Copyright
by
Nina Amla

2001

Efficient Model Checking for Timing Diagrams

by

Nina Amla, B.E, M.S.

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2001

Efficient Model Checking for Timing Diagrams

Approved by
Dissertation Committee:

To my parents

Acknowledgments

The time I spent at the University of Texas and Austin has been influenced
by many. I am indebted to my advisor Allen Emerson. Allen provided a
challenging and rewarding milieu; he has taught me that research is about
clarity of thought leading to precision in exposition.

The two summers I spent at Bell Labs influenced this thesis immea-
surably. Bob Kurshan made this possible. Bob has had a profound impact
on my research perspective. I owe much to Jayadev Misra for his constant
encouragement, technical insights and for giving crucial advice when I needed
it most. I am grateful to Adnan Aziz for the many productive discussions and
for being so generous with his time. I thank Mohamed Gouda and Aloysius
Mok for serving on my committee and for the useful feedback.

Kedar Namjoshi has been a superb mentor, both officially and unoffi-
cially, and a good friend. Our association goes back to the first projects we
collaborated on in Allen’s class and continues to this day. Thanks to Richard
Trefler, first a wonderful and supportive friend, and now a close collaborator.

To Phoebe Weidmann, my closest friend, thank you for everything. I
value the friendship of John Havlicek, Pete Manolios and Natasha Sharygina

and have enjoyed our many discussions on technical and non-technical matters.

I thank Emery Berger, Emilio Camahort, Esra Erdem, Sergei Gorinsky, John
Gunnels, Sam Guyer, Mike Hewett, Subramanian Iyer, Rajeev Joshi, Vineet
Kalhon, Lyn Pierce, Jack Sarvela, Jun Sawada, Vasilis Samoladas, Yannis
Smaragdakis and Thomas Wahl for the great company and memories from
graduate school. Brian Victor, whom I have known the longest, thanks for for
being such a dear friend.

None of this would have been possible without the love and encourage-
ment of my family. My mother, a teacher all her life, provided me with a
ready role model. Thanks to my father, my guide at all times. I thank my
sister Anita for her unflagging support and her company these last years in
Austin. Vanya I thank for being my anchor and best friend. Mukund, thanks
for having enough ambition, patience and drive for the two of us. Lovable
Laila and Bert, thanks for always reminding me that happiness is as accessible
as a walk around town lake.

Acknowledgments have to stop somewhere: ‘What do I have that I have

not received?’

NINA AMLA

The University of Texas at Austin
May 2001

vi

Efficient Model Checking for Timing Diagrams

Publication No.

Nina Amla, Ph.D.
The University of Texas at Austin, 2001

Supervisor: E. Allen Emerson

Non-terminating systems that continually interact with their environ-
ment are called reactive. These types of systems are commonplace and are
largely acknowledged to be hard to validate using conventional techniques. In
a landmark paper, Pnueli argued that temporal logics are an effective way to
reason about the correctness of reactive systems. Model checking is a formal
technique that efficiently determines if a reactive system satisfies a temporal
logic specification. In the last decade, model checking has been used exten-
sively to verify complex hardware and software systems. However, in prac-
tice, model checking suffers from a phenomenon called state explosion, where
the global state transition graph may be exponential in the number of sub-
components in the system. The state explosion problem severely limits the
size of the systems that one can model check automatically. Another obstacle
is that formal specification methods, based on temporal logic or automata,

are largely unknown in the design community. This dissertation addresses

Vil

both these issues by introducing a visual notation that is already used in the
informal specification of hardware systems and by providing efficient model
checking algorithms for these specifications.

The first part of the dissertation presents, Regular Timing Diagrams
(RTDs), an expressive notation for specifying the temporal behavior of asyn-
chronous systems. RTDs have a formal syntax and a simple and precise seman-
tics that correspond to informal usage. We have developed efficient algorithms
to translate RTDs into automata on infinite strings (w-automata). We present
decompositional model checking algorithms, that exploit the fact that RTDs
can be cleanly decomposed into their constituent parts. These polynomial-time
algorithms are a significant improvement over previous monolithic algorithms
that are exponential in the worst case.

The second part of the dissertation introduces Synchronous Regular
Timing Diagrams (SRTDs) that are used to specify the behavior of syn-
chronous systems. The model checking algorithms developed for SRTDs are
linear in the size of the diagram. A tool, based on this framework, called RTDT,
which allows a user to graphically create SRTD specifications and translate
them into automata, is also part of this dissertation. RTDT has been used
successfully in conjunction with the model checking tool COSPAN to verify
that Lucent Technologies PCI Interface Core satisfied actual diagrams found
in the PCI Local Bus specification.

The final part of the dissertation offers a way to cope with state ex-
plosion by employing a proof technique called compositional reasoning that
reduces reasoning about the entire system to reasoning about individual com-
ponents. The assume-guarantee paradigm, is a type of compositional reason-

ing, where each component guarantees properties based on assumptions made

viil

about the other components. Applying these proof rules, however, is not au-
tomatic; it requires non-trivial human effort to decompose a property into
sub-properties and to then derive the appropriate assumptions. Additionally,
such proof rules are generally not complete and must be applied differently for
safety and liveness properties. A new sound and complete assume-guarantee
proof rule is developed in this dissertation which can be applied to both safety
and liveness properties. When the property is an SRTD, this rule can be
applied in a fully automatic manner by using the fact that SRTDs have a nat-
ural decomposition into assume-guarantee pairs. The application of this rule
to Lucent’s PCI Core and other case studies yielded substantial reductions in
the space and time required for model checking.

In summary, this dissertation introduces an alternative and visual way
of specifying temporal properties, which makes model checking more accessi-
ble to the non-expert user. Furthermore, this work addresses the state explo-
sion problem by presenting efficient model checking algorithms and a general
assume-guarantee proof methodology that can be applied in a fully automated

manner to specifications in this form.

1X

Contents

Acknowledgments v
Abstract vii
List of Tables xiii
List of Figures xiv

Chapter 1 Introduction 1
1.1 Regular Timing Diagrams 4
1.2 Synchronous Regular Timing Diagrams 5t
1.3 Assume-Guarantee Reasoning for SRTDs 6
1.4 The Rrpr Tool 7

Chapter 2 Background 8
2.1 Automata on Finite Strings 8
2.2 Automata on Infinite Strings 9
2.3 Linear Temporal Logic (LTL) 10
2.4 Model Checking 11
2.5 Timing Diagrams L. 13

Chapter 3 Regular Timing Diagrams

3.1
3.2

3.3

3.4
3.5
3.6

Introductiono
Regular Timing Diagrams - Syntax and Semantics
3.2.1 Syntax
3.2.2 Semantics

Translation Algorithms

3.3.1 Translating RTDs with Weak Iterative Semantics

3.3.2 Translating RTDs with Strong Iterative Semantics . . .
Decompositional Model Checking
Applications
Related Work and Conclusions

Chapter 4 Synchronous Regular Timing Diagrams

4.1
4.2

4.3

4.4

4.5

Introductiono
Synchronous Regular Timing Diagrams
421 Syntax
4.2.2 Semantics

Model Checking SRTDs

4.3.1 Translation Algorithm for Overlapping Semantics

4.3.2 Translation Algorithm for Non-overlapping Semantics .
4.3.3 Model Checking
4.3.4 Decompositional Model Checking
Applications
4.4.1 Master-slave Memory System
4.4.2 Lucent’s PCI Synthesizable Core
Related Work and Conclusions

xi1

16
16
19
19
23
28
29
33
36
39
42

Chapter 5 Compositional Reasoning with SRTDs

5.1 Imtroduction

5.2 Assume-Guarantee Based Compositional Reasoning

5.2.1 Preliminaries

5.2.2 Compositional Reasoning Rules

5.3 Compositional reasoning with Timing Diagrams

5.3.1 Translating SRTDs into Automata

5.3.2 Automatic Construction of Helper Processes

5.3.3 Compositional Model Checking of SRTDs

5.4 Applications

5.4.1 Memory Access Controller
5.4.2 Lucent’s PCI Synthesizable Core
5.5 Related Work and Conclusions

Chapter 6 The RrpT Tool

6.1 Introduction

6.2 RTDT Design Issues

6.3 The RrpT Editor

6.4 The RrDT Translator

6.4.1 Generating the Automata

6.4.2 Generating the Helper Processes
6.5 Related Work and Conclusions

Chapter 7 Conclusions

Bibliography

Vita

xil

78
78
80
80
88
104
107
107
111
111
112
113
118

120
120
121
122
124
125
127
127

130

133

144

3.1

4.1
4.2

5.1
5.2

List of Tables

Verification Statistics for Master-Slave Design

Verification Statistics for Master-Slave Design

Verification Statistics for Lucent’s Synthesizable PCI Core

Verification Statistics for Memory Access Controller Design . .

Verification Statistics for PCI Synthesizable Core Design

xlil

114
116

2.1

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4

List of Figures

(a) Ambiguous Diagram (b) Unambiguous Diagram 14
(a) Ambiguous RTD (b) Unambiguous RTD 20
RTD T Annotated with Symbolic Points 22
RTD Annotated with Points 25
Ambiguous RTD T 27
RTD T Annotated with Unordered Events 29

Automata for (a) Waveform A (b) Waveform B (c) Sequential

Dependency 30
w-NFA Az for Weak Iterative Semantics 31
NFA Ay, for Events d and e in Figure 3.5. 34
Master-Slave Architecture 39
RTD for the Memory Read Cycle 40
RTD for the Memory Write Cycle 41
Annotated Synchronous Regular Timing Diagram 49
SRTD with an Overlapping Precondition 56
SRTD with Don’t-Care Values in the Precondition 58
The DFA A, for the Overlapping Semantics 58

Xiv

4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13

5.1
5.2
5.3
5.4

6.1
6.2

DFA’s for the Postcondition of Waveforms A (top) and B (bottom) 59

w-NFA for the Complement of the SRTD in Figure 4.3 59
The DFA A, for Non-Overlapping Semantics 63
w-NFA Az for the Complement of the SRTD in Figure 4.3 . . 63
SRTD for the Read Transaction 70
SRTD for the Write Transaction 71
Block Diagram of Lucent’s F-Bus with PCI Core 72
An SRTD Burst Property for the PCI Bus 73
SRTD for the Non-burst Transaction of the PCI Bus 74
Augmented Synchronous Regular Timing Diagram 105
Read Transaction for the Memory Access Controller 112
Non-burst Property for PCI Core 115
Burst Property for PCI Core 117
Editing and Viewing Screens 122
Help Screen 125

XV

Chapter 1

Introduction

The class of systems that are non-terminating and interact with their envi-
ronment continuously are called reactive systems [HP85]. Operating systems,
hardware controllers and network routers are well known examples of reactive
systems. It is generally acknowledged that it is hard to verify the correctness
of reactive systems using conventional validation techniques like testing and
simulation. Moreover, formal techniques developed for terminating sequential
programs are not applicable to reactive systems. Pnueli [Pnu77|, proposed the
use of temporal logic as a effective way to reason formally about the correct-
ness of reactive systems. Model checking, introduced by Clarke and Emerson
[CE81| (and independently by Quielle and Sifakis [QS82]), is a fully auto-
mated procedure that efficiently decides if a reactive system satisfies a tempo-
ral specification. The specification may be either a formula in a temporal logic,
like CTL (Computation Tree Logic) [EH82| or LTL (Linear Temporal Logic)
[Pnu77], or, specified as an automaton on infinite strings [VW86, Kur94|. The
survey paper by Emerson [Eme91] presents a comparison of these specification

methods and others in terms of efficiency and expressiveness.

Model checking has been applied successfully in the verification of many
industrial hardware and software systems. In fact, model checking and other
formal techniques are currently used in the design process at companies such
as AMD, IBM, Intel and Motorola. Model checking, however, suffers in
practice due to the state explosion problem: if system M is defined as the
parallel composition of n sub-components, the global state transition graph
may be exponential in n. This imposes severe limitations on the size of
the systems that can be verified. As a result, ameliorating the state ex-
plosion problem is at the forefront of research in this area. Recently de-
veloped techniques, like symmetry reduction (cf. [ES93]) and compositional
reasoning (cf. [dRABH"99]) that exploit the structure of the system, have
been successful in coping with the state explosion problem. In composi-
tional reasoning, one avoids reasoning directly about a system composed of
many sub-components by decomposing the property and proving systemat-
ically that sub-components satisfy these sub-properties. A good survey of
the main contributions in this area can be found in [dRLP97]. The most
well studied compositional reasoning technique is Assume-guarantee reasoning
[MC81, Jon81, Pnu85, Sta85, Kur87, CLM89, AL95, AH96, McM97, McM99]
where one uses assumptions made about the environment to satisfy the re-
quirements of a compositional proof. While this type of reasoning has been
applied in practice [McM98, HQRIS8] there are, however, many difficulties in
actually applying these “circular” proof rules. Firstly, many proof rules apply
only to safety properties and restricted types of processes and/or temporal
logic. Secondly, it has been shown [NT00] that many of these proof rule are
not complete. Finally, decomposing the property and deriving the auxiliary

assumptions must be done manually.

Another obstacle to the widespread use of model checking is the complex
nature of the specification languages. Such specifications, based on temporal
logics or automata, are not well understood in the design community. Visually
intuitive specification methods — which are consistent with the users own nota-
tional conventions — provide an alternative way to specify temporal behavior.
The inclusion of such notations into existing model checkers would make them
accessible to the non-expert user and facilitate the wider application of model
checking.

This dissertation addresses both issues: the incorporation of common
specification methods and the state explosion problem. We introduce formal
graphical specification languages, for both synchronous and asynchronous sys-
tems, which are based on an informal notation called timing diagrams. Tim-
ing diagrams are already widely used in the specification of hardware systems.
Polynomial-time non-compositional and assume-guarantee style compositional
model checking algorithms for these diagrams are presented.

In the first part of this dissertation, we will introduce a visual specifi-
cation notation, that corresponds to regular languages, called Regular Timing
Diagrams (RTDs). RTDs are an effective way to specify asynchronous behav-
ior. We provide model checking algorithms, based on the automata-theoretic
approach, that are polynomial in the size of the RTD specification. Next, we
will present Synchronous Regular Timing Diagrams (SRTDs) that are tailored
for synchronous systems. The model checking algorithms for SRTDs are linear
in the size of both the system and the SRTD specification. The final part of
the dissertation describes a sound and complete assume-guarantee proof rule
that can be applied to both safety and liveness properties. More interestingly,

we can use this rule in a fully automated manner to properties specified in

SRTD notation. These algorithms have been implemented in a tool called
RTDT which is described in the dissertation.

Much of the work done for this dissertation has been published in the
following papers: [AE98|, [AEN99], [AEKNO00]|, [AENTO01] and [AEKNO1].
The rest of this section contains a more in-depth discussion of the problems

involved and justifications for our methods.

1.1 Regular Timing Diagrams

Asynchronous timing diagrams are used to specify the behavior of asynchronous
handshaking protocols like bus arbitration and memory access. The key at-
tribute of an asynchronous timing diagram is the absence of explicit timing
with respect to a global system clock. We introduce a class of timing diagrams
for asynchronous systems, called Regular Timing Diagrams (RTDs), that have
a formal syntax and semantics. The key observation that leads to efficient
model checking is that timing diagrams are compositional (conjunctive) in na-
ture. This can be visualized informally as the waveforms acting independently
and only interacting with other waveforms through a dependency. Rather than
build a single, monolithic w-NFA (Non-deterministic Finite state Automaton
on infinite strings) or a temporal logic formula that corresponds to the entire
diagram, we decompose the diagram into properties of isolated waveforms and
their interactions. This results in a conjunction of simple properties that can
be conveniently represented by a succinct w-NFA for the complement of the
diagram. The resulting w-NFA can be used as the property in the language
containment paradigm to yield a model checking algorithm that is linear in

the system size and polynomial in the size of diagram. We describe how these

algorithms can be applied, with the model checker VIS [BHSV196], to verify
a master-slave memory system. This work was published in [AE98, AEN99]
and is described in Chapter 3.

1.2 Synchronous Regular Timing Diagrams

It is more common, however, to have a synchronous timing specification where
the changes along a signal waveform are bound to a global system clock. The
encoding of such synchronous properties as RTDs introduces a large number
of dependency edges between each transition of the clock and each waveform,
resulting in RTDs that are visually cluttered and increasing the complexity of
model checking. The Synchronous Regular Timing Diagram (SRTD) notation
is, therefore, tailored to describe synchronous timing specifications in a visually
clean manner. More importantly, we exploit the regular structure of SRTDs
to provide model checking algorithms that are more efficient than that for
RTDs. We present decompositional translation algorithms that construct w-
automata of size that is linear in the size of the SRTD (compared with a
polynomial size complexity in [AEN99| for RTDs). This algorithm has been
implemented in a tool — the Regular Timing Diagram Translator (RTDT) —
which is described in Chapter 6. RTDT has been used in conjunction with the
model checker COSPAN [HHK96] to verify timing diagram properties of two
systems: a synchronous master-slave system and Lucents’ PCI Interface Core
[BL96]. This work is presented in Chapter 4 and is based on results presented
in [AEKNOO|.

1.3 Assume-Guarantee Reasoning for SRTDs

In this work we present a new rule for assume-guarantee reasoning which gen-
eralizes several earlier proof rules (cf. [Pnu85, AL95, AH96, McM99, NT00])
by removing the sources of incompleteness in some of these rules, by using
processes instead of temporal logic formulas as specifications, and by allow-
ing more general forms of process definition and composition. The new rule
extends the naive assume-guarantee proof rule with an additional check for
soundness. As the new rule does not discriminate between processes and prop-
erties, it fits in well with a top-down approach to designing systems. We show
that this new rule is complete, to the extent that if the composed system
satisfies a property, then it also satisfies the property with the new rule.
Next, we explore the benefits of applying this rule in the case where the
property is specified as an SRTD. We show that not only is task decomposition
a relatively simple matter for SRTDs, but also that it is possible to automat-
ically generate assumptions directly from the specification. Furthermore, we
identify a class of SRTDs for which the soundness check of the rule is always
satisfied, and for which the generation of the assumptions is efficient. This
leads to a model checking process that is efficient (linear in the size of the di-
agram and the system). These algorithms have been incorporated into RTDT,
which uses COSPAN to discharge model checking subgoals. We report here
on its application to a memory controller and a PCI Interface Core; in both

cases, we obtain substantial reduction in the space used for model checking.

This research was published in [AENTO1] and is described in Chapter 5.

1.4 The RrpT ToOl

The Regular Timing Diagram Translator (RTDT) tool provides a user-friendly
graphical editor to create and edit SRTDs and a translator that implements the
compositional and non-compositional model checking algorithms. RTDT forms
a formal and efficient timing diagram interface to the model checker COSPAN.
The key features of RTDT are described in Chapter 6 and has appeared in
[AEKNO00, AEKNO1].

Chapter 2

Background

In this Chapter, we will present some background on automata theory, tem-

poral logic, model checking and timing diagrams.

2.1 Automata on Finite Strings

Definition 0 (Nondeterministic Finite state Automata (NFA)) An au-
tomaton on finite strings A is a tuple (X,Q, 8, Q° F), where ¥ is finite input
alphabet, Q is a finite set of states, § C Q x ¥ x 29 is a transition relation,
Q° C Q is a non-empty set of start states, and F C Q is a set of accepting

states.

The automaton A is deterministic (DFA) if |Q°|=1 and [6(g,a)| < 1,
forallg € Q and a € X. A runr of A on a finite string w = ayg, a1, ..., @, 1 € 2*
is a sequence of states gy, q1, ..., ¢, in @ such that ¢y € Q°, and ¢;41 € §(g;, a;)
for O < ¢ < n. A run is accepting if q, € F. The language of A, denoted
L(.A), is the set of finite strings that are accepted by .A.

Automata on finite strings are closed under union, intersection and
complementation [RS59]. Deterministic automata can be complemented easily
by complementing the acceptance condition. However, complementing a non-
deterministic automaton involves determinization and results in a construction

that is exponential.

2.2 Automata on Infinite Strings

Definition 1 (Nondeterministic w-automata (w-NFA)) An automaton
on infinite strings A = (2,Q,6,¢°, ®) has a finite input alphabet T, finite
state set Q, transition relation § C Q x ¥ x 29, start state qy and acceptance

condition ®.

