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Some new Internet-based applications such as streaming media cannot function well with
TCP’s decrease-by-half response to congestion indications from the network. However, to
prevent congestion collapse, it is imperative that all applications use some form of congestion
control. Furthermore, for such a mechanism to be feasible, it must converge to fairness and
efficiency, just as TCP does.

This thesis presents a framework that allows an application to choose a suitably ag-
gressive or smooth congestion response from a wide family of window-based protocols called
CYRF (for Choose Your Response Function) that are designed to converge to fairness. We
also give a simple rule for smooth CYRF flows to be TCP-friendly.

We first derive a sufficient condition that ensures convergence to fairness. We then
present the surprising result that an application can satisfy this fairness condition and con-
struct a congestion response tailored to its needs by choosing from almost any pair of mono-
tonically non-decreasing functions. Constructing a window increase policy using a slowly
increasing function results in an aggressive protocol. Similarly, a slowly increasing function
in the decrease policy gives rise to smooth protocols. We characterize TCP-friendliness in
steady-state and show that any smooth CYRF protocol can be TCP-friendly if the product
of its window increase and decrease functions is proportional to the window size.

An interesting aspect of this work is that all commonly used window-based protocols
such as TCP, GAIMD, and binomial congestion control are shown to be special cases of a
single family of protocols, thus providing a powerful unified framework for analyzing them.
We derive most of the important results about these protocols as special cases of the results

for CYRF.
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In my beginning is my end. —-T.S. Eliot,
Opening Lines of Four Quartets. “Fast Coker,” pt. 1.

Chapter 1

Introduction

In an unregulated network, if the users simultaneously demand more resources from
the network than it has a capacity to offer, the network gets overloaded. This is termed
as congestion and in extreme cases, can lead to a state of congestion collapse as reported
by Nagle [24]. Informally, the classical congestion collapse is a stable condition in which an
increase in network load results in a decrease in the useful work done by the network [13].
Floyd et al [13,14] perceive a greater danger from a new form of congestion collapse due
to bandwidth wasted by delivering packets through the network that are dropped before
reaching their ultimate destination.

To prevent such a disastrous situation from occuring, most applications in the In-
ternet implement some form of end-to-end congestion control, typically by using TCP. This
requires each flow to adapt its sending rate based upon the available network bandwidth.
The “available bandwidth” is inferred from some form of feedback given by the network
indicating whether it is overloaded or has available capacity.

TCP-based end-to-end congestion control works because flows equitably share the
bottleneck link bandwidth by adjusting their sending rates, while at the same time efficiently
utilizing all of the available bandwidth. We say an end-to-end congestion control protocol
is feasible if and only if it ensures convergence to fairness and efficiency, atleast in “ideal”
conditions.

In this work, we look at one important subclass of end-to-end congestion control



protocols called Window based Binary Feedback Congestion Control Protocols (WBF Proto-
cols, from here on). TCP [28,37], GAIMD [41], and Binomial congestion control [2] are some
of the well known WBF protocols. These protocols allow the application to simultaneously
send a bunch of packets, called a window. The size of the window represents the protocol’s
estimate of its share of the bottleneck link. At the heart of every WBF protocol is a re-
sponse function Sp, that periodically adjusts the window size after receiving feedback from
the network. Typically, Sp depends both on the current window size, w, and the nature of
the feedback. Equivalently, we can consider two different response functions, depending only
on w: an increase response function Sz that is used when the feedback indicates available
bandwidth and a decrease response function Sp corresponding to an overload or congestion
indication. Different response functions give rise to different WBF protocols with different

increase/decrease policies.
1.1 The Problem

Most of the classical Internet applications such as file transfer, electronic mail and the
Web have elastic bandwidth requirements [9]: they perform better when more bandwidth
is made available, but they can function with much lesser bandwidth. Hence, the ideal
response function for these applications should grab available bandwidth quickly and also
back off quickly to alleviate congestion. TCP is well suited for this kind of task.

However, several new applications have different needs and may need to respond
to congestion indications differently. For example, multimedia applications require smooth-
ness and cannot tolerate TCP’s abrupt decrease-by-half response to a triple-duplicate-ACK
congestion indication. New classes of protocols such as GAIMD and binomial congestion
control with smoother increase/decrease policies have been invented for streaming media
applications.

In this work, we seek a unifying framework that will help us choose (or invent) an
appropriate feasible WBF unicast congestion control protocol to suit the needs of different

applications.



1.2 The Solution

Given that a WBF protocol’s properties are governed by its response functions, it is natural
to ask “What response functions are feasible?”. As our first contribution, we derive a
sufficient condition that guarantees convergence to fairness and efficiency in a WBF protocol
(under the assumption of synchronous feedback).

We then find that a surprisingly general class of WBF protocols satisfy this condi-
tion. In particular, we show that given a pair of real, differentiable, non-negative, mono-
tonically non-decreasing functions f(z) and g(z)!, g(z) upperbounded by 1, the following

increase/decrease policy converges to fairness:

Z:z(t+R) <« z(t)+z@t)/f(z(t); f()>0
D:z(t+R) « =z()—z(t)g(z(t); 0<g()<1

Here z(t) represents the current window size and z(t + R), the next window size.

An application can choose a slowly increasing function for f(z) if it needs to be
more aggressive and make full use of network bandwidth as soon as it becomes available.
Similarly a slowly increasing g(x) results in a smoother response to congestion indications.
Because of this, we call these protocols CYRF?, for Choose Y our Response Function.

However, because of the large install-base of TCP based applications, new conges-
tion control protocols must also interact well with the large number of TCP flows that
dominate the Internet [14]. Thus, we cannot (should not) choose a highly aggressive in-
crease response function Sz and a very smooth decrease response function Sp at the same
time. Most newly proposed protocols achieve this by adhering to the convention known as
“TCP-Compatibility” [4] or “TCP Friendliness” [20,21]. Roughly, it means that all flows
must send at the same mean rate as a TCP flow. We derive a general condition that couples
the increase and decrease response functions together so that a CYRF flow is TCP-friendly.
Specifically, we show that for CYRF to be TCP-friendly in deterministic steady-state, we
need f(z)g(z) x .

From a protocol-design viewpoint, CYRF represents a novel approach in that it has

been designed to be feasible, and its correctness need not be proved separately. CYRF is

L Atleast one must be monotonically increasing.
2To be pronounced as sirf, the motivation coming from the hinglish “sirf ek protocol”, which can mean
“CYRF: a protocol” or “Just a protocol”.



shown to be feasible because each application of the increase or decrease policy moves the
system closer towards total fairness.

We will also briefly consider a variant called 1-CYRF which relaxes this strict fairness
criterion. Specifically, we drop the requirement that g(z) be a monotonically non-decreasing
function, and instead only ask f(z)g(z) to be monotonically non-decreasing, and always
greater than 1 for z > 1. Most CYRF protocols are also 1-CYRF. But if g(z) is not
monotonic, the application of a decrease policy will actually worsen fairness. This decrease
in fairness is shown to be offset by the increase in fairness from the previous application of
an increase policy. The name 1-CYRF comes from the fact that the condition f(z)g(z) > 1
corresponds to a l-responsive protocol (section 3.3.4), which ensures that each decrease is
preceded by an increase in window size (in deterministic steady-state). Thus the fairness
of 1-CYRF increases over each application of an increase policy and we eventually obtain a
totally fair allocation. The TCP-friendliness conditions apply to 1-CYRF as well as CYRF.

