
CopyrightbyNina Amla2001

EÆient Model Cheking for Timing DiagramsbyNina Amla, B.E, M.S.
DissertationPresented to the Faulty of the Graduate Shool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDotor of Philosophy

The University of Texas at AustinMay 2001

EÆient Model Cheking for Timing Diagrams

Approved byDissertation Committee:

To my parents

Aknowledgments
The time I spent at the University of Texas and Austin has been inuenedby many. I am indebted to my advisor Allen Emerson. Allen provided ahallenging and rewarding milieu; he has taught me that researh is aboutlarity of thought leading to preision in exposition.The two summers I spent at Bell Labs inuened this thesis immea-surably. Bob Kurshan made this possible. Bob has had a profound impaton my researh perspetive. I owe muh to Jayadev Misra for his onstantenouragement, tehnial insights and for giving ruial advie when I neededit most. I am grateful to Adnan Aziz for the many produtive disussions andfor being so generous with his time. I thank Mohamed Gouda and AloysiusMok for serving on my ommittee and for the useful feedbak.Kedar Namjoshi has been a superb mentor, both oÆially and unoÆ-ially, and a good friend. Our assoiation goes bak to the �rst projets weollaborated on in Allen's lass and ontinues to this day. Thanks to RihardTreer, �rst a wonderful and supportive friend, and now a lose ollaborator.To Phoebe Weidmann, my losest friend, thank you for everything. Ivalue the friendship of John Havliek, Pete Manolios and Natasha Sharyginaand have enjoyed our many disussions on tehnial and non-tehnial matters.v

I thank Emery Berger, Emilio Camahort, Esra Erdem, Sergei Gorinsky, JohnGunnels, Sam Guyer, Mike Hewett, Subramanian Iyer, Rajeev Joshi, VineetKalhon, Lyn Piere, Jak Sarvela, Jun Sawada, Vasilis Samoladas, YannisSmaragdakis and Thomas Wahl for the great ompany and memories fromgraduate shool. Brian Vitor, whom I have known the longest, thanks for forbeing suh a dear friend.None of this would have been possible without the love and enourage-ment of my family. My mother, a teaher all her life, provided me with aready role model. Thanks to my father, my guide at all times. I thank mysister Anita for her unagging support and her ompany these last years inAustin. Vanya I thank for being my anhor and best friend. Mukund, thanksfor having enough ambition, patiene and drive for the two of us. LovableLaila and Bert, thanks for always reminding me that happiness is as aessibleas a walk around town lake.Aknowledgments have to stop somewhere: `What do I have that I havenot reeived?' Nina AmlaThe University of Texas at AustinMay 2001
vi

EÆient Model Cheking for Timing DiagramsPubliation No.Nina Amla, Ph.D.The University of Texas at Austin, 2001Supervisor: E. Allen Emerson
Non-terminating systems that ontinually interat with their environ-ment are alled reative. These types of systems are ommonplae and arelargely aknowledged to be hard to validate using onventional tehniques. Ina landmark paper, Pnueli argued that temporal logis are an e�etive way toreason about the orretness of reative systems. Model heking is a formaltehnique that eÆiently determines if a reative system satis�es a temporallogi spei�ation. In the last deade, model heking has been used exten-sively to verify omplex hardware and software systems. However, in pra-tie, model heking su�ers from a phenomenon alled state explosion, wherethe global state transition graph may be exponential in the number of sub-omponents in the system. The state explosion problem severely limits thesize of the systems that one an model hek automatially. Another obstaleis that formal spei�ation methods, based on temporal logi or automata,are largely unknown in the design ommunity. This dissertation addressesvii

both these issues by introduing a visual notation that is already used in theinformal spei�ation of hardware systems and by providing eÆient modelheking algorithms for these spei�ations.The �rst part of the dissertation presents, Regular Timing Diagrams(RTDs), an expressive notation for speifying the temporal behavior of asyn-hronous systems. RTDs have a formal syntax and a simple and preise seman-tis that orrespond to informal usage. We have developed eÆient algorithmsto translate RTDs into automata on in�nite strings (!-automata). We presentdeompositional model heking algorithms, that exploit the fat that RTDsan be leanly deomposed into their onstituent parts. These polynomial-timealgorithms are a signi�ant improvement over previous monolithi algorithmsthat are exponential in the worst ase.The seond part of the dissertation introdues Synhronous RegularTiming Diagrams (SRTDs) that are used to speify the behavior of syn-hronous systems. The model heking algorithms developed for SRTDs arelinear in the size of the diagram. A tool, based on this framework, alledRtdt,whih allows a user to graphially reate SRTD spei�ations and translatethem into automata, is also part of this dissertation. Rtdt has been usedsuessfully in onjuntion with the model heking tool COSPAN to verifythat Luent Tehnologies PCI Interfae Core satis�ed atual diagrams foundin the PCI Loal Bus spei�ation.The �nal part of the dissertation o�ers a way to ope with state ex-plosion by employing a proof tehnique alled ompositional reasoning thatredues reasoning about the entire system to reasoning about individual om-ponents. The assume-guarantee paradigm, is a type of ompositional reason-ing, where eah omponent guarantees properties based on assumptions madeviii

about the other omponents. Applying these proof rules, however, is not au-tomati; it requires non-trivial human e�ort to deompose a property intosub-properties and to then derive the appropriate assumptions. Additionally,suh proof rules are generally not omplete and must be applied di�erently forsafety and liveness properties. A new sound and omplete assume-guaranteeproof rule is developed in this dissertation whih an be applied to both safetyand liveness properties. When the property is an SRTD, this rule an beapplied in a fully automati manner by using the fat that SRTDs have a nat-ural deomposition into assume-guarantee pairs. The appliation of this ruleto Luent's PCI Core and other ase studies yielded substantial redutions inthe spae and time required for model heking.In summary, this dissertation introdues an alternative and visual wayof speifying temporal properties, whih makes model heking more aessi-ble to the non-expert user. Furthermore, this work addresses the state explo-sion problem by presenting eÆient model heking algorithms and a generalassume-guarantee proof methodology that an be applied in a fully automatedmanner to spei�ations in this form.

ix

Contents
Aknowledgments vAbstrat viiList of Tables xiiiList of Figures xivChapter 1 Introdution 11.1 Regular Timing Diagrams . 41.2 Synhronous Regular Timing Diagrams 51.3 Assume-Guarantee Reasoning for SRTDs 61.4 The Rtdt Tool . 7Chapter 2 Bakground 82.1 Automata on Finite Strings 82.2 Automata on In�nite Strings 92.3 Linear Temporal Logi (LTL) 102.4 Model Cheking . 112.5 Timing Diagrams . 13x

Chapter 3 Regular Timing Diagrams 163.1 Introdution . 163.2 Regular Timing Diagrams - Syntax and Semantis 193.2.1 Syntax . 193.2.2 Semantis . 233.3 Translation Algorithms . 283.3.1 Translating RTDs with Weak Iterative Semantis . . . 293.3.2 Translating RTDs with Strong Iterative Semantis . . . 333.4 Deompositional Model Cheking 363.5 Appliations . 393.6 Related Work and Conlusions 42Chapter 4 Synhronous Regular Timing Diagrams 454.1 Introdution . 454.2 Synhronous Regular Timing Diagrams 474.2.1 Syntax . 484.2.2 Semantis . 534.3 Model Cheking SRTDs . 564.3.1 Translation Algorithm for Overlapping Semantis . . . 574.3.2 Translation Algorithm for Non-overlapping Semantis . 614.3.3 Model Cheking . 664.3.4 Deompositional Model Cheking 674.4 Appliations . 694.4.1 Master-slave Memory System 694.4.2 Luent's PCI Synthesizable Core 724.5 Related Work and Conlusions 75xi

Chapter 5 Compositional Reasoning with SRTDs 785.1 Introdution . 785.2 Assume-Guarantee Based Compositional Reasoning 805.2.1 Preliminaries . 805.2.2 Compositional Reasoning Rules 885.3 Compositional reasoning with Timing Diagrams 1045.3.1 Translating SRTDs into Automata 1075.3.2 Automati Constrution of Helper Proesses 1075.3.3 Compositional Model Cheking of SRTDs 1115.4 Appliations . 1115.4.1 Memory Aess Controller 1125.4.2 Luent's PCI Synthesizable Core 1135.5 Related Work and Conlusions 118Chapter 6 The Rtdt Tool 1206.1 Introdution . 1206.2 Rtdt Design Issues . 1216.3 The Rtdt Editor . 1226.4 The Rtdt Translator . 1246.4.1 Generating the Automata 1256.4.2 Generating the Helper Proesses 1276.5 Related Work and Conlusions 127Chapter 7 Conlusions 130Bibliography 133Vita 144xii

List of Tables
3.1 Veri�ation Statistis for Master-Slave Design 424.1 Veri�ation Statistis for Master-Slave Design 724.2 Veri�ation Statistis for Luent's Synthesizable PCI Core . . 755.1 Veri�ation Statistis for Memory Aess Controller Design . . 1145.2 Veri�ation Statistis for PCI Synthesizable Core Design . . . 116

xiii

List of Figures
2.1 (a) Ambiguous Diagram (b) Unambiguous Diagram 143.1 (a) Ambiguous RTD (b) Unambiguous RTD 203.2 RTD T Annotated with Symboli Points 223.3 RTD Annotated with Points 253.4 Ambiguous RTD T . 273.5 RTD T Annotated with Unordered Events 293.6 Automata for (a) Waveform A (b) Waveform B () SequentialDependeny . 303.7 !-NFA AT for Weak Iterative Semantis 313.8 NFA Ade for Events d and e in Figure 3.5 343.9 Master-Slave Arhiteture . 393.10 RTD for the Memory Read Cyle 403.11 RTD for the Memory Write Cyle 414.1 Annotated Synhronous Regular Timing Diagram 494.2 SRTD with an Overlapping Preondition 564.3 SRTD with Don't-Care Values in the Preondition 584.4 The DFA Apre for the Overlapping Semantis 58xiv

4.5 DFA's for the Postondition of Waveforms A (top) andB (bottom) 594.6 !-NFA for the Complement of the SRTD in Figure 4.3 594.7 The DFA Apre for Non-Overlapping Semantis 634.8 !-NFA AT for the Complement of the SRTD in Figure 4.3 . . 634.9 SRTD for the Read Transation 704.10 SRTD for the Write Transation 714.11 Blok Diagram of Luent's F-Bus with PCI Core 724.12 An SRTD Burst Property for the PCI Bus 734.13 SRTD for the Non-burst Transation of the PCI Bus 745.1 Augmented Synhronous Regular Timing Diagram 1055.2 Read Transation for the Memory Aess Controller 1125.3 Non-burst Property for PCI Core 1155.4 Burst Property for PCI Core 1176.1 Editing and Viewing Sreens 1226.2 Help Sreen . 125

xv

Chapter 1
Introdution

The lass of systems that are non-terminating and interat with their envi-ronment ontinuously are alled reative systems [HP85℄. Operating systems,hardware ontrollers and network routers are well known examples of reativesystems. It is generally aknowledged that it is hard to verify the orretnessof reative systems using onventional validation tehniques like testing andsimulation. Moreover, formal tehniques developed for terminating sequentialprograms are not appliable to reative systems. Pnueli [Pnu77℄, proposed theuse of temporal logi as a e�etive way to reason formally about the orret-ness of reative systems. Model heking, introdued by Clarke and Emerson[CE81℄ (and independently by Quielle and Sifakis [QS82℄), is a fully auto-mated proedure that eÆiently deides if a reative system satis�es a tempo-ral spei�ation. The spei�ation may be either a formula in a temporal logi,like CTL (Computation Tree Logi) [EH82℄ or LTL (Linear Temporal Logi)[Pnu77℄, or, spei�ed as an automaton on in�nite strings [VW86, Kur94℄. Thesurvey paper by Emerson [Eme91℄ presents a omparison of these spei�ationmethods and others in terms of eÆieny and expressiveness.1

Model heking has been applied suessfully in the veri�ation of manyindustrial hardware and software systems. In fat, model heking and otherformal tehniques are urrently used in the design proess at ompanies suhas AMD, IBM, Intel and Motorola. Model heking, however, su�ers inpratie due to the state explosion problem: if system M is de�ned as theparallel omposition of n sub-omponents, the global state transition graphmay be exponential in n. This imposes severe limitations on the size ofthe systems that an be veri�ed. As a result, ameliorating the state ex-plosion problem is at the forefront of researh in this area. Reently de-veloped tehniques, like symmetry redution (f. [ES93℄) and ompositionalreasoning (f. [dRdBH+99℄) that exploit the struture of the system, havebeen suessful in oping with the state explosion problem. In omposi-tional reasoning, one avoids reasoning diretly about a system omposed ofmany sub-omponents by deomposing the property and proving systemat-ially that sub-omponents satisfy these sub-properties. A good survey ofthe main ontributions in this area an be found in [dRLP97℄. The mostwell studied ompositional reasoning tehnique is Assume-guarantee reasoning[MC81, Jon81, Pnu85, Sta85, Kur87, CLM89, AL95, AH96, MM97, MM99℄where one uses assumptions made about the environment to satisfy the re-quirements of a ompositional proof. While this type of reasoning has beenapplied in pratie [MM98, HQR98℄ there are, however, many diÆulties inatually applying these \irular" proof rules. Firstly, many proof rules applyonly to safety properties and restrited types of proesses and/or temporallogi. Seondly, it has been shown [NT00℄ that many of these proof rule arenot omplete. Finally, deomposing the property and deriving the auxiliaryassumptions must be done manually. 2

Another obstale to the widespread use of model heking is the omplexnature of the spei�ation languages. Suh spei�ations, based on temporallogis or automata, are not well understood in the design ommunity. Visuallyintuitive spei�ation methods { whih are onsistent with the users own nota-tional onventions { provide an alternative way to speify temporal behavior.The inlusion of suh notations into existing model hekers would make themaessible to the non-expert user and failitate the wider appliation of modelheking.This dissertation addresses both issues: the inorporation of ommonspei�ation methods and the state explosion problem. We introdue formalgraphial spei�ation languages, for both synhronous and asynhronous sys-tems, whih are based on an informal notation alled timing diagrams. Tim-ing diagrams are already widely used in the spei�ation of hardware systems.Polynomial-time non-ompositional and assume-guarantee style ompositionalmodel heking algorithms for these diagrams are presented.In the �rst part of this dissertation, we will introdue a visual spei�-ation notation, that orresponds to regular languages, alled Regular TimingDiagrams (RTDs). RTDs are an e�etive way to speify asynhronous behav-ior. We provide model heking algorithms, based on the automata-theoretiapproah, that are polynomial in the size of the RTD spei�ation. Next, wewill present Synhronous Regular Timing Diagrams (SRTDs) that are tailoredfor synhronous systems. The model heking algorithms for SRTDs are linearin the size of both the system and the SRTD spei�ation. The �nal part ofthe dissertation desribes a sound and omplete assume-guarantee proof rulethat an be applied to both safety and liveness properties. More interestingly,we an use this rule in a fully automated manner to properties spei�ed in3

SRTD notation. These algorithms have been implemented in a tool alledRtdt whih is desribed in the dissertation.Muh of the work done for this dissertation has been published in thefollowing papers: [AE98℄, [AEN99℄, [AEKN00℄, [AENT01℄ and [AEKN01℄.The rest of this setion ontains a more in-depth disussion of the problemsinvolved and justi�ations for our methods.1.1 Regular Timing DiagramsAsynhronous timing diagrams are used to speify the behavior of asynhronoushandshaking protools like bus arbitration and memory aess. The key at-tribute of an asynhronous timing diagram is the absene of expliit timingwith respet to a global system lok. We introdue a lass of timing diagramsfor asynhronous systems, alled Regular Timing Diagrams (RTDs), that havea formal syntax and semantis. The key observation that leads to eÆientmodel heking is that timing diagrams are ompositional (onjuntive) in na-ture. This an be visualized informally as the waveforms ating independentlyand only interating with other waveforms through a dependeny. Rather thanbuild a single, monolithi !-NFA (Non-deterministi Finite state Automatonon in�nite strings) or a temporal logi formula that orresponds to the entirediagram, we deompose the diagram into properties of isolated waveforms andtheir interations. This results in a onjuntion of simple properties that anbe onveniently represented by a suint !-NFA for the omplement of thediagram. The resulting !-NFA an be used as the property in the languageontainment paradigm to yield a model heking algorithm that is linear inthe system size and polynomial in the size of diagram. We desribe how these4

algorithms an be applied, with the model heker VIS [BHSV+96℄, to verifya master-slave memory system. This work was published in [AE98, AEN99℄and is desribed in Chapter 3.1.2 Synhronous Regular Timing DiagramsIt is more ommon, however, to have a synhronous timing spei�ation wherethe hanges along a signal waveform are bound to a global system lok. Theenoding of suh synhronous properties as RTDs introdues a large numberof dependeny edges between eah transition of the lok and eah waveform,resulting in RTDs that are visually luttered and inreasing the omplexity ofmodel heking. The Synhronous Regular Timing Diagram (SRTD) notationis, therefore, tailored to desribe synhronous timing spei�ations in a visuallylean manner. More importantly, we exploit the regular struture of SRTDsto provide model heking algorithms that are more eÆient than that forRTDs. We present deompositional translation algorithms that onstrut !-automata of size that is linear in the size of the SRTD (ompared with apolynomial size omplexity in [AEN99℄ for RTDs). This algorithm has beenimplemented in a tool { the Regular Timing Diagram Translator (Rtdt) {whih is desribed in Chapter 6. Rtdt has been used in onjuntion with themodel heker COSPAN [HHK96℄ to verify timing diagram properties of twosystems: a synhronous master-slave system and Luents' PCI Interfae Core[BL96℄. This work is presented in Chapter 4 and is based on results presentedin [AEKN00℄.
5

1.3 Assume-Guarantee Reasoning for SRTDsIn this work we present a new rule for assume-guarantee reasoning whih gen-eralizes several earlier proof rules (f. [Pnu85, AL95, AH96, MM99, NT00℄)by removing the soures of inompleteness in some of these rules, by usingproesses instead of temporal logi formulas as spei�ations, and by allow-ing more general forms of proess de�nition and omposition. The new ruleextends the na��ve assume-guarantee proof rule with an additional hek forsoundness. As the new rule does not disriminate between proesses and prop-erties, it �ts in well with a top-down approah to designing systems. We showthat this new rule is omplete, to the extent that if the omposed systemsatis�es a property, then it also satis�es the property with the new rule.Next, we explore the bene�ts of applying this rule in the ase where theproperty is spei�ed as an SRTD. We show that not only is task deompositiona relatively simple matter for SRTDs, but also that it is possible to automat-ially generate assumptions diretly from the spei�ation. Furthermore, weidentify a lass of SRTDs for whih the soundness hek of the rule is alwayssatis�ed, and for whih the generation of the assumptions is eÆient. Thisleads to a model heking proess that is eÆient (linear in the size of the di-agram and the system). These algorithms have been inorporated into Rtdt,whih uses COSPAN to disharge model heking subgoals. We report hereon its appliation to a memory ontroller and a PCI Interfae Core; in bothases, we obtain substantial redution in the spae used for model heking.This researh was published in [AENT01℄ and is desribed in Chapter 5.
6

1.4 The Rtdt ToolThe Regular Timing Diagram Translator (Rtdt) tool provides a user-friendlygraphial editor to reate and edit SRTDs and a translator that implements theompositional and non-ompositional model heking algorithms. Rtdt formsa formal and eÆient timing diagram interfae to the model heker COSPAN.The key features of Rtdt are desribed in Chapter 6 and has appeared in[AEKN00, AEKN01℄.