A run r of A on input z in X is an infinite sequence of states of A, where qq
is an initial state, and for each ¢, (¢;, i, ¢;i+1) € 8. A accepts x if some run r
on x satisfies the acceptance condition .

An w-automaton is deterministic (w-DFA) if |0(g, z)| < 1 for all states
g € @ and symbols z € ¥. A run r is accepting by the Biichi acceptance
criteria if there is an accepting state that repeats in r infinitely often. In this
dissertation, we consider ® to be Biichi acceptance.

Biichi automata are closed under union, intersection [Cho74] and com-
plementation [Buc62]. The constructions are, however, much more involved
than those for the automata on finite strings. The complexity of complemen-

tation is singly exponential [SVW87].

Definition 2 (Dual Run Automata (VFA)) A VYFA on infinite strings A
= (%, Q,9,q),P) has a finite input alphabet ¥, finite state set Q, transition

relation 0 C Q X ¥ X @, start state qy and acceptance condition P.

A run r of A on input x in X¢ is an infinite sequence of states of A,
where 7 is an initial state, and for each i, (r;, z;,r;11) € 0. A accepts x by
“dual-run” acceptance according to ® iff every run r on x satisfies ®.

The complement of the language accepted by a VFA A is accepted by
an w-NFA A, that has the identical structure but a complemented acceptance
condition. This property is formalized in the following theorem. We define
Lyra(A) as the language accepted by a J-acceptance criteria and Lyps(A) as

the language accepted by a V-acceptance criteria.

Theorem 0 ([MPS87, Var87]) For any VFA A, =Lyra(A) = Lyra(A).

2.3 Linear Temporal Logic (LTL)

We will present the syntax and semantics of Linear Temporal Logic (LTL)
[Pnu77]. Formulas of LTL are built from a set of atomic proposition AP. An
LTL formula is defined as follows:

1. If f € AP then f is a formula.
2. If both f and g are formulas then f A g, f V g and —f are formulas.

3. If f and g are formulas then Xf, Gf, Ff and fUg are formulas.

Where X is “Next time”, G is “Always”, F is “Eventually” and U denotes
“Until”.

An LTL formula is interpreted over computations, where a computation
is a function 7 : N — 247 that assigns truth values to the elements in AP at

each time instant. For a computation 7 and a time instant ¢ € w, we have:

10

o m,ik= fiff penli), for f € AP
oemilEfAgiffmilfandmilg
omikEfVgiffmilEformilEg
o 1, i —fiffnot ik f

o mikEXfiffm i+l f

e 7,1 = fUg iff for some j > i, we have 7,j =g and for all k, i < k < j,
we have m, k = f

Thus the formula, F f is an abbreviation for true Uf and Gf is abbrevi-
ation for =-F—f. An LTL formula can be any boolean combination or arbitrary
nesting of the above operators, therefore one can express GFp (“infinitely often
p”) and FGp (“almost everywhere p). A computation 7 satisfies a formula f,
written 7 = f, iff 7,0 = f.

The following theorem relates L7T'L and Biichi automata.

Theorem 1 ([VW94]) Given an LTL formula f, one can build a Bichi au-
tomaton A; = (3, Q,6, qo, ®), where ¥ = 247 and |Q| is in 2°U/) such that

L(Ay) is exactly the set of computations satisfying the formula f.

2.4 Model Checking

Model checking [CE81, QS82, CES86] is an automated verification technique
to analyze and verify hardware and concurrent reactive systems. In model
checking, one checks that a system M satisfies a specification T' (written as

M = T). Typically the system is a circuit or program and the specification is

11

a formula in a temporal logic, like CTL [EH82| or LTL [Pnu77]. The model
checking algorithm performs searches in the transition graph of the system in
a systematic manner to determine the truth of sub-formulae. For the temporal
logic CTL, the algorithm uses the Tarski-Knaster theorem [Tar55], to compute
the set of states that define the least fix-point. The time complexity of this
method is linear in both the size of the structure and the formula.

The language containment paradigm [VW86, Kur94, LP85] is an ap-
proach to model checking, where both the system and the property are spec-
ified as automata on infinite strings. For the system M and specification 7',
the verification check M = T can be cast as £(M) C L£(T'). This is equivalent
to L(M) N —=L(T) = 0. The algorithm for checking non-emptiness proceeds
by computing the strongly connected components of the product automaton
and then checking if there is a path from an initial state to a strongly con-
nected component containing an accepting state. Language inclusion may be
decided in PSPACE [LP85, VW86], and the non-emptiness problem for Biichi
automata is decidable in linear time [EL85a, EL85b|. The model checking al-
gorithm for LTL [VW86] uses Theorem 1, to build a Biichi automaton A for
the negation of formula 7" and then checks £(M)NL(A-r) for emptiness. The
time complexity of model checking that a finite state program M satisfies an
LTL formula T is linear in size of M but is exponential in the size of formula 7T'.
The Lichtenstein-Pnueli thesis [LP85] argues that an upper time bound that
is exponential in the size of the specification is considered reasonable since the
specification is usually short.

By the results in [SVW87], we know that complementing a Biichi au-
tomaton results in an exponential blowup. As a result, an approach that first

constructs the Biichi automaton Az (for LTL formula T') and then comple-

12

ments it, would result in a double exponential blow-up. In the automata-
theoretic approach, therefore, it is key that the automaton for the specifica-
tion be easy to complement. We observe, as a consequence of Theorem 0, that

VFA’s are trivial to complement and we will exploit this fact in our work.

2.5 Timing Diagrams

A timing diagram, in its most basic form, consists of a number of waveforms.
Each waveform depicts the behavior of a signal or variable over a finite period
of time. The value of a waveform at any point in the diagram is chosen from a
pre-defined domain; generally this domain is the boolean set {0,1}. A change
in the value of a waveform is known as an event. There are several ways that
a waveform may interact with other waveforms; these interactions are called
dependencies. A concurrent dependency specifies that an event depends on
other events occurring at the same time. Concurrent dependencies express
properties like “b is low when a rises”. A sequential dependency relates two
events in the diagram, by specifying that one event occurs within a specified
time interval of the other. A sequential dependency can state properties like

“ event a precedes event

“event a occurred within 5 time units of event b” or
b. These intervals determine the type of the resulting timing diagram lan-
guage. Allowing integer constants, variables and arithmetic expressions in the
intervals results in a non-regular timing diagram language and restricting the
interval to just integer constants and oo yields a regular language.

A timing diagram, like the circuit it describes, may be either asyn-

chronous or synchronous. A synchronous diagram includes one or more “clocks”

with fixed periods and ensures that the time interval between any pair of events

13

Concurrent Waveform Sequential
Dependency Dependency

A N A /

[1,5]

(a) (b)

Figure 2.1: (a) Ambiguous Diagram (b) Unambiguous Diagram

is determined up to the clock period. Synchronous diagrams are used to spec-
ify timing requirements of clocked systems. On the other hand, asynchronous
diagrams do not have a clock. Asynchronous timing diagrams are used to
specify handshaking protocols like bus arbitration and memory access.
Another feature of timing diagrams, identified by Fisler [Fis96], is that
the ordering between events is partial in general; such diagrams are called
ambiguous. In Figure 2.1 (a), for example, the exact ordering between the
rising event on waveform A and the falling event on waveform B is unknown.
On the other hand, an unambiguous timing diagram has a total ordering on
events. In Figure 2.1 (b), the sequential dependency between waveforms A
and B enforces an ordering on those events. In general, synchronous timing
diagrams have less ambiguity and more structure than asynchronous diagrams.
A timing diagram is defined for a finite time period and a key issue is an
appropriate extension to infinite computations. Fisler [Fis96] addressed this
question by considering two kinds of semantics: in the invariant semantics,

the timing diagram must be satisfied at every state of a computation, while in

14

the basic iterative semantics, the diagram must be satisfied iteratively.

15

Chapter 3

Regular Timing Diagrams

3.1 Introduction

Asynchronous timing diagrams are characterized by the absence of a global
systems clock. These diagrams are generally used to specify handshaking pro-
tocols, like bus arbitration, memory access, etc. In this Chapter, we introduce
a class of timing diagrams, for asynchronous systems, called Regular Timing
Diagrams (RTDs). RTDs have a simple and precise semantics and efficient,
decompositional model checking algorithms. These diagrams describe changes
of signal values over a finite time period, and precedence and timing dependen-
cies between such events; an event is defined as a change in signal value. RTDs
can express properties like “signal a rises within 5 time units of signal b falling”
and “signal b is low when signal a rises”. The time intervals are specified by
integer constants, ensuring that the diagram defines a regular language.
RTDs, like other timing diagrams, may be unambiguous, there is a total

ordering on events, or ambiguous, the ordering between events can be partial

16

(see Figure 3.1). Since an RTD is defined for a finite time period, an important
question that arises in defining the semantics is the manner in which an infinite
computation satisfies a timing diagram? Recall that there are two kinds of
semantics [Fis96]: in the invariant semantics, the timing diagram must be
satisfied at every state of a computation, while in the basic iterative semantics,
the diagram must be satisfied iteratively, at points satisfying a precondition
of the diagram. In our model, the precondition is a state property. Our
semantics is a reformulation of the basic iterative semantics, where we permit
a system to satisfy diagrams that express the correctness of different aspects of
its operation. For ambiguous diagrams, we further classify this semantics into
a weak aspect, where a fresh linear ordering of the events is chosen for each
satisfaction of the diagram, and a strong aspect, where a single linear order is
chosen that applies to each satisfaction of the diagram.

The key observation that leads to efficient model checking [CE81, QS82,
CES86] is that timing diagrams are compositional (conjunctive) in nature.
This can be visualized informally as the waveforms acting independently and
only interacting with other waveforms through a dependency. Rather than
build the single, monolithic w-NFA or the temporal logic formula that corre-
sponds to the entire diagram, we demonstrate that it is possible to decompose
the diagram into properties of isolated waveforms and their interactions. This
results in a conjunction of simpler properties that can be conveniently repre-
sented by a succinct V-automaton (VFA) [MP87, Var87]. A VFA (also known as
“dual-run” or “universal” automaton) is a finite state automaton that accepts
an input iff every run of the automaton along the input meets the acceptance
criterion. VFA’s can be exponentially more succinct than NFA’s and naturally

express properties that are conjunctive in nature.

17

Moreover, this conjunctivity can be exploited to verify smaller compo-
nents of the timing diagram in isolation, thus avoiding the construction of the
entire V-automaton. We present efficient algorithms that convert RTDs under
the various semantics into VFA’s that are in the worst case of size polynomial
in the size of the diagram and the largest time constant represented in unary
(note that the unary size is exponential in the binary size). These constants are
generally performance bounds and tend to be small; thus, we feel justified in
claiming polynomial complexity. The use of VFA’s permits the efficient use of
the automata-theoretic approach [VW86, Kur94, LP85] to model checking. For
a system M and RTD T, the verification check can be cast as L(M) C L(Ar),
where Ag is the (small, polynomial size) VFA for the diagram 7" and £(X)
denotes the language of X. This is equivalent to L(M) N —L(Ar) = 0. The
complement language of a VFA is accepted by a NFA with identical struc-
ture but complemented acceptance condition. Hence, complementation (the
—L(A7) term) is trivial, and the complexity of the model checking procedure
is linear in the size of the structure and polynomial in the size of the VFA Az.
In addition, it is often possible to decompose A7 itself into a conjunction of
smaller VFA’s, which may be checked independently with M. It is also simple
to produce a description of =L(Ar) that can be input to a symbolic model
checker.

The algorithm is linear in the structure size, polynomial in the number
of diagram points and dependencies and in the unary size of the constants.
The polynomial complexity of our decompositional algorithm is a significant
improvement over the earlier monolithic approaches (cf. [Fis96, DJS94]),
where the size may be exponential in the worst case. Not withstanding the

Lichtenstein-Pnueli thesis [LP85], in practice, as one reaches the limits of ap-

18

plicability of symbolic model checking tools, the size of the specification is of
importance. A detailed discussion of these points is in Section 3.6.

The rest of the Chapter proceeds as follows. In Section 3.2, we give
a precise syntax and semantics for Regular Timing Diagrams. Section 3.3
presents the algorithms that convert RTDs into VFA’s. The model checking
procedure is presented in Section 3.4. Section 3.5 describes how the algorithms
are used with with the model checking tool VIS [BHSVT96] for the verification
of a master-slave system. We conclude with a discussion of related work in

Section 3.6.

3.2 Regular Timing Diagrams - Syntax and
Semantics

A Regular Timing Diagram (henceforth referred to as an RTD or diagram) is
specified by a number of finite waveforms, each defined over a set of “symbolic”
values SV, and timed dependencies between points on the waveforms. The set
of symbolic values SV is an user-defined domain of values plus the value X,
that is used to specify that the value is unspecified or unknown. For boolean
signals, the set SV is {0,1, X}. However, SV could be either an enumerated
type, or all the values of an address bus. The set SV is partially ordered by

C, whereaCbiffa =X ora=h.

3.2.1 Syntax

Definition 3 (RTD) A RTD is a tuple (S, WF,SD, CD), where
e S is a non-empty set of signal names.

19

Concurrent Waveform Sequential
Dependency Dependency
A R I
[1,5]
B B
(a) (b)

Figure 3.1: (a) Ambiguous RTD (b) Unambiguous RTD

o WF s a collection of waveforms; for each signal A € S, its associated
waveform is a function A : [0,n) — SV where n > 1 is an integer
referred to as the size of the waveform. If A € WF and i € [0, size(A))
then the pair (A, i) is called a point of A.' (A, 0) is the initial point and
(A, size(A)-1) is the final point of A.

e SD 1is the set of sequential dependencies on the points of WF. Fach
dependency is specified as (A, 1) lab) (B, j), where a € N,b € N U {00},
1 <a and a <b. For convenience, [k,o0) is often written as > k, [1, k]

as < k and [k, k| as = k.

e CD is a collection of mutually disjoint, non-empty concurrent depen-
dencies. Each concurrent dependency is a set of points with at most one
point from each waveform in WF. The sets of initial and final points of

the diagram form predefined concurrent dependencies.

LA point (A,1) is also a point of WF and the RTD.

20

Definition 4 (Event) The smallest set of points closed under the following
rules are the events of an RTD T = (S, WF,SD, CD).

1. For every waveform A in WF, (A,0) is an event.

2. Let (A, i) be an event with (A,i) # X and let (A, j) be the first successor
of (A,17) such that A(i) # A(j). If A(j) # X then (A,J) is an event.

3. If (A, i) is a member of a concurrent dependency that contains an event,

then (A, i) is an event.

4. If (A, i) is an event and (A, i) =k (B, j) is a sequential dependency, then

(B, j) is an event.

Notice that for any input string of vectors of signal values, every event
has at most one position on the string. This “precise location” property of
events is the key to our efficient model checking algorithm. For every event e,
it is possible to construct a DFA we call locator(e) that accepts at the position
on an input string where the event holds. This DFA essentially encodes the
sequence of applications of the rules above that define the point e as an event.

A symbolic point of an RTD is either a concurrent dependency or a

singleton set containing a point that is not in any concurrent dependency.

Definition 5 (Symbolic Point) p is a symbolic point of an RTD iff either

p € CD or p contains only one point e, such that for each C' € CD, e & C.

The set of symbolic points is denoted by SP. Informally, events in a
symbolic point should occur simultaneously. The sequential dependencies of

an RTD induce the following ordering relation < on symbolic points.

21

Definition 6 (Ordering on Symbolic Points (<)) Given symbolic points

pand q, p < q iff

e for some waveform A € WF, the point (A, i) € p and point (A,i+1) € q,

or

o there existe € p and f € q such that e — f is a sequential dependency.

The RTD syntax allows several definitions that run counter to intuition.
For instance, dependencies may be cyclically related, or it may be possible that
the location of a dependency is imprecise due to the presence of X (undeter-
mined) parts of a waveform. These cases are ruled out by giving a notion of

“well-formed” RTDs, which is defined below.

Definition 7 (Well-formed RTD) An RTD is well-formed iff (i) every point

of the RTD is an event and (i) the transitive closure of < (<%) is irreflezive.

The annotated RTD in Figure 3.2 can be expressed notationally as follows.

[3.3]

spl

Figure 3.2: RTD T Annotated with Symbolic Points

22

WF : {A, B}
A: 0—~1,1~0,2~—0
B :0—-01—-12—03—1
sD : {(4,0) 2% (B,1)}
CD : {{(A4,0),(B,0)},{(A4,1),(B,2)},{(4,2),(B,3)}}

There are four symbolic points in this RTD: the singleton {(B,1)}
and the three concurrent dependencies, {(A4,0),(B,0)}, {(4,1),(B,2)} and
{(A,2),(B,3)}. The pre-defined concurrent dependencies at the initial and
final points of the RTD are shown in Figure 3.2, however, for visual clarity, we
will not always show these concurrent dependencies in the diagrams for the

remainder of this Chapter.

3.2.2 Semantics

The semantics of an RTD is a set of infinite computations over states; each
state is a vector indexed by the waveforms of the timing diagram. The set
of states is denoted by ¥. The partial order T defined earlier is extended
to states as follows: u C w iff for each 4, u(i) C w(i). A computation of the
system to be verified consists of an infinite sequence of states from . Since
the syntax of an RTD describes only finite sequences of events, a key question
is the appropriate extension to infinite computations.

The predefined initial and final concurrent dependencies can be viewed
as the begin- and end- conditions of the finite sequence of events described by
the RTD syntax; the initial concurrent dependency is a state predicate and

the final concurrent dependency is a path predicate. For example, the begin-

23

condition for the RTD in Figure 3.2 is (A = 1, B = 0) and the end-condition is
the concurrent dependency at the state (A =0, B = 1). As another example,
if the diagram represents the behavior for a “memory-read” transaction, the
begin- and end- conditions indicate the states that define the extent of this
transaction. Clearly, this diagram should be checked only on the finite sub-
computation that starts at a state satisfying the begin-condition and ends
with a state satisfying the end-condition. One may thus consider an infinite
sequence to satisfy a timing diagram iff the dependencies of the diagram are
satisfied in each finite sub-sequence defined by the begin- and end- conditions.
This statement, though, is still open to many interpretations, some of which
are considered below. We first define what it means for a finite sequence of
states to satisfy a timing diagram. Recall that the relation <™ partially orders
the set of symbolic points, SP. In the following definitions P denotes the set

of points in the diagram.

Definition 8 (Assignment) Given a string of length n, an assignment 7 is
a function m : SP — [0,n), that is strictly monotonic w.r.t. < (p < q implies

7(p) < m(q)) and maps the initial symbolic point to 0.

Definition 9 (Equivalent Assignments) Two assignmentst : SP — [0,n)
and £ : SP — [0,m) are equivalent iff for all p,q € SP, n(p) < 7w(q) iff
¢(p) < &(a)-

Any assignment 7 induces the function # : P — [0,n) which maps a
point (A,) to k iff the (unique, by definition) symbolic point that includes
(A, 7) is mapped to k by m. From the definition of 7, it follows that all points

in a concurrent dependency are assigned a common position.

24

Definition 10 (RTD satisfaction) An RTD T = (S, WF,SD, CD) is sat-
isfied by a finite sequence z € LT w.r.t. an assignment m : SP — [0, |z])

(written as z =, T') iff the following conditions hold.

1. Point consistency: For every point (A1), if 7((A, 1)) =k, then
A(3) T 24 (A), where z;(A) is z; projected onto the coordinates for A.

2. Waveform consistency: Let #((A,7)) =k and 7((A,i+ 1)) =1.
For every j € [k, 1), A(i) C z;j(A).

3. Dependency consistency: For every sequential dependency e M f,
(@(f) — 7(e)) € [a,b).

Figure 3.3: RTD Annotated with Points

We will use the following notation to denote sequences: the angle brack-
ets denote the vector of values at a given state, “;” denotes succession in time
and the superscript n on a state s is a shorthand for n successive copies of
s. We will also use (1,1) to represent the state (A = 1,B = 1). Consider
the finite sequence y[0..6] = (1,0)%; (1,1); (0,0); (0,0); (0,1). For RTD T in
Figure 3.2, the assignment m maps: spy to 0, sp; to 3, sps to 4 and sps to 6.
The function 7 is as follows: (A4,0) — 0, (4,1) — 4, (A,2) — 6, (B,0) — 0,

25

(B,1) — 3, (B,2) — 4 and (B, 3) — 6. The RTD in Figure 3.3 is annotated
with the points. Note that y satisfies the conditions in Definition 10, with
respect to assignment 7, hence y =, T

For many systems, it is the case that the begin- condition for the tim-
ing diagram does not recur before the end- condition holds. For such non-
overlapping systems, we may consider the following semantics. System com-
putations may be described by the expression (A' V (#A%$))“, where # and
$ are special vectors of ¥ representing the satisfaction of the begin- and end-
conditions respectively and A = X\ {#,$}. The sequence of the form #A*$

is called a transaction.