An interesting aspect of this work is that all commonly known WBF protocols,
namely TCP, GAIMD and Binomial Congestion Control are shown to be special cases of
CYRF (some binomial congestion control protocols are only a special case of 1-CYRF), thus
providing a powerful unified framework for the analysis of these protocols. We easily derive
most of the important results about known WBF protocols as corollaries of the results for
CYRF. For example, it directly follows that TCP, GAIMD and Binomial congestion control
protocols converge to fairness and efficiency. It is well-known (due to a result of Chiu and
Jain [6]) that GAIMD (and hence TCP) converges to fairness and efficiency. (Notice that
this validates the correctness of our results in a way.) However, the proof of convergence to

fairness of n-binomial flows is an important by-product of this work.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows: In chapter 2, we briefly summarize some of
the other approaches to tackling the problem of congestion and in particular other recent
developments in TCP-friendly congestion control. Chapter 3 formalizes the WBF model
and explains some of the simplifying assumptions used in our analysis. We then describe

the constraints of fairness, efficiency and TCP-friendliness in chapter 4. Chapter 5 derives



sufficient conditions for 2 and n > 2 WBF flows to converge to fairness which is used
in Chapter 6 as the basis for CYRF. In chapter 7 we obtain simplified conditions for any
WBF protocol to be TCP-friendly and then describe how CYRF can be made TCP-friendly.

Chapter 8 concludes the work.



If I have seen further, it is by standing upon the shoulders of giants.
-Sir Isaac Newton. Letter to Robert Hooke, Feb. 5, 1675.

Chapter 2

Related Work

In this work, we do not look at the important issue of multicast flows and multicast conges-
tion control, which has also benefited from the TCP-friendly idea. We also do not consider
application-specific adaptive approaches such as [31] that try to make the best use of the
available network support. Instead, our goal is to prescribe the best WBF congestion control

that suits the needs of a particular application.

2.1 Historical Approaches

The main goal of a congestion control mechanism is preventing congestion collapse. There
have been two main approaches to this problem. The first approach, used in ATM, switched
telephone networks, and the ISPN architecture [5, 8], defines the notion of a flow [27] and
calls for the deployment of packet scheduling disciplines to isolate each flow from the effects
of other flows. Each flow must also reserve resources using a protocol such as RSVP [42]
before using the resource, thus preventing overload.

The other major approach is end-to-end congestion control, which is based on the
end-to-end argument [34] and supports one of the fundamental design goals of the DARPA
Internet — survivability in the face of failure [7]. End-to-end policies can be divided into open
loop admission control based schemes such as the leaky bucket algorithm [38] and closed loop

feedback-based adaptive mechanisms such as TCP. TCP is the most widely used congestion



control mechanism today. Most modern TCP implementations [39] incorporate algorithms
introduced by Van Jacobson [1,15] into 4.3BSD to fix the original 1988 congestion collapse.

Congestion avoidance via end-to-end congestion control was simultaneously inves-
tigated in a series of papers by Jain, Ramakrishnan and Chiu. Their work is summarized
in [18]. In particular, Chiu and Jain characterize increase/decrease policies of a wide class
of linear WBF protocols under the metrics of fairness, efficiency, etc. in [6]. This thesis uses
several ideas from this famous paper including the metrics of fairness and efficiency, and the

Chiu-Jain fairness index (section 4.1).

2.2 Recent Work on Congestion Control

The notion of TCP-friendliness [20,21] has given rise to a number of new proposals for
unicast end-to-end congestion control [2,12,32,33,36,41]. The primary motivation for most
of these new protocols is the transport of streaming multimedia which requires smooth
changes in sending rate.

RAP [32] essentially proposes Additive Increase-Multiplicative Decrease (AIMD)
where each data packet is acknowledged. Redundant information in the ACKs allows some
ACKs to be lost. The ratio between short-term and long-term mean RTT is used to modify
the inter-packet gap to provide fine-grained delay-based congestion avoidance. The Loss-
Delay Adjustment Algorithm [36] uses feedback from RTP [35] for rate adjustment. The
additive increase rate depends upon the ratio of the current sending rate and the bottlneck
bandwidth, wheras the sending rate is decreased depending upon the number of packets
lost.

GAIMD [18,41] generalizes TCP to an AIMD policy with different increase and
decrease parameters. It proposes that the current window z(¢) be changed to z(¢t+ R) using

the increase/decrease policies:

Z:z(t+R) « z(t)+a; a>0

D:z(t+R) + =z(t)—pPz(t); 0<pB<1 (2.1)

with a = 33/(2— ) for TCP-friendliness[11].! Binomial congestion control [2] proposes the

L This does not consider the effect of timeouts. [41] gives a slightly different condition for TCP-friendliness
with timeouts.



following non-linear increase/decrease policies:

T:z(t+R) « z(t)+a/zt)*; a>0

D:z(t+R) « z(t)-Bz(t)!; 0<p<1 (2.2)

with the further condition that k +{ = 1 to ensure TCP-friendliness. We can use [ > 1
only if we know that the maximum window size is z < (1/8)'"!. Otherwise, we will need
to separately deal with the possibility of negative window sizes after an application of D. A
similar policy is considered in section 4 of the Chiu-Jain paper [6].

Notice that plugging o = 1 and 8 = 1/2 in the GAIMD equation (Equation 2.1)
gives us TCP. GAIMD itself is a special case of the binomial algorithm with k¥ = 0 and
[=1.

TFRC [12] is a rate-based scheme which directly uses the TCP throughput equa-
tion [26] to estimate its sending rate. The receiver sends periodic acknowledgements and
estimates the loss rate. For greater stability, it ignores spurious packet losses by using a
history discounting policy and by reporting a weighted average of the recent loss-event rate
rather than the individual packets lost. The sender estimates the round-trip time and the
appropriate value for the retransmit timeout-timer. Using these quantities, the expected
sending rate is calculated using the TCP throughput equation.

TEAR [33] emulates the entire TCP state machine at the receiver. Using this, it
maintains an exponentially weighted moving average of the congestion window size and

calculates a TCP-friendly sending rate by dividing this by the estimated round trip time.

2.2.1 Comparison

Conceptually, it may be easy for some applications to specify the rate. For other applications
it does not matter and may actually find it easier to implement application-specific quality
adaptation using known window sizes - Suppose the application generates a data packet
P when the sender’s buffer size is B bytes and the window size is W. Assuming that the
variations in W are small (because of smoothness), a ballpark figure for the time it takes P
to reach the receiver is BR/W where R is the RTT. An application with a maximum delay
bound can use this information to adapt the quality of the data stream depending on the

bandwidth available [23, 31].



