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ation No.Nina Amla, Ph.D.The University of Texas at Austin, 2001Supervisor: E. Allen Emerson
Non-terminating systems that 
ontinually intera
t with their environ-ment are 
alled rea
tive. These types of systems are 
ommonpla
e and arelargely a
knowledged to be hard to validate using 
onventional te
hniques. Ina landmark paper, Pnueli argued that temporal logi
s are an e�e
tive way toreason about the 
orre
tness of rea
tive systems. Model 
he
king is a formalte
hnique that eÆ
iently determines if a rea
tive system satis�es a temporallogi
 spe
i�
ation. In the last de
ade, model 
he
king has been used exten-sively to verify 
omplex hardware and software systems. However, in pra
-ti
e, model 
he
king su�ers from a phenomenon 
alled state explosion, wherethe global state transition graph may be exponential in the number of sub-
omponents in the system. The state explosion problem severely limits thesize of the systems that one 
an model 
he
k automati
ally. Another obsta
leis that formal spe
i�
ation methods, based on temporal logi
 or automata,are largely unknown in the design 
ommunity. This dissertation addressesvii



both these issues by introdu
ing a visual notation that is already used in theinformal spe
i�
ation of hardware systems and by providing eÆ
ient model
he
king algorithms for these spe
i�
ations.The �rst part of the dissertation presents, Regular Timing Diagrams(RTDs), an expressive notation for spe
ifying the temporal behavior of asyn-
hronous systems. RTDs have a formal syntax and a simple and pre
ise seman-ti
s that 
orrespond to informal usage. We have developed eÆ
ient algorithmsto translate RTDs into automata on in�nite strings (!-automata). We presentde
ompositional model 
he
king algorithms, that exploit the fa
t that RTDs
an be 
leanly de
omposed into their 
onstituent parts. These polynomial-timealgorithms are a signi�
ant improvement over previous monolithi
 algorithmsthat are exponential in the worst 
ase.The se
ond part of the dissertation introdu
es Syn
hronous RegularTiming Diagrams (SRTDs) that are used to spe
ify the behavior of syn-
hronous systems. The model 
he
king algorithms developed for SRTDs arelinear in the size of the diagram. A tool, based on this framework, 
alledRtdt,whi
h allows a user to graphi
ally 
reate SRTD spe
i�
ations and translatethem into automata, is also part of this dissertation. Rtdt has been usedsu

essfully in 
onjun
tion with the model 
he
king tool COSPAN to verifythat Lu
ent Te
hnologies PCI Interfa
e Core satis�ed a
tual diagrams foundin the PCI Lo
al Bus spe
i�
ation.The �nal part of the dissertation o�ers a way to 
ope with state ex-plosion by employing a proof te
hnique 
alled 
ompositional reasoning thatredu
es reasoning about the entire system to reasoning about individual 
om-ponents. The assume-guarantee paradigm, is a type of 
ompositional reason-ing, where ea
h 
omponent guarantees properties based on assumptions madeviii



about the other 
omponents. Applying these proof rules, however, is not au-tomati
; it requires non-trivial human e�ort to de
ompose a property intosub-properties and to then derive the appropriate assumptions. Additionally,su
h proof rules are generally not 
omplete and must be applied di�erently forsafety and liveness properties. A new sound and 
omplete assume-guaranteeproof rule is developed in this dissertation whi
h 
an be applied to both safetyand liveness properties. When the property is an SRTD, this rule 
an beapplied in a fully automati
 manner by using the fa
t that SRTDs have a nat-ural de
omposition into assume-guarantee pairs. The appli
ation of this ruleto Lu
ent's PCI Core and other 
ase studies yielded substantial redu
tions inthe spa
e and time required for model 
he
king.In summary, this dissertation introdu
es an alternative and visual wayof spe
ifying temporal properties, whi
h makes model 
he
king more a

essi-ble to the non-expert user. Furthermore, this work addresses the state explo-sion problem by presenting eÆ
ient model 
he
king algorithms and a generalassume-guarantee proof methodology that 
an be applied in a fully automatedmanner to spe
i�
ations in this form.
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Chapter 1
Introdu
tion

The 
lass of systems that are non-terminating and intera
t with their envi-ronment 
ontinuously are 
alled rea
tive systems [HP85℄. Operating systems,hardware 
ontrollers and network routers are well known examples of rea
tivesystems. It is generally a
knowledged that it is hard to verify the 
orre
tnessof rea
tive systems using 
onventional validation te
hniques like testing andsimulation. Moreover, formal te
hniques developed for terminating sequentialprograms are not appli
able to rea
tive systems. Pnueli [Pnu77℄, proposed theuse of temporal logi
 as a e�e
tive way to reason formally about the 
orre
t-ness of rea
tive systems. Model 
he
king, introdu
ed by Clarke and Emerson[CE81℄ (and independently by Quielle and Sifakis [QS82℄), is a fully auto-mated pro
edure that eÆ
iently de
ides if a rea
tive system satis�es a tempo-ral spe
i�
ation. The spe
i�
ation may be either a formula in a temporal logi
,like CTL (Computation Tree Logi
) [EH82℄ or LTL (Linear Temporal Logi
)[Pnu77℄, or, spe
i�ed as an automaton on in�nite strings [VW86, Kur94℄. Thesurvey paper by Emerson [Eme91℄ presents a 
omparison of these spe
i�
ationmethods and others in terms of eÆ
ien
y and expressiveness.1



Model 
he
king has been applied su

essfully in the veri�
ation of manyindustrial hardware and software systems. In fa
t, model 
he
king and otherformal te
hniques are 
urrently used in the design pro
ess at 
ompanies su
has AMD, IBM, Intel and Motorola. Model 
he
king, however, su�ers inpra
ti
e due to the state explosion problem: if system M is de�ned as theparallel 
omposition of n sub-
omponents, the global state transition graphmay be exponential in n. This imposes severe limitations on the size ofthe systems that 
an be veri�ed. As a result, ameliorating the state ex-plosion problem is at the forefront of resear
h in this area. Re
ently de-veloped te
hniques, like symmetry redu
tion (
f. [ES93℄) and 
ompositionalreasoning (
f. [dRdBH+99℄) that exploit the stru
ture of the system, havebeen su

essful in 
oping with the state explosion problem. In 
omposi-tional reasoning, one avoids reasoning dire
tly about a system 
omposed ofmany sub-
omponents by de
omposing the property and proving systemat-i
ally that sub-
omponents satisfy these sub-properties. A good survey ofthe main 
ontributions in this area 
an be found in [dRLP97℄. The mostwell studied 
ompositional reasoning te
hnique is Assume-guarantee reasoning[MC81, Jon81, Pnu85, Sta85, Kur87, CLM89, AL95, AH96, M
M97, M
M99℄where one uses assumptions made about the environment to satisfy the re-quirements of a 
ompositional proof. While this type of reasoning has beenapplied in pra
ti
e [M
M98, HQR98℄ there are, however, many diÆ
ulties ina
tually applying these \
ir
ular" proof rules. Firstly, many proof rules applyonly to safety properties and restri
ted types of pro
esses and/or temporallogi
. Se
ondly, it has been shown [NT00℄ that many of these proof rule arenot 
omplete. Finally, de
omposing the property and deriving the auxiliaryassumptions must be done manually. 2



Another obsta
le to the widespread use of model 
he
king is the 
omplexnature of the spe
i�
ation languages. Su
h spe
i�
ations, based on temporallogi
s or automata, are not well understood in the design 
ommunity. Visuallyintuitive spe
i�
ation methods { whi
h are 
onsistent with the users own nota-tional 
onventions { provide an alternative way to spe
ify temporal behavior.The in
lusion of su
h notations into existing model 
he
kers would make thema

essible to the non-expert user and fa
ilitate the wider appli
ation of model
he
king.This dissertation addresses both issues: the in
orporation of 
ommonspe
i�
ation methods and the state explosion problem. We introdu
e formalgraphi
al spe
i�
ation languages, for both syn
hronous and asyn
hronous sys-tems, whi
h are based on an informal notation 
alled timing diagrams. Tim-ing diagrams are already widely used in the spe
i�
ation of hardware systems.Polynomial-time non-
ompositional and assume-guarantee style 
ompositionalmodel 
he
king algorithms for these diagrams are presented.In the �rst part of this dissertation, we will introdu
e a visual spe
i�-
ation notation, that 
orresponds to regular languages, 
alled Regular TimingDiagrams (RTDs). RTDs are an e�e
tive way to spe
ify asyn
hronous behav-ior. We provide model 
he
king algorithms, based on the automata-theoreti
approa
h, that are polynomial in the size of the RTD spe
i�
ation. Next, wewill present Syn
hronous Regular Timing Diagrams (SRTDs) that are tailoredfor syn
hronous systems. The model 
he
king algorithms for SRTDs are linearin the size of both the system and the SRTD spe
i�
ation. The �nal part ofthe dissertation des
ribes a sound and 
omplete assume-guarantee proof rulethat 
an be applied to both safety and liveness properties. More interestingly,we 
an use this rule in a fully automated manner to properties spe
i�ed in3



SRTD notation. These algorithms have been implemented in a tool 
alledRtdt whi
h is des
ribed in the dissertation.Mu
h of the work done for this dissertation has been published in thefollowing papers: [AE98℄, [AEN99℄, [AEKN00℄, [AENT01℄ and [AEKN01℄.The rest of this se
tion 
ontains a more in-depth dis
ussion of the problemsinvolved and justi�
ations for our methods.1.1 Regular Timing DiagramsAsyn
hronous timing diagrams are used to spe
ify the behavior of asyn
hronoushandshaking proto
ols like bus arbitration and memory a

ess. The key at-tribute of an asyn
hronous timing diagram is the absen
e of expli
it timingwith respe
t to a global system 
lo
k. We introdu
e a 
lass of timing diagramsfor asyn
hronous systems, 
alled Regular Timing Diagrams (RTDs), that havea formal syntax and semanti
s. The key observation that leads to eÆ
ientmodel 
he
king is that timing diagrams are 
ompositional (
onjun
tive) in na-ture. This 
an be visualized informally as the waveforms a
ting independentlyand only intera
ting with other waveforms through a dependen
y. Rather thanbuild a single, monolithi
 !-NFA (Non-deterministi
 Finite state Automatonon in�nite strings) or a temporal logi
 formula that 
orresponds to the entirediagram, we de
ompose the diagram into properties of isolated waveforms andtheir intera
tions. This results in a 
onjun
tion of simple properties that 
anbe 
onveniently represented by a su

in
t !-NFA for the 
omplement of thediagram. The resulting !-NFA 
an be used as the property in the language
ontainment paradigm to yield a model 
he
king algorithm that is linear inthe system size and polynomial in the size of diagram. We des
ribe how these4



algorithms 
an be applied, with the model 
he
ker VIS [BHSV+96℄, to verifya master-slave memory system. This work was published in [AE98, AEN99℄and is des
ribed in Chapter 3.1.2 Syn
hronous Regular Timing DiagramsIt is more 
ommon, however, to have a syn
hronous timing spe
i�
ation wherethe 
hanges along a signal waveform are bound to a global system 
lo
k. Theen
oding of su
h syn
hronous properties as RTDs introdu
es a large numberof dependen
y edges between ea
h transition of the 
lo
k and ea
h waveform,resulting in RTDs that are visually 
luttered and in
reasing the 
omplexity ofmodel 
he
king. The Syn
hronous Regular Timing Diagram (SRTD) notationis, therefore, tailored to des
ribe syn
hronous timing spe
i�
ations in a visually
lean manner. More importantly, we exploit the regular stru
ture of SRTDsto provide model 
he
king algorithms that are more eÆ
ient than that forRTDs. We present de
ompositional translation algorithms that 
onstru
t !-automata of size that is linear in the size of the SRTD (
ompared with apolynomial size 
omplexity in [AEN99℄ for RTDs). This algorithm has beenimplemented in a tool { the Regular Timing Diagram Translator (Rtdt) {whi
h is des
ribed in Chapter 6. Rtdt has been used in 
onjun
tion with themodel 
he
ker COSPAN [HHK96℄ to verify timing diagram properties of twosystems: a syn
hronous master-slave system and Lu
ents' PCI Interfa
e Core[BL96℄. This work is presented in Chapter 4 and is based on results presentedin [AEKN00℄.
5



1.3 Assume-Guarantee Reasoning for SRTDsIn this work we present a new rule for assume-guarantee reasoning whi
h gen-eralizes several earlier proof rules (
f. [Pnu85, AL95, AH96, M
M99, NT00℄)by removing the sour
es of in
ompleteness in some of these rules, by usingpro
esses instead of temporal logi
 formulas as spe
i�
ations, and by allow-ing more general forms of pro
ess de�nition and 
omposition. The new ruleextends the na��ve assume-guarantee proof rule with an additional 
he
k forsoundness. As the new rule does not dis
riminate between pro
esses and prop-erties, it �ts in well with a top-down approa
h to designing systems. We showthat this new rule is 
omplete, to the extent that if the 
omposed systemsatis�es a property, then it also satis�es the property with the new rule.Next, we explore the bene�ts of applying this rule in the 
ase where theproperty is spe
i�ed as an SRTD. We show that not only is task de
ompositiona relatively simple matter for SRTDs, but also that it is possible to automat-i
ally generate assumptions dire
tly from the spe
i�
ation. Furthermore, weidentify a 
lass of SRTDs for whi
h the soundness 
he
k of the rule is alwayssatis�ed, and for whi
h the generation of the assumptions is eÆ
ient. Thisleads to a model 
he
king pro
ess that is eÆ
ient (linear in the size of the di-agram and the system). These algorithms have been in
orporated into Rtdt,whi
h uses COSPAN to dis
harge model 
he
king subgoals. We report hereon its appli
ation to a memory 
ontroller and a PCI Interfa
e Core; in both
ases, we obtain substantial redu
tion in the spa
e used for model 
he
king.This resear
h was published in [AENT01℄ and is des
ribed in Chapter 5.
6



1.4 The Rtdt ToolThe Regular Timing Diagram Translator (Rtdt) tool provides a user-friendlygraphi
al editor to 
reate and edit SRTDs and a translator that implements the
ompositional and non-
ompositional model 
he
king algorithms. Rtdt formsa formal and eÆ
ient timing diagram interfa
e to the model 
he
ker COSPAN.The key features of Rtdt are des
ribed in Chapter 6 and has appeared in[AEKN00, AEKN01℄.

7



Chapter 2
Ba
kground

In this Chapter, we will present some ba
kground on automata theory, tem-poral logi
, model 
he
king and timing diagrams.2.1 Automata on Finite StringsDe�nition 0 (Nondeterministi
 Finite state Automata (NFA)) An au-tomaton on �nite strings A is a tuple (�; Q; Æ; Q0; F ), where � is �nite inputalphabet, Q is a �nite set of states, Æ � Q � � � 2Q is a transition relation,Q0 � Q is a non-empty set of start states, and F � Q is a set of a

eptingstates.The automaton A is deterministi
 (DFA ) if jQ0j=1 and jÆ(q; a)j � 1,for all q 2 Q and a 2 �. A run r of A on a �nite string w = a0; a1; :::; an�1 2 ��is a sequen
e of states q0; q1; :::; qn in Q su
h that q0 2 Q0, and qi+1 2 Æ(qi; ai)for O � i < n. A run is a

epting if qn 2 F . The language of A, denotedL(A), is the set of �nite strings that are a

epted by A.8



Automata on �nite strings are 
losed under union, interse
tion and
omplementation [RS59℄. Deterministi
 automata 
an be 
omplemented easilyby 
omplementing the a

eptan
e 
ondition. However, 
omplementing a non-deterministi
 automaton involves determinization and results in a 
onstru
tionthat is exponential.2.2 Automata on In�nite StringsDe�nition 1 (Nondeterministi
 !-automata (!-NFA )) An automatonon in�nite strings A = (�; Q; Æ; q0;�) has a �nite input alphabet �, �nitestate set Q, transition relation Æ � Q� �� 2Q, start state q0 and a

eptan
e
ondition �.A run r of A on input x in �! is an in�nite sequen
e of states of A, where q0is an initial state, and for ea
h i, (qi; xi; qi+1) 2 Æ. A a

epts x if some run ron x satis�es the a

eptan
e 
ondition �.An !-automaton is deterministi
 (!-DFA) if jÆ(q; x)j � 1 for all statesq 2 Q and symbols x 2 �. A run r is a

epting by the B�u
hi a

eptan
e
riteria if there is an a

epting state that repeats in r in�nitely often. In thisdissertation, we 
onsider � to be B�u
hi a

eptan
e.B�u
hi automata are 
losed under union, interse
tion [Cho74℄ and 
om-plementation [Bu
62℄. The 
onstru
tions are, however, mu
h more involvedthan those for the automata on �nite strings. The 
omplexity of 
omplemen-tation is singly exponential [SVW87℄.De�nition 2 ( Dual Run Automata (8FA)) A 8FA on in�nite strings A= (�; Q; Æ; q0;�) has a �nite input alphabet �, �nite state set Q, transition9



relation Æ � Q� ��Q, start state q0 and a

eptan
e 
ondition �.A run r of A on input x in �! is an in�nite sequen
e of states of A,where r0 is an initial state, and for ea
h i, (ri; xi; ri+1) 2 Æ. A a

epts x by\dual-run" a

eptan
e a

ording to � i� every run r on x satis�es �.The 
omplement of the language a

epted by a 8FA A is a

epted byan !-NFA A, that has the identi
al stru
ture but a 
omplemented a

eptan
e
ondition. This property is formalized in the following theorem. We de�neLNFA(A) as the language a

epted by a 9-a

eptan
e 
riteria and L8FA(A) asthe language a

epted by a 8-a

eptan
e 
riteria.Theorem 0 ([MP87, Var87℄) For any 8FA A, :L8FA(A) = LNFA(A).2.3 Linear Temporal Logi
 (LTL)We will present the syntax and semanti
s of Linear Temporal Logi
 (LTL)[Pnu77℄. Formulas of LTL are built from a set of atomi
 proposition AP. AnLTL formula is de�ned as follows:1. If f 2 AP then f is a formula.2. If both f and g are formulas then f ^ g, f _ g and :f are formulas.3. If f and g are formulas then Xf , Gf , Ff and fUg are formulas.Where X is \Next time", G is \Always", F is \Eventually" and U denotes\Until".An LTL formula is interpreted over 
omputations, where a 
omputationis a fun
tion � : N ! 2AP that assigns truth values to the elements in AP atea
h time instant. For a 
omputation � and a time instant i 2 !, we have:10



� �; i j= f i� p 2 �(i), for f 2 AP� �; i j= f ^ g i� �; i j= f and �; i j= g� �; i j= f _ g i� �; i j= f or �; i j= g� �; i j= :f i� not �; i j= f� �; i j= Xf i� �; i+ 1 j= f� �; i j= fUg i� for some j � i, we have �; j j= g and for all k, i � k < j,we have �; k j= fThus the formula, Ff is an abbreviation for trueUf and Gf is abbrevi-ation for :F:f . An LTL formula 
an be any boolean 
ombination or arbitrarynesting of the above operators, therefore one 
an express GFp (\in�nitely oftenp") and FGp (\almost everywhere p). A 
omputation � satis�es a formula f ,written � j= f , i� �; 0 j= f .The following theorem relates LTL and B�u
hi automata.Theorem 1 ([VW94℄) Given an LTL formula f , one 
an build a B�u
hi au-tomaton Af = (�; Q; Æ; q0;�), where � = 2AP and jQj is in 2O(jf j), su
h thatL(Af ) is exa
tly the set of 
omputations satisfying the formula f .2.4 Model Che
kingModel 
he
king [CE81, QS82, CES86℄ is an automated veri�
ation te
hniqueto analyze and verify hardware and 
on
urrent rea
tive systems. In model
he
king, one 
he
ks that a system M satis�es a spe
i�
ation T (written asM j= T ). Typi
ally the system is a 
ir
uit or program and the spe
i�
ation is11



a formula in a temporal logi
, like CTL [EH82℄ or LTL [Pnu77℄. The model
he
king algorithm performs sear
hes in the transition graph of the system ina systemati
 manner to determine the truth of sub-formulae. For the temporallogi
 CTL, the algorithm uses the Tarski-Knaster theorem [Tar55℄, to 
omputethe set of states that de�ne the least �x-point. The time 
omplexity of thismethod is linear in both the size of the stru
ture and the formula.The language 
ontainment paradigm [VW86, Kur94, LP85℄ is an ap-proa
h to model 
he
king, where both the system and the property are spe
-i�ed as automata on in�nite strings. For the system M and spe
i�
ation T ,the veri�
ation 
he
k M j= T 
an be 
ast as L(M) � L(T ). This is equivalentto L(M) \ :L(T ) = ;. The algorithm for 
he
king non-emptiness pro
eedsby 
omputing the strongly 
onne
ted 
omponents of the produ
t automatonand then 
he
king if there is a path from an initial state to a strongly 
on-ne
ted 
omponent 
ontaining an a

epting state. Language in
lusion may bede
ided in PSPACE [LP85, VW86℄, and the non-emptiness problem for B�u
hiautomata is de
idable in linear time [EL85a, EL85b℄. The model 
he
king al-gorithm for LTL [VW86℄ uses Theorem 1, to build a B�u
hi automaton A:T forthe negation of formula T and then 
he
ks L(M)\L(A:T ) for emptiness. Thetime 
omplexity of model 
he
king that a �nite state program M satis�es anLTL formula T is linear in size ofM but is exponential in the size of formula T .The Li
htenstein-Pnueli thesis [LP85℄ argues that an upper time bound thatis exponential in the size of the spe
i�
ation is 
onsidered reasonable sin
e thespe
i�
ation is usually short.By the results in [SVW87℄, we know that 
omplementing a B�u
hi au-tomaton results in an exponential blowup. As a result, an approa
h that �rst
onstru
ts the B�u
hi automaton AT (for LTL formula T ) and then 
omple-12



ments it, would result in a double exponential blow-up. In the automata-theoreti
 approa
h, therefore, it is key that the automaton for the spe
i�
a-tion be easy to 
omplement. We observe, as a 
onsequen
e of Theorem 0, that8FA's are trivial to 
omplement and we will exploit this fa
t in our work.2.5 Timing DiagramsA timing diagram, in its most basi
 form, 
onsists of a number of waveforms.Ea
h waveform depi
ts the behavior of a signal or variable over a �nite periodof time. The value of a waveform at any point in the diagram is 
hosen from apre-de�ned domain; generally this domain is the boolean set f0; 1g. A 
hangein the value of a waveform is known as an event. There are several ways thata waveform may intera
t with other waveforms; these intera
tions are 
alleddependen
ies. A 
on
urrent dependen
y spe
i�es that an event depends onother events o

urring at the same time. Con
urrent dependen
ies expressproperties like \b is low when a rises". A sequential dependen
y relates twoevents in the diagram, by spe
ifying that one event o

urs within a spe
i�edtime interval of the other. A sequential dependen
y 
an state properties like\event a o

urred within 5 time units of event b" or \ event a pre
edes eventb. These intervals determine the type of the resulting timing diagram lan-guage. Allowing integer 
onstants, variables and arithmeti
 expressions in theintervals results in a non-regular timing diagram language and restri
ting theinterval to just integer 
onstants and 1 yields a regular language.A timing diagram, like the 
ir
uit it des
ribes, may be either asyn-
hronous or syn
hronous. A syn
hronous diagram in
ludes one or more \
lo
ks"with �xed periods and ensures that the time interval between any pair of events13
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Figure 2.1: (a) Ambiguous Diagram (b) Unambiguous Diagramis determined up to the 
lo
k period. Syn
hronous diagrams are used to spe
-ify timing requirements of 
lo
ked systems. On the other hand, asyn
hronousdiagrams do not have a 
lo
k. Asyn
hronous timing diagrams are used tospe
ify handshaking proto
ols like bus arbitration and memory a

ess.Another feature of timing diagrams, identi�ed by Fisler [Fis96℄, is thatthe ordering between events is partial in general; su
h diagrams are 
alledambiguous. In Figure 2.1 (a), for example, the exa
t ordering between therising event on waveform A and the falling event on waveform B is unknown.On the other hand, an unambiguous timing diagram has a total ordering onevents. In Figure 2.1 (b), the sequential dependen
y between waveforms Aand B enfor
es an ordering on those events. In general, syn
hronous timingdiagrams have less ambiguity and more stru
ture than asyn
hronous diagrams.A timing diagram is de�ned for a �nite time period and a key issue is anappropriate extension to in�nite 
omputations. Fisler [Fis96℄ addressed thisquestion by 
onsidering two kinds of semanti
s: in the invariant semanti
s,the timing diagram must be satis�ed at every state of a 
omputation, while in14



the basi
 iterative semanti
s, the diagram must be satis�ed iteratively.