Definition 11 (Weak Iterative Semantics) An infinite sequence z satis-
fies an RTD T wunder the weak iterative semantics (written as z |=,, T) iff for

every transaction #y$ on z, there exists an assignment for which #y$ =, T.

Definition 12 (Strong Iterative Semantics) An infinite sequence z satis-
fies an RTD T wunder the strong iterative semantics (written as z =5 T) iff
there exists an assignment & such that for every transaction #y$ of z, there is

an equivalent assignment m such that #y$ =, T.

Consider the ambiguous RTD 7' in Figure 3.4 and a finite sequence y
= (1,0); (1,1); (0,1); (0,0); (1,0); (0,0); (0,1); (0,0). Let z be an infinite
sequence where the y repeats forever. In sequence y, there are two transactions,
one where A falls before B rises and another where B rises before A falls. The
definition of the weak iterative semantics allows a fresh ordering of events to
be chosen on each transaction, therefore, z =, T. On the other hand, z £, T,

since the ordering used in the two transactions is different.

26

i 1

Figure 3.4: Ambiguous RTD T

We consider now an alternative formulation of Definition 10, which
forms the basis for the decompositional algorithms for model checking. If
#y$ satisfies the timing diagram, each event, by Definition 4, may be located
precisely on the sequence. The key observation is that, since each dependency
consists of precisely located events, it can be checked independently of the

others.

Theorem 2 Let pt be the partial function that defines the location of events
on a finite sequence. For an RTD T = (S, WF,SD, CD), and any finite
transaction z = #y$, there exists an assignment w such that z =, T iff each

of the following conditions holds:

(a) Every event of T can be located on z and has a value consistent with that

in T; i.e., pt is total, and if pt(z, (A, 1)) = k then A(i) T z(A).

(b) Let pt(z,(A,i)) = k and pt(z,(A,i + 1)) = [. For every j in [k,1),
A(i) £ 2(A).

(¢) For each sequential dependency e fo.by f, (pt(z, f) — pt(z,e)) € [a,b).

27

(d) For each pair of events e, f in a concurrent dependency, pt(z,e) =

pt(z, f).

Proof. (=) z =, T implies, by Definitions 8 and 10 and the precise lo-
cation property, that pt is total. Point consistency, in Definition 10, implies
that pt(z,(A,7)) = k then A(i) C z,(A). Condition (c) follows directly from
waveform consistency in Definition 10. Dependency consistency in Definition
10 implies (pt(z, f) — pt(z,e)) € [a, b). Definition 8 implies that each pair of
events e, f in a concurrent dependency, are assigned by 7 to the same location,
hence pt(z,e) = pt(z, f).
(<) If #((A,4)) = k then, by conditions (a) and (d), A(i) C yx(A) (point
consistency). Conditions a and b ensure waveform consistency (Definition 10).
Dependency consistency follows directly from ¢. [

Notice that the theorem essentially transforms the existential (3) con-
dition of Definitions 11 through 12 into a universal (V) condition; this forms

the basis for the decompositional check.

3.3 Translation Algorithms

Theorem 2 is fundamental to decomposing RTDs into a conjunction of prop-
erties of individual waveforms, and ordering or timing restrictions on their
interactions, which is the key to efficient model checking. In this section, we
provide algorithms that translate an RTD under, both strong and weak iter-
ative semantics, into a VFA. For clarity, we often describe the w-NFA for the

complement language instead of the VFA.

28

3.3.1 Translating RTDs with Weak Iterative Semantics

Figure 3.5: RTD T Annotated with Unordered Events

Recall, that we can construct a DFA called locator(e) that accepts at
the position on an input string where the event e holds. We now describe the
w-NFA Az that accepts the complement of the weak-iterative language of an

RTD T = (S, WF, SD, CD).
Algorithm 1

1. Construct a finite string automata for each waveform and dependency

as follows:

e Waveform: The automaton Ag for a waveform B is constructed as
follows: if (B, i+1) is defined in terms of (B, i), then locator((B, 7))
is extended to ensure that the signal values up to the change of
value that defines (B,i+1) are above B(i) in T order. Otherwise,
locator((B, 1)) is used to determine that the value at the position

where (B, i) holds is above B(i) in T order.

e Sequential dependency: The automaton A,g4, for a sequential depen-

dency e oy f, is a parallel composition of locator(e) and locator(f)

29

that accepts iff the time between the acceptance of the locator
DFA’s is within [a, b).

e Concurrent dependency: The VFA, A.q, for a concurrent depen-
dency C checks that for a fixed event e in C and every other event
f in C, locator(e) and locator(f) accept at the same position on

the input sequence.

2. The w-NFA Az operates as follows on an infinite input sequence: it non-
deterministically “chooses” a transaction #y$ on the input, “chooses”
which waveform or dependency fails to hold of the transaction, and ac-

cepts if the automaton for that entity (defined as given above) rejects.

@ ©#8A8$©

us]

SENGEMGEICENC RIS

© OO0

Figure 3.6: Automata for (a) Waveform A (b) Waveform B (c) Sequential
Dependency

Notice that each automaton defined above is either a DFA or a VFA,

30

both of which can be trivially complemented. The VFA Az obtained from this
w-NFA Az by complementing the acceptance condition defines the language

of the RTD under the weak iterative semantics.

accept accept

> accept

DFA A DFA B DFA SD

reject reject reject

e

Figure 3.7: w-NFA A7 for Weak Iterative Semantics

Theorem 3 (Correctness) For any RTD T and z € ¥, z =, T iff ¢ €
L(Ar).

Proof. (=) z =, T implies (by definition 11) that for every transaction #y$
on z, there exists an assignment 7 such that #y$ =, 7. Let us assume that
x € Ag. We know, by the construction of Az, that there must be a transaction
z along x such that some DFA (for a waveform or dependency) A4 rejects on z.
Therefore, by the construction of DFA’s Ay, there is no assignment 7 such that
z | T (i-e. z must violate the constraints on some waveform or dependency).
Since x =, T, such a z transaction does not exists; thus z € L(Ar).

(<) © € L(A7), by definition 2, iff every run of Az on z is accept-

ing. In the construction of Az, this implies that every transaction along

31

x is accepted by all the DFA’s (for the waveforms or dependencies). Let
us assume that z &, T, this means that « has a transaction z, such that
=(37: (2 |=x T')). Therefore, by Definition 10, z violates either (1) point con-
sistency (2) waveform consistency, or (3) dependency consistency. However,
the DFA’s constructed for waveforms or dependencies satisfy these conditions
by construction. Thus, we have a contradiction, and z =, 7. O

For the diagram T' = (S, WF', SD, CD), let [be the size in unary of the
largest constant in SD. Define |T'| = #points + |SD| + |CD|. The size of Ar

is cubic in |T'| and .

Theorem 4 (Complexity) For any RTD T, the size of the corresponding
VFA Ar is polynomial in |T| and the unary length of the largest constant in
T.

Proof. The size of an RTD is T'= e+s+c, where e is the number of events in
T, s= |SD| and ¢=|CD]|. Let [be the largest constant in unary and w be the
number of waveforms. We assume that the transitions in Ag are labeled with
boolean formulas over the w signals. The size of the transitions in Ay is the
sum of the length of the formulas labeling the transitions. The size of Ap is
v + t, where v is the number of states and ¢ is the transition size.

The number of states in each locator automaton is bounded by k =
(e +1). In the construction above, the number of states in the DFA for a
waveform is O(k). Since each transition encodes the values of the signals at
each point, the size of each transition is O(w), while the number of transitions
is bounded by e. Thus, the transition size of each locator automaton is O(k).
The size of the DFA for each sequential dependency is O(k?), as it consists of

two locators in parallel. The size of the VFA for each concurrent dependency

32

is O(w.k?), as each concurrent dependency can have at most w events. The

size of Ar is w.O(k) + s.0(k*) + ¢.O(k?), which is cubic in |T|. O

3.3.2 Translating RTDs with Strong Iterative Seman-
tics
Under the strong iterative semantics, every transaction on an input compu-

tation has to satisfy the RTD T' with respect to a single event ordering. The

w-NFA Az for the complemented language accepts a computation iff
e Some transaction violates a waveform or dependency constraint, or

e There is a transaction and a pair of events that occur in a different order

from that in the first transaction.

The w-NFA Az for the complement of the RTD 7' under the strong-iterative

semantics is constructed as follows:

Algorithm 2

1. Construct the w-NFA A,eqr as defined for the weak-iterative semantics.

2. For each pair of unordered events e and f, construct an automaton A.¢
as follows: Ay first executes the locator DFA’s for events e and f in
parallel on the first transaction to determine their relative order. A.;
then chooses a subsequent transaction and executes the locator DFA’s
of the same events on that transaction to determine the new order, and

accepts if the orders differ.

33

3. The w-NFA A,.4, at the initial state, nondeterministically “chooses”
events e and f that are unordered by <¥, runs automaton A.; and

accepts if A.; accepts.

4. The w-NFA Az accepts if either Ay eqr 0r Ayrg accepts.

Figure 3.8 depicts the automaton A4, for events d and e in the RTD
shown in Figure 3.5. In Figure 3.8, ¥ is the alphabet, A = X\ {#,$}, ¥
denotes X\{#}, A% denotes A\{d,e}, A? denotes A\{d} and A® denotes

A\{e}.

é iffl‘e d ‘_d/ \d~@

€ em /e'
e R R

Ad ,de 28

Figure 3.8: NFA A, for Events d and e in Figure 3.5

Let Ay denote the VFA obtained from the w-NFA Az by complementing
the acceptance condition. The size of Ar is polynomial in |T'| and [for the
first case (Ayear); for the second (A,.q), it is quadratic in |7 and [with

a multiplicative factor of the number of event pairs (which is bounded by

(#points)?).

Theorem 5 (Correctness) For any RTD T and x € ¥, ¢ =, T iff x €
L(Ar).

34

Proof. (=) z |, T iff (by definition 12) there exists an assignment 7, such
that for every transaction z along z, z =, T". Let us assume that z € Ag; by
the construction of Az, there must be a transaction z along x where either (i)
some DFA (for a waveform or dependency) A, rejects on z, or (ii) there exists
events e and f in z that differ in relative ordering from the initial transaction.
In the first case, by Theorem 3, we have a contradiction. For the second case,
the automaton A.; accepts, indicating that e and f occur in a different order.
This implies that a different assignment, £ is used on transaction z. Such an
assignment, however, is not possible, since « |=; T; thus « € L(Ar).

(<) = € L(Ar), by construction, implies that every transaction along
x is accepted by the DFA’s for each waveform, dependency and ordering. Let
us assume that z &, T, this means that « has a transaction z, such that
either (i) (37 : (z =, T)) or (ii) the ordering between two events e and f in
z differs from ordering in the first transaction. In case (i), we appeal to the
result in Theorem 3 to show z |=; T'. In the second case, by construction, each
DFA A.; that checks the relative ordering between the events e and f must
reject. Hence, an assignment 7 used on the first transaction is used on every

subsequent transaction. We get a contradiction in both cases, thus, z =, T.

O

Theorem 6 (Complexity) For any RTD T, the size of the corresponding

VFA Az is polynomial in |T'| and the largest constant in unary.

Proof. The size of an RTD T is e4s+-c, where e is the number of events in T,
s is the size of SD and c is the size of CD. Let [be the largest constant in unary
and w be the number of waveforms. We assume that the transitions in A are

labeled with boolean formulas over the w signals. The size of the transitions

35

in Ar is the sum of the length of the formulas labeling the transitions. The
size of Ar is v +t, where v is the number of states and ¢ is the transition size.

Recall from Theorem 4 that the size of each locator automaton is
bounded by k£ = (e +1). The automaton A,y for the first check is essentially
the same as the automaton for the weak iterative semantics and the number of
states is cubic in |T'| and [. The automaton A, for the second part has size
proportional to the product of two locator DFA’s for each choice, and there

are e* such choices; thus, the number of states overall is e*.0O(k?). The size of

Ar is O(|T|?) + €2.0(|T|?), which is polynomial in |T'|. (I

3.4 Decompositional Model Checking

The translation of an RTD to a small VFA implies that the language contain-
ment approach to model checking based on [VW86] gives an efficient algorithm.
We need to check that £(M) C L(Ar), where M is the system to be verified
and Ar is the VFA for the RTD T'. This is equivalent to L(M) N —L(Ar) = 0.
Complementation (the ~L(Az) term) is trivial for a VFA; the complemented
automaton (an w-NFA) has the same structure but complemented acceptance
condition. Hence, the emptiness check can be done in time linear in the size of

the structure and a small polynomial in the size of T'. The space complexity,

by the results of [SVW87], is logarithmic in the sizes of both M and T.

Theorem 7 (Model Checking Complexity (Weak)) For a transition sys-
tem M and an RTD T with the weak iterative semantics, the time complexity
of model checking is linear in the size of M and cubic in the size of T and the

unary size of the largest constant in T'.

36

Proof. The size of an RTD is T= e+s+c, where e is the number of events in
T, s is the size of SD and c is the size of CD. We know that checking M =, T
is equivalent to checking that £(M) N —L(T) = ¢. The size of the w-NFA Az
that accepts =£(T'), by Theorem 4, is cubic in the size of T'. Therefore, the
time complexity of checking £L(M) N L(Az) = ¢ is O(|M|.|T|?). O

Theorem 8 (Model Checking Complexity (Strong)) For a transition
system M and an RTD T with the strong iterative semantics, the time com-
plexity of model checking is linear in the size of M and a small polynomaal in

the size of T and the unary size of the largest constant in T

Proof. The size of an RTD is T'= e+s+c, where e is the number of events in
T, s is the size of SD and c is the size of CD. We know that checking M =, T
is equivalent to checking that £(M) N —L(T) = ¢. The size of the w-NFA Az
that accepts =£(T'), by Theorem 6, is polynomial in the size of T'. Therefore,
the time complexity of checking L(M) N L(AF) = ¢ is O(|M|.|T|*). O

An alternative way of utilizing the VFA construction is to note that, Ar
essentially defines a language (A" V #(A,; L;)$)“, where the L;’s represent the
languages of the dependencies. The lemma below shows that the w-repetition

distributes over the A\, in the following sense.

Lemma 0 For finite-string languages L; (i € [0,n)) which are subsets of AT,
(AT V(A Li)$)” = N(AT vV #Li$)”.

Proof. Let ¥ = AU{#,8$}, A= (2, Qm, Om, 0, Pm) be the w-automaton that
accepts L((ATV# A,(L:)$)“) and A.= (2, Qc, dc, 7o, B.) be the w-automaton
that accepts L(A;(AT V #L;$)“).

(=) Let A, = Ap x A; X ... Xx A, be the DFA that accept the language
LoNLyN...NL, and Aa be the DFA for A". Let x be an infinite string accepted

37

by A,,. We observe that A,, has a transition of the form d,,((so, 1, ..., Sn), #)
= (to,t1,...,t,), where each ¢; is the unique start state for each 4;. We also
know that every A; transitions on $ to an accepting state. It follows that all
the A; automata accept at the same point and therefore = is accepted by A..
(<) Consider an infinite string = that is accepted by A, and rejected by A,,.
This implies that some A; and A; accept at different points in z. But we know
that every transition on # goes to the unique start state in A; and A;. Thus
both A; and A; must start together. We also know that both 4; and \A; have
a transition on $ which goes back to the start state of DFA Aa; hence they
also end simultaneously. This implies that both must accept at the same point
and contradicts the assumption that x is not accepted by A,,. O

By this lemma, one can construct smaller w-automata, one for each
dependency, and check that the language of each has an empty intersection
with £(M). This is often more efficient than the combined check, and may lead
to quicker detection of any errors. We refer to this as the “decompositional”

approach.

Theorem 9 (Decompositional Model Checking (Weak)) For a transi-
tion system M and an RTD T under the weak semantics, the time complexity

of decompositional model checking is linear in the size of M and cubic in the

size of T'.

Proof. The problem of checking M k=, Ar can be decomposed into \; M |=
A; , where A; is the automaton for a waveform or dependency. We can check
M [A; in time linear in the size of M and A;, which by Theorem 4 is
O(|M|.|T|?). But we have |T'| such verification tasks, thus the time complexity
of checking M = Ar is O(|M|.|T}?). O

38

Theorem 10 (Decompositional Model Checking (Strong)) For a tran-
sitton system M and an RTD T, under the strong semantics, the time com-
plexity of decompositional model checking is linear in the size of M and a small

polynomial in the size of T

Proof. The complexity of checking M k=, Ar, by Theorem 9, is O(|M|.|T|?).
The size of A.¢, the automaton that checks ordering between events e and f,
is quadratic in |T'|, and there may be |T'|* such automata. Thus the time
complexity of checking M =, Az is O(|M|.|T|*). O

We will demonstrate in following section that the decompositional ap-

proach to model checking yields non-trivial savings in space and time.

3.5 Applications

We demonstrate the use of these algorithms in the verification of a master-slave

memory system using the model checker VIS [BHSV'96].

Write
Read
Data < >
Master Slave Slave
Ack
Req
Addr < >

Figure 3.9: Master-Slave Architecture

In the master-slave system (Figure 3.9), the master issues a read or a

write instruction by asserting the corresponding line, and the slaves respond

39

by accessing memory and performing the operation. The master chooses the
instruction, puts the address on the address bus and then asserts the req signal.
The slave whose tag matches the address awakens, services the request, then
asserts the ack line on completion. Upon receiving the ack signal the master
resets the req signal, causing the slave to reset the ack signal. Finally, the
master resets the address and data buses. The memory read (Figure 3.10) and
write (Figure 3.11) cycles are specified as RTDs, interpreted under the weak

iterative semantics.

Read \

Addr X A X
Ardy L
Idata f?

o~
LS —

Figure 3.10: RTD for the Memory Read Cycle

The master-slave system was simplified by abstracting away inessential
details. First, the address bus was simplified to the tag of the slaves. Since
VIS does not allow shared variables, the bidirectional data bus is represented
as two 1-bit boolean variables, Idata and Odata that denote the input and
output data buses respectively. The begin-condition for the read RTD is the
state that has Ardy, Idata, Req, Ack and Write being assigned 0 (low), the
value of the address bus Addr is unknown and the Read signal is asserted.
The end-condition for the read RTD is the state following the diagram where
all the signals are low and Addr is X. The RTDs have a high degree of

40

ambiguity since there is ordering specified for most of the de-assertion events

in the diagram.

Write [

Addr | X A ﬁ—x
Ardy

- 4\&,

- vﬂ
ok <>

Read

Figure 3.11: RTD for the Memory Write Cycle

The simplified master-slave system is represented in Verilog, which is
the input language of VIS. For both RTDs, we created (as Verilog modules)
both the complement of the VFA and the complement NFA’s for individual
dependencies and waveforms.

We verified that the master-slave system satisfied read and write RTDs,
using both the decompositional and monolithic model checking approaches.
The language emptiness check passed for both the read and write RTDs. In
Table 3.5, the rows with the suffix (D) correspond to a verification check involv-
ing the master-slave system and a single waveform (or dependency) module.
The suffix (M) refers to a verification check with the master-slave system and
the product of all the waveform and dependency modules. We observe that
the monolithic verification is significantly more expensive, in terms of BDD

size and space, than a single decompositional check. For the read RTD, there

41

Design under Number of Reachable Number of | Verification Time
verification BDD variables state space | BDD nodes (seconds)
Master-Slave and
1 waveform module (D) 91 11049 3223 22
Master-Slave and o1 10818 3316 29
1 dependency module (D)
Master—Slave and all
read RTD modules (M) 145 85xeb6 12509 1135
Master—Slave and all
write RTD modules (M) 163 9.3xeb6 32846 1970

Table 3.1: Verification Statistics for Master-Slave Design

were 11 such checks and for the write RTD, there were 14 decompositional
checks. However, the total amount of time taken to check the entire diagram
decompositionally was still less than time needed for the single monolithic
check. The results in Table 3.5 show that the decompositional procedure is
indeed feasible and that the size of the system to be verified together with a
single dependency automaton may not be significantly larger, in terms of BDD

variables, than the system itself.

