistently high 
evacuation bandwidth as its priority changes over time. 
As is expected, we see that as service priority increases, 
allocations increase proportionately. And as the priority 
decreases, the service allocation also decreases. This 
experiment obviously does not model a situation where 
the priority changes are drastic. In such cases, we would  

Sender 

 
Disk Remote Server 

III . Query and send 
over network 

II . Get data 

 I. Poll for data. 

Figure 4. Steps I - II I show the execution steps of 
the sender.  
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Figure 8. Illustrates an experiment testing network 
failures. Corresponding priority ill ustrated in Figure 5. 
 
want the expected behavior seen in Figure 10. In this 
experiment, although the services priority has decreased 
from 25 to 1, it’s allocation only changes at the rate 
proportional to the services promised evacuation 
bandwidth. 

 
LOW BANDWIDTH SERVICE 
In this section we detail a test that describes how the 
system behaves towards a service that maintains low 
evacuation rates and does not evacuate its data on time. 
Figure 7 illustrates such a service. Initially, the remote 
server is reachable and the services allocations increase as 
the priority for the service increases. But later the remote 
server disconnects and the buffer is unable to send the 
data to the destination. In this scenario, the buffer allots 
the service a time period (discussed in section 7) within 
which to evacuate its data. This is the eviction timeout 
period after which the services data are evicted. This 
experiment clearly marks how the system behaves 
towards hostile services that allocate huge amounts of 
space on disk and fail to meet their bandwidth promises. 
This experiment models how the write buffer system 
protects against denial of service attacks. 
 
NETWORK FAILURE EXPERIMENTS  
Here we model two different experiments that simulate 
how the system would behave in the presence of network 
failures or slow downs on the buffer end (Section 7). In 
both cases we will see that the buffer system implements 
a fair poli cy whereby services are not penalized for 
network failures closer to the system. 
 The first of these series of experiments presents what 
happens when the buffer experiences a disconnection 
from the network (Figure 8). In this experiment, during 
connectivity, as service priority increases, the allocations 
for the service increase. After the priority for the service 
stabil izes, the buffer abruptly disconnects from the 
network. In such a scenario we would expect that the 
service data not be evicted even though it’s priority has 
decreased which is exactly what is seen. After the buffer 
rebuilds a connection to the network, the data is evacuated 
from the disk and the allocations for the service decrease 
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Figure 9.  Illustrates abrupt priority changes for a service. 
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Figure 10. Illustrates allocation changes corresponding to    
the priority graph shown in Figure 9. 
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Figure 11. Illustrates system behavior during network 
slowdown. Corresponding priority ill ustrated in Figure 5. 

 
 

since the priority for the service has decreased. 
The second of these series of experiments models a 

situation where the buffer experiences a network slow 
down causing the sending bandwidth for the buffer to fall 
below the minimum evacuation bandwidth (Figure 11). 
Initiall y, when the network is providing peak bandwidth, 
the allocations/priorities are consistent with each other but 
as soon as the network slows down, the decrease in 
allocations for the service are much slower than the 
decrease in its the priority. This is exactly what is 
expected since we would not want to penalize services for  
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Figure 12. Figures shows a combined experiment where 
two services compete for disk space (max. Disk Size = 40 
Kbytes). 

 
not maintaining the promised bandwidth since the buffer 
itself cannot operate at the minimum acceptable 
bandwidth discussed in section 7. 
 
9.2 A DETAILED EXPERIMENT 
Lastly, we describe a combined experiment that builds 
upon the benchmarks we discussed in the previous 
sections. This experiment is modeled in Figure 12. We 
see that initially service 1 maintains a higher priority than 
service 2 and thus is allocated greater space by the buffer. 
However, after a while the remote server for service 1 
disconnects and the buffer is unable to send service 1’s 
data. Once again, the system allows service 1 a timeout 
within which to evacuate the data before they are 
discarded. Meanwhile service 2’s priority increases and 
its corresponding allocation increases until the buffer runs 
out of space. Thus, service 2 cannot be allotted more 
space until space is reclaimed from service 1. After the 
eviction timeout for service 1 expires, its data are evicted 
and the resulting space is allotted to service 2. 
 The above experiment is a classical example shown 
where we see that service 1 which exhibits malicious 
behavior consumes allot of disk space but later is kicked 
out by the system to allow other services access to it. 
Compare this to the traditional techniques of static and 
demand-based allocation, and our proposed system 
performs much better and allocates disk space to services 
in a much more meaningful manner. 

 
10. DISCUSSION 
The write buffering system we have discussed in this 
paper is aimed at preventing denial of service by 
implementing an algorithm that provides sensible 
allocation of disk to services. However, in its 
implementation we came across numerous diff iculties and 
subtleties. Of-course, enhancing the system to make it 
more robust is an open area of research. At any rate, we 
think that describing some of the limitations of the system 
would be helpful to anyone who may later pursue this 

area of research or decide to enhance the system 
discussed here.  