15



Chapter 3
Regular Timing Diagrams

3.1 Introdu
tionAsyn
hronous timing diagrams are 
hara
terized by the absen
e of a globalsystems 
lo
k. These diagrams are generally used to spe
ify handshaking pro-to
ols, like bus arbitration, memory a

ess, et
. In this Chapter, we introdu
ea 
lass of timing diagrams, for asyn
hronous systems, 
alled Regular TimingDiagrams (RTDs). RTDs have a simple and pre
ise semanti
s and eÆ
ient,de
ompositional model 
he
king algorithms. These diagrams des
ribe 
hangesof signal values over a �nite time period, and pre
eden
e and timing dependen-
ies between su
h events; an event is de�ned as a 
hange in signal value. RTDs
an express properties like \signal a rises within 5 time units of signal b falling"and \signal b is low when signal a rises". The time intervals are spe
i�ed byinteger 
onstants, ensuring that the diagram de�nes a regular language.RTDs, like other timing diagrams, may be unambiguous, there is a totalordering on events, or ambiguous, the ordering between events 
an be partial16



(see Figure 3.1). Sin
e an RTD is de�ned for a �nite time period, an importantquestion that arises in de�ning the semanti
s is the manner in whi
h an in�nite
omputation satis�es a timing diagram? Re
all that there are two kinds ofsemanti
s [Fis96℄: in the invariant semanti
s, the timing diagram must besatis�ed at every state of a 
omputation, while in the basi
 iterative semanti
s,the diagram must be satis�ed iteratively, at points satisfying a pre
onditionof the diagram. In our model, the pre
ondition is a state property. Oursemanti
s is a reformulation of the basi
 iterative semanti
s, where we permita system to satisfy diagrams that express the 
orre
tness of di�erent aspe
ts ofits operation. For ambiguous diagrams, we further 
lassify this semanti
s intoa weak aspe
t, where a fresh linear ordering of the events is 
hosen for ea
hsatisfa
tion of the diagram, and a strong aspe
t, where a single linear order is
hosen that applies to ea
h satisfa
tion of the diagram.The key observation that leads to eÆ
ient model 
he
king [CE81, QS82,CES86℄ is that timing diagrams are 
ompositional (
onjun
tive) in nature.This 
an be visualized informally as the waveforms a
ting independently andonly intera
ting with other waveforms through a dependen
y. Rather thanbuild the single, monolithi
 !-NFA or the temporal logi
 formula that 
orre-sponds to the entire diagram, we demonstrate that it is possible to de
omposethe diagram into properties of isolated waveforms and their intera
tions. Thisresults in a 
onjun
tion of simpler properties that 
an be 
onveniently repre-sented by a su

in
t 8-automaton (8FA) [MP87, Var87℄. A 8FA (also known as\dual-run" or \universal" automaton) is a �nite state automaton that a

eptsan input i� every run of the automaton along the input meets the a

eptan
e
riterion. 8FA's 
an be exponentially more su

in
t than NFA's and naturallyexpress properties that are 
onjun
tive in nature.17



Moreover, this 
onjun
tivity 
an be exploited to verify smaller 
ompo-nents of the timing diagram in isolation, thus avoiding the 
onstru
tion of theentire 8-automaton. We present eÆ
ient algorithms that 
onvert RTDs underthe various semanti
s into 8FA's that are in the worst 
ase of size polynomialin the size of the diagram and the largest time 
onstant represented in unary(note that the unary size is exponential in the binary size). These 
onstants aregenerally performan
e bounds and tend to be small; thus, we feel justi�ed in
laiming polynomial 
omplexity. The use of 8FA's permits the eÆ
ient use ofthe automata-theoreti
 approa
h [VW86, Kur94, LP85℄ to model 
he
king. Fora system M and RTD T , the veri�
ation 
he
k 
an be 
ast as L(M) � L(AT ),where AT is the (small, polynomial size) 8FA for the diagram T and L(X)denotes the language of X. This is equivalent to L(M) \ :L(AT ) = ;. The
omplement language of a 8FA is a

epted by a NFA with identi
al stru
-ture but 
omplemented a

eptan
e 
ondition. Hen
e, 
omplementation (the:L(AT ) term) is trivial, and the 
omplexity of the model 
he
king pro
edureis linear in the size of the stru
ture and polynomial in the size of the 8FA AT .In addition, it is often possible to de
ompose AT itself into a 
onjun
tion ofsmaller 8FA's, whi
h may be 
he
ked independently with M . It is also simpleto produ
e a des
ription of :L(AT ) that 
an be input to a symboli
 model
he
ker.The algorithm is linear in the stru
ture size, polynomial in the numberof diagram points and dependen
ies and in the unary size of the 
onstants.The polynomial 
omplexity of our de
ompositional algorithm is a signi�
antimprovement over the earlier monolithi
 approa
hes (
f. [Fis96, DJS94℄),where the size may be exponential in the worst 
ase. Not withstanding theLi
htenstein-Pnueli thesis [LP85℄, in pra
ti
e, as one rea
hes the limits of ap-18



pli
ability of symboli
 model 
he
king tools, the size of the spe
i�
ation is ofimportan
e. A detailed dis
ussion of these points is in Se
tion 3.6.The rest of the Chapter pro
eeds as follows. In Se
tion 3.2, we givea pre
ise syntax and semanti
s for Regular Timing Diagrams. Se
tion 3.3presents the algorithms that 
onvert RTDs into 8FA's. The model 
he
kingpro
edure is presented in Se
tion 3.4. Se
tion 3.5 des
ribes how the algorithmsare used with with the model 
he
king tool VIS [BHSV+96℄ for the veri�
ationof a master-slave system. We 
on
lude with a dis
ussion of related work inSe
tion 3.6.3.2 Regular Timing Diagrams - Syntax andSemanti
sA Regular Timing Diagram (hen
eforth referred to as an RTD or diagram) isspe
i�ed by a number of �nite waveforms, ea
h de�ned over a set of \symboli
"values SV , and timed dependen
ies between points on the waveforms. The setof symboli
 values SV is an user-de�ned domain of values plus the value X,that is used to spe
ify that the value is unspe
i�ed or unknown. For booleansignals, the set SV is f0; 1; Xg. However, SV 
ould be either an enumeratedtype, or all the values of an address bus. The set SV is partially ordered by_v , where a _v b i� a = X or a = b.3.2.1 SyntaxDe�nition 3 (RTD) A RTD is a tuple (S;WF ; SD ;CD), where� S is a non-empty set of signal names.19
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Figure 3.1: (a) Ambiguous RTD (b) Unambiguous RTD� WF is a 
olle
tion of waveforms; for ea
h signal A 2 S, its asso
iatedwaveform is a fun
tion A : [0; n) ! SV where n > 1 is an integerreferred to as the size of the waveform. If A 2 WF and i 2 [0; size(A))then the pair (A; i) is 
alled a point of A.1 (A; 0) is the initial point and(A; size(A)-1) is the �nal point of A.� SD is the set of sequential dependen
ies on the points of WF. Ea
hdependen
y is spe
i�ed as (A; i) [a;b)�! (B; j), where a 2 N; b 2 N [ f1g,1 � a and a < b. For 
onvenien
e, [k;1) is often written as � k, [1; k℄as � k and [k; k℄ as = k.� CD is a 
olle
tion of mutually disjoint, non-empty 
on
urrent depen-den
ies. Ea
h 
on
urrent dependen
y is a set of points with at most onepoint from ea
h waveform in WF. The sets of initial and �nal points ofthe diagram form prede�ned 
on
urrent dependen
ies.1A point (A; i) is also a point of WF and the RTD.20



De�nition 4 (Event) The smallest set of points 
losed under the followingrules are the events of an RTD T = (S;WF ; SD;CD).1. For every waveform A in WF, (A; 0) is an event.2. Let (A; i) be an event with (A; i) 6= X and let (A; j) be the �rst su

essorof (A; i) su
h that A(i) 6= A(j). If A(j) 6= X then (A; j) is an event.3. If (A; i) is a member of a 
on
urrent dependen
y that 
ontains an event,then (A; i) is an event.4. If (A; i) is an event and (A; i) =k�! (B; j) is a sequential dependen
y, then(B; j) is an event.Noti
e that for any input string of ve
tors of signal values, every eventhas at most one position on the string. This \pre
ise lo
ation" property ofevents is the key to our eÆ
ient model 
he
king algorithm. For every event e,it is possible to 
onstru
t a DFA we 
all lo
ator(e) that a

epts at the positionon an input string where the event holds. This DFA essentially en
odes thesequen
e of appli
ations of the rules above that de�ne the point e as an event.A symboli
 point of an RTD is either a 
on
urrent dependen
y or asingleton set 
ontaining a point that is not in any 
on
urrent dependen
y.De�nition 5 (Symboli
 Point) p is a symboli
 point of an RTD i� eitherp 2 CD or p 
ontains only one point e, su
h that for ea
h C 2 CD, e 62 C.The set of symboli
 points is denoted by SP . Informally, events in asymboli
 point should o

ur simultaneously. The sequential dependen
ies ofan RTD indu
e the following ordering relation � on symboli
 points.21



De�nition 6 (Ordering on Symboli
 Points (�)) Given symboli
 pointsp and q, p � q i�� for some waveform A 2WF, the point (A; i) 2 p and point (A; i+1) 2 q,or� there exist e 2 p and f 2 q su
h that e ��! f is a sequential dependen
y.The RTD syntax allows several de�nitions that run 
ounter to intuition.For instan
e, dependen
ies may be 
y
li
ally related, or it may be possible thatthe lo
ation of a dependen
y is impre
ise due to the presen
e of X (undeter-mined) parts of a waveform. These 
ases are ruled out by giving a notion of\well-formed" RTDs, whi
h is de�ned below.De�nition 7 (Well-formed RTD) An RTD is well-formed i� (i) every pointof the RTD is an event and (ii) the transitive 
losure of � (�+) is irre
exive.The annotated RTD in Figure 3.2 
an be expressed notationally as follows.
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WF : fA;BgA : 0 7! 1; 1 7! 0; 2 7! 0B : 0 7! 0; 1 7! 1; 2 7! 0; 3 7! 1SD : f(A; 0) [3;3℄�! (B; 1)gCD : ff(A; 0); (B; 0)g; f(A; 1); (B; 2)g; f(A; 2); (B; 3)ggThere are four symboli
 points in this RTD: the singleton f(B; 1)gand the three 
on
urrent dependen
ies, f(A; 0); (B; 0)g, f(A; 1); (B; 2)g andf(A; 2); (B; 3)g. The pre-de�ned 
on
urrent dependen
ies at the initial and�nal points of the RTD are shown in Figure 3.2, however, for visual 
larity, wewill not always show these 
on
urrent dependen
ies in the diagrams for theremainder of this Chapter.3.2.2 Semanti
sThe semanti
s of an RTD is a set of in�nite 
omputations over states; ea
hstate is a ve
tor indexed by the waveforms of the timing diagram. The setof states is denoted by �. The partial order _v de�ned earlier is extendedto states as follows: u _v w i� for ea
h i, u(i) _v w(i). A 
omputation of thesystem to be veri�ed 
onsists of an in�nite sequen
e of states from �. Sin
ethe syntax of an RTD des
ribes only �nite sequen
es of events, a key questionis the appropriate extension to in�nite 
omputations.The prede�ned initial and �nal 
on
urrent dependen
ies 
an be viewedas the begin- and end- 
onditions of the �nite sequen
e of events des
ribed bythe RTD syntax; the initial 
on
urrent dependen
y is a state predi
ate andthe �nal 
on
urrent dependen
y is a path predi
ate. For example, the begin-23




ondition for the RTD in Figure 3.2 is hA = 1; B = 0i and the end-
ondition isthe 
on
urrent dependen
y at the state hA = 0; B = 1i. As another example,if the diagram represents the behavior for a \memory-read" transa
tion, thebegin- and end- 
onditions indi
ate the states that de�ne the extent of thistransa
tion. Clearly, this diagram should be 
he
ked only on the �nite sub-
omputation that starts at a state satisfying the begin-
ondition and endswith a state satisfying the end-
ondition. One may thus 
onsider an in�nitesequen
e to satisfy a timing diagram i� the dependen
ies of the diagram aresatis�ed in ea
h �nite sub-sequen
e de�ned by the begin- and end- 
onditions.This statement, though, is still open to many interpretations, some of whi
hare 
onsidered below. We �rst de�ne what it means for a �nite sequen
e ofstates to satisfy a timing diagram. Re
all that the relation �+ partially ordersthe set of symboli
 points, SP . In the following de�nitions P denotes the setof points in the diagram.De�nition 8 (Assignment) Given a string of length n, an assignment � isa fun
tion � : SP ! [0; n), that is stri
tly monotoni
 w.r.t. � (p � q implies�(p) < �(q)) and maps the initial symboli
 point to 0.De�nition 9 (Equivalent Assignments) Two assignments � : SP ! [0; n)and � : SP ! [0; m) are equivalent i� for all p; q 2 SP , �(p) < �(q) i��(p) < �(q).Any assignment � indu
es the fun
tion �̂ : P ! [0; n) whi
h maps apoint (A; i) to k i� the (unique, by de�nition) symboli
 point that in
ludes(A; i) is mapped to k by �. From the de�nition of �, it follows that all pointsin a 
on
urrent dependen
y are assigned a 
ommon position.24



De�nition 10 (RTD satisfa
tion) An RTD T = (S;WF ; SD;CD) is sat-is�ed by a �nite sequen
e z 2 �+ w.r.t. an assignment � : SP ! [0; jzj)(written as z j=� T ) i� the following 
onditions hold.1. Point 
onsisten
y: For every point (A; i), if �̂((A; i)) = k, thenA(i) _v zk(A), where zj(A) is zj proje
ted onto the 
oordinates for A.2. Waveform 
onsisten
y: Let �̂((A; i)) = k and �̂((A; i+ 1)) = l.For every j 2 [k; l), A(i) _v zj(A).3. Dependen
y 
onsisten
y: For every sequential dependen
y e [a;b)�! f ,(�̂(f)� �̂(e)) 2 [a; b).
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Figure 3.3: RTD Annotated with PointsWe will use the following notation to denote sequen
es: the angle bra
k-ets denote the ve
tor of values at a given state, \;" denotes su

ession in timeand the supers
ript n on a state s is a shorthand for n su

essive 
opies ofs. We will also use h1; 1i to represent the state hA = 1; B = 1i. Considerthe �nite sequen
e y[0::6℄ = h1; 0i3; h1; 1i; h0; 0i; h0; 0i; h0; 1i. For RTD T inFigure 3.2, the assignment � maps: sp0 to 0, sp1 to 3, sp2 to 4 and sp3 to 6.The fun
tion �̂ is as follows: (A; 0) ! 0, (A; 1) ! 4, (A; 2) ! 6, (B; 0) ! 0,25



(B; 1) ! 3, (B; 2)! 4 and (B; 3)! 6. The RTD in Figure 3.3 is annotatedwith the points. Note that y satis�es the 
onditions in De�nition 10, withrespe
t to assignment �, hen
e y j=� T .For many systems, it is the 
ase that the begin- 
ondition for the tim-ing diagram does not re
ur before the end- 
ondition holds. For su
h non-overlapping systems, we may 
onsider the following semanti
s. System 
om-putations may be des
ribed by the expression (�+ _ (#�+$))!, where # and$ are spe
ial ve
tors of � representing the satisfa
tion of the begin- and end-
onditions respe
tively and � = �nf#; $g. The sequen
e of the form #�+$is 
alled a transa
tion.De�nition 11 (Weak Iterative Semanti
s) An in�nite sequen
e z satis-�es an RTD T under the weak iterative semanti
s (written as z j=w T ) i� forevery transa
tion #y$ on z, there exists an assignment � for whi
h #y$ j=� T .De�nition 12 (Strong Iterative Semanti
s) An in�nite sequen
e z satis-�es an RTD T under the strong iterative semanti
s (written as z j=s T ) i�there exists an assignment � su
h that for every transa
tion #y$ of z, there isan equivalent assignment � su
h that #y$ j=� T .Consider the ambiguous RTD T in Figure 3.4 and a �nite sequen
e y= h1; 0i; h1; 1i; h0; 1i; h0; 0i; h1; 0i; h0; 0i; h0; 1i; h0; 0i. Let z be an in�nitesequen
e where the y repeats forever. In sequen
e y, there are two transa
tions,one where A falls before B rises and another where B rises before A falls. Thede�nition of the weak iterative semanti
s allows a fresh ordering of events tobe 
hosen on ea
h transa
tion, therefore, z j=w T . On the other hand, z 6j=s T ,sin
e the ordering used in the two transa
tions is di�erent.26



��
��
��

��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A

B Figure 3.4: Ambiguous RTD TWe 
onsider now an alternative formulation of De�nition 10, whi
hforms the basis for the de
ompositional algorithms for model 
he
king. If#y$ satis�es the timing diagram, ea
h event, by De�nition 4, may be lo
atedpre
isely on the sequen
e. The key observation is that, sin
e ea
h dependen
y
onsists of pre
isely lo
ated events, it 
an be 
he
ked independently of theothers.Theorem 2 Let pt be the partial fun
tion that de�nes the lo
ation of eventson a �nite sequen
e. For an RTD T = (S;WF ; SD ;CD), and any �nitetransa
tion z = #y$, there exists an assignment � su
h that z j=� T i� ea
hof the following 
onditions holds:(a) Every event of T 
an be lo
ated on z and has a value 
onsistent with thatin T ; i.e., pt is total, and if pt(z; (A; i)) = k then A(i) _v zk(A).(b) Let pt(z; (A; i)) = k and pt(z; (A; i + 1)) = l. For every j in [k; l),A(i) _v zj(A).(
) For ea
h sequential dependen
y e [a;bi�! f , (pt(z; f)� pt(z; e)) 2 [a; bi.27



(d) For ea
h pair of events e; f in a 
on
urrent dependen
y, pt(z; e) =pt(z; f).Proof. ()) z j=� T implies, by De�nitions 8 and 10 and the pre
ise lo-
ation property, that pt is total. Point 
onsisten
y, in De�nition 10, impliesthat pt(z; (A; i)) = k then A(i) _v zk(A). Condition (
) follows dire
tly fromwaveform 
onsisten
y in De�nition 10. Dependen
y 
onsisten
y in De�nition10 implies (pt(z; f) � pt(z; e)) 2 [a; bi. De�nition 8 implies that ea
h pair ofevents e; f in a 
on
urrent dependen
y, are assigned by � to the same lo
ation,hen
e pt(z; e) = pt(z; f).(() If �̂((A; i)) = k then, by 
onditions (a) and (d), A(i) _v yk(A) (point
onsisten
y). Conditions a and b ensure waveform 
onsisten
y (De�nition 10).Dependen
y 
onsisten
y follows dire
tly from 
. �Noti
e that the theorem essentially transforms the existential (9) 
on-dition of De�nitions 11 through 12 into a universal (8) 
ondition; this formsthe basis for the de
ompositional 
he
k.3.3 Translation AlgorithmsTheorem 2 is fundamental to de
omposing RTDs into a 
onjun
tion of prop-erties of individual waveforms, and ordering or timing restri
tions on theirintera
tions, whi
h is the key to eÆ
ient model 
he
king. In this se
tion, weprovide algorithms that translate an RTD under, both strong and weak iter-ative semanti
s, into a 8FA. For 
larity, we often des
ribe the !-NFA for the
omplement language instead of the 8FA.
28