3.6 Related Work and Conclusions

Several researchers have investigated timing diagrams and their use in au-
tomated verification. Boriello [Bor92a| proposes an approach to formalizing
timing diagrams. Timing diagrams are described informally as regular expres-
sions but no specific details or translation algorithms are given. Many other
researchers [AL92, Thu96, RMM"93, Cin93] have formalized timing diagrams

and translated them to other formalisms (interval logics, trigger graphs etc.).

42

Cerny et al. present a procedure [KC98| for verifying whether the finite be-
havior of a set of action diagrams (timing diagrams) is consistent; [JC98| uses
constraint logic programming to check if a system satisfies finite action dia-
gram specifications. Formal notions of timing diagrams have also proved to
be useful in test generation and logic synthesis (cf. [Tie92, GGL95, FS96]).

Fisler [Fis96, Fis97] proposes a highly expressive timing diagram syn-
tax and semantics that allows non-regular languages, and finds that these
languages occur at all levels of the Chomsky hierarchy. The paper [Fis97]
provides a decision procedure that determines whether a regular language is
contained in an unambiguous timing diagram language. This decision proce-
dure [Fis97] has a high complexity (in PSPACE), while our algorithms have
polynomial time complexity in the diagram size. They also provide algorithms
that translates a certain class of timing diagrams into CTL [Fis96] and w-
automata [Fis00]. A key difference with our work is that these algorithms are
restricted to a subset of unambiguous timing diagrams under the invariant
semantics, while our algorithms are defined for all types of diagrams.

An important contribution in this area is the work done by Damm
and colleagues at the University of Oldenburg on Symbolic Timing Diagrams
(STD’s) [DJS94, Sch95, DHKS94, HSD*93, DH94]. STD’s may be compiled
into first-order temporal logic formulae which are then used for model checking.
STD’s are extended in [FJ97, Fey94] to RTSTD’s (Real-time STD’s), where
a translation into a timed propositional temporal logic TPTL is provided.
Both these research efforts consider infinite languages and ambiguity. A key
difference with our work lies in the fact that their translation is monolithic, in
the sense that all dependencies are considered together; this can result in an

exponential blowup in the size of the resulting formulae when the diagram is

43

highly ambiguous. While it is possible to model check the first order temporal
logic presented in [DJS94, Fey94|, the procedure is not very efficient.

In this chapter, we introduced Regular Timing Diagrams (RTDs) that
can be used to specify temporal properties of asynchronous systems. We pre-
sented polynomial time, decompositional algorithms for model checking RTD
specifications, which are based on a decomposition of the RTD semantics into
properties of each waveform and the way they interact. Such decompositions
may also provide a way of composing RTDs and thereby building new RTDs
hierarchically. Our algorithms generate a VFA (w-NFA) corresponding to the
RTD (the negation of the RTD). We can choose to use either the VFA (by
splitting it into smaller automata) or its complement w-NFA in verifying that
a system satisfies an RTD. These algorithms are a significant improvement
over the earlier possibly exponential, monolithic translations. We have shown
how our algorithms may be used in conjunction with a symbolic model checker,

such as VIS, to verify systems with specifications formulated as RTDs.

44

Chapter 4

Synchronous Regular Timing

Diagrams

4.1 Introduction

In Chapter 3, we proposed a class of timing diagrams called RTDs (for Reg-
ular Timing Diagrams) that are particularly well-suited for describing asyn-
chronous timing, such as that arising, for instance, in asynchronous read/write
bus transactions. It is also quite common to have a synchronous timing spec-
ification, where the changes in values along a signal waveform are tied to the
rising or falling edges of a clock waveform. While these synchronous specifi-
cations can be encoded as RTDs, the encoding introduces a large number of
dependency edges between each transition of the clock and each waveform,
which results in RTDs that are visually cluttered and have (unnecessarily)
increased complexity for model checking. Hence, the initial motivation for

introducing a new notation for synchronous timing properties was expressive-

45

ness.

Another key issue in using timing diagrams for model checking is whether
the algorithms that translate timing diagrams into more basic specification for-
malisms such as temporal logic or w-automata yield formulas or automata that
are of small size. Previous work on model checking for timing diagrams, e.g.,
with Symbolic Timing Diagrams [DJS94, Ben98, BW98b]|, with non-regular
timing diagrams [Fis97] and with Presburger arithmetic [ABHL97] provides
algorithms that are, in the worst-case, of exponential or higher complexity
in the size of the diagram. The regular structure of the synchronous tim-
ing diagrams used in practice led us to believe that more efficient translation
procedures were indeed possible.

The SRTD notation proposed in this Chapter is, therefore, tailored to-
wards describing synchronous timing specifications in a visually clean manner.
We precisely define the class of timing diagrams called Synchronous Regular
Timing Diagrams (SRTDs). We provide a formal syntax and semantics that
corresponds closely to the informal usage. We present decompositional model
checking algorithms that construct an w-automaton of size linear in the tim-
ing diagram size (compared with a polynomial size complexity in [AEN99]
for RTDs). This automaton, which represents all system computations that
falsify the diagram specification, is composed with the system model and it
is checked if the resulting automaton has an empty language using standard
algorithms. This results in a model checking procedure that is linear in the
size of both the system and the SRTD specification.

This algorithm has been implemented in a tool - the Regular Timing
Diagram Translator (RTDT). RTDT provides a user-friendly graphical editor

for creating and editing SRTDs and a translator that compiles SRTDs to the

46

input language of the formal verification tool COSPAN. The details of the main
features of RTDT can be found in Chapter 6. We used RTpT and COSPAN
to verify several SRTD properties of two systems, a synchronous master-slave
memory access system and Lucent’s synthesizable PCI Core. We verified that
the master-slave system satisfied the read and write transactions, which were
specified as SRTDs. The second example, the PCI Core, was considerably
larger. In this case, the SRTD properties were formulated by looking at the
actual timing diagrams in the PCI Local Bus specification [Gro95] and the
PCI Core User’s manual [BL96].

The rest of the Chapter is organized as follows. Section 4.2 presents
the syntax and semantics of SRTDs. In Section 4.3, we describe the decompo-
sitional translation algorithms that convert SRTDs into w-automata. Section
4.4 illustrates applications of the RTDT tool to a master-slave memory access
protocol and the synthesizable PCI Core of Lucent’s F-Bus. We conclude with

a discussion of related work in Section 4.5.

4.2 Synchronous Regular Timing Diagrams

A Synchronous Regular Timing Diagram (henceforth referred to as an SRTD or
diagram), in its simplest form, is specified by describing a number of waveforms
with respect to the clock. A clock point is defined as a change in the value of
the clock signal. The clock is depicted as waveform defined over B = {0,1}
where the value toggles at consecutive clock points. A clock cycle is the period
between any two successive rising or falling edges of the clock waveform.

In SRTDs, an event must occur at either a rising edge of the clock (rising

edge triggered) or at a falling edge (falling edge triggered). In the SRTD in

47

Figure 4.1, signals p and r are falling edge triggered while ¢ is triggered on
either edge.

4.2.1 Syntax

A waveform in an SRTD is defined over a pre-defined domain of values. This
domain may, for example, be an enumerated type or all the possible values
of an address bus. In Figure 4.1, the waveforms P and R are defined over
the set of booleans B and waveform () is defined over a set of values that
includes the value “a”. In addition to representing these values, it is useful
to be able to express that the value of a signal during a certain period is not
important. We use don’t-care values to specify that the value at a point is
unknown, unspecified or unimportant. In Figure 4.1, the don’t-care values on
waveform () are used to state that value of signal @) is unspecified. In order
to specify properties such as “if signal B rises then signal A rises within 5
time units”, we need a way of stating that the exact occurrence of the rising
transition of A is not important as long as it is within the specified time bound.
In SRTDs, we use a don’t-care transition to graphically represent this temporal
ambiguity. The don’t-care transition is defined for a particular waveform over
one or more clock cycles; its semantics specifies that the signal may change
its value at any time during the specified interval and that, once it changes,
it remains stable for the remainder of the interval. This stability requirement
is the only difference between don’t-care transitions and don’t-care values. In
Figure 4.1, the don’t-care transition allows signal R to rise in either the third
or fourth clock cycle.

In addition, in loosely coupled systems, it may not always be necessary

48

preconaituon marker

precondition postcondition
e]
Clock | [| | |
P | |
Q a
R S [T

don’t-care value pause marker don’t-care transitio

Figure 4.1: Annotated Synchronous Regular Timing Diagram

to explicitly tie every event to the clock. This is useful in stating eventuality
properties like “every memory request is eventually followed by a grant”, and
is represented diagrammatically by a pause marker. A pause specifies that
there is a break in explicit timing at that point, i.e. the state of the signals
(except the clock) remains unchanged (stutters) for an arbitrary finite period
of time before changing. In Figure 4.1, the pause at the end of the second
clock cycle indicates that the state (P = 1,Q = a, R = 0) stutters for a finite
period until P changes at a falling edge (the angle brackets indicate the tuple
of values of the signals at a clock edge, while “;” indicates succession in time,
measured by clock edges). The pauses allow us to express richer properties
like “if req is asserted and stays high then eventually grant is asserted”.

In most applications of timing diagrams, the waveform behavior spec-

ified by the diagram must hold of a system only after a certain precondition

49

holds. This condition may be a boolean condition on the values of one or
more signals (a state condition), or a condition on the signal values over a fi-
nite period of time (a path condition). To accommodate this type of reasoning,
we permit the more general form of path preconditions to be specified in an
SRTD. Preconditions are specified graphically by a solid vertical marker that
partitions the SRTD into two disjoint parts, a precondition part that includes
all the events at and to the left of the marker and a postcondition part that
contains all the events to the right of the marker. Given that the domain of
waveform @ is the set {a,b}, then the precondition of the diagram in Figure
4.1 is a path precondition, given by the path (P = 0,Q = a + b,R = 1);
(P=0,Q=a+bR=0);(P=0, =a+b,R=0).

We have observed that, in practice, both pauses and don’t-care objects
occur in timing diagrams, and that preconditions are often implicit in the
assumptions that are made with respect to when a diagram must be satisfied.
In reviewing many specifications and from our discussion with engineers, we
are led to believe that SRTDs correspond closely to informal usage and are
expressive enough for industrial verification needs.

We now define SRTDs formally. A waveform A is defined over a set of
symbolic values, SV 4= V4 U{X, D}, where X is a don’t-care value, D indicates
a don’t-care transition and V4 is the domain of A. The set SV is ordered by
C , where a C b iff either a=b or a € {X, D} and b € V. The alphabet of an
SRTD, defined over a set of signals S={p, ¢, ..., 7}, is SV(S)={(a,a,...a,)|a, €
SV, A...Na, € SV, }.

Definition 13 (SRTD) An SRTD T is a tuple (c,S,WF ,M) where
e ¢ > 1 is an integer that denotes the number of clock points.

20

e S is a non-empty set of signal names (excluding the clock).

o WF 1is a collection of waveforms; for each signal A € S, its associated
waveform is a function WFy : [0,c) — SV 4, while the associated wave-

form for the clock is WF . : [0,c) — B.

e M is a finite (non-empty) ascending sequence 0 < Mo<M;<...<Mj 1 <
¢ — 1 of position markers. My is the precondition marker, while for each

t > 0, M; is the i-th pause marker.

To facilitate defining the semantics as well as the algorithms it is also
helpful to view an SRTD as a collection of segments, where each segment is
essentially a vertical slice of the timing diagram, encompassing all waveforms
between two successive markers or a marker and the start/end of the diagram.
The k markers in M partition the interval [0, ¢) in an SRTD T into k+1 disjoint
sub-intervals I=[0, My|, [y=(Mo, Mi],....Jx 1= (M2, My, 1], Iy=(M}_1,c—1].
The length mg of the interval Iy is Mp+1, while for intervals I;, with ¢ € [1, k),
the length m; of I; is M; — M; 1, and the length of the last interval I is

c—1—Mj 1. The k markers, therefore, partition an SRTD into k-+1 segments.

Definition 14 (Segment) The segment Seg; (i € [0, k]) that corresponds to
the interval I; of length m; is defined to be a function Seg; : S x [0, m;) — SV,
where for each j € [0,m;) and A € S, Seg;(A)(j) = WFa(j) when i =0 and
Segi(A)(j) = WFA(M;—1 + 1+ j) when i > 0.

Any SRTD T = (¢, S, WF, M) can be represented as the tuple of seg-
ments (Pre, Posty, ..., Posty) as defined above. Segment Pre (Segy) represents

the precondition, while segments Post;(Seg;), for i > 0, represent successive

o1

post-condition segments. For instance, the SRTD in Figure 4.1 has three seg-
ments, one precondition segment and two postcondition segments. For each
signal A, Seg;(A) is a function from [0, m;) — SV 4 which describes the wave-
form for signal A in the ith segment. This representation of an SRTD is useful

in the sequel.

Definition 15 (Precisely Locatable) An event of waveform A occurring at
a clock point t is precisely locatable if and only if WF A(t — 1) ¢ {X,D} and

In Figure 4.1, the falling edge of waveform P in the third clock cycle
is precisely locatable while the don’t-care transition in waveform R is not a
precisely locatable event.

We will now describe the well-formedness criteria on SRTDs.

Definition 16 (Well-formed SRTD) An SRTDT = (Pre, Posty, ..., Posty,)
15 well-formed iff

1. The precondition segment Pre does not have any don’t-care transitions,

i.e. Pre is defined over SV\{D}.

2. Each waveform in the precondition Pre of length m must either have no

don’t care values or all m values must be don’t-care values.

3. For every pause marker M;, there exists at least one precisely locatable

event at either clock point M; + 1 or M; + 2.

. For every mazimal non-empty sequence of don’t-care transitions of the
F Y mal ty don’t t 1) th

form (a; D*;b) in a waveform A, a,b € V4 and a # b.

92

5. Every event in a waveform designated as rising(falling) edge triggered

must occur at a rising(falling) edge of the clock.

We can relax the first two requirements, to obtain a general SRTD,
and our translation algorithms are still applicable. In this case, however, the
resulting translation may be exponential in the size of the Pre; this issue will

be discussed in Section 4.3.

4.2.2 Semantics

An SRTD defines properties of computations, which are sequences of states,
where a state is an assignment of values to each of the n waveform signals. A
computation is defined over the alphabet V = {(a,, a,, ..., a,)| a, € VpA...Aa, €
V,}, for signals p,q,...,r. For any computation y, we use y4 to denote the

projection of y on to the coordinate for signal A.

Definition 17 (C) For a finite waveform segment Seg;(A) : [0, m;) — SV 4
and a projection ya of computation y with length m; (ya € Vi), Seg;(A) C ya
uf

e For every p € [0,m;), Seg;(A)(p) C ya(p).

e For every p,q, if Seg;(A)[p..q] has the form (a; DT;b) then yalp..q] has
the form (a™;b™).

Definition 18 (Segment Consistency) A segment Seg; of length m; is sat-
isfied by a sequence y € V™ iff for each signal A, Seg;(A) C ya holds.

Let y = (0,b,1); (0, a,0);(0,a,0) denote the finite sequence where (P =
0, =bR=1); (P =0,Q =a,R=0);(P=0Q =aR=0). In Fig-
ure 4.1, the precondition segment Pre is satisfied by y. The postcondition

23

segment Post; is satisfied by the sequence (1,a,0);(1,a,0);(1,a,0); (1,a,0).
Observe that the pause allows the state (1,a,0) to stutter for a finite pe-
riod. The final postcondition segment Post, is satisfies by a sequence y =
(0,a,0);(0,b,0);(0,a,1); (0,b,1).

We will now construct regular expressions for the precondition Prer and
the postcondition Posty of a SRTD T'. By the definition of segment consis-
tency, any Pre or Post; segment can be represented as an extended regular ex-
pression of the form A ,_g r,, where 7, encodes the constraints for the waveform
for signal s in the segment. The regular expression for Postr is the concate-
nation of sub-expressions that correspond to each Post; segment separated by
an expression for each pause. Thus, Posty = (segr;vals; sega; vals; ... segi_1),
where seg; is the regular expression for segment Post; and val; is the vector
of values at the last position (m; — 1) in Post;, which is at the pause marker
separating it from Post;, .

We use (0,a,(0 + 1)) to mean ({0,a,0) + (0,a,1)) in the following
expressions. For the SRTD T shown in Figure 4.1, the regular expression
for Prer is ((0,(a + b),1);(0,(a + b),0);(0, (a + b),0)). The regular expres-
sion for Postr is ((1,a,0); (1,a,0) ;(1,a,0)*;(0,a, (0+ 1));{(0, (a +b), (0 +1));
(0, (a+0),1);(0, (a +b), 1)).

Definition 19 (Always followed-by) G(p — q) holds of a computation o
iff, for all i, j such that j > i, if sub-computation ofi...j] = p, then there
exists k such that o[j +1... k] = q.

In the definition above, p and g are arbitrary path properties; however,
when p is a state property, G(p — ¢) is equivalent to G(p = Xgq), where

X is the next time operator. An infinite computation o satisfies an SRTD T’

o4

(written o = T) if and only if every finite segment of o that satisfies the pre-
condition is immediately followed by a segment that satisfies the postcondition
of the diagram. The precondition, however, may be satisfied in an overlapping
manner, which leads to two distinct notions of satisfaction, overlapping and

non-overlapping semantics. This is formalized in following definitions.

Definition 20 (Overlapping Semantics) An infinite computation o satis-

fies an

SRTDT (0 =, T) iff o = G(Prer — Postr).

To define non-overlapping semantics, it is convenient to assume that
there is an auxiliary proposition p such that for all sequences o, p is true at
the ¢th point iff Prer is satisfied by a prefix of the suffix sequence starting at

point <.

Definition 21 (Non-overlapping Semantics) An infinite computation o
satisfies an SRTD T under the non-overlapping semantics (o =, T) iff ev-
ery occurrence of Prer that does not overlap an occurrence of Prep or Posty
1s immediately followed by an occurrence of Posty. This is true iff o €

((—=p)*; Prer; Postr)® + ((—p)*; Preq; Postr)*; (—p)*.

Consider the SRTD 7T in Figure 4.2 and the infinite sequence o = y“,
where y = (0,1);(0,0);(1,0);(1,0);(0,1);(0,1);(1,1). The precondition of T is
the state formula (0,1) and this state occurs again at the start of the third
clock cycle. Clearly o =, T but o }~, T, since the second occurrence of the

precondition along o violates the postcondition of the diagram.
Proposition 0 For any SRTD T, o =, T implies o0 =, T.

95

Clock I \ | \ |

8 [I

Figure 4.2: SRTD with an Overlapping Precondition

Proof.

o E, T, by Definition 20, means that every occurrence of Pres is followed
by Posty. Let us now assume that o (&, T. Therefore, (by Definition 21)
o & ((—p)*; Prer; Postr)® and o & ((—p)*; Prer; Postr)*; (-p)“. Clearly o ¢
((—p)*; Prer; Posty)* violates the antecedent. o & ((—p)*; Preg; Postr)*; (—p)*
is false, if Prer never holds along o, and if Prer holds a finite number of times

then the previous argument holds. Thus, we have a contradiction and o }=, T.

O

4.3 Model Checking SRTDs

We first present an algorithm that translates an SRTD T with the overlapping
semantics into an w-automaton for the negation of the SRTD property. Next,
we will present a similar translation algorithm for the non-overlapping seman-
tics. We then present a decompositional model checking algorithm that make

use of these automata.

26

4.3.1 Translation Algorithm for Overlapping Semantics

The algorithm constructs a w-NFA that corresponds to the complement of the
SRTD under the overlapping semantics. The algorithm proceeds by decom-
posing 7T into waveforms and producing sub-automata that track portions of

each waveform. It consists of the following steps.
Algorithm 3

1. Construct a single deterministic automaton A,,. for the precondition.
This automaton tracks the values of all signals simultaneously over the
number of clock cycles of the precondition. Since the precondition cannot
contain don’t-care transitions, this automaton has linearly many states

in the length of the precondition.