7

Chapter 2
Bakground

In this Chapter, we will present some bakground on automata theory, tem-poral logi, model heking and timing diagrams.2.1 Automata on Finite StringsDe�nition 0 (Nondeterministi Finite state Automata (NFA)) An au-tomaton on �nite strings A is a tuple (�; Q; Æ; Q0; F), where � is �nite inputalphabet, Q is a �nite set of states, Æ � Q � � � 2Q is a transition relation,Q0 � Q is a non-empty set of start states, and F � Q is a set of aeptingstates.The automaton A is deterministi (DFA) if jQ0j=1 and jÆ(q; a)j � 1,for all q 2 Q and a 2 �. A run r of A on a �nite string w = a0; a1; :::; an�1 2 ��is a sequene of states q0; q1; :::; qn in Q suh that q0 2 Q0, and qi+1 2 Æ(qi; ai)for O � i < n. A run is aepting if qn 2 F . The language of A, denotedL(A), is the set of �nite strings that are aepted by A.8

Automata on �nite strings are losed under union, intersetion andomplementation [RS59℄. Deterministi automata an be omplemented easilyby omplementing the aeptane ondition. However, omplementing a non-deterministi automaton involves determinization and results in a onstrutionthat is exponential.2.2 Automata on In�nite StringsDe�nition 1 (Nondeterministi !-automata (!-NFA)) An automatonon in�nite strings A = (�; Q; Æ; q0;�) has a �nite input alphabet �, �nitestate set Q, transition relation Æ � Q� �� 2Q, start state q0 and aeptaneondition �.A run r of A on input x in �! is an in�nite sequene of states of A, where q0is an initial state, and for eah i, (qi; xi; qi+1) 2 Æ. A aepts x if some run ron x satis�es the aeptane ondition �.An !-automaton is deterministi (!-DFA) if jÆ(q; x)j � 1 for all statesq 2 Q and symbols x 2 �. A run r is aepting by the B�uhi aeptaneriteria if there is an aepting state that repeats in r in�nitely often. In thisdissertation, we onsider � to be B�uhi aeptane.B�uhi automata are losed under union, intersetion [Cho74℄ and om-plementation [Bu62℄. The onstrutions are, however, muh more involvedthan those for the automata on �nite strings. The omplexity of omplemen-tation is singly exponential [SVW87℄.De�nition 2 (Dual Run Automata (8FA)) A 8FA on in�nite strings A= (�; Q; Æ; q0;�) has a �nite input alphabet �, �nite state set Q, transition9

relation Æ � Q� ��Q, start state q0 and aeptane ondition �.A run r of A on input x in �! is an in�nite sequene of states of A,where r0 is an initial state, and for eah i, (ri; xi; ri+1) 2 Æ. A aepts x by\dual-run" aeptane aording to � i� every run r on x satis�es �.The omplement of the language aepted by a 8FA A is aepted byan !-NFA A, that has the idential struture but a omplemented aeptaneondition. This property is formalized in the following theorem. We de�neLNFA(A) as the language aepted by a 9-aeptane riteria and L8FA(A) asthe language aepted by a 8-aeptane riteria.Theorem 0 ([MP87, Var87℄) For any 8FA A, :L8FA(A) = LNFA(A).2.3 Linear Temporal Logi (LTL)We will present the syntax and semantis of Linear Temporal Logi (LTL)[Pnu77℄. Formulas of LTL are built from a set of atomi proposition AP. AnLTL formula is de�ned as follows:1. If f 2 AP then f is a formula.2. If both f and g are formulas then f ^ g, f _ g and :f are formulas.3. If f and g are formulas then Xf , Gf , Ff and fUg are formulas.Where X is \Next time", G is \Always", F is \Eventually" and U denotes\Until".An LTL formula is interpreted over omputations, where a omputationis a funtion � : N ! 2AP that assigns truth values to the elements in AP ateah time instant. For a omputation � and a time instant i 2 !, we have:10

� �; i j= f i� p 2 �(i), for f 2 AP� �; i j= f ^ g i� �; i j= f and �; i j= g� �; i j= f _ g i� �; i j= f or �; i j= g� �; i j= :f i� not �; i j= f� �; i j= Xf i� �; i+ 1 j= f� �; i j= fUg i� for some j � i, we have �; j j= g and for all k, i � k < j,we have �; k j= fThus the formula, Ff is an abbreviation for trueUf and Gf is abbrevi-ation for :F:f . An LTL formula an be any boolean ombination or arbitrarynesting of the above operators, therefore one an express GFp (\in�nitely oftenp") and FGp (\almost everywhere p). A omputation � satis�es a formula f ,written � j= f , i� �; 0 j= f .The following theorem relates LTL and B�uhi automata.Theorem 1 ([VW94℄) Given an LTL formula f , one an build a B�uhi au-tomaton Af = (�; Q; Æ; q0;�), where � = 2AP and jQj is in 2O(jf j), suh thatL(Af) is exatly the set of omputations satisfying the formula f .2.4 Model ChekingModel heking [CE81, QS82, CES86℄ is an automated veri�ation tehniqueto analyze and verify hardware and onurrent reative systems. In modelheking, one heks that a system M satis�es a spei�ation T (written asM j= T). Typially the system is a iruit or program and the spei�ation is11

a formula in a temporal logi, like CTL [EH82℄ or LTL [Pnu77℄. The modelheking algorithm performs searhes in the transition graph of the system ina systemati manner to determine the truth of sub-formulae. For the temporallogi CTL, the algorithm uses the Tarski-Knaster theorem [Tar55℄, to omputethe set of states that de�ne the least �x-point. The time omplexity of thismethod is linear in both the size of the struture and the formula.The language ontainment paradigm [VW86, Kur94, LP85℄ is an ap-proah to model heking, where both the system and the property are spe-i�ed as automata on in�nite strings. For the system M and spei�ation T ,the veri�ation hek M j= T an be ast as L(M) � L(T). This is equivalentto L(M) \ :L(T) = ;. The algorithm for heking non-emptiness proeedsby omputing the strongly onneted omponents of the produt automatonand then heking if there is a path from an initial state to a strongly on-neted omponent ontaining an aepting state. Language inlusion may bedeided in PSPACE [LP85, VW86℄, and the non-emptiness problem for B�uhiautomata is deidable in linear time [EL85a, EL85b℄. The model heking al-gorithm for LTL [VW86℄ uses Theorem 1, to build a B�uhi automaton A:T forthe negation of formula T and then heks L(M)\L(A:T) for emptiness. Thetime omplexity of model heking that a �nite state program M satis�es anLTL formula T is linear in size ofM but is exponential in the size of formula T .The Lihtenstein-Pnueli thesis [LP85℄ argues that an upper time bound thatis exponential in the size of the spei�ation is onsidered reasonable sine thespei�ation is usually short.By the results in [SVW87℄, we know that omplementing a B�uhi au-tomaton results in an exponential blowup. As a result, an approah that �rstonstruts the B�uhi automaton AT (for LTL formula T) and then omple-12

ments it, would result in a double exponential blow-up. In the automata-theoreti approah, therefore, it is key that the automaton for the spei�a-tion be easy to omplement. We observe, as a onsequene of Theorem 0, that8FA's are trivial to omplement and we will exploit this fat in our work.2.5 Timing DiagramsA timing diagram, in its most basi form, onsists of a number of waveforms.Eah waveform depits the behavior of a signal or variable over a �nite periodof time. The value of a waveform at any point in the diagram is hosen from apre-de�ned domain; generally this domain is the boolean set f0; 1g. A hangein the value of a waveform is known as an event. There are several ways thata waveform may interat with other waveforms; these interations are alleddependenies. A onurrent dependeny spei�es that an event depends onother events ourring at the same time. Conurrent dependenies expressproperties like \b is low when a rises". A sequential dependeny relates twoevents in the diagram, by speifying that one event ours within a spei�edtime interval of the other. A sequential dependeny an state properties like\event a ourred within 5 time units of event b" or \ event a preedes eventb. These intervals determine the type of the resulting timing diagram lan-guage. Allowing integer onstants, variables and arithmeti expressions in theintervals results in a non-regular timing diagram language and restriting theinterval to just integer onstants and 1 yields a regular language.A timing diagram, like the iruit it desribes, may be either asyn-hronous or synhronous. A synhronous diagram inludes one or more \loks"with �xed periods and ensures that the time interval between any pair of events13

A

B

(a)

A

B

Concurrent
Dependency

(b)

Waveform Sequential
Dependency

[1,5]

Figure 2.1: (a) Ambiguous Diagram (b) Unambiguous Diagramis determined up to the lok period. Synhronous diagrams are used to spe-ify timing requirements of loked systems. On the other hand, asynhronousdiagrams do not have a lok. Asynhronous timing diagrams are used tospeify handshaking protools like bus arbitration and memory aess.Another feature of timing diagrams, identi�ed by Fisler [Fis96℄, is thatthe ordering between events is partial in general; suh diagrams are alledambiguous. In Figure 2.1 (a), for example, the exat ordering between therising event on waveform A and the falling event on waveform B is unknown.On the other hand, an unambiguous timing diagram has a total ordering onevents. In Figure 2.1 (b), the sequential dependeny between waveforms Aand B enfores an ordering on those events. In general, synhronous timingdiagrams have less ambiguity and more struture than asynhronous diagrams.A timing diagram is de�ned for a �nite time period and a key issue is anappropriate extension to in�nite omputations. Fisler [Fis96℄ addressed thisquestion by onsidering two kinds of semantis: in the invariant semantis,the timing diagram must be satis�ed at every state of a omputation, while in14

the basi iterative semantis, the diagram must be satis�ed iteratively.

15

Chapter 3
Regular Timing Diagrams

3.1 IntrodutionAsynhronous timing diagrams are haraterized by the absene of a globalsystems lok. These diagrams are generally used to speify handshaking pro-tools, like bus arbitration, memory aess, et. In this Chapter, we introduea lass of timing diagrams, for asynhronous systems, alled Regular TimingDiagrams (RTDs). RTDs have a simple and preise semantis and eÆient,deompositional model heking algorithms. These diagrams desribe hangesof signal values over a �nite time period, and preedene and timing dependen-ies between suh events; an event is de�ned as a hange in signal value. RTDsan express properties like \signal a rises within 5 time units of signal b falling"and \signal b is low when signal a rises". The time intervals are spei�ed byinteger onstants, ensuring that the diagram de�nes a regular language.RTDs, like other timing diagrams, may be unambiguous, there is a totalordering on events, or ambiguous, the ordering between events an be partial16

(see Figure 3.1). Sine an RTD is de�ned for a �nite time period, an importantquestion that arises in de�ning the semantis is the manner in whih an in�niteomputation satis�es a timing diagram? Reall that there are two kinds ofsemantis [Fis96℄: in the invariant semantis, the timing diagram must besatis�ed at every state of a omputation, while in the basi iterative semantis,the diagram must be satis�ed iteratively, at points satisfying a preonditionof the diagram. In our model, the preondition is a state property. Oursemantis is a reformulation of the basi iterative semantis, where we permita system to satisfy diagrams that express the orretness of di�erent aspets ofits operation. For ambiguous diagrams, we further lassify this semantis intoa weak aspet, where a fresh linear ordering of the events is hosen for eahsatisfation of the diagram, and a strong aspet, where a single linear order ishosen that applies to eah satisfation of the diagram.The key observation that leads to eÆient model heking [CE81, QS82,CES86℄ is that timing diagrams are ompositional (onjuntive) in nature.This an be visualized informally as the waveforms ating independently andonly interating with other waveforms through a dependeny. Rather thanbuild the single, monolithi !-NFA or the temporal logi formula that orre-sponds to the entire diagram, we demonstrate that it is possible to deomposethe diagram into properties of isolated waveforms and their interations. Thisresults in a onjuntion of simpler properties that an be onveniently repre-sented by a suint 8-automaton (8FA) [MP87, Var87℄. A 8FA (also known as\dual-run" or \universal" automaton) is a �nite state automaton that aeptsan input i� every run of the automaton along the input meets the aeptaneriterion. 8FA's an be exponentially more suint than NFA's and naturallyexpress properties that are onjuntive in nature.17

Moreover, this onjuntivity an be exploited to verify smaller ompo-nents of the timing diagram in isolation, thus avoiding the onstrution of theentire 8-automaton. We present eÆient algorithms that onvert RTDs underthe various semantis into 8FA's that are in the worst ase of size polynomialin the size of the diagram and the largest time onstant represented in unary(note that the unary size is exponential in the binary size). These onstants aregenerally performane bounds and tend to be small; thus, we feel justi�ed inlaiming polynomial omplexity. The use of 8FA's permits the eÆient use ofthe automata-theoreti approah [VW86, Kur94, LP85℄ to model heking. Fora system M and RTD T , the veri�ation hek an be ast as L(M) � L(AT),where AT is the (small, polynomial size) 8FA for the diagram T and L(X)denotes the language of X. This is equivalent to L(M) \ :L(AT) = ;. Theomplement language of a 8FA is aepted by a NFA with idential stru-ture but omplemented aeptane ondition. Hene, omplementation (the:L(AT) term) is trivial, and the omplexity of the model heking proedureis linear in the size of the struture and polynomial in the size of the 8FA AT .In addition, it is often possible to deompose AT itself into a onjuntion ofsmaller 8FA's, whih may be heked independently with M . It is also simpleto produe a desription of :L(AT) that an be input to a symboli modelheker.The algorithm is linear in the struture size, polynomial in the numberof diagram points and dependenies and in the unary size of the onstants.The polynomial omplexity of our deompositional algorithm is a signi�antimprovement over the earlier monolithi approahes (f. [Fis96, DJS94℄),where the size may be exponential in the worst ase. Not withstanding theLihtenstein-Pnueli thesis [LP85℄, in pratie, as one reahes the limits of ap-18

pliability of symboli model heking tools, the size of the spei�ation is ofimportane. A detailed disussion of these points is in Setion 3.6.The rest of the Chapter proeeds as follows. In Setion 3.2, we givea preise syntax and semantis for Regular Timing Diagrams. Setion 3.3presents the algorithms that onvert RTDs into 8FA's. The model hekingproedure is presented in Setion 3.4. Setion 3.5 desribes how the algorithmsare used with with the model heking tool VIS [BHSV+96℄ for the veri�ationof a master-slave system. We onlude with a disussion of related work inSetion 3.6.3.2 Regular Timing Diagrams - Syntax andSemantisA Regular Timing Diagram (heneforth referred to as an RTD or diagram) isspei�ed by a number of �nite waveforms, eah de�ned over a set of \symboli"values SV , and timed dependenies between points on the waveforms. The setof symboli values SV is an user-de�ned domain of values plus the value X,that is used to speify that the value is unspei�ed or unknown. For booleansignals, the set SV is f0; 1; Xg. However, SV ould be either an enumeratedtype, or all the values of an address bus. The set SV is partially ordered by_v , where a _v b i� a = X or a = b.3.2.1 SyntaxDe�nition 3 (RTD) A RTD is a tuple (S;WF ; SD ;CD), where� S is a non-empty set of signal names.19

A

B

(a)

A

B

Concurrent
Dependency

(b)

Waveform Sequential
Dependency

[1,5]

Figure 3.1: (a) Ambiguous RTD (b) Unambiguous RTD� WF is a olletion of waveforms; for eah signal A 2 S, its assoiatedwaveform is a funtion A : [0; n) ! SV where n > 1 is an integerreferred to as the size of the waveform. If A 2 WF and i 2 [0; size(A))then the pair (A; i) is alled a point of A.1 (A; 0) is the initial point and(A; size(A)-1) is the �nal point of A.� SD is the set of sequential dependenies on the points of WF. Eahdependeny is spei�ed as (A; i) [a;b)�! (B; j), where a 2 N; b 2 N [f1g,1 � a and a < b. For onveniene, [k;1) is often written as � k, [1; k℄as � k and [k; k℄ as = k.� CD is a olletion of mutually disjoint, non-empty onurrent depen-denies. Eah onurrent dependeny is a set of points with at most onepoint from eah waveform in WF. The sets of initial and �nal points ofthe diagram form prede�ned onurrent dependenies.1A point (A; i) is also a point of WF and the RTD.20

De�nition 4 (Event) The smallest set of points losed under the followingrules are the events of an RTD T = (S;WF ; SD;CD).1. For every waveform A in WF, (A; 0) is an event.2. Let (A; i) be an event with (A; i) 6= X and let (A; j) be the �rst suessorof (A; i) suh that A(i) 6= A(j). If A(j) 6= X then (A; j) is an event.3. If (A; i) is a member of a onurrent dependeny that ontains an event,then (A; i) is an event.4. If (A; i) is an event and (A; i) =k�! (B; j) is a sequential dependeny, then(B; j) is an event.Notie that for any input string of vetors of signal values, every eventhas at most one position on the string. This \preise loation" property ofevents is the key to our eÆient model heking algorithm. For every event e,it is possible to onstrut a DFA we all loator(e) that aepts at the positionon an input string where the event holds. This DFA essentially enodes thesequene of appliations of the rules above that de�ne the point e as an event.A symboli point of an RTD is either a onurrent dependeny or asingleton set ontaining a point that is not in any onurrent dependeny.De�nition 5 (Symboli Point) p is a symboli point of an RTD i� eitherp 2 CD or p ontains only one point e, suh that for eah C 2 CD, e 62 C.The set of symboli points is denoted by SP . Informally, events in asymboli point should our simultaneously. The sequential dependenies ofan RTD indue the following ordering relation � on symboli points.21

De�nition 6 (Ordering on Symboli Points (�)) Given symboli pointsp and q, p � q i�� for some waveform A 2WF, the point (A; i) 2 p and point (A; i+1) 2 q,or� there exist e 2 p and f 2 q suh that e ��! f is a sequential dependeny.The RTD syntax allows several de�nitions that run ounter to intuition.For instane, dependenies may be ylially related, or it may be possible thatthe loation of a dependeny is impreise due to the presene of X (undeter-mined) parts of a waveform. These ases are ruled out by giving a notion of\well-formed" RTDs, whih is de�ned below.De�nition 7 (Well-formed RTD) An RTD is well-formed i� (i) every pointof the RTD is an event and (ii) the transitive losure of � (�+) is irreexive.The annotated RTD in Figure 3.2 an be expressed notationally as follows.
sp3sp2sp0

sp1

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�B

A

[3,3]

