An Efficient Disk Resour ce M anagement M echanism
for Scalable Disconnected Accessto Web Services

Nabed Ahmed, Mike Dahlin
vtigtti@cs.utexas.edu, dahlin@cs.utexas.edu
Department of Computer Sciences
The University of Texas at Austin

ABSTRACT

This paper examines the importance of requiring a disk
resource management medianisn for disconneded
services and presents a robust system that embodies
several features that are required of such a disconneded
framework.

Disconneded services in which clients access
services in degraded mode (i.e without relying on
network connedivity) are important for providing greaer
service avail ability to potential clients. Because much of
the content that requires connedivity is not cacheable,
there is a trend towards downloading code that is “un-
trusted”, one that may place limitless demands on the
resources available to the dient.

Although such resource management has a broad area
of application, this paper takes a look at disk resource
management for write buff ering, where data are stored for
disconneded services with the intent that they will be
evacuated at a later time. In this paper we explore a per-
service popularity algorithm to addressthe write buffering
problem effectively. In doing so, we present a system that
implements an ‘automatic’ disk resource management
policy and examine how it performs relative to the more
rudimentary techniques alrealy in use. As a result, we
discuss how our system provides greater service
availahbility by allowing flexibility in the introduction of
new services while dso providing greaer disk accessto
existing ones.

KEYWORDS

Resource Management, Un-trusted Code, Degraded
Mode, Mobile Extensions, Evacuation Bandwidth, Write
Buffer, Soft Limit

1. INTRODUCTION

This paper presents a disk resource management
mechanism for scalable disconneded access to web
services and explains the importance of requiring such a
resource management system for servicesthat exeaitein

* This work was supported in part by the Texas Advanced Techndogy Program,
the Texas Advanced Research Program, and a grant from Novell. Dahlin was aso
supported by an NSF CAREER award (CCR-9733842) and an Alfred P. Sloan
Research Fellowship.

disconneded mode. We focus on environments that
utilize write buffering to support disconneded operation
by allowing services to write data to disk with the intent
that the data shall be evacuated sometime in the future
[8,10].

There is an increasing demand for services clients
subscribe to that do not require network connedivity for
their exeaution. Active Names [1] is an infrastructure that
supports such services that are location independent —
meaning their exeaution may occur anywhere in the
network (client, proxy, server etc). Although extensible,
such services may be potentia resource hogs where their
exeaution could place limitless demands on resources
launching commonly known denial of service attacks. The
disk is one such resource that may be a potentia target of
such attacks. Disk resource management presents a
greaer chalenge due to the addtional nead o
guaranteang persistent storage of data where disk spaceis
not as easily revocable as memory or network bandwidth.
Greater caution is therefore required to ensure that only
space onsumed by malicious ®rvicesisredaimed. Since
we specifically address the isaue of write buffering that
deals with sendtive data, unlike a disk cache, we
therefore must guarantee data persistence for services.
The key challenge is therefore to create abalance between
disk limits and ou desired abstraction of infinite
persistence

In this paper, we propose a disk resourceéwrite
buffering management system for a resource management
framework that supports disconneded access to web
services. The system uses a per-service popularity
algorithm combined with per-servicedata eviction ratesto
produce a system that manages disk allocations across
different services. Spedfically, the system monitors client
trends in service usage and assgns priorities to each
service based on the information gathered. In the event
that the priorities of services decrease, disk space is
redaimed from the services as a function of their data
evacuation rates. Using these @pabilities, the system has
the ability to set limits for each service ad
proportionately allocate space to each of them. The
system described in this paper is dynamic; it continualy

adjusts and re-calculates limits for different services and
increases/deaeases srviceallocations.

The mntribution of this paper isanovel algorithm for
building an effedive disk resource management
mechanism that may be used as the base for more
comprehensive and robust systems capable of providing
complete protedion and seaurity againgt denial of service
attacks, while at the same time providing greder
availability per service However, as we discuss later in
the paper, the ideal notion of infinite persistence is not
attainable, forcing us to eventualy relax rules on
persistence as atrade-off for greder control.

Therest of this paper is gructured as follows: In the
next sedion we discuss our mativation for pursuing
reseach in this area Then we briefly describe some of the
traditional techniques that have been used to huild a
system for such disconneded environments, foll owed by
detalled sedions of the prototype system, its
implementation, and experimenta andysis of its
performance ad interaction. Then we finaly discuss
some of the system limitations and conclude with a
sedion on future work.

2.MOTIVATION

There ae a number of factors that motivate the
development of a disk resource management system for
write buffering. These ae discussd separately in the
following paragraphs.

First, current web technologies (Java Applets, Script-
lets, etc) do not provide the infragtructure needed to
support disconned accessto web services [2]. Although
Java Applets and Script-lets allow code to be downloaded
to the dient, these technologies are too restrictive. They
prevent access to disk completely by un-trusted code.
These technologies therefore do not provide the necessary
tods that ae required by disconneded
services/extensions, aimed at increasing service
availahility for potential clients.