3.3.1 Translating RTDs with Weak Iterative Semanti
s
e

d
f

B

A

[1,3]Figure 3.5: RTD T Annotated with Unordered EventsRe
all, that we 
an 
onstru
t a DFA 
alled lo
ator(e) that a

epts atthe position on an input string where the event e holds. We now des
ribe the!-NFA AT that a

epts the 
omplement of the weak-iterative language of anRTD T = (S;WF ; SD ;CD).Algorithm 11. Constru
t a �nite string automata for ea
h waveform and dependen
yas follows:� Waveform: The automaton AB for a waveform B is 
onstru
ted asfollows: if (B; i+1) is de�ned in terms of (B; i), then lo
ator((B ; i))is extended to ensure that the signal values up to the 
hange ofvalue that de�nes (B; i+1) are above B(i) in _v order. Otherwise,lo
ator((B ; i)) is used to determine that the value at the positionwhere (B; i) holds is above B(i) in _v order.� Sequential dependen
y: The automatonAsd, for a sequential depen-den
y e [a;bi�! f , is a parallel 
omposition of lo
ator(e) and lo
ator(f )29



that a

epts i� the time between the a

eptan
e of the lo
atorDFA's is within [a; bi.� Con
urrent dependen
y: The 8FA, A
d, for a 
on
urrent depen-den
y C 
he
ks that for a �xed event e in C and every other eventf in C, lo
ator(e) and lo
ator(f ) a

ept at the same position onthe input sequen
e.2. The !-NFA AT operates as follows on an in�nite input sequen
e: it non-deterministi
ally \
hooses" a transa
tion #y$ on the input, \
hooses"whi
h waveform or dependen
y fails to hold of the transa
tion, and a
-
epts if the automaton for that entity (de�ned as given above) reje
ts.
#

B

B $

B

B

B

A

A

A

$#
(a)

(b)

# B(c) B B

B

BFigure 3.6: Automata for (a) Waveform A (b) Waveform B (
) SequentialDependen
yNoti
e that ea
h automaton de�ned above is either a DFA or a 8FA,30



both of whi
h 
an be trivially 
omplemented. The 8FA AT obtained from this!-NFA AT by 
omplementing the a

eptan
e 
ondition de�nes the languageof the RTD under the weak iterative semanti
s.
accept

accept accept

reject rejectreject

DFA  A DFA  B DFA  SD

Figure 3.7: !-NFA AT for Weak Iterative Semanti
s
Theorem 3 (Corre
tness) For any RTD T and x 2 �!, x j=w T i� x 2L(AT ).Proof. ()) x j=w T implies (by de�nition 11) that for every transa
tion #y$on x, there exists an assignment � su
h that #y$ j=� T . Let us assume thatx 2 AT . We know, by the 
onstru
tion of AT , that there must be a transa
tionz along x su
h that some DFA (for a waveform or dependen
y) Ad reje
ts on z.Therefore, by the 
onstru
tion of DFA's Ad, there is no assignment � su
h thatz j=� T (i.e. z must violate the 
onstraints on some waveform or dependen
y).Sin
e x j=w T , su
h a z transa
tion does not exists; thus x 2 L(AT ).(() x 2 L(AT ), by de�nition 2, i� every run of AT on x is a

ept-ing. In the 
onstru
tion of AT , this implies that every transa
tion along31



x is a

epted by all the DFA's (for the waveforms or dependen
ies). Letus assume that x 6j=w T , this means that x has a transa
tion z, su
h that:(9� : (z j=� T )). Therefore, by De�nition 10, z violates either (1) point 
on-sisten
y (2) waveform 
onsisten
y, or (3) dependen
y 
onsisten
y. However,the DFA's 
onstru
ted for waveforms or dependen
ies satisfy these 
onditionsby 
onstru
tion. Thus, we have a 
ontradi
tion, and x j=w T . �For the diagram T = (S;WF ; SD ;CD), let l be the size in unary of thelargest 
onstant in SD . De�ne jT j = #points + jSD j+ jCDj. The size of ATis 
ubi
 in jT j and l.Theorem 4 (Complexity) For any RTD T , the size of the 
orresponding8FA AT is polynomial in jT j and the unary length of the largest 
onstant inT .Proof. The size of an RTD is T= e+s+
, where e is the number of events inT , s= jSDj and 
=jCDj. Let l be the largest 
onstant in unary and w be thenumber of waveforms. We assume that the transitions in AT are labeled withboolean formulas over the w signals. The size of the transitions in AT is thesum of the length of the formulas labeling the transitions. The size of AT isv + t, where v is the number of states and t is the transition size.The number of states in ea
h lo
ator automaton is bounded by k =(e + l). In the 
onstru
tion above, the number of states in the DFA for awaveform is O(k). Sin
e ea
h transition en
odes the values of the signals atea
h point, the size of ea
h transition is O(w), while the number of transitionsis bounded by e. Thus, the transition size of ea
h lo
ator automaton is O(k).The size of the DFA for ea
h sequential dependen
y is O(k2), as it 
onsists oftwo lo
ators in parallel. The size of the 8FA for ea
h 
on
urrent dependen
y32



is O(w:k2), as ea
h 
on
urrent dependen
y 
an have at most w events. Thesize of AT is w:O(k) + s:O(k2) + 
:O(k2), whi
h is 
ubi
 in jT j. �3.3.2 Translating RTDs with Strong Iterative Seman-ti
sUnder the strong iterative semanti
s, every transa
tion on an input 
ompu-tation has to satisfy the RTD T with respe
t to a single event ordering. The!-NFA AT for the 
omplemented language a

epts a 
omputation i�� Some transa
tion violates a waveform or dependen
y 
onstraint, or� There is a transa
tion and a pair of events that o

ur in a di�erent orderfrom that in the �rst transa
tion.The !-NFA AT for the 
omplement of the RTD T under the strong-iterativesemanti
s is 
onstru
ted as follows:Algorithm 21. Constru
t the !-NFA Aweak as de�ned for the weak-iterative semanti
s.2. For ea
h pair of unordered events e and f , 
onstru
t an automaton Aefas follows: Aef �rst exe
utes the lo
ator DFA's for events e and f inparallel on the �rst transa
tion to determine their relative order. Aefthen 
hooses a subsequent transa
tion and exe
utes the lo
ator DFA'sof the same events on that transa
tion to determine the new order, anda

epts if the orders di�er.
33



3. The !-NFA Aord, at the initial state, nondeterministi
ally \
hooses"events e and f that are unordered by �+, runs automaton Aef anda

epts if Aef a

epts.4. The !-NFA AT a

epts if either Aweak or Aord a

epts.Figure 3.8 depi
ts the automaton Ade for events d and e in the RTDshown in Figure 3.5. In Figure 3.8, � is the alphabet, � = �nf#; $g, �#denotes �nf#g, �de denotes �nfd; eg, �d denotes �nfdg and �e denotes�nfeg.
e

d

# de

d

e

#
d

e

d $

e $ #

#

e

d

d

e

de

de

d

e

Figure 3.8: NFA Ade for Events d and e in Figure 3.5LetAT denote the 8FA obtained from the !-NFA AT by 
omplementingthe a

eptan
e 
ondition. The size of AT is polynomial in jT j and l for the�rst 
ase (Aweak); for the se
ond (Aord), it is quadrati
 in jT j and l witha multipli
ative fa
tor of the number of event pairs (whi
h is bounded by(#points)2).Theorem 5 (Corre
tness) For any RTD T and x 2 �!, x j=s T i� x 2L(AT ). 34



Proof. ()) x j=s T i� (by de�nition 12) there exists an assignment �, su
hthat for every transa
tion z along x, z j=� T . Let us assume that x 2 AT ; bythe 
onstru
tion of AT , there must be a transa
tion z along x where either (i)some DFA (for a waveform or dependen
y) Ad reje
ts on z, or (ii) there existsevents e and f in z that di�er in relative ordering from the initial transa
tion.In the �rst 
ase, by Theorem 3, we have a 
ontradi
tion. For the se
ond 
ase,the automaton Aef a

epts, indi
ating that e and f o

ur in a di�erent order.This implies that a di�erent assignment, � is used on transa
tion z. Su
h anassignment, however, is not possible, sin
e x j=s T ; thus x 2 L(AT ).(() x 2 L(AT ), by 
onstru
tion, implies that every transa
tion alongx is a

epted by the DFA's for ea
h waveform, dependen
y and ordering. Letus assume that x 6j=w T , this means that x has a transa
tion z, su
h thateither (i) :(9� : (z j=� T )) or (ii) the ordering between two events e and f inz di�ers from ordering in the �rst transa
tion. In 
ase (i), we appeal to theresult in Theorem 3 to show z j=� T . In the se
ond 
ase, by 
onstru
tion, ea
hDFA Aef that 
he
ks the relative ordering between the events e and f mustreje
t. Hen
e, an assignment � used on the �rst transa
tion is used on everysubsequent transa
tion. We get a 
ontradi
tion in both 
ases, thus, x j=s T .�Theorem 6 (Complexity) For any RTD T , the size of the 
orresponding8FA AT is polynomial in jT j and the largest 
onstant in unary.Proof. The size of an RTD T is e+s+
, where e is the number of events in T ,s is the size of SD and 
 is the size of CD. Let l be the largest 
onstant in unaryand w be the number of waveforms. We assume that the transitions in AT arelabeled with boolean formulas over the w signals. The size of the transitions35



in AT is the sum of the length of the formulas labeling the transitions. Thesize of AT is v+ t, where v is the number of states and t is the transition size.Re
all from Theorem 4 that the size of ea
h lo
ator automaton isbounded by k = (e+ l). The automaton Aweak for the �rst 
he
k is essentiallythe same as the automaton for the weak iterative semanti
s and the number ofstates is 
ubi
 in jT j and l. The automaton Aord for the se
ond part has sizeproportional to the produ
t of two lo
ator DFA's for ea
h 
hoi
e, and thereare e2 su
h 
hoi
es; thus, the number of states overall is e2:O(k2). The size ofAT is O(jT j3) + e2:O(jT j2), whi
h is polynomial in jT j. �3.4 De
ompositional Model Che
kingThe translation of an RTD to a small 8FA implies that the language 
ontain-ment approa
h to model 
he
king based on [VW86℄ gives an eÆ
ient algorithm.We need to 
he
k that L(M) � L(AT ), where M is the system to be veri�edand AT is the 8FA for the RTD T . This is equivalent to L(M)\:L(AT ) = ;.Complementation (the :L(AT ) term) is trivial for a 8FA; the 
omplementedautomaton (an !-NFA ) has the same stru
ture but 
omplemented a

eptan
e
ondition. Hen
e, the emptiness 
he
k 
an be done in time linear in the size ofthe stru
ture and a small polynomial in the size of T . The spa
e 
omplexity,by the results of [SVW87℄, is logarithmi
 in the sizes of both M and T .Theorem 7 (Model Che
king Complexity (Weak)) For a transition sys-tem M and an RTD T with the weak iterative semanti
s, the time 
omplexityof model 
he
king is linear in the size of M and 
ubi
 in the size of T and theunary size of the largest 
onstant in T .36



Proof. The size of an RTD is T= e+s+
, where e is the number of events inT , s is the size of SD and 
 is the size of CD. We know that 
he
king M j=w Tis equivalent to 
he
king that L(M) \ :L(T ) = �. The size of the !-NFA ATthat a

epts :L(T ), by Theorem 4, is 
ubi
 in the size of T . Therefore, thetime 
omplexity of 
he
king L(M) \ L(AT ) = � is O(jM j:jT j3). �Theorem 8 (Model Che
king Complexity (Strong)) For a transitionsystem M and an RTD T with the strong iterative semanti
s, the time 
om-plexity of model 
he
king is linear in the size of M and a small polynomial inthe size of T and the unary size of the largest 
onstant in T .Proof. The size of an RTD is T= e+s+
, where e is the number of events inT , s is the size of SD and 
 is the size of CD . We know that 
he
king M j=s Tis equivalent to 
he
king that L(M) \ :L(T ) = �. The size of the !-NFA ATthat a

epts :L(T ), by Theorem 6, is polynomial in the size of T . Therefore,the time 
omplexity of 
he
king L(M) \ L(AT ) = � is O(jM j:jT j4). �An alternative way of utilizing the 8FA 
onstru
tion is to note that, ATessentially de�nes a language (�+ _#(Vi Li)$)!, where the Li's represent thelanguages of the dependen
ies. The lemma below shows that the !-repetitiondistributes over the Vi in the following sense.Lemma 0 For �nite-string languages Li (i 2 [0; n)) whi
h are subsets of �+,(�+ _#(Vi Li)$)! = Vi(�+ _#Li$)!.Proof. Let � = �[f#; $g,Am= (�; Qm; Æm; q0;�m) be the !-automaton thata

epts L((�+ _#Vi(Li)$)!) and A
= (�; Q
; Æ
; r0;�
) be the !-automatonthat a

epts L(Vi(�+ _#Li$)!).()) Let Al = A0 � A1 � ::: � An be the DFA that a

ept the languageL0\L1\:::\Ln andA� be the DFA for �+. Let x be an in�nite string a

epted37



by Am. We observe that Am has a transition of the form Æm((s0; s1; :::; sn);#)= (t0; t1; :::; tn), where ea
h ti is the unique start state for ea
h Ai. We alsoknow that every Ai transitions on $ to an a

epting state. It follows that allthe Ai automata a

ept at the same point and therefore x is a

epted by A
.(() Consider an in�nite string x that is a

epted by A
 and reje
ted by Am.This implies that some Ai and Aj a

ept at di�erent points in x. But we knowthat every transition on # goes to the unique start state in Ai and Aj. Thusboth Ai and Aj must start together. We also know that both Ai and Aj havea transition on $ whi
h goes ba
k to the start state of DFA A�; hen
e theyalso end simultaneously. This implies that both must a

ept at the same pointand 
ontradi
ts the assumption that x is not a

epted by Am. �By this lemma, one 
an 
onstru
t smaller !-automata, one for ea
hdependen
y, and 
he
k that the language of ea
h has an empty interse
tionwith L(M). This is often more eÆ
ient than the 
ombined 
he
k, and may leadto qui
ker dete
tion of any errors. We refer to this as the \de
ompositional"approa
h.Theorem 9 (De
ompositional Model Che
king (Weak)) For a transi-tion system M and an RTD T under the weak semanti
s, the time 
omplexityof de
ompositional model 
he
king is linear in the size of M and 
ubi
 in thesize of T .Proof. The problem of 
he
king M j=w AT 
an be de
omposed into ViM j=Ai , where Ai is the automaton for a waveform or dependen
y. We 
an 
he
kM j= Ai in time linear in the size of M and Ai, whi
h by Theorem 4 isO(jM j:jT j2). But we have jT j su
h veri�
ation tasks, thus the time 
omplexityof 
he
king M j= AT is O(jM j:jT j3). �38



Theorem 10 (De
ompositional Model Che
king (Strong)) For a tran-sition system M and an RTD T , under the strong semanti
s, the time 
om-plexity of de
ompositional model 
he
king is linear in the size of M and a smallpolynomial in the size of T .Proof. The 
omplexity of 
he
king M j=w AT , by Theorem 9, is O(jM j:jT j3).The size of Aef , the automaton that 
he
ks ordering between events e and f ,is quadrati
 in jT j, and there may be jT j2 su
h automata. Thus the time
omplexity of 
he
king M j=s AT is O(jM j:jT j4). �We will demonstrate in following se
tion that the de
ompositional ap-proa
h to model 
he
king yields non-trivial savings in spa
e and time.3.5 Appli
ationsWe demonstrate the use of these algorithms in the veri�
ation of a master-slavememory system using the model 
he
ker VIS [BHSV+96℄.
Req

Ack

Data

Read
Write

SlaveSlaveMaster

Addr Figure 3.9: Master-Slave Ar
hite
tureIn the master-slave system (Figure 3.9), the master issues a read or awrite instru
tion by asserting the 
orresponding line, and the slaves respond39



by a

essing memory and performing the operation. The master 
hooses theinstru
tion, puts the address on the address bus and then asserts the req signal.The slave whose tag mat
hes the address awakens, servi
es the request, thenasserts the a
k line on 
ompletion. Upon re
eiving the a
k signal the masterresets the req signal, 
ausing the slave to reset the a
k signal. Finally, themaster resets the address and data buses. The memory read (Figure 3.10) andwrite (Figure 3.11) 
y
les are spe
i�ed as RTDs, interpreted under the weakiterative semanti
s.
Req

Idata

Addr

Ardy

Read

Ack

 A XX

Figure 3.10: RTD for the Memory Read Cy
leThe master-slave system was simpli�ed by abstra
ting away inessentialdetails. First, the address bus was simpli�ed to the tag of the slaves. Sin
eVIS does not allow shared variables, the bidire
tional data bus is representedas two 1-bit boolean variables, Idata and Odata that denote the input andoutput data buses respe
tively. The begin-
ondition for the read RTD is thestate that has Ardy, Idata, Req, A
k and Write being assigned 0 (low), thevalue of the address bus Addr is unknown and the Read signal is asserted.The end-
ondition for the read RTD is the state following the diagram whereall the signals are low and Addr is X. The RTDs have a high degree of40



ambiguity sin
e there is ordering spe
i�ed for most of the de-assertion eventsin the diagram.
 AX X

Ardy

Odata

Req

Ack

Addr

Write

ReadFigure 3.11: RTD for the Memory Write Cy
leThe simpli�ed master-slave system is represented in Verilog, whi
h isthe input language of VIS. For both RTDs, we 
reated (as Verilog modules)both the 
omplement of the 8FA and the 
omplement NFA's for individualdependen
ies and waveforms.We veri�ed that the master-slave system satis�ed read and write RTDs,using both the de
ompositional and monolithi
 model 
he
king approa
hes.The language emptiness 
he
k passed for both the read and write RTDs. InTable 3.5, the rows with the suÆx (D) 
orrespond to a veri�
ation 
he
k involv-ing the master-slave system and a single waveform (or dependen
y) module.The suÆx (M) refers to a veri�
ation 
he
k with the master-slave system andthe produ
t of all the waveform and dependen
y modules. We observe thatthe monolithi
 veri�
ation is signi�
antly more expensive, in terms of BDDsize and spa
e, than a single de
ompositional 
he
k. For the read RTD, there41
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Table 3.1: Veri�
ation Statisti
s for Master-Slave Designwere 11 su
h 
he
ks and for the write RTD, there were 14 de
ompositional
he
ks. However, the total amount of time taken to 
he
k the entire diagramde
ompositionally was still less than time needed for the single monolithi

he
k. The results in Table 3.5 show that the de
ompositional pro
edure isindeed feasible and that the size of the system to be veri�ed together with asingle dependen
y automaton may not be signi�
antly larger, in terms of BDDvariables, than the system itself.3.6 Related Work and Con
lusionsSeveral resear
hers have investigated timing diagrams and their use in au-tomated veri�
ation. Boriello [Bor92a℄ proposes an approa
h to formalizingtiming diagrams. Timing diagrams are des
ribed informally as regular expres-sions but no spe
i�
 details or translation algorithms are given. Many otherresear
hers [AL92, Thu96, RMM+93, Cin93℄ have formalized timing diagramsand translated them to other formalisms (interval logi
s, trigger graphs et
.).42



Cerny et al. present a pro
edure [KC98℄ for verifying whether the �nite be-havior of a set of a
tion diagrams (timing diagrams) is 
onsistent; [JC98℄ uses
onstraint logi
 programming to 
he
k if a system satis�es �nite a
tion dia-gram spe
i�
ations. Formal notions of timing diagrams have also proved tobe useful in test generation and logi
 synthesis (
f. [Tie92, GGL+95, FS96℄).Fisler [Fis96, Fis97℄ proposes a highly expressive timing diagram syn-tax and semanti
s that allows non-regular languages, and �nds that theselanguages o

ur at all levels of the Chomsky hierar
hy. The paper [Fis97℄provides a de
ision pro
edure that determines whether a regular language is
ontained in an unambiguous timing diagram language. This de
ision pro
e-dure [Fis97℄ has a high 
omplexity (in PSPACE), while our algorithms havepolynomial time 
omplexity in the diagram size. They also provide algorithmsthat translates a 
ertain 
lass of timing diagrams into CTL [Fis96℄ and !-automata [Fis00℄. A key di�eren
e with our work is that these algorithms arerestri
ted to a subset of unambiguous timing diagrams under the invariantsemanti
s, while our algorithms are de�ned for all types of diagrams.An important 
ontribution in this area is the work done by Dammand 
olleagues at the University of Oldenburg on Symboli
 Timing Diagrams(STD's) [DJS94, S
h95, DHKS94, HSD+93, DH94℄. STD's may be 
ompiledinto �rst-order temporal logi
 formulae whi
h are then used for model 
he
king.STD's are extended in [FJ97, Fey94℄ to RTSTD's (Real-time STD's), wherea translation into a timed propositional temporal logi
 TPTL is provided.Both these resear
h e�orts 
onsider in�nite languages and ambiguity. A keydi�eren
e with our work lies in the fa
t that their translation is monolithi
, inthe sense that all dependen
ies are 
onsidered together; this 
an result in anexponential blowup in the size of the resulting formulae when the diagram is43



highly ambiguous. While it is possible to model 
he
k the �rst order temporallogi
 presented in [DJS94, Fey94℄, the pro
edure is not very eÆ
ient.In this 
hapter, we introdu
ed Regular Timing Diagrams (RTDs) that
an be used to spe
ify temporal properties of asyn
hronous systems. We pre-sented polynomial time, de
ompositional algorithms for model 
he
king RTDspe
i�
ations, whi
h are based on a de
omposition of the RTD semanti
s intoproperties of ea
h waveform and the way they intera
t. Su
h de
ompositionsmay also provide a way of 
omposing RTDs and thereby building new RTDshierar
hi
ally. Our algorithms generate a 8FA (!-NFA ) 
orresponding to theRTD (the negation of the RTD). We 
an 
hoose to use either the 8FA (bysplitting it into smaller automata) or its 
omplement !-NFA in verifying thata system satis�es an RTD. These algorithms are a signi�
ant improvementover the earlier possibly exponential, monolithi
 translations. We have shownhow our algorithms may be used in 
onjun
tion with a symboli
 model 
he
ker,su
h as VIS, to verify systems with spe
i�
ations formulated as RTDs.
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Chapter 4
Syn
hronous Regular TimingDiagrams

