
 1

An Efficient Disk Resource Management Mechanism
for Scalable Disconnected Access to Web Services*

Nabeel Ahmed, Mike Dahlin

vtigtti@cs.utexas.edu, dahlin@cs.utexas.edu
Department of Computer Sciences
The University of Texas at Austin

ABSTRACT
This paper examines the importance of requiring a disk
resource management mechanism for disconnected
services and presents a robust system that embodies
several features that are required of such a disconnected
framework.

Disconnected services in which clients access
services in degraded mode (i.e without relying on
network connectivity) are important for providing greater
service availabilit y to potential clients. Because much of
the content that requires connectivity is not cacheable,
there is a trend towards downloading code that is “un-
trusted”, one that may place limi tless demands on the
resources available to the client.
 Although such resource management has a broad area
of application, this paper takes a look at disk resource
management for write buffering, where data are stored for
disconnected services with the intent that they will be
evacuated at a later time. In this paper we explore a per-
service popularity algorithm to address the write buffering
problem effectively. In doing so, we present a system that
implements an ‘automatic’ disk resource management
poli cy and examine how it performs relative to the more
rudimentary techniques already in use. As a result, we
discuss how our system provides greater service
availabilit y by allowing flexibilit y in the introduction of
new services while also providing greater disk access to
existing ones.

KEYWORDS
Resource Management, Un-trusted Code, Degraded
Mode, Mobile Extensions, Evacuation Bandwidth, Write
Buffer, Soft Limit

1. INTRODUCTION
This paper presents a disk resource management
mechanism for scalable disconnected access to web
services and explains the importance of requiring such a
resource management system for services that execute in

* This work was supported in part by the Texas Advanced Technology Program,
the Texas Advanced Research Program, and a grant from Novell . Dahlin was also
supported by an NSF CAREER award (CCR-9733842) and an Alfred P. Sloan
Research Fellowship.

disconnected mode. We focus on environments that
utilize write buffering to support disconnected operation
by allowing services to write data to disk with the intent
that the data shall be evacuated sometime in the future
[8,10].

There is an increasing demand for services clients
subscribe to that do not require network connectivity for
their execution. Active Names [1] is an infrastructure that
supports such services that are location independent –
meaning their execution may occur anywhere in the
network (client, proxy, server etc). Although extensible,
such services may be potential resource hogs where their
execution could place limitless demands on resources
launching commonly known denial of service attacks. The
disk is one such resource that may be a potential target of
such attacks. Disk resource management presents a
greater challenge due to the additional need of
guaranteeing persistent storage of data where disk space is
not as easily revocable as memory or network bandwidth.
Greater caution is therefore required to ensure that only
space consumed by malicious services is reclaimed. Since
we specifically address the issue of write buffering that
deals with sensitive data, unli ke a disk cache, we
therefore must guarantee data persistence for services.
The key challenge is therefore to create a balance between
disk limits and our desired abstraction of infinite
persistence.
 In this paper, we propose a disk resource/write
buffering management system for a resource management
framework that supports disconnected access to web
services. The system uses a per-service popularity
algorithm combined with per-service data eviction rates to
produce a system that manages disk allocations across
different services. Specificall y, the system monitors client
trends in service usage and assigns priorities to each
service based on the information gathered. In the event
that the priorities of services decrease, disk space is
reclaimed from the services as a function of their data
evacuation rates. Using these capabilities, the system has
the abil ity to set limits for each service and
proportionately allocate space to each of them. The
system described in this paper is dynamic; it continually

 2

adjusts and re-calculates limits for different services and
increases/decreases service allocations.
 The contribution of this paper is a novel algorithm for
building an effective disk resource management
mechanism that may be used as the base for more
comprehensive and robust systems capable of providing
complete protection and security against denial of service
attacks, while at the same time providing greater
availabilit y per service. However, as we discuss later in
the paper, the ideal notion of infinite persistence is not
attainable, forcing us to eventually relax rules on
persistence, as a trade-off for greater control.

The rest of this paper is structured as follows: In the
next section we discuss our motivation for pursuing
research in this area. Then we briefly describe some of the
traditional techniques that have been used to build a
system for such disconnected environments, followed by
detailed sections of the prototype system, its
implementation, and experimental analysis of its
performance and interaction. Then we finally discuss
some of the system limitations and conclude with a
section on future work.

2. MOTIVATION
There are a number of factors that motivate the
development of a disk resource management system for
write buffering. These are discussed separately in the
following paragraphs.

First, current web technologies (Java Applets, Script-
lets, etc) do not provide the infrastructure needed to
support disconnect access to web services [2]. Although
Java Applets and Script-lets allow code to be downloaded
to the client, these technologies are too restrictive. They
prevent access to disk completely by un-trusted code.
These technologies therefore do not provide the necessary
tools that are required by disconnected
services/extensions, aimed at increasing service
availabilit y for potential clients.