2. Construct a DFA AM for each signal i of the postcondition. This
automaton checks at each clock point that the waveform has the specified
value. For a don’t-care transition, the automaton maintains an extra
bit that records whether the transition has occurred. For a pause, the
automaton goes into a “waiting” state, where it checks that the value of
the signal remains unchanged, and which it leaves when the pause owner
signal changes value. The automaton for signal ¢ accepts a computation

iff either the waveform pattern is incorrect at some point, or if signal ¢

is the owner of the kth pause in 7" and the automaton stays in

3. Construct an NFA Az for the negation of the SRTD property of T' that
operates as follows on an infinite input sequence: it nondeterministically
“chooses” a point where the precondition holds, runs the DFA A,,. at

this point and if A,,. accepts it then “chooses” a postcondition DFA

57

A and runs this automaton at the point where A,,. accepted and

post(i)

accepts if this automaton accepts. If A terminates (so the postcon-

post (i)
dition holds for signal 7), Az returns to its initial state.
As a consequence of Theorem 0, an SRTD T can be represented suc-
cinctly by a VFA Ar that is obtained by complementing the acceptance con-
dition of the NFA Az.

Figure 4.3: SRTD with Don’t-Care Values in the Precondition

Consider the SRTD in Figure 4.3, the corresponding monolithic DFA
Apre, and the DFA’s A,,s4) and Ap,q(p) for postcondition of waveforms A

and B respectively, are shown in Figure 4.4 and Figure 4.5 respectively.

(A,B) (AE) (A B)
NIV
e
(A.B) (A, B) (A.B)

Figure 4.4: The DFA A, for the Overlapping Semantics

In Figure 4.5, we show the postcondition DFA’s, Apost(A and Apost B

These automata can be easily complemented to get A—-— and Ay

post(A post(A

A key attribute of the construction is the way the pauses are handled.

The NFA shown in Figure 4.6, has a fairness constraint on state s in .Apost)

28

>
pd

AQ @

OpN
O

OA0O4 O

(A.B)

)

C
O

\QBoB/\(A,B) BQE©E©

>y

Figure 4.5: DFA’s for the Postcondition of Waveforms A (top) and B (bottom)

that prevents it from staying in this state forever. There are, however, no

fairness constraints imposed on AW' The w-NFA Az is shown in Figure
4.6.

PostA accepts

PostA
rejects >

)

Pre

rejects PostB

rejects

PostB accepts

Figure 4.6: w-NFA for the Complement of the SRTD in Figure 4.3

Theorem 11 (Correctness) For any SRTD T and z € V¥, © |, T iff
T € E(AT)

29

Proof.
(=) Let us assume that € L£(A5). Thus, there is a sub-sequence z[m..p),
where z[m..n] € L(Apre) and z[n+1..p] € L(Apss;), for some signal ¢ € S and
some p. x =, T is (by Definition 20) = = G(Prer — A, Post;). Clearly, since
z =, T, such a sub-sequence does not exists and we have a contradiction and
e L(Ar).
(<) An accepting run of Ay corresponds to either A, accepting at point z,
and for some signal i € S, (z[n + 1..p] | i) € L(Apost(s)) Or Apre never being
satisfied along z. By definition 2, z € L(Ar) if every run of Az on z is accept-
ing. Thus, if A, accepts at point z,, then z[n+1..p| is accepted by automaton
for the product of the A, ;) automata. Therefore, v = G(Pres — A, Post;)
and z =, T.
U

The size of an SRTD is the product of the number of signals and the
number of clock cycles. The number of clock cycles does not include the

indeterminate amount of time represented by a pause; it refers only to the

explicitly indicated clock cycles in the diagram.

Theorem 12 (Overlapping Complexity) For any SRTD T and the equiv-
alent VFA Ar, the size of Ar is linear in |T|.

Proof.

The size of an SRTD T'=(Pre, Posty, ..., Posty,) is nx ¢, where n is the number
of waveforms and c is the number of clock points. We assume that the tran-
sitions in Ap are labeled with boolean formulas over the n signals. The size
of the transitions in Az is the sum of the length of the formulas labeling the

transitions. The size of Ar is s + t, where s is the number of states and t is

60

the transition size.

The number of states s in the monolithic automaton for the precondition
Apre, is bounded by the number of clock points in the precondition, therefore
s < c. Since each transition encodes the values of the signals at each point, the
size of each transition is O(n) and the number of such transitions is bounded
by c¢. Thus, the transition size is linear in |T'|.

The number of states s in Am is bounded by the number of clock
points ¢, therefore s < c¢. The transitions are labeled with constant size for-
mulae, since by construction a pause transition is dependent on at most one
other signal value. Thus, the overall transition size for Am is bounded by

¢; hence, Am has size linear in c.

The size of the VFA A7 is the sum of the sizes of the precondition and
the n postcondition automata and is thus |A,.| + n. |A =n.c+ nc=

o(|T]).
0

post(i)|

4.3.2 Translation Algorithm for Non-overlapping Seman-
tics

We now present the algorithm that constructs an w-NFA for the complement

of the SRTD property under the non-overlapping semantics.

To construct an w-NFA Az for the complement of the timing diagram

language of T', we proceed as follows.
Algorithm 4

1. Construct a deterministic automaton A, from Pre; that accepts at the

first point on a string where the precondition holds. We do so by creating

61

a non-deterministic automaton that accepts the language (X*; Prer) and
determinizing it, so that it enters an accepting state at every point on
an input string where Prer holds. We then eliminate outgoing edges
from accepting states of this automaton. There are only linearly many
reachable states, as the reachable part of the DFA is just the automaton
for the string matching problem, which can be constructed efficiently (cf.
[CLRI0]). For general SRTDs, the DFA A,,. may be exponential in the
length of the precondition.

. Construct an DFA AM’ for each signal ¢, that tracks the waveform
for signal ¢ over the length of the postcondition. This automaton checks
at each clock point that the waveform has the specified value. For a
don’t-care transition, the automaton maintains an extra bit that records
whether the transition has occurred. For a pause, the automaton goes
into a “waiting” state, where it checks that the value of the signal remains
unchanged, and which it leaves when the pause owner signal changes
value. The automaton for signal ¢ accepts a computation iff either the
waveform pattern is incorrect at some point, or if signal 7 is the owner

of the kth pause in 7" and the automaton stays in the waiting state for

pause k forever.

. The automaton Az works in the following manner: from the initial state,
it runs A, on the input until this accepts; then it guesses a failing
postcondition signal ¢ and runs Am, accepting if this accepts. If
A

osi(y terminates (so the postcondition holds for signal i), Az returns

to its initial state.
Let us consider the SRTD in Figure 4.3, the constructed DFA A,

62

for the precondition is shown in Figure 4.7. Note that this construction of
A, accepts the language (X*; Prer) as opposed to Prer in the overlapping
semantics. There is no change in the construction of the postcondition au-
tomata shown in Figure 4.5. There is a minor change in the NFA A7 as shown

in Figure 4.8.
(_!E) (—,B)

(—,B)Q\ =B) —~ (B)
GG 2O A0

(-B)

Figure 4.7: The DFA A,,. for Non-Overlapping Semantics

PostA accepts

PostA
rejects 5

Pre

PostB
rejects

PostB accepts

Figure 4.8: w-NFA Az for the Complement of the SRTD in Figure 4.3

Theorem 13 (Correctness) For any SRTD T and infinite sequence z, © =,
T iff v € L(Ar).

Proof.

(=) ¢ =, T iff (by definition 21) « € ((—p)*; Prer; Postr)” + ((—p)*; Prer;

63

Postr)*; (—p)“, where p is a proposition that is true at z; iff z[i..j] € L(Prer).
Let us assume that x € L(Az). Thus, there is a sub-sequence ((—p)*; z[m..n|;
z[n +1..0]), such that z[m..n] € L(Ap.) and z[n + 1..0] € L(Ay), for some

i € S and some o. Since z =, T, such a sub-sequence does not exists, thus
e L(Ar).

(<) An accepting run of Ay along x corresponds to either (i) p never being
satisfied along z, or (ii) there is a sequence ((—p)*; z[m..n]; z[n + 1..0]) where
z[m..n] € L(Apre) and for some signal i € S, (z[n + 1..0] | i) € L{(Apost(s))-
By definition 2, x € L(Ag) iff every run of Ar on z is accepting. Thus,
if A,.. accepts at point z, then z[n + 1..0] is accepted by automaton for
the product of the A,.q;) automata. Clearly = € ((—p)*; Prer; Posty)“+
((—p)*; Prer; Postr)*; (—p)¥, hence z =, T.

U

Theorem 14 (Non-overlapping Complexity) For any SRTD T and the

equivalent YVFA Ar, the size of Ar is linear in the size of Prep and Postr.

Proof.

The size of an SRTD T is n * ¢, where n is the number of waveforms and c is
the number of clock points. The size of the transitions in Ar is the sum of the
length of the boolean formulas labeling the transitions. The size of Az is the
sum of the number of states and the transition size.

Let p be the number of clock points in Prer where p < ¢. The mono-
lithic automaton A,,. must recognize V*; Prer. Each waveform segment, by
Definition 16, in the precondition must either contain all don’t-care values or
none at all. Therefore, A, must either track the waveform or not, so the

number of states s in A, is bounded by the number of clock points c. Since

64

each transition encodes the values of the signals at each point, the size of each
transition is O(n) and the number of such transitions is also bounded by c.
Thus, the size of A, is linear in |T|.

The number of states s in Apost 0 is bounded by the number of clock
points ¢, therefore s < c¢. The transitions are labeled with constant size for-
mulae, since by construction a pause transition is dependent on at most one

other signal value. Thus, the overall transition size for A—- is bounded by

post(i)

c; hence, A——+ 0] has size linear in c.

post(t
The size of the VFA A7 is the sum of the sizes of the precondition and

the n postcondition automata and is thus |Ape| + n. |4, ;5. Therefore the

post (i

size of Ap is is linear in the size of T.
OJ

We can relax conditions 1 and 2 in the definition of a well-formed SRTD
(Definition 16) to obtain a general SRTD; that is we allow don’t-care transi-
tions and arbitrary don’t-care values in the precondition. The size of the re-
sulting VFA Az for a general SRTD T is linear in the size of the postcondition

but is exponential in the size of the precondition.

Theorem 15 (Complexity for General SRTDs) For a general SRTD T
and the equivalent VFA Ar, the size of Ar is linear in the size of Postr and

exponential in the size of Prer.

Proof.

Let p be the number of clock points in Prey where p < c¢. A,,. must recognize
the first occurrence and all subsequent non-overlapping occurrences of Prey.
Hence A, must remember the actual values seen on the signals that have

don’t-care values. Overlapping don’t-care transitions introduce a similar blow-

65

up since A, must now remember at each state whether each of the don’t-care
transitions has made the transition to the new value. Therefore, the number
of states s in A, is bounded by [V[P*!. Since each transition encodes the
values of the signals at each point, the size of each transition is O(n) and the
number of such transitions is bounded by |V|P™. Thus, the size of A, is
exponential in |T|.

The size of the VFA A7 is the sum of the sizes of the precondition and
the n postcondition automata and is thus |A,.e| + n. |A——~|. Therefore the

post(i)
size of Ar is is exponential in the size of Pres and linear in the size of Postr.

U

4.3.3 Model Checking

We can use the constructed NFA Az described in the previous Section di-
rectly in the automata-theoretic model checking. Recall that in the lan-
guage containment paradigm, one model checks a system M with respect to
a property P by checking £(M) C L(P), which is equivalent to checking that
L(M)N=L(P)=0.

In both the overlapping and non-overlapping cases, we can use the re-
spective translation algorithms to obtain an NFA Az for the negation of the
SRTD T which is linear in size of 7'. This yields a model checking algorithm
which is effectively linear in both the size of the system and the SRTD T'.

Theorem 16 (Model Checking Complexity) For a transition system M
and an SRTD T, the time complexity of model checking, under either the
overlapping semantics and non-overlapping semantics, is linear in the size of

M and T.

66

Proof.
We know, by Theorems 12 and 14, that the constructed NFA Az for the
negation of T is linear in the size of T. Therefore, by the results in [EL85a,
EL85b]|, we know that checking £(M) N L(Az) = 0 is linear in the size of M
and T'.
O

For general SRTDs, we have the following Theorem.

Theorem 17 (Model Checking Complexity for General SRTDs) For
a transition system M and a general SRTD T, the time complexity of model
checking, under either the overlapping semantics and non-overlapping seman-

tics, is linear in the size of M and exponential in the size of T'.

Proof.

We know, by Theorem 15, that the constructed NFA As for the negation
of general SRTD T may be exponential in the size of Prep. Thus, checking
L(M)N L(AF) = 0 is linear in the size of M and Posty and exponential in

the size of Prer.

4.3.4 Decompositional Model Checking

Decompositional model checking is an alternative way to use the constructed
automata that exploits the conjunctive nature of the VFA Ar. The property
represented by the SRTD T'is G(Prer < Postr). Since Posty = \; A, o,
this property can be decomposed into the conjunction of individual checks
G(A,e — AM)' In a typical model checker, this check is performed by
determining if there is a computation of the system that satisfies the negation

67

of the property. The check can be done by determining if there is a path to

a point where A,,. accepts, followed by a computation where A (i) accepts.

post (i
Hence, model-checking can be done with this decomposed representation of

the postcondition.

Theorem 18 (Overlapping Decompositional Model Checking) For a
transition system M and an SRTD T, the time complexity of decompositional
model checking, under the overlapping semantics, is linear in the size of M

and quadratic in the size of T'.

Proof.

The VFA A7, corresponding to 7" under either semantics, is the automaton for
G(Aye = N\, Aoy

is the automaton for the postcondition segment of waveform ¢. The problem

of checking M |= Az can be decomposed into A, M = A;, where A; is the

osiy)- We can check M = A; in time linear

in the size of M and A; which, by Theorem 12, is O(|M|.|T'|). There |S|

) where A,,. is the automaton for Pre and each A—-

post (i post(i)

automaton for G(A,, — A—7-=

such verification tasks, thus the time complexity of model checking M =, T
decompositionally is O(|M|.|T|?).
O

Theorem 19 (Non-overlapping Decompositional Model Checking) For
a transition system M and an SRTD T, the time complexity of decompositional
model checking, under the non-overlapping semantics, is linear in the size of

M and quadratic in the size of T'.

Proof.
Let A; be the automaton that accepts iff every sub-sequence accepted by the

68

non-overlapping automaton A, is followed by a sub-sequence that is accepted
by A, The size of A; is linear in |T| (by Theorem 14). The complexity of
checking, L(M) N L(A;) = ¢, is linear in the size M and A; (by Theorem 16.
There are |S| such checks; hence the complexity of model checking M =, T
decompositionally is O(|M|].|T?).
O

Theorems 18 and 19 shows that decompositional model checking is more
expensive (quadratic versus linear) than model checking in the size of the
SRTD. However, efficiency with respect to space is often of more practical
interest. In our experiments, that are presented in the following Section, we
found that the decompositional approach does indeed yield non-trivial savings

in space. Thus, we feel justified in trading time versus space in this manner.

This topic will be addressed in detail in the following section.

4.4 Applications

The true test of the efficiency of our algorithms is how they fare in practice
on industrial examples of all sizes. Towards this end, we used RTDT with
COSPAN to verify two systems. The first is a synchronous master-slave mem-

ory system and the second is the Lucents’ PCI Interface Core.

4.4.1 Master-slave Memory System

The master-slave memory system consists of one master module and three slave
modules. In the master-slave system, the master issues a memory instruction
and the slaves respond by accessing memory and performing the operation.

The master initiates the start of a transaction by asserting either the read or

69

clock 7 _l _‘ L
master.read

master.addr ‘

master.req

slave.ack ‘

|

slave.data ‘

master.write

Figure 4.9: SRTD for the Read Transaction

write line. Next the master puts the address on the address bus and asserts
the req signal. The slave whose tag matches the address awakens, services
the request, then asserts the ack line on completion. Upon receiving the ack
signal the master resets the req signal, causing the slave to reset the ack signal.
Finally, the master resets the address and data buses.

We verified that this system satisfied both read (see Figure 4.9) and
write (see Figure 4.10) memory transactions formulated as SRTDs, with the
overlapping semantics. The SRTDs were created with the RTDT editor and the
translator was used to generate the corresponding COSPAN descriptions. We
used COSPAN to model check the system with respect to these descriptions.

Recall that a monolithic translation of an SRTD yields an w-NFA that is
essentially the product (intersection) of the DFA’s for each waveform. In order
to compare our decompositional algorithms with monolithic algorithms, we did
the verification checks both decompositionally and monolithically. In Table
4.1, read(M) corresponds to the verification check on the master-slave design

and the monolithic automaton for the read SRTD while read(D) corresponds

70

we LI L1 M1

master.write
master.addr. ‘
master.req
slave.ack ‘ \—

master.data

master.read

Figure 4.10: SRTD for the Write Transaction

to the verification check done on the master-slave design and automata for a
single waveform. The numbers in Table 4.1 for BDD size, space and time for
the decompositional check is the average over the individual verification checks
for each waveform. For example, the total amount of time taken to verify
the read SRTD decompositionally was 3.23 seconds and this is a little more
than the time taken for the single monolithic verification. Our verification
numbers show that the decompositional checks consistently use less space while
generally taking more time. Notwithstanding the Lichtenstein-Pnueli thesis
[LP85], in practice, as one reaches the space limitations of symbolic model
checking tools, efficiency with respect to space is of more importance. We
observe that the decompositional check, with respect to BDD size and space,
is not much larger than the size of the system itself. The monolithic verification

is, however, significantly more expensive.

71

Design Bé)\llgmbgr of | Average Average SpaceAverage Time
variables BDD size (MBytes) (seconds)

read (D) 95 13433 0.86 0.32

read (M) 205 22079 1.46 3.19

write (D) 95 11542 0.86 0.31

write (M) 205 21915 1.45 2.51

Table 4.1: Verification Statistics for Master-Slave Design

Lucent’s

PCIl Bus
Model

Lucent’s
PCI

Synthesizable

Core

Lucent’s

F-Bus
Model

(=

Figure 4.11: Block Diagram of Lucent’s F-Bus with PCI Core

and peripheral controller components.

72

4.4.2 Lucent’s PCI Synthesizable Core

The PCI Local Bus is a high performance, 32-bit or 64-bit bus with multi-
plexed data and address lines, which is now an industry standard. The PCI
bus is used as an interconnect mechanism between processor/memory systems
Lucent Technologies’ PCI Interface
Synthesizable Core is a set of synthesizable building blocks that designers can
use to implement a complete PCI interface. The PCI Interface Synthesizable
Core is designed to be fully compatible with the PCI Local Bus specification
[Gro95]. The Synthesizable Core bridges an industrial standard PCI bus to an

F-Bus, which is 32-bit internal buffered FIFO bus that supports a master-slave

architecture with multiple masters and slaves.

pack_ [
PciFrameN_ |
PcilrdyN_ ’7
PciDevselN_ ’7
PciTrdyN_ t

Figure 4.12: An SRTD Burst Property for the PCI Bus

We used Lucent’s PCI Bus Functional Model shown in Figure 4.11,
which is a sophisticated simulation environment that was developed to test the
Synthesizable Core for functionality and compliance with the PCI specification
[Gro95]. The Functional Model consists of the PCI Core blocks and abstract
models for both the PCI Bus and the F-Bus. The PCI Bus and F-Bus models
were designed to fully exercise the PCI Synthesizable Core in both the slave
and master modes. This model has about 1500 bounded state variables and
was too large for model checking. We had to perform some abstractions,
like freeing variables and removing variables from consideration for cone of
influence reductions. These abstractions were property-specific and had to be
modified for each property checked.