4.1 Introdu
tionIn Chapter 3, we proposed a 
lass of timing diagrams 
alled RTDs (for Reg-ular Timing Diagrams) that are parti
ularly well-suited for des
ribing asyn-
hronous timing, su
h as that arising, for instan
e, in asyn
hronous read/writebus transa
tions. It is also quite 
ommon to have a syn
hronous timing spe
-i�
ation, where the 
hanges in values along a signal waveform are tied to therising or falling edges of a 
lo
k waveform. While these syn
hronous spe
i�-
ations 
an be en
oded as RTDs, the en
oding introdu
es a large number ofdependen
y edges between ea
h transition of the 
lo
k and ea
h waveform,whi
h results in RTDs that are visually 
luttered and have (unne
essarily)in
reased 
omplexity for model 
he
king. Hen
e, the initial motivation forintrodu
ing a new notation for syn
hronous timing properties was expressive-45



ness. Another key issue in using timing diagrams for model 
he
king is whetherthe algorithms that translate timing diagrams into more basi
 spe
i�
ation for-malisms su
h as temporal logi
 or !-automata yield formulas or automata thatare of small size. Previous work on model 
he
king for timing diagrams, e.g.,with Symboli
 Timing Diagrams [DJS94, Ben98, BW98b℄, with non-regulartiming diagrams [Fis97℄ and with Presburger arithmeti
 [ABHL97℄ providesalgorithms that are, in the worst-
ase, of exponential or higher 
omplexityin the size of the diagram. The regular stru
ture of the syn
hronous tim-ing diagrams used in pra
ti
e led us to believe that more eÆ
ient translationpro
edures were indeed possible.The SRTD notation proposed in this Chapter is, therefore, tailored to-wards des
ribing syn
hronous timing spe
i�
ations in a visually 
lean manner.We pre
isely de�ne the 
lass of timing diagrams 
alled Syn
hronous RegularTiming Diagrams (SRTDs). We provide a formal syntax and semanti
s that
orresponds 
losely to the informal usage. We present de
ompositional model
he
king algorithms that 
onstru
t an !-automaton of size linear in the tim-ing diagram size (
ompared with a polynomial size 
omplexity in [AEN99℄for RTDs). This automaton, whi
h represents all system 
omputations thatfalsify the diagram spe
i�
ation, is 
omposed with the system model and itis 
he
ked if the resulting automaton has an empty language using standardalgorithms. This results in a model 
he
king pro
edure that is linear in thesize of both the system and the SRTD spe
i�
ation.This algorithm has been implemented in a tool - the Regular TimingDiagram Translator (Rtdt). Rtdt provides a user-friendly graphi
al editorfor 
reating and editing SRTDs and a translator that 
ompiles SRTDs to the46



input language of the formal veri�
ation tool COSPAN. The details of the mainfeatures of Rtdt 
an be found in Chapter 6. We used Rtdt and COSPANto verify several SRTD properties of two systems, a syn
hronous master-slavememory a

ess system and Lu
ent's synthesizable PCI Core. We veri�ed thatthe master-slave system satis�ed the read and write transa
tions, whi
h werespe
i�ed as SRTDs. The se
ond example, the PCI Core, was 
onsiderablylarger. In this 
ase, the SRTD properties were formulated by looking at thea
tual timing diagrams in the PCI Lo
al Bus spe
i�
ation [Gro95℄ and thePCI Core User's manual [BL96℄.The rest of the Chapter is organized as follows. Se
tion 4.2 presentsthe syntax and semanti
s of SRTDs. In Se
tion 4.3, we des
ribe the de
ompo-sitional translation algorithms that 
onvert SRTDs into !-automata. Se
tion4.4 illustrates appli
ations of the Rtdt tool to a master-slave memory a

essproto
ol and the synthesizable PCI Core of Lu
ent's F-Bus. We 
on
lude witha dis
ussion of related work in Se
tion 4.5.4.2 Syn
hronous Regular Timing DiagramsA Syn
hronous Regular Timing Diagram (hen
eforth referred to as an SRTD ordiagram), in its simplest form, is spe
i�ed by des
ribing a number of waveformswith respe
t to the 
lo
k. A 
lo
k point is de�ned as a 
hange in the value ofthe 
lo
k signal. The 
lo
k is depi
ted as waveform de�ned over B = f0; 1gwhere the value toggles at 
onse
utive 
lo
k points. A 
lo
k 
y
le is the periodbetween any two su

essive rising or falling edges of the 
lo
k waveform.In SRTDs, an event must o

ur at either a rising edge of the 
lo
k (risingedge triggered) or at a falling edge (falling edge triggered). In the SRTD in47



Figure 4.1, signals p and r are falling edge triggered while q is triggered oneither edge.4.2.1 SyntaxA waveform in an SRTD is de�ned over a pre-de�ned domain of values. Thisdomain may, for example, be an enumerated type or all the possible valuesof an address bus. In Figure 4.1, the waveforms P and R are de�ned overthe set of booleans B and waveform Q is de�ned over a set of values thatin
ludes the value \a". In addition to representing these values, it is usefulto be able to express that the value of a signal during a 
ertain period is notimportant. We use don't-
are values to spe
ify that the value at a point isunknown, unspe
i�ed or unimportant. In Figure 4.1, the don't-
are values onwaveform Q are used to state that value of signal Q is unspe
i�ed. In orderto spe
ify properties su
h as \if signal B rises then signal A rises within 5time units", we need a way of stating that the exa
t o

urren
e of the risingtransition of A is not important as long as it is within the spe
i�ed time bound.In SRTDs, we use a don't-
are transition to graphi
ally represent this temporalambiguity. The don't-
are transition is de�ned for a parti
ular waveform overone or more 
lo
k 
y
les; its semanti
s spe
i�es that the signal may 
hangeits value at any time during the spe
i�ed interval and that, on
e it 
hanges,it remains stable for the remainder of the interval. This stability requirementis the only di�eren
e between don't-
are transitions and don't-
are values. InFigure 4.1, the don't-
are transition allows signal R to rise in either the thirdor fourth 
lo
k 
y
le.In addition, in loosely 
oupled systems, it may not always be ne
essary48
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precondition marker

pause marker don’t−care transitionFigure 4.1: Annotated Syn
hronous Regular Timing Diagramto expli
itly tie every event to the 
lo
k. This is useful in stating eventualityproperties like \every memory request is eventually followed by a grant", andis represented diagrammati
ally by a pause marker. A pause spe
i�es thatthere is a break in expli
it timing at that point, i.e. the state of the signals(ex
ept the 
lo
k) remains un
hanged (stutters) for an arbitrary �nite periodof time before 
hanging. In Figure 4.1, the pause at the end of the se
ond
lo
k 
y
le indi
ates that the state hP = 1; Q = a; R = 0i stutters for a �niteperiod until P 
hanges at a falling edge (the angle bra
kets indi
ate the tupleof values of the signals at a 
lo
k edge, while \;" indi
ates su

ession in time,measured by 
lo
k edges). The pauses allow us to express ri
her propertieslike \if req is asserted and stays high then eventually grant is asserted".In most appli
ations of timing diagrams, the waveform behavior spe
-i�ed by the diagram must hold of a system only after a 
ertain pre
ondition49



holds. This 
ondition may be a boolean 
ondition on the values of one ormore signals (a state 
ondition), or a 
ondition on the signal values over a �-nite period of time (a path 
ondition). To a

ommodate this type of reasoning,we permit the more general form of path pre
onditions to be spe
i�ed in anSRTD. Pre
onditions are spe
i�ed graphi
ally by a solid verti
al marker thatpartitions the SRTD into two disjoint parts, a pre
ondition part that in
ludesall the events at and to the left of the marker and a post
ondition part that
ontains all the events to the right of the marker. Given that the domain ofwaveform Q is the set fa; bg, then the pre
ondition of the diagram in Figure4.1 is a path pre
ondition, given by the path hP = 0; Q = a + b; R = 1i;hP = 0; Q = a + b; R = 0i;hP = 0; Q = a+ b; R = 0i.We have observed that, in pra
ti
e, both pauses and don't-
are obje
tso

ur in timing diagrams, and that pre
onditions are often impli
it in theassumptions that are made with respe
t to when a diagram must be satis�ed.In reviewing many spe
i�
ations and from our dis
ussion with engineers, weare led to believe that SRTDs 
orrespond 
losely to informal usage and areexpressive enough for industrial veri�
ation needs.We now de�ne SRTDs formally. A waveform A is de�ned over a set ofsymboli
 values, SVA= VA [fX;Dg, whereX is a don't-
are value, D indi
atesa don't-
are transition and VA is the domain of A. The set SV is ordered byv , where a v b i� either a=b or a 2 fX;Dg and b 2 V. The alphabet of anSRTD, de�ned over a set of signals S=fp; q; :::; rg, is SV(S)=f(apaq:::ar)jap 2SVp ^ ::: ^ ar 2 SVrg.De�nition 13 (SRTD) An SRTD T is a tuple (
,S,WF,M) where� 
 > 1 is an integer that denotes the number of 
lo
k points.50



� S is a non-empty set of signal names (ex
luding the 
lo
k).� WF is a 
olle
tion of waveforms; for ea
h signal A 2 S, its asso
iatedwaveform is a fun
tion WFA : [0; 
) ! SVA, while the asso
iated wave-form for the 
lo
k is WF
lk : [0; 
)! B.� M is a �nite (non-empty) as
ending sequen
e 0 �M0<M1<...<Mk�1 <
� 1 of position markers. M0 is the pre
ondition marker, while for ea
hi > 0, Mi is the i-th pause marker.To fa
ilitate de�ning the semanti
s as well as the algorithms it is alsohelpful to view an SRTD as a 
olle
tion of segments, where ea
h segment isessentially a verti
al sli
e of the timing diagram, en
ompassing all waveformsbetween two su

essive markers or a marker and the start/end of the diagram.The k markers inM partition the interval [0; 
) in an SRTD T into k+1 disjointsub-intervals I0=[0;M0℄, I1=(M0;M1℄,...,Ik�1= (Mk�2;Mk�1℄, Ik=(Mk�1; 
�1℄.The length m0 of the interval I0 isM0+1, while for intervals Ii, with i 2 [1; k),the length mi of Ii is Mi � Mi�1, and the length of the last interval Ik is
�1�Mk�1. The k markers, therefore, partition an SRTD into k+1 segments.De�nition 14 (Segment) The segment Segi (i 2 [0; k℄) that 
orresponds tothe interval Ii of length mi is de�ned to be a fun
tion Segi : S� [0; mi)! SV,where for ea
h j 2 [0; mi) and A 2 S, Segi(A)(j) = WFA(j) when i = 0 andSegi(A)(j) = WFA(Mi�1 + 1 + j) when i > 0.Any SRTD T = (
; S;WF ;M) 
an be represented as the tuple of seg-ments (Pre; Post1; :::; P ostk) as de�ned above. Segment Pre (Seg0) representsthe pre
ondition, while segments Posti(Segi), for i > 0, represent su

essive51



post-
ondition segments. For instan
e, the SRTD in Figure 4.1 has three seg-ments, one pre
ondition segment and two post
ondition segments. For ea
hsignal A, Segi(A) is a fun
tion from [0; mi)! SVA whi
h des
ribes the wave-form for signal A in the ith segment. This representation of an SRTD is usefulin the sequel.De�nition 15 (Pre
isely Lo
atable) An event of waveform A o

urring ata 
lo
k point t is pre
isely lo
atable if and only if WFA(t � 1) 62 fX;Dg andWFA(t) 62 fX;Dg.In Figure 4.1, the falling edge of waveform P in the third 
lo
k 
y
leis pre
isely lo
atable while the don't-
are transition in waveform R is not apre
isely lo
atable event.We will now des
ribe the well-formedness 
riteria on SRTDs.De�nition 16 (Well-formed SRTD) An SRTD T = (Pre; Post1; :::; P ostk)is well-formed i�1. The pre
ondition segment Pre does not have any don't-
are transitions,i.e. Pre is de�ned over SVnfDg.2. Ea
h waveform in the pre
ondition Pre of length m must either have nodon't 
are values or all m values must be don't-
are values.3. For every pause marker Mi, there exists at least one pre
isely lo
atableevent at either 
lo
k point Mi + 1 or Mi + 2.4. For every maximal non-empty sequen
e of don't-
are transitions of theform (a;D+; b) in a waveform A, a; b 2 VA and a 6= b.52



5. Every event in a waveform designated as rising(falling) edge triggeredmust o

ur at a rising(falling) edge of the 
lo
k.We 
an relax the �rst two requirements, to obtain a general SRTD,and our translation algorithms are still appli
able. In this 
ase, however, theresulting translation may be exponential in the size of the Pre; this issue willbe dis
ussed in Se
tion 4.3.4.2.2 Semanti
sAn SRTD de�nes properties of 
omputations, whi
h are sequen
es of states,where a state is an assignment of values to ea
h of the n waveform signals. A
omputation is de�ned over the alphabet V = f(ap; aq; :::; ar)j ap 2 VP^:::^ar 2Vrg, for signals p; q; :::; r. For any 
omputation y, we use yA to denote theproje
tion of y on to the 
oordinate for signal A.De�nition 17 ( _v ) For a �nite waveform segment Segi(A) : [0; mi)! SVAand a proje
tion yA of 
omputation y with length mi (yA 2 VmiA ), Segi(A) _v yAi� � For every p 2 [0; mi), Segi(A)(p) v yA(p).� For every p; q, if Segi(A)[p::q℄ has the form (a;D+; b) then yA[p::q℄ hasthe form (a+; b+).De�nition 18 (Segment Consisten
y) A segment Segi of length mi is sat-is�ed by a sequen
e y 2 Vmin i� for ea
h signal A, Segi(A) _v yA holds.Let y = h0; b; 1i; h0; a; 0i;h0; a; 0i denote the �nite sequen
e where hP =0; Q = b; R = 1i; hP = 0; Q = a; R = 0i;hP = 0; Q = a; R = 0i. In Fig-ure 4.1, the pre
ondition segment Pre is satis�ed by y. The post
ondition53



segment Post1 is satis�ed by the sequen
e h1; a; 0i;h1; a; 0i; h1; a; 0i; h1; a; 0i.Observe that the pause allows the state h1; a; 0i to stutter for a �nite pe-riod. The �nal post
ondition segment Post2 is satis�es by a sequen
e y =h0; a; 0i;h0; b; 0i;h0; a; 1i; h0; b; 1i.We will now 
onstru
t regular expressions for the pre
ondition PreT andthe post
ondition PostT of a SRTD T . By the de�nition of segment 
onsis-ten
y, any Pre or Posti segment 
an be represented as an extended regular ex-pression of the formVs2S rs, where rs en
odes the 
onstraints for the waveformfor signal s in the segment. The regular expression for PostT is the 
on
ate-nation of sub-expressions that 
orrespond to ea
h Posti segment separated byan expression for ea
h pause. Thus, PostT = (seg1; val�1; seg2; val�2; :::; segk�1),where segi is the regular expression for segment Posti and vali is the ve
torof values at the last position (mi � 1) in Posti, whi
h is at the pause markerseparating it from Posti+1.We use h0; a; (0 + 1)i to mean (h0; a; 0i + h0; a; 1i) in the followingexpressions. For the SRTD T shown in Figure 4.1, the regular expressionfor PreT is (h0; (a + b); 1i;h0; (a + b); 0i;h0; (a + b); 0i). The regular expres-sion for PostT is (h1; a; 0i; h1; a; 0i ;h1; a; 0i�;h0; a; (0 + 1)i;h0; (a+ b); (0 + 1)i;h0; (a+ b); 1i;h0; (a+ b); 1i).De�nition 19 (Always followed-by) G(p ,! q) holds of a 
omputation �i�, for all i, j su
h that j � i, if sub-
omputation �[i : : : j℄ j= p, then thereexists k su
h that �[j + 1 : : : k℄ j= q.In the de�nition above, p and q are arbitrary path properties; however,when p is a state property, G(p ,! q) is equivalent to G(p ) Xq), whereX is the next time operator. An in�nite 
omputation � satis�es an SRTD T54



(written � j= T ) if and only if every �nite segment of � that satis�es the pre-
ondition is immediately followed by a segment that satis�es the post
onditionof the diagram. The pre
ondition, however, may be satis�ed in an overlappingmanner, whi
h leads to two distin
t notions of satisfa
tion, overlapping andnon-overlapping semanti
s. This is formalized in following de�nitions.De�nition 20 (Overlapping Semanti
s) An in�nite 
omputation � satis-�es anSRTD T (� j=o T ) i� � j= G(PreT ,! PostT ).To de�ne non-overlapping semanti
s, it is 
onvenient to assume thatthere is an auxiliary proposition p su
h that for all sequen
es �, p is true atthe ith point i� PreT is satis�ed by a pre�x of the suÆx sequen
e starting atpoint i.De�nition 21 (Non-overlapping Semanti
s) An in�nite 
omputation �satis�es an SRTD T under the non-overlapping semanti
s (� j=n T ) i� ev-ery o

urren
e of PreT that does not overlap an o

urren
e of PreT or PostTis immediately followed by an o

urren
e of PostT . This is true i� � 2((:p)�;PreT ;PostT )! + ((:p)�;PreT ;PostT )�; (:p)!.Consider the SRTD T in Figure 4.2 and the in�nite sequen
e � = y!,where y = h0; 1i;h0; 0i;h1; 0i;h1; 0i;h0; 1i;h0; 1i;h1; 1i. The pre
ondition of T isthe state formula h0; 1i and this state o

urs again at the start of the third
lo
k 
y
le. Clearly � j=n T but � 6j=o T , sin
e the se
ond o

urren
e of thepre
ondition along � violates the post
ondition of the diagram.Proposition 0 For any SRTD T , � j=o T implies � j=n T .55
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Figure 4.2: SRTD with an Overlapping Pre
onditionProof.� j=o T , by De�nition 20, means that every o

urren
e of PreT is followedby PostT . Let us now assume that � 6j=n T . Therefore, (by De�nition 21)� 62 ((:p)�;PreT ;PostT )! and � 62 ((:p)�;PreT ;PostT )�; (:p)!. Clearly � 62((:p)�; PreT ;PostT )! violates the ante
edent. � 62 ((:p)�;PreT ;PostT )�; (:p)!is false, if PreT never holds along �, and if PreT holds a �nite number of timesthen the previous argument holds. Thus, we have a 
ontradi
tion and � j=n T .�4.3 Model Che
king SRTDsWe �rst present an algorithm that translates an SRTD T with the overlappingsemanti
s into an !-automaton for the negation of the SRTD property. Next,we will present a similar translation algorithm for the non-overlapping seman-ti
s. We then present a de
ompositional model 
he
king algorithm that makeuse of these automata.
56



4.3.1 Translation Algorithm for Overlapping Semanti
sThe algorithm 
onstru
ts a !-NFA that 
orresponds to the 
omplement of theSRTD under the overlapping semanti
s. The algorithm pro
eeds by de
om-posing T into waveforms and produ
ing sub-automata that tra
k portions ofea
h waveform. It 
onsists of the following steps.Algorithm 31. Constru
t a single deterministi
 automaton Apre for the pre
ondition.This automaton tra
ks the values of all signals simultaneously over thenumber of 
lo
k 
y
les of the pre
ondition. Sin
e the pre
ondition 
annot
ontain don't-
are transitions, this automaton has linearly many statesin the length of the pre
ondition.2. Constru
t a DFA Apost(i) for ea
h signal i of the post
ondition. Thisautomaton 
he
ks at ea
h 
lo
k point that the waveform has the spe
i�edvalue. For a don't-
are transition, the automaton maintains an extrabit that re
ords whether the transition has o

urred. For a pause, theautomaton goes into a \waiting" state, where it 
he
ks that the value ofthe signal remains un
hanged, and whi
h it leaves when the pause ownersignal 
hanges value. The automaton for signal i a

epts a 
omputationi� either the waveform pattern is in
orre
t at some point, or if signal iis the owner of the kth pause in T and the automaton stays in3. Constru
t an NFA AT for the negation of the SRTD property of T thatoperates as follows on an in�nite input sequen
e: it nondeterministi
ally\
hooses" a point where the pre
ondition holds, runs the DFA Apre atthis point and if Apre a

epts it then \
hooses" a post
ondition DFA57



Apost(i) and runs this automaton at the point where Apre a

epted anda

epts if this automaton a

epts. If Apost(i) terminates (so the post
on-dition holds for signal i), AT returns to its initial state.As a 
onsequen
e of Theorem 0, an SRTD T 
an be represented su
-
in
tly by a 8FA AT that is obtained by 
omplementing the a

eptan
e 
on-dition of the NFA AT .
B

A

Clock
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���������������
���������������Figure 4.3: SRTD with Don't-Care Values in the Pre
onditionConsider the SRTD in Figure 4.3, the 
orresponding monolithi
 DFAApre, and the DFA's Apost(A) and Apost(B) for post
ondition of waveforms Aand B respe
tively, are shown in Figure 4.4 and Figure 4.5 respe
tively.