Second, as mentioned ealier, the write buffering
mode is harder to attain then other techniques sich as
disk caching. The difficulty primarily stems from the need
to provide data persstence guarantees for write buffers.
Current options have a number of limitations sncethey a)
prevent disk access as a result of enforcing limits, b)
arbitrarily evacuate data, ¢) and do not implement
controls that leal to denial of service attacks [2]. Such
characteristics prevent construction of useful services
aimed a providing greder availability.

Third, web service workloads and the large number
of servicesthat a dient may access[2] introduce hundreds
of un-trusted extensions that contend for resources
including dsk. This creates a neal to provide controll ed
accessfor such environmentsto prevent situations leading
to service starvation or denial of servicee Mohle
services/extensions that provide disconneded access for
clients use techniques such as pre-fetching, hoarding

[9,11], write buffering and message queues [8,10] in order
to provide maximum availability for clients that access
these services in degraded mode. These techniques may
use the disk aggressvely and if not controlled could
completely fill the disk, preventing other services from
utilizing it. This phenomenon, termed a denial of service
attack, can render the disk completely inaccessble.
Therefore, the focus of this paper isto huild a system to
guard againg such hostile services and prevent such
mali cious attacks from establi shing their presence

Finally, many of the eisting systems that provide
disk resource management capabilities require a lot of
user intervention to manage the system. Such systems are
highly undesirable bath for the end-user and for the
extensions that utilize the system. This necesstates the
design of a disk resource management mechanism that
provides ‘automatic’ resource management without
extensive hand tuning.

3. TRADITIONAL PROGRAMMING MODELS
Given al the chall enges discussed in the previous ction,
our goal isto kuild a system that models the behavior of
an ideal prototype that fulfill s the need for disk resource
management in a write buff ering environment. But before
presenting our proposal to this problem, it is worthwhile
explaining some of the traditional techniques that have
been used to tackle this problem, as follow-up of the
characteristics discussed in the motivation sedion of this
paper.

The two most popular policies that have been used
widely to provide resource management across multiple
services are static and demand based alocation. Their
description and limitations are discussd further.

3.1STATICPOLICY

Static alocation is an approach that gives an equal share
of disk spaceto al services. The dlocation per serviceis
pre-determined and does not change over time. Thus,
every service, regardiessof popularity, is given the same
amount of spaceon disk.

LIMITATIONS. First, this sheme ould cause denial of
service attacks. For example, if the fixed share of disk
given to each service is too large, it could prevent
introduction of new services in the system, causing denial
of service Second, this sheme yields poor disk space
utilization whereby services that may not require a lot of
disk space are given enormous amounts to account for
their fair share of the disk. If on the other hand the fixed
amount is too small, this sheme may prevent
construction of wuseful services (e.g. Disconneded
Hotmail) that require a greger amount of space on disk,
even though these services may be most valuable to the
client. Finaly, this <heme also requires sgnificant hand
tuning on the user’s part to dedde what allocation size to
use for a particular disconneded environment in order to

Client

I. Client requests A 4 times.
II. Client requests B 1time.
I, Client requests C 3times.

Request Tracker
Module

Service A reguests less
than 8MB with greater
than min. Evac. BW

Request Tracker relays request
information to Write Buffer.

Write Buffer System

Soft Limits

Service >min

Evac BW

8MB for Service A

15 of the disk A T
2MB for Service B B T
1/8 of the disk
C F
6 MB for Service C
3/8 of the disk D F

\2

Request for C Fails

Service C requests for less
then 6M B with lessthen
min. Evac BW.

Request for A succeals

I Figure 1. Shows the exeaution of the writer buffer system.

maximize the number of popuar services that may be
available to the user.

3.2 DEMAND-BASED POLICY

Demand-based allocation improves upon the static
allocation scheme by alowing an open-ended policy
whereby services that access disk more often are given
more space Examples are LRU and LFU for cache
replacement [2]. In such cases, a program that accesses
more data is given more space or increasing all ocations.
Such an approach dso fulfill s the requirements for self-
tuning. However, this policy also does not fully med the
requirements for a system that may be deployed in a
disconneded environment.

LIMITATIONS. First, this type of policy encourages denial
of service dtacks where deviant services increasing
accesses are rewarded with increasing allocations until the
disk is completely exhausted. Since the purpose of the
disk management system is to proted against such
malicious @rvices, such behavior is intolerable for disk
resource management systems operating in a disconneded
environment.

Keging these ideas in mind, the next sedion discusss
the requirements for an ided system executing in a write
buffer environment, capable of dividing disk perfectly
among competing services.

4. AN IDEAL SYSTEM

In this dion we outli ne the requirements of an ideal disk
resource management system that solves write buffering
in a disconneded environment.

1.Persisent Storage. The system should never discard
data until the data have been successfully written to the
server.

2. No Denial of Service. Every service is alocated its
fairshare of the disk (i.e. if a services with priority p(s)
attempts to write, that write should succeel unlessthe
disk is full and the service has dready consumed
P(s)/sum(p) of the disk, where sum(p) is the sum of all
servicepriorities).