From a congestion control viewpoint, the current window size is the instantaneous
load on the network and is thus the quantity which must be regulated. Also, it is may be
natural and easier to implement self-clocking [15] in window based approaches [16]. However,
[3] which also shows the importance of self-clocking in dynamic situations, gives an ad-hoc
mechanism to limit the TFRC sending rate following a loss-event, that performs well in the
test-scenarios considered.

Floyd et al. [11], Yang et al. [40] and Bansal et al. [3] compare the performance of
several window-based and rate-based protocol under various dynamic or transient conditions.
This issue is not explored in our work.

An important distinction between CYRF and other approaches (including other
window-based approaches) is the wide flexibility it offers to suit the needs of different ap-
plications. Some recent protocols, such as binomial and GAIMD offer a limited amount of
flexibility. For example, the binomial algorithm allows the application to choose its increase
response to be Sz(w) = a/w for any k and a > 0. However, with CYRF, we have a richer
class of increase response functions to choose from, namely, all differentiable, monotonically
non-decreasing functions, thus providing a greater degree of control for the aggressiveness

and responsiveness of the application.



“Then you should say what you mean,” the March Hare went on. “I do,” Alice
hastily replied; at least-at least I mean what I say-thats the same thing, you
know.” “Not the same thing a bit!” said the Hatter. “Why you might just as
well say that ’I see what I eat’ is the same thing as 'I eat what I see’!”

—Lewis Carroll. Alice’s Adventures in Wonderland.

Chapter 3

The Model

The rest of this work uses the WBF model and makes some assumptions to simplify analysis.

These are explained below.

3.1 Notation Conventions

Following Chiu and Jain [6], in the rest of this work we adopt the following conventions for
notation. We use x; to represent the current window size of the i** flow. Az; denotes a
change to it due to the application of an increase policy Z or a decrease policy D. In general,

the numerical subscript ¢ will be used to denote a quantity on flow i.

3.2 The WBF Model

WBF protocols allow a flow to send a bunch of packets, termed as a window, in each
round trip time R. The network provides a binary feedback about whether this window
overloaded the network or not. If the network was overloaded, the window for the next

round trip is estimated according to some decrease policy D. Otherwise, the window size is

10



increased using an increase policy Z. (In this way, the WBF protocol continuously tries to
“efficiently” make use of its “fair” share of the currently available network bandwidth.)

Thus, the size of the window is determined by the feedback from the network.
The magnitude of the change in window size characterizes an increase/decrease policy P.
Typically, this change Sp is a function of the current window size and we call this the
response function of the policy. Without loss of generality, P can be mathematically denoted
as:

P:z(t+ R) + z(t) + Sp(z(t))

Here z(t) represents the current window size and z(¢ + R) is the next window size, after
a round-trip time R. Note that the pair of increase and decrease response functions Sz(z)

and Sp(z) completely characterize a WBF protocol.

3.2.1 Example

In congestion avoidance mode, each TCP flow increases its window size by 1 packet if the
network is not overloaded (i.e. the whole window is acknowledged). Otherwise, it reduces its
window size to half the previous value (if it gets a triple duplicate ACK). Without timeouts,

the increase and decrease policies are:

Z:z(t+R) « =z()+1

t
D:z(t+R) <« z(t)— ? (3.1)
where x(t) is the window size of a flow at time t and R the round trip time of the flow. Thus
TCP is a WBF protocol with the response functions: Sz(z) = 1 and Sp(z) = —z/2. Note
that actual implementations increase the window by 1/z on the receipt of each acknowl-

edgement instead of increasing by 1 upon getting a window’s worth of ACKs [37].

3.3 Assumptions

In the analysis that follows, we make some simplifying assumptions. Specifically, we assume
saturated senders in steady state with a continuous fluid approzimation of the binary feedback

model with synchronous feedback. Each of these terms is explained below.

11



3.3.1 Binary feedback model

This model assumes that each flow gets a binary feedback from the network indicating
whether it is overloaded or if there is additional available bandwidth (1 = overloaded, 0
= underloaded). This feedback can be implicit, for example, through losses detected by
timeouts, or explicit, for example, through a “congestion experienced” bit in an ECN aware
network [29, 30]. If the network feedback is 1, then the next window size is determined by
the decrease policy D, otherwise, the increase policy Z is applied.

This model is natural for a truly distributed system like the current Internet. With-
out explicit co-operation by the users or information from the network about the fair share
of each flow, this model is the only practical solution. Thus our model does not consider

schemes such as Explicit Window Adaptation [19] which requires per-flow network feedback.

3.3.2 Synchronous feedback

The model follows Chiu and Jain’s assumption [6] that all the flows in the network get the
same feedback and get this feedback simultaneously.

While this does not model the real Internet by any stretch of imagination, our
analysis becomes simpler, and the proof of convergence to fairness under these “ideal”
conditions provides a good intuitive understanding about the fairness properties of WBF

protocols in more general situations.

3.3.3 Saturated senders

This assumes that the sender’s window size is limited by the network, and not by the
receiver’s window or the amount of outstanding sender’s data. Thus the equations for 7

and D completely determine the window size and the instantaneous load on the network.

3.3.4 Steady-state and l-responsiveness

Most analyses implicitly assume that each flow applies the increase policy Z several times
until a network feedback indicates overload, at which time the decrease policy D is applied

and the cycle starts all over again. We call this the deterministic steady-state, or in short,

12



steady-state, and each such cycle is called a “congestion epoch”. If an increase/decrease
policy had to be applied n times, the epoch is said to be of size n.

Typically (for example, in [2,11]), it is assumed that the decrease policy needs
to be applied exactly once by all flows, at the end of the epoch. With the synchronous
feedback assumption, this means that for each flow, the decrease in window size from a
single application of D must atleast wipe out the previous increase resulting from the last
application of Z, so that the next feedback from the network does not indicate overload. In

other words, the following criterion must be satisfied:
|A(wz)] < [A(wp)] (3.2)

where A(wz) is the increase resulting from a single application of Z and A(wp) the decrease
in window size because of D. We term protocols which satisfy Equation 3.2 for sufficiently
large window sizes as 1-responsive to distinguish them from k-responsive protocols which
require k£ > 1 applications of D in a congestion epoch. An interesting consequence of
1-responsiveness is that each application of a decrease policy is preceded by atleast one
application of an increase policy. This is used in section 6.3 and Corollary 5.2. In the
following, unless otherwise stated, the protocols considered are 1-responsive.

Most interesting WBF protocols are 1-responsive. From Equations 3.1, 2.1 and 2.2,
we can easily see that TCP, GAIMD and the TCP-friendly version of Binomial Congestion
Control follow this weak criterion in general.! Thus, this is not a very restrictive assumption,
and it makes modeling and mathematical analyses simple. However, it is not essential for

protocol correctness or performance reasons.

3.3.5 Continuous fluid approximation

In the real world, the increase and decrease policies are applied once per round trip time.
Because of the self-clocking property of TCP [15], this means that the window size is updated
upon receiving an ACK in most implementations. Here we assume that this happens as a
continuous process. Formally, the discrete time process (W;,)3°, denoting the consecutive

window values is approximated by the continuous time process W (t)s2, [25].

1The minimum possible window size is 1 and for this window, the assumption fails. But we assume a
congestion epoch with a sufficiently large minimum window size.