�
�
�

�
�
�

�
�
�
�

Figure 3.2: RTD T Annotated with Symboli Points
22

WF : fA;BgA : 0 7! 1; 1 7! 0; 2 7! 0B : 0 7! 0; 1 7! 1; 2 7! 0; 3 7! 1SD : f(A; 0) [3;3℄�! (B; 1)gCD : ff(A; 0); (B; 0)g; f(A; 1); (B; 2)g; f(A; 2); (B; 3)ggThere are four symboli points in this RTD: the singleton f(B; 1)gand the three onurrent dependenies, f(A; 0); (B; 0)g, f(A; 1); (B; 2)g andf(A; 2); (B; 3)g. The pre-de�ned onurrent dependenies at the initial and�nal points of the RTD are shown in Figure 3.2, however, for visual larity, wewill not always show these onurrent dependenies in the diagrams for theremainder of this Chapter.3.2.2 SemantisThe semantis of an RTD is a set of in�nite omputations over states; eahstate is a vetor indexed by the waveforms of the timing diagram. The setof states is denoted by �. The partial order _v de�ned earlier is extendedto states as follows: u _v w i� for eah i, u(i) _v w(i). A omputation of thesystem to be veri�ed onsists of an in�nite sequene of states from �. Sinethe syntax of an RTD desribes only �nite sequenes of events, a key questionis the appropriate extension to in�nite omputations.The prede�ned initial and �nal onurrent dependenies an be viewedas the begin- and end- onditions of the �nite sequene of events desribed bythe RTD syntax; the initial onurrent dependeny is a state prediate andthe �nal onurrent dependeny is a path prediate. For example, the begin-23

ondition for the RTD in Figure 3.2 is hA = 1; B = 0i and the end-ondition isthe onurrent dependeny at the state hA = 0; B = 1i. As another example,if the diagram represents the behavior for a \memory-read" transation, thebegin- and end- onditions indiate the states that de�ne the extent of thistransation. Clearly, this diagram should be heked only on the �nite sub-omputation that starts at a state satisfying the begin-ondition and endswith a state satisfying the end-ondition. One may thus onsider an in�nitesequene to satisfy a timing diagram i� the dependenies of the diagram aresatis�ed in eah �nite sub-sequene de�ned by the begin- and end- onditions.This statement, though, is still open to many interpretations, some of whihare onsidered below. We �rst de�ne what it means for a �nite sequene ofstates to satisfy a timing diagram. Reall that the relation �+ partially ordersthe set of symboli points, SP . In the following de�nitions P denotes the setof points in the diagram.De�nition 8 (Assignment) Given a string of length n, an assignment � isa funtion � : SP ! [0; n), that is stritly monotoni w.r.t. � (p � q implies�(p) < �(q)) and maps the initial symboli point to 0.De�nition 9 (Equivalent Assignments) Two assignments � : SP ! [0; n)and � : SP ! [0; m) are equivalent i� for all p; q 2 SP , �(p) < �(q) i��(p) < �(q).Any assignment � indues the funtion �̂ : P ! [0; n) whih maps apoint (A; i) to k i� the (unique, by de�nition) symboli point that inludes(A; i) is mapped to k by �. From the de�nition of �, it follows that all pointsin a onurrent dependeny are assigned a ommon position.24

De�nition 10 (RTD satisfation) An RTD T = (S;WF ; SD;CD) is sat-is�ed by a �nite sequene z 2 �+ w.r.t. an assignment � : SP ! [0; jzj)(written as z j=� T) i� the following onditions hold.1. Point onsisteny: For every point (A; i), if �̂((A; i)) = k, thenA(i) _v zk(A), where zj(A) is zj projeted onto the oordinates for A.2. Waveform onsisteny: Let �̂((A; i)) = k and �̂((A; i+ 1)) = l.For every j 2 [k; l), A(i) _v zj(A).3. Dependeny onsisteny: For every sequential dependeny e [a;b)�! f ,(�̂(f)� �̂(e)) 2 [a; b).
0

0
2

3

1

21

�
�
�
�

�
�
�
�B

A

[3,3]

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

Figure 3.3: RTD Annotated with PointsWe will use the following notation to denote sequenes: the angle brak-ets denote the vetor of values at a given state, \;" denotes suession in timeand the supersript n on a state s is a shorthand for n suessive opies ofs. We will also use h1; 1i to represent the state hA = 1; B = 1i. Considerthe �nite sequene y[0::6℄ = h1; 0i3; h1; 1i; h0; 0i; h0; 0i; h0; 1i. For RTD T inFigure 3.2, the assignment � maps: sp0 to 0, sp1 to 3, sp2 to 4 and sp3 to 6.The funtion �̂ is as follows: (A; 0) ! 0, (A; 1) ! 4, (A; 2) ! 6, (B; 0) ! 0,25

(B; 1) ! 3, (B; 2)! 4 and (B; 3)! 6. The RTD in Figure 3.3 is annotatedwith the points. Note that y satis�es the onditions in De�nition 10, withrespet to assignment �, hene y j=� T .For many systems, it is the ase that the begin- ondition for the tim-ing diagram does not reur before the end- ondition holds. For suh non-overlapping systems, we may onsider the following semantis. System om-putations may be desribed by the expression (�+ _ (#�+$))!, where # and$ are speial vetors of � representing the satisfation of the begin- and end-onditions respetively and � = �nf#; $g. The sequene of the form #�+$is alled a transation.De�nition 11 (Weak Iterative Semantis) An in�nite sequene z satis-�es an RTD T under the weak iterative semantis (written as z j=w T) i� forevery transation #y$ on z, there exists an assignment � for whih #y$ j=� T .De�nition 12 (Strong Iterative Semantis) An in�nite sequene z satis-�es an RTD T under the strong iterative semantis (written as z j=s T) i�there exists an assignment � suh that for every transation #y$ of z, there isan equivalent assignment � suh that #y$ j=� T .Consider the ambiguous RTD T in Figure 3.4 and a �nite sequene y= h1; 0i; h1; 1i; h0; 1i; h0; 0i; h1; 0i; h0; 0i; h0; 1i; h0; 0i. Let z be an in�nitesequene where the y repeats forever. In sequene y, there are two transations,one where A falls before B rises and another where B rises before A falls. Thede�nition of the weak iterative semantis allows a fresh ordering of events tobe hosen on eah transation, therefore, z j=w T . On the other hand, z 6j=s T ,sine the ordering used in the two transations is di�erent.26

��
��
��

��
��
��

��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A

B Figure 3.4: Ambiguous RTD TWe onsider now an alternative formulation of De�nition 10, whihforms the basis for the deompositional algorithms for model heking. If#y$ satis�es the timing diagram, eah event, by De�nition 4, may be loatedpreisely on the sequene. The key observation is that, sine eah dependenyonsists of preisely loated events, it an be heked independently of theothers.Theorem 2 Let pt be the partial funtion that de�nes the loation of eventson a �nite sequene. For an RTD T = (S;WF ; SD ;CD), and any �nitetransation z = #y$, there exists an assignment � suh that z j=� T i� eahof the following onditions holds:(a) Every event of T an be loated on z and has a value onsistent with thatin T ; i.e., pt is total, and if pt(z; (A; i)) = k then A(i) _v zk(A).(b) Let pt(z; (A; i)) = k and pt(z; (A; i + 1)) = l. For every j in [k; l),A(i) _v zj(A).() For eah sequential dependeny e [a;bi�! f , (pt(z; f)� pt(z; e)) 2 [a; bi.27

(d) For eah pair of events e; f in a onurrent dependeny, pt(z; e) =pt(z; f).Proof. ()) z j=� T implies, by De�nitions 8 and 10 and the preise lo-ation property, that pt is total. Point onsisteny, in De�nition 10, impliesthat pt(z; (A; i)) = k then A(i) _v zk(A). Condition () follows diretly fromwaveform onsisteny in De�nition 10. Dependeny onsisteny in De�nition10 implies (pt(z; f) � pt(z; e)) 2 [a; bi. De�nition 8 implies that eah pair ofevents e; f in a onurrent dependeny, are assigned by � to the same loation,hene pt(z; e) = pt(z; f).(() If �̂((A; i)) = k then, by onditions (a) and (d), A(i) _v yk(A) (pointonsisteny). Conditions a and b ensure waveform onsisteny (De�nition 10).Dependeny onsisteny follows diretly from . �Notie that the theorem essentially transforms the existential (9) on-dition of De�nitions 11 through 12 into a universal (8) ondition; this formsthe basis for the deompositional hek.3.3 Translation AlgorithmsTheorem 2 is fundamental to deomposing RTDs into a onjuntion of prop-erties of individual waveforms, and ordering or timing restritions on theirinterations, whih is the key to eÆient model heking. In this setion, weprovide algorithms that translate an RTD under, both strong and weak iter-ative semantis, into a 8FA. For larity, we often desribe the !-NFA for theomplement language instead of the 8FA.
28

3.3.1 Translating RTDs with Weak Iterative Semantis
e

d
f

B

A

[1,3]Figure 3.5: RTD T Annotated with Unordered EventsReall, that we an onstrut a DFA alled loator(e) that aepts atthe position on an input string where the event e holds. We now desribe the!-NFA AT that aepts the omplement of the weak-iterative language of anRTD T = (S;WF ; SD ;CD).Algorithm 11. Construt a �nite string automata for eah waveform and dependenyas follows:� Waveform: The automaton AB for a waveform B is onstruted asfollows: if (B; i+1) is de�ned in terms of (B; i), then loator((B ; i))is extended to ensure that the signal values up to the hange ofvalue that de�nes (B; i+1) are above B(i) in _v order. Otherwise,loator((B ; i)) is used to determine that the value at the positionwhere (B; i) holds is above B(i) in _v order.� Sequential dependeny: The automatonAsd, for a sequential depen-deny e [a;bi�! f , is a parallel omposition of loator(e) and loator(f)29

that aepts i� the time between the aeptane of the loatorDFA's is within [a; bi.� Conurrent dependeny: The 8FA, Ad, for a onurrent depen-deny C heks that for a �xed event e in C and every other eventf in C, loator(e) and loator(f) aept at the same position onthe input sequene.2. The !-NFA AT operates as follows on an in�nite input sequene: it non-deterministially \hooses" a transation #y$ on the input, \hooses"whih waveform or dependeny fails to hold of the transation, and a-epts if the automaton for that entity (de�ned as given above) rejets.
#

B

B $

B

B

B

A

A

A

$#
(a)

(b)

B(c) B B

B

BFigure 3.6: Automata for (a) Waveform A (b) Waveform B () SequentialDependenyNotie that eah automaton de�ned above is either a DFA or a 8FA,30

both of whih an be trivially omplemented. The 8FA AT obtained from this!-NFA AT by omplementing the aeptane ondition de�nes the languageof the RTD under the weak iterative semantis.
accept

accept accept

reject rejectreject

DFA A DFA B DFA SD

Figure 3.7: !-NFA AT for Weak Iterative Semantis
Theorem 3 (Corretness) For any RTD T and x 2 �!, x j=w T i� x 2L(AT).Proof. ()) x j=w T implies (by de�nition 11) that for every transation #y$on x, there exists an assignment � suh that #y$ j=� T . Let us assume thatx 2 AT . We know, by the onstrution of AT , that there must be a transationz along x suh that some DFA (for a waveform or dependeny) Ad rejets on z.Therefore, by the onstrution of DFA's Ad, there is no assignment � suh thatz j=� T (i.e. z must violate the onstraints on some waveform or dependeny).Sine x j=w T , suh a z transation does not exists; thus x 2 L(AT).(() x 2 L(AT), by de�nition 2, i� every run of AT on x is aept-ing. In the onstrution of AT , this implies that every transation along31

x is aepted by all the DFA's (for the waveforms or dependenies). Letus assume that x 6j=w T , this means that x has a transation z, suh that:(9� : (z j=� T)). Therefore, by De�nition 10, z violates either (1) point on-sisteny (2) waveform onsisteny, or (3) dependeny onsisteny. However,the DFA's onstruted for waveforms or dependenies satisfy these onditionsby onstrution. Thus, we have a ontradition, and x j=w T . �For the diagram T = (S;WF ; SD ;CD), let l be the size in unary of thelargest onstant in SD . De�ne jT j = #points + jSD j+ jCDj. The size of ATis ubi in jT j and l.Theorem 4 (Complexity) For any RTD T , the size of the orresponding8FA AT is polynomial in jT j and the unary length of the largest onstant inT .Proof. The size of an RTD is T= e+s+, where e is the number of events inT , s= jSDj and =jCDj. Let l be the largest onstant in unary and w be thenumber of waveforms. We assume that the transitions in AT are labeled withboolean formulas over the w signals. The size of the transitions in AT is thesum of the length of the formulas labeling the transitions. The size of AT isv + t, where v is the number of states and t is the transition size.The number of states in eah loator automaton is bounded by k =(e + l). In the onstrution above, the number of states in the DFA for awaveform is O(k). Sine eah transition enodes the values of the signals ateah point, the size of eah transition is O(w), while the number of transitionsis bounded by e. Thus, the transition size of eah loator automaton is O(k).The size of the DFA for eah sequential dependeny is O(k2), as it onsists oftwo loators in parallel. The size of the 8FA for eah onurrent dependeny32

is O(w:k2), as eah onurrent dependeny an have at most w events. Thesize of AT is w:O(k) + s:O(k2) + :O(k2), whih is ubi in jT j. �3.3.2 Translating RTDs with Strong Iterative Seman-tisUnder the strong iterative semantis, every transation on an input ompu-tation has to satisfy the RTD T with respet to a single event ordering. The!-NFA AT for the omplemented language aepts a omputation i�� Some transation violates a waveform or dependeny onstraint, or� There is a transation and a pair of events that our in a di�erent orderfrom that in the �rst transation.The !-NFA AT for the omplement of the RTD T under the strong-iterativesemantis is onstruted as follows:Algorithm 21. Construt the !-NFA Aweak as de�ned for the weak-iterative semantis.2. For eah pair of unordered events e and f , onstrut an automaton Aefas follows: Aef �rst exeutes the loator DFA's for events e and f inparallel on the �rst transation to determine their relative order. Aefthen hooses a subsequent transation and exeutes the loator DFA'sof the same events on that transation to determine the new order, andaepts if the orders di�er.
33

3. The !-NFA Aord, at the initial state, nondeterministially \hooses"events e and f that are unordered by �+, runs automaton Aef andaepts if Aef aepts.4. The !-NFA AT aepts if either Aweak or Aord aepts.Figure 3.8 depits the automaton Ade for events d and e in the RTDshown in Figure 3.5. In Figure 3.8, � is the alphabet, � = �nf#; $g, �#denotes �nf#g, �de denotes �nfd; eg, �d denotes �nfdg and �e denotes�nfeg.
e

d

de

d

e

#
d

e

d $

e $ #

#

e

d

d

e

de

de

d

e

Figure 3.8: NFA Ade for Events d and e in Figure 3.5LetAT denote the 8FA obtained from the !-NFA AT by omplementingthe aeptane ondition. The size of AT is polynomial in jT j and l for the�rst ase (Aweak); for the seond (Aord), it is quadrati in jT j and l witha multipliative fator of the number of event pairs (whih is bounded by(#points)2).Theorem 5 (Corretness) For any RTD T and x 2 �!, x j=s T i� x 2L(AT). 34

Proof. ()) x j=s T i� (by de�nition 12) there exists an assignment �, suhthat for every transation z along x, z j=� T . Let us assume that x 2 AT ; bythe onstrution of AT , there must be a transation z along x where either (i)some DFA (for a waveform or dependeny) Ad rejets on z, or (ii) there existsevents e and f in z that di�er in relative ordering from the initial transation.In the �rst ase, by Theorem 3, we have a ontradition. For the seond ase,the automaton Aef aepts, indiating that e and f our in a di�erent order.This implies that a di�erent assignment, � is used on transation z. Suh anassignment, however, is not possible, sine x j=s T ; thus x 2 L(AT).(() x 2 L(AT), by onstrution, implies that every transation alongx is aepted by the DFA's for eah waveform, dependeny and ordering. Letus assume that x 6j=w T , this means that x has a transation z, suh thateither (i) :(9� : (z j=� T)) or (ii) the ordering between two events e and f inz di�ers from ordering in the �rst transation. In ase (i), we appeal to theresult in Theorem 3 to show z j=� T . In the seond ase, by onstrution, eahDFA Aef that heks the relative ordering between the events e and f mustrejet. Hene, an assignment � used on the �rst transation is used on everysubsequent transation. We get a ontradition in both ases, thus, x j=s T .�Theorem 6 (Complexity) For any RTD T , the size of the orresponding8FA AT is polynomial in jT j and the largest onstant in unary.Proof. The size of an RTD T is e+s+, where e is the number of events in T ,s is the size of SD and is the size of CD. Let l be the largest onstant in unaryand w be the number of waveforms. We assume that the transitions in AT arelabeled with boolean formulas over the w signals. The size of the transitions35

in AT is the sum of the length of the formulas labeling the transitions. Thesize of AT is v+ t, where v is the number of states and t is the transition size.Reall from Theorem 4 that the size of eah loator automaton isbounded by k = (e+ l). The automaton Aweak for the �rst hek is essentiallythe same as the automaton for the weak iterative semantis and the number ofstates is ubi in jT j and l. The automaton Aord for the seond part has sizeproportional to the produt of two loator DFA's for eah hoie, and thereare e2 suh hoies; thus, the number of states overall is e2:O(k2). The size ofAT is O(jT j3) + e2:O(jT j2), whih is polynomial in jT j. �3.4 Deompositional Model ChekingThe translation of an RTD to a small 8FA implies that the language ontain-ment approah to model heking based on [VW86℄ gives an eÆient algorithm.We need to hek that L(M) � L(AT), where M is the system to be veri�edand AT is the 8FA for the RTD T . This is equivalent to L(M)\:L(AT) = ;.Complementation (the :L(AT) term) is trivial for a 8FA; the omplementedautomaton (an !-NFA) has the same struture but omplemented aeptaneondition. Hene, the emptiness hek an be done in time linear in the size ofthe struture and a small polynomial in the size of T . The spae omplexity,by the results of [SVW87℄, is logarithmi in the sizes of both M and T .Theorem 7 (Model Cheking Complexity (Weak)) For a transition sys-tem M and an RTD T with the weak iterative semantis, the time omplexityof model heking is linear in the size of M and ubi in the size of T and theunary size of the largest onstant in T .36

Proof. The size of an RTD is T= e+s+, where e is the number of events inT , s is the size of SD and is the size of CD. We know that heking M j=w Tis equivalent to heking that L(M) \ :L(T) = �. The size of the !-NFA ATthat aepts :L(T), by Theorem 4, is ubi in the size of T . Therefore, thetime omplexity of heking L(M) \ L(AT) = � is O(jM j:jT j3). �Theorem 8 (Model Cheking Complexity (Strong)) For a transitionsystem M and an RTD T with the strong iterative semantis, the time om-plexity of model heking is linear in the size of M and a small polynomial inthe size of T and the unary size of the largest onstant in T .Proof. The size of an RTD is T= e+s+, where e is the number of events inT , s is the size of SD and is the size of CD . We know that heking M j=s Tis equivalent to heking that L(M) \ :L(T) = �. The size of the !-NFA ATthat aepts :L(T), by Theorem 6, is polynomial in the size of T . Therefore,the time omplexity of heking L(M) \ L(AT) = � is O(jM j:jT j4). �An alternative way of utilizing the 8FA onstrution is to note that, ATessentially de�nes a language (�+ _#(Vi Li)$)!, where the Li's represent thelanguages of the dependenies. The lemma below shows that the !-repetitiondistributes over the Vi in the following sense.Lemma 0 For �nite-string languages Li (i 2 [0; n)) whih are subsets of �+,(�+ _#(Vi Li)$)! = Vi(�+ _#Li$)!.Proof. Let � = �[f#; $g,Am= (�; Qm; Æm; q0;�m) be the !-automaton thataepts L((�+ _#Vi(Li)$)!) and A= (�; Q; Æ; r0;�) be the !-automatonthat aepts L(Vi(�+ _#Li$)!).()) Let Al = A0 � A1 � ::: � An be the DFA that aept the languageL0\L1\:::\Ln andA� be the DFA for �+. Let x be an in�nite string aepted37

by Am. We observe that Am has a transition of the form Æm((s0; s1; :::; sn);#)= (t0; t1; :::; tn), where eah ti is the unique start state for eah Ai. We alsoknow that every Ai transitions on $ to an aepting state. It follows that allthe Ai automata aept at the same point and therefore x is aepted by A.(() Consider an in�nite string x that is aepted by A and rejeted by Am.This implies that some Ai and Aj aept at di�erent points in x. But we knowthat every transition on # goes to the unique start state in Ai and Aj. Thusboth Ai and Aj must start together. We also know that both Ai and Aj havea transition on $ whih goes bak to the start state of DFA A�; hene theyalso end simultaneously. This implies that both must aept at the same pointand ontradits the assumption that x is not aepted by Am. �By this lemma, one an onstrut smaller !-automata, one for eahdependeny, and hek that the language of eah has an empty intersetionwith L(M). This is often more eÆient than the ombined hek, and may leadto quiker detetion of any errors. We refer to this as the \deompositional"approah.Theorem 9 (Deompositional Model Cheking (Weak)) For a transi-tion system M and an RTD T under the weak semantis, the time omplexityof deompositional model heking is linear in the size of M and ubi in thesize of T .Proof. The problem of heking M j=w AT an be deomposed into ViM j=Ai , where Ai is the automaton for a waveform or dependeny. We an hekM j= Ai in time linear in the size of M and Ai, whih by Theorem 4 isO(jM j:jT j2). But we have jT j suh veri�ation tasks, thus the time omplexityof heking M j= AT is O(jM j:jT j3). �38