3.Automatic. The policy should be flexible and require
minimum hand tuning by the end-user.

4.Work conserving allocations. The system should
never rgjed awrite unlessdisk isfull or if doing so will
force later write requests to be rgeded. Thus, if a
serviceis not using and will not use its full space, then
the excess wace should be all ocated to aher services
(to provideill usion of infinite disk).

These requirements, however, are not pragmatic because
it is not entirely posshle to build systems that provide
such guarantees. For example, work conserving
alocations require future knowledge of a servic€s
alocation characterigics where guessng incorredly
could violate d@ther requirements of persistent storage or
no denial of service.

5. PROPERTIESOF THE SYSTEM

The system implemented as a result attempts to imitate
the ided system but relaxes ome of the requirements
mentioned above. The fundamental properties of the
system are,

1.Persisent storage. We redax requirements by
guaranteang protedion of data if the service promises
to evacuate its data & a certain rate, spedfied by the
serviceitsdf.

2.No Denial of service. Upper limits, (dso known as
soft-limits), are implemented in the system to
approximate fairshare by controlling the anount of
data that each service may writeto dsk.

3.Automatic. The dient is not required to manualy
configure the system specificaly for different
environments snce the system is inherently
environment independent.

4.Work conserving allocations. The system implements
work conserving allocations by comparing the write

rates of services with their evacuation rates. Based on
these rates, the system deddes whether the excess pace
of one service may be utili zed by another service

The fundamental property of our system isthat is usesthe
evacuation rate of services to solve the dilemma of
persistence vs. denial of service and work conservation.
The key idea is evacuation bandwidth. The evacuation
bandwidth for a serviceis defined as the rate at which a
service sdata are succesdully written to their degtination.
In such a system, a service with a particular priority
promises an evacuation bandwidth that is used in
combination with the priority to define an upper limit on
the space that may be utilized by the service at any given
point in time. Thus after, if a service fails to med the
evacuation bandwidth it promised or its priority
deaeases, subsequent requests for increased al ocation by
the service ae rejeded. Any “excess’ data (greder than
the soft limit) that is accumulated as a result is evacuated
at arate equal to the evacuation bandwidth promised by
the service This prevents the system from arbitrarily
discarding data for a service due to abrupt changes in
service priority. It also allocates more space to those
services that promise to evacuate at a higher rate then the
average incoming bandwidth of data to the buffer. The
following sedions describe in more detail the palicies,
architedure, and implementation of the system.

6. PROTOTYPE SYSTEM

The system we present here attempts to forge a
compromise between datic alocation that does not
require any knowledge of services and dynamic allocation
that requires unrealistic knowledge about services. The
result is a system that provides approximate, abet not
perfed, alocations of disk to the various extensions
exeauting an the dient.

The proposed system framework is based on two
policies that in combination provide an ided framework
for implementing disk resource management for write
buffering. The next sedion describes these policies in
greaer detail.

6.1 POLICY

This =dion outlines two of the maor policies
implemented by the write buffering system. These
policies are outlined below.

6.1.1 Popularity

Our proposed system implements a per-service popul arity
policy to approximate the fairshare for each service
Although the policy does not “perfedly” predict the
fairshare, per-service popularity predictions come very
close to the actua fairshare values for each service The
per-service popularity policy is based on the intuition that
commonly accessed services are more valuable to end-
users than those lessfrequently accessed. Thus our system

assgns a priority to each service and charges srvices
disk space based on their priority as measured by the
request-tracking module shown in Fgure 1. This
constructs a dynamic system, where changing priorities
(due to request changes) trandate into changing
alocations, thus stisfying the goal of self-tuning. Per-
service popularity therefore assgns more important
services more space than those less important. But this
policy alone does not fulfill the requirements of a write
buffer system since it lacks the idea of data persistence
because abrupt changes in priority could result in loss of
crucial service data. The solution to this problem is
establi shed through the idea of evacuation bandwidth.

6.1.2 Evacuation Bandwidth

Our sysem also applies the notion of evacuation
bandwidth in deading whether particular services may
access the disk or not. Services executing in the system
supdy a promised minimum evacuation bandwidth that
they must evacuate data &. The main idea here is to use
promised evacuation bandwidth as a means of predicting
when data will be written to the server. Since we are not
able to predict the predse bandwidth by which services
will write data to the server, we let the each service decide
therate at which it cen evacuate its data. Thus, if a service
promises a very high evacuation bandwidth, then it may
lose its data ad conversely, if the service promises a
lower evacuation bandwidth, its corresponding allocation
would be lower. This mechanism thus prevents loss of
crucial data for a service tha meds its promises by
ensuring that the data ae evacuated only after they have
been written to the server. How this technique is applied
in the buffer system isdiscussd in later sedions.

Therefore, the above policies, when combined,
produce the necessary ingredients to huild a system that
implements write buffering in a hostile evironment of
un-trusted code. The popularity-based policy lends itself
to apolicy discussed by Chanda et.al [2], that provides a
generic resource management policy for a system that
all ocates disk in proportion to service popularity, focusing
mainly on systems that utilize the disk asa @ache.