Second, as mentioned earlier, the write buffering
model is harder to attain then other techniques such as
disk caching. The diff iculty primaril y stems from the need
to provide data persistence guarantees for write buffers.
Current options have a number of limitations since they a)
prevent disk access as a result of enforcing limits, b)
arbitraril y evacuate data, c) and do not implement
controls that lead to denial of service attacks [2]. Such
characteristics prevent construction of useful services
aimed at providing greater availability.

Third, web service workloads and the large number
of services that a client may access [2] introduce hundreds
of un-trusted extensions that contend for resources
including disk. This creates a need to provide controlled
access for such environments to prevent situations leading
to service starvation or denial of service. Mobile
services/extensions that provide disconnected access for
clients use techniques such as pre-fetching, hoarding

[9,11], write buffering and message queues [8,10] in order
to provide maximum availability for clients that access
these services in degraded mode. These techniques may
use the disk aggressively and if not controlled could
completely fill the disk, preventing other services from
utilizing it. This phenomenon, termed a denial of service
attack, can render the disk completely inaccessible.
Therefore, the focus of this paper is to build a system to
guard against such hostile services and prevent such
malicious attacks from establi shing their presence.

Finally, many of the existing systems that provide
disk resource management capabili ties require a lot of
user intervention to manage the system. Such systems are
highly undesirable both for the end-user and for the
extensions that utilize the system. This necessitates the
design of a disk resource management mechanism that
provides ‘automatic’ resource management without
extensive hand tuning.

3. TRADITIONAL PROGRAMMING MODELS
Given all the challenges discussed in the previous section,
our goal is to build a system that models the behavior of
an ideal prototype that fulfill s the need for disk resource
management in a write buffering environment. But before
presenting our proposal to this problem, it is worthwhile
explaining some of the traditional techniques that have
been used to tackle this problem, as follow-up of the
characteristics discussed in the motivation section of this
paper.

The two most popular poli cies that have been used
widely to provide resource management across multiple
services are static and demand based allocation. Their
description and limitations are discussed further.

3.1 STATIC POLICY
Static allocation is an approach that gives an equal share
of disk space to all services. The allocation per service is
pre-determined and does not change over time. Thus,
every service, regardless of popularity, is given the same
amount of space on disk.

LIMITATIONS. First, this scheme could cause denial of
service attacks. For example, if the fixed share of disk
given to each service is too large, it could prevent
introduction of new services in the system, causing denial
of service. Second, this scheme yields poor disk space
utilization whereby services that may not require a lot of
disk space are given enormous amounts to account for
their fair share of the disk. If on the other hand the fixed
amount is too small, this scheme may prevent
construction of useful services (e.g. Disconnected
Hotmail) that require a greater amount of space on disk,
even though these services may be most valuable to the
client. Finally, this scheme also requires significant hand
tuning on the user’s part to decide what allocation size to
use for a particular disconnected environment in order to

 3

maximize the number of popular services that may be
available to the user.

3.2 DEMAND-BASED POLICY
Demand-based allocation improves upon the static
allocation scheme by allowing an open-ended policy
whereby services that access disk more often are given
more space. Examples are LRU and LFU for cache
replacement [2]. In such cases, a program that accesses
more data is given more space or increasing allocations.
Such an approach also fulfill s the requirements for self-
tuning. However, this poli cy also does not fully meet the
requirements for a system that may be deployed in a
disconnected environment.

LIMITATIONS. First, this type of poli cy encourages denial
of service attacks where deviant services increasing
accesses are rewarded with increasing allocations until the
disk is completely exhausted. Since the purpose of the
disk management system is to protect against such
malicious services, such behavior is intolerable for disk
resource management systems operating in a disconnected
environment.

Keeping these ideas in mind, the next section discusses
the requirements for an ideal system executing in a write
buffer environment, capable of dividing disk perfectly
among competing services.

4. AN IDEAL SYSTEM
In this section we outline the requirements of an ideal disk
resource management system that solves write buffering
in a disconnected environment.

1. Persistent Storage. The system should never discard

data until the data have been successfully written to the
server.

2. No Denial of Service. Every service is allocated its
fairshare of the disk (i.e. if a service s with priority p(s)
attempts to write, that write should succeed unless the
disk is full and the service has already consumed
P(s)/sum(p) of the disk, where sum(p) is the sum of all
service priorities).

3. Automatic. The policy should be flexible and require
minimum hand tuning by the end-user.

4. Work conserving allocations. The system should
never reject a write unless disk is full or if doing so will
force later write requests to be rejected. Thus, if a
service is not using and will not use its full space, then
the excess space should be allocated to other services
(to provide ill usion of infinite disk).

These requirements, however, are not pragmatic because
it is not entirely possible to build systems that provide
such guarantees. For example, work conserving
allocations require future knowledge of a service’s
allocation characteristics where guessing incorrectly
could violate either requirements of persistent storage or
no denial of service.