Theorem 10 (Deompositional Model Cheking (Strong)) For a tran-sition system M and an RTD T , under the strong semantis, the time om-plexity of deompositional model heking is linear in the size of M and a smallpolynomial in the size of T .Proof. The omplexity of heking M j=w AT , by Theorem 9, is O(jM j:jT j3).The size of Aef , the automaton that heks ordering between events e and f ,is quadrati in jT j, and there may be jT j2 suh automata. Thus the timeomplexity of heking M j=s AT is O(jM j:jT j4). �We will demonstrate in following setion that the deompositional ap-proah to model heking yields non-trivial savings in spae and time.3.5 AppliationsWe demonstrate the use of these algorithms in the veri�ation of a master-slavememory system using the model heker VIS [BHSV+96℄.
Req

Ack

Data

Read
Write

SlaveSlaveMaster

Addr Figure 3.9: Master-Slave ArhitetureIn the master-slave system (Figure 3.9), the master issues a read or awrite instrution by asserting the orresponding line, and the slaves respond39

by aessing memory and performing the operation. The master hooses theinstrution, puts the address on the address bus and then asserts the req signal.The slave whose tag mathes the address awakens, servies the request, thenasserts the ak line on ompletion. Upon reeiving the ak signal the masterresets the req signal, ausing the slave to reset the ak signal. Finally, themaster resets the address and data buses. The memory read (Figure 3.10) andwrite (Figure 3.11) yles are spei�ed as RTDs, interpreted under the weakiterative semantis.
Req

Idata

Addr

Ardy

Read

Ack

 A XX

Figure 3.10: RTD for the Memory Read CyleThe master-slave system was simpli�ed by abstrating away inessentialdetails. First, the address bus was simpli�ed to the tag of the slaves. SineVIS does not allow shared variables, the bidiretional data bus is representedas two 1-bit boolean variables, Idata and Odata that denote the input andoutput data buses respetively. The begin-ondition for the read RTD is thestate that has Ardy, Idata, Req, Ak and Write being assigned 0 (low), thevalue of the address bus Addr is unknown and the Read signal is asserted.The end-ondition for the read RTD is the state following the diagram whereall the signals are low and Addr is X. The RTDs have a high degree of40

ambiguity sine there is ordering spei�ed for most of the de-assertion eventsin the diagram.
 AX X

Ardy

Odata

Req

Ack

Addr

Write

ReadFigure 3.11: RTD for the Memory Write CyleThe simpli�ed master-slave system is represented in Verilog, whih isthe input language of VIS. For both RTDs, we reated (as Verilog modules)both the omplement of the 8FA and the omplement NFA's for individualdependenies and waveforms.We veri�ed that the master-slave system satis�ed read and write RTDs,using both the deompositional and monolithi model heking approahes.The language emptiness hek passed for both the read and write RTDs. InTable 3.5, the rows with the suÆx (D) orrespond to a veri�ation hek involv-ing the master-slave system and a single waveform (or dependeny) module.The suÆx (M) refers to a veri�ation hek with the master-slave system andthe produt of all the waveform and dependeny modules. We observe thatthe monolithi veri�ation is signi�antly more expensive, in terms of BDDsize and spae, than a single deompositional hek. For the read RTD, there41

9.3 x e 6

 1 waveform module (D) 91

91

11049 3223

10818

145 125098.5 x e 6

22

293316

1135

1 dependency module (D)

32846

Master−Slave and

1970

Master−Slave and

Design under

Master−Slave and all
read RTD modules (M)

Master−Slave and all
write RTD modules (M) 163

BDD variablesverification
Number of

state space
Reachable

BDD nodes
Number of

(seconds)
Verification Time

Table 3.1: Veri�ation Statistis for Master-Slave Designwere 11 suh heks and for the write RTD, there were 14 deompositionalheks. However, the total amount of time taken to hek the entire diagramdeompositionally was still less than time needed for the single monolithihek. The results in Table 3.5 show that the deompositional proedure isindeed feasible and that the size of the system to be veri�ed together with asingle dependeny automaton may not be signi�antly larger, in terms of BDDvariables, than the system itself.3.6 Related Work and ConlusionsSeveral researhers have investigated timing diagrams and their use in au-tomated veri�ation. Boriello [Bor92a℄ proposes an approah to formalizingtiming diagrams. Timing diagrams are desribed informally as regular expres-sions but no spei� details or translation algorithms are given. Many otherresearhers [AL92, Thu96, RMM+93, Cin93℄ have formalized timing diagramsand translated them to other formalisms (interval logis, trigger graphs et.).42

Cerny et al. present a proedure [KC98℄ for verifying whether the �nite be-havior of a set of ation diagrams (timing diagrams) is onsistent; [JC98℄ usesonstraint logi programming to hek if a system satis�es �nite ation dia-gram spei�ations. Formal notions of timing diagrams have also proved tobe useful in test generation and logi synthesis (f. [Tie92, GGL+95, FS96℄).Fisler [Fis96, Fis97℄ proposes a highly expressive timing diagram syn-tax and semantis that allows non-regular languages, and �nds that theselanguages our at all levels of the Chomsky hierarhy. The paper [Fis97℄provides a deision proedure that determines whether a regular language isontained in an unambiguous timing diagram language. This deision proe-dure [Fis97℄ has a high omplexity (in PSPACE), while our algorithms havepolynomial time omplexity in the diagram size. They also provide algorithmsthat translates a ertain lass of timing diagrams into CTL [Fis96℄ and !-automata [Fis00℄. A key di�erene with our work is that these algorithms arerestrited to a subset of unambiguous timing diagrams under the invariantsemantis, while our algorithms are de�ned for all types of diagrams.An important ontribution in this area is the work done by Dammand olleagues at the University of Oldenburg on Symboli Timing Diagrams(STD's) [DJS94, Sh95, DHKS94, HSD+93, DH94℄. STD's may be ompiledinto �rst-order temporal logi formulae whih are then used for model heking.STD's are extended in [FJ97, Fey94℄ to RTSTD's (Real-time STD's), wherea translation into a timed propositional temporal logi TPTL is provided.Both these researh e�orts onsider in�nite languages and ambiguity. A keydi�erene with our work lies in the fat that their translation is monolithi, inthe sense that all dependenies are onsidered together; this an result in anexponential blowup in the size of the resulting formulae when the diagram is43

highly ambiguous. While it is possible to model hek the �rst order temporallogi presented in [DJS94, Fey94℄, the proedure is not very eÆient.In this hapter, we introdued Regular Timing Diagrams (RTDs) thatan be used to speify temporal properties of asynhronous systems. We pre-sented polynomial time, deompositional algorithms for model heking RTDspei�ations, whih are based on a deomposition of the RTD semantis intoproperties of eah waveform and the way they interat. Suh deompositionsmay also provide a way of omposing RTDs and thereby building new RTDshierarhially. Our algorithms generate a 8FA (!-NFA) orresponding to theRTD (the negation of the RTD). We an hoose to use either the 8FA (bysplitting it into smaller automata) or its omplement !-NFA in verifying thata system satis�es an RTD. These algorithms are a signi�ant improvementover the earlier possibly exponential, monolithi translations. We have shownhow our algorithms may be used in onjuntion with a symboli model heker,suh as VIS, to verify systems with spei�ations formulated as RTDs.

44

Chapter 4
Synhronous Regular TimingDiagrams

4.1 IntrodutionIn Chapter 3, we proposed a lass of timing diagrams alled RTDs (for Reg-ular Timing Diagrams) that are partiularly well-suited for desribing asyn-hronous timing, suh as that arising, for instane, in asynhronous read/writebus transations. It is also quite ommon to have a synhronous timing spe-i�ation, where the hanges in values along a signal waveform are tied to therising or falling edges of a lok waveform. While these synhronous spei�-ations an be enoded as RTDs, the enoding introdues a large number ofdependeny edges between eah transition of the lok and eah waveform,whih results in RTDs that are visually luttered and have (unneessarily)inreased omplexity for model heking. Hene, the initial motivation forintroduing a new notation for synhronous timing properties was expressive-45

ness. Another key issue in using timing diagrams for model heking is whetherthe algorithms that translate timing diagrams into more basi spei�ation for-malisms suh as temporal logi or !-automata yield formulas or automata thatare of small size. Previous work on model heking for timing diagrams, e.g.,with Symboli Timing Diagrams [DJS94, Ben98, BW98b℄, with non-regulartiming diagrams [Fis97℄ and with Presburger arithmeti [ABHL97℄ providesalgorithms that are, in the worst-ase, of exponential or higher omplexityin the size of the diagram. The regular struture of the synhronous tim-ing diagrams used in pratie led us to believe that more eÆient translationproedures were indeed possible.The SRTD notation proposed in this Chapter is, therefore, tailored to-wards desribing synhronous timing spei�ations in a visually lean manner.We preisely de�ne the lass of timing diagrams alled Synhronous RegularTiming Diagrams (SRTDs). We provide a formal syntax and semantis thatorresponds losely to the informal usage. We present deompositional modelheking algorithms that onstrut an !-automaton of size linear in the tim-ing diagram size (ompared with a polynomial size omplexity in [AEN99℄for RTDs). This automaton, whih represents all system omputations thatfalsify the diagram spei�ation, is omposed with the system model and itis heked if the resulting automaton has an empty language using standardalgorithms. This results in a model heking proedure that is linear in thesize of both the system and the SRTD spei�ation.This algorithm has been implemented in a tool - the Regular TimingDiagram Translator (Rtdt). Rtdt provides a user-friendly graphial editorfor reating and editing SRTDs and a translator that ompiles SRTDs to the46

input language of the formal veri�ation tool COSPAN. The details of the mainfeatures of Rtdt an be found in Chapter 6. We used Rtdt and COSPANto verify several SRTD properties of two systems, a synhronous master-slavememory aess system and Luent's synthesizable PCI Core. We veri�ed thatthe master-slave system satis�ed the read and write transations, whih werespei�ed as SRTDs. The seond example, the PCI Core, was onsiderablylarger. In this ase, the SRTD properties were formulated by looking at theatual timing diagrams in the PCI Loal Bus spei�ation [Gro95℄ and thePCI Core User's manual [BL96℄.The rest of the Chapter is organized as follows. Setion 4.2 presentsthe syntax and semantis of SRTDs. In Setion 4.3, we desribe the deompo-sitional translation algorithms that onvert SRTDs into !-automata. Setion4.4 illustrates appliations of the Rtdt tool to a master-slave memory aessprotool and the synthesizable PCI Core of Luent's F-Bus. We onlude witha disussion of related work in Setion 4.5.4.2 Synhronous Regular Timing DiagramsA Synhronous Regular Timing Diagram (heneforth referred to as an SRTD ordiagram), in its simplest form, is spei�ed by desribing a number of waveformswith respet to the lok. A lok point is de�ned as a hange in the value ofthe lok signal. The lok is depited as waveform de�ned over B = f0; 1gwhere the value toggles at onseutive lok points. A lok yle is the periodbetween any two suessive rising or falling edges of the lok waveform.In SRTDs, an event must our at either a rising edge of the lok (risingedge triggered) or at a falling edge (falling edge triggered). In the SRTD in47

Figure 4.1, signals p and r are falling edge triggered while q is triggered oneither edge.4.2.1 SyntaxA waveform in an SRTD is de�ned over a pre-de�ned domain of values. Thisdomain may, for example, be an enumerated type or all the possible valuesof an address bus. In Figure 4.1, the waveforms P and R are de�ned overthe set of booleans B and waveform Q is de�ned over a set of values thatinludes the value \a". In addition to representing these values, it is usefulto be able to express that the value of a signal during a ertain period is notimportant. We use don't-are values to speify that the value at a point isunknown, unspei�ed or unimportant. In Figure 4.1, the don't-are values onwaveform Q are used to state that value of signal Q is unspei�ed. In orderto speify properties suh as \if signal B rises then signal A rises within 5time units", we need a way of stating that the exat ourrene of the risingtransition of A is not important as long as it is within the spei�ed time bound.In SRTDs, we use a don't-are transition to graphially represent this temporalambiguity. The don't-are transition is de�ned for a partiular waveform overone or more lok yles; its semantis spei�es that the signal may hangeits value at any time during the spei�ed interval and that, one it hanges,it remains stable for the remainder of the interval. This stability requirementis the only di�erene between don't-are transitions and don't-are values. InFigure 4.1, the don't-are transition allows signal R to rise in either the thirdor fourth lok yle.In addition, in loosely oupled systems, it may not always be neessary48

Clock

a

 R

P

��������������
��������������
��������������
��������������

Q

postconditionprecondition

don’t−care value

precondition marker

pause marker don’t−care transitionFigure 4.1: Annotated Synhronous Regular Timing Diagramto expliitly tie every event to the lok. This is useful in stating eventualityproperties like \every memory request is eventually followed by a grant", andis represented diagrammatially by a pause marker. A pause spei�es thatthere is a break in expliit timing at that point, i.e. the state of the signals(exept the lok) remains unhanged (stutters) for an arbitrary �nite periodof time before hanging. In Figure 4.1, the pause at the end of the seondlok yle indiates that the state hP = 1; Q = a; R = 0i stutters for a �niteperiod until P hanges at a falling edge (the angle brakets indiate the tupleof values of the signals at a lok edge, while \;" indiates suession in time,measured by lok edges). The pauses allow us to express riher propertieslike \if req is asserted and stays high then eventually grant is asserted".In most appliations of timing diagrams, the waveform behavior spe-i�ed by the diagram must hold of a system only after a ertain preondition49

holds. This ondition may be a boolean ondition on the values of one ormore signals (a state ondition), or a ondition on the signal values over a �-nite period of time (a path ondition). To aommodate this type of reasoning,we permit the more general form of path preonditions to be spei�ed in anSRTD. Preonditions are spei�ed graphially by a solid vertial marker thatpartitions the SRTD into two disjoint parts, a preondition part that inludesall the events at and to the left of the marker and a postondition part thatontains all the events to the right of the marker. Given that the domain ofwaveform Q is the set fa; bg, then the preondition of the diagram in Figure4.1 is a path preondition, given by the path hP = 0; Q = a + b; R = 1i;hP = 0; Q = a + b; R = 0i;hP = 0; Q = a+ b; R = 0i.We have observed that, in pratie, both pauses and don't-are objetsour in timing diagrams, and that preonditions are often impliit in theassumptions that are made with respet to when a diagram must be satis�ed.In reviewing many spei�ations and from our disussion with engineers, weare led to believe that SRTDs orrespond losely to informal usage and areexpressive enough for industrial veri�ation needs.We now de�ne SRTDs formally. A waveform A is de�ned over a set ofsymboli values, SVA= VA [fX;Dg, whereX is a don't-are value, D indiatesa don't-are transition and VA is the domain of A. The set SV is ordered byv , where a v b i� either a=b or a 2 fX;Dg and b 2 V. The alphabet of anSRTD, de�ned over a set of signals S=fp; q; :::; rg, is SV(S)=f(apaq:::ar)jap 2SVp ^ ::: ^ ar 2 SVrg.De�nition 13 (SRTD) An SRTD T is a tuple (,S,WF,M) where� > 1 is an integer that denotes the number of lok points.50

� S is a non-empty set of signal names (exluding the lok).� WF is a olletion of waveforms; for eah signal A 2 S, its assoiatedwaveform is a funtion WFA : [0;) ! SVA, while the assoiated wave-form for the lok is WFlk : [0;)! B.� M is a �nite (non-empty) asending sequene 0 �M0<M1<...<Mk�1 <� 1 of position markers. M0 is the preondition marker, while for eahi > 0, Mi is the i-th pause marker.To failitate de�ning the semantis as well as the algorithms it is alsohelpful to view an SRTD as a olletion of segments, where eah segment isessentially a vertial slie of the timing diagram, enompassing all waveformsbetween two suessive markers or a marker and the start/end of the diagram.The k markers inM partition the interval [0;) in an SRTD T into k+1 disjointsub-intervals I0=[0;M0℄, I1=(M0;M1℄,...,Ik�1= (Mk�2;Mk�1℄, Ik=(Mk�1; �1℄.The length m0 of the interval I0 isM0+1, while for intervals Ii, with i 2 [1; k),the length mi of Ii is Mi � Mi�1, and the length of the last interval Ik is�1�Mk�1. The k markers, therefore, partition an SRTD into k+1 segments.De�nition 14 (Segment) The segment Segi (i 2 [0; k℄) that orresponds tothe interval Ii of length mi is de�ned to be a funtion Segi : S� [0; mi)! SV,where for eah j 2 [0; mi) and A 2 S, Segi(A)(j) = WFA(j) when i = 0 andSegi(A)(j) = WFA(Mi�1 + 1 + j) when i > 0.Any SRTD T = (; S;WF ;M) an be represented as the tuple of seg-ments (Pre; Post1; :::; P ostk) as de�ned above. Segment Pre (Seg0) representsthe preondition, while segments Posti(Segi), for i > 0, represent suessive51

post-ondition segments. For instane, the SRTD in Figure 4.1 has three seg-ments, one preondition segment and two postondition segments. For eahsignal A, Segi(A) is a funtion from [0; mi)! SVA whih desribes the wave-form for signal A in the ith segment. This representation of an SRTD is usefulin the sequel.De�nition 15 (Preisely Loatable) An event of waveform A ourring ata lok point t is preisely loatable if and only if WFA(t � 1) 62 fX;Dg andWFA(t) 62 fX;Dg.In Figure 4.1, the falling edge of waveform P in the third lok yleis preisely loatable while the don't-are transition in waveform R is not apreisely loatable event.We will now desribe the well-formedness riteria on SRTDs.De�nition 16 (Well-formed SRTD) An SRTD T = (Pre; Post1; :::; P ostk)is well-formed i�1. The preondition segment Pre does not have any don't-are transitions,i.e. Pre is de�ned over SVnfDg.2. Eah waveform in the preondition Pre of length m must either have nodon't are values or all m values must be don't-are values.3. For every pause marker Mi, there exists at least one preisely loatableevent at either lok point Mi + 1 or Mi + 2.4. For every maximal non-empty sequene of don't-are transitions of theform (a;D+; b) in a waveform A, a; b 2 VA and a 6= b.52