7. SYSTEM ARCHITECTURE

This ®dion details the tedniques used in the
implementation of the write buffer system. Although the
syssem matches the daracteristics mentioned in the
properties dion very closdy, we have restricted the
promised evacuation bandwidth to be fixed across all
services in-order to smplify the system. It may however
be ehanced to alow service specified evacuation
bandwidths, which is discussed in detail in the future
work sedion of this paper.

Initial Condition. Any service that accesses the buffer
system isinitialy given aminimum amount of disk space

The system aso enforces a minimum acceptable
evacuation bandwidth requirement at which every service
must evacuate. This bandwidth is predsely the promised
evacuation bandwidth that is identical acrossall services
accessng the system. Every service thus by default,
promises this minimum evacuation bandwidth. The buffer
also enforces a maximum evacuation time/eviction timeout
that is fixed across al services that each service must
evacuate its dataiin.

Write RequirementsMinimum System Guarantees. In
this g/stem, writes by servicgextensions sicced if the
services med the minimum system guarantees discussd
here. If a service that accesses the system wishes to write
data to disk, the measured bandwidth by the system for
that particular service must be greater then or equal to the
minimum acceptable evacuation bandwidth spedfied by
the buffer and provided that the service has gaceto write
datato disk. If the evacuation bandwidth is lower than the
minimum evacuation bandwidth, the write is blocked.
This makes the system more robust sinceit is capable of
filtering out those services that use the system
irresponsibly or maliciously.

Limit Calculation. In such a system, allocations are
based on the soft limit of a given service This g/stem
utilizes dynamic limits that vary from service to service
and accessto aacess In order for this g/stem to work and
prevent denid of service the limits are assgned in a way
that creates meaningful division of disk acrossthe various
services. This system calculates the limit for a particular
service by considering its priority and its evacuation
bandwidth. Spedfically, the soft limt for each servic€s
spaceis equal to,

Sdt limit = CP*PEB*MET*k

Where CP = Current Priority,
PEB = Promised Evacuation Bandwidth,
MET = Maximum Evacuation Time,
k = Current Scaling Factor

Allocation Increase Requirements. The buffer system
uses the soft limit for a particular service to dedde
whether extra space should be dlocated to the service or
not. If the service meds the minimum system guarantees
mentioned above, the write succeals. But if the service
requires more space to write its data to disk, then the
buffer refers to the services soft limit. If the soft limit for
the service is greater than the services current allocation
plus the arrent request size, the write succeals and the
service is granted enough space to fulfill its request. If
however, thetotal spaceislarger, thewriteisrgeded.

Disk Scaling. The buffer system assgns limits to the
services based on their priorities and their promised

evacuation bandwidth. In such an environment, at any
given moment when the buffer succeals a write request to
the disk, the sum total of all the all ocations may exceed
the disk space present. In such a scenario, the buffer
system must scale down the allocation amount for all of
the services to account for the larger total alocated space
on disk. In this manner, every service il receves its
fairshare of disk space whilst not the exceeling the total
spaceavailable by the buffer.

Data Eviction Requirements. The airrent system gives
services a lot of flexibility in evacuating their data.
Spedfically, it implements a per-transmit fail ure warning
to the service to notify the service of posshle data
eviction. We describe the interval between the time a
service stops trangmitting its data and the time at which
part of its data is discarded as the ewction timeout for the
system. Under the arrent implementation, this timeout is
fixed across al services but may be enhanced later to
all ow variable timeouts acrosseach of the services.

Data Eviction Amount. Under the aurrent system
implementation, if a service is punished for not
evacuating its data on time, its space is reduced to its
current limit calculated by the system. This is corred
since at any given point we would want all services to
consume less than or equal to the limit currently
calculated by the system.

Network Disconnections. The buffer system also
monitors network connedivity and verifies if the buffer is
conneded to the network. If the buffer at any given
moment disconneds from the network, the time period for
which it remains disconneded is not charged towards the
service data’ stime on disk. If however, for any particular
service or group of services, the data destinations/target
remote servers are unreachable, the time for the data on
disk is charged towards the service data’s time on disk
and if it exceals the eviction timeout, the space allocation
for the particular service or group of services is reduced
as mentioned above. We anticipate improvements to this
part of the system as well. These improvements are
discussd in later sedions of this paper.

8. SYSTEM IMPLEMENTATION

Using the above mentioned system logistics; our god isto
build an effedive write buffer management system that
fulfill sall the requirements already discus<ed.

As mentioned ealier, write buffering is achieved in
this system by applying the evacuation bandwidth and
per-service popularity policies. Using these policies, we
have built a system that meds most if not al of the
requirements gsated in sedion 5 o this paper.