13



3.3.6 Congestion avoidance mode

Many WBF protocols such as TCP operate in different modes at different times. The
increase/decrease policy used varies depending on the current window size, recent losses
experienced etc. In our analysis, we assume that such protocols are operating in a “con-
gestion avoidance” mode (similar to TCP’s congestion avoidance mode), with a fixed in-

crease/decrease policy. TCP SACK [22] approaches this ideal condition.

14



The shallow consider liberty a release from all law, from every constraint. The
wise man sees in it, on the contrary, the potent Law of Laws. — Walt Whitman,

”Freedom,” Notes Left Over (1881)

Chapter 4

Constraints on Feasible WBF

Protocols

We restrict the possible choices for WBF protocols in the above model by imposing
two conditions that must hold eventually in steady state, namely fairness and efficient
utilization of bottleneck link capacity. We call protocols that satisfy these conditions as

feasible [6]. Only feasible protocols can be safely deployed in any arbitrary network.
4.1 Convergence to Fairness

Fairness is the most important criterion for the feasibility of any end-to-end congestion
control protocol. Intuitively, this means that regardless of the initial window size values, all
flows sharing a single bottleneck link must eventually end up with identical window sizes at
each instant (in steady state).

When the eventual goal of equal window sizes is not satisfied, the flows share the

link unfairly. To quantify this, we use the Jain-Chiu-Hawe Fairness index [17] F given by

- (X a)
This index has the following interesting properties some of which we will use in the

proofs that follow:

15



F is upperbounded by 1, and this upperbound is reached when the allocation is totally

fair (z1 =22 = ... = zp).

e F is lowerbounded by 0, which is the index for a totally unfair allocation (one flow

gets the whole link bandwidth).

If only k of n users equally share the resource, then F = k/n.

e [ is a continuous differentiable function for all z;.

F is independant of scale — the unit of measurement chosen for z;’s does not matter.

Since F = 1 only when z; = z2 = ... = z,,, the fairness requirement that eventually

a totally fair allocation is reached can be restated as the following mathematical condition:
F—-1 (4.2)

Our model considers all flows to be equal. Thus schemes such as MulTCP [10] which
simulate priority by giving a preferred flow n times the bandwidth of an ordinary TCP flow

do not fall into this framework.

4.2 Convergence to Efficiency

Ideally, the bottleneck link must never be underutilized. However, overloading the link is
just as unacceptable. In feedback based protocols, in steady state, the system oscillates
between overload and underload, relying on the feedback mechanism to get back in place.
Thus we require the system to react in such a way as to move the total bottleneck link
utilization closer to the link capacity.

This can be achieved if the total utilization across all flows (i.e., sum of window
sizes) increases when the bottleneck link is underutilized and decreases when the bottleneck
link is overloaded. This is just the principle of negative feedback [6].

An easy way to achieve this is to have each flow increase its window size when the
bottleneck link is under-utilized (i.e., network feedback is 0), and decrease its window size
when the bottleneck link is overloaded (when the feedback is 1). We call WBF protocols

which behave in this manner as efficient.
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“Would you tell me, please, which way I ought to go from here?” “That
depends a good deal on where you want to get to,” said the Cat. “I don’t much
care where-” said Alice. “Then it doesn’t matter which way you go,” said the
Cat. “As long as I get somewhere,” Alice added as an explanation. “Oh, you’re
sure to do that,” said the Cat, “if you only walk long enough.” — Lewis Carroll,

Alice’s Adventures in Wonderland.

Chapter 5

Conditions for Convergence to

Fairness

As mentioned in Section 4.1, the requirement for convergence to fairness essentially
means that assuming synchronous feedback from the network, the steady state window sizes
of all flows sharing a bottleneck link must eventually move in lockstep with each other. In
this chapter we derive a sufficient condition for this to happen for both n = 2 and n > 2
flows. We find that TCP, GAIMD and binomial congestion control satisfy these conditions

which again confirms that these protocols converge to fairness.
5.1 The Two-Flow Case

In this section we obtain the intuitive result that if the smaller of two windows increases
more than the larger one (relative to their window sizes), then the window sizes move closer
to equality. Similarly, when the window sizes decrease, the smaller window must decrease
less than the larger one.

To do this, we use the fact that F is upperbounded by 1 and that F = 1 represents
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a totally fair allocation: Supposing two flows z; and z, share a bottleneck link. Let AF
be the change in F corresponding to a small change Az; in z; and Azs in zs. If each
AF is positive at each application of an increase/decrease policy, then eventually F — 1
regardless of its initial value, satisfying Equation 4.2. Notice that this technique works with
any function of z1, 2 which has a known limiting value, and the property that z; = z5
when the limit is reached. Thus the proof is independant of the fairness index F that is
chosen, as long as the index has the properties we require.

We make use of the continuous fluid approximation in this and the next section.
Specifically, we assume that the changes Az; and Az, represent infinitesimal changes to z;
and z5 so that

dry ~ Az, dxs = Azs and dF ~ AF (5.1)

Theorem 5.1 (Inverse Proportional Change to Fairness) Two flows sharing a bot-
tleneck link will eventually converge to and maintain a totally fair allocation of bottleneck
link bandwidth if at each application of an increase or decrease policy, the proportional
change in the larger quantity is lesser than that in the smaller quantity.

Mathematically, for two flows with window sizes 1 and z2, 1 < x2, satisfying the

following condition at each application of T or D ensures convergence to fairness:

I1 )

Atleast one of T or D must ensure a strict inequality.

Proof: For ¢ = 2, Equation 4.1 becomes

Using

and making use of Equation 5.1 we get

{(9:% + 9:%) (z1 + @2) — (21 + 9:2)2 9:1} Az
(2} +23)?
{(9:% + 9:%) (z2 + z1) — (22 + 9:1)2 9:2} Axy

(23 + 23)?

AF =

+
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Imposing the condition AF > 0, we get

(zf + z%)(Azl + Azy) > (x1 + z2)(z1 Az + z2Azs) (5.3)

= T2 (mz — ml)Aml > (mz — xl)Amz (54)

By hypothesis zo — z1 > 0, so we can write

Az Az
Az, Az,
r1 T2

Note that we need atleast one of Z or D to ensure AF > 0 so that F increases over each
congestion epoch (section 3.3.4) and eventually becomes 1. Thus atleast one of them must
have a strict inequality in Equation 5.2.

Also, once x; = xg, this equality is maintained under synchronous feedback: As-
suming that Sz depends only on the current window size, at each application of Z, Sz(z;) =
Sz(z2) since £1 = 2 so that the window sizes after the application of Z, given by z1+ Sz (1)
and z2+Sz(x2), are also equal. Similarly, Sp(z1) = Sp(x2) so that the values of the window
sizes will move in lockstep with each other after an application of D also. [ |

We can use a linear interpolation of the window size between two applications of 7
for GAIMD and TCP, so that dzy = Az, dee = Azs and dF = AF which is stronger than
Equation 5.1. Thus the above proof applies to these protocols even though the changes Az
and Azs are not infinitesimal.