5. PROPERTIES OF THE SYSTEM
The system implemented as a result attempts to imitate
the ideal system but relaxes some of the requirements
mentioned above. The fundamental properties of the
system are,

1. Persistent storage. We relax requirements by

guaranteeing protection of data if the service promises
to evacuate its data at a certain rate, specified by the
service itself.

2. No Denial of service. Upper limits, (also known as
soft-limits), are implemented in the system to
approximate fairshare by controlling the amount of
data that each service may write to disk.

3. Automatic. The client is not required to manually
configure the system specifically for different
environments since the system is inherently
environment independent.

4. Work conserving allocations. The system implements
work conserving allocations by comparing the write

Client

Request Tracker
Module

8MB for Service A
½ of the disk

2 MB for Service B
1/8 of the disk

6 MB for Service C
3/8 of the disk

T

F

F D

C

B

A

T

Service >min
Evac. BW

Service A requests less
 than 8 MB with greater
 than min. Evac. BW

Service C requests for less
then 6 MB with less then
min. Evac. BW.

Request for A succeeds Request for C Fails

Write Buffer System

 Soft Limits

Request Tracker relays request
information to Write Buffer.

gu Figure 1. Shows the execution of the writer buffer system.

I. Client requests A 4 times.
II . Client requests B 1 time.

III . Client requests C 3 times.

 4

rates of services with their evacuation rates. Based on
these rates, the system decides whether the excess space
of one service may be utili zed by another service.

The fundamental property of our system is that is uses the
evacuation rate of services to solve the dilemma of
persistence vs. denial of service and work conservation.
The key idea is evacuation bandwidth. The evacuation
bandwidth for a service is defined as the rate at which a
service’s data are successfully written to their destination.
In such a system, a service with a particular priority
promises an evacuation bandwidth that is used in
combination with the priority to define an upper limit on
the space that may be util ized by the service at any given
point in time. Thus after, if a service fail s to meet the
evacuation bandwidth it promised or its priority
decreases, subsequent requests for increased allocation by
the service are rejected. Any “excess” data (greater than
the soft limit) that is accumulated as a result is evacuated
at a rate equal to the evacuation bandwidth promised by
the service. This prevents the system from arbitraril y
discarding data for a service due to abrupt changes in
service priority. It also allocates more space to those
services that promise to evacuate at a higher rate then the
average incoming bandwidth of data to the buffer. The
following sections describe in more detail the poli cies,
architecture, and implementation of the system.

6. PROTOTYPE SYSTEM
The system we present here attempts to forge a
compromise between static allocation that does not
require any knowledge of services and dynamic allocation
that requires unrealistic knowledge about services. The
result is a system that provides approximate, albeit not
perfect, allocations of disk to the various extensions
executing on the client.
 The proposed system framework is based on two
policies that in combination provide an ideal framework
for implementing disk resource management for write
buffering. The next section describes these poli cies in
greater detail.

6.1 POLICY
This section outlines two of the major poli cies
implemented by the write buffering system. These
policies are outlined below.

6.1.1 Popularity
Our proposed system implements a per-service popularity
poli cy to approximate the fairshare for each service.
Although the poli cy does not “perfectly” predict the
fairshare, per-service popularity predictions come very
close to the actual fairshare values for each service. The
per-service popularity poli cy is based on the intuition that
commonly accessed services are more valuable to end-
users than those less frequently accessed. Thus our system

assigns a priority to each service and charges services
disk space based on their priority as measured by the
request-tracking module shown in Figure 1. This
constructs a dynamic system, where changing priorities
(due to request changes) translate into changing
allocations, thus satisfying the goal of self-tuning. Per-
service popularity therefore assigns more important
services more space than those less important. But this
poli cy alone does not fulfill the requirements of a write
buffer system since it lacks the idea of data persistence
because abrupt changes in priority could result in loss of
crucial service data. The solution to this problem is
establi shed through the idea of evacuation bandwidth.

6.1.2 Evacuation Bandwidth
Our system also applies the notion of evacuation
bandwidth in deciding whether particular services may
access the disk or not. Services executing in the system
supply a promised minimum evacuation bandwidth that
they must evacuate data at. The main idea here is to use
promised evacuation bandwidth as a means of predicting
when data will be written to the server. Since we are not
able to predict the precise bandwidth by which services
will write data to the server, we let the each service decide
the rate at which it can evacuate its data. Thus, if a service
promises a very high evacuation bandwidth, then it may
lose its data and conversely, if the service promises a
lower evacuation bandwidth, its corresponding allocation
would be lower. This mechanism thus prevents loss of
crucial data for a service that meets its promises by
ensuring that the data are evacuated only after they have
been written to the server. How this technique is applied
in the buffer system is discussed in later sections.

 Therefore, the above policies, when combined,
produce the necessary ingredients to build a system that
implements write buffering in a hostile environment of
un-trusted code. The popularity-based policy lends itself
to a poli cy discussed by Chandra et.al [2], that provides a
generic resource management poli cy for a system that
allocates disk in proportion to service popularity, focusing
mainly on systems that util ize the disk as a cache.