The Buffer System uses a hierarchicd approach of
dividing the mponents of the syssem where the
services/extensions isaue write requests through a single

Service |. Writeto dsk Writer
A
II. Write Request
Y
~ » Buffer Interface
Disk
[Il. Write Succeels
Figure 2. Steps| - I show how a successful write

request propagates through the system.

interface to the buffer system. The Write Buffer system
implementation consists of essentiadly three main
components. Write Buffer Interface Module, Writer
Modue, Sender Module. These components are
individually discussed in the subsections following this
one.

8.1WRITER

The Writer Module sends write requests by different
services to the buffer system. The Writer is the only
interface that the services interact act with. Requests
spedfically consist of Service Name, Data to be written to
Disk, and Dedtination to send the data. All services
communicate with the Write Buffer Interface through the
Writer.

The Wtiter although part of the Write Buffer system,
operates independently of the Buffer system and is lely
used to transfer write requests to the Buffer system. The
transmisgon is done by opening connedions to the write
buffer interfacethat waits for write requests from writers.
Under this infrastructure, every write request by a service
constitutes a separate Writer Module that tranamits the
request to the Write Buffer Interface

8.2WRITE BUFFER INTERFACE

The Write Buffer Interface module is the most important
component in the whole system. This module performs
the following functions. (i) Registers rvicesrecaves
write requests from Writers (i) Sinks data to/evicts data
from disk. (iii) Recaves network status notifications and
(iv) handles call backs from the Sender, taking appropriate
actions when necessary. The Write Buffer interface stores
service histories at two levelsin the hierarchy, the service
level and the disk level. The service level maintains a
hash table database of service spedfic information
including service priority, measured evacuation
bandnvidth etc. The disk level is managed by a Disk
Manager that contains a database that stores srvice

‘/Write Requests

Buffer Interface

Notifications

Write/Eviction
Network Status

Figure 3. Shows the buffer interfaceinteraction with the
rest of the omponents.

allocations on disk and file spedfic information for the
data on disk. Both these repositories are utilized by the
write buffer interface to provide the necessry
functionality described earlier.

Service Registration. When the Write Buffer Interface
recaves a request from the Writer, it registers the service
toreaord itshistory. Thisis done by inserting the service
spedfic information into the hash table of histories and
updating the allocation data structure as well . Next time a
writerequest isrecaved from the same service the Buffer
System refers to the service history to dedde whether
servicewrites sicceed or not.

Processing Writes. When the Wtite Buffer Interface
receves a write request from a service past the first time
the service accessed the disk, it first chedks to see if it
meds the minimum system guarantees. If so, it writes the
data for the serviceto disk. If the request islarger than the
space allocated to the service the buffer calculates the
services current soft limit. If the services aggregate space
does not excedl its calculated soft limit (sedion 7), the
write succedls, elseit isrgeded.

Network Status Notifications. The Write Buffer
Interface system maintains a persistent pinging module
that periodically cheds for network connedivity and
notifies the buffer system if there ae network changes.
These notifications allow the buffer system to dedde
whether to charge disk alocation time to the services or
not.

Sender Notifications. The Write Buffer Interface also
receves notifications from the sender on whether a send
for aservice succeaded or not. If sends are successul, the
write buffer interface de-all ocates the @rresponding ceta
from disk. If unsuccessful, the buffer interface dhargesthe
timeto the servicedata’ stime on disk.

II. Get data
[l Query and send

I. Pall for data. over network

[Remote Server }

Figure 4. Steps| - 111 show the exeaution steps of
the sender.

8.3 SENDER

Sending in this gystem is achieved by creating a separate
thread that is dedicaed to sending any data on disk to the
desired destination. The Sender spedfically,

() Queries the system to see if there ae ay data to be
sent, (ii) Queries the network for connedivity, and (iii)
Sends natifications to the write buffer interface notifying
it whether attempted sends were successful or not.

Querying Data. The Sender queries for files by simply
looking up the Disk Manager database that contains
service names along with their corresponding data. If data
are available to send, the sender sends the data (in the
form of fil es) for the servicein alinea fashion.

Write Buffer Notifications. Whenever the Sender
attempts to send data for a particular service it notifies
the Write Buffer Interface on whether the send was
successful or not. The Wite Buffer Interface recaves
these notifications and takes the appropriate actions.

Query Network. The Sender also queries the network
before attempting to send any data. This prevents the
sender from trying to send data during periods of
disconnedion.

9. EXPERIMENTS

In this ®dion we aayze the behavior of the system by
conducting simulations to dbserve the danges in
alocations of the services with resped to time. By
observing these micro-benchmarks we are able to
determine if the system behaves according to
spedfication.

9.1 MICRO-BENCHMARKS

This =dion details svera experiments that were
performed to analyze the system behavior with resped to
the epeded behavior of the system. Each of the
individual benchmarks is discussed in detall in the
sedions that foll ow.

Priority (No of Accesses)
&

@«

o

m O ® QRN M HN ~ N OO N~y O %

S T T a8 9 YN~ 18 %Ny gy g © o

~ 8 8 ~ =~ 8 8 ® 00 ¥ T ¥ D N
Time (seconds)

Figure 5. Shows how the priority for a program changes
over time.