 
11. LIMITATIONS 
The buffer system described in this paper has been 
implemented in a very simplistic manner without adding 
additional complexities into the design. The policies 
implemented for the system are overly simpli fied. As a 
result the system has numerous limitations. These 
limitations are briefly discussed here. 
 Our implementation of popularity for the write buffer 
system uses a simplistic approach and overlooks many 
subtleties. Our simplistic view does not take into account 
the rate at which services may write data to disk or their 
aggressiveness. In such a system, two services with 
identical priorities may be allocated different amounts of 
space on disk based on their agil ity [13] (the frequency at 
which they access the buffer) and time at which they 
accessed the buffer. In this scenario, a more aggressive 
service may be allocated more space than one that is less 
aggressive.  
 Our fixed bandwidth implementation poli cy is also 
too simplistic since a fixed bandwidth may not work well 
across all services/extensions. Some services may not be 
able to promise even the minimum evacuation bandwidth 
enforced by the system. For such a system to work, the 
min. evacuation bandwidth would have to be chosen 
carefull y.  
 Finally, under the current system, we have adopted a 
simplistic approach by which the system detects network 
connectivity. Specifically, the system does not attempt to 
measure network bandwidth but simply poll s (pings) a set 
of well -defined servers to determine if the network 
connection is up or not. If the system is unable to reach 
any of the destinations, it concludes that the network is 
down. Such an approach disregards accurate 
measurements of bandwidth both on the buffer and server 
ends of the network.  
 We would also li ke to mention an important point 
here regarding any priority-based system; any system that 
allocates priorities based on popularity provides 
opportunities for other activities to game the system. In 
addition, program priorities may not necessaril y be 
accurate indicators of program popularity. For example, a 
client using the system may decide that the email service 
is most important to him even though he only accesses the 
service once a day. Although priority does not capture the 
precise picture, we have implemented this poli cy to make 
the system as simplistic as possible as a tradeoff for 
simplicity over optimality. 
  
12. RELATED WORK 
The work that has been described in this paper is closely 
related to a much wider area of resource management. 
Much effort has been spent in building automatic and 
precise resource management tools for fair allocation and 
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control of resources at all levels of the hierarchy. These 
areas of resource accounting include memory 
management, network bandwidth measurement, CPU etc. 
A discussion of a generic resource management 
framework has already been proposed in Dahlin [2]. In 
their paper, the authors have proposed a resource 
management system applicable to all resources that 
services may utilize in a disconnected environment with a 
detailed discussion on a cache-based disk management 
prototype. 
 As previously mentioned, such resource management 
techniques are applicable to systems that provide location 
independent services that may execute anywhere in the 
network. Systems advertising such extensible and location 
independent services are directly impacted by the 
resource management system presented here. Many 
projects have been proposed to this end that include 
Active Names [1], Active Networks [6] and Active 
Services [7]. These systems are based on providing 
flexible location independent services (generally termed 
Active Content) that may be executed at the client, server, 
proxies, etc. Such services rely on a resource management 
infrastructure that provides control mechanisms for the 
various services to prevent resource hazards as a result of 
buggy or malicious code. 
 There has been li ttle contribution to effective write 
buffering for disconnected operation but hopefully this 
paper will be used as a basis for a more in-depth study on 
this topic. Among a few that attempt to solve similar 
resource management problems at the disk level include 
Khoja [8] and Dahlin [2], that propose a similar per-
service popularity algorithm for disk resource 
management surrounding mobile extensions [3]. 

 
13. CONCLUSIONS AND FUTURE WORK 
In this paper we have described a strategy to provide disk 
resource management for a system exploiting write 
buffering for disconnected operation. As we have 
previously discussed, this system is very simplistic and 
may be enhanced to build a more robust disk management 
system. However, we also find that although our proposed 
per-service popularity and evacuation bandwidth scheme 
does not create perfect allocations, it manages disk 
amongst competing services much more effectively then 
many traditional techniques presented in this paper.  

An area of future work could include enhancing the 
current system to make it more robust. A few 
enhancements that may be attributed to this system are 
discussed further.  

First, one may use network bandwidth measurement 
as a scaling factor in scaling the evacuation rates of the 
services accessing disk. At times of slow network activity, 
the system may decide to scale evacuation bandwidths 
down for all the services to account for the decrease in the 
overall send bandwidth of the network. Bandwidth 

measurement tools that may be employed for this purpose 
are detailed in Baker [4] and Savage [5]. 

Second, we may enhance the system by allowing a 
service specified bandwidth to provide greater flexibilit y 
and availability to the services. A control mechanism 
however would still be required in such an environment to 
prevent services from over-promising and then failing to 
meet their promises. 

Third, in-order to build a more work conserving 
system the priority for each service could be scaled over 
the average priority across all services to allow easier 
accommodation of newer extensions. In such a scenario, a 
significant tradeoff in space would have to be made to 
allow such a system to be implemented such that the 
buffer would have to set aside ½ of the disk space as free 
to all services and the other half controlled by it. In such a 
system, in the worst case, a malicious service could 
consume a maximum of ½ of the disk. Such an 
implementation may be considered tolerable considering 
the amount of disk space available today.  

Finally, this paper is a great source of benefit for 
anyone trying to build a complete resource management 
system for the execution of commonly downloaded un-
trusted code to clients operating in a disconnected 
environment. 
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