7. SYSTEM ARCHITECTURE
This section details the techniques used in the
implementation of the write buffer system. Although the
system matches the characteristics mentioned in the
properties section very closely, we have restricted the
promised evacuation bandwidth to be fixed across all
services in-order to simpli fy the system. It may however
be enhanced to allow service specified evacuation
bandwidths, which is discussed in detail in the future
work section of this paper.

Initial Condition. Any service that accesses the buffer
system is initiall y given a minimum amount of disk space.

 5

The system also enforces a minimum acceptable
evacuation bandwidth requirement at which every service
must evacuate. This bandwidth is precisely the promised
evacuation bandwidth that is identical across all services
accessing the system. Every service, thus by default,
promises this minimum evacuation bandwidth. The buffer
also enforces a maximum evacuation time/eviction timeout
that is fixed across all services that each service must
evacuate its data in.

Write Requirements/Minimum System Guarantees. In
this system, writes by service/extensions succeed if the
services meet the minimum system guarantees discussed
here. If a service that accesses the system wishes to write
data to disk, the measured bandwidth by the system for
that particular service must be greater then or equal to the
minimum acceptable evacuation bandwidth specified by
the buffer and provided that the service has space to write
data to disk. If the evacuation bandwidth is lower than the
minimum evacuation bandwidth, the write is blocked.
This makes the system more robust since it is capable of
filtering out those services that use the system
irresponsibly or maliciously.

Limit Calculation. In such a system, allocations are
based on the soft limit of a given service. This system
utilizes dynamic limits that vary from service to service
and access to access. In order for this system to work and
prevent denial of service, the limits are assigned in a way
that creates meaningful division of disk across the various
services. This system calculates the limit for a particular
service by considering its priority and its evacuation
bandwidth. Specificall y, the soft limit for each service’s
space is equal to,

 Soft limit = CP*PEB*MET*k

Where CP = Current Priority,
 PEB = Promised Evacuation Bandwidth,
 MET = Maximum Evacuation Time,
 k = Current Scaling Factor

Allocation Increase Requirements. The buffer system
uses the soft limit for a particular service to decide
whether extra space should be allocated to the service or
not. If the service meets the minimum system guarantees
mentioned above, the write succeeds. But if the service
requires more space to write its data to disk, then the
buffer refers to the services soft limit. If the soft limit for
the service is greater than the services current allocation
plus the current request size, the write succeeds and the
service is granted enough space to fulfill it s request. If
however, the total space is larger, the write is rejected.

Disk Scaling. The buffer system assigns limits to the
services based on their priorities and their promised

evacuation bandwidth. In such an environment, at any
given moment when the buffer succeeds a write request to
the disk, the sum total of all the allocations may exceed
the disk space present. In such a scenario, the buffer
system must scale down the allocation amount for all of
the services to account for the larger total allocated space
on disk. In this manner, every service still receives its
fairshare of disk space whilst not the exceeding the total
space available by the buffer.

Data Eviction Requirements. The current system gives
services a lot of flexibilit y in evacuating their data.
Specifically, it implements a per-transmit failure warning
to the service to notify the service of possible data
eviction. We describe the interval between the time a
service stops transmitting its data and the time at which
part of its data is discarded as the eviction timeout for the
system. Under the current implementation, this timeout is
fixed across all services but may be enhanced later to
allow variable timeouts across each of the services.

Data Eviction Amount. Under the current system
implementation, if a service is punished for not
evacuating its data on time, its space is reduced to its
current limit calculated by the system. This is correct
since at any given point we would want all services to
consume less than or equal to the limit currently
calculated by the system.

Network Disconnections. The buffer system also
monitors network connectivity and verifies if the buffer is
connected to the network. If the buffer at any given
moment disconnects from the network, the time period for
which it remains disconnected is not charged towards the
service data’s time on disk. If however, for any particular
service or group of services, the data destinations/target
remote servers are unreachable, the time for the data on
disk is charged towards the service data’s time on disk
and if it exceeds the eviction timeout, the space allocation
for the particular service or group of services is reduced
as mentioned above. We anticipate improvements to this
part of the system as well . These improvements are
discussed in later sections of this paper.

8. SYSTEM IMPLEMENTATION
Using the above mentioned system logistics; our goal is to
build an effective write buffer management system that
fulfill s all the requirements already discussed.
 As mentioned earlier, write buffering is achieved in
this system by applying the evacuation bandwidth and
per-service popularity poli cies. Using these policies, we
have built a system that meets most if not all of the
requirements stated in section 5 of this paper.

The Buffer System uses a hierarchical approach of
dividing the components of the system where the
services/extensions issue write requests through a single

 6

interface to the buffer system. The Write Buffer system
implementation consists of essentiall y three main
components: Write Buffer Interface Module, Writer
Module, Sender Module. These components are
individually discussed in the subsections following this
one.