30000 -
25000 -
20000 -
15000 -

10000 -

Allocation Size (bytes)

5000

14

)
M

1.21
6.54
10.5
17.5
21
24.5
27.9
31.5
38.5
55.5
59.6
63
66.5
70.1
73.6
78.1

el
¥ 9
¥
Time (seconds)

Figure 6. Shows how the all ocations change for a single
service Corresponding priority ill ustrated in Figure 5.

35000 4

Remote Server Disconnects.
30000 1

25000

20000

15000

Allocations (bytes)

10000

5000 -

0 20 40 60 80 100 120 140

Time (seconds)

Figure 7. lllustrates gstem behavior againg malicious
services. Corresponding priority ill ustrated in Figure 5.

HIGH BANDWIDTH SERVICE

In this edion we describe the most basic execution of the
syssem where a service maintains a consistently high
evacuation bandwidth as its priority changes over time.
As is expected, we see that as rvice priority increases,
all ocations increase proportionately. And as the priority
deaeases, the service alocation aso deaeases. This
experiment obviously does not model a situation where
the priority changes are drastic. In such cases, we would

35000

Remote Server Disconnect Remoe Server Reconnect

30000

25000

20000

15000

10000

Allocation size (bytes)

5000

0 20 40 60 80 100 120 140

Time (seconds)

Figure 8. lllustrates an experiment testing network
fail ures. Corresponding priority ill ustrated in Figure 5.

want the expeded behavior seen in Figure 10. In this
experiment, athough the services priority has deaeased
from 25 to 1, it's dlocation only changes at the rate
proportional to the services promised evacuation
bandwi dth.

LOW BANDWIDTH SERVICE
In this ®dion we detail a test that describes how the

system behaves towards a service that maintains low
evacuation rates and does not evacuate its data on time.
Figure 7 illustrates such a service Initialy, the remote
server isreachable and the services all ocations increase as
the priority for the service increases. But later the remote
server disconneds and the buffer is unable to send the
data to the destination. In this <enario, the buffer alots
the service a time period (discussed in sedion 7) within
which to evacuate its data. This is the eviction timeout
period after which the services data ae evicted. This
experiment clearly marks how the system behaves
towards hostile services that allocate huge amounts of
space on disk and fail to mee their bandwidth promises.
This experiment models how the write buffer system
proteds againg denial of serviceattacks.

NETWORK FAILURE EXPERIMENTS

Here we model two different experiments that smulate
how the system would behave in the presence of network
failures or dow downs on the buffer end (Sedion 7). In
both cases we will see that the buffer system implements
a fair policy whereby services are not pendized for
network failures closer to the system.

Thefirst of these series of experiments presents what
happens when the buffer experiences a disconnedion
from the network (Figure 8). In this experiment, during
connedivity, as service priority increases, the al ocations
for the service increase. After the priority for the service
stabilizes, the buffer abruptly disconneds from the
network. In such a scenario we would exped that the
service data not be evicted even though it’s priority has
deaeased which is exactly what is sen. After the buffer
rebuil ds a connedion to the network, the datais evacuated
from the disk and the all ocations for the service deaease

N W
[

BoRN
o o v o

Priority (no. of accesses)

o

20 40 60 80

&

Time (seconds)

Figure 9. Illustrates abrupt priority changes for a service

30000 -
25000 -
20000 -
15000 -
10000 +

5000 -

O T T T T T 1
0 20 40 60 80 100 120

Time (seconds)

Allocation Size (bytes)

Figure 10. lllustrates all ocation changes corresponding to
the priority graph shown in Figure 9.

35000 -
Network Slowdown occurs
30000 -
25000 -
20000 -

15000 -

10000 -

Allocation size (bytes)

5000 4

0 50 100 150 200 250

Time (seconds)

Figure 11 Illustrates system behavior during network
slowdown. Corresponding priority ill ustrated in Figure 5.

sincethe priority for the servicehas deaeased.

The second of these series of experiments models a
situation where the buffer experiences a network slow
down causing the sending bandwidth for the buffer to fall
below the minimum evacuation bandwidth (Figure 11).
Initialy, when the network is providing peak bandwidth,
the allocationg/priorities are mnsistent with each other but
as oon as the network slows down, the deaease in
allocations for the service are much dower than the
deaease in its the priority. This is exactly what is
expeded sincewe would not want to penalize services for

35000

30000 - I

N
25000 -

20000 +

15000 -

NS2 Priority Increases

10000 -

Allocation Size (bytes)
Disk Runs @Qut of Space

[Remote Server Disconnects

5000 4 &

NS 1 Eviction & allofated to NSz

|
160 180

[
|
S

T T T T T
0 20 40 60 80 100 120

Time (seconds)

Figure 12. Figures shows a combined experiment where
two services compete for disk space (max. Disk Size= 40
Kbytes).

not maintaining the promised bandwidth since the buffer
itself cannot operate a the minimum acceptable
bandwidth discussed in sedion 7.