This is used in the following corollary which gives a new algebraic proof of conver-
gence to fairness for two GAIMD (or TCP) flows. Chiu and Jain [6] give a different proof
for the convergence of GAIMD under the same conditions. This validates the correctness
of our results in a way. We also give the first algebraic proof of convergence for binomial
congestion control. (The original proof in [2] is a geometric proof based on the chiu-jain

phase plot.)

Corollary 5.1 Two TCP or GAIMD flows converge to fairness under the assumption of

synchronized feedback

Proof: For TCP, Az = 1 for the increase policy and Equation 5.2 becomes: 1/z; >

1/zif 1 < z. Similarly Az = —z/2 for the decrease policy and Equation 5.2 reduces to

—(1/2) = =(1/2).
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For GAIMD, Az = « for the increase policy and Equation 5.2 becomes: a/z; >
afz2if 1 < @3. Similarly Az = —Bx for the decrease policy and Equation 5.2 reduces to
-6 =-0. u

For Binomial congestion control, Az = a/z* for the increase policy and Equation 5.2

If“ > 04/11:12chl if 21 < xo. Similarly Az = —pBz! for the decrease policy and

becomes: a/z
Equation 5.2 reduces to —ﬂazlfl > —ﬂazl{l if ;1 < x3. Thus, the increase and decrease
policy separately ensure convergence to fairness only if £ > —1 and [ > 1.

However, SQRT and ITAD, the two instances of binomial congestion control exper-
imentally evaluated in [2] have values of [ < 1. Also, as discussed in section 2.2, we can
use [ > 1 only if we know the maximum window size. The following corollary shows that
binomial congestion control converges to fairness if £,/ > 0, which is satisfied by both SQRT
(k=1/2,1=1/2) and IIAD (k =1, I =0).

The proof proceeds as follows: We have shown above that each application of an
increase policy increases fairness if & > —1. Thus any sequence of window size updates
using only the increase policy increases fairness. The proof shows that even though the
decrease policy will worsen fairness when 0 < [ < 1, the increase in fairness from the
previous application of the increase policy more than offsets this decrease in fairness. Also,
for sufficiently large window sizes, binomial congestion control is 1-responsive. Thus each
application of a decrease policy is always preceded by an increase policy, so that the value

of F increases over each congestion epoch.
Corollary 5.2 Binomial congestion control converges to fairness if k,1 > 0.

Proof: Clearly, binomial congestion control satisfies the 1-responsiveness criterion (Equa-
tion 3.2) for sufficiently large window sizes. Thus, each application of a decrease policy is
preceded by an application of the increase policy.

Suppose the window sizes of the two flows are z1, 2 (1 < 2), just before the
application of the increase policy to be followed by an application of the decrease policy.
It is sufficient to show that the fairness index increases over this sequence of window size
adjustments since we already know that sequences consisting only of applications of increase

policy improve the fairness index if £ > —1.
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We need to show that if z; < x5,

g — B(z1 + %)l o — B(z2 + %)l

T

T L2
Approximating 3(z + a/z*)! ~ Bz!, we need to prove

ﬁe — B(xz1)’ 5 — B(a2)!
1 > 2
1 - T2

Or,
a— Bt — Baktt
k1 = k1
Zy T2

But when z; < z,, we have 1/z¥* > 1/25™ and o — Bzt > a — B2+ because k +1 > 0.

Thus the decrease in fairness due to the application of the decrease policy is offset by
the increase in fairness resulting from the previous increase in window size. Thus F always
improves over a congestion epoch, and binomial congestion control converges to fairness

evenif 0 </ < 1. [ |

5.2 The N-Flow Case

In the previous section, we placed a restriction on the number of flows. In this section, we

will derive a straightforward generalization of Theorem 5.1 for n > 2 flows also.

Theorem 5.2 (n-flow convergence to fairness) n-flows converge to fairness if at each

application of an increase/decrease policy we have,

i=1 i=1 i=1

Atleast one of the two policies should ensure a strict inequality.

||M||

Proof: Using

dF = Z 7o, d:ci

we get, from Equation 4.1 and the approximation 5.1,

AF = lez) (g 7 %Aazi - %mz %%A%)

n (Ez T a? i=1  i=1 i=1 =1
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Imposing the condition AF > 0, we get

i=n i=n i=n i
E 7 E Az; > E
i=1 %

i=1 i=1

z; Ax;
1

Notice that this reduces to Equation 5.3 for n = 2. [ |
Corollary 5.3 N GAIMD or TCP flows converge to fairness

Proof: We derive the results for GAIMD. We can show that n TCP flows converge to
fairness in exactly the same way. In fact, the result for GAIMD implies the result for TCP
because TCP is a special case of GAIMD.

e Case 1: The increase policy satisfies Equation 5.5.

In this case Az; = a. Since F is upperbounded by 1, we get (from Equation 4.1)

(Te)?
)]

Rewriting this, we get,

Multiplying both sides by «,

i=n i=n i=n i=n
a: E a > E E T«
=1 i=1 i=1 =1

which is Equation 5.5 with Az; = a.

e Case 2: The decrease policy satisfies Equation 5.5

In this case Az; = Bz;. Equation 5.5 becomes

o

Thus, GAIMD ensures that each application of the increase policy leads to an in-

s
Il
3

z; - Br;
1

I Mg
||
1 Mn

k2

crease in fairness, but maintains the fairness index when the decrease policy is applied.
|
It can be shown that n-binomial flows also satisfy Equation 5.5 and hence converge
to fairness. The proof sketch is very similar to the proof for Theorem 6.2. However, this

result is easily obtained in section 6.4 as a special case of Theorem 6.2. Thus we have:

Corollary 5.4 n > 2 binomial flows converge to fairness.
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You perceive I generalize with intrepidity from single instances. It is the

tourist’s custom. —-Mark Twain

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it
means just what I choose it to mean, neither more nor less.” — Lewis Carroll,

Alice’s Adventures in Wonderland.

Chapter 6

CYRF: A Generalized WBF

Protocol

Equation 5.2 gives a sufficient condition for two flows sharing a bottleneck link to converge
to fairness. In other words, two flows of any protocol with increase/decrease policies that
satisfy Equation 5.2 are guaranteed to converge to fairness.

In this section, we adopt a novel approach to protocol design. Since the primary
motivation behind this work is the wide range of requirments of different applications, we
would like to know what latitude an application can have in choosing a response function. We
ask the question: “What is the class of increase/decrease policies that satisfy Equation 5.27”.
This yields a new family of congestion control protocols that are designed to converge to
fairness and efficiency when there are 2 flows sharing a bottleneck link. We then show that
even for n > 2 flows, these protocols converge to fairness.

We show that this class of protocols can be used as transport for applications with a
wide range of aggressiveness and smoothness needs. Because the application can choose from
a wide range of response functions to congestion indications, we call this class of protocols

CYRF, which stands for Choose Your Response Function.
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Finally, we will briefly consider a variant of CYRF and show how many WBF pro-
tocols are actually part of a single family of protocols, thus providing a powerful framework

for their analysis.