8.1 WRITER
The Writer Module sends write requests by different
services to the buffer system. The Writer is the only
interface that the services interact act with. Requests
specificall y consist of Service Name, Data to be written to
Disk, and Destination to send the data. All services
communicate with the Write Buffer Interface through the
Writer.

The Writer although part of the Write Buffer system,
operates independently of the Buffer system and is solely
used to transfer write requests to the Buffer system. The
transmission is done by opening connections to the write
buffer interface that waits for write requests from writers.
Under this infrastructure, every write request by a service
constitutes a separate Writer Module that transmits the
request to the Write Buffer Interface.

8.2 WRITE BUFFER INTERFACE
The Write Buffer Interface module is the most important
component in the whole system. This module performs
the following functions. (i) Registers services/receives
write requests from Writers (ii) Sinks data to/evicts data
from disk. (iii) Receives network status notifications and
(iv) handles callbacks from the Sender, taking appropriate
actions when necessary. The Write Buffer interface stores
service histories at two levels in the hierarchy, the service
level and the disk level. The service level maintains a
hash table database of service specific information
including service priority, measured evacuation
bandwidth etc. The disk level is managed by a Disk
Manager that contains a database that stores service

allocations on disk and file specific information for the
data on disk. Both these repositories are utilized by the
write buffer interface to provide the necessary
functionality described earlier.

Service Registration. When the Write Buffer Interface
receives a request from the Writer, it registers the service
to record its history. This is done by inserting the service
specific information into the hash table of histories and
updating the allocation data structure as well . Next time a
write request is received from the same service, the Buffer
System refers to the service history to decide whether
service writes succeed or not.

Processing Writes. When the Write Buffer Interface
receives a write request from a service past the first time
the service accessed the disk, it first checks to see if it
meets the minimum system guarantees. If so, it writes the
data for the service to disk. If the request is larger than the
space allocated to the service, the buffer calculates the
services current soft limit. If the services aggregate space
does not exceed its calculated soft limit (section 7), the
write succeeds, else it is rejected.

Network Status Notifications. The Write Buffer
Interface system maintains a persistent pinging module
that periodically checks for network connectivity and
notifies the buffer system if there are network changes.
These notifications allow the buffer system to decide
whether to charge disk allocation time to the services or
not.

Sender Notifications. The Write Buffer Interface also
receives notifications from the sender on whether a send
for a service succeeded or not. If sends are successful, the
write buffer interface de-allocates the corresponding data
from disk. If unsuccessful, the buffer interface charges the
time to the service data’s time on disk.

Disk

Service Writer

Buffer Interface

II . Write Request

Figure 2. Steps I - II I show how a successful write
request propagates through the system.

III . Write Succeeds

I. Write to disk

Buffer Interface

Network

Network Status

Figure 3. Shows the buffer interface interaction with the
rest of the components.

Disk

Notifications Write Requests

Writer Sender

Write/Eviction

 7

8.3 SENDER
Sending in this system is achieved by creating a separate
thread that is dedicated to sending any data on disk to the
desired destination. The Sender specificall y,
(i) Queries the system to see if there are any data to be
sent, (ii) Queries the network for connectivity, and (iii)
Sends notifications to the write buffer interface notifying
it whether attempted sends were successful or not.

Querying Data. The Sender queries for files by simply
looking up the Disk Manager database that contains
service names along with their corresponding data. If data
are available to send, the sender sends the data (in the
form of files) for the service in a linear fashion.

Write Buffer Notifications. Whenever the Sender
attempts to send data for a particular service, it notifies
the Write Buffer Interface on whether the send was
successful or not. The Write Buffer Interface receives
these notifications and takes the appropriate actions.

Query Network. The Sender also queries the network
before attempting to send any data. This prevents the
sender from trying to send data during periods of
disconnection.

9. EXPERIMENTS
In this section we analyze the behavior of the system by
conducting simulations to observe the changes in
allocations of the services with respect to time. By
observing these micro-benchmarks we are able to
determine if the system behaves according to
specification.

9.1 MICRO-BENCHMARKS
This section details several experiments that were
performed to analyze the system behavior with respect to
the expected behavior of the system. Each of the
individual benchmarks is discussed in detail in the
sections that follow.

0

5

10

15

20

25

30

1
.0

3

5
.1

6

9
.1

9

1
2

.8

1
6

.9

2
0

.8

2
4

.3

2
7

.9

3
1

.7

3
5

.1

3
8

.7

4
2

.3

4
5

.8

4
9

.7

5
5

.1

6
0

.5 6
6

7
1

.4

Time (seconds)

P
ri

o
ri

ty
 (

N
o

 o
f

A
cc

es
se

s)

Figure 5. Shows how the priority for a program changes
over time.