9.2 A DETAILED EXPERIMENT

Lastly, we describe a combined experiment that buil ds
upon the benchmarks we discussed in the previous
sedions. This experiment is modeled in Figure 12. We
seethat initially service 1 maintains a higher priority than
service 2 and thus is all ocated greater space by the buffer.
However, after a while the remote server for service 1
disconneds and the buffer is unable to send service 1's
data. Once again, the system allows @rvice 1 a timeout
within which to evacuate the data before they are
discarded. Meanwhile service 2's priority increases and
its corresponding all ocation increases urtil the buffer runs
out of space. Thus, service 2 cannot be allotted more
space until space is redaimed from service 1. After the
ewvction timeout for service 1 expires, its data are evicted
and the resulting spaceis al otted to service 2.

The above experiment is a classcd example shown
where we see that service 1 which exhibits malicious
behavior consumes alot of disk space but later is kicked
out by the system to allow other services access to it.
Compare this to the traditional techniques of static and
demand-based allocation, and ow proposed system
performs much better and dl ocates disk spaceto services
in amuch more meaningful manner.

10. DISCUSSION

The write buffering system we have discussd in this
paper is amed a preventing denial of service by
implementing an algorithm that provides sensible
alocation of disk to servicess However, in its
implementation we came acrossnumerous difficulties and
subtleties. Of-course, enhancing the system to make it
more robust is an open area of reseach. At any rate, we
think that describing some of the limitations of the system
would be helpful to anyone who may later pursue this

aea of research or dedde to enhance the system
discussd here.

11. LIMITATIONS

The buffer system described in this paper has been
implemented in a very simplistic manner without adding
additional complexities into the design. The policies
implemented for the system are overly smplified. As a
result the system has numerous limitations. These
limitations are briefly discussed here.

Our implementation of popularity for the write buffer
system uses a smplistic approach and overlodks many
subtleties. Our simplistic view does not take into account
the rate at which services may write data to disk or their
aggressveness In such a system, two services with
identicd priorities may be allocated dfferent amounts of
space on disk based on their agility [13] (the frequency at
which they access the buffer) and time at which they
accessed the buffer. In this <enario, a more gygressve
service may be all ocated more space than one that is less
aggressve.

Our fixed bandwidth implementation policy is also
too smplistic since a fixed bandwidth may not work well
acrossall services/extensions. Some services may not be
able to promise even the minimum evacuation bandwidth
enforced by the system. For such a system to work, the
min. evacuation bandwidth would have to be cosen
carefully.

Finally, under the arrent system, we have adopted a
simplistic approach by which the system detects network
connedivity. Spedfically, the system does not attempt to
measure network bandwidth but smply poll's (pings) a set
of well-defined servers to determine if the network
connedion is up or not. If the system is unable to reach
any of the destinations, it concludes that the network is
down. Such an approach disregards accurate
measurements of bandwidth bath on the buffer and server
ends of the network.

We would also like to mention an important point
here regarding any priority-based system; any system that
allocates priorities based on popularity provides
opportunities for other activities to game the system. In
addition, program priorities may not necessrily be
acaurate indicators of program popularity. For example, a
client using the system may dedde that the email service
is most important to him even thoughhe only accesses the
service once a day. Although priority does not capture the
predse picture, we have implemented this policy to make
the system as smplistic as posshle as a tradeoff for
simplicity over optimality.

12. RELATED WORK

The work that has been described in this paper is closdly
related to a much wider area of resource management.
Much effort has been spent in building automatic and
predse resource management tods for fair allocation and

control of resources at dl levels of the hierarchy. These
aeas of resource accounting include memory
management, network bandwidth measurement, CPU etc.
A discusson of a generic resource management
framework has already been proposed in Dahlin [2]. In
their paper, the authors have proposed a resource
management system applicable to al resources that
services may utilize in a disconneded environment with a
detailed discusson on a cache-based dsk management
prototype.

As previoudly mentioned, such resource management
tedhniques are appli cable to systems that provide location
independent services that may execute anywhere in the
network. Systems advertising such extensible axd location
independent services are diredly impacted by the
resource management system presented here. Many
projeds have been proposed to this end that include
Active Names [1], Active Networks [6] and Active
Services [7]. These systems are based on providing
flexible location independent services (generally termed
Active Content) that may be exeauted at the dient, server,
proxies, etc. Such servicesrely on aresource management
infragtructure that provides control mechanisms for the
various ®rvices to prevent resource hazards as a result of
buggy or mali cious code.

There has been little wntribution to effective write
buffering for disconneded operation but hopefully this
paper will be used as a basis for amore in-depth study on
this topic. Among a few that attempt to solve similar
resource management problems at the disk level include
Khoja [8] and Dahlin [2], that propose a smilar per-
service popularity agorithm for disk resource
management surroundng mobile etensions [3].

13. CONCLUSIONS AND FUTURE WORK

In this paper we have described a strategy to provide disk
resource management for a system exploiting write
buffering for disconneded operation. As we have
previously discussed, this gstem is very simplistic and
may be enhanced to build a more robust disk management
system. However, we also find that although our proposed
per-service popularity and evacuation bandwidth scheme
does not create perfect alocations, it manages disk
amongst competing services much more dfedively then
many traditional techniques presented in this paper.