6.1 f(:),9() Congestion Control

In this section, we derive a general class of functions for which Equation 5.2 applies. As-
suming that Az is some function of x, we can see that Equation 5.2 implies some kind of
monotonicity for Az. Also, this function must be continuous and differentiable for Equa-
tion 5.2 to apply. Furthermore, for convergence to efficiency, the principle of negative
feedback discussed in section 4.2 must be satisfied. Thus Az must be positive for the in-
crease policy and negative for the decrease policy. These requirements are expressed in the

following theorem.

Theorem 6.1 Let f(z) and g(z) be any (continuous) differentiable non-negative monoton-
ically non-decreasing functions (atleast one of them must be strictly increasing) for z > 1.
Also, let g(z) be upperbounded by 1'. Then the following increase and decrease policies
ensure converge to fairness and efficiency for two flows sharing a bottlneck link (under as-

sumption of synchronized feedback). We call this CYRF:

T:z(t+R) « z@)+z@)/f(z); [flz) >0
D:z(t+R) <« z(t) —z(t)g(z(t)) ; 0<g(z(t)) <1 (6.1)

Proof: Az = z(t)/f(z(t)) for the increase policy and Az = —z(t)g(z(t)) for the
decrease policy.

Convergence to fairness: It is easy to see that, if z1, z2 (z; < z3), are the two
window sizes, then because of the monotonicity of f(-) and g(-), the increase policy satisfies

Equation 5.2:

and similarly for the decrease policy,

—g(z1) > —g(z2)

L The upperbound ensures that the decrease policy D does not lead to negative window sizes
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Note that since atleast one of the two functions is strictly increasing, we have a strict
inequality in one of the above two cases as required by Theorem 5.1.

Convergence to efficiency: For CYRF to be efficient (Section 4) each flow should
increase its window if the network feedback is 0 and decrease its window if the feedback is

1. Clearly, for all window sizes, z(¢) > 1 and Az is positive for the increase policy:
z(t)/f(z(t) > 05 if f(z(t) >0
and negative for the decrease policy:
—z(t)g(x(t)) <0; i 0<g(z(t) <1

|

CYRF represents a wide class of WBF protocols. Applications can choose different

f(z) and g(z) to get different WBF protocols. For example, an application can choose a
slowly increasing function for f(z) if it needs to be more aggressive and make full use of
network bandwidth as soon as it becomes available. Similarly a slowly increasing g(z) results
in a smoother response to congestion indications. It is this flexibility that distinguishes

CYREF from other approaches.

6.2 N-flow Convergence to Fairness

CYRF was designed to converge to fairness for the two-flow case. For n > 2 flows, we can
consider flows pairwise and apply the argument of Theorem 6.1 to show convergence to
fairness. Alternatively, we can consider all the n-flows together, and show that the fairness
index of the whole system increases and thus provide a straightforward proof of convergence

to fairness. Thus we get the following theorem:
Theorem 6.2 With synchronized feedback, CYRF converges to fairness for n > 2 flows.

Proof: We will prove a stronger result, viz., that CYRF flows satisfy the sufficiency condi-
tion given by Equation 5.5. The proof proceeds as follows: Without loss of generality, we
will order the flows by increasing window size. We then use mathematical induction to show

that if Equation 5.5 is satisfied with & flows, adding a (k + 1)th flow with a larger window
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size preserves the fairness condition. The key fact used is that 1/f(z) and —g(z) are both
monotonically non-increasing, so that 1/f(zg+1) < 1/f(z;) and —g(zg41) < —g(@p41) for

all1 <¢ < k.

e Case 1: The increase policy increases fairness.
Theorem 6.1 forms the base case.

Without loss of generality let 1 < z2 <... <z} < zp41 = X be the window sizes of
k + 1 flows. Suppose Equation 5.5 is satisfied with n < k flows. Here, Az = z/f(z).

So we get:
2
I3

2D Fay 2 LN oy (6.2)

i=1  i=1 i=1  i=1 t

Consider n = k + 1. Because zp+1 = X > x;, for all 1 < i <k, and f(-) is monotoni-

cally non-decreasing, we can write

b Xz — z? x & ,
X,; f@) = 7(X) ;(X“%‘ - ;) (6.3)
Rewriting, we get
k . . )
2 i X 2 z? X2

=1
k k . k 2 xz F
28 2 oy X L e T

i=1
This is just Equation 5.5 for n = k + 1. Hence, by the principle of mathematical

induction, Equation 5.5 holds for any number of flows, n.
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e Case 2: The decrease policy increases fairness. The algebra is exactly the same as

above, except that 1/f(-) is replaced by —g(-), which is also a non-increasing function.

Since one of f(z) or g(z) is strictly increasing, one of the two policies Z or D will ensure a
strict inequality as required by Theorem 5.2. ]
Note that the previous argument for convergence to efficiency still holds for the

n-flow case and need not be repeated again.

6.3 1-CYRF: Generalizing CYRF

In section 5.1, it was shown that the decrease policy of binomial congestion control may
actually worsen the fairness index for 0 < [ < 1. However, Corollary 5.2 showed that it
can still converge to fairness under suitable conditions. In this section, we generalize this
corollary for CYRF and obtain another class of protocols, called 1-CYRF because they are
required to be 1-responsive (section 3.3.4).

Specifically, suppose we drop the constraint that g(z) should be monotonically non-
decreasing without changing the requirements on f(z). Now, each application of the increase
policy will still increase the fairness index. However, the decrease policy can now worsen
fairness.

However, if the increase in F can offset the decrease, the system will still converge
to fairness over each congestion epoch. To accomplish this, we impose a stronger constraint
that the increase in F from a single application of Z must be more than the decrease in F
from a single application of D. Further, we enforce the 1-responsiveness condition. This
will ensure that each application of a decrease policy is preceded by atleast one increase so
that in deterministic steady-state, F will still increase over each congestion epoch.

Clearly, the 1-responsiveness condition (Equation 3.2) is satisfied if f(z)g(z) > 1 for
sufficiently large window sizes. An appliation of Z followed by an application of D increases
fairness if Equation 5.2 is satisfied. Here Az = z/f(z) —zg(z+z/f(x)) =~ z(1/ f(z) — g(z)).

To satisfy Equation 5.2, we must have

1/ f(z1) — g(z1) > 1/ f(22) — g(z2)
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if £; < 5. Notice that if f(z)g(z) is a monotonically non-decreasing function, then

1 1 f(a)g(a)
/(@)

is a monotonically non-increasing function and thus the inequality required above will be

automatically satisfied. Again, atleast one of f(z) or f(z)g(z) must be strictly increasing

according to the requirements of Theorem 5.1. Thus we are led to the following result:

Theorem 6.3 Let f(z) and g(x) be any (continuous) differentiable non-negative functions
forx > 1. Also, let f(z) and f(x)g(x) be monotonically non-decreasing and let g(z) < 1 and
f(x)g(z) > 1. Then the following increase and decrease policies ensure converge to fairness

and efficiency for two flows sharing a bottleneck link:

Z:z(t+R) « z@t)+z@)/f(z(t)); f(z()) >0
D:z(t+R) <« z(t)—z(t)g(z(¢)) ; 0<g(z(t)) <1 (6.5)

It can also be shown that 1-CYRF converges to fairness for n-flows. The proof is
very similar to Theorem 6.2. The increase case is exactly the same. In the decrease case,
instead of —g(-), we use 1/ f(z) — g(x), which is a decreasing function as shown above. Thus

we have:

Theorem 6.4 With synchronized feedback, 1-CYRF converges to fairness for n > 2 flows.