(A,B)

(A,B) (A,B)

(A,B) (A, B)

(A,B)

Figure 4.4: The DFA Apre for the Overlapping Semanti
sIn Figure 4.5, we show the post
ondition DFA's, Apost(A) and Apost(B).These automata 
an be easily 
omplemented to get Apost(A) and Apost(A).A key attribute of the 
onstru
tion is the way the pauses are handled.The NFA shown in Figure 4.6, has a fairness 
onstraint on state s in Apost(A)58
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s

Figure 4.5: DFA's for the Post
ondition of Waveforms A (top) and B (bottom)that prevents it from staying in this state forever. There are, however, nofairness 
onstraints imposed on Apost(B). The !-NFA AT is shown in Figure4.6.
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Figure 4.6: !-NFA for the Complement of the SRTD in Figure 4.3
Theorem 11 (Corre
tness) For any SRTD T and x 2 V!, x j=o T i�x 2 L(AT ). 59



Proof.() ) Let us assume that x 2 L(AT ). Thus, there is a sub-sequen
e x[m::p℄,where x[m::n℄ 2 L(Apre) and x[n+1::p℄ 2 L(Aposti), for some signal i 2 S andsome p. x j=o T is (by De�nition 20) x j= G(PreT ,! Vi Posti). Clearly, sin
ex j=o T , su
h a sub-sequen
e does not exists and we have a 
ontradi
tion andx 2 L(AT ).(() An a

epting run of AT 
orresponds to either Apre a

epting at point xnand for some signal i 2 S, (x[n + 1::p℄ # i) 2 L(Apost(i)) or Apre never beingsatis�ed along x. By de�nition 2, x 2 L(AT ) if every run of AT on x is a

ept-ing. Thus, ifApre a

epts at point xn then x[n+1::p℄ is a

epted by automatonfor the produ
t of the Apost(i) automata. Therefore, x j= G(PreT ,! Vi Posti)and x j=o T .� The size of an SRTD is the produ
t of the number of signals and thenumber of 
lo
k 
y
les. The number of 
lo
k 
y
les does not in
lude theindeterminate amount of time represented by a pause; it refers only to theexpli
itly indi
ated 
lo
k 
y
les in the diagram.Theorem 12 (Overlapping Complexity) For any SRTD T and the equiv-alent 8FA AT , the size of AT is linear in jT j.Proof.The size of an SRTD T=(Pre; Post1; :::; P ostk) is n� 
, where n is the numberof waveforms and 
 is the number of 
lo
k points. We assume that the tran-sitions in AT are labeled with boolean formulas over the n signals. The sizeof the transitions in AT is the sum of the length of the formulas labeling thetransitions. The size of AT is s + t, where s is the number of states and t is60



the transition size.The number of states s in the monolithi
 automaton for the pre
onditionApre, is bounded by the number of 
lo
k points in the pre
ondition, therefores < 
. Sin
e ea
h transition en
odes the values of the signals at ea
h point, thesize of ea
h transition is O(n) and the number of su
h transitions is boundedby 
. Thus, the transition size is linear in jT j.The number of states s in Apost(i) is bounded by the number of 
lo
kpoints 
, therefore s � 
. The transitions are labeled with 
onstant size for-mulae, sin
e by 
onstru
tion a pause transition is dependent on at most oneother signal value. Thus, the overall transition size for Apost(i) is bounded by
; hen
e, Apost(i) has size linear in 
.The size of the 8FA AT is the sum of the sizes of the pre
ondition andthe n post
ondition automata and is thus jAprej + n. jApost(i)j = n:
 + n:
 =O(jT j).�4.3.2 Translation Algorithm for Non-overlapping Seman-ti
sWe now present the algorithm that 
onstru
ts an !-NFA for the 
omplementof the SRTD property under the non-overlapping semanti
s.To 
onstru
t an !-NFA AT for the 
omplement of the timing diagramlanguage of T , we pro
eed as follows.Algorithm 41. Constru
t a deterministi
 automaton Apre from PreT that a

epts at the�rst point on a string where the pre
ondition holds. We do so by 
reating61



a non-deterministi
 automaton that a

epts the language (��;PreT ) anddeterminizing it, so that it enters an a

epting state at every point onan input string where PreT holds. We then eliminate outgoing edgesfrom a

epting states of this automaton. There are only linearly manyrea
hable states, as the rea
hable part of the DFA is just the automatonfor the string mat
hing problem, whi
h 
an be 
onstru
ted eÆ
iently (
f.[CLR90℄). For general SRTDs, the DFA Apre may be exponential in thelength of the pre
ondition.2. Constru
t an DFA Apost(i), for ea
h signal i, that tra
ks the waveformfor signal i over the length of the post
ondition. This automaton 
he
ksat ea
h 
lo
k point that the waveform has the spe
i�ed value. For adon't-
are transition, the automaton maintains an extra bit that re
ordswhether the transition has o

urred. For a pause, the automaton goesinto a \waiting" state, where it 
he
ks that the value of the signal remainsun
hanged, and whi
h it leaves when the pause owner signal 
hangesvalue. The automaton for signal i a

epts a 
omputation i� either thewaveform pattern is in
orre
t at some point, or if signal i is the ownerof the kth pause in T and the automaton stays in the waiting state forpause k forever.3. The automatonAT works in the following manner: from the initial state,it runs Apre on the input until this a

epts; then it guesses a failingpost
ondition signal i and runs Apost(i), a

epting if this a

epts. IfApost(i) terminates (so the post
ondition holds for signal i), AT returnsto its initial state.Let us 
onsider the SRTD in Figure 4.3, the 
onstru
ted DFA Apre62



for the pre
ondition is shown in Figure 4.7. Note that this 
onstru
tion ofApre a

epts the language (��;PreT ) as opposed to PreT in the overlappingsemanti
s. There is no 
hange in the 
onstru
tion of the post
ondition au-tomata shown in Figure 4.5. There is a minor 
hange in the NFA AT as shownin Figure 4.8.
(−,B) (−,B) (−,B)

(−,B) (−,B)

(−,B)Figure 4.7: The DFA Apre for Non-Overlapping Semanti
s
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Figure 4.8: !-NFA AT for the Complement of the SRTD in Figure 4.3Theorem 13 (Corre
tness) For any SRTD T and in�nite sequen
e x, x j=nT i� x 2 L(AT ).Proof.() ) x j=n T i� (by de�nition 21) x 2 ((:p)�;PreT ; PostT )! + ((:p)�;PreT ;63



PostT )�; (:p)!, where p is a proposition that is true at xi i� x[i::j℄ 2 L(PreT ).Let us assume that x 2 L(AT ). Thus, there is a sub-sequen
e ((:p)�; x[m::n℄;x[n+ 1::o℄), su
h that x[m::n℄ 2 L(Apre) and x[n+ 1::o℄ 2 L(Aposti), for somei 2 S and some o. Sin
e x j=n T , su
h a sub-sequen
e does not exists, thusx 2 L(AT ).(() An a

epting run of AT along x 
orresponds to either (i) p never beingsatis�ed along x, or (ii) there is a sequen
e ((:p)�; x[m::n℄; x[n + 1::o℄) wherex[m::n℄ 2 L(Apre) and for some signal i 2 S, (x[n + 1::o℄ # i) 2 L(Apost(i)).By de�nition 2, x 2 L(AT ) i� every run of AT on x is a

epting. Thus,if Apre a

epts at point xn then x[n + 1::o℄ is a

epted by automaton forthe produ
t of the Apost(i) automata. Clearly x 2 ((:p)�;PreT ;PostT )!+((:p)�;PreT ;PostT )�; (:p)!, hen
e x j=n T .�Theorem 14 (Non-overlapping Complexity) For any SRTD T and theequivalent 8FA AT , the size of AT is linear in the size of PreT and PostT .Proof.The size of an SRTD T is n � 
, where n is the number of waveforms and 
 isthe number of 
lo
k points. The size of the transitions in AT is the sum of thelength of the boolean formulas labeling the transitions. The size of AT is thesum of the number of states and the transition size.Let p be the number of 
lo
k points in PreT where p < 
. The mono-lithi
 automaton Apre must re
ognize V�;PreT . Ea
h waveform segment, byDe�nition 16, in the pre
ondition must either 
ontain all don't-
are values ornone at all. Therefore, Apre must either tra
k the waveform or not, so thenumber of states s in Apre is bounded by the number of 
lo
k points 
. Sin
e64



ea
h transition en
odes the values of the signals at ea
h point, the size of ea
htransition is O(n) and the number of su
h transitions is also bounded by 
.Thus, the size of Apre is linear in jT j.The number of states s in Apost(i) is bounded by the number of 
lo
kpoints 
, therefore s � 
. The transitions are labeled with 
onstant size for-mulae, sin
e by 
onstru
tion a pause transition is dependent on at most oneother signal value. Thus, the overall transition size for Apost(i) is bounded by
; hen
e, Apost(i) has size linear in 
.The size of the 8FA AT is the sum of the sizes of the pre
ondition andthe n post
ondition automata and is thus jAprej + n. jApost(i)j. Therefore thesize of AT is is linear in the size of T .� We 
an relax 
onditions 1 and 2 in the de�nition of a well-formed SRTD(De�nition 16) to obtain a general SRTD; that is we allow don't-
are transi-tions and arbitrary don't-
are values in the pre
ondition. The size of the re-sulting 8FA AT for a general SRTD T is linear in the size of the post
onditionbut is exponential in the size of the pre
ondition.Theorem 15 (Complexity for General SRTDs) For a general SRTD Tand the equivalent 8FA AT , the size of AT is linear in the size of PostT andexponential in the size of PreT .Proof.Let p be the number of 
lo
k points in PreT where p < 
. Apre must re
ognizethe �rst o

urren
e and all subsequent non-overlapping o

urren
es of PreT .Hen
e Apre must remember the a
tual values seen on the signals that havedon't-
are values. Overlapping don't-
are transitions introdu
e a similar blow-65



up sin
e Apre must now remember at ea
h state whether ea
h of the don't-
aretransitions has made the transition to the new value. Therefore, the numberof states s in Apre, is bounded by jVjp+1. Sin
e ea
h transition en
odes thevalues of the signals at ea
h point, the size of ea
h transition is O(n) and thenumber of su
h transitions is bounded by jVjp+1. Thus, the size of Apre isexponential in jT j.The size of the 8FA AT is the sum of the sizes of the pre
ondition andthe n post
ondition automata and is thus jAprej + n. jApost(i)j. Therefore thesize of AT is is exponential in the size of PreT and linear in the size of PostT .�4.3.3 Model Che
kingWe 
an use the 
onstru
ted NFA AT des
ribed in the previous Se
tion di-re
tly in the automata-theoreti
 model 
he
king. Re
all that in the lan-guage 
ontainment paradigm, one model 
he
ks a system M with respe
t toa property P by 
he
king L(M) � L(P ), whi
h is equivalent to 
he
king thatL(M) \ :L(P ) = ;.In both the overlapping and non-overlapping 
ases, we 
an use the re-spe
tive translation algorithms to obtain an NFA AT for the negation of theSRTD T whi
h is linear in size of T . This yields a model 
he
king algorithmwhi
h is e�e
tively linear in both the size of the system and the SRTD T .Theorem 16 (Model Che
king Complexity) For a transition system Mand an SRTD T , the time 
omplexity of model 
he
king, under either theoverlapping semanti
s and non-overlapping semanti
s, is linear in the size ofM and T . 66



Proof.We know, by Theorems 12 and 14, that the 
onstru
ted NFA AT for thenegation of T is linear in the size of T . Therefore, by the results in [EL85a,EL85b℄, we know that 
he
king L(M) \ L(AT ) = ; is linear in the size of Mand T .� For general SRTDs, we have the following Theorem.Theorem 17 (Model Che
king Complexity for General SRTDs) Fora transition system M and a general SRTD T , the time 
omplexity of model
he
king, under either the overlapping semanti
s and non-overlapping seman-ti
s, is linear in the size of M and exponential in the size of T .Proof.We know, by Theorem 15, that the 
onstru
ted NFA AT for the negationof general SRTD T may be exponential in the size of PreT . Thus, 
he
kingL(M) \ L(AT ) = ; is linear in the size of M and PostT and exponential inthe size of PreT .
4.3.4 De
ompositional Model Che
kingDe
ompositional model 
he
king is an alternative way to use the 
onstru
tedautomata that exploits the 
onjun
tive nature of the 8FA AT . The propertyrepresented by the SRTD T is G(PreT ,! PostT ). Sin
e PostT = ViApost(i),this property 
an be de
omposed into the 
onjun
tion of individual 
he
ksG(Apre ,! Apost(i)). In a typi
al model 
he
ker, this 
he
k is performed bydetermining if there is a 
omputation of the system that satis�es the negation67



of the property. The 
he
k 
an be done by determining if there is a path toa point where Apre a

epts, followed by a 
omputation where Apost(i) a

epts.Hen
e, model-
he
king 
an be done with this de
omposed representation ofthe post
ondition.Theorem 18 (Overlapping De
ompositional Model Che
king) For atransition system M and an SRTD T , the time 
omplexity of de
ompositionalmodel 
he
king, under the overlapping semanti
s, is linear in the size of Mand quadrati
 in the size of T .Proof.The 8FA AT , 
orresponding to T under either semanti
s, is the automaton forG(Apre ,! Vi Apost(i)) where Apre is the automaton for Pre and ea
h Apost(i)is the automaton for the post
ondition segment of waveform i. The problemof 
he
king M j= AT 
an be de
omposed into ViM j= Ai, where Ai is theautomaton for G(Apre ,! Apost(i)). We 
an 
he
k M j= Ai in time linearin the size of M and Ai whi
h, by Theorem 12, is O(jM j:jT j). There jSjsu
h veri�
ation tasks, thus the time 
omplexity of model 
he
king M j=o Tde
ompositionally is O(jM j:jT j2).�Theorem 19 (Non-overlapping De
ompositional Model Che
king) Fora transition system M and an SRTD T , the time 
omplexity of de
ompositionalmodel 
he
king, under the non-overlapping semanti
s, is linear in the size ofM and quadrati
 in the size of T .Proof.Let Ai be the automaton that a

epts i� every sub-sequen
e a

epted by the68



non-overlapping automatonApre is followed by a sub-sequen
e that is a

eptedby Apost(i). The size of Ai is linear in jT j (by Theorem 14). The 
omplexity of
he
king, L(M) \ L(Ai) = �, is linear in the size M and Ai (by Theorem 16.There are jSj su
h 
he
ks; hen
e the 
omplexity of model 
he
king M j=n Tde
ompositionally is O(jM j:jT j2).� Theorems 18 and 19 shows that de
ompositional model 
he
king is moreexpensive (quadrati
 versus linear) than model 
he
king in the size of theSRTD. However, eÆ
ien
y with respe
t to spa
e is often of more pra
ti
alinterest. In our experiments, that are presented in the following Se
tion, wefound that the de
ompositional approa
h does indeed yield non-trivial savingsin spa
e. Thus, we feel justi�ed in trading time versus spa
e in this manner.This topi
 will be addressed in detail in the following se
tion.4.4 Appli
ationsThe true test of the eÆ
ien
y of our algorithms is how they fare in pra
ti
eon industrial examples of all sizes. Towards this end, we used Rtdt withCOSPAN to verify two systems. The �rst is a syn
hronous master-slave mem-ory system and the se
ond is the Lu
ents' PCI Interfa
e Core.4.4.1 Master-slave Memory SystemThe master-slave memory system 
onsists of one master module and three slavemodules. In the master-slave system, the master issues a memory instru
tionand the slaves respond by a

essing memory and performing the operation.The master initiates the start of a transa
tion by asserting either the read or69



clock

master.write

slave.data

slave.ack

master.req

master.addr

master.read

Figure 4.9: SRTD for the Read Transa
tionwrite line. Next the master puts the address on the address bus and assertsthe req signal. The slave whose tag mat
hes the address awakens, servi
esthe request, then asserts the a
k line on 
ompletion. Upon re
eiving the a
ksignal the master resets the req signal, 
ausing the slave to reset the a
k signal.Finally, the master resets the address and data buses.We veri�ed that this system satis�ed both read (see Figure 4.9) andwrite (see Figure 4.10) memory transa
tions formulated as SRTDs, with theoverlapping semanti
s. The SRTDs were 
reated with the Rtdt editor and thetranslator was used to generate the 
orresponding COSPAN des
riptions. Weused COSPAN to model 
he
k the system with respe
t to these des
riptions.Re
all that a monolithi
 translation of an SRTD yields an !-NFA that isessentially the produ
t (interse
tion) of the DFA's for ea
h waveform. In orderto 
ompare our de
ompositional algorithms with monolithi
 algorithms, we didthe veri�
ation 
he
ks both de
ompositionally and monolithi
ally. In Table4.1, read(M) 
orresponds to the veri�
ation 
he
k on the master-slave designand the monolithi
 automaton for the read SRTD while read(D) 
orresponds70
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slave.ack

master.req

master.addr

master.write

master.read

master.dataFigure 4.10: SRTD for the Write Transa
tionto the veri�
ation 
he
k done on the master-slave design and automata for asingle waveform. The numbers in Table 4.1 for BDD size, spa
e and time forthe de
ompositional 
he
k is the average over the individual veri�
ation 
he
ksfor ea
h waveform. For example, the total amount of time taken to verifythe read SRTD de
ompositionally was 3.23 se
onds and this is a little morethan the time taken for the single monolithi
 veri�
ation. Our veri�
ationnumbers show that the de
ompositional 
he
ks 
onsistently use less spa
e whilegenerally taking more time. Notwithstanding the Li
htenstein-Pnueli thesis[LP85℄, in pra
ti
e, as one rea
hes the spa
e limitations of symboli
 model
he
king tools, eÆ
ien
y with respe
t to spa
e is of more importan
e. Weobserve that the de
ompositional 
he
k, with respe
t to BDD size and spa
e,is not mu
h larger than the size of the system itself. The monolithi
 veri�
ationis, however, signi�
antly more expensive.
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Table 4.1: Veri�
ation Statisti
s for Master-Slave Design
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Lucent’s

Figure 4.11: Blo
k Diagram of Lu
ent's F-Bus with PCI Core4.4.2 Lu
ent's PCI Synthesizable CoreThe PCI Lo
al Bus is a high performan
e, 32-bit or 64-bit bus with multi-plexed data and address lines, whi
h is now an industry standard. The PCIbus is used as an inter
onne
t me
hanism between pro
essor/memory systemsand peripheral 
ontroller 
omponents. Lu
ent Te
hnologies' PCI Interfa
eSynthesizable Core is a set of synthesizable building blo
ks that designers 
anuse to implement a 
omplete PCI interfa
e. The PCI Interfa
e SynthesizableCore is designed to be fully 
ompatible with the PCI Lo
al Bus spe
i�
ation[Gro95℄. The Synthesizable Core bridges an industrial standard PCI bus to an72



F-Bus, whi
h is 32-bit internal bu�ered FIFO bus that supports a master-slavear
hite
ture with multiple masters and slaves.
PciClk_

PciFrameN_

PciIrdyN_

PciDevselN_

PciTrdyN_Figure 4.12: An SRTD Burst Property for the PCI BusWe used Lu
ent's PCI Bus Fun
tional Model shown in Figure 4.11,whi
h is a sophisti
ated simulation environment that was developed to test theSynthesizable Core for fun
tionality and 
omplian
e with the PCI spe
i�
ation[Gro95℄. The Fun
tional Model 
onsists of the PCI Core blo
ks and abstra
tmodels for both the PCI Bus and the F-Bus. The PCI Bus and F-Bus modelswere designed to fully exer
ise the PCI Synthesizable Core in both the slaveand master modes. This model has about 1500 bounded state variables andwas too large for model 
he
king. We had to perform some abstra
tions,like freeing variables and removing variables from 
onsideration for 
one ofin
uen
e redu
tions. These abstra
tions were property-spe
i�
 and had to bemodi�ed for ea
h property 
he
ked.The Synthesizable Core design is syn
hronous to the PCI 
lo
k. Thebasi
 bus transfer on the PCI is a burst, whi
h is 
omposed of an address phasefollowed by one or more data phases. In the non-burst mode, ea
h addressphase is followed by exa
tly one data phase. The data transfers in the PCI73
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PciIrdyN_

PciDevselN_

PciTrdyN_Figure 4.13: SRTD for the Non-burst Transa
tion of the PCI Busproto
ol are 
ontrolled by three signals P
iFrameN, P
iIrdyN and P
iTrdyN.The master of the bus drives the signal P
iFrameN to indi
ate the beginningand end of a transa
tion. P
iIrdyN is asserted by the master to indi
ate thatit is ready to transfer data. Similarly the target uses P
iTrdyN to signal thatit is ready for data transfer. Data is transferred between master and target onea
h rising 
lo
k edge for whi
h both P
iIrdyN and P
iTrdyN are asserted. Weveri�ed that the PCI Core satis�ed several timing diagram properties for boththe burst and non-burst modes. We formulated the properties as SRTDs bylooking at the a
tual timing diagrams that o

urred in the PCI spe
i�
ation[Gro95℄ and the PCI Core User's Manual [BL96℄. Figure 4.13 and Figure4.12 are properties that we 
he
ked for the non-burst mode and burst moderespe
tively.The veri�
ation was done both monolithi
ally and de
ompositionallyand Table 4.2 presents the veri�
ations statisti
s. In Table 4.2, the size, spa
eand time numbers for properties with the suÆx (M) 
orrespond to the veri-�
ation 
he
k on the abstra
ted PCI Core and the monolithi
 automaton for74
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PCI Prop1 (D)

PCI Prop2 (D)

PCI Prop3 (D)Table 4.2: Veri�
ation Statisti
s for Lu
ent's Synthesizable PCI Corethe property. The suÆx (D) refers to the average over the individual de
om-positional veri�
ation 
he
ks on the abstra
ted system and the automata forea
h waveform. Table 4.2 shows a savings of up to 30% in BDD size and 
or-responding savings in spa
e. In pra
ti
e, as one rea
hes the spa
e bounds of amodel 
he
king tool, it may be bene�
ial to trade time for spa
e. Our resultsdemonstrate that the de
ompositional approa
h is more spa
e eÆ
ient than amonolithi
 one.4.5 Related Work and Con
lusionsVarious resear
hers have investigated the formal use of timing diagrams. Dammet al. introdu
ed a timing diagram notation, 
alled Symboli
 Timing Diagrams(STD's) [DJS94℄, that have a formal semanti
s. They [DJS94, Fey94, FS96,75