An area of future work could include enhancing the
current system to make it more robust. A few
enhancements that may be &tributed to this system are
discussed further.

First, one may use network bandwidth measurement
as a scaling factor in scaling the evacuation rates of the
services accessng dsk. At times of dow network activity,
the system may dedde to scale evacuation bandwidths
down for all the services to acoount for the deaease in the
overall send bandwidth of the network. Bandwidth

measurement tods that may be employed for this purpose
are detail ed in Baker [4] and Savage[5].

Second, we may enhance the system by allowing a
service spedfied bandwidth to provide greater flexibility
and availability to the services. A control mechanism
however would still be required in such an environment to
prevent services from over-promising and then failing to
mes their promises.

Third, in-order to huild a more work conserving
system the priority for each service could be scaled over
the average priority across al services to allow easier
accommodation of newer extensions. In such a scenario, a
significant tradeoff in space would have to be made to
allow such a system to be implemented such that the
buffer would have to set aside %2 of the disk spaceas free
to all services and the other half controlled by it. In such a
system, in the worst case, a malicious rvice could
consume a maximum of % of the disk. Such an
implementation may be wnsidered tolerable considering
the anount of disk space available today.

Finally, this paper is a great source of benefit for
anyone trying to kuild a complete resource management
system for the exeaution of commonly downloaded un-
trusted code to clients operating in a disconneded
environment.

ACKNOWLEDGEMENTS

| would like to espedally thank Dr. Gouda, without
whose guidance and mord support this thesis would not
be posshle. My appredation also goes to al the other
people in this area of research. To Amol Nayate and
Bharat Chandra for asssting in the darifications
regarding the Active Names System, and distributed web
servicesin generd. | oweagreat deal to Usman Shujaand
Mirza Ome Beg for their assstance throughout the
projed, which helped make this work posshle. Lastly |
would like to thank Dr. Dahlin: Thank you for your
patience and continuous support, which helped me in
more ways than | can imagine.

REFERENCES

[1] A. Vahdat, M. Dahlin, T. Anderson and A. Aggarwal.
Active Naming: Flexible Location and Transport of
Wide-AreaResources. In proceedings of the Second
USENIX Symposium on Internet Techndogies and
Systems, October 1999

[2] Bharat Chandra, Mike Dahlin, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asm Razzag, Anil Sewani.
Resource Management for scalable disconneded accessto
web services. WWW10, May 2001

10

[3] Mike Dahlin, Bharat Chandra, Lei Gao, Amjad-Ali
Khoja, Amol Nayate, Asim Razzag, Anil Sewani. Using
Mobil e Extensions to Support Disconneded Services.
Tednicd Report TR-2000-20, University of Texas at
Austin.

[4] K. La and M. Baker, Nettimer: A Tod for Measuring
Bottlenedk Link Bandwidth. In proceedings of the 3rd
USENIX Symposium on Internet Techndogies and
Systems, San Francisco, California, March 200L.

[5] Stefan Savage, Sting: A TCP-based Network
Measurement Tod. In proceedings of the 1999 USENIX
Sympaosium on Internet Technologies and Systems. pp. 71-
79, Boulder, CO, October 1999

[6] David Wetherwall, Ulana L egedza, and John Guittag.
Introducing New Network Services: Why and How. Int eh
|EEE Network Magazine, Spedal issues on Active
Programmable Networks, July 1998

[7] Elan Amir, Steven McCanne, and Randy Katz. An
Active Service Framework and its Application to realtime
Multimedia Transcoding. In proceedings of the

S GCOMM, September 1998.

[8] A. Joseph, A. deLespinass, J. Tauber, D. Gifford, and
M. Kaashoek. Rover: A Todkit for Mohil e Information
Access In proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, Decenber 1995

[9] J. Kigler and M. Satyanarayanan. Disconneded
Operation in the Coda Fil e System. ACM Transactions on
Computer Systems, 10(1):3-25, February 1992

[10] IBM Corporation. Mgseries. An introduction to
messaging and queuing. Tednicd Report GC33-0805-01,
IBM Corporation, July 1995
ftp://ftp.software.ibm.com/software/maseries/pdf/horaalQ

1.pdf.

[11] G. Kuenning and G. Popek. Automated Hoarding for
Mobile Computers. In proceedings of the sixteenth ACM
Sympaosium on Operating Systems Principles, pages 264
275, October 1997.

[12] Active dhannd technology overview.
http://msdn.microsoft.com/workshop/deli very/channel/ ov
erview/overview.a%sp, 199.

[13] Brian D. Noble, M. Satyanarayanan, D. Narayanan,
J. Tilton, J. Flinn, K. Walker. Agile Appli cation-Aware
Adaptation for Mohility. In proceedings of the sixteenth
ACM Symposium on Operating Systems Principles,
October 1997

11