6.4 1-CYRF as a Unified Framework for WBF

Notice that most CYRF protocols are also 1-CYRF protocols — if f(z), g(z) are mono-
tonically non-decreasing, so is their product f(z)g(z). We only require 1-responsiveness,
f(z)g(z) > 1, which may not be satisfied by some CYRF protocols.

Also, by substituting f(z) = z, and g(z) = 1/2 in Equation 6.1, we get Equation 3.1.
Thus TCP is a special case of CYRF. Observe that f(z) = z and g(z) = 1/2 are both
differentiable monotonically non-decreasing functions and g(z) is upperbounded by 1 as
required. Similarly, we can show that GAIMD is a special case of CYRF (f(z) = =/, and
g(z) = B). Binomial congestion control (f(z) = z**1/a, and g(z) = Bz!~!) is an example

of a 1-CYRF protocol that is not CYRF.
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This provides us with a powerful framework for analyzing WBF protocols. For
example, Corollaries 5.1, 5.3 follow directly as special cases of Theorems 6.1, 6.2 respec-
tively. In fact, Theorem 6.4 also implicitly proved that n binomial flows converge to fairness

although Corollary 5.4 did not explicitly attempt to prove this.
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However feeble the sufferer and however great the oppressor, it is in the nature
of things that the blow should recoil upon the aggressor.
— Ralph Waldo Emerson

Chapter 7

TCP-Friendly CYRF

While Chapter 6 showed that any number of competing CYRF flows sharing a bottleneck
link will converge to fairness, this is not sufficient in a heterogeneous Internet where the
other competing flows may be non-CYRF flows, or even CYRF with the different f(z)
and g(z). In this chapter, we derive a simple condition for a smooth CYRF flow to be
TCP-friendly. As discussed below, TCP-friendliness can be regarded as a weaker fairness
constraint, and also as an essential condition for deployment in the heterogeneous Internet.
In particular, smooth protocols are by definition slowly responsive to congestion indications.
TCP-friendliness is a way of limiting the aggressiveness of such flows so that the other flows

are not hurt by an over-aggressive and non-responsive flow.

7.1 TCP-Friendliness

Several new congestion control protocols have been motivated by the TCP-friendliness ar-
gument. Previously, the fairness requirement dictated that all flows in a network should
use the same WBF protocol, which by default, was TCP. TCP-friendliness is a relaxation
of this constraint. It allows non-TCP applications as long as they use the “TCP-friendly
equation,” (that is, they maintain the arrival rate to at most some constant ¢, over the
square root of the packet loss rate p) [21]. Since TCP’s throughput is proportional to the
1/\/p [26], TCP-friendly flows with a suitable constant ¢ send roughly the same amount
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of data as a conformant TCP flow under comparable conditions (same RTT, MTU etc). In
this chapter, we will occasionally leave the constant unspecified.

This criterion that no flow should send more than a comparable conformant TCP
flow is called as TCP-compatibility [4]. Thus TCP-friendliness can be regarded as a way of
enforcing the TCP-compatibility requirement. TCP-friendliness is seen as being essential

for several reasons:

e TCP-friendlines ensures a weak fairness bound for same-protocol flows —If a protocol
is TCP-friendly, then all flows send at some constant times the rate of TCP, and thus

roughly send the same amount of data in a sufficiently long time-frame.

e By the same argument, different-protocol flows sharing a bottleneck link can be fair to

each other. This distinguishes TCP-friendliness from the previous fairness constraint.

e It ensures that the currently dominant transport protocol over the Internet, TCP, does

not suffer as a result of newer protocols being deployed.

e This does not require any change to the existing network architecture, and can be

easily deployed since it is an end-to-end mechanism.
We now obtain an alternative characterization of TCP-friendliness in steady-state.

Lemma 7.1 (TCP-Friendliness Criterion) A 1-responsive protocol with a congestion
epoch of size n during which S,, packets are sent is TCP-friendly in deterministic steady-
state if:

(7.1)

Proof: First, we will show that if n?/S,, = c for some constant c, then the throughput T is
inversely proportional to 1/,/p. We will then use the fact that TCP itself is TCP-friendly
and deduce that ¢ = 2/3.

Suppose the packet size is B and the steady-state (or average) round-trip time is R.
Then the (long-term) throughput is given by 7' = S,, B/nR. Since B and R are constant for
a given flow, if n oc \/S,, we have that

T x /Sy
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But by definition, the loss rate p is given by p = 1/S,,. Rewriting the above we get

Tox1/\p

Thus if
— =c (7.2)

then the flow is TCP-friendly.

To get the proportionality constant, we just need to plug in the values of n and s,
for some TCP-friendly protocol. In particular, we know that TCP itself is TCP-friendly.
Suppose the maximum window size in a TCP congestion epoch is Wrcp. From Equation 3.1
we can see that the successive window sizes during a sequence of applications of the increase

policy form an arithmetic series with a term difference of 1. Thus we have
Wrep = Wrep/2+ (n— 1)

This gives us

n = WTCP/2

We also get the number of packets sent as the sum of the series:

n WTC’P BW%CP
= [2—= —1)-1) o 22LCP
5= 3 (275 4 -1)1) ~ 22

Plugging these values into Equation 7.2, we get

for TCP-compatibility. [ ]

By a very similar argument, we can show that a k-responsive protocol is TCP-
friendly if ,

’;in _ ; (7.3)

In this proof, we made extensive use of the fact that that within a single congestion

epoch, the successive window sizes of a TCP flow form an arithmetic series. Next we show

that we can say the same for any smooth flow. This result will be useful in showing that an

arbitrary smooth protocol confirms to the TCP-friendly criterion.
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7.2 Smoothness

TCP-friendliness was originally motivated by the requirements of multimedia flows which
cannot tolerate TCP’s abrupt decrease-by-half of the sending rate. A TCP-friendly flow can
decrease its sending rate by a lesser amount and also increase its sending rate more slowly
in such a way that its mean throughput over a sufficiently large time-scale is roughly the
same as that of TCP.

Thus a TCP-friendly flow usually has smoothness as an additional criterion. Intu-
itively, the smoother a flow is, the lesser will be its decrease in response to a congestion
indication from the network. Smoothness has been variously measured by the largest re-
duction of the sending rate in one round-trip time in the deterministic steady-state scenario
(Floyd et al. [11]) and the coefficient of variation of the time-series representing succes-
sive window sizes (Yang et al. [40]). In this work, we look at smoothness as an (optional)
characteristic of a WBF protocol rather than as a metric.

We say a WBF protocol is smooth if its increase and decrease policies are smooth.
An window increase or decrease policy P : zt1 g < x: + Az, where z is the window size, is
said to be smooth if

Az <€ @ (7.4)

As we have noted before, typically, Az is a function of .
An interesting aspect of smooth WBF protocols is that their successive window sizes

can be approximated by an arithmetic series.