0

5000

10000

15000

20000

25000

30000

1
.2

1

6
.5

4

1
0

.5 1
4

1
7

.5 2
1

2
4

.5

2
7

.9

3
1

.5 3
5

3
8

.5

4
4

.1

4
9

.8

5
5

.5

5
9

.6 6
3

6
6

.5

7
0

.1

7
3

.6

7
8

.1

Time (seconds)

A
llo

ca
ti

o
n

 S
iz

e
(b

yt
es

)

Figure 6. Shows how the allocations change for a single
service. Corresponding priority ill ustrated in Figure 5.

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140

Time (seconds)

A
llo

ca
ti

o
n

s
(b

yt
es

)

Remote Server Disconnects

Figure 7. Illustrates system behavior against malicious
services. Corresponding priority ill ustrated in Figure 5.

HIGH BANDWIDTH SERVICE
In this section we describe the most basic execution of the
system where a service maintains a consistently high
evacuation bandwidth as its priority changes over time.
As is expected, we see that as service priority increases,
allocations increase proportionately. And as the priority
decreases, the service allocation also decreases. This
experiment obviously does not model a situation where
the priority changes are drastic. In such cases, we would

Sender

Disk Remote Server

III . Query and send
over network

II . Get data

 I. Poll for data.

Figure 4. Steps I - II I show the execution steps of
the sender.

 8

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140

Time (seconds)

A
llo

ca
ti

o
n

 s
iz

e
(b

yt
es

)

Remote Server Disconnect Remote Server Reconnect

Figure 8. Illustrates an experiment testing network
failures. Corresponding priority ill ustrated in Figure 5.

want the expected behavior seen in Figure 10. In this
experiment, although the services priority has decreased
from 25 to 1, it’s allocation only changes at the rate
proportional to the services promised evacuation
bandwidth.

LOW BANDWIDTH SERVICE
In this section we detail a test that describes how the
system behaves towards a service that maintains low
evacuation rates and does not evacuate its data on time.
Figure 7 illustrates such a service. Initially, the remote
server is reachable and the services allocations increase as
the priority for the service increases. But later the remote
server disconnects and the buffer is unable to send the
data to the destination. In this scenario, the buffer allots
the service a time period (discussed in section 7) within
which to evacuate its data. This is the eviction timeout
period after which the services data are evicted. This
experiment clearly marks how the system behaves
towards hostile services that allocate huge amounts of
space on disk and fail to meet their bandwidth promises.
This experiment models how the write buffer system
protects against denial of service attacks.

NETWORK FAILURE EXPERIMENTS
Here we model two different experiments that simulate
how the system would behave in the presence of network
failures or slow downs on the buffer end (Section 7). In
both cases we will see that the buffer system implements
a fair poli cy whereby services are not penalized for
network failures closer to the system.
 The first of these series of experiments presents what
happens when the buffer experiences a disconnection
from the network (Figure 8). In this experiment, during
connectivity, as service priority increases, the allocations
for the service increase. After the priority for the service
stabil izes, the buffer abruptly disconnects from the
network. In such a scenario we would expect that the
service data not be evicted even though it’s priority has
decreased which is exactly what is seen. After the buffer
rebuilds a connection to the network, the data is evacuated
from the disk and the allocations for the service decrease

-5

0

5

10

15

20

25

30

0 20 40 60 80

Time (seconds)

P
ri

o
ri

ty
 (

n
o

. o
f

ac
ce

ss
es

)

Figure 9. Illustrates abrupt priority changes for a service.

0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100 120
Time (seconds)

A
llo

ca
ti

o
n

 S
iz

e
(b

yt
es

)

Figure 10. Illustrates allocation changes corresponding to
the priority graph shown in Figure 9.

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250

Time (seconds)

A
llo

ca
ti

o
n

 s
iz

e
(b

yt
es

)

Network Slowdown occurs

Figure 11. Illustrates system behavior during network
slowdown. Corresponding priority ill ustrated in Figure 5.

since the priority for the service has decreased.
The second of these series of experiments models a

situation where the buffer experiences a network slow
down causing the sending bandwidth for the buffer to fall
below the minimum evacuation bandwidth (Figure 11).
Initiall y, when the network is providing peak bandwidth,
the allocations/priorities are consistent with each other but
as soon as the network slows down, the decrease in
allocations for the service are much slower than the
decrease in its the priority. This is exactly what is
expected since we would not want to penalize services for

 9

Figure 12. Figures shows a combined experiment where
two services compete for disk space (max. Disk Size = 40
Kbytes).

not maintaining the promised bandwidth since the buffer
itself cannot operate at the minimum acceptable
bandwidth discussed in section 7.