The Synthesizable Core design is synchronous to the PCI clock. The
basic bus transfer on the PCI is a burst, which is composed of an address phase
followed by one or more data phases. In the non-burst mode, each address

phase is followed by exactly one data phase. The data transfers in the PCI

73

PciClk_
PciReqN_
PciGntN_
PciFrameN_
PcilrdyN_ ’7
PciDevselN_- j
PciTrdyN_ E

Figure 4.13: SRTD for the Non-burst Transaction of the PCI Bus

protocol are controlled by three signals PciFrameN, PcilrdyN and PciTrdyN.
The master of the bus drives the signal PciFrameN to indicate the beginning
and end of a transaction. PcilrdyN is asserted by the master to indicate that
it is ready to transfer data. Similarly the target uses PciTrdyN to signal that
it is ready for data transfer. Data is transferred between master and target on
each rising clock edge for which both PcilrdyN and PciTrdyN are asserted. We
verified that the PCI Core satisfied several timing diagram properties for both
the burst and non-burst modes. We formulated the properties as SRTDs by
looking at the actual timing diagrams that occurred in the PCI specification
[Gro95] and the PCI Core User’s Manual [BL96]. Figure 4.13 and Figure
4.12 are properties that we checked for the non-burst mode and burst mode
respectively.

The verification was done both monolithically and decompositionally
and Table 4.2 presents the verifications statistics. In Table 4.2, the size, space
and time numbers for properties with the suffix (M) correspond to the veri-

fication check on the abstracted PCI Core and the monolithic automaton for

74

) Number BDD| Average Average Space Average Time

Design variables BDD size (MBytes) (seconds)
PCI Propl (M) 740 715157 36.2 411
PCI Propl (D) 664 417816 22.1 279
PCI Prop2 (M) 1036 688424 23.9 209
PCI Prop2 (D) 996 554866 19.1 182
PCI Prop3 (M) 749 3742074 198.6 16793
PCI Prop3 (D) 699 2680421 171.7 5677

Table 4.2: Verification Statistics for Lucent’s Synthesizable PCI Core

monolithic one.

75

4.5 Related Work and Conclusions

the property. The suffix (D) refers to the average over the individual decom-
positional verification checks on the abstracted system and the automata for
each waveform. Table 4.2 shows a savings of up to 30% in BDD size and cor-
responding savings in space. In practice, as one reaches the space bounds of a
model checking tool, it may be beneficial to trade time for space. Our results

demonstrate that the decompositional approach is more space efficient than a

Various researchers have investigated the formal use of timing diagrams. Damm
et al. introduced a timing diagram notation, called Symbolic Timing Diagrams

(STD’s) [DJS94], that have a formal semantics. They [DJS94, Fey94, FS96,

FJ97, BW98a| provide algorithms that translate STD’s into various temporal
logics, like CTL, TPTL [AH94| and a first order temporal logic TL [DJS94].
They have applied their algorithms successfully to a number of case studies
[DHKS94, BW98b]. Unlike our work, their translation algorithms are mono-
lithic and in general results in an exponential translation. Moreover, STD’s
are asynchronous in nature and cannot explicitly tie events to the clock. Fisler
[Fis96, Fis97| provides a procedure to decide regular language containment of
non-regular timing diagrams, but the model checking algorithms have a high
complexity (PSPACE). Fisler’s diagrams, like RTDs, can express synchronous
properties, but the result is a visually cluttered diagram with unnecessary
added complexity.

Cerny et al. present a procedure [KC98| for verifying whether the be-
havior of a set of action diagrams [CBGK98] (timing diagrams) is consistent;
they do not consider infinite behavior. They [JC98] use constraint logic pro-
gramming to check if a system satisfies finite action diagram specifications.
Amon et al. [ABHL97, ABL98]| use Presburger formulas to determine whether
the delays and guarantees of an implementation satisfy constraints specified
as a timing diagram. This work uses a commercial timing diagrams editor,
called Timing Designer [KM97|, to specify the constraints and delays. They
have developed tools that generate Presburger formulas corresponding to the
timing diagrams and manipulate them. This model cannot, however, handle
synchronous signals, and the algorithm for verifying Presburger formulas is
multi-exponential in the worst case.

Antoine and Le Goff [AL92] present a syntax and semantics of syn-
chronous timing diagrams and translate them into C'T'L* formulae; they only

consider diagrams without any temporal ambiguity. Boriello [Bor92a, Bor92b]

76

proposes an approach to formalizing timing diagrams. Timing diagrams are
described informally as regular expressions but no specific details or transla-
tion algorithms are given. Many other researchers [Thu96, RMM*93, Cin93]
have formalized timing diagrams and translated them to other formalisms (in-
terval logics, trigger graphs etc.). Formal notions of timing diagrams have also
proved to be useful in test generation and logic synthesis (cf. [Tie92, GGL195,
Lut98, FS96)).

In contrast, for SRTDs, we have presented decompositional, efficient
algorithms for model checking, which has time complexity that is linear in the
size of the system model and quadratic in the size of SRTD. Our experience
with verifying the PCI core and other protocols indicates that the syntax of
SRTDs suffices to express common timing properties, and is expressive enough

for industrial verification needs.

7

Chapter 5

Compositional Reasoning with

SRTDs

5.1 Introduction

Compositional reasoning [{RABH"99] — reduces reasoning about a system to
reasoning about its components — has been an active area of research for
nearly three decades. Recently, it has gained further importance as a way
of ameliorating the state explosion problem in model checking. For example,
given programs P;, P, and specification 7', we would like to check whether
the composed system satisfies T' (written as P,//P» |= T). Since reasoning
about Py //P, directly only exacerbates the state explosion problem, composi-
tional reasoning techniques are designed to reason about P; in isolation from
P, (and vice versa) to draw conclusions about P;//P,. There are, however,
several difficulties which must be overcome, foremost among them are the task

decomposition problem, the generation of auxiliary assertions and the general

78

applicability of the compositional method to the task at hand.

Firstly, task decomposition is necessary since it is unlikely that P; by
itself satisfies all of 7T": we would like to decompose 7" into 71} and 75 such
that T = T3 A Ty and then show that P, = 77 and P> = T. Secondly,
auxiliary assertions are usually necessary, since P; may satisfy 77 only when
its environment behaves like P,. To solve this problem, assume-guarantee
style reasoning adds auxiliary assertions, Q)2 (respectively Q1) which represent
assumptions about the behavior of P, (P;) as an environment for P; (P»). Such
auxiliary assertions must often be generated by hand, however. Finally, naive
compositional rules based on this style of reasoning, for instance, P,//P, =T
holds if P;//Q2 = T1 and P,//Q1 |= T3, are sound only for safety properties.

In this Chapter, we first present a new rule for assume-guarantee reason-
ing, which generalizes several earlier rules (cf. [Pnu85, AL95, AH96, McM99,
NTO00]), by removing the sources of incompleteness in some of these rules, by
using processes, instead of temporal logic formulas, as specifications, and by al-
lowing more general forms of process definition and composition. The new rule
extends the naive rule above with a check for soundness. As it deals uniformly
with processes, it fits in well with a top-down refinement approach to designing
systems. We show that this rule is also complete, in that if P,//P, =T, then
it is possible to prove this fact with our rule.

Next, we explore the benefits of applying this rule in the case where 7" is
specified as an SRTD. We show that not only is task decomposition a relatively
simple problem for timing diagrams, but also that it is possible to automat-
ically generate auxiliary assertions directly from the specification. Further-
more, we identify a large class of SRTDs for which the soundness check of the

rule is always satisfied, and the auxiliary assertion generation and, therefore,

79

the model checking process is efficient — linear in the size of the diagram and
the structure. We have implemented our method in the timing diagram anal-
ysis tool, RTpT [AEKN00, AEKNO1], which uses the tool COSPAN [HHK96]
to discharge model checking subgoals. We report here on its application to
a memory controller and a PCI Interface Core; in both cases, we obtain sub-
stantial reduction in the space used for model checking.

The organization of the Chapter is as follows: we describe our new rule
and prove its soundness and completeness in Section 5.2. The theory behind
the application of this rule to timing diagrams is presented in Section 5.3. Our
experiments with applying this rule are described in Section 5.4. We conclude

the Chapter with a description of related work in Section 5.5.

5.2 Assume-Guarantee Based Compositional
Reasoning

In this section, we first present the naive compositional reasoning rule and
explain why it is unsound. We then present our new rule, and show that
it is both sound and complete. We begin by defining some basic concepts:
processes, composition, and closure. Although the eventual application of our

rule is to finite state processes, we develop it in a more general setting.

5.2.1 Preliminaries

Definition 22 (V-state) For a non-empty set of typed variables V', an as-

signment of values to variables in V is called a V -state.

80

Definition 23 (V-sequence) A V-sequence x = xy,x1,... i a non-empty

sequence (finite or infinite) of V -states.

The length of a V-sequence z, written as |z|, is the number of states in
z. We write z[i..j], for j > i, to denote the subsequence w;,...,z; and z;y to
denote concatenation of a finite sequence x to y. A language L over a set of

variables V' is a set of finite or infinite sequences of V-states.

Definition 24 (Satisfaction) A W-sequence x, where V. C W, satisfies L

ioff © projected on to V' belongs to L.

The term (W : L) defines a language over V\W. A (V\W)-sequence
x satisfies (W : L) iff there exists a sequence y, with the same length as z,
such that y is in L and x and y differ only on the values of variables in W.
For a language L over V, let [L] mean that every finite or infinite V-sequence

satisfies L. Thus, for L, and Ly over V', [L; = Ls| denotes L; C Ls.

Definition 25 (Process) A process P is specified by a tuple (V,I, R, F') where

e V is a non-empty set of typed variables, partitioned into three sets: pri-
vate variables VP, interface variables V*, and external variables V€. The

set of modifiable variables, V™, is VP U Vi,
e I(V™) is an initial condition.

e R(V, (V™)) is a transition relation. The variables (V™)' , which are in

1-1 correspondence with V'™, represent values for V™ in the next state.

e F(V) is a fairness condition.

81

Definition 26 (Process Execution) A V-sequence x is an execution of P

iff I(xo) and for all i such that i +1 < |z|, R(x;, x;1+1) holds.

The executions of a process P can be defined by the LTL formula (I A
G(R)), interpreted over V-sequences. The set of finite executions is denoted

by finexzec(P).

Definition 27 (Language of a Process) The language of a process P, L(P),
15 the set of finite executions of P together with those infinite executions of P

that satisfy F. Thus L(P) can be expressed by the LTL formula (I ANG(R) AN F).

The observable language of P, denoted by LZ(P), is the projection of
its language on V* U V. In the rest of the Chapter, we assume that private
variables of a process are distinct from the variables of all other processes,

since this does not affect the observable language.

Definition 28 (Implements) For processes P and A, the relationship “P
implements A”, denoted by P \= A, is defined only if Vi(A) C V¥(P), and is
defined as [LP(P) = L°(A)], which can be written as [L(P) = (IVP(A) :
L(A))]

This matches the usual definition when A is an automaton, since a

sequence over V?(A) is a run of the automaton.

Definition 29 (Process Composition) The composition of the processes
P, = (W, 1, Ry, Fy) and P, = (Vy, I, Ry, F»), denoted by P,/ /P, is the pro-
cess P=(V,I,R, F), where

e V=NUW, VP=VPUV and Vi =V} UV}

82

.I:II/\IQ
.R:Rl/\R2

.F:Fl/\FQ

Definition 30 (Process Disjunction) The disjunction of the processes P

and Py, denoted by P, + Py, is defined as the process P = (V,I, R, F'), where

o V=VUVaUu{c} VP =VPUVPU{c} and Vi = ViUV{. ¢ is a private

variable that serves to choose initially between the two processes.
e I=(cANL)V (ncAl)
e R=(c=¢c) N ((c\NRy)V (mc N Ry))
o FF=(FG(c) N F1) V (FG(—c) A Fy)

The following Lemmas summarizes the properties of these constructions

needed for the proofs in following Sections.

Lemma 1 For processes Py, Py, [finexec(P;//P2) = finexec(Py) A finexec(Ps)]

Proof.

x € finexec(Py//P;)
(by Definition 26 (execution))

I(P1//Py)(xo) N (Vi:i+1<|z|: R(P//P)(xi,xis1))
(by Definition 29 (composition))

(I(P1)(wo) A I(P2)(zo)) A

(VZ 1< |Zl§'| : R(Pl)(a:i,:ciﬂ) A R(Pg)(xi,$i+1))

(rearranging the terms)

83

(L(Pr)(mo) A (Vi:i+ 1< |z : R(P) (@i, Tiv1))) A
(I(Pg)(ﬂ?o) A (Vl 1< |Zl§'| : R(Pz)(:l?’z,il’;z+1)))

(by Definition 26 (execution))
(x € finexec(Py)) N (z € finexec(Py))

U

Lemma 2 For processes Py, Py, [C(P1//Ps) = L(P1) N L(P)]

Proof.

L(P//P)
(by Definition 27 (language))
I(P/[Py)(v) N G(R(P/[Py)(v,0')) N F(Py//Py)(v)
(by Definition 29 (composition))
I(P)(v) A I(P)(v)) A G(R(P)(v,0')) A G(R(P2)(v, ")) A
(F(P1)(v) A F(P2)(v))

rearranging the terms)

(
(P1)(v) A G(R(Py)(v, ")) A F(P)(v)) A
(
(

(I
(I(P2)(v) A G(R(P)(v,v")) A F(P,)(v))

by Definition 26 (language))

L(P) N L(P,)
O

Lemma 3 For processes P, Py, [LO(Py//P2) = LO(P)) A LO(P)]

Proof. Let V¥ and V} be the private variables of P, and P,, and
VP = VP U VY be the private variables of P;//Ps.

LO(P1//Py)

84

U

(by Definition 27 (language), Definition of £©)
BVP(P//Py) - (I(Py//Po)(v) A G(R(P1//P2) (v, v")) A
F(P//Py)(v)))

(by Definition 29 (composition))

BVP(P//Py) = (I(Py)(v) A I(P2)(v)) A (G(R(Pr)(v, 0')) A
G(R(P,)(v,v)) A (F(Pr)(v) A F(P2)(v)))

(rearranging the terms, Definition of composition)
BV (A1) : (I(P)(v) A G(R(P)(v,v)) A F(P1)(v))) A
V2 (P) : (1(P2)(v) A G(R(P,)(v,v)) A F(P)(v)))

(by Definition 27 (language), Definition of £°)
LO(P) N LO(P,)

Lemma 4 For processes Py, Ps, [(I{c} : L(PL + Py)) = L(P1) V L(P2)].

Proof.

(e} - L(PL+ Py))
(by Definition 27 (language))
(He} : I(PL+ Py)(v) A G(R(Py + P2)(v,0")) N F(Py+ Ps)(v))
(by Definition 30 (disjunction))
(BHep = (le A I(P)(v) V (me A I(P2)(v))) A
((¢"=c¢c) A ((e A R(Py)(v,) V (= A R(Py)(v, v'))
AN((FG(e) A F(P)(v)) Vv (FG(—¢) A F(P2)(v))
(rearranging the terms, logic)
(FH{c}: (e Vv (me)) A (d=¢) N (FG(c) V FG(—¢))) A
(I(P)(v) A R(P)(v,0") A F(Py)(v)

v))V
(I(P2)(v) A R(Py)(v,v') N F(Py)(v)

)
)

85

(by Definition 27 (language))
L(P) VvV L(P)

O

Definition 31 (Closure) For a language L on variables V, the closure of L,
denoted by cl(L), is a language consisting of V-sequences x where, for every

i < |z|, there exists a sequence y such that z[0..i];y € L.
cl has the following properties.

Theorem 20 (Closure Properties) ([AS85]) Given languages Ly and Lo,
a. Ly specifies a safety property if and only if cl(Ly) = L.
b. [L1 = cl(Ly)]
c. [el(cl(Ly)) = cl(Ly)]
d. [el(Ly U Ls) = cl(Ly1) U cl(Ly)]

For any process P, there is a process CL(P) such that the property
[LO(CL(P)) = cl(LP(P))] holds. If P is finite-state, CL(P) is formed from

P by changing the fairness condition of P to true.

Definition 32 (Closure Process) For any finite state process P = (V,I, R
,F), let CL(P) be the process (V' I')R',F') where V! =V, I' =1, R = R

and F' = true.
Definition 33 (Non-blocking) A process Q does not block process P iff
e Any initial state of P can be extended to an initial state of P//Q, and

86

e For any reachable state of P//Q, any transition of P from that state can
be extended to a joint transition of P//Q).

A process P is non-blocking if and only if, from any reachable state, P

can make a transition on any external input.

Definition 34 (Machine Closure) A process is machine closed iff every fi-

nite execution can be extended to an infinite fair execution.

Machine closure indicates that it is possible at any point to break away
from an infinite execution to one that is fair. A process that is machine closed

satisfies the CTL property AGE(fair).

Lemma 5 Given a finite state process P = (V,I,R, F),
[LO(CL(P)) = cl(LP(P))].

Proof. (=) Consider a sequence z € LZ(CL(P)). Now, assume that = ¢
cl(LP(P)), so, for some 4, [0..7] can not be extended to a sequence in LO(P).
But, by construction (Definition 32), any execution of P is also an execution
of CL(P). Therefore, z[0..i] can not be extended to a sequence in LZ(CL(P)).
Thus, we have a contradiction and x € cl(LP(P)).
(<) Consider a sequence z such that € ¢l(£%(P)) which implies, by Defini-
tion 31, that, for all i, z[0..i] can be extended into a sequence that is in £O(P).
Thus, by Definition 25, x is an execution of P and, therefore, is an execution
of CL(P). O

This definition of processes and of composition is quite general: it in-
cludes Moore and Mealy styles of definition as special cases, and processes in
a composition can modify shared variables. Interleaving composition can be

defined by adding a shared “turn” variable.

87

5.2.2 Compositional Reasoning Rules

In compositional reasoning one avoids reasoning directly about a system, that
is composed of many sub-components operating in parallel, by decomposing
the property and attempting to prove that the system sub-components satisfy
the sub-properties in a systematic manner. The following is an example of a

“non-circular” compositional proof rule.
P ET

PET
P//P =T ATy

These “non-circular” proof rules often do not work if the components
are tightly coupled, since P; may satisfy 77 only in the presence of P,. For
instance, in the following example, both P, ||P, =Ty ATy and P, = T hold.
However, in the absence of Py, P; = 17 does not hold since input y is uncon-

strained.

Example 1 (Assume-Guarantee)

Process P1 Process P2
var x: boolean; var y: boolean;
initially x=true; initially y=true;
transition x’=y transition y’=true
end P1 end P2

property T1: Always(x)

property T2: Always(y)

88

As illustrated in Example 1, it is unlikely that a system will satisfy any
interesting property outside of its intended environment. Hence, the environ-
ment must be constrained /specified to some extent. Towards this end, several
so-called “circular” proof rules have been proposed, of which this is an exam-
ple. In the following rule [AH96], both the implementation and specification
are processes. A trace is a sequence of states or events, and the semantics of
a process is a set of traces. Parallel composition (//) is the intersection of the

trace sets and the implements relation (=) is trace set inclusion.

P/|Ty ETh
P/ /T T
P /[Py =TT,

This rule is sound for safety properties (i.e. for finite computations),

but the soundness depends on a number of additional semantic assumptions:
e The processes must be non-blocking.
e The processes must have non-empty trace sets.
e The output variables of the processes must be disjoint.

In Example 1, one can show that P,//Ty = Ty and P»//T; = T», and
conclude, by the soundness of the rule, that P;//P» = T1//T,. This rule is,
however, unsound for liveness properties. To see this, consider the following

instantiation.

Example 2 (Liveness)

89

Process P1 Process P2

var x: boolean; var y: boolean;
initially x=true or x=false; initially y=true or y=false;
transition x’=y transition y’=x

end P1 end P2

property Tl: eventually(x)

property T2: eventually(y)

Although both hypotheses, P;//T, = T and P5//T7 = T3 hold, it is
not true that P;//P, =Ty //T5, as the computation where z and y are always
false is a valid computation of P;//P,. In an attempt to fix this problem,
several proposed rules (cf. [AL95, AH96]) use the safety closure of one of the

properties in the hypothesis as shown below.

P/|Ty ETh
P,//CL(Th) Ty
P /[Py =TT,

Using the safety closure of 17 prevents any possibility of circular reason-
ing amongst liveness properties. On the other hand, this makes it difficult to
apply the rule when liveness properties are needed as assumptions. We adopt
a different strategy to fixing the problem: we use an additional hypothesis
that checks if the circular reasoning is sound.

Another issue concerning such rules is completeness. Namjoshi and
Trefler [NT00] have explored completeness and have shown that many of these
circular proof rules are indeed incomplete. The following example, taken from

the paper [NT00], can be used to show that previous rules are not complete.