5. Every event in a waveform designated as rising(falling) edge triggeredmust our at a rising(falling) edge of the lok.We an relax the �rst two requirements, to obtain a general SRTD,and our translation algorithms are still appliable. In this ase, however, theresulting translation may be exponential in the size of the Pre; this issue willbe disussed in Setion 4.3.4.2.2 SemantisAn SRTD de�nes properties of omputations, whih are sequenes of states,where a state is an assignment of values to eah of the n waveform signals. Aomputation is de�ned over the alphabet V = f(ap; aq; :::; ar)j ap 2 VP^:::^ar 2Vrg, for signals p; q; :::; r. For any omputation y, we use yA to denote theprojetion of y on to the oordinate for signal A.De�nition 17 (_v) For a �nite waveform segment Segi(A) : [0; mi)! SVAand a projetion yA of omputation y with length mi (yA 2 VmiA), Segi(A) _v yAi� � For every p 2 [0; mi), Segi(A)(p) v yA(p).� For every p; q, if Segi(A)[p::q℄ has the form (a;D+; b) then yA[p::q℄ hasthe form (a+; b+).De�nition 18 (Segment Consisteny) A segment Segi of length mi is sat-is�ed by a sequene y 2 Vmin i� for eah signal A, Segi(A) _v yA holds.Let y = h0; b; 1i; h0; a; 0i;h0; a; 0i denote the �nite sequene where hP =0; Q = b; R = 1i; hP = 0; Q = a; R = 0i;hP = 0; Q = a; R = 0i. In Fig-ure 4.1, the preondition segment Pre is satis�ed by y. The postondition53

segment Post1 is satis�ed by the sequene h1; a; 0i;h1; a; 0i; h1; a; 0i; h1; a; 0i.Observe that the pause allows the state h1; a; 0i to stutter for a �nite pe-riod. The �nal postondition segment Post2 is satis�es by a sequene y =h0; a; 0i;h0; b; 0i;h0; a; 1i; h0; b; 1i.We will now onstrut regular expressions for the preondition PreT andthe postondition PostT of a SRTD T . By the de�nition of segment onsis-teny, any Pre or Posti segment an be represented as an extended regular ex-pression of the formVs2S rs, where rs enodes the onstraints for the waveformfor signal s in the segment. The regular expression for PostT is the onate-nation of sub-expressions that orrespond to eah Posti segment separated byan expression for eah pause. Thus, PostT = (seg1; val�1; seg2; val�2; :::; segk�1),where segi is the regular expression for segment Posti and vali is the vetorof values at the last position (mi � 1) in Posti, whih is at the pause markerseparating it from Posti+1.We use h0; a; (0 + 1)i to mean (h0; a; 0i + h0; a; 1i) in the followingexpressions. For the SRTD T shown in Figure 4.1, the regular expressionfor PreT is (h0; (a + b); 1i;h0; (a + b); 0i;h0; (a + b); 0i). The regular expres-sion for PostT is (h1; a; 0i; h1; a; 0i ;h1; a; 0i�;h0; a; (0 + 1)i;h0; (a+ b); (0 + 1)i;h0; (a+ b); 1i;h0; (a+ b); 1i).De�nition 19 (Always followed-by) G(p ,! q) holds of a omputation �i�, for all i, j suh that j � i, if sub-omputation �[i : : : j℄ j= p, then thereexists k suh that �[j + 1 : : : k℄ j= q.In the de�nition above, p and q are arbitrary path properties; however,when p is a state property, G(p ,! q) is equivalent to G(p) Xq), whereX is the next time operator. An in�nite omputation � satis�es an SRTD T54

(written � j= T) if and only if every �nite segment of � that satis�es the pre-ondition is immediately followed by a segment that satis�es the postonditionof the diagram. The preondition, however, may be satis�ed in an overlappingmanner, whih leads to two distint notions of satisfation, overlapping andnon-overlapping semantis. This is formalized in following de�nitions.De�nition 20 (Overlapping Semantis) An in�nite omputation � satis-�es anSRTD T (� j=o T) i� � j= G(PreT ,! PostT).To de�ne non-overlapping semantis, it is onvenient to assume thatthere is an auxiliary proposition p suh that for all sequenes �, p is true atthe ith point i� PreT is satis�ed by a pre�x of the suÆx sequene starting atpoint i.De�nition 21 (Non-overlapping Semantis) An in�nite omputation �satis�es an SRTD T under the non-overlapping semantis (� j=n T) i� ev-ery ourrene of PreT that does not overlap an ourrene of PreT or PostTis immediately followed by an ourrene of PostT . This is true i� � 2((:p)�;PreT ;PostT)! + ((:p)�;PreT ;PostT)�; (:p)!.Consider the SRTD T in Figure 4.2 and the in�nite sequene � = y!,where y = h0; 1i;h0; 0i;h1; 0i;h1; 0i;h0; 1i;h0; 1i;h1; 1i. The preondition of T isthe state formula h0; 1i and this state ours again at the start of the thirdlok yle. Clearly � j=n T but � 6j=o T , sine the seond ourrene of thepreondition along � violates the postondition of the diagram.Proposition 0 For any SRTD T , � j=o T implies � j=n T .55

B

A

Clock

Figure 4.2: SRTD with an Overlapping PreonditionProof.� j=o T , by De�nition 20, means that every ourrene of PreT is followedby PostT . Let us now assume that � 6j=n T . Therefore, (by De�nition 21)� 62 ((:p)�;PreT ;PostT)! and � 62 ((:p)�;PreT ;PostT)�; (:p)!. Clearly � 62((:p)�; PreT ;PostT)! violates the anteedent. � 62 ((:p)�;PreT ;PostT)�; (:p)!is false, if PreT never holds along �, and if PreT holds a �nite number of timesthen the previous argument holds. Thus, we have a ontradition and � j=n T .�4.3 Model Cheking SRTDsWe �rst present an algorithm that translates an SRTD T with the overlappingsemantis into an !-automaton for the negation of the SRTD property. Next,we will present a similar translation algorithm for the non-overlapping seman-tis. We then present a deompositional model heking algorithm that makeuse of these automata.
56

4.3.1 Translation Algorithm for Overlapping SemantisThe algorithm onstruts a !-NFA that orresponds to the omplement of theSRTD under the overlapping semantis. The algorithm proeeds by deom-posing T into waveforms and produing sub-automata that trak portions ofeah waveform. It onsists of the following steps.Algorithm 31. Construt a single deterministi automaton Apre for the preondition.This automaton traks the values of all signals simultaneously over thenumber of lok yles of the preondition. Sine the preondition annotontain don't-are transitions, this automaton has linearly many statesin the length of the preondition.2. Construt a DFA Apost(i) for eah signal i of the postondition. Thisautomaton heks at eah lok point that the waveform has the spei�edvalue. For a don't-are transition, the automaton maintains an extrabit that reords whether the transition has ourred. For a pause, theautomaton goes into a \waiting" state, where it heks that the value ofthe signal remains unhanged, and whih it leaves when the pause ownersignal hanges value. The automaton for signal i aepts a omputationi� either the waveform pattern is inorret at some point, or if signal iis the owner of the kth pause in T and the automaton stays in3. Construt an NFA AT for the negation of the SRTD property of T thatoperates as follows on an in�nite input sequene: it nondeterministially\hooses" a point where the preondition holds, runs the DFA Apre atthis point and if Apre aepts it then \hooses" a postondition DFA57

Apost(i) and runs this automaton at the point where Apre aepted andaepts if this automaton aepts. If Apost(i) terminates (so the poston-dition holds for signal i), AT returns to its initial state.As a onsequene of Theorem 0, an SRTD T an be represented su-intly by a 8FA AT that is obtained by omplementing the aeptane on-dition of the NFA AT .
B

A

Clock

���������������������������������
���������������
���������������
���������������Figure 4.3: SRTD with Don't-Care Values in the PreonditionConsider the SRTD in Figure 4.3, the orresponding monolithi DFAApre, and the DFA's Apost(A) and Apost(B) for postondition of waveforms Aand B respetively, are shown in Figure 4.4 and Figure 4.5 respetively.

(A,B)

(A,B) (A,B)

(A,B) (A, B)

(A,B)

Figure 4.4: The DFA Apre for the Overlapping SemantisIn Figure 4.5, we show the postondition DFA's, Apost(A) and Apost(B).These automata an be easily omplemented to get Apost(A) and Apost(A).A key attribute of the onstrution is the way the pauses are handled.The NFA shown in Figure 4.6, has a fairness onstraint on state s in Apost(A)58

A

B B B

B

B

A A

B B

A A

A

(A,B)

A

(A,B)

(A,B)

s

Figure 4.5: DFA's for the Postondition of Waveforms A (top) and B (bottom)that prevents it from staying in this state forever. There are, however, nofairness onstraints imposed on Apost(B). The !-NFA AT is shown in Figure4.6.
rejects
Pre

rejects

rejects

Pre
accepts

Pre
accepts

PostB accepts

PostA accepts

Pre

PostA

PostB
PostB

PostA

Figure 4.6: !-NFA for the Complement of the SRTD in Figure 4.3
Theorem 11 (Corretness) For any SRTD T and x 2 V!, x j=o T i�x 2 L(AT). 59

Proof.()) Let us assume that x 2 L(AT). Thus, there is a sub-sequene x[m::p℄,where x[m::n℄ 2 L(Apre) and x[n+1::p℄ 2 L(Aposti), for some signal i 2 S andsome p. x j=o T is (by De�nition 20) x j= G(PreT ,! Vi Posti). Clearly, sinex j=o T , suh a sub-sequene does not exists and we have a ontradition andx 2 L(AT).(() An aepting run of AT orresponds to either Apre aepting at point xnand for some signal i 2 S, (x[n + 1::p℄ # i) 2 L(Apost(i)) or Apre never beingsatis�ed along x. By de�nition 2, x 2 L(AT) if every run of AT on x is aept-ing. Thus, ifApre aepts at point xn then x[n+1::p℄ is aepted by automatonfor the produt of the Apost(i) automata. Therefore, x j= G(PreT ,! Vi Posti)and x j=o T .� The size of an SRTD is the produt of the number of signals and thenumber of lok yles. The number of lok yles does not inlude theindeterminate amount of time represented by a pause; it refers only to theexpliitly indiated lok yles in the diagram.Theorem 12 (Overlapping Complexity) For any SRTD T and the equiv-alent 8FA AT , the size of AT is linear in jT j.Proof.The size of an SRTD T=(Pre; Post1; :::; P ostk) is n� , where n is the numberof waveforms and is the number of lok points. We assume that the tran-sitions in AT are labeled with boolean formulas over the n signals. The sizeof the transitions in AT is the sum of the length of the formulas labeling thetransitions. The size of AT is s + t, where s is the number of states and t is60

the transition size.The number of states s in the monolithi automaton for the preonditionApre, is bounded by the number of lok points in the preondition, therefores < . Sine eah transition enodes the values of the signals at eah point, thesize of eah transition is O(n) and the number of suh transitions is boundedby . Thus, the transition size is linear in jT j.The number of states s in Apost(i) is bounded by the number of lokpoints , therefore s � . The transitions are labeled with onstant size for-mulae, sine by onstrution a pause transition is dependent on at most oneother signal value. Thus, the overall transition size for Apost(i) is bounded by; hene, Apost(i) has size linear in .The size of the 8FA AT is the sum of the sizes of the preondition andthe n postondition automata and is thus jAprej + n. jApost(i)j = n: + n: =O(jT j).�4.3.2 Translation Algorithm for Non-overlapping Seman-tisWe now present the algorithm that onstruts an !-NFA for the omplementof the SRTD property under the non-overlapping semantis.To onstrut an !-NFA AT for the omplement of the timing diagramlanguage of T , we proeed as follows.Algorithm 41. Construt a deterministi automaton Apre from PreT that aepts at the�rst point on a string where the preondition holds. We do so by reating61

a non-deterministi automaton that aepts the language (��;PreT) anddeterminizing it, so that it enters an aepting state at every point onan input string where PreT holds. We then eliminate outgoing edgesfrom aepting states of this automaton. There are only linearly manyreahable states, as the reahable part of the DFA is just the automatonfor the string mathing problem, whih an be onstruted eÆiently (f.[CLR90℄). For general SRTDs, the DFA Apre may be exponential in thelength of the preondition.2. Construt an DFA Apost(i), for eah signal i, that traks the waveformfor signal i over the length of the postondition. This automaton heksat eah lok point that the waveform has the spei�ed value. For adon't-are transition, the automaton maintains an extra bit that reordswhether the transition has ourred. For a pause, the automaton goesinto a \waiting" state, where it heks that the value of the signal remainsunhanged, and whih it leaves when the pause owner signal hangesvalue. The automaton for signal i aepts a omputation i� either thewaveform pattern is inorret at some point, or if signal i is the ownerof the kth pause in T and the automaton stays in the waiting state forpause k forever.3. The automatonAT works in the following manner: from the initial state,it runs Apre on the input until this aepts; then it guesses a failingpostondition signal i and runs Apost(i), aepting if this aepts. IfApost(i) terminates (so the postondition holds for signal i), AT returnsto its initial state.Let us onsider the SRTD in Figure 4.3, the onstruted DFA Apre62

for the preondition is shown in Figure 4.7. Note that this onstrution ofApre aepts the language (��;PreT) as opposed to PreT in the overlappingsemantis. There is no hange in the onstrution of the postondition au-tomata shown in Figure 4.5. There is a minor hange in the NFA AT as shownin Figure 4.8.
(−,B) (−,B) (−,B)

(−,B) (−,B)

(−,B)Figure 4.7: The DFA Apre for Non-Overlapping Semantis
rejects

rejects

Pre
accepts

Pre
accepts

PostB accepts

PostA accepts

Pre

PostA

PostB
PostB

PostA

Figure 4.8: !-NFA AT for the Complement of the SRTD in Figure 4.3Theorem 13 (Corretness) For any SRTD T and in�nite sequene x, x j=nT i� x 2 L(AT).Proof.()) x j=n T i� (by de�nition 21) x 2 ((:p)�;PreT ; PostT)! + ((:p)�;PreT ;63

PostT)�; (:p)!, where p is a proposition that is true at xi i� x[i::j℄ 2 L(PreT).Let us assume that x 2 L(AT). Thus, there is a sub-sequene ((:p)�; x[m::n℄;x[n+ 1::o℄), suh that x[m::n℄ 2 L(Apre) and x[n+ 1::o℄ 2 L(Aposti), for somei 2 S and some o. Sine x j=n T , suh a sub-sequene does not exists, thusx 2 L(AT).(() An aepting run of AT along x orresponds to either (i) p never beingsatis�ed along x, or (ii) there is a sequene ((:p)�; x[m::n℄; x[n + 1::o℄) wherex[m::n℄ 2 L(Apre) and for some signal i 2 S, (x[n + 1::o℄ # i) 2 L(Apost(i)).By de�nition 2, x 2 L(AT) i� every run of AT on x is aepting. Thus,if Apre aepts at point xn then x[n + 1::o℄ is aepted by automaton forthe produt of the Apost(i) automata. Clearly x 2 ((:p)�;PreT ;PostT)!+((:p)�;PreT ;PostT)�; (:p)!, hene x j=n T .�Theorem 14 (Non-overlapping Complexity) For any SRTD T and theequivalent 8FA AT , the size of AT is linear in the size of PreT and PostT .Proof.The size of an SRTD T is n � , where n is the number of waveforms and isthe number of lok points. The size of the transitions in AT is the sum of thelength of the boolean formulas labeling the transitions. The size of AT is thesum of the number of states and the transition size.Let p be the number of lok points in PreT where p < . The mono-lithi automaton Apre must reognize V�;PreT . Eah waveform segment, byDe�nition 16, in the preondition must either ontain all don't-are values ornone at all. Therefore, Apre must either trak the waveform or not, so thenumber of states s in Apre is bounded by the number of lok points . Sine64

eah transition enodes the values of the signals at eah point, the size of eahtransition is O(n) and the number of suh transitions is also bounded by .Thus, the size of Apre is linear in jT j.The number of states s in Apost(i) is bounded by the number of lokpoints , therefore s � . The transitions are labeled with onstant size for-mulae, sine by onstrution a pause transition is dependent on at most oneother signal value. Thus, the overall transition size for Apost(i) is bounded by; hene, Apost(i) has size linear in .The size of the 8FA AT is the sum of the sizes of the preondition andthe n postondition automata and is thus jAprej + n. jApost(i)j. Therefore thesize of AT is is linear in the size of T .� We an relax onditions 1 and 2 in the de�nition of a well-formed SRTD(De�nition 16) to obtain a general SRTD; that is we allow don't-are transi-tions and arbitrary don't-are values in the preondition. The size of the re-sulting 8FA AT for a general SRTD T is linear in the size of the postonditionbut is exponential in the size of the preondition.Theorem 15 (Complexity for General SRTDs) For a general SRTD Tand the equivalent 8FA AT , the size of AT is linear in the size of PostT andexponential in the size of PreT .Proof.Let p be the number of lok points in PreT where p < . Apre must reognizethe �rst ourrene and all subsequent non-overlapping ourrenes of PreT .Hene Apre must remember the atual values seen on the signals that havedon't-are values. Overlapping don't-are transitions introdue a similar blow-65

up sine Apre must now remember at eah state whether eah of the don't-aretransitions has made the transition to the new value. Therefore, the numberof states s in Apre, is bounded by jVjp+1. Sine eah transition enodes thevalues of the signals at eah point, the size of eah transition is O(n) and thenumber of suh transitions is bounded by jVjp+1. Thus, the size of Apre isexponential in jT j.The size of the 8FA AT is the sum of the sizes of the preondition andthe n postondition automata and is thus jAprej + n. jApost(i)j. Therefore thesize of AT is is exponential in the size of PreT and linear in the size of PostT .�4.3.3 Model ChekingWe an use the onstruted NFA AT desribed in the previous Setion di-retly in the automata-theoreti model heking. Reall that in the lan-guage ontainment paradigm, one model heks a system M with respet toa property P by heking L(M) � L(P), whih is equivalent to heking thatL(M) \ :L(P) = ;.In both the overlapping and non-overlapping ases, we an use the re-spetive translation algorithms to obtain an NFA AT for the negation of theSRTD T whih is linear in size of T . This yields a model heking algorithmwhih is e�etively linear in both the size of the system and the SRTD T .Theorem 16 (Model Cheking Complexity) For a transition system Mand an SRTD T , the time omplexity of model heking, under either theoverlapping semantis and non-overlapping semantis, is linear in the size ofM and T . 66