FJ97, BW98a℄ provide algorithms that translate STD's into various temporallogi
s, like CTL, TPTL [AH94℄ and a �rst order temporal logi
 TL [DJS94℄.They have applied their algorithms su

essfully to a number of 
ase studies[DHKS94, BW98b℄. Unlike our work, their translation algorithms are mono-lithi
 and in general results in an exponential translation. Moreover, STD'sare asyn
hronous in nature and 
annot expli
itly tie events to the 
lo
k. Fisler[Fis96, Fis97℄ provides a pro
edure to de
ide regular language 
ontainment ofnon-regular timing diagrams, but the model 
he
king algorithms have a high
omplexity (PSPACE). Fisler's diagrams, like RTDs, 
an express syn
hronousproperties, but the result is a visually 
luttered diagram with unne
essaryadded 
omplexity.Cerny et al. present a pro
edure [KC98℄ for verifying whether the be-havior of a set of a
tion diagrams [CBGK98℄ (timing diagrams) is 
onsistent;they do not 
onsider in�nite behavior. They [JC98℄ use 
onstraint logi
 pro-gramming to 
he
k if a system satis�es �nite a
tion diagram spe
i�
ations.Amon et al. [ABHL97, ABL98℄ use Presburger formulas to determine whetherthe delays and guarantees of an implementation satisfy 
onstraints spe
i�edas a timing diagram. This work uses a 
ommer
ial timing diagrams editor,
alled Timing Designer [KM97℄, to spe
ify the 
onstraints and delays. Theyhave developed tools that generate Presburger formulas 
orresponding to thetiming diagrams and manipulate them. This model 
annot, however, handlesyn
hronous signals, and the algorithm for verifying Presburger formulas ismulti-exponential in the worst 
ase.Antoine and Le Go� [AL92℄ present a syntax and semanti
s of syn-
hronous timing diagrams and translate them into CTL� formulae; they only
onsider diagrams without any temporal ambiguity. Boriello [Bor92a, Bor92b℄76



proposes an approa
h to formalizing timing diagrams. Timing diagrams aredes
ribed informally as regular expressions but no spe
i�
 details or transla-tion algorithms are given. Many other resear
hers [Thu96, RMM+93, Cin93℄have formalized timing diagrams and translated them to other formalisms (in-terval logi
s, trigger graphs et
.). Formal notions of timing diagrams have alsoproved to be useful in test generation and logi
 synthesis (
f. [Tie92, GGL+95,Lut98, FS96℄).In 
ontrast, for SRTDs, we have presented de
ompositional, eÆ
ientalgorithms for model 
he
king, whi
h has time 
omplexity that is linear in thesize of the system model and quadrati
 in the size of SRTD. Our experien
ewith verifying the PCI 
ore and other proto
ols indi
ates that the syntax ofSRTDs suÆ
es to express 
ommon timing properties, and is expressive enoughfor industrial veri�
ation needs.
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Chapter 5
Compositional Reasoning withSRTDs

5.1 Introdu
tionCompositional reasoning [dRdBH+99℄ { redu
es reasoning about a system toreasoning about its 
omponents { has been an a
tive area of resear
h fornearly three de
ades. Re
ently, it has gained further importan
e as a wayof ameliorating the state explosion problem in model 
he
king. For example,given programs P1, P2 and spe
i�
ation T , we would like to 
he
k whetherthe 
omposed system satis�es T (written as P1==P2 j= T ). Sin
e reasoningabout P1==P2 dire
tly only exa
erbates the state explosion problem, 
omposi-tional reasoning te
hniques are designed to reason about P1 in isolation fromP2 (and vi
e versa) to draw 
on
lusions about P1==P2. There are, however,several diÆ
ulties whi
h must be over
ome, foremost among them are the taskde
omposition problem, the generation of auxiliary assertions and the general78



appli
ability of the 
ompositional method to the task at hand.Firstly, task de
omposition is ne
essary sin
e it is unlikely that P1 byitself satis�es all of T : we would like to de
ompose T into T1 and T2 su
hthat T = T1 ^ T2 and then show that P1 j= T1 and P2 j= T2. Se
ondly,auxiliary assertions are usually ne
essary, sin
e P1 may satisfy T1 only whenits environment behaves like P2. To solve this problem, assume-guaranteestyle reasoning adds auxiliary assertions, Q2 (respe
tively Q1) whi
h representassumptions about the behavior of P2 (P1) as an environment for P1 (P2). Su
hauxiliary assertions must often be generated by hand, however. Finally, na��ve
ompositional rules based on this style of reasoning, for instan
e, P1==P2 j= Tholds if P1==Q2 j= T1 and P2==Q1 j= T2, are sound only for safety properties.In this Chapter, we �rst present a new rule for assume-guarantee reason-ing, whi
h generalizes several earlier rules (
f. [Pnu85, AL95, AH96, M
M99,NT00℄), by removing the sour
es of in
ompleteness in some of these rules, byusing pro
esses, instead of temporal logi
 formulas, as spe
i�
ations, and by al-lowing more general forms of pro
ess de�nition and 
omposition. The new ruleextends the na��ve rule above with a 
he
k for soundness. As it deals uniformlywith pro
esses, it �ts in well with a top-down re�nement approa
h to designingsystems. We show that this rule is also 
omplete, in that if P1==P2 j= T , thenit is possible to prove this fa
t with our rule.Next, we explore the bene�ts of applying this rule in the 
ase where T isspe
i�ed as an SRTD. We show that not only is task de
omposition a relativelysimple problem for timing diagrams, but also that it is possible to automat-i
ally generate auxiliary assertions dire
tly from the spe
i�
ation. Further-more, we identify a large 
lass of SRTDs for whi
h the soundness 
he
k of therule is always satis�ed, and the auxiliary assertion generation and, therefore,79



the model 
he
king pro
ess is eÆ
ient { linear in the size of the diagram andthe stru
ture. We have implemented our method in the timing diagram anal-ysis tool, Rtdt [AEKN00, AEKN01℄, whi
h uses the tool COSPAN [HHK96℄to dis
harge model 
he
king subgoals. We report here on its appli
ation toa memory 
ontroller and a PCI Interfa
e Core; in both 
ases, we obtain sub-stantial redu
tion in the spa
e used for model 
he
king.The organization of the Chapter is as follows: we des
ribe our new ruleand prove its soundness and 
ompleteness in Se
tion 5.2. The theory behindthe appli
ation of this rule to timing diagrams is presented in Se
tion 5.3. Ourexperiments with applying this rule are des
ribed in Se
tion 5.4. We 
on
ludethe Chapter with a des
ription of related work in Se
tion 5.5.5.2 Assume-Guarantee Based CompositionalReasoningIn this se
tion, we �rst present the na��ve 
ompositional reasoning rule andexplain why it is unsound. We then present our new rule, and show thatit is both sound and 
omplete. We begin by de�ning some basi
 
on
epts:pro
esses, 
omposition, and 
losure. Although the eventual appli
ation of ourrule is to �nite state pro
esses, we develop it in a more general setting.5.2.1 PreliminariesDe�nition 22 (V -state) For a non-empty set of typed variables V , an as-signment of values to variables in V is 
alled a V -state.
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De�nition 23 (V -sequen
e) A V -sequen
e x = x0; x1; : : : is a non-emptysequen
e (�nite or in�nite) of V -states.The length of a V -sequen
e x, written as jxj, is the number of states inx. We write x[i::j℄, for j � i, to denote the subsequen
e xi; : : : ; xj and x; y todenote 
on
atenation of a �nite sequen
e x to y. A language L over a set ofvariables V is a set of �nite or in�nite sequen
es of V -states.De�nition 24 (Satisfa
tion) A W -sequen
e x, where V � W , satis�es Li� x proje
ted on to V belongs to L.The term (9W : L) de�nes a language over V nW . A (V nW )-sequen
ex satis�es (9W : L) i� there exists a sequen
e y, with the same length as x,su
h that y is in L and x and y di�er only on the values of variables in W .For a language L over V , let [L℄ mean that every �nite or in�nite V -sequen
esatis�es L. Thus, for L1 and L2 over V , [L1 ) L2℄ denotes L1 � L2.De�nition 25 (Pro
ess) A pro
ess P is spe
i�ed by a tuple (V; I; R; F ) where� V is a non-empty set of typed variables, partitioned into three sets: pri-vate variables V p, interfa
e variables V i, and external variables V e. Theset of modi�able variables, V m, is V p [ V i.� I(V m) is an initial 
ondition.� R(V; (V m)0) is a transition relation. The variables (V m)0, whi
h are in1-1 
orresponden
e with V m, represent values for V m in the next state.� F (V ) is a fairness 
ondition. 81



De�nition 26 (Pro
ess Exe
ution) A V -sequen
e x is an exe
ution of Pi� I(x0) and for all i su
h that i+ 1 < jxj, R(xi; xi+1) holds.The exe
utions of a pro
ess P 
an be de�ned by the LTL formula (I ^G(R)), interpreted over V -sequen
es. The set of �nite exe
utions is denotedby �nexe
(P ).De�nition 27 (Language of a Pro
ess) The language of a pro
ess P , L(P ),is the set of �nite exe
utions of P together with those in�nite exe
utions of Pthat satisfy F . Thus L(P ) 
an be expressed by the LTL formula (I ^G(R)^F ).The observable language of P , denoted by LO(P ), is the proje
tion ofits language on V i [ V e. In the rest of the Chapter, we assume that privatevariables of a pro
ess are distin
t from the variables of all other pro
esses,sin
e this does not a�e
t the observable language.De�nition 28 (Implements) For pro
esses P and A, the relationship \Pimplements A", denoted by P j= A, is de�ned only if V i(A) � V i(P ), and isde�ned as [LO(P ) ) LO(A)℄, whi
h 
an be written as [L(P ) ) (9V p(A) :L(A))℄.This mat
hes the usual de�nition when A is an automaton, sin
e asequen
e over V p(A) is a run of the automaton.De�nition 29 (Pro
ess Composition) The 
omposition of the pro
essesP1 = (V1; I1; R1; F1) and P2 = (V2; I2; R2; F2), denoted by P1==P2, is the pro-
ess P = (V; I; R; F ), where� V = V1 [ V2, V p = V p1 [ V p2 and V i = V i1 [ V i282



� I = I1 ^ I2� R = R1 ^ R2� F = F1 ^ F2De�nition 30 (Pro
ess Disjun
tion) The disjun
tion of the pro
esses P1and P2, denoted by P1 + P2, is de�ned as the pro
ess P = (V; I; R; F ), where� V = V1 [ V2 [ f
g, V p = V p1 [ V p2 [ f
g and V i = V i1 [ V i2 . 
 is a privatevariable that serves to 
hoose initially between the two pro
esses.� I = (
 ^ I1) _ (:
 ^ I2)� R = (
0 = 
) ^ ((
 ^ R1) _ (:
 ^ R2))� F = (FG(
) ^ F1) _ (FG(:
) ^ F2)The following Lemmas summarizes the properties of these 
onstru
tionsneeded for the proofs in following Se
tions.Lemma 1 For pro
esses P1; P2, [�nexe
(P1==P2) � �nexe
(P1)^ �nexe
(P2)℄Proof.x 2 �nexe
(P1==P2)� ( by De�nition 26 (exe
ution) )I(P1==P2)(x0) ^ (8i : i + 1 < jxj : R(P1==P2)(xi; xi+1))� ( by De�nition 29 (
omposition) )(I(P1)(x0) ^ I(P2)(x0))^(8i : i+ 1 < jxj : R(P1)(xi; xi+1) ^ R(P2)(xi; xi+1))� ( rearranging the terms ) 83



(I(P1)(x0) ^ (8i : i + 1 < jxj : R(P1)(xi; xi+1)))^(I(P2)(x0) ^ (8i : i + 1 < jxj : R(P2)(xi; xi+1)))� ( by De�nition 26 (exe
ution) )(x 2 �nexe
(P1)) ^ (x 2 �nexe
(P2))�Lemma 2 For pro
esses P1; P2, [L(P1==P2) � L(P1) ^ L(P2)℄Proof.L(P1==P2)� ( by De�nition 27 (language) )I(P1==P2)(v) ^ G(R(P1==P2)(v; v0)) ^ F (P1==P2)(v)� ( by De�nition 29 (
omposition) )I(P1)(v) ^ I(P2)(v)) ^ G(R(P1)(v; v0)) ^ G(R(P2)(v; v0))^(F (P1)(v) ^ F (P2)(v))� ( rearranging the terms )(I(P1)(v) ^ G(R(P1)(v; v0)) ^ F (P1)(v))^(I(P2)(v) ^ G(R(P2)(v; v0)) ^ F (P2)(v))� ( by De�nition 26 (language) )L(P1) ^ L(P2)�Lemma 3 For pro
esses P1; P2, [LO(P1==P2) � LO(P1) ^ LO(P2)℄Proof. Let V p1 and V p2 be the private variables of P1 and P2, andV p = V p1 [ V p2 be the private variables of P1==P2.LO(P1==P2) 84



� ( by De�nition 27 (language), De�nition of LO )(9V p(P1==P2) : (I(P1==P2)(v) ^ G(R(P1==P2)(v; v0))^F (P1==P2)(v)))� ( by De�nition 29 (
omposition) )(9V p(P1==P2) : (I(P1)(v) ^ I(P2)(v)) ^ (G(R(P1)(v; v0))^G(R(P2)(v; v0))) ^ (F (P1)(v) ^ F (P2)(v)))� ( rearranging the terms, De�nition of 
omposition )(9V p1 (P1) : (I(P1)(v) ^ G(R(P1)(v; v0)) ^ F (P1)(v)))^(9V p2 (P2) : (I(P2)(v) ^ G(R(P2)(v; v0)) ^ F (P2)(v)))� ( by De�nition 27 (language), De�nition of LO )LO(P1) ^ LO(P2)�Lemma 4 For pro
esses P1; P2, [(9f
g : L(P1 + P2)) � L(P1) _ L(P2)℄.Proof.(9f
g : L(P1 + P2))� ( by De�nition 27 (language) )(9f
g : I(P1 + P2)(v) ^ G(R(P1 + P2)(v; v0)) ^ F (P1 + P2)(v))� ( by De�nition 30 (disjun
tion) )(9f
g : ((
 ^ I(P1)(v) _ (:
 ^ I(P2)(v)))^((
0 = 
) ^ ((
 ^ R(P1)(v; v0))) _ (:
 ^ R(P2)(v; v0))^ ((FG(
) ^ F (P1)(v)) _ (FG(:
) ^ F (P2)(v))� ( rearranging the terms, logi
 )(9f
g : (
 _ (:
)) ^ (
0 = 
) ^ (FG(
) _ FG(:
)))^(I(P1)(v) ^ R(P1)(v; v0) ^ F (P1)(v))_(I(P2)(v) ^ R(P2)(v; v0) ^ F (P2)(v))85



� ( by De�nition 27 (language) )L(P1) _ L(P2)�De�nition 31 (Closure) For a language L on variables V , the 
losure of L,denoted by 
l(L), is a language 
onsisting of V -sequen
es x where, for everyi < jxj, there exists a sequen
e y su
h that x[0::i℄; y 2 L.
l has the following properties.Theorem 20 (Closure Properties) ([AS85℄) Given languages L1 and L2,a. L1 spe
i�es a safety property if and only if 
l(L1) = L1.b. [L1 ) 
l(L1)℄
. [
l(
l(L1)) ) 
l(L1)℄d. [
l(L1 [ L2) = 
l(L1) [ 
l(L2)℄For any pro
ess P , there is a pro
ess CL(P ) su
h that the property[LO(CL(P )) � 
l(LO(P ))℄ holds. If P is �nite-state, CL(P ) is formed fromP by 
hanging the fairness 
ondition of P to true.De�nition 32 (Closure Pro
ess) For any �nite state pro
ess P = (V; I; R; F ), let CL(P ) be the pro
ess (V 0; I 0; R0; F 0) where V 0 = V , I 0 = I, R0 = Rand F 0 = true.De�nition 33 (Non-blo
king) A pro
ess Q does not blo
k pro
ess P i�� Any initial state of P 
an be extended to an initial state of P==Q, and86



� For any rea
hable state of P==Q, any transition of P from that state 
anbe extended to a joint transition of P==Q.A pro
ess P is non-blo
king if and only if, from any rea
hable state, P
an make a transition on any external input.De�nition 34 (Ma
hine Closure) A pro
ess is ma
hine 
losed i� every �-nite exe
ution 
an be extended to an in�nite fair exe
ution.Ma
hine 
losure indi
ates that it is possible at any point to break awayfrom an in�nite exe
ution to one that is fair. A pro
ess that is ma
hine 
losedsatis�es the CTL property AGE(fair).Lemma 5 Given a �nite state pro
ess P = (V; I; R; F ),[LO(CL(P )) � 
l(LO(P ))℄.Proof. ()) Consider a sequen
e x 2 LO(CL(P )). Now, assume that x 62
l(LO(P )), so, for some i, x[0::i℄ 
an not be extended to a sequen
e in LO(P ).But, by 
onstru
tion (De�nition 32), any exe
ution of P is also an exe
utionof CL(P ). Therefore, x[0::i℄ 
an not be extended to a sequen
e in LO(CL(P )).Thus, we have a 
ontradi
tion and x 2 
l(LO(P )).(() Consider a sequen
e x su
h that x 2 
l(LO(P )) whi
h implies, by De�ni-tion 31, that, for all i, x[0::i℄ 
an be extended into a sequen
e that is in LO(P ).Thus, by De�nition 25, x is an exe
ution of P and, therefore, is an exe
utionof CL(P ). �This de�nition of pro
esses and of 
omposition is quite general: it in-
ludes Moore and Mealy styles of de�nition as spe
ial 
ases, and pro
esses ina 
omposition 
an modify shared variables. Interleaving 
omposition 
an bede�ned by adding a shared \turn" variable.87



5.2.2 Compositional Reasoning RulesIn 
ompositional reasoning one avoids reasoning dire
tly about a system, thatis 
omposed of many sub-
omponents operating in parallel, by de
omposingthe property and attempting to prove that the system sub-
omponents satisfythe sub-properties in a systemati
 manner. The following is an example of a\non-
ir
ular" 
ompositional proof rule.P1 j= T1P2 j= T2P1==P2 j= T1 ^ T2These \non-
ir
ular" proof rules often do not work if the 
omponentsare tightly 
oupled, sin
e P1 may satisfy T1 only in the presen
e of P2. Forinstan
e, in the following example, both P1kP2 j= T1 ^ T2 and P2 j= T2 hold.However, in the absen
e of P1, P1 j= T1 does not hold sin
e input y is un
on-strained.Example 1 (Assume-Guarantee)Pro
ess P1 Pro
ess P2var x: boolean; var y: boolean;initially x=true; initially y=true;transition x'=y transition y'=trueend P1 end P2property T1: Always(x)property T2: Always(y) 88



As illustrated in Example 1, it is unlikely that a system will satisfy anyinteresting property outside of its intended environment. Hen
e, the environ-ment must be 
onstrained/spe
i�ed to some extent. Towards this end, severalso-
alled \
ir
ular" proof rules have been proposed, of whi
h this is an exam-ple. In the following rule [AH96℄, both the implementation and spe
i�
ationare pro
esses. A tra
e is a sequen
e of states or events, and the semanti
s ofa pro
ess is a set of tra
es. Parallel 
omposition (==) is the interse
tion of thetra
e sets and the implements relation (j=) is tra
e set in
lusion.P1==T2 j= T1P2==T1 j= T2P1==P2 j= T1==T2This rule is sound for safety properties (i.e. for �nite 
omputations),but the soundness depends on a number of additional semanti
 assumptions:� The pro
esses must be non-blo
king.� The pro
esses must have non-empty tra
e sets.� The output variables of the pro
esses must be disjoint.In Example 1, one 
an show that P2==T1 j= T2 and P2==T1 j= T2, and
on
lude, by the soundness of the rule, that P1==P2 j= T1==T2. This rule is,however, unsound for liveness properties. To see this, 
onsider the followinginstantiation.Example 2 (Liveness) 89



Pro
ess P1 Pro
ess P2var x: boolean; var y: boolean;initially x=true or x=false; initially y=true or y=false;transition x'=y transition y'=xend P1 end P2property T1: eventually(x)property T2: eventually(y)Although both hypotheses, P1==T2 j= T1 and P2==T1 j= T2 hold, it isnot true that P1==P2 j= T1==T2, as the 
omputation where x and y are alwaysfalse is a valid 
omputation of P1==P2. In an attempt to �x this problem,several proposed rules (
f. [AL95, AH96℄) use the safety 
losure of one of theproperties in the hypothesis as shown below.P1==T2 j= T1P2==CL(T1) j= T2P1==P2 j= T1==T2Using the safety 
losure of T1 prevents any possibility of 
ir
ular reason-ing amongst liveness properties. On the other hand, this makes it diÆ
ult toapply the rule when liveness properties are needed as assumptions. We adopta di�erent strategy to �xing the problem: we use an additional hypothesisthat 
he
ks if the 
ir
ular reasoning is sound.Another issue 
on
erning su
h rules is 
ompleteness. Namjoshi andTre
er [NT00℄ have explored 
ompleteness and have shown that many of these
ir
ular proof rules are indeed in
omplete. The following example, taken fromthe paper [NT00℄, 
an be used to show that previous rules are not 
omplete.90



Example 3 (Completeness)Pro
ess P1 Pro
ess P2var l1,r1: boolean; var l2,r2: boolean;initially l1=true, r1=true; initially l2=true, r2=true;transition r1'=l1 transition r2'=l2transition l1'=r2 transition l2'=r1end P1 end P2property T1: Always(l1)property T2: Always(l2)In the above example, P1==P2 j= T1==T2 holds, However, the hypothesisP1==T2 j= T1 does not hold sin
e variable r2 is now un
onstrained and l1 maybe assigned the value false. The se
ond hypothesis also fails to hold by asymmetri
 argument.We will now present a new assume-guarantee style proof rule that isboth sound and 
omplete and 
an be applied uniformly to both safety andliveness properties. For simpli
ity, we present this rule for the 
omposition oftwo pro
esses; it 
an be easily extended to apply to any �nite 
omposition.Proof Rule: To show that P1==P2 j= T , �nd Q1 and Q2 su
h that thefollowing 
onditions are satis�ed.C0 V i(Q1) � V i(P1), Q1 does not blo
k P2, and symmetri
ally for Q2.C1 P1==Q2 j= Q1, and P2==Q1 j= Q2C2 Q1==Q2 j= T 91



C3 Either P1==CL(T ) j= (T +Q1 +Q2), or P2==CL(T ) j= (T +Q1 +Q2)Noti
e that hypothesis C3 need not be 
he
ked when T is a safetyproperty, as [LO(CL(T )) ) LO(T )℄ holds in this 
ase.We will �rst prove some preliminary lemmas that will be used later inthe proof of the soundness and 
ompleteness of the above rule. In the followingproof, let W be the private variables of Q1==Q2.Lemma 6 [�nexe
(P1==P2) ) (9W : �nexe
(Q1==Q2))℄Proof. A sequen
e x is in �nexe
(P; k) i� x[0::k℄ is a �nite exe
ution of pro
essP . The property that pro
ess Q does not blo
k P 
an be stated as follows: (i)[I(P ) ) (9V m(Q)nV m(P ) : I(P==Q))℄, and (ii) for any k > 0, [�nexe
(P; k)^�nexe
(Q; k � 1) ) (9(V m(Q)nV m(P ))(k) : �nexe
(P==Q; k))℄, where x sat-is�es (9V (k) : L) i� there is a sequen
e y in L, of the same length as x, thatdi�ers from x only in the values of the V -variables at the kth position.The proof is by indu
tion on the length of exe
utions. Let W =V p(Q1==Q2), U = V m(Q1)nV m(P2) and W2 = V p(Q2).Base 
ase:�nexe
(P1==P2; 0), ( de�nitions )I(P1) ^ I(P2)) ( non-blo
king from C0 )(9U : I(P2==Q1)) ^ I(P1)) ( by C1 )(9U : (9W2 : I(Q2))) ^ I(P1)) ( as U is disjoint from V m(Q2) by C0 )92