9.2 A DETAILED EXPERIMENT
Lastly, we describe a combined experiment that builds
upon the benchmarks we discussed in the previous
sections. This experiment is modeled in Figure 12. We
see that initially service 1 maintains a higher priority than
service 2 and thus is allocated greater space by the buffer.
However, after a while the remote server for service 1
disconnects and the buffer is unable to send service 1’s
data. Once again, the system allows service 1 a timeout
within which to evacuate the data before they are
discarded. Meanwhile service 2’s priority increases and
its corresponding allocation increases until the buffer runs
out of space. Thus, service 2 cannot be allotted more
space until space is reclaimed from service 1. After the
eviction timeout for service 1 expires, its data are evicted
and the resulting space is allotted to service 2.
 The above experiment is a classical example shown
where we see that service 1 which exhibits malicious
behavior consumes allot of disk space but later is kicked
out by the system to allow other services access to it.
Compare this to the traditional techniques of static and
demand-based allocation, and our proposed system
performs much better and allocates disk space to services
in a much more meaningful manner.

10. DISCUSSION
The write buffering system we have discussed in this
paper is aimed at preventing denial of service by
implementing an algorithm that provides sensible
allocation of disk to services. However, in its
implementation we came across numerous diff iculties and
subtleties. Of-course, enhancing the system to make it
more robust is an open area of research. At any rate, we
think that describing some of the limitations of the system
would be helpful to anyone who may later pursue this

area of research or decide to enhance the system
discussed here.

11. LIMITATIONS
The buffer system described in this paper has been
implemented in a very simplistic manner without adding
additional complexities into the design. The policies
implemented for the system are overly simpli fied. As a
result the system has numerous limitations. These
limitations are briefly discussed here.
 Our implementation of popularity for the write buffer
system uses a simplistic approach and overlooks many
subtleties. Our simplistic view does not take into account
the rate at which services may write data to disk or their
aggressiveness. In such a system, two services with
identical priorities may be allocated different amounts of
space on disk based on their agil ity [13] (the frequency at
which they access the buffer) and time at which they
accessed the buffer. In this scenario, a more aggressive
service may be allocated more space than one that is less
aggressive.
 Our fixed bandwidth implementation poli cy is also
too simplistic since a fixed bandwidth may not work well
across all services/extensions. Some services may not be
able to promise even the minimum evacuation bandwidth
enforced by the system. For such a system to work, the
min. evacuation bandwidth would have to be chosen
carefull y.
 Finally, under the current system, we have adopted a
simplistic approach by which the system detects network
connectivity. Specifically, the system does not attempt to
measure network bandwidth but simply poll s (pings) a set
of well -defined servers to determine if the network
connection is up or not. If the system is unable to reach
any of the destinations, it concludes that the network is
down. Such an approach disregards accurate
measurements of bandwidth both on the buffer and server
ends of the network.
 We would also li ke to mention an important point
here regarding any priority-based system; any system that
allocates priorities based on popularity provides
opportunities for other activities to game the system. In
addition, program priorities may not necessaril y be
accurate indicators of program popularity. For example, a
client using the system may decide that the email service
is most important to him even though he only accesses the
service once a day. Although priority does not capture the
precise picture, we have implemented this poli cy to make
the system as simplistic as possible as a tradeoff for
simplicity over optimality.

12. RELATED WORK
The work that has been described in this paper is closely
related to a much wider area of resource management.
Much effort has been spent in building automatic and
precise resource management tools for fair allocation and

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140 160 180

Time (seconds)

A
llo

ca
ti

o
n

 S
iz

e
(b

yt
es

) Time Out Period

N
S

2
P

ri
o

ri
ty

 In
cr

ea
se

s

D
is

k
R

u
n

s
O

u
t o

f S
p

ac
e

N
S

 1
 E

vi
ct

io
n

 &
 a

llo
ca

te
d

 to
 N

S
2

R
em

o
te

 S
er

ve
r

D
is

co
n

n
ec

ts
Namespace 1

Namespace 2

 10

control of resources at all levels of the hierarchy. These
areas of resource accounting include memory
management, network bandwidth measurement, CPU etc.
A discussion of a generic resource management
framework has already been proposed in Dahlin [2]. In
their paper, the authors have proposed a resource
management system applicable to all resources that
services may utilize in a disconnected environment with a
detailed discussion on a cache-based disk management
prototype.
 As previously mentioned, such resource management
techniques are applicable to systems that provide location
independent services that may execute anywhere in the
network. Systems advertising such extensible and location
independent services are directly impacted by the
resource management system presented here. Many
projects have been proposed to this end that include
Active Names [1], Active Networks [6] and Active
Services [7]. These systems are based on providing
flexible location independent services (generally termed
Active Content) that may be executed at the client, server,
proxies, etc. Such services rely on a resource management
infrastructure that provides control mechanisms for the
various services to prevent resource hazards as a result of
buggy or malicious code.
 There has been li ttle contribution to effective write
buffering for disconnected operation but hopefully this
paper will be used as a basis for a more in-depth study on
this topic. Among a few that attempt to solve similar
resource management problems at the disk level include
Khoja [8] and Dahlin [2], that propose a similar per-
service popularity algorithm for disk resource
management surrounding mobile extensions [3].