Proof.We know, by Theorems 12 and 14, that the onstruted NFA AT for thenegation of T is linear in the size of T . Therefore, by the results in [EL85a,EL85b℄, we know that heking L(M) \ L(AT) = ; is linear in the size of Mand T .� For general SRTDs, we have the following Theorem.Theorem 17 (Model Cheking Complexity for General SRTDs) Fora transition system M and a general SRTD T , the time omplexity of modelheking, under either the overlapping semantis and non-overlapping seman-tis, is linear in the size of M and exponential in the size of T .Proof.We know, by Theorem 15, that the onstruted NFA AT for the negationof general SRTD T may be exponential in the size of PreT . Thus, hekingL(M) \ L(AT) = ; is linear in the size of M and PostT and exponential inthe size of PreT .
4.3.4 Deompositional Model ChekingDeompositional model heking is an alternative way to use the onstrutedautomata that exploits the onjuntive nature of the 8FA AT . The propertyrepresented by the SRTD T is G(PreT ,! PostT). Sine PostT = ViApost(i),this property an be deomposed into the onjuntion of individual heksG(Apre ,! Apost(i)). In a typial model heker, this hek is performed bydetermining if there is a omputation of the system that satis�es the negation67

of the property. The hek an be done by determining if there is a path toa point where Apre aepts, followed by a omputation where Apost(i) aepts.Hene, model-heking an be done with this deomposed representation ofthe postondition.Theorem 18 (Overlapping Deompositional Model Cheking) For atransition system M and an SRTD T , the time omplexity of deompositionalmodel heking, under the overlapping semantis, is linear in the size of Mand quadrati in the size of T .Proof.The 8FA AT , orresponding to T under either semantis, is the automaton forG(Apre ,! Vi Apost(i)) where Apre is the automaton for Pre and eah Apost(i)is the automaton for the postondition segment of waveform i. The problemof heking M j= AT an be deomposed into ViM j= Ai, where Ai is theautomaton for G(Apre ,! Apost(i)). We an hek M j= Ai in time linearin the size of M and Ai whih, by Theorem 12, is O(jM j:jT j). There jSjsuh veri�ation tasks, thus the time omplexity of model heking M j=o Tdeompositionally is O(jM j:jT j2).�Theorem 19 (Non-overlapping Deompositional Model Cheking) Fora transition system M and an SRTD T , the time omplexity of deompositionalmodel heking, under the non-overlapping semantis, is linear in the size ofM and quadrati in the size of T .Proof.Let Ai be the automaton that aepts i� every sub-sequene aepted by the68

non-overlapping automatonApre is followed by a sub-sequene that is aeptedby Apost(i). The size of Ai is linear in jT j (by Theorem 14). The omplexity ofheking, L(M) \ L(Ai) = �, is linear in the size M and Ai (by Theorem 16.There are jSj suh heks; hene the omplexity of model heking M j=n Tdeompositionally is O(jM j:jT j2).� Theorems 18 and 19 shows that deompositional model heking is moreexpensive (quadrati versus linear) than model heking in the size of theSRTD. However, eÆieny with respet to spae is often of more pratialinterest. In our experiments, that are presented in the following Setion, wefound that the deompositional approah does indeed yield non-trivial savingsin spae. Thus, we feel justi�ed in trading time versus spae in this manner.This topi will be addressed in detail in the following setion.4.4 AppliationsThe true test of the eÆieny of our algorithms is how they fare in pratieon industrial examples of all sizes. Towards this end, we used Rtdt withCOSPAN to verify two systems. The �rst is a synhronous master-slave mem-ory system and the seond is the Luents' PCI Interfae Core.4.4.1 Master-slave Memory SystemThe master-slave memory system onsists of one master module and three slavemodules. In the master-slave system, the master issues a memory instrutionand the slaves respond by aessing memory and performing the operation.The master initiates the start of a transation by asserting either the read or69

clock

master.write

slave.data

slave.ack

master.req

master.addr

master.read

Figure 4.9: SRTD for the Read Transationwrite line. Next the master puts the address on the address bus and assertsthe req signal. The slave whose tag mathes the address awakens, serviesthe request, then asserts the ak line on ompletion. Upon reeiving the aksignal the master resets the req signal, ausing the slave to reset the ak signal.Finally, the master resets the address and data buses.We veri�ed that this system satis�ed both read (see Figure 4.9) andwrite (see Figure 4.10) memory transations formulated as SRTDs, with theoverlapping semantis. The SRTDs were reated with the Rtdt editor and thetranslator was used to generate the orresponding COSPAN desriptions. Weused COSPAN to model hek the system with respet to these desriptions.Reall that a monolithi translation of an SRTD yields an !-NFA that isessentially the produt (intersetion) of the DFA's for eah waveform. In orderto ompare our deompositional algorithms with monolithi algorithms, we didthe veri�ation heks both deompositionally and monolithially. In Table4.1, read(M) orresponds to the veri�ation hek on the master-slave designand the monolithi automaton for the read SRTD while read(D) orresponds70

clock

slave.ack

master.req

master.addr

master.write

master.read

master.dataFigure 4.10: SRTD for the Write Transationto the veri�ation hek done on the master-slave design and automata for asingle waveform. The numbers in Table 4.1 for BDD size, spae and time forthe deompositional hek is the average over the individual veri�ation heksfor eah waveform. For example, the total amount of time taken to verifythe read SRTD deompositionally was 3.23 seonds and this is a little morethan the time taken for the single monolithi veri�ation. Our veri�ationnumbers show that the deompositional heks onsistently use less spae whilegenerally taking more time. Notwithstanding the Lihtenstein-Pnueli thesis[LP85℄, in pratie, as one reahes the spae limitations of symboli modelheking tools, eÆieny with respet to spae is of more importane. Weobserve that the deompositional hek, with respet to BDD size and spae,is not muh larger than the size of the system itself. The monolithi veri�ationis, however, signi�antly more expensive.
71

13433

22079

0.86 0.32

21915 1.45 2.51

1154295

205

 read (M)

 write (M)

1.46205 3.19

0.86

95

0.31

Design Average
BDD size (MBytes) (seconds)

 Average Time Number of Average Space
BDD variables

 read (D)

 write (D)

Table 4.1: Veri�ation Statistis for Master-Slave Design
Lucent’s

Model

PCI Bus

Core

PCI
Lucent’s

Synthesizable
Model

F−Bus

Lucent’s

Figure 4.11: Blok Diagram of Luent's F-Bus with PCI Core4.4.2 Luent's PCI Synthesizable CoreThe PCI Loal Bus is a high performane, 32-bit or 64-bit bus with multi-plexed data and address lines, whih is now an industry standard. The PCIbus is used as an interonnet mehanism between proessor/memory systemsand peripheral ontroller omponents. Luent Tehnologies' PCI InterfaeSynthesizable Core is a set of synthesizable building bloks that designers anuse to implement a omplete PCI interfae. The PCI Interfae SynthesizableCore is designed to be fully ompatible with the PCI Loal Bus spei�ation[Gro95℄. The Synthesizable Core bridges an industrial standard PCI bus to an72

F-Bus, whih is 32-bit internal bu�ered FIFO bus that supports a master-slavearhiteture with multiple masters and slaves.
PciClk_

PciFrameN_

PciIrdyN_

PciDevselN_

PciTrdyN_Figure 4.12: An SRTD Burst Property for the PCI BusWe used Luent's PCI Bus Funtional Model shown in Figure 4.11,whih is a sophistiated simulation environment that was developed to test theSynthesizable Core for funtionality and ompliane with the PCI spei�ation[Gro95℄. The Funtional Model onsists of the PCI Core bloks and abstratmodels for both the PCI Bus and the F-Bus. The PCI Bus and F-Bus modelswere designed to fully exerise the PCI Synthesizable Core in both the slaveand master modes. This model has about 1500 bounded state variables andwas too large for model heking. We had to perform some abstrations,like freeing variables and removing variables from onsideration for one ofinuene redutions. These abstrations were property-spei� and had to bemodi�ed for eah property heked.The Synthesizable Core design is synhronous to the PCI lok. Thebasi bus transfer on the PCI is a burst, whih is omposed of an address phasefollowed by one or more data phases. In the non-burst mode, eah addressphase is followed by exatly one data phase. The data transfers in the PCI73

PciClk_

PciReqN_

PciGntN_

PciFrameN_

PciIrdyN_

PciDevselN_

PciTrdyN_Figure 4.13: SRTD for the Non-burst Transation of the PCI Busprotool are ontrolled by three signals PiFrameN, PiIrdyN and PiTrdyN.The master of the bus drives the signal PiFrameN to indiate the beginningand end of a transation. PiIrdyN is asserted by the master to indiate thatit is ready to transfer data. Similarly the target uses PiTrdyN to signal thatit is ready for data transfer. Data is transferred between master and target oneah rising lok edge for whih both PiIrdyN and PiTrdyN are asserted. Weveri�ed that the PCI Core satis�ed several timing diagram properties for boththe burst and non-burst modes. We formulated the properties as SRTDs bylooking at the atual timing diagrams that ourred in the PCI spei�ation[Gro95℄ and the PCI Core User's Manual [BL96℄. Figure 4.13 and Figure4.12 are properties that we heked for the non-burst mode and burst moderespetively.The veri�ation was done both monolithially and deompositionallyand Table 4.2 presents the veri�ations statistis. In Table 4.2, the size, spaeand time numbers for properties with the suÆx (M) orrespond to the veri-�ation hek on the abstrated PCI Core and the monolithi automaton for74

36.2

22.1 279

411715157

417816

740

664

Design (MBytes)
Average Space

(seconds)
Average Time

699

749 198.6 16793

2680421 171.7 5677

3742074

Average
BDD size

Number BDD
variables

PCI Prop1 (M)

PCI Prop2 (M)

PCI Prop3 (M)

688424 23.9 2091036

996 554866 19.1 182

PCI Prop1 (D)

PCI Prop2 (D)

PCI Prop3 (D)Table 4.2: Veri�ation Statistis for Luent's Synthesizable PCI Corethe property. The suÆx (D) refers to the average over the individual deom-positional veri�ation heks on the abstrated system and the automata foreah waveform. Table 4.2 shows a savings of up to 30% in BDD size and or-responding savings in spae. In pratie, as one reahes the spae bounds of amodel heking tool, it may be bene�ial to trade time for spae. Our resultsdemonstrate that the deompositional approah is more spae eÆient than amonolithi one.4.5 Related Work and ConlusionsVarious researhers have investigated the formal use of timing diagrams. Dammet al. introdued a timing diagram notation, alled Symboli Timing Diagrams(STD's) [DJS94℄, that have a formal semantis. They [DJS94, Fey94, FS96,75

FJ97, BW98a℄ provide algorithms that translate STD's into various temporallogis, like CTL, TPTL [AH94℄ and a �rst order temporal logi TL [DJS94℄.They have applied their algorithms suessfully to a number of ase studies[DHKS94, BW98b℄. Unlike our work, their translation algorithms are mono-lithi and in general results in an exponential translation. Moreover, STD'sare asynhronous in nature and annot expliitly tie events to the lok. Fisler[Fis96, Fis97℄ provides a proedure to deide regular language ontainment ofnon-regular timing diagrams, but the model heking algorithms have a highomplexity (PSPACE). Fisler's diagrams, like RTDs, an express synhronousproperties, but the result is a visually luttered diagram with unneessaryadded omplexity.Cerny et al. present a proedure [KC98℄ for verifying whether the be-havior of a set of ation diagrams [CBGK98℄ (timing diagrams) is onsistent;they do not onsider in�nite behavior. They [JC98℄ use onstraint logi pro-gramming to hek if a system satis�es �nite ation diagram spei�ations.Amon et al. [ABHL97, ABL98℄ use Presburger formulas to determine whetherthe delays and guarantees of an implementation satisfy onstraints spei�edas a timing diagram. This work uses a ommerial timing diagrams editor,alled Timing Designer [KM97℄, to speify the onstraints and delays. Theyhave developed tools that generate Presburger formulas orresponding to thetiming diagrams and manipulate them. This model annot, however, handlesynhronous signals, and the algorithm for verifying Presburger formulas ismulti-exponential in the worst ase.Antoine and Le Go� [AL92℄ present a syntax and semantis of syn-hronous timing diagrams and translate them into CTL� formulae; they onlyonsider diagrams without any temporal ambiguity. Boriello [Bor92a, Bor92b℄76

proposes an approah to formalizing timing diagrams. Timing diagrams aredesribed informally as regular expressions but no spei� details or transla-tion algorithms are given. Many other researhers [Thu96, RMM+93, Cin93℄have formalized timing diagrams and translated them to other formalisms (in-terval logis, trigger graphs et.). Formal notions of timing diagrams have alsoproved to be useful in test generation and logi synthesis (f. [Tie92, GGL+95,Lut98, FS96℄).In ontrast, for SRTDs, we have presented deompositional, eÆientalgorithms for model heking, whih has time omplexity that is linear in thesize of the system model and quadrati in the size of SRTD. Our experienewith verifying the PCI ore and other protools indiates that the syntax ofSRTDs suÆes to express ommon timing properties, and is expressive enoughfor industrial veri�ation needs.

77

Chapter 5
Compositional Reasoning withSRTDs

5.1 IntrodutionCompositional reasoning [dRdBH+99℄ { redues reasoning about a system toreasoning about its omponents { has been an ative area of researh fornearly three deades. Reently, it has gained further importane as a wayof ameliorating the state explosion problem in model heking. For example,given programs P1, P2 and spei�ation T , we would like to hek whetherthe omposed system satis�es T (written as P1==P2 j= T). Sine reasoningabout P1==P2 diretly only exaerbates the state explosion problem, omposi-tional reasoning tehniques are designed to reason about P1 in isolation fromP2 (and vie versa) to draw onlusions about P1==P2. There are, however,several diÆulties whih must be overome, foremost among them are the taskdeomposition problem, the generation of auxiliary assertions and the general78

appliability of the ompositional method to the task at hand.Firstly, task deomposition is neessary sine it is unlikely that P1 byitself satis�es all of T : we would like to deompose T into T1 and T2 suhthat T = T1 ^ T2 and then show that P1 j= T1 and P2 j= T2. Seondly,auxiliary assertions are usually neessary, sine P1 may satisfy T1 only whenits environment behaves like P2. To solve this problem, assume-guaranteestyle reasoning adds auxiliary assertions, Q2 (respetively Q1) whih representassumptions about the behavior of P2 (P1) as an environment for P1 (P2). Suhauxiliary assertions must often be generated by hand, however. Finally, na��veompositional rules based on this style of reasoning, for instane, P1==P2 j= Tholds if P1==Q2 j= T1 and P2==Q1 j= T2, are sound only for safety properties.In this Chapter, we �rst present a new rule for assume-guarantee reason-ing, whih generalizes several earlier rules (f. [Pnu85, AL95, AH96, MM99,NT00℄), by removing the soures of inompleteness in some of these rules, byusing proesses, instead of temporal logi formulas, as spei�ations, and by al-lowing more general forms of proess de�nition and omposition. The new ruleextends the na��ve rule above with a hek for soundness. As it deals uniformlywith proesses, it �ts in well with a top-down re�nement approah to designingsystems. We show that this rule is also omplete, in that if P1==P2 j= T , thenit is possible to prove this fat with our rule.Next, we explore the bene�ts of applying this rule in the ase where T isspei�ed as an SRTD. We show that not only is task deomposition a relativelysimple problem for timing diagrams, but also that it is possible to automat-ially generate auxiliary assertions diretly from the spei�ation. Further-more, we identify a large lass of SRTDs for whih the soundness hek of therule is always satis�ed, and the auxiliary assertion generation and, therefore,79

the model heking proess is eÆient { linear in the size of the diagram andthe struture. We have implemented our method in the timing diagram anal-ysis tool, Rtdt [AEKN00, AEKN01℄, whih uses the tool COSPAN [HHK96℄to disharge model heking subgoals. We report here on its appliation toa memory ontroller and a PCI Interfae Core; in both ases, we obtain sub-stantial redution in the spae used for model heking.The organization of the Chapter is as follows: we desribe our new ruleand prove its soundness and ompleteness in Setion 5.2. The theory behindthe appliation of this rule to timing diagrams is presented in Setion 5.3. Ourexperiments with applying this rule are desribed in Setion 5.4. We onludethe Chapter with a desription of related work in Setion 5.5.5.2 Assume-Guarantee Based CompositionalReasoningIn this setion, we �rst present the na��ve ompositional reasoning rule andexplain why it is unsound. We then present our new rule, and show thatit is both sound and omplete. We begin by de�ning some basi onepts:proesses, omposition, and losure. Although the eventual appliation of ourrule is to �nite state proesses, we develop it in a more general setting.5.2.1 PreliminariesDe�nition 22 (V -state) For a non-empty set of typed variables V , an as-signment of values to variables in V is alled a V -state.
80

De�nition 23 (V -sequene) A V -sequene x = x0; x1; : : : is a non-emptysequene (�nite or in�nite) of V -states.The length of a V -sequene x, written as jxj, is the number of states inx. We write x[i::j℄, for j � i, to denote the subsequene xi; : : : ; xj and x; y todenote onatenation of a �nite sequene x to y. A language L over a set ofvariables V is a set of �nite or in�nite sequenes of V -states.De�nition 24 (Satisfation) A W -sequene x, where V � W , satis�es Li� x projeted on to V belongs to L.The term (9W : L) de�nes a language over V nW . A (V nW)-sequenex satis�es (9W : L) i� there exists a sequene y, with the same length as x,suh that y is in L and x and y di�er only on the values of variables in W .For a language L over V , let [L℄ mean that every �nite or in�nite V -sequenesatis�es L. Thus, for L1 and L2 over V , [L1) L2℄ denotes L1 � L2.De�nition 25 (Proess) A proess P is spei�ed by a tuple (V; I; R; F) where� V is a non-empty set of typed variables, partitioned into three sets: pri-vate variables V p, interfae variables V i, and external variables V e. Theset of modi�able variables, V m, is V p [V i.� I(V m) is an initial ondition.� R(V; (V m)0) is a transition relation. The variables (V m)0, whih are in1-1 orrespondene with V m, represent values for V m in the next state.� F (V) is a fairness ondition. 81

De�nition 26 (Proess Exeution) A V -sequene x is an exeution of Pi� I(x0) and for all i suh that i+ 1 < jxj, R(xi; xi+1) holds.The exeutions of a proess P an be de�ned by the LTL formula (I ^G(R)), interpreted over V -sequenes. The set of �nite exeutions is denotedby �nexe(P).De�nition 27 (Language of a Proess) The language of a proess P , L(P),is the set of �nite exeutions of P together with those in�nite exeutions of Pthat satisfy F . Thus L(P) an be expressed by the LTL formula (I ^G(R)^F).The observable language of P , denoted by LO(P), is the projetion ofits language on V i [V e. In the rest of the Chapter, we assume that privatevariables of a proess are distint from the variables of all other proesses,sine this does not a�et the observable language.De�nition 28 (Implements) For proesses P and A, the relationship \Pimplements A", denoted by P j= A, is de�ned only if V i(A) � V i(P), and isde�ned as [LO(P)) LO(A)℄, whih an be written as [L(P)) (9V p(A) :L(A))℄.This mathes the usual de�nition when A is an automaton, sine asequene over V p(A) is a run of the automaton.De�nition 29 (Proess Composition) The omposition of the proessesP1 = (V1; I1; R1; F1) and P2 = (V2; I2; R2; F2), denoted by P1==P2, is the pro-ess P = (V; I; R; F), where� V = V1 [V2, V p = V p1 [V p2 and V i = V i1 [V i282