(9W2 : I(Q2)) ^ I(P1)) ( W2 is a set of private variables )(9W2 : I(P1==Q2))) ( by monotoni
ity of 
omposition and C1 )(9W : I(Q2==Q1)), ( de�nitions )(9W : �nexe
(Q1==Q2; 0))Indu
tive 
ase: k > 0 and the result holds for k � 1 by assumption.�nexe
(P1==P2; k)) ( indu
tive hypothesis )�nexe
(P1==P2; k) ^ (9W : �nexe
(Q1==Q2; k � 1))) ( W is a set of private variables )(9W : �nexe
(P1; k) ^ �nexe
(P2; k) ^ �nexe
(Q1; k � 1)^ �nexe
(Q2; k � 1))) ( non-blo
king from C0 )(9W : (9U(k) : �nexe
(P2==Q1; k)) ^ �nexe
(P1; k))) ( by C1 )(9W : (9U(k) : (9W2 : �nexe
(Q2; k))) ^ �nexe
(P1; k))) ( U is disjoint from V m(Q2) by C0, and V e(Q2) is un
onstrained )(9W : �nexe
(Q2; k) ^ �nexe
(P1; k))) ( by C1 )(9W : �nexe
(Q1==Q2; k))�Theorem 21 (Soundness) The rule is sound for arbitrary P1; P2 and T .93



Proof. We have to show that P1==P2 j= T follows from the 
onditions C0-C3.This, by de�nition, is equivalent to showing that [L(P1==P2) ) LO(T )℄. Bythe results in [AS85℄, any language L 
an be 
an be written as a 
onjun
tionof the safety property 
l(L) and the liveness property (
l(L) ) L). Based onthis 
hara
terization, we break up the proof into the following two parts.Safety [L(P1==P2) ) 
l(LO(T ))℄, andLiveness [L(P1==P2) ^ 
l(LO(T )) ) LO(T )℄First, we show the safety part by proving the equivalent (as 
l(L(P ))is the set of exe
utions of P ) statement [�nexe
(P1==P2) ) 
l(LO(T ))℄. LetU be the private variables of T .�nexe
(P1==P2)) ( by Lemma 6 )(9W : �nexe
(Q1==Q2))) ( as 
l(L(P )) in
ludes �nexe
(P ) )(9W : 
l(L(Q1==Q2)))) ( by C2; monotoni
ity of 
l )(9W : 
l(LO(T )))) ( W 
ontains private variables not o

urring in T )
l(LO(T ))Next, we show the liveness part.L(P1) ^ L(P2) ^ 
l(LO(T ))) ( by Lemma 5 ) 94



L(P1) ^ L(P2) ^ LO(CL(T ))) ( by 
ondition C3 )L(P1) ^ L(P2) ^ LO(T +Q1 +Q2)) ( by Lemma 4; W [ U [ f
g 
onsists of private variables )(9W [ U [ f
g : L(P1) ^ L(P2) ^ (L(T ) _ L(Q1) _ L(Q2)))) ( distributing ^ over _ ; Lemma 3 and 
ondition C1 )(9W [ U [ f
g : L(T ) _ LO(Q1==Q2))) ( distributing 9 over _ ; 
ondition C2 )(9W [ U [ f
g : L(T )) _ (9W [ U [ f
g : LO(T ))) ( W [ f
g 
onsists of private variables not in T )LO(T )�Theorem 22 (Completeness-1) The rule is 
omplete for non-blo
king pro-
esses P1; P2 that have disjoint interfa
e variables.Proof. Suppose that P1==P2 j= T holds. Let Q1 = P1 and Q2 = P2. AsQ1 is non-blo
king and has disjoint interfa
e variables from P2, it satis�es the
ondition C0; similarly for the symmetri
 
ase. Condition C1 is satis�ed asP1==P2 j= P1 and P1==P2 j= P2 holds trivially. Condition C2 is P1==P2 j= T ,whi
h is true by assumption. Condition C3 holds as P1 j= (T + P1 + P2) byweakening.� Theorem 22 shows that the proof rule is 
omplete for pro
esses P1 andP2 that are non-blo
king and have disjoint interfa
e variables. Theorem 23
laims that the rule is 
omplete for arbitrary pro
esses. To show P1==P2 j= Tfor arbitrary P1, P2 and T , the proof pro
eeds as follows.95



� Synta
ti
ally transform pro
esses P1; P2; and T into P 01; P 02; and T 0 su
hthat (i) P1==P2 j= T i� P 01==P 02 j= T 0, and (ii) P 01; P 02 are non-blo
kingand have disjoint interfa
e variables.� Apply Theorem 22 to P 01; P 02; and T 0 whi
h, by 
onstru
tion, satisfy thehypotheses for the theorem.Thus, Theorem 23 shows that the rule is 
omplete up to a synta
ti
transformation. This is a broader de�nition of 
ompleteness, whi
h 
an beeasily 
onverted to the narrower synta
ti
 sense by adding the transformationas an axiom. The proof alluded to above shows that the rule 
ombined withthe axiom yield a proof system that is 
omplete in the synta
ti
 sense. It is, of
ourse, also sound by (i) and the soundness of the rule for arbitrary pro
esses.We will now de�ne the transformation in detail and give proofs of (i) and (ii).Theorem 23 (Completeness-2) The rule is 
omplete for arbitrary pro
esses.Proof. For simpli
ity, we 
onsider �rst the 
ase where P1; P2 have a sharedinterfa
e variable y, but are non-blo
king. Blo
king pro
esses are 
onvertedto non-blo
king ones by a similar transformation, whi
h is des
ribed later.Pro
esses with shared variablesConsider pro
esses P1; P2 and T su
h that P1==P2 j= T . Let us assume that P1and P2 have a shared interfa
e variable y, but are non-blo
king. First, if y isnot an interfa
e variable of T , let pro
ess T 00 be obtained by de
laring y as aninterfa
e variable, without 
hanging anything else in T . Clearly, P1==P2 j= Ti� P1==P2 j= T 00. Next, we transform pro
esses P1, P2 and T 00 by by addinga dummy initial state to ea
h pro
ess where all variables have a �xed value,say ?. Let P I1 , P I2 and T I be the new versions of these pro
esses. As the96



initial 
ondition, transition relation, and fairness 
ondition are un
hanged,P1==P2 j= T i� P I1 ==P I2 j= T I . For the rest of the proof, we assume P1; P2 andT satisfy the above 
onditions; that is, T has y as an interfa
e variable, andP1; P2 and T have a dummy initial state where y has a single value, and thatP1==P2 j= T .We 
an transform P1 into P 01 by by synta
ti
ally repla
ing every o

ur-ren
e of y with y1, whi
h we represent as the substitution [y  y1℄. Let x1represent the other variables of P1. Thus, P 01 is de�ned as follows.� V (P 01) = (V (P1)nfyg) [ fy1g,� I(P 01)(x1y1) = [y  y1℄I(P1)(x1y),� R(P 01)(x1y1; x01y01) = [y; y0  y1; y01℄R(P1)(x1y; x01y0),� F (P 01)(x1y1) = [y  y1℄F (P1)(x1y).Likewise, we 
an transform P2 into P 02 by repla
ing y with y2. We now show arelationship between P1==P2 and P 01==P 02.Lemma 7 [L(P1==P2) � (9y1; y2 : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02))℄.Proof.(9y1; y2 : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02))� ( de�nition of L )(9y1; y2 : G(y = y1) ^ G(y = y2)^I(P 01)(x1y1) ^ G(R(P 01)(x1y1; x01y01)) ^ F (P 01)(x1y1)^I(P 02)(x2y2) ^ G(R(P 02)(x2y2; x02y02)) ^ F (P 02)(x2y2))� ( Leibnitz rule (using G(y = y1) ^ G(y = y2)), de�nition of P 01; P 02 )97



(9y1; y2 : G(y = y1) ^ G(y = y2)^I(P1)(x1y) ^ G(R(P1)(x1y; x01y0)) ^ F (P1)(x1y)^I(P2)(x2y) ^ G(R(P2)(x2y; x02y0)) ^ F (P2)(x2y))� ( logi
 )(9y1; y2 : G(y = y1) ^ G(y = y2))^I(P1)(x1y) ^ G(R(P1)(x1y; x01y0)) ^ F (P1)(x1y)^I(P2)(x2y) ^ G(R(P2)(x2y; x02y0)) ^ F (P2)(x2y)� ( logi
 )I(P1)(x1y) ^ G(R(P1)(x1y; x01y0)) ^ F (P1)(x1y)^I(P2)(x2y) ^ G(R(P2)(x2y; x02y0)) ^ F (P2)(x2y)� ( de�nitions )L(P1==P2)� We modify the pro
ess T to T1 by substituting y1 for y; the followinglemma relates T and T1.Lemma 8 [LO(T1) � (8y : G(y = y1) ) LO(T ))℄Proof.(8y : G(y = y1) ) LO(T ))� ( de�nitions )(8y : G(y = y1) ) (9V p(T ) : I(T )(xy) ^ G(R(T )(xy; x0y0))^F (T )(xy)))� ( Leibnitz rule; y; y1 are not private variables of T )(8y : G(y = y1) ) (9V p(T ) : I(T )(xy1) ^ G(R(T )(xy1; x0y01))^F (T )(xy1))) 98



� ( rearranging )(9y : G(y = y1)) ) (9V p(T ) : I(T )(xy1) ^ G(R(T )(xy1; x0y01))^F (T )(xy1))� ( de�nitions; logi
 )true ) LO(T1)� ( logi
 )LO(T1)� We 
an now show the following lemma.Lemma 9 [L(P1==P2) ) LO(T )℄ i� [L(P 01==P 02) ^ G(y1 = y2) ) LO(T1)℄.Proof.[L(P1==P2) ) LO(T )℄� ( by Lemma 7 )[(9y1; y2 : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02)) ) LO(T )℄� ( logi
 )[(8y1; y2 : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02) ) LO(T ))℄� ( rearranging quanti�ers: absorb y1; y2 into [℄, make y expli
it )[(8y : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02) ) LO(T ))℄� ( rearranging )[L(P 01==P 02) ) (8y : G(y = y1) ^ G(y = y2) ) LO(T ))℄� ( Leibnitz rule )[L(P 01==P 02) ) (8y : G(y = y1) ^ G(y1 = y2) ) LO(T ))℄� ( rearranging )[L(P 01==P 02) ) (G(y1 = y2) ) (8y : G(y = y1) ) LO(T ))℄99



� ( by Lemma 8 )[L(P 01==P 02) ) (G(y1 = y2) ) LO(T1))℄� ( rearranging )[L(P 01==P 02) ^ G(y1 = y2) ) LO(T1)℄� By Lemma 9, [L(P1==P2) ) LO(T )℄ holds i� [L(P 01==P 02) ) (F(y1 6=y2) _ LO(T1))℄. We now modify the stru
ture of T1 to T 0, whi
h takes theF(y1 6= y2) 
ondition into a

ount. Informally, T 0 is in the \normal" mode,where y1 = y2, and T 0 behaves like T1. If y1 6= y2 in the next state, T 0transitions to an \abnormal" mode, and stays in that mode from that pointon. The distin
tion between normal and abnormal mode is expressed by asingle private variable, n.Formally, if T1 = (V; I; R; F ), then T 0 = (V 0; I 0; R0; F 0), where� (V 0)p = V p [ fng, (V 0)i = V i [ fy2g, and (V 0)e = V e. Let z refer to allthe variables of V; V 0 other than y; y1; y2; n.� I 0(zy1y2n) = (z = a) ^ (y1 = b) ^ (y2 = b) ^ n, where I(zy1) = (z =a ^ y1 = b). Re
all there is a single initial state for T1.� R0(zy1y2n; z0y01y02n0) = (n ^ (y01 = y02) ^ n0 ^ R(zy1; z0y01)) _ (n ^ (y01 6=y02) ^ :n0) _ (:n ^ :n0)� F 0(zy1y2n) = (FG(n) ^ F (zy1)) _ FG(:n)Lemma 10 For pro
ess P = P 01==P 02,[L(P ) ^ G(y1 = y2) ) LO(T1)℄ i� [L(P ) ) LO(T 0)℄100



Proof. ()) Consider any exe
ution � of P . We have to show that it belongsto LO(T 0). There are two 
ases:� if G(y1 = y2) holds for �, by hypothesis, � belongs to LO(T1); so thereis a run of T 0 on � that stays within normal states. Thus, � belongs toLO(T 0).� Otherwise, if eventually (y1 6= y2) holds in �, 
onsider the �rst point iat whi
h this happens. Then, i > 0, as the initial state of P satis�esy1 = y2. Thus, the pre�x �[0::i� 1℄ is in L(P ), and satis�es G(y1 = y2),so there is a run of T 0 on it. As �[i℄ satis�es y1 6= y2, T 0 has a transitionto an abnormal state from the end state of this run, and a

epts �.(() Consider any exe
ution � of P that satis�es G(y1 = y2). We have to showthat it belongs to LO(T1). This exe
ution belongs to LO(T 0) by assumption.As G(y1 = y2) holds of �, the witnessing run of T 0 on � must stay in thenormal part of T 0. By 
onstru
tion of T 0, this is a run of T1 on �, so � belongsto LO(T1).�Pro
esses that are blo
kingSuppose pro
esses P1 and P2 are blo
king. We transform P1 to P 01, by addinga blo
king variable b1, and making the following modi�
ations:I(P 01)(x1b1) = I(P1)(x1) ^ :b1,R(P 01)(x1b1; x01b01) = (b1 ^ b01)_ (:b1 ^ (8x01 : :R(P1)(x1; x01)) ^ b01)_ (:b1 ^ R(P1)(x1; x01) ^ :b01),F (P 01)(x1b1) = (G(:b1) ^ F (P1)(x1)) _ F(b1).The variable b1 is initially false. P 01 behaves like P1 as long as b1 isfalse; it transitions to a state satisfying b1 on any 
ondition for whi
h P1101



has no enabled transition. P2 
an be similarly modi�ed to P 02. Thus, by thisde�nition, P 01 and P 02 are non-blo
king. We will now show, using a proof similarto that of Lemma 7, that [L(P1==P2) � (9b1; b2 : L(P 01==P 02) ^ G(:b1 ^ :b2))℄holds.Lemma 11 [L(P1==P2) � (9b1; b2 : L(P 01==P 02) ^ G(:b1 ^ :b2))℄.Proof.(9b1; b2 : G(:b1 ^ :b2) ^ L(P 01==P 02))� ( de�nition of L )(9b1; b2 : G(:b1 ^ :b2)^I(P 01)(x1b1) ^ G(R(P 01)(x1b1; x01b01)) ^ F (P 01)(x1b1)^I(P 02)(x2b2) ^ G(R(P 02)(x2b2; x02b02)) ^ F (P 02)(x2b2))� ( Leibnitz rule using G(:b1 ^ :b2) )(9b1; b2 : G(:b1 ^ :b2)^I(P 01)(x1false) ^ G(R(P 01)(x1false; x01false)) ^ F (P 01)(x1b1)^I(P 02)(x2false) ^ G(R(P 02)(x2false; x02false)) ^ F (P 02)(x2b2))� ( de�nition of P 0; logi
 )(9b1; b2 : G(:b1 ^ :b2))^I(P1)(x1) ^ G(R(P1)(x1; x01)) ^ F (P1)(x1)^I(P2)(x2) ^ G(R(P2)(x2; x02)) ^ F (P2)(x2)� ( de�nition of L )L(P1==P2)�Lemma 12 [L(P1==P2) ) LO(T )℄ i� [L(P 01==P 02)^G(:b1 ^:b2) ) LO(T )℄.Proof. 102



[L(P1==P2) ) LO(T )℄� ( lemma 11 )[(9b1; b2 : L(P 01==P 02) ^ G(:b1 ^ :b2)) ) LO(T )℄� ( rearranging quanti�ers )[L(P 01==P 02) ^ G(:b1 ^ :b2) ) LO(T )℄� We now modify the stru
ture of T to T 0, whi
h takes the G(:b1 ^ :b2)
ondition into a

ount. Informally, when in the \normal" mode (i.e. :b1 ^:b2), T 0 behaves like T . If b1 _ b2 holds in the next state, T 0 transitions to an\abnormal" mode, and stays in that mode from that point on. The distin
tionbetween normal and abnormal mode is expressed by a single private variable,n.Formally, if T = (V; I; R; F ), then T 0 = (V 0; I 0; R0; F 0), where� (V 0)p = V p [ fng, (V 0)i = V i [ fb1; b2g, and (V 0)e = V e. Let z refer toall the variables of V; V 0 other than b1; b2; n.� I 0(zb1b2n) = (z = a) ^ (:b1) ^ (:b2) ^ n,� R0(zb1b2n; z0b01b02n0) = (n ^ :(b01 _ b02) ^ n0 ^ R(z; z0)) _ (n ^ (b01 _ b02) ^:n0) _ (:n ^ :n0)� F 0(zb1b2n) = (FG(n) ^ F (zb1b2)) _ FG(:n)Lemma 13 For pro
ess P = P 01==P 02,[L(P ) ^ G((:b1) ^ (:b2)) ) LO(T )℄ i� [L(P ) ) LO(T 0)℄103



Proof. ()) Consider any exe
ution � of P . We have to show that it belongsto LO(T 0). There are two 
ases:� If G(:(b1) ^ :(b2)) holds for �, by hypothesis, � belongs to LO(T ); sothere is a run of T 0 on � that stays within normal states. Thus, � belongsto LO(T 0).� Otherwise, if eventually (b1 _ b2) holds in �, 
onsider the �rst point iat whi
h this happens. Then, i > 0, as the initial state of P satis�es(:b1) ^ (:b2). Thus, the pre�x �[0::i � 1℄ is in L(P ), and satis�esG(:(b1) ^ :(b2)), so there is a run of T 0 on it. As �[i℄ satis�es (b1 _ b2),T 0 has a transition to an abnormal state from the end state of this run,and a

epts �.(() Consider any exe
ution � of P that satis�es G((:b1) ^ (:b2)). We haveto show that it belongs to LO(T ). This exe
ution belongs to LO(T 0) by as-sumption. As G((:b1) ^ (:b2)) holds on �, the witnessing run of T 0 on � staysin the normal part of T 0. By 
onstru
tion, this gives an a

epting run of T on�, so x belongs to LO(T ).��5.3 Compositional reasoning with Timing Di-agramsIn the previous se
tion, we presented a sound and 
omplete rule for assume-guarantee based 
ompositional reasoning. In this se
tion we show how toapply that rule to spe
i�
ations in the form of SRTDs, whi
h were des
ribed104
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Figure 5.1: Augmented Syn
hronous Regular Timing Diagramin detail in Chapter 4. By fo
using on SRTDs, whi
h are a highly regularspe
i�
ation formalism, we obtain several bene�ts. Firstly, for SRTDs withthe non-overlapping semanti
s, the soundness 
he
k C3 in the rule followsdire
tly as a 
onsequen
e of the expressiveness of the formalism and so 
anbe dispensed with. Se
ondly, we take advantage of the fa
t that SRTDs haveeÆ
ient model 
he
king pro
edures. Finally, we also show that the generationof helper assertions is not only automati
 but eÆ
ient for SRTDs.In order to use SRTDs as a spe
i�
ation language in a 
ompositionalmodel 
he
king paradigm we need to augment the de�nitions of SRTDs givenin Chapter 4 with some information about the modularity of the design beingveri�ed. This is a
hieved by introdu
ing the 
on
ept of an ownership fun
tionwhi
h is de�ned as follows.De�nition 35 (Ownership Fun
tion) Given an SRTD T = (
; S;WF ;M)and a set of (implementation) pro
ess names N . An ownership fun
tion O :S ! N maps ea
h signal in S to the pro
ess in N that 
ontrols it.105



Note that the ownership fun
tion assumes that the signals are not 
on-trolled by more than one pro
ess. Thus, the ownership fun
tion O 
an be usedto partition the SRTD T into disjoint fragments, T1; : : : ; Tn. An SRTD frag-ment Ti 
onsists of PreT , and only those waveforms in PostT that are owned bypro
ess i. Re
all that an SRTD T is de�ned over a set symboli
 values SV(S)= f(apaq:::ar)jap 2 SVp^ :::^ar 2 SVrg[fX;Dg, where S = fp; q; :::rg is theset of waveform names and SV i is the domain of values for waveform i. AnSRTD T is de�ned as (Pre; Post1; :::; P ostk), where the pre
ondition Pre orany of the subsequent post
ondition segments Posti of length m is a fun
tionS � [0; m)! SV(S).De�nition 36 (SRTD Fragment) Given SRTD T = (Pre; Post1; :::; P ostk)and a ownership fun
tion O. Let SA = fs 2 SjO(s) = Ag be the signals inT 
ontrolled by implementation pro
ess A. TA = (Pre0; P ost01; :::; P ost0k) is afragment of T with respe
t to O where� Pre0 = Pre and� Ea
h post
ondition segment Post0i, Post0i is a fun
tion from SA�[0; m)!SV(SA) where, for all s 2 SA, Post0i(s) = Posti(s).An SRTD fragment may not be a well-formed SRTD sin
e a fragmentmay 
ontain a pause whose pause owner is in another fragment. For example,in Figure 5.1, the ownership fun
tion O maps signals A and C to pro
essMod1and B to pro
ess Mod2, and we have one fragment 
onsisting of waveformsMod1:A and Mod1:C and another with waveform Mod2:B.
106