Lemma 7.2 (Smoothness Lemma) The window sizes corresponding to successive appli-

cations of a smooth increase/decrease policy P form an arithmetic series (approzimately).
Proof: Suppose the policy P is successively applied several times as follows:

Ti4R & T+ Aﬂft

Tit2r & TeyR + A(Ti4R)

Because |Az| < = and |A(zt+r)| < Zt+r, We can write

Tipor A Ty + 2A(zy)
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or in general,

Tiynr R Tt + nA(z) (7.5)

for n successive applications of P (n being of atmost the order of z so that the errors dont
add up significantly). [ ]

Note that GAIMD’s decrease policy does not satisfy |Az| < z. However, the re-
lation (7.5) can still be applied to the increase policy. In fact, because Az is constant, we

have the following for both TCP and GAIMD'’s increase policies:

7.3 CYRF with the TCP-Friendliness Constraint

In this section, we will use the above results to derive the conditions for a CYRF flow to be
TCP-friendly. We will also obtain, as special cases of this, the previously known conditions
for GAIMD and Binomial Congestion Control protocols to be TCP friendly.

The following theorem gives a relation between f(z) and g(z) so that the TCP-
friendliness condition (Equation 7.1) is satisfied. We use the smoothness criterion (Equa-

tion 7.4) and the Smoothness Lemma (Lemma 7.2) to simplify the analysis.

Theorem 7.1 In steady-state, smooth 1-responsive CYRF protocols are TCP-friendly if:

flz)g(z) x = (7.7)
and strictly TCP-compatible if:
o) = S8 (7.9

Proof: The proof proceeds as follows: We invoke the Smoothness Lemma and approximate
the successive window sizes during the application of the increase policy of Equation 6.1 by
an arithmetic series. Then we find n, the size of the congestion epoch, as the number of
terms in this series, and S,,, the number of packets sent during this epoch, as the sum of
the series. Using this in Equation 7.1, we get the desired result. Along the way, we make

use of the approximation g(z) < x, which holds because of the smoothness of the protocol.
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Suppose X is the maximum window size, just before the application of D. The
minimum window size, just after the application of D is also the initial window size, ,

because of the steady-state condition.
z=X—Xg(X) (7.9)

To find n, we write

X =z+(n-1z/f(z) (7.10)

Because of smoothness, we can approximate

z _ X(1-g(X))
fe) ~ Fx-gx) ¥ M (11
Plugging into Equation 7.10 we get
n = f(X)g(X) + 1~ f(X)g(X) (7.12)
Similarly we find the number of packets sent as:
5, = (200 xo00) + 100600 1) (7.13)
gX(2 — g(X)) (7.14)

Substituting from Equations 7.12, 7.13 in Equation 7.1 we get the TCP-compatibility con-

dition as
21+ f(X)g(X)) _ 2
X(2-g(X)) 3
Simplifying,
_X2-9(X))
0= 50

which is the condition for strict TCP-compatibility.
If g(X) < 2 we can write

f(X)g(X) = X/3 (7.15)

Hence we can get the result

f(X)g(X) o X

which ensures TCP-friendliness.
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We have implicitly assumed in Equation 7.9 that this protocol is 1-responsive. Ob-
serve that if the window size x is greater than 3, Equation 7.15 does indeed ensure that the

following 1-responsiveness condition for CYRF holds:

f(z)g(z) > 1 (7.16)

|

Although GAIMD is not a smooth protocol, we have noted previously that the

smoothness lemma applies to GAIMD also. Similarly observe that the approximation in

Equation 7.11 also holds for GAIMD. Thus Equation 7.8 holds for GAIMD (and hence
TCP) also. Substituting f(z) = z/«, and g(z) = 3, we get the following result:

Corollary 7.1 GAIMD is TCP-compatible if

3p
2-0)

This is a simplified condition for GAIMD to be TCP-compatible ignoring the effect

o =

(7.17)

of timeouts. A slightly different proof of this result is given by [11]. Again, this verifies
Equation 7.8 in a way. [41] gives a different condition taking timeouts into consideration.
Similarly, substituting f(z) = z**!/a, and g(z) = Bz'~! in Equation 7.7, we see

that binomial congestion control will be TCP-friendly if z**! & z. Thus we have:
Corollary 7.2 Binomial Congestion Control is TCP-friendly if k+1=1.

This is called the k + [-rule in the original binomial congestion control paper [2].

36



What we call the beginning is often the end
And to make an end is to make a beginning.
The end is where we start from.

- T.S. Eliot, Little Gidding (Four Quartets)

Chapter 8

Conclusion and Future Work

In this thesis, we address the needs of several new Internet applications such as
streaming media flows that cannot function well over TCP. We presented a framework that
allows an application to choose from a huge palette of window based congestion control
protocols called CYRF that have been designed to be feasible, i.e., they converge to fairness
and efficiency.

In particular we showed that a window based protocol can safely grab bandwidth
using the policy z(t+R) < z(t)+=z(t)/ f(z(t)). An application can choose a slowly increasing
function for f(z) if it needs to to be aggressive and obtain bandwidth as soon as possible.
Similarly, it can respond to congestion indications using the decrease policy z(t + R) «
z(t) — z(t)g(z(t)). Slowly increasing g(z) give smoother flows and sublinear functions result
in flows that are smoother than TCP. We also gave simple relations between f(z) and g(z)
for smooth CYRF flows to satisfy the TCP-friendliness constraint.

We also briefly looked at a more general class of protocols called 1-CYRF and showed
that commonly used window based congestion control protocols such as TCP, GAIMD, and
binomial congestion control are special cases of this. We derived several known important
results about these protocols as special cases of the results for CYRF and 1-CYRF. Thus,
1-CYRF and CYRF can also be thought of as a unified framework for the analysis of window
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based protocols.

We believe that some of the results obtained here can have applications outside the
CYRF model. For example, the conditions for convergence to fairness derived in Chapter 5
and the TCP-friendly equation in Lemma 7.1 can easily be applied to other situations.
On the other hand, the results for CYRF, specifically the proofs of convergence to fairness
and efficiency (Chapter 6), and the conditions for TCP-friendliness and TCP-compatibility
(Theorem 7.1) shed some insight into the notions of fairness, efficiency and TCP-friendliness.

Possible directions for future work include experimental evaluation of representative
CYRF protocols under various static, transient and dynamic situations and in different
network topologies. Recent work on binomial congestion control and GAIMD has shown
using simulations that several CYRF protocols such as SQRT (binomial with £ =1 =1/2),
ITAD (binomial with £ = 1, | = 0) and GAIMD with o« = 0.31 and 8 = 7/8 work well
in several canonical network topologies and conditions. However, there are clearly other
CYRF protocols that would satisfy the needs of different applications better and perhaps
other CYRF protocols that work better for multimedia flows than ITAD, SQRT or GAIMD
under certain conditions. The analysis and discovery of different WBF protocols for different
kinds of applications is an exciting topic for further study.

Finally, to simplify our analysis, we assumed a rather restrictive model in Chapter 3
that does not truly represent the current Internet. It remains to be seen whether the results

presented here hold under more general assumptions.
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