90

Example 3 (Completeness)

Process P1 Process P2
var 11,r1l: boolean; var 12,r2: boolean;
initially ll=true, rl=true; initially 12=true, r2=true;
transition ri1’=11 transition r2’=12
transition 11’=r2 transition 12’=ril

end P1 end P2

property Tl: Always(1l1)

property T2: Always(12)

In the above example, P;//P, = T1//T, holds, However, the hypothesis
P, //Ts =T does not hold since variable ry is now unconstrained and /; may
be assigned the value false. The second hypothesis also fails to hold by a
symmetric argument.

We will now present a new assume-guarantee style proof rule that is
both sound and complete and can be applied uniformly to both safety and
liveness properties. For simplicity, we present this rule for the composition of

two processes; it can be easily extended to apply to any finite composition.

Proof Rule: To show that P//P, E T, find Q; and @ such that the

following conditions are satisfied.

CO0 Vi(Q,) C V¥(P,), @, does not block P, and symmetrically for Q.
Cl P//Q: = Q1, and P/ /Q1 = Q2
C2 Q.//Q =T

91

C3 Either P,//CL(T) = (T + Q, + Q»), or Po//CL(T) l= (T + Q, + Q»)

Notice that hypothesis C3 need not be checked when 7' is a safety
property, as [LP(CL(T)) = L(T)] holds in this case.

We will first prove some preliminary lemmas that will be used later in
the proof of the soundness and completeness of the above rule. In the following

proof, let W be the private variables of Q1//Q.

Lemma 6 [finexec(P1//P,) = (3W : finexec(Q1//Q2))]

Proof. A sequence z isin finezec(P, k) iff [0..k] is a finite execution of process
P. The property that process @ does not block P can be stated as follows: (i)
[I(P) = AV™Q)\V™(P) : I(P//Q))], and (ii) for any k > 0, [finexec(P, k) N
finexec(Q, k — 1) = (F(V™(Q)\V™(P))(k) : finezec(P//Q, k))], where z sat-
isfies (V' (k) : L) iff there is a sequence y in L, of the same length as z, that
differs from x only in the values of the V-variables at the kth position.

The proof is by induction on the length of executions. Let W =
VE(Q1//Q2), U=V"™(Q1)\V™(P;) and Wz = VP(Q>).

Base case:
finezec(Py//Ps,0)
& (definitions)

I(P) AN I(P,)

= (non-blocking from CO)
(AU : I(Py//Q1)) A I(Fy)
= (by C1)
(AU : (W2 : 1(Q2))) A I(P1)
= (‘as U is disjoint from V™(Q2) by CO)

92

(AW, - I(Q2)) N I(Py)

= (W5 is a set of private variables)
(FW2 : I(P1//Q2))

= (by monotonicity of composition and C1)
(EW : 1(Q2//Q1))

& (definitions)

(3W : finezec(Q1//Q2,0))

Inductive case: k£ > 0 and the result holds for £ — 1 by assumption.

finezec(Py/ /Py, k)

= (inductive hypothesis)
finexec(Py//Po, k) A (W : finexec(Q1//Q2, k — 1))
= (W is a set of private variables)

(IW : finexec(Py, k) A finexec(Ps, k) N finexzec(Qq,k — 1)
A finezec(Q2, k — 1))
= (non-blocking from CO0)
(AW : (AU (k) : finexec(Py//Q1,k)) N finevec(Pr,k))
= (by C1)
(W : (FU(k) : (IWs : finexec(Q2, k))) N finexec(Py, k))

= (U is disjoint from V™(Q2) by C0, and V¢(Q2) is unconstrained)
(I : finexec(Q2, k) N finexec(Py, k))
= (by C1)

(3W : finezec(Q1//Q2, k))
UJ

Theorem 21 (Soundness) The rule is sound for arbitrary Py, Py and T.

93

Proof. We have to show that P,//P, = T follows from the conditions C0-C3.
This, by definition, is equivalent to showing that [£(P,//P,) = L°(T)]. By
the results in [AS85], any language L can be can be written as a conjunction
of the safety property c/(L) and the liveness property (c/(L) = L). Based on

this characterization, we break up the proof into the following two parts.
Safety [L(Py//P,) = cl(£°(T))], and
Liveness [L(P//P) A cl(LP(T)) = L£O(T)]

First, we show the safety part by proving the equivalent (as cl(L(P))
is the set of executions of P) statement [finezec(Py//P2) = cl(L°(T))]. Let

U be the private variables of T'.

finezec(P1/ [Py)

= (by Lemma 6)
(W : finezec(Q1//Q2))

= (‘as cl(L(P)) includes finezec(P))
(AW = cl(L(Q1//Q2)))

= (by C2; monotonicity of ¢l)

(AW : cl(L(T)))
= (W contains private variables not occurring in 7')

cl(£9(T))

Next, we show the liveness part.

L(P) N L(Py) A cl(LO(T))
= (by Lemma 5)

94

L(P1) N L(Py) A LO(CL(T))

= (by condition C3)
L(P) AN L(Py) N LO(T + Q1+ Qo)

= (by Lemma 4; W U U U {c} consists of private variables)
(FWUU U{c}: L(P) N L(Py) AN (L(T) V L(Q1) V L(Q2)))

= (distributing A over V; Lemma 3 and condition C1)
@AW UUU{c}: L(T) v L9(Q1//Q2))

= (distributing 3 over V; condition C2)

AW uUU{c}: L(T)) v GWUUU{c}: LO(T))
= (W U {c} consists of private variables not in T")
£o(T)
U

Theorem 22 (Completeness-1) The rule is complete for non-blocking pro-

cesses Py, Py that have disjoint interface variables.

Proof. Suppose that P;//P, = T holds. Let @; = P; and Q3 = P». As
()1 is non-blocking and has disjoint interface variables from P, it satisfies the
condition CO0; similarly for the symmetric case. Condition C1 is satisfied as
P, //Py = P, and P,//P> = P; holds trivially. Condition C2is P,//P» = T,
which is true by assumption. Condition C3 holds as P, = (T'+ P, + P,) by
weakening.
OJ

Theorem 22 shows that the proof rule is complete for processes P; and
P, that are non-blocking and have disjoint interface variables. Theorem 23
claims that the rule is complete for arbitrary processes. To show P,//Ps =T
for arbitrary P;, P, and T', the proof proceeds as follows.

95

e Syntactically transform processes P;, P», and T into PJ, Py, and T" such
that (i) P//P, = T iff P|//Py = T', and (ii) P{, P; are non-blocking

and have disjoint interface variables.

e Apply Theorem 22 to P{, P;, and 7" which, by construction, satisfy the
hypotheses for the theorem.

Thus, Theorem 23 shows that the rule is complete up to a syntactic
transformation. This is a broader definition of completeness, which can be
easily converted to the narrower syntactic sense by adding the transformation
as an axiom. The proof alluded to above shows that the rule combined with
the axiom yield a proof system that is complete in the syntactic sense. It is, of
course, also sound by (i) and the soundness of the rule for arbitrary processes.

We will now define the transformation in detail and give proofs of (i) and (ii).

Theorem 23 (Completeness-2) The rule is complete for arbitrary processes.

Proof. For simplicity, we consider first the case where P;, P, have a shared
interface variable y, but are non-blocking. Blocking processes are converted
to non-blocking ones by a similar transformation, which is described later.
Processes with shared variables

Consider processes P;, P, and T such that P;//P, = T. Let us assume that Py
and P, have a shared interface variable y, but are non-blocking. First, if y is
not an interface variable of T, let process T" be obtained by declaring y as an
interface variable, without changing anything else in T'. Clearly, P,//P, =T
ifft P,//P, = T". Next, we transform processes P;, P, and 7" by by adding
a dummy initial state to each process where all variables have a fixed value,

say L. Let P/, P} and T' be the new versions of these processes. As the

96

initial condition, transition relation, and fairness condition are unchanged,
P//P, =T iff P!//P] = T'. For the rest of the proof, we assume P, P> and
T satisfy the above conditions; that is, 7" has y as an interface variable, and
Py, P, and T have a dummy initial state where y has a single value, and that
P//PET.

We can transform P, into P by by syntactically replacing every occur-
rence of y with y;, which we represent as the substitution [y < y;]. Let z;

represent the other variables of P;. Thus, P| is defined as follows.
o V(P) = (V(P)\{y}) U{u},
o I(P)(z1y1) = [y < yu]I(P1)(21y),
o R(P{)(zwyr, z191) = [1, ¥ < y1, yi] R(P1)(21y, 21Y),
o F(P)(z1y1) = [y = n]F(P1)(21y).

Likewise, we can transform P, into P; by replacing y with y. We now show a

relationship between P;//P, and P|//P;.

Lemma 7 [L(P1//P2) = (Jy1,y2: Gy =u1) A Gly = y2) A L(P[//P))].

Proof.

(Fy1,92: Gy = w) A Gly = w2) A L(P{//F;))
(definition of L)
(Fy1,32: Gy =31) A Gy =32) A
I(P])(z1y1) A G(R(P)(z1y1, z191)) A F(P)(21y1) A
I(P3)(w2y2) N G(R(P3)(w2y2, 395)) N F(P3)(x2y2))
(Leibnitz rule (using G(y = y1) A G(y = y2)), definition of P}, P})

97

(Fy1,92: Gy =y1) A Gy =y2) A
I(P1)(z1y) A G(R(P1)(z1y, 21y")) A F(Pr)(z1y) A
I(Py)(z2y) N G(R(P2)(22y, 73Y")) N F(P2)(22y))
(logic)
(Fy,y2: Gy =y1) A Gy = 32)) A
I(P1)(z1y) A G(R(P1)(z1y, 21y")) A F(Pr)(z1y) A
I(P)(z2y) A G(R(P2)(z2y, 23y")) N F(P2)(x2y)
(logic)
I(P1)(z1y) A G(R(P1)(z1y, 21y")) A F(Pr)(z1y) A
I(P)(z2y) A G(R(P2)(z2y, 25y")) N F(P2)(x2y)
(definitions)
L(P1/]P)

(
(

(
(

We modify the process 1" to T} by substituting y; for y; the following

lemma relates 7" and 73.

Lemma 8 [L9(T}) = (Vy: Gy =w1) = £°(T))]
Proof.

(Vy: Gy = v1) = LO(T))

(definitions)
My :Gly=wy1) = @QVP(T): I(T)(zy) N G(R(T)(zy, z'y")) A
F(T)(xzy)))

(Leibnitz rule; y, y; are not private variables of T')
(Vy: Gly =w1) = AVP(T) : I(T)(xy) A G(R(T)(zys, z'y1)) A
F(T)(xy1)))

98

(rearranging)
(Fy: Gly=w)) = AVP(T): I(T)(zy1) A G(R(T)(wys, x'yy)) A
P(T) ()
(definitions; logic)
true = LO(T})
(logic)
L°(Th)

We can now show the following lemma.

Lemma 9 [L(P//Py) = LO(T)] iff [L(P{//P3) A Gyr = y2) = LO(T1)].

Proof.

[L(P1/[P2) = L£O(T)]
(by Lemma 7)
(G121 Gly = 1) A Gly =y2) A L(P{//P;)) = LO(T)]
(logic)
[(Vyr,y2: Gly =w1) A Gly =w2) A L(P//P;) = LO(T))]
(rearranging quantifiers: absorb yi, y» into [|, make y explicit)
[(Vy: Gy =w1) A Gly =12) A L(PI//P3) = LO(T))]
(rearranging)
[L(P//P) = (Yy:G(y =) A Gy =y2) = L(T))]
(Leibnitz rule)
[L(P[//Py) = (Yy: Gy =w1) A Glyr = u2) = LO(T))]
(rearranging)
(

[L(P//P;) = (G(yr =u2) = (Vy:Gly =w1) = LO(T))]

99

(by Lemma 8)

[L(PI//P;) = (G(yr = y2) = LO(T1))]
(
(

rearranging)

[L(PL//Py) A Gy = y2) = LO(Th)]

By Lemma 9, [L(P,//P,) = L£°(T)] holds iff [L(P]//P;) = (F(y, #
y2) V LO(T1))]. We now modify the structure of T3 to 7", which takes the
F(y1 # y2) condition into account. Informally, 7" is in the “normal” mode,
where y; = y2, and 7" behaves like T;. If y; # y» in the next state, T’
transitions to an “abnormal” mode, and stays in that mode from that point
on. The distinction between normal and abnormal mode is expressed by a

single private variable, n.

Formally, if T} = (V,I, R, F'), then T" = (V' I', R', F"), where

(VY =VPuU{n}, (V) = VU {y}, and (V')¢ = V¢. Let z refer to all

the variables of V, V' other than y, y1, y2, n.

I'(zyyyon) = (z = a) A (y1 = b) A (y2 =b) A n, where I(zy;) = (2 =
a A y; =b). Recall there is a single initial state for T7.

R'(zy1yam, 2'y1yon’) = (0 A (y) = y5) A n' A R(zy1,2'y1)) V (0 A () #
ys) A —n') vV (—-n A —n')

F'(zy1yan) = (FG(n) A F(zy1)) V FG(—n)

Lemma 10 For process P = P|//P;,
[L(P) A Glyr =y2) = LO(T0)] iff [L(P) = L£(T")]

100

Proof. (=) Consider any execution 7 of P. We have to show that it belongs

to LO(T"). There are two cases:

e if G(y; =) holds for 7, by hypothesis, m belongs to LZ(T}); so there
is a run of 7”7 on 7 that stays within normal states. Thus, = belongs to

Lo,

e Otherwise, if eventually (y; # y») holds in 7, consider the first point i
at which this happens. Then, ¢ > 0, as the initial state of P satisfies
y1 = y2. Thus, the prefix 7[0..i — 1] is in £(P), and satisfies G(y; = y2),
so there is a run of 7" on it. As [i] satisfies y; # y2, 7" has a transition

to an abnormal state from the end state of this run, and accepts 7.

(<) Consider any execution 7 of P that satisfies G(y; = y2). We have to show
that it belongs to £Z(T}). This execution belongs to £Z(T") by assumption.
As G(y; = yz2) holds of 7, the witnessing run of 7" on 7 must stay in the
normal part of 7. By construction of 7", this is a run of 77 on 7, so 7 belongs
to LO(T1).
O
Processes that are blocking
Suppose processes P, and P, are blocking. We transform P, to P/, by adding
a blocking variable by, and making the following modifications:
I(P{)(x1b1) = I(Py)(z1) N —by,
R(P{)(@1by, x10y) = (b A by) vV (2by A (Vo) : ~R(Py) (w1, 1)) A b))
V (=by A R(Py)(zq,2)) A b)),
F(P{)(z1b1) = (G(=b1) A F(Pr)(x1)) V F(by).

The variable by is initially false. P behaves like P; as long as b; is

false; it transitions to a state satisfying b; on any condition for which P;

101

has no enabled transition. P, can be similarly modified to Py. Thus, by this
definition, P| and P; are non-blocking. We will now show, using a proof similar
to that of Lemma 7, that [L(Py//P) = (3b1,by : L(P]//Py) A G(=by A —bs))]
holds.

Lemma 11 [E(Pl//Pz) = (abl,bg . E(P{//Pé) VAN G(_Ibl VAN ﬁbg))]
Proof.

(by, by : G(=by A —by) A L(P]//Py))
(definition of £)
(3b1, by = G(—by A —b2) A
I(P)(w1b1) N G(R(Py)(x1by, @1b))) A F(P])(21b1) A
I(P;)(w2b2) N G(R(Py)(w2be, 25bh)) A F(Py)(w2b2))
(Leibnitz rule using G(—b; A —bs))
(3b1, by = G(—by A —b2) A
I(P])(z1false) N G(R(P])(xyfalse, &' false)) N F(P])(z1b1) A
I(P;)(z2false) A G(R(Py)(z2false, x5false)) A F(P;)(x2b2))
(definition of P’; logic)
(Fby, b2 : G(—by A —bg)) A
I(Py)(z1) A G(R(Py) (21, 27)) A F(Py) (1) A
I(P)(z2) N G(R(Ps)(22,23)) N F(Ps)(x2)
(definition of £)
L(P/|Py)

U

Lemma 12 [L(P,//P) = LO(T)] iff [C(P]//Py) A G(=by A =by) = LO(T)].
Proof.

102

[L(Py//Py) = LO(T)]
(lemma 11)
[(Fby,be 1 L(P]//Py) A G(=by A —by)) = LO(T)]

= (rearranging quantifiers)

[L(P{/[P3) A G(=by A —bs) = LO(T)]

We now modify the structure of 7" to 7", which takes the G(—b; A —bs)
condition into account. Informally, when in the “normal” mode (i.e. —b; A
—bs), T" behaves like T'. If by V by holds in the next state, 7" transitions to an
“abnormal” mode, and stays in that mode from that point on. The distinction
between normal and abnormal mode is expressed by a single private variable,

n.

Formally, if T = (V,I, R, F), then T = (V',I', R', F'), where

o (VY =VPU{n}, (V') =V U{by, by}, and (V')® = V. Let z refer to
all the variables of V| V' other than by, by, n.

[J I’(Zblbzn) = (Z == Cl) A (_lbl) VAN (_|b2) A n,

o R'(zbibem, 2'bi04n") = (n A —(b) V b)) An' A R(z,2")) V (n A (b Vb)) A

-n') V (-n A —n')
e F'(zbibon) = (FG(n) A F(zbiby)) V FG(—n)

Lemma 13 For process P = P|//P;,
[L(P) A G((mb1) A (b2)) = LOT)] iff [L(P) = LO(T")]

103

Proof. (=) Consider any execution 7 of P. We have to show that it belongs

to LO(T"). There are two cases:

e If G(—(by) A —(by)) holds for m, by hypothesis, 7 belongs to L°(T'); so
there is a run of 7" on 7 that stays within normal states. Thus, 7 belongs

to LO(T").

e Otherwise, if eventually (b; V b2) holds in 7, consider the first point i
at which this happens. Then, ¢ > 0, as the initial state of P satisfies
(=by) A (—by). Thus, the prefix 7[0..0 — 1] is in £(P), and satisfies
G(—(by) A —(bg2)), so there is a run of 7" on it. As 7[i] satisfies (b V bs),
T' has a transition to an abnormal state from the end state of this run,

and accepts 7.

(<) Consider any execution 7 of P that satisfies G((—b;) A (—by)). We have
to show that it belongs to £°(T). This execution belongs to LZ(T") by as-
sumption. As G((—by) A (—bg)) holds on =, the witnessing run of 7" on 7 stays
in the normal part of 7”. By construction, this gives an accepting run of 7" on
7, so & belongs to £(T').0]

U

5.3 Compositional reasoning with Timing Di-
agrams

In the previous section, we presented a sound and complete rule for assume-
guarantee based compositional reasoning. In this section we show how to

apply that rule to specifications in the form of SRTDs, which were described

104

preconaiuon postconaiuon

Clock | [| \ \ [

Mod1l.A

Mod2.B
Modl.C — | S 11RO

Figure 5.1: Augmented Synchronous Regular Timing Diagram

in detail in Chapter 4. By focusing on SRTDs, which are a highly regular
specification formalism, we obtain several benefits. Firstly, for SRTDs with
the non-overlapping semantics, the soundness check C3 in the rule follows
directly as a consequence of the expressiveness of the formalism and so can
be dispensed with. Secondly, we take advantage of the fact that SRTDs have
efficient model checking procedures. Finally, we also show that the generation
of helper assertions is not only automatic but efficient for SRTDs.

In order to use SRTDs as a specification language in a compositional
model checking paradigm we need to augment the definitions of SRTDs given
in Chapter 4 with some information about the modularity of the design being
verified. This is achieved by introducing the concept of an ownership function

which is defined as follows.

Definition 35 (Ownership Function) Given an SRTD T = (¢, S, WF, M)
and a set of (implementation) process names N. An ownership function O :

S — N maps each signal in S to the process in N that controls it.

105

Note that the ownership function assumes that the signals are not con-
trolled by more than one process. Thus, the ownership function O can be used
to partition the SRTD T into disjoint fragments, 11,...,T,. An SRTD frag-
ment 7; consists of Prer, and only those waveforms in Posty that are owned by
process 7. Recall that an SRTD T is defined over a set symbolic values SV(S)
= {(apaq...a;)|a, € SV, A...Na, € SV, }U{X, D}, where S = {p, q,...r} is the
set of waveform names and SV; is the domain of values for waveform 7. An
SRTD T is defined as (Pre, Posty, ..., Posty), where the precondition Pre or
any of the subsequent postcondition segments Post; of length m is a function

S x [0,m) — SV(S).