� I = I1 ^ I2� R = R1 ^ R2� F = F1 ^ F2De�nition 30 (Proess Disjuntion) The disjuntion of the proesses P1and P2, denoted by P1 + P2, is de�ned as the proess P = (V; I; R; F), where� V = V1 [V2 [fg, V p = V p1 [V p2 [fg and V i = V i1 [V i2 . is a privatevariable that serves to hoose initially between the two proesses.� I = (^ I1) _ (: ^ I2)� R = (0 =) ^ ((^ R1) _ (: ^ R2))� F = (FG() ^ F1) _ (FG(:) ^ F2)The following Lemmas summarizes the properties of these onstrutionsneeded for the proofs in following Setions.Lemma 1 For proesses P1; P2, [�nexe(P1==P2) � �nexe(P1)^ �nexe(P2)℄Proof.x 2 �nexe(P1==P2)� (by De�nition 26 (exeution))I(P1==P2)(x0) ^ (8i : i + 1 < jxj : R(P1==P2)(xi; xi+1))� (by De�nition 29 (omposition))(I(P1)(x0) ^ I(P2)(x0))^(8i : i+ 1 < jxj : R(P1)(xi; xi+1) ^ R(P2)(xi; xi+1))� (rearranging the terms) 83

(I(P1)(x0) ^ (8i : i + 1 < jxj : R(P1)(xi; xi+1)))^(I(P2)(x0) ^ (8i : i + 1 < jxj : R(P2)(xi; xi+1)))� (by De�nition 26 (exeution))(x 2 �nexe(P1)) ^ (x 2 �nexe(P2))�Lemma 2 For proesses P1; P2, [L(P1==P2) � L(P1) ^ L(P2)℄Proof.L(P1==P2)� (by De�nition 27 (language))I(P1==P2)(v) ^ G(R(P1==P2)(v; v0)) ^ F (P1==P2)(v)� (by De�nition 29 (omposition))I(P1)(v) ^ I(P2)(v)) ^ G(R(P1)(v; v0)) ^ G(R(P2)(v; v0))^(F (P1)(v) ^ F (P2)(v))� (rearranging the terms)(I(P1)(v) ^ G(R(P1)(v; v0)) ^ F (P1)(v))^(I(P2)(v) ^ G(R(P2)(v; v0)) ^ F (P2)(v))� (by De�nition 26 (language))L(P1) ^ L(P2)�Lemma 3 For proesses P1; P2, [LO(P1==P2) � LO(P1) ^ LO(P2)℄Proof. Let V p1 and V p2 be the private variables of P1 and P2, andV p = V p1 [V p2 be the private variables of P1==P2.LO(P1==P2) 84

� (by De�nition 27 (language), De�nition of LO)(9V p(P1==P2) : (I(P1==P2)(v) ^ G(R(P1==P2)(v; v0))^F (P1==P2)(v)))� (by De�nition 29 (omposition))(9V p(P1==P2) : (I(P1)(v) ^ I(P2)(v)) ^ (G(R(P1)(v; v0))^G(R(P2)(v; v0))) ^ (F (P1)(v) ^ F (P2)(v)))� (rearranging the terms, De�nition of omposition)(9V p1 (P1) : (I(P1)(v) ^ G(R(P1)(v; v0)) ^ F (P1)(v)))^(9V p2 (P2) : (I(P2)(v) ^ G(R(P2)(v; v0)) ^ F (P2)(v)))� (by De�nition 27 (language), De�nition of LO)LO(P1) ^ LO(P2)�Lemma 4 For proesses P1; P2, [(9fg : L(P1 + P2)) � L(P1) _ L(P2)℄.Proof.(9fg : L(P1 + P2))� (by De�nition 27 (language))(9fg : I(P1 + P2)(v) ^ G(R(P1 + P2)(v; v0)) ^ F (P1 + P2)(v))� (by De�nition 30 (disjuntion))(9fg : ((^ I(P1)(v) _ (: ^ I(P2)(v)))^((0 =) ^ ((^ R(P1)(v; v0))) _ (: ^ R(P2)(v; v0))^ ((FG() ^ F (P1)(v)) _ (FG(:) ^ F (P2)(v))� (rearranging the terms, logi)(9fg : (_ (:)) ^ (0 =) ^ (FG() _ FG(:)))^(I(P1)(v) ^ R(P1)(v; v0) ^ F (P1)(v))_(I(P2)(v) ^ R(P2)(v; v0) ^ F (P2)(v))85

� (by De�nition 27 (language))L(P1) _ L(P2)�De�nition 31 (Closure) For a language L on variables V , the losure of L,denoted by l(L), is a language onsisting of V -sequenes x where, for everyi < jxj, there exists a sequene y suh that x[0::i℄; y 2 L.l has the following properties.Theorem 20 (Closure Properties) ([AS85℄) Given languages L1 and L2,a. L1 spei�es a safety property if and only if l(L1) = L1.b. [L1) l(L1)℄. [l(l(L1))) l(L1)℄d. [l(L1 [L2) = l(L1) [l(L2)℄For any proess P , there is a proess CL(P) suh that the property[LO(CL(P)) � l(LO(P))℄ holds. If P is �nite-state, CL(P) is formed fromP by hanging the fairness ondition of P to true.De�nition 32 (Closure Proess) For any �nite state proess P = (V; I; R; F), let CL(P) be the proess (V 0; I 0; R0; F 0) where V 0 = V , I 0 = I, R0 = Rand F 0 = true.De�nition 33 (Non-bloking) A proess Q does not blok proess P i�� Any initial state of P an be extended to an initial state of P==Q, and86

� For any reahable state of P==Q, any transition of P from that state anbe extended to a joint transition of P==Q.A proess P is non-bloking if and only if, from any reahable state, Pan make a transition on any external input.De�nition 34 (Mahine Closure) A proess is mahine losed i� every �-nite exeution an be extended to an in�nite fair exeution.Mahine losure indiates that it is possible at any point to break awayfrom an in�nite exeution to one that is fair. A proess that is mahine losedsatis�es the CTL property AGE(fair).Lemma 5 Given a �nite state proess P = (V; I; R; F),[LO(CL(P)) � l(LO(P))℄.Proof. ()) Consider a sequene x 2 LO(CL(P)). Now, assume that x 62l(LO(P)), so, for some i, x[0::i℄ an not be extended to a sequene in LO(P).But, by onstrution (De�nition 32), any exeution of P is also an exeutionof CL(P). Therefore, x[0::i℄ an not be extended to a sequene in LO(CL(P)).Thus, we have a ontradition and x 2 l(LO(P)).(() Consider a sequene x suh that x 2 l(LO(P)) whih implies, by De�ni-tion 31, that, for all i, x[0::i℄ an be extended into a sequene that is in LO(P).Thus, by De�nition 25, x is an exeution of P and, therefore, is an exeutionof CL(P). �This de�nition of proesses and of omposition is quite general: it in-ludes Moore and Mealy styles of de�nition as speial ases, and proesses ina omposition an modify shared variables. Interleaving omposition an bede�ned by adding a shared \turn" variable.87

5.2.2 Compositional Reasoning RulesIn ompositional reasoning one avoids reasoning diretly about a system, thatis omposed of many sub-omponents operating in parallel, by deomposingthe property and attempting to prove that the system sub-omponents satisfythe sub-properties in a systemati manner. The following is an example of a\non-irular" ompositional proof rule.P1 j= T1P2 j= T2P1==P2 j= T1 ^ T2These \non-irular" proof rules often do not work if the omponentsare tightly oupled, sine P1 may satisfy T1 only in the presene of P2. Forinstane, in the following example, both P1kP2 j= T1 ^ T2 and P2 j= T2 hold.However, in the absene of P1, P1 j= T1 does not hold sine input y is unon-strained.Example 1 (Assume-Guarantee)Proess P1 Proess P2var x: boolean; var y: boolean;initially x=true; initially y=true;transition x'=y transition y'=trueend P1 end P2property T1: Always(x)property T2: Always(y) 88

As illustrated in Example 1, it is unlikely that a system will satisfy anyinteresting property outside of its intended environment. Hene, the environ-ment must be onstrained/spei�ed to some extent. Towards this end, severalso-alled \irular" proof rules have been proposed, of whih this is an exam-ple. In the following rule [AH96℄, both the implementation and spei�ationare proesses. A trae is a sequene of states or events, and the semantis ofa proess is a set of traes. Parallel omposition (==) is the intersetion of thetrae sets and the implements relation (j=) is trae set inlusion.P1==T2 j= T1P2==T1 j= T2P1==P2 j= T1==T2This rule is sound for safety properties (i.e. for �nite omputations),but the soundness depends on a number of additional semanti assumptions:� The proesses must be non-bloking.� The proesses must have non-empty trae sets.� The output variables of the proesses must be disjoint.In Example 1, one an show that P2==T1 j= T2 and P2==T1 j= T2, andonlude, by the soundness of the rule, that P1==P2 j= T1==T2. This rule is,however, unsound for liveness properties. To see this, onsider the followinginstantiation.Example 2 (Liveness) 89

Proess P1 Proess P2var x: boolean; var y: boolean;initially x=true or x=false; initially y=true or y=false;transition x'=y transition y'=xend P1 end P2property T1: eventually(x)property T2: eventually(y)Although both hypotheses, P1==T2 j= T1 and P2==T1 j= T2 hold, it isnot true that P1==P2 j= T1==T2, as the omputation where x and y are alwaysfalse is a valid omputation of P1==P2. In an attempt to �x this problem,several proposed rules (f. [AL95, AH96℄) use the safety losure of one of theproperties in the hypothesis as shown below.P1==T2 j= T1P2==CL(T1) j= T2P1==P2 j= T1==T2Using the safety losure of T1 prevents any possibility of irular reason-ing amongst liveness properties. On the other hand, this makes it diÆult toapply the rule when liveness properties are needed as assumptions. We adopta di�erent strategy to �xing the problem: we use an additional hypothesisthat heks if the irular reasoning is sound.Another issue onerning suh rules is ompleteness. Namjoshi andTreer [NT00℄ have explored ompleteness and have shown that many of theseirular proof rules are indeed inomplete. The following example, taken fromthe paper [NT00℄, an be used to show that previous rules are not omplete.90

Example 3 (Completeness)Proess P1 Proess P2var l1,r1: boolean; var l2,r2: boolean;initially l1=true, r1=true; initially l2=true, r2=true;transition r1'=l1 transition r2'=l2transition l1'=r2 transition l2'=r1end P1 end P2property T1: Always(l1)property T2: Always(l2)In the above example, P1==P2 j= T1==T2 holds, However, the hypothesisP1==T2 j= T1 does not hold sine variable r2 is now unonstrained and l1 maybe assigned the value false. The seond hypothesis also fails to hold by asymmetri argument.We will now present a new assume-guarantee style proof rule that isboth sound and omplete and an be applied uniformly to both safety andliveness properties. For simpliity, we present this rule for the omposition oftwo proesses; it an be easily extended to apply to any �nite omposition.Proof Rule: To show that P1==P2 j= T , �nd Q1 and Q2 suh that thefollowing onditions are satis�ed.C0 V i(Q1) � V i(P1), Q1 does not blok P2, and symmetrially for Q2.C1 P1==Q2 j= Q1, and P2==Q1 j= Q2C2 Q1==Q2 j= T 91

C3 Either P1==CL(T) j= (T +Q1 +Q2), or P2==CL(T) j= (T +Q1 +Q2)Notie that hypothesis C3 need not be heked when T is a safetyproperty, as [LO(CL(T))) LO(T)℄ holds in this ase.We will �rst prove some preliminary lemmas that will be used later inthe proof of the soundness and ompleteness of the above rule. In the followingproof, let W be the private variables of Q1==Q2.Lemma 6 [�nexe(P1==P2)) (9W : �nexe(Q1==Q2))℄Proof. A sequene x is in �nexe(P; k) i� x[0::k℄ is a �nite exeution of proessP . The property that proess Q does not blok P an be stated as follows: (i)[I(P)) (9V m(Q)nV m(P) : I(P==Q))℄, and (ii) for any k > 0, [�nexe(P; k)^�nexe(Q; k � 1)) (9(V m(Q)nV m(P))(k) : �nexe(P==Q; k))℄, where x sat-is�es (9V (k) : L) i� there is a sequene y in L, of the same length as x, thatdi�ers from x only in the values of the V -variables at the kth position.The proof is by indution on the length of exeutions. Let W =V p(Q1==Q2), U = V m(Q1)nV m(P2) and W2 = V p(Q2).Base ase:�nexe(P1==P2; 0), (de�nitions)I(P1) ^ I(P2)) (non-bloking from C0)(9U : I(P2==Q1)) ^ I(P1)) (by C1)(9U : (9W2 : I(Q2))) ^ I(P1)) (as U is disjoint from V m(Q2) by C0)92

(9W2 : I(Q2)) ^ I(P1)) (W2 is a set of private variables)(9W2 : I(P1==Q2))) (by monotoniity of omposition and C1)(9W : I(Q2==Q1)), (de�nitions)(9W : �nexe(Q1==Q2; 0))Indutive ase: k > 0 and the result holds for k � 1 by assumption.�nexe(P1==P2; k)) (indutive hypothesis)�nexe(P1==P2; k) ^ (9W : �nexe(Q1==Q2; k � 1))) (W is a set of private variables)(9W : �nexe(P1; k) ^ �nexe(P2; k) ^ �nexe(Q1; k � 1)^ �nexe(Q2; k � 1))) (non-bloking from C0)(9W : (9U(k) : �nexe(P2==Q1; k)) ^ �nexe(P1; k))) (by C1)(9W : (9U(k) : (9W2 : �nexe(Q2; k))) ^ �nexe(P1; k))) (U is disjoint from V m(Q2) by C0, and V e(Q2) is unonstrained)(9W : �nexe(Q2; k) ^ �nexe(P1; k))) (by C1)(9W : �nexe(Q1==Q2; k))�Theorem 21 (Soundness) The rule is sound for arbitrary P1; P2 and T .93

Proof. We have to show that P1==P2 j= T follows from the onditions C0-C3.This, by de�nition, is equivalent to showing that [L(P1==P2)) LO(T)℄. Bythe results in [AS85℄, any language L an be an be written as a onjuntionof the safety property l(L) and the liveness property (l(L)) L). Based onthis haraterization, we break up the proof into the following two parts.Safety [L(P1==P2)) l(LO(T))℄, andLiveness [L(P1==P2) ^ l(LO(T))) LO(T)℄First, we show the safety part by proving the equivalent (as l(L(P))is the set of exeutions of P) statement [�nexe(P1==P2)) l(LO(T))℄. LetU be the private variables of T .�nexe(P1==P2)) (by Lemma 6)(9W : �nexe(Q1==Q2))) (as l(L(P)) inludes �nexe(P))(9W : l(L(Q1==Q2)))) (by C2; monotoniity of l)(9W : l(LO(T)))) (W ontains private variables not ourring in T)l(LO(T))Next, we show the liveness part.L(P1) ^ L(P2) ^ l(LO(T))) (by Lemma 5) 94

L(P1) ^ L(P2) ^ LO(CL(T))) (by ondition C3)L(P1) ^ L(P2) ^ LO(T +Q1 +Q2)) (by Lemma 4; W [U [fg onsists of private variables)(9W [U [fg : L(P1) ^ L(P2) ^ (L(T) _ L(Q1) _ L(Q2)))) (distributing ^ over _ ; Lemma 3 and ondition C1)(9W [U [fg : L(T) _ LO(Q1==Q2))) (distributing 9 over _ ; ondition C2)(9W [U [fg : L(T)) _ (9W [U [fg : LO(T))) (W [fg onsists of private variables not in T)LO(T)�Theorem 22 (Completeness-1) The rule is omplete for non-bloking pro-esses P1; P2 that have disjoint interfae variables.Proof. Suppose that P1==P2 j= T holds. Let Q1 = P1 and Q2 = P2. AsQ1 is non-bloking and has disjoint interfae variables from P2, it satis�es theondition C0; similarly for the symmetri ase. Condition C1 is satis�ed asP1==P2 j= P1 and P1==P2 j= P2 holds trivially. Condition C2 is P1==P2 j= T ,whih is true by assumption. Condition C3 holds as P1 j= (T + P1 + P2) byweakening.� Theorem 22 shows that the proof rule is omplete for proesses P1 andP2 that are non-bloking and have disjoint interfae variables. Theorem 23laims that the rule is omplete for arbitrary proesses. To show P1==P2 j= Tfor arbitrary P1, P2 and T , the proof proeeds as follows.95

� Syntatially transform proesses P1; P2; and T into P 01; P 02; and T 0 suhthat (i) P1==P2 j= T i� P 01==P 02 j= T 0, and (ii) P 01; P 02 are non-blokingand have disjoint interfae variables.� Apply Theorem 22 to P 01; P 02; and T 0 whih, by onstrution, satisfy thehypotheses for the theorem.Thus, Theorem 23 shows that the rule is omplete up to a syntatitransformation. This is a broader de�nition of ompleteness, whih an beeasily onverted to the narrower syntati sense by adding the transformationas an axiom. The proof alluded to above shows that the rule ombined withthe axiom yield a proof system that is omplete in the syntati sense. It is, ofourse, also sound by (i) and the soundness of the rule for arbitrary proesses.We will now de�ne the transformation in detail and give proofs of (i) and (ii).Theorem 23 (Completeness-2) The rule is omplete for arbitrary proesses.Proof. For simpliity, we onsider �rst the ase where P1; P2 have a sharedinterfae variable y, but are non-bloking. Bloking proesses are onvertedto non-bloking ones by a similar transformation, whih is desribed later.Proesses with shared variablesConsider proesses P1; P2 and T suh that P1==P2 j= T . Let us assume that P1and P2 have a shared interfae variable y, but are non-bloking. First, if y isnot an interfae variable of T , let proess T 00 be obtained by delaring y as aninterfae variable, without hanging anything else in T . Clearly, P1==P2 j= Ti� P1==P2 j= T 00. Next, we transform proesses P1, P2 and T 00 by by addinga dummy initial state to eah proess where all variables have a �xed value,say ?. Let P I1 , P I2 and T I be the new versions of these proesses. As the96

initial ondition, transition relation, and fairness ondition are unhanged,P1==P2 j= T i� P I1 ==P I2 j= T I . For the rest of the proof, we assume P1; P2 andT satisfy the above onditions; that is, T has y as an interfae variable, andP1; P2 and T have a dummy initial state where y has a single value, and thatP1==P2 j= T .We an transform P1 into P 01 by by syntatially replaing every our-rene of y with y1, whih we represent as the substitution [y y1℄. Let x1represent the other variables of P1. Thus, P 01 is de�ned as follows.� V (P 01) = (V (P1)nfyg) [fy1g,� I(P 01)(x1y1) = [y y1℄I(P1)(x1y),� R(P 01)(x1y1; x01y01) = [y; y0 y1; y01℄R(P1)(x1y; x01y0),� F (P 01)(x1y1) = [y y1℄F (P1)(x1y).Likewise, we an transform P2 into P 02 by replaing y with y2. We now show arelationship between P1==P2 and P 01==P 02.Lemma 7 [L(P1==P2) � (9y1; y2 : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02))℄.Proof.(9y1; y2 : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02))� (de�nition of L)(9y1; y2 : G(y = y1) ^ G(y = y2)^I(P 01)(x1y1) ^ G(R(P 01)(x1y1; x01y01)) ^ F (P 01)(x1y1)^I(P 02)(x2y2) ^ G(R(P 02)(x2y2; x02y02)) ^ F (P 02)(x2y2))� (Leibnitz rule (using G(y = y1) ^ G(y = y2)), de�nition of P 01; P 02)97