5.3.1 Translating SRTDs into AutomataIn Chapter 4, we presented algorithms that translate an SRTD, with both theoverlapping and non-overlapping semanti
s, into 8FA. These 
onstru
tions
an be modi�ed easily to 
onstru
t similar automata for SRTD fragments; themodi�
ation 
onsists of 
hoosing the failing post
ondition signal only amongstthe post
ondition signals of the fragment.Algorithm 5The algorithm that translates an SRTD T , relative to an ownership fun
tionO, into a 8FA AT pro
eeds as follows.� Use the ownership fun
tion O to partition the T into fragments T0; :::; Tn.� For ea
h fragment Ti, 
onstru
t a 8FAAi using the algorithms (for eitherthe overlapping and non-overlapping semanti
s) in Se
tion 4.� The 8FA AT that 
orresponds to T is A0 � :::�An.Therefore, using this modi�ed algorithm, an SRTD T with fragmentsT1; : : : ; Tn 
an be translated into an 8FA AT =A1�: : :�An. As a 
onsequen
eof Theorems 11 and 13, we know that AT a

epts the language of T .5.3.2 Automati
 Constru
tion of Helper Pro
essesWe now present an algorithm that 
onstru
ts a helper pro
esses Qj that gen-erates the non-overlapping language 
orresponding to the fragment Tj of thediagram.Algorithm 6 107



For ea
h signal i in fragment Tj, pro
ess Qj operates as follows.� Sets signal i nondeterministi
ally until the pre
ondition holds, then itgenerates the values for i as spe
i�ed in the post
ondition of waveformi.� If there is a don't-
are value in waveform i, the output value is 
hosennondeterministi
ally from the domain Vi.� If there is a segment of don't-
are transitions, the point at whi
h thetransition o

urs is 
hosen nondeterministi
ally as well. Qj maintainsthe old value until this point and then generates the new value.� If pro
ess Qj is the owner of a pause, it non-deterministi
ally de
ideswhen to generate this event and maintains the 
urrent value till thatpoint. The pro
ess has a fairness 
onstraint that for
es this event too

ur within a �nite period. Otherwise, it maintains its value until theevent that signals the end of the pause o

urs, without any requirementfor termination.Theorem 24 (Non-blo
king) For an SRTD fragment Tj, the 
orrespondinghelper pro
ess Qj is non-blo
king.Proof. In order to prove that Qj is non-blo
king, we must show that Qj
an make a transition from any rea
hable state on any external input. By
onstru
tion, Qj operates independent of its environment ex
ept in the 
aseof a pause. In the 
ase of a pause whi
h is not owned by Qj, if the pausebreaking event never o

urs Qj may wait in this state forever, otherwise, on
ethe event o

urs Qj 
ontinues to generate the post
ondition. If Qj owns the108



pause, there are fairness 
onstraints that for
e this event to o

ur; thus Qj isnon-blo
king.� It is easy to show that Qj is just the 
ompletely 
haoti
 pro
ess (withinitial 
ondition and transition relation both being true) 
omposed with theautomaton for Tj; hen
e, (==j : Qj) generates the non-overlapping languageof T .Theorem 25 (Corre
tness) For any SRTD fragment Tj and the 
orrespond-ing helper pro
ess Qj, � is a 
omputation of (==j : Qj) i� � j=n T .Proof.()) If � is a 
omputation of (==j : Qj) then (by 
onstru
tion) either thepre
ondition PreT never holds or the �rst o

urren
e and all subsequent non-overlapping o

urren
es of PreT are followed by post
ondition of T . Hen
e,by De�nition 21, � j=n T .(() � j=n T i� � 2 ((:p)�;PreT ;PostT )! + ((:p)�;PreT ;PostT )�; (:p)! ( byDe�nition 21). If PreT does not hold along �, then � is a 
omputation of(==j : Qj). If there is sub-
omputation �[q::r℄ of (==j : Qj) that satis�es PreTthen, by 
onstru
tion, (==j : Qj) generates �[r + 1::s℄ that satis�es PostT .We also know, by 
onstru
tion, that (==j : Qj) re
ognizes the �rst o

urren
eof PreT and ignores all overlapping o

urren
es of PreT . Therefore, � is a
omputation of (==j : Qj).� The key feature of this 
onstru
tion is that, for every pause k, onlythe pro
ess that in
ludes the signal owning the pause has a fairness 
on-straint enfor
ing the o

urren
e of the pause breaking event. This ensures109



non-interferen
e between the fairness 
onditions, whi
h is the essen
e of thesoundness 
he
k in our 
ompositional rule.Theorem 26 (Non-interferen
e) For SRTD T with the non-overlappingsemanti
s, the 
orresponding pro
esses Q1; : : : ; Qn, where n > 1, and 
ompu-tation �, � 2 
l(LO(Q1== : : : ==Qn)) implies � 2 LO(Q1 + : : :+Qn).Proof. T has a safety 
omponent, that spe
i�es that the waveforms must notbe violated and a liveness 
omponent whi
h spe
i�es that ea
h pause musto

ur for arbitrary but �nite period of time. If � is in 
l(LO(Q1== : : : ==Qn)),it must satisfy the waveform pattern at ea
h point. If � is not in LO(Q1 +: : :+Qn), this 
an only be be
ause � never produ
es the pause breaking eventof a pending pause. But su
h a pause is owned by a parti
ular Qi; hen
e, by
onstru
tion, � is a 
omputation of the Qj's, j 6= i. �Theorem 27 (Complexity of a Helper Pro
ess) Given an SRTD frag-ment Tj and the 
orresponding helper pro
ess Qj, the size of Qj is linear inthe size of Tj.Proof. The size of pro
ess Qj is s+ t, where s is the number of states and t isthe transition size. The transition size is the sum of the length of the booleanguards labeling the transitions. The size of Tj is n � 
, where n is the numberof signals and 
 is the number 
lo
k points.The number of states in Qj is bounded by 
 and is, therefore, linear inthe size of the Tj. Ea
h transition in Qj is bounded by O(n) and the numberof transitions is bounded by 
. Hen
e, the transition size is n � 
, whi
h is alsolinear in jTjj. Thus, the size of Qj is linear in the size of jTjj. �110



5.3.3 Compositional Model Che
king of SRTDsIn this se
tion, we will des
ribe a proof methodology that uses SRTDs asthe property T in the proof rule in Se
tion 5.2. We would like to show thatP1==P2 j=n T , where T is an SRTD (respe
tively, P1==P2 j=o T ). By the
onstru
tion in the previous Se
tion, we know that any SRTD T 
an be auto-mati
ally de
omposed into helper pro
esses Q1 andQ2 relative to an ownershipfun
tion. In order to apply the 
ompositional rule with these 
hoi
es for theQi's, we need only 
he
k 
ondition C1 and C3, as 
onditions C0 and C2 aretrue by 
onstru
tion. In the non-overlapping 
ase, 
ondition C3 need not be
he
ked, as it follows from Theorem 26. Thus, the only 
ondition to be 
he
kedis C1. The details of this 
he
k are des
ribed in the following se
tion.5.4 Appli
ationsWe have in
orporated the algorithms des
ribed in the previous se
tions into theRtdt tool. We used Rtdt to automati
ally generate the property automataand the helper pro
esses. The veri�
ation tool COSPAN is used to dis
hargethe proof obligations. COSPAN 
he
ks A j= B by 
onsidering only the in�nitefair exe
utions. In order to 
he
k in
lusion for the �nite exe
utions as well,we utilize ma
hine 
losure. If A is ma
hine 
losed, any �nite exe
ution x ofA 
an be extended to an in�nite fair exe
ution; thus, if the COSPAN 
he
kis su

essful, x mat
hes some �nite 
omputation of B. The alternative is touse COSPAN's fa
ilities for 
he
king �nite 
omputations, but this requiresthe produ
t of A and B to be 
onstru
ted twi
e { on
e for ea
h 
he
k. Thema
hine 
losure method is more eÆ
ient, as in some of our examples, pro
esses111



are trivially ma
hine 
losed. We added the ability to 
he
k ma
hine 
losure toCOSPAN.In our 
urrent implementation, we use the non-overlapping semanti
ssin
e it requires that we only 
he
k 
ondition C1. We would like to takeadvantage of the linear-time (Theorems 12,14) model 
he
king algorithms todis
harge the obligation P1==Q2 j= Q1 (similarly for the other obligation) inC1. We use Lemma 0 to repla
e the possibly more expensive 
he
k P1==P2 j=nT by the 
omputationally 
heaper 
he
k P1==P2 j=o T .We used Rtdt in 
onjun
tion with COSPAN to verify two systems.The �rst is a syn
hronous memory a

ess 
ontroller and the se
ond is Lu
ent'sSynthesizable PCI Interfa
e Core.5.4.1 Memory A

ess Controller
arbiter.rqst

clock

00 10

arbiter.gnt

memory.ack

memory.data

arbiter.req

arbiter.addr

arbiter.read

Figure 5.2: Read Transa
tion for the Memory A

ess ControllerThe memory a

ess 
ontroller system has an arbiter that provides ar-112



bitration between two user pro
esses and a memory 
ontroller that 
ontrolsthree target pro
esses. The user pro
esses may non-deterministi
ally requesta transa
tion and the arbiter grants one user permission to initiate the trans-a
tion. That user pro
ess may then issue a memory instru
tion by assertingeither the read or write line and putting an address the 2 bit address bus.The target whose tag mat
hes the address awakens, servi
es the request, thenasserts the a
k line on 
ompletion.We veri�ed that this system satis�ed both read and write memory trans-a
tions formulated as SRTDs as shown in Figure 5.2. Table 5.1 presentsthe veri�
ation statisti
s of both the 
ompositional and non-
ompositionalapproa
hes. In Table 5.1, Arb and Mem refer to the arbiter and memory
ontroller implementation pro
esses and Arb0 and Mem0 are the automati-
ally generated helper pro
esses. m
(Arb/Mem0) and m
(Arb0//Mem) referto the ma
hine 
losure 
he
k performed by COSPAN. Ta (Tm) is the !-NFAfor the SRTD fragment that 
orresponds to pro
ess Arb (Mem). Table 5.1indi
ates that the 
ompositional 
he
ks are more eÆ
ient than model 
he
kingArb==Mem j= T dire
tly. The 
ost of 
he
king Arb==Mem0 j= Ta is morethan 
he
king Arb0==Mem j= Tm and this is be
ause most of the signals in theSRTDs for both the read and write transa
tions belonged to the arbiter.5.4.2 Lu
ent's PCI Synthesizable CoreThe se
ond example is the Lu
ent Te
hnologies PCI Interfa
e Core, whi
h is aset of building blo
ks that bridges an industry standard PCI Bus interfa
e toa high performan
e F-Bus. The F-Bus supports multiple masters and slavesand there are separate master and slave interfa
es to the PCI Bus. The PCI113



Model Checking
Task

Number of
Variables

Number of
Reachable States Bdd Size

Space
(MBytes)

Time
(seconds)

SRTD  for the  read transaction  

1.9e+06 14772 0 2

SRTD  for the  write  transaction  

1.0e+06 14551 0

1.1e+05 17993

1.1e+06 34861

1.1e+05 16854 2 11

220 7.3e+05 42844

2.5e+06

1.9e+04 14793

50084 22 73

3

2.6e+06

3.8e+04 15432

T

0

6

14

260

114

86

129

201

106

99

112

258

23

46

772254834

2

40

6717

T

mc(Arb’//Mem)

mc(Arb//Mem’)

Arb//Mem

Arb’//Mem

mc(Arb’//Mem)

mc(Arb//Mem’)

Arb//Mem

Arb//Mem’

Arb//Mem’

Arb’//Mem Tm

Tm

Ta

Ta

Table 5.1: Veri�
ation Statisti
s for Memory A

ess Controller DesignInterfa
e Core is designed to be fully 
ompatible with the PCI Lo
al Busspe
i�
ation [Gro95℄.In the previous 
hapter, we used Lu
ent's PCI Bus Fun
tional Model[BL96℄, whi
h is a sophisti
ated environment that was developed to test thePCI Interfa
e Core for fun
tionality and 
omplian
e with the PCI spe
i�
ation.The Fun
tional Model 
onsists of the PCI Core blo
ks and abstra
t modelsfor both the PCI Bus and the F-Bus. This model has about 1500 boundedstate variables and was too large for model 
he
king dire
tly. We, therefore,114



clock

mcntrl.MC_Frame

mcntrl.MC_Irdy

scntrl.SC_Devsel

scntrl.SC_Trdy

scntrl.SC_StopFigure 5.3: Non-burst Property for PCI Corerestri
ted our veri�
ation e�orts to a part of this design 
alled p
im-
ore thatdeals with basi
 PCI fun
tionality. The p
im-
ore 
onsists of the followingpro
esses a
ting in parallel: a master 
ontrollerm
ntrl, a slave 
ontroller s
ntrl,a 
on�guration pro
ess 
on�g and an address multiplexer admux. In additionthere is an environment pro
ess p
im-ENV that 
ontains all the inputs to thep
im-
ore pro
ess. We added a number of 
onstraints on p
im-ENV to redu
ethe size of the state spa
e. These 
onstraints were property spe
i�
 and weredi�erent for ea
h property we 
he
ked.We formulated a number of properties as SRTDs by looking at the tim-ing diagrams found in the PCI spe
i�
ation [Gro95℄ and the PCI Core User'smanual [BL96℄. These SRTDs were de�ned over signals 
ontrolled by m
ntrland s
ntrl. We used Rtdt to automati
ally 
onstru
t the helper pro
essesMC 0 and SC 0 and the property automata Tm and Ts. In Table 5.2, ENVrefers to the 
omposition of p
im-ENV, 
on�g and admux, while MC and SCrefer to m
ntrl and s
ntrl respe
tively. Ma
hine 
losure was trivially satis�edsin
e the p
im-
ore pro
ess did not 
ontain any fairness.115



 TmMcrl//Scrl’//E

Mcrl’//Scrl//E Ts

Mcrl//Scrl//E T

Mcrl’//Scrl//E Ts

 TmMcrl//Scrl’//E

Mcrl//Scrl//E T

Mcrl’//Scrl//E Ts

 TmMcrl//Scrl’//E

Model Checking
Task

Number of
Variables

Number of
Reachable States Bdd Size

Space
(MBytes)

Time
(seconds)

SRTD  Burst Property 1  

5.2e+05

1.2e+07 40

4.4e+08

SRTD  Non Burst Property 1  

SRTD  Burst Property 2  

273140

291

79

74

14

3

20

3

58 77411 3

127 587771 93 5281

− − 6725219 342Mcrl//Scrl//E

* did not complete due to shortage of space

T*

9.9e+06

3.8e+05

1.8e+08

2.5e+28

1.4e+09

293

44066

158490

42436

18241792331

138110

430

40

302

335 511

115488 9 124

74

Table 5.2: Veri�
ation Statisti
s for PCI Synthesizable Core DesignThe basi
 bus transfer on the PCI is a burst, whi
h is 
omposed of anaddress phase followed by one or more data phases. In the non-burst mode,ea
h address phase is followed by exa
tly one data phase. The data transfersin the PCI proto
ol are 
ontrolled by three signals P
iFrame, P
iIrdy andP
iTrdy. The master of the bus drives the signal P
iFrame to indi
ate thestart and end of a transa
tion. P
iIrdy is asserted by the master to indi
atethat it is ready to transfer data. Similarly the slave uses P
iTrdy to signal116



that it is ready for data transfer. Data is transferred between master andslave when both P
iIrdy and P
iTrdy are asserted on a rising 
lo
k edge. TheP
iStop signal is used by the slave to indi
ate termination of the transa
tionand the P
iDevsel signal is used to indi
ate the 
hosen devi
e.
clock

mcntrl.MC_Frame

mcntrl.MC_Irdy

scntrl.SC_Devsel

scntrl.SC_TrdyFigure 5.4: Burst Property for PCI CoreThe �rst property in Table 5.2 stated that \in an ongoing transa
tion,on
e the P
iStop signal is asserted, the P
iTrdy and P
iDevsel signals remain
onstant until the data phase 
ompletes (P
iIrdy is deasserted)". The se
-ond property, shown in Figure 5.4, spe
i�ed that \if P
iFrame is deassertedwhen both P
iIrdy and P
iTrdy are asserted then the data phase 
ompletessu

essfully ". The �nal property, shown in Figure 5.3, spe
i�ed the non-burstproperty, \if P
iFrame is asserted for exa
tly one 
lo
k 
y
le and P
iIrdy,P
iDevsel and P
iTrdy are eventually asserted then in the next 
lo
k 
y
le thetransa
tion ends".Table 5.2 indi
ates that the 
ompositional 
he
ks are far more eÆ
ientthan the 
orresponding non-
ompositional 
he
ks. The non-
ompositional
he
k for the non-burst property ran out of memory, the numbers shown inTable 5.2 are the BDD size, spa
e and time just before memory exhaustion.117



The slave 
ontroller s
ntrl has a lot of intera
tion with both 
on�g and admuxpro
esses and this resulted in these pro
esses being pulled into the 
one ofin
uen
e. This is re
e
ted in the signi�
ant disparity in the numbers for thetwo 
ompositional 
he
ks.5.5 Related Work and Con
lusionsCompositional reasoning for 
on
urrently a
tive pro
esses has been the sub-je
t of mu
h work over the past three de
ades. The earliest work in assume-guarantee reasoning [MC81, Jon81℄ was 
on
erned about reasoning aboutsafety properties for networks of pro
esses. Many other assume-guaranteeproof rules, like those proposed in [Pnu85℄ [Sta85℄ [Kur87℄ [AH96℄ and [M
M97℄,apply only to safety properties. There are more general proof rules, that 
anbe applied to both safety and liveness properties, whi
h are presented in thefollowing: [Pnu85℄ [Jos87℄ [CLM89℄ [GL94℄ [AL95℄ [AH95℄ [AH96℄ [M
M99℄and [NT00℄. Our rule extends a simple reasoning rule, that is known tobe sound for safety properties, with an additional soundness 
he
k for live-ness properties. Thus, in a sense, the rule isolates the diÆ
ulties with rea-soning about liveness in the soundness 
he
k. Unlike our rule, many otherproof rules, like [AL95℄ [M
M99℄ [AH95℄ [AH96℄ and [HQRT98℄, have beenshown to be in
omplete [NT00℄. Moreover, most of the earlier work (
f.[Pnu85, AL95, AH96, M
M99, NT00℄) applies only to restri
ted kinds of pro-
esses or temporal logi
 formulas. In 
ontrast, our pro
ess framework is verygeneral and pla
es far fewer restri
tions on pro
esses.The possibility of using timing diagrams for 
ompositional veri�
ationappears to have been �rst re
ognized in a paper by Josko [Jos87℄ on modu-118



lar reasoning. This paper, however, uses timing diagrams only for illustrativepurposes. In later work [HSD+93℄, [DH94℄, [DHKS94℄, [BW98b℄, [BW98a℄, a
ompositional veri�
ation methodology proposed in [Jos93℄ is used to verifySymboli
 Timing Diagram (STD) [DJS94℄ properties. This work uses tim-ing diagrams as a 
onvenient notation for expressing temporal properties {the assume-guarantee reasoning is left to the veri�er. In 
ontrast, our workshows how assume-guarantee pairs 
an be generated me
hani
ally from tim-ing diagram spe
i�
ations, resulting in a 
ompletely automated 
ompositionalveri�
ation method.In our work, we show that timing diagram spe
i�
ations in the formof SRTDs are naturally de
omposable into assume-guarantee properties aboutthe 
omponents of the system. We also show that, although timing diagrams
an express liveness properties, the na��ve 
ompositional reasoning rule 
anbe applied safely, as the additional soundness 
he
k always su

eeds for thenon-overlapping semanti
s. We show how to apply the 
ompositional rulein a fully automated manner. Our experiments with the memory 
ontrollerand the PCI interfa
e 
ore show that 
ompositional reasoning 
an indeed bedone su

essfully in this way, produ
ing substantial savings in the time andspa
e required for the veri�
ation. Although, in these examples, the naturalde
omposition of the timing diagram property suÆ
es for generating the helperpro
ess, it is possible that this will not true in some 
ases. Thus, heuristi
sfor automati
ally generating helper pro
esses may be needed { whi
h we leavefor future work.
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Chapter 6
The Rtdt Tool

6.1 Introdu
tionThe Regular Timing Diagram Translator (Rtdt) tool provides a user-friendlygraphi
al editor, that is used to 
reate and edit SRTDs, plus a translatorthat implements the 
ompositional and non-
ompositional model 
he
king al-gorithms. Rtdt forms a formal and eÆ
ient timing diagram interfa
e to themodel 
he
ker COSPAN [HHK96℄.The main features of the Rtdt tool are as follows.� A user friendly editor for graphi
ally 
reating and editing SRTDs.� A translator that implements the non-
ompositional algorithms and the
ompositional proof pro
edure des
ribed in Chapters 4 and 5.� The user 
an exe
ute COSPAN from within the Rtdt tool.� When a veri�
ation 
he
k fails, Rtdt displays the resulting error tra
eas an SRTD and allows the user the option of editing this diagram.120



6.2 Rtdt Design IssuesOur design goals for theRtdt tool were: easy of use, eÆ
ien
y, maintainabilityand portability. We 
hose JAVA as the programming language for two reasons,namely portability and the extensive graphi
al support. Unlike other timingdiagrams editors (
f. [KM97℄), we designedRtdt's Graphi
al User Interfa
e toensure that the diagram at any point in the editing pro
ess is well-formed. Forinstan
e, we use the user supplied 
lo
k triggering information in the editingpro
ess to ensure that a rising edge triggered waveform only 
hanges state atthe rising edge. The implementation is 
leanly partitioned so that 
hangesmade to underlying model do not e�e
t either the editor or translator.Rtdt makes use of the JAVA Swing API for the graphi
s. The 
oreof the design is the intermediate representation of an SRTD, 
alled IR, whi
his a re
ord that 
ontains the following information: number of 
lo
k 
y
les,number of waveforms, position of the pre
ondition, a list denoting the pausemarkers, a list of 
olumn names and a list of waveforms. Ea
h waveform is alist 
onsisting of the waveform name, the triggering edge of the 
lo
k and thevalue at ea
h 
lo
k point.The editor reads and writes the IR. When the editor reads an IR, it
reates a Swing 
omponent 
alled a JTable. In order to display and edit anSRTD, instead of the table, we 
ustomized the JTable 
ell-editor and 
ell-renderer. The translator also inputs the IR and 
reates 
orresponding au-tomata des
riptions in S/R, whi
h is the input language of COSPAN. The IRis written into a �le with extension \.td" and the 
orresponding S/R transla-tion is written into a �le with the extension \.td.sr".
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