13. CONCLUSIONS AND FUTURE WORK
In this paper we have described a strategy to provide disk
resource management for a system exploiting write
buffering for disconnected operation. As we have
previously discussed, this system is very simplistic and
may be enhanced to build a more robust disk management
system. However, we also find that although our proposed
per-service popularity and evacuation bandwidth scheme
does not create perfect allocations, it manages disk
amongst competing services much more effectively then
many traditional techniques presented in this paper.

An area of future work could include enhancing the
current system to make it more robust. A few
enhancements that may be attributed to this system are
discussed further.

First, one may use network bandwidth measurement
as a scaling factor in scaling the evacuation rates of the
services accessing disk. At times of slow network activity,
the system may decide to scale evacuation bandwidths
down for all the services to account for the decrease in the
overall send bandwidth of the network. Bandwidth

measurement tools that may be employed for this purpose
are detailed in Baker [4] and Savage [5].

Second, we may enhance the system by allowing a
service specified bandwidth to provide greater flexibilit y
and availability to the services. A control mechanism
however would still be required in such an environment to
prevent services from over-promising and then failing to
meet their promises.

Third, in-order to build a more work conserving
system the priority for each service could be scaled over
the average priority across all services to allow easier
accommodation of newer extensions. In such a scenario, a
significant tradeoff in space would have to be made to
allow such a system to be implemented such that the
buffer would have to set aside ½ of the disk space as free
to all services and the other half controlled by it. In such a
system, in the worst case, a malicious service could
consume a maximum of ½ of the disk. Such an
implementation may be considered tolerable considering
the amount of disk space available today.

Finally, this paper is a great source of benefit for
anyone trying to build a complete resource management
system for the execution of commonly downloaded un-
trusted code to clients operating in a disconnected
environment.

ACKNOWLEDGEMENTS
I would li ke to especiall y thank Dr. Gouda, without
whose guidance and moral support this thesis would not
be possible. My appreciation also goes to all the other
people in this area of research. To Amol Nayate and
Bharat Chandra for assisting in the clarifications
regarding the Active Names System, and distributed web
services in general. I owe a great deal to Usman Shuja and
Mirza Omer Beg for their assistance throughout the
project, which helped make this work possible. Lastly I
would li ke to thank Dr. Dahlin: Thank you for your
patience and continuous support, which helped me in
more ways than I can imagine.

REFERENCES

[1] A. Vahdat, M. Dahlin, T. Anderson and A. Aggarwal.
Active Naming: Flexible Location and Transport of
Wide-Area Resources. In proceedings of the Second
USENIX Symposium on Internet Technologies and
Systems, October 1999

[2] Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asim Razzaq, Anil Sewani.
Resource Management for scalable disconnected access to
web services. WWW10, May 2001.

 11

[3] Mike Dahlin, Bharat Chandra, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asim Razzaq, Anil Sewani. Using
Mobile Extensions to Support Disconnected Services.
Technical Report TR-2000-20, University of Texas at
Austin.

[4] K. Lai and M. Baker, Nettimer: A Tool for Measuring
Bottleneck Link Bandwidth. In proceedings of the 3rd
USENIX Symposium on Internet Technologies and
Systems, San Francisco, Cali fornia, March 2001.

[5] Stefan Savage, Sting: A TCP-based Network
Measurement Tool. In proceedings of the 1999 USENIX
Symposium on Internet Technologies and Systems. pp. 71-
79, Boulder, CO, October 1999

[6] David Wetherwall, Ulana Legedza, and John Guttag.
Introducing New Network Services: Why and How. Int eh
IEEE Network Magazine, Special issues on Active
Programmable Networks, July 1998

[7] Elan Amir, Steven McCanne, and Randy Katz. An
Active Service Framework and its Application to realtime
Multimedia Transcoding. In proceedings of the
SIGCOMM, September 1998.

[8] A. Joseph, A. deLespinasse, J. Tauber, D. Gifford, and
M. Kaashoek. Rover: A Toolkit for Mobile Information
Access. In proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, December 1995

[9] J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. ACM Transactions on
Computer Systems, 10(1):3-25, February 1992.

[10] IBM Corporation. Mqseries: An introduction to
messaging and queuing. Technical Report GC33-0805-01,
IBM Corporation, July 1995.
ftp://ftp.software.ibm.com/software/mqseries/pdf/horaa10
1.pdf.

[11] G. Kuenning and G. Popek. Automated Hoarding for
Mobile Computers. In proceedings of the sixteenth ACM
Symposium on Operating Systems Principles, pages 264-
275, October 1997.

[12] Active channel technology overview.
http://msdn.microsoft.com/workshop/delivery/channel/ov
erview/overview.a%sp, 1999.

[13] Brian D. Noble, M. Satyanarayanan, D. Narayanan,
J. Tilton, J. Flinn, K. Walker. Agile Application-Aware
Adaptation for Mobilit y. In proceedings of the sixteenth
ACM Symposium on Operating Systems Principles,
October 1997