Definition 36 (SRTD Fragment) Given SRTDT = (Pre, Posty, ..., Posty,)
and a ownership function O. Let Sy = {s € S|O(s) = A} be the signals in
T controlled by implementation process A. Ty = (Pre', Post|, ..., Post}) is a

fragment of T' with respect to O where

e Pre’ = Pre and

e Each postcondition segment Post};, Post, is a function from S4x[0,m) —

2

SV(S4) where, for all s € Su, Posti(s) = Post;(s).

An SRTD fragment may not be a well-formed SRTD since a fragment
may contain a pause whose pause owner is in another fragment. For example,
in Figure 5.1, the ownership function O maps signals A and C to process Mod;
and B to process Mods, and we have one fragment consisting of waveforms

Mod,.A and Mod;.C and another with waveform Mod,.B.

106

5.3.1 Translating SRTDs into Automata

In Chapter 4, we presented algorithms that translate an SRTD, with both the
overlapping and non-overlapping semantics, into VFA. These constructions
can be modified easily to construct similar automata for SRTD fragments; the
modification consists of choosing the failing postcondition signal only amongst

the postcondition signals of the fragment.
Algorithm 5

The algorithm that translates an SRTD 7', relative to an ownership function

O, into a VFA A7z proceeds as follows.
e Use the ownership function O to partition the 7" into fragments Ty, ..., T},.

e For each fragment 7}, construct a VFA A; using the algorithms (for either

the overlapping and non-overlapping semantics) in Section 4.
e The VFA Az that corresponds to T is Ag X ... X A,.

Therefore, using this modified algorithm, an SRTD 7' with fragments
T1,...,T, can be translated into an VFA Ay = A; X...xA,,. As a consequence

of Theorems 11 and 13, we know that A7 accepts the language of 7.

5.3.2 Automatic Construction of Helper Processes

We now present an algorithm that constructs a helper processes ; that gen-
erates the non-overlapping language corresponding to the fragment 7} of the

diagram.

Algorithm 6

107

For each signal ¢ in fragment T}, process @; operates as follows.

e Sets signal ¢« nondeterministically until the precondition holds, then it
generates the values for ¢ as specified in the postcondition of waveform

i

e If there is a don’t-care value in waveform ¢, the output value is chosen

nondeterministically from the domain V.

e If there is a segment of don’t-care transitions, the point at which the
transition occurs is chosen nondeterministically as well. (); maintains

the old value until this point and then generates the new value.

e If process @Q; is the owner of a pause, it non-deterministically decides
when to generate this event and maintains the current value till that
point. The process has a fairness constraint that forces this event to
occur within a finite period. Otherwise, it maintains its value until the
event that signals the end of the pause occurs, without any requirement

for termination.

Theorem 24 (Non-blocking) For an SRTD fragment T}, the corresponding

helper process Q; is non-blocking.

Proof. In order to prove that @; is non-blocking, we must show that @
can make a transition from any reachable state on any external input. By
construction,); operates independent of its environment except in the case
of a pause. In the case of a pause which is not owned by @);, if the pause
breaking event never occurs (); may wait in this state forever, otherwise, once

the event occurs (); continues to generate the postcondition. If); owns the

108

pause, there are fairness constraints that force this event to occur; thus Q; is
non-blocking.
O

It is easy to show that Q; is just the completely chaotic process (with
initial condition and transition relation both being true) composed with the
automaton for Tj; hence, (//j : Q;) generates the non-overlapping language

of T.

Theorem 25 (Correctness) For any SRTD fragment T; and the correspond-
ing helper process Q;, o is a computation of (//j: Q;) iff o =, T.

Proof.
(=) If 0 is a computation of (//j : @;) then (by construction) either the
precondition Prer never holds or the first occurrence and all subsequent non-
overlapping occurrences of Prer are followed by postcondition of 7. Hence,
by Definition 21, ¢ =, T
(<) o En T iff 0 € ((—p)*; Prer; Postr)® + ((—p)*; Prer; Postr)*; (—p)* (by
Definition 21). If Prer does not hold along o, then o is a computation of
(//7: Q;). If there is sub-computation og..r] of (//j : Q;) that satisfies Prer
then, by construction, (//j : @Q;) generates o[r + 1..s| that satisfies Posty.
We also know, by construction, that (//j : @;) recognizes the first occurrence
of Prer and ignores all overlapping occurrences of Prey. Therefore, o is a
computation of (//j : Q;).
O

The key feature of this construction is that, for every pause k, only
the process that includes the signal owning the pause has a fairness con-

straint enforcing the occurrence of the pause breaking event. This ensures

109

non-interference between the fairness conditions, which is the essence of the

soundness check in our compositional rule.

Theorem 26 (Non-interference) For SRTD T with the non-overlapping

semantics, the corresponding processes Q1,...,Qy,, where n > 1, and compu-

tation o, 0 € cl(LP(Q1//...//Qn)) implies 0 € LO(Q1 + ...+ Q).

Proof. 7T has a safety component, that specifies that the waveforms must not
be violated and a liveness component which specifies that each pause must
occur for arbitrary but finite period of time. If o is in cl(£LP(Q1//...//Qn)),
it must satisfy the waveform pattern at each point. If o is not in £P(Q; +
...+ @), this can only be because o never produces the pause breaking event
of a pending pause. But such a pause is owned by a particular @);; hence, by

construction, o is a computation of the Q;’s, j # ¢. [

Theorem 27 (Complexity of a Helper Process) Given an SRTD frag-
ment T; and the corresponding helper process @), the size of Q; is linear in

the size of Tj.

Proof. The size of process @); is s+, where s is the number of states and ¢ is
the transition size. The transition size is the sum of the length of the boolean
guards labeling the transitions. The size of T} is n * ¢, where n is the number
of signals and ¢ is the number clock points.

The number of states in @); is bounded by c¢ and is, therefore, linear in
the size of the Tj. Each transition in @); is bounded by O(n) and the number
of transitions is bounded by c. Hence, the transition size is n * ¢, which is also

linear in |Tj|. Thus, the size of @); is linear in the size of |T};|. O

110

5.3.3 Compositional Model Checking of SRTDs

In this section, we will describe a proof methodology that uses SRTDs as
the property 7" in the proof rule in Section 5.2. We would like to show that
P //Py =, T, where T is an SRTD (respectively, P,//P> =, T). By the
construction in the previous Section, we know that any SRTD T can be auto-
matically decomposed into helper processes (); and ()5 relative to an ownership
function. In order to apply the compositional rule with these choices for the
Q;’s, we need only check condition C1 and C3, as conditions CO and C2 are
true by construction. In the non-overlapping case, condition C3 need not be
checked, as it follows from Theorem 26. Thus, the only condition to be checked
is C1. The details of this check are described in the following section.

5.4 Applications

We have incorporated the algorithms described in the previous sections into the
RTDT tool. We used RTDT to automatically generate the property automata
and the helper processes. The verification tool COSPAN is used to discharge
the proof obligations. COSPAN checks A = B by considering only the infinite
fair executions. In order to check inclusion for the finite executions as well,
we utilize machine closure. If A is machine closed, any finite execution z of
A can be extended to an infinite fair execution; thus, if the COSPAN check
is successful, x matches some finite computation of B. The alternative is to
use COSPAN’s facilities for checking finite computations, but this requires
the product of A and B to be constructed twice — once for each check. The

machine closure method is more efficient, as in some of our examples, processes

111

are trivially machine closed. We added the ability to check machine closure to
COSPAN.

In our current implementation, we use the non-overlapping semantics
since it requires that we only check condition Cl1. We would like to take
advantage of the linear-time (Theorems 12,14) model checking algorithms to
discharge the obligation P;//Qs = @ (similarly for the other obligation) in
C1. We use Lemma 0 to replace the possibly more expensive check P //P, =,
T by the computationally cheaper check P,//Py =, T.

We used RTDT in conjunction with COSPAN to verify two systems.
The first is a synchronous memory access controller and the second is Lucent’s

Synthesizable PCI Interface Core.

5.4.1 Memory Access Controller

e L L L

arbiter.rgst |

arbiter.gnt ‘ ‘

arbiter.read
arbiter.addr 00 10
arbiter.req]
memory.ack \
memory.data | L

Figure 5.2: Read Transaction for the Memory Access Controller

The memory access controller system has an arbiter that provides ar-

112

bitration between two user processes and a memory controller that controls
three target processes. The user processes may non-deterministically request
a transaction and the arbiter grants one user permission to initiate the trans-
action. That user process may then issue a memory instruction by asserting
either the read or write line and putting an address the 2 bit address bus.
The target whose tag matches the address awakens, services the request, then
asserts the ack line on completion.

We verified that this system satisfied both read and write memory trans-
actions formulated as SRTDs as shown in Figure 5.2. Table 5.1 presents
the verification statistics of both the compositional and non-compositional
approaches. In Table 5.1, Arb and Mem refer to the arbiter and memory
controller implementation processes and Arb’ and Mem' are the automati-
cally generated helper processes. mc(Arb/Mem') and mc(Arb' //Mem) refer
to the machine closure check performed by COSPAN. T, (T;,) is the w-NFA
for the SRTD fragment that corresponds to process Arb (Mem). Table 5.1
indicates that the compositional checks are more efficient than model checking
Arb//Mem = T directly. The cost of checking Arb//Mem' = T, is more
than checking Arb'//Mem = T, and this is because most of the signals in the
SRTDs for both the read and write transactions belonged to the arbiter.

5.4.2 Lucent’s PCI Synthesizable Core

The second example is the Lucent Technologies PCI Interface Core, which is a
set of building blocks that bridges an industry standard PCI Bus interface to
a high performance F-Bus. The F-Bus supports multiple masters and slaves

and there are separate master and slave interfaces to the PCI Bus. The PCI

113

Model Checking | Number of Number of Bdd Size Space Time
Task Variables Reachable States (MBytes) (seconds)

SRTD for the read transaction

Arb//Mem = T 260 2.5e+06 50084 22 73
mc(Arb//Mem’) 114 1.9e+06 14772 0 2
mc(Arb’//Mem) 86 1.9e+04 14793 0 3

Arb’//Mem = Tm 129 1.1e+05 17993 6 23
Arb//Mem’ = Ta 201 1.1e+06 34861 14 46

SRTD for the write transaction

Arb//Mem E T 258 2.6e+06 54834 22 77
mc(Arb//Mem’) 112 1.0e+06 14551 0 2
mc(Arb’//Mem) 99 3.8e+04 15432 0 4
Arb'//IMem E Tm 106 1.1e+05 16854 2 11
Arb//Mem’ = Ta 220 7.3e+05 42844 17 67

Table 5.1: Verification Statistics for Memory Access Controller Design

Interface Core is designed to be fully compatible with the PCI Local Bus
specification [Gro95|.

In the previous chapter, we used Lucent’s PCI Bus Functional Model
[BL96], which is a sophisticated environment that was developed to test the
PCI Interface Core for functionality and compliance with the PCI specification.
The Functional Model consists of the PCI Core blocks and abstract models
for both the PCI Bus and the F-Bus. This model has about 1500 bounded

state variables and was too large for model checking directly. We, therefore,

114

clock ‘ ‘ ‘ ‘ ‘ ‘ ‘ L

|

mcntrl. MC_Frame

mcentr.MC_lIrdy ‘ ’7
scntrl.SC_Devsel ’7
scntrl.SC_Trdy j

scntrl.SC_Stop

Figure 5.3: Non-burst Property for PCI Core

restricted our verification efforts to a part of this design called pcim-core that
deals with basic PCI functionality. The pcim-core consists of the following
processes acting in parallel: a master controller mcntrl, a slave controller scnitri,
a configuration process config and an address multiplexer admux. In addition
there is an environment process pcim-ENV that contains all the inputs to the
pcim-core process. We added a number of constraints on pcim-ENV to reduce
the size of the state space. These constraints were property specific and were
different for each property we checked.

We formulated a number of properties as SRTDs by looking at the tim-
ing diagrams found in the PCI specification [Gro95| and the PCI Core User’s
manual [BL96]. These SRTDs were defined over signals controlled by mentrl
and scntrl. We used RTDT to automatically construct the helper processes
MC" and SC' and the property automata T,, and T,. In Table 5.2, ENV
refers to the composition of pcim-ENV, config and admux, while MC and SC
refer to mentrl and scntrl respectively. Machine closure was trivially satisfied

since the pcim-core process did not contain any fairness.

115

Mcrl//Scrll/E E T*

Model Checking | Number of Number of Bdd Size Space Time
Task Variables Reachable States (MBytes) (seconds)
SRTD Burst Property 1
Mcrl'//Scrl//E E Ts 293 5.2e+05 158490 14 302
Mcrl//Scrl'//E=Tm 79 1.2e+07 44066 3 40
Mcrl//ScrlilE = T 335 4.4e+08 273140 20 511
SRTD Burst Property 2
Merl'//Scrll/E = Ts 291 3.8e+05 115488 9 124
Mcrli/Scrl//E = Tm 74 9.9¢+06 42436 3 40
Mcrl//Scrll/E = T 331 1.8e+08 241792 18 430
SRTD Non Burst Property 1
Mcrl'//Scrll/E F Ts 127 2.5e+28 587771 93 5281
Mecrl//Scrl//EF Tm 58 1.4e+09 77411 3 74
- - 6725219 342 138110

* did not complete due to shortage of space

Table 5.2: Verification Statistics for PCI Synthesizable Core Design

The basic bus transfer on the PCI is a burst, which is composed of an

address phase followed by one or more data phases. In the non-burst mode,

each address phase is followed by exactly one data phase. The data transfers
in the PCI protocol are controlled by three signals PciFrame, Pcilrdy and
PciTrdy. The master of the bus drives the signal PciFrame to indicate the
start and end of a transaction. Pculrdy is asserted by the master to indicate

that it is ready to transfer data. Similarly the slave uses PciT'rdy to signal

116

that it is ready for data transfer. Data is transferred between master and
slave when both Pcilrdy and PciTrdy are asserted on a rising clock edge. The
PciStop signal is used by the slave to indicate termination of the transaction

and the PciDevsel signal is used to indicate the chosen device.

clock ‘ _‘ L J L

mcentrl. MC_Frame Q
mcentrl. MC_Irdy —‘

scntrl.SC_Devsel

scntrl.SC_Trdy

Figure 5.4: Burst Property for PCI Core

The first property in Table 5.2 stated that “in an ongoing transaction,
once the PciStop signal is asserted, the PciTrdy and PciDevsel signals remain
constant until the data phase completes (Pcilrdy is deasserted)”. The sec-
ond property, shown in Figure 5.4, specified that “if PciFrame is deasserted
when both Pcilrdy and PciTrdy are asserted then the data phase completes
successfully 7. The final property, shown in Figure 5.3, specified the non-burst
property, “if PciFrame is asserted for exactly one clock cycle and Pcilrdy,
PciDevsel and PciTrdy are eventually asserted then in the next clock cycle the
transaction ends”.

Table 5.2 indicates that the compositional checks are far more efficient
than the corresponding non-compositional checks. The non-compositional
check for the non-burst property ran out of memory, the numbers shown in

Table 5.2 are the BDD size, space and time just before memory exhaustion.

117

The slave controller scntrl has a lot of interaction with both config and admux
processes and this resulted in these processes being pulled into the cone of
influence. This is reflected in the significant disparity in the numbers for the

two compositional checks.

5.5 Related Work and Conclusions

Compositional reasoning for concurrently active processes has been the sub-
ject of much work over the past three decades. The earliest work in assume-
guarantee reasoning [MC81, Jon81] was concerned about reasoning about
safety properties for networks of processes. Many other assume-guarantee
proof rules, like those proposed in [Pnu85] [Sta85] [Kur87] [AH96] and [McM97],
apply only to safety properties. There are more general proof rules, that can
be applied to both safety and liveness properties, which are presented in the
following: [Pnu85] [Jos87] [CLM89] [GL94] [AL95] [AH95] [AH96] [McM99]
and [NT00]. Our rule extends a simple reasoning rule, that is known to
be sound for safety properties, with an additional soundness check for live-
ness properties. Thus, in a sense, the rule isolates the difficulties with rea-
soning about liveness in the soundness check. Unlike our rule, many other
proof rules, like [AL95] [McM99] [AH95] [AH96] and [HQRT98|, have been
shown to be incomplete [NT00]. Moreover, most of the earlier work (cf.
[Pnu85, AL95, AH96, McM99, NT00]) applies only to restricted kinds of pro-
cesses or temporal logic formulas. In contrast, our process framework is very
general and places far fewer restrictions on processes.

The possibility of using timing diagrams for compositional verification

appears to have been first recognized in a paper by Josko [Jos87] on modu-

118

lar reasoning. This paper, however, uses timing diagrams only for illustrative
purposes. In later work [HSD*93], [DH94]|, [DHKS94], [BW98b], [BW98a], a
compositional verification methodology proposed in [Jos93] is used to verify
Symbolic Timing Diagram (STD) [DJS94] properties. This work uses tim-
ing diagrams as a convenient notation for expressing temporal properties —
the assume-guarantee reasoning is left to the verifier. In contrast, our work
shows how assume-guarantee pairs can be generated mechanically from tim-
ing diagram specifications, resulting in a completely automated compositional
verification method.

In our work, we show that timing diagram specifications in the form
of SRTDs are naturally decomposable into assume-guarantee properties about
the components of the system. We also show that, although timing diagrams
can express liveness properties, the naive compositional reasoning rule can
be applied safely, as the additional soundness check always succeeds for the
non-overlapping semantics. We show how to apply the compositional rule
in a fully automated manner. Our experiments with the memory controller
and the PCI interface core show that compositional reasoning can indeed be
done successfully in this way, producing substantial savings in the time and
space required for the verification. Although, in these examples, the natural
decomposition of the timing diagram property suffices for generating the helper
process, it is possible that this will not true in some cases. Thus, heuristics
for automatically generating helper processes may be needed — which we leave

for future work.

119

Chapter 6

The RTDT Tool

6.1 Introduction

The Regular Timing Diagram Translator (RTDT) tool provides a user-friendly
graphical editor, that is used to create and edit SRTDs, plus a translator
that implements the compositional and non-compositional model checking al-
gorithms. RTDT forms a formal and efficient timing diagram interface to the
model checker COSPAN [HHK96).

The main features of the RTDT tool are as follows.

A user friendly editor for graphically creating and editing SRTDs.

A translator that implements the non-compositional algorithms and the

compositional proof procedure described in Chapters 4 and 5.

The user can execute COSPAN from within the RTDT tool.

When a verification check fails, RTDT displays the resulting error trace

as an SRTD and allows the user the option of editing this diagram.

120

6.2 RTDT Design Issues

Our design goals for the RTDT tool were: easy of use, efficiency, maintainability
and portability. We chose JAVA as the programming language for two reasons,
namely portability and the extensive graphical support. Unlike other timing
diagrams editors (cf. [KM97]), we designed RTDT’s Graphical User Interface to
ensure that the diagram at any point in the editing process is well-formed. For
instance, we use the user supplied clock triggering information in the editing
process to ensure that a rising edge triggered waveform only changes state at
the rising edge. The implementation is cleanly partitioned so that changes
made to underlying model do not effect either the editor or translator.

RTDT makes use of the JAVA Swing API for the graphics. The core
of the design is the intermediate representation of an SRTD, called IR, which
is a record that contains the following information: number of clock cycles,
number of waveforms, position of the precondition, a list denoting the pause
markers, a list of column names and a list of waveforms. Each waveform is a
list consisting of the waveform name, the triggering edge of the clock and the
value at each clock point.

The editor reads and writes the JR. When the editor reads an IR, it
creates a Swing component called a JTable. In order to display and edit an
SRTD, instead of the table, we customized the JTable cell-editor and cell-
renderer. The translator also inputs the IR and creates corresponding au-
tomata descriptions in S/R, which is the input language of COSPAN. The IR
is written into a file with extension “.td” and the corresponding S/R transla-

tion is written into a file with the extension “.td.sr”.

121