(9y1; y2 : G(y = y1) ^ G(y = y2)^I(P1)(x1y) ^ G(R(P1)(x1y; x01y0)) ^ F (P1)(x1y)^I(P2)(x2y) ^ G(R(P2)(x2y; x02y0)) ^ F (P2)(x2y))� (logi)(9y1; y2 : G(y = y1) ^ G(y = y2))^I(P1)(x1y) ^ G(R(P1)(x1y; x01y0)) ^ F (P1)(x1y)^I(P2)(x2y) ^ G(R(P2)(x2y; x02y0)) ^ F (P2)(x2y)� (logi)I(P1)(x1y) ^ G(R(P1)(x1y; x01y0)) ^ F (P1)(x1y)^I(P2)(x2y) ^ G(R(P2)(x2y; x02y0)) ^ F (P2)(x2y)� (de�nitions)L(P1==P2)� We modify the proess T to T1 by substituting y1 for y; the followinglemma relates T and T1.Lemma 8 [LO(T1) � (8y : G(y = y1)) LO(T))℄Proof.(8y : G(y = y1)) LO(T))� (de�nitions)(8y : G(y = y1)) (9V p(T) : I(T)(xy) ^ G(R(T)(xy; x0y0))^F (T)(xy)))� (Leibnitz rule; y; y1 are not private variables of T)(8y : G(y = y1)) (9V p(T) : I(T)(xy1) ^ G(R(T)(xy1; x0y01))^F (T)(xy1))) 98

� (rearranging)(9y : G(y = y1))) (9V p(T) : I(T)(xy1) ^ G(R(T)(xy1; x0y01))^F (T)(xy1))� (de�nitions; logi)true) LO(T1)� (logi)LO(T1)� We an now show the following lemma.Lemma 9 [L(P1==P2)) LO(T)℄ i� [L(P 01==P 02) ^ G(y1 = y2)) LO(T1)℄.Proof.[L(P1==P2)) LO(T)℄� (by Lemma 7)[(9y1; y2 : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02))) LO(T)℄� (logi)[(8y1; y2 : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02)) LO(T))℄� (rearranging quanti�ers: absorb y1; y2 into [℄, make y expliit)[(8y : G(y = y1) ^ G(y = y2) ^ L(P 01==P 02)) LO(T))℄� (rearranging)[L(P 01==P 02)) (8y : G(y = y1) ^ G(y = y2)) LO(T))℄� (Leibnitz rule)[L(P 01==P 02)) (8y : G(y = y1) ^ G(y1 = y2)) LO(T))℄� (rearranging)[L(P 01==P 02)) (G(y1 = y2)) (8y : G(y = y1)) LO(T))℄99

� (by Lemma 8)[L(P 01==P 02)) (G(y1 = y2)) LO(T1))℄� (rearranging)[L(P 01==P 02) ^ G(y1 = y2)) LO(T1)℄� By Lemma 9, [L(P1==P2)) LO(T)℄ holds i� [L(P 01==P 02)) (F(y1 6=y2) _ LO(T1))℄. We now modify the struture of T1 to T 0, whih takes theF(y1 6= y2) ondition into aount. Informally, T 0 is in the \normal" mode,where y1 = y2, and T 0 behaves like T1. If y1 6= y2 in the next state, T 0transitions to an \abnormal" mode, and stays in that mode from that pointon. The distintion between normal and abnormal mode is expressed by asingle private variable, n.Formally, if T1 = (V; I; R; F), then T 0 = (V 0; I 0; R0; F 0), where� (V 0)p = V p [fng, (V 0)i = V i [fy2g, and (V 0)e = V e. Let z refer to allthe variables of V; V 0 other than y; y1; y2; n.� I 0(zy1y2n) = (z = a) ^ (y1 = b) ^ (y2 = b) ^ n, where I(zy1) = (z =a ^ y1 = b). Reall there is a single initial state for T1.� R0(zy1y2n; z0y01y02n0) = (n ^ (y01 = y02) ^ n0 ^ R(zy1; z0y01)) _ (n ^ (y01 6=y02) ^ :n0) _ (:n ^ :n0)� F 0(zy1y2n) = (FG(n) ^ F (zy1)) _ FG(:n)Lemma 10 For proess P = P 01==P 02,[L(P) ^ G(y1 = y2)) LO(T1)℄ i� [L(P)) LO(T 0)℄100

Proof. ()) Consider any exeution � of P . We have to show that it belongsto LO(T 0). There are two ases:� if G(y1 = y2) holds for �, by hypothesis, � belongs to LO(T1); so thereis a run of T 0 on � that stays within normal states. Thus, � belongs toLO(T 0).� Otherwise, if eventually (y1 6= y2) holds in �, onsider the �rst point iat whih this happens. Then, i > 0, as the initial state of P satis�esy1 = y2. Thus, the pre�x �[0::i� 1℄ is in L(P), and satis�es G(y1 = y2),so there is a run of T 0 on it. As �[i℄ satis�es y1 6= y2, T 0 has a transitionto an abnormal state from the end state of this run, and aepts �.(() Consider any exeution � of P that satis�es G(y1 = y2). We have to showthat it belongs to LO(T1). This exeution belongs to LO(T 0) by assumption.As G(y1 = y2) holds of �, the witnessing run of T 0 on � must stay in thenormal part of T 0. By onstrution of T 0, this is a run of T1 on �, so � belongsto LO(T1).�Proesses that are blokingSuppose proesses P1 and P2 are bloking. We transform P1 to P 01, by addinga bloking variable b1, and making the following modi�ations:I(P 01)(x1b1) = I(P1)(x1) ^ :b1,R(P 01)(x1b1; x01b01) = (b1 ^ b01)_ (:b1 ^ (8x01 : :R(P1)(x1; x01)) ^ b01)_ (:b1 ^ R(P1)(x1; x01) ^ :b01),F (P 01)(x1b1) = (G(:b1) ^ F (P1)(x1)) _ F(b1).The variable b1 is initially false. P 01 behaves like P1 as long as b1 isfalse; it transitions to a state satisfying b1 on any ondition for whih P1101

has no enabled transition. P2 an be similarly modi�ed to P 02. Thus, by thisde�nition, P 01 and P 02 are non-bloking. We will now show, using a proof similarto that of Lemma 7, that [L(P1==P2) � (9b1; b2 : L(P 01==P 02) ^ G(:b1 ^ :b2))℄holds.Lemma 11 [L(P1==P2) � (9b1; b2 : L(P 01==P 02) ^ G(:b1 ^ :b2))℄.Proof.(9b1; b2 : G(:b1 ^ :b2) ^ L(P 01==P 02))� (de�nition of L)(9b1; b2 : G(:b1 ^ :b2)^I(P 01)(x1b1) ^ G(R(P 01)(x1b1; x01b01)) ^ F (P 01)(x1b1)^I(P 02)(x2b2) ^ G(R(P 02)(x2b2; x02b02)) ^ F (P 02)(x2b2))� (Leibnitz rule using G(:b1 ^ :b2))(9b1; b2 : G(:b1 ^ :b2)^I(P 01)(x1false) ^ G(R(P 01)(x1false; x01false)) ^ F (P 01)(x1b1)^I(P 02)(x2false) ^ G(R(P 02)(x2false; x02false)) ^ F (P 02)(x2b2))� (de�nition of P 0; logi)(9b1; b2 : G(:b1 ^ :b2))^I(P1)(x1) ^ G(R(P1)(x1; x01)) ^ F (P1)(x1)^I(P2)(x2) ^ G(R(P2)(x2; x02)) ^ F (P2)(x2)� (de�nition of L)L(P1==P2)�Lemma 12 [L(P1==P2)) LO(T)℄ i� [L(P 01==P 02)^G(:b1 ^:b2)) LO(T)℄.Proof. 102

[L(P1==P2)) LO(T)℄� (lemma 11)[(9b1; b2 : L(P 01==P 02) ^ G(:b1 ^ :b2))) LO(T)℄� (rearranging quanti�ers)[L(P 01==P 02) ^ G(:b1 ^ :b2)) LO(T)℄� We now modify the struture of T to T 0, whih takes the G(:b1 ^ :b2)ondition into aount. Informally, when in the \normal" mode (i.e. :b1 ^:b2), T 0 behaves like T . If b1 _ b2 holds in the next state, T 0 transitions to an\abnormal" mode, and stays in that mode from that point on. The distintionbetween normal and abnormal mode is expressed by a single private variable,n.Formally, if T = (V; I; R; F), then T 0 = (V 0; I 0; R0; F 0), where� (V 0)p = V p [fng, (V 0)i = V i [fb1; b2g, and (V 0)e = V e. Let z refer toall the variables of V; V 0 other than b1; b2; n.� I 0(zb1b2n) = (z = a) ^ (:b1) ^ (:b2) ^ n,� R0(zb1b2n; z0b01b02n0) = (n ^ :(b01 _ b02) ^ n0 ^ R(z; z0)) _ (n ^ (b01 _ b02) ^:n0) _ (:n ^ :n0)� F 0(zb1b2n) = (FG(n) ^ F (zb1b2)) _ FG(:n)Lemma 13 For proess P = P 01==P 02,[L(P) ^ G((:b1) ^ (:b2))) LO(T)℄ i� [L(P)) LO(T 0)℄103

Proof. ()) Consider any exeution � of P . We have to show that it belongsto LO(T 0). There are two ases:� If G(:(b1) ^ :(b2)) holds for �, by hypothesis, � belongs to LO(T); sothere is a run of T 0 on � that stays within normal states. Thus, � belongsto LO(T 0).� Otherwise, if eventually (b1 _ b2) holds in �, onsider the �rst point iat whih this happens. Then, i > 0, as the initial state of P satis�es(:b1) ^ (:b2). Thus, the pre�x �[0::i � 1℄ is in L(P), and satis�esG(:(b1) ^ :(b2)), so there is a run of T 0 on it. As �[i℄ satis�es (b1 _ b2),T 0 has a transition to an abnormal state from the end state of this run,and aepts �.(() Consider any exeution � of P that satis�es G((:b1) ^ (:b2)). We haveto show that it belongs to LO(T). This exeution belongs to LO(T 0) by as-sumption. As G((:b1) ^ (:b2)) holds on �, the witnessing run of T 0 on � staysin the normal part of T 0. By onstrution, this gives an aepting run of T on�, so x belongs to LO(T).��5.3 Compositional reasoning with Timing Di-agramsIn the previous setion, we presented a sound and omplete rule for assume-guarantee based ompositional reasoning. In this setion we show how toapply that rule to spei�ations in the form of SRTDs, whih were desribed104

 Mod1.C
��������������
��������������
��������������
��������������

Clock

Mod1.A

Mod2.B

postconditionprecondition

Figure 5.1: Augmented Synhronous Regular Timing Diagramin detail in Chapter 4. By fousing on SRTDs, whih are a highly regularspei�ation formalism, we obtain several bene�ts. Firstly, for SRTDs withthe non-overlapping semantis, the soundness hek C3 in the rule followsdiretly as a onsequene of the expressiveness of the formalism and so anbe dispensed with. Seondly, we take advantage of the fat that SRTDs haveeÆient model heking proedures. Finally, we also show that the generationof helper assertions is not only automati but eÆient for SRTDs.In order to use SRTDs as a spei�ation language in a ompositionalmodel heking paradigm we need to augment the de�nitions of SRTDs givenin Chapter 4 with some information about the modularity of the design beingveri�ed. This is ahieved by introduing the onept of an ownership funtionwhih is de�ned as follows.De�nition 35 (Ownership Funtion) Given an SRTD T = (; S;WF ;M)and a set of (implementation) proess names N . An ownership funtion O :S ! N maps eah signal in S to the proess in N that ontrols it.105

Note that the ownership funtion assumes that the signals are not on-trolled by more than one proess. Thus, the ownership funtion O an be usedto partition the SRTD T into disjoint fragments, T1; : : : ; Tn. An SRTD frag-ment Ti onsists of PreT , and only those waveforms in PostT that are owned byproess i. Reall that an SRTD T is de�ned over a set symboli values SV(S)= f(apaq:::ar)jap 2 SVp^ :::^ar 2 SVrg[fX;Dg, where S = fp; q; :::rg is theset of waveform names and SV i is the domain of values for waveform i. AnSRTD T is de�ned as (Pre; Post1; :::; P ostk), where the preondition Pre orany of the subsequent postondition segments Posti of length m is a funtionS � [0; m)! SV(S).De�nition 36 (SRTD Fragment) Given SRTD T = (Pre; Post1; :::; P ostk)and a ownership funtion O. Let SA = fs 2 SjO(s) = Ag be the signals inT ontrolled by implementation proess A. TA = (Pre0; P ost01; :::; P ost0k) is afragment of T with respet to O where� Pre0 = Pre and� Eah postondition segment Post0i, Post0i is a funtion from SA�[0; m)!SV(SA) where, for all s 2 SA, Post0i(s) = Posti(s).An SRTD fragment may not be a well-formed SRTD sine a fragmentmay ontain a pause whose pause owner is in another fragment. For example,in Figure 5.1, the ownership funtion O maps signals A and C to proessMod1and B to proess Mod2, and we have one fragment onsisting of waveformsMod1:A and Mod1:C and another with waveform Mod2:B.
106

5.3.1 Translating SRTDs into AutomataIn Chapter 4, we presented algorithms that translate an SRTD, with both theoverlapping and non-overlapping semantis, into 8FA. These onstrutionsan be modi�ed easily to onstrut similar automata for SRTD fragments; themodi�ation onsists of hoosing the failing postondition signal only amongstthe postondition signals of the fragment.Algorithm 5The algorithm that translates an SRTD T , relative to an ownership funtionO, into a 8FA AT proeeds as follows.� Use the ownership funtion O to partition the T into fragments T0; :::; Tn.� For eah fragment Ti, onstrut a 8FAAi using the algorithms (for eitherthe overlapping and non-overlapping semantis) in Setion 4.� The 8FA AT that orresponds to T is A0 � :::�An.Therefore, using this modi�ed algorithm, an SRTD T with fragmentsT1; : : : ; Tn an be translated into an 8FA AT =A1�: : :�An. As a onsequeneof Theorems 11 and 13, we know that AT aepts the language of T .5.3.2 Automati Constrution of Helper ProessesWe now present an algorithm that onstruts a helper proesses Qj that gen-erates the non-overlapping language orresponding to the fragment Tj of thediagram.Algorithm 6 107

For eah signal i in fragment Tj, proess Qj operates as follows.� Sets signal i nondeterministially until the preondition holds, then itgenerates the values for i as spei�ed in the postondition of waveformi.� If there is a don't-are value in waveform i, the output value is hosennondeterministially from the domain Vi.� If there is a segment of don't-are transitions, the point at whih thetransition ours is hosen nondeterministially as well. Qj maintainsthe old value until this point and then generates the new value.� If proess Qj is the owner of a pause, it non-deterministially deideswhen to generate this event and maintains the urrent value till thatpoint. The proess has a fairness onstraint that fores this event toour within a �nite period. Otherwise, it maintains its value until theevent that signals the end of the pause ours, without any requirementfor termination.Theorem 24 (Non-bloking) For an SRTD fragment Tj, the orrespondinghelper proess Qj is non-bloking.Proof. In order to prove that Qj is non-bloking, we must show that Qjan make a transition from any reahable state on any external input. Byonstrution, Qj operates independent of its environment exept in the aseof a pause. In the ase of a pause whih is not owned by Qj, if the pausebreaking event never ours Qj may wait in this state forever, otherwise, onethe event ours Qj ontinues to generate the postondition. If Qj owns the108

pause, there are fairness onstraints that fore this event to our; thus Qj isnon-bloking.� It is easy to show that Qj is just the ompletely haoti proess (withinitial ondition and transition relation both being true) omposed with theautomaton for Tj; hene, (==j : Qj) generates the non-overlapping languageof T .Theorem 25 (Corretness) For any SRTD fragment Tj and the orrespond-ing helper proess Qj, � is a omputation of (==j : Qj) i� � j=n T .Proof.()) If � is a omputation of (==j : Qj) then (by onstrution) either thepreondition PreT never holds or the �rst ourrene and all subsequent non-overlapping ourrenes of PreT are followed by postondition of T . Hene,by De�nition 21, � j=n T .(() � j=n T i� � 2 ((:p)�;PreT ;PostT)! + ((:p)�;PreT ;PostT)�; (:p)! (byDe�nition 21). If PreT does not hold along �, then � is a omputation of(==j : Qj). If there is sub-omputation �[q::r℄ of (==j : Qj) that satis�es PreTthen, by onstrution, (==j : Qj) generates �[r + 1::s℄ that satis�es PostT .We also know, by onstrution, that (==j : Qj) reognizes the �rst ourreneof PreT and ignores all overlapping ourrenes of PreT . Therefore, � is aomputation of (==j : Qj).� The key feature of this onstrution is that, for every pause k, onlythe proess that inludes the signal owning the pause has a fairness on-straint enforing the ourrene of the pause breaking event. This ensures109

non-interferene between the fairness onditions, whih is the essene of thesoundness hek in our ompositional rule.Theorem 26 (Non-interferene) For SRTD T with the non-overlappingsemantis, the orresponding proesses Q1; : : : ; Qn, where n > 1, and ompu-tation �, � 2 l(LO(Q1== : : : ==Qn)) implies � 2 LO(Q1 + : : :+Qn).Proof. T has a safety omponent, that spei�es that the waveforms must notbe violated and a liveness omponent whih spei�es that eah pause mustour for arbitrary but �nite period of time. If � is in l(LO(Q1== : : : ==Qn)),it must satisfy the waveform pattern at eah point. If � is not in LO(Q1 +: : :+Qn), this an only be beause � never produes the pause breaking eventof a pending pause. But suh a pause is owned by a partiular Qi; hene, byonstrution, � is a omputation of the Qj's, j 6= i. �Theorem 27 (Complexity of a Helper Proess) Given an SRTD frag-ment Tj and the orresponding helper proess Qj, the size of Qj is linear inthe size of Tj.Proof. The size of proess Qj is s+ t, where s is the number of states and t isthe transition size. The transition size is the sum of the length of the booleanguards labeling the transitions. The size of Tj is n � , where n is the numberof signals and is the number lok points.The number of states in Qj is bounded by and is, therefore, linear inthe size of the Tj. Eah transition in Qj is bounded by O(n) and the numberof transitions is bounded by . Hene, the transition size is n � , whih is alsolinear in jTjj. Thus, the size of Qj is linear in the size of jTjj. �110

5.3.3 Compositional Model Cheking of SRTDsIn this setion, we will desribe a proof methodology that uses SRTDs asthe property T in the proof rule in Setion 5.2. We would like to show thatP1==P2 j=n T , where T is an SRTD (respetively, P1==P2 j=o T). By theonstrution in the previous Setion, we know that any SRTD T an be auto-matially deomposed into helper proesses Q1 andQ2 relative to an ownershipfuntion. In order to apply the ompositional rule with these hoies for theQi's, we need only hek ondition C1 and C3, as onditions C0 and C2 aretrue by onstrution. In the non-overlapping ase, ondition C3 need not beheked, as it follows from Theorem 26. Thus, the only ondition to be hekedis C1. The details of this hek are desribed in the following setion.5.4 AppliationsWe have inorporated the algorithms desribed in the previous setions into theRtdt tool. We used Rtdt to automatially generate the property automataand the helper proesses. The veri�ation tool COSPAN is used to dishargethe proof obligations. COSPAN heks A j= B by onsidering only the in�nitefair exeutions. In order to hek inlusion for the �nite exeutions as well,we utilize mahine losure. If A is mahine losed, any �nite exeution x ofA an be extended to an in�nite fair exeution; thus, if the COSPAN hekis suessful, x mathes some �nite omputation of B. The alternative is touse COSPAN's failities for heking �nite omputations, but this requiresthe produt of A and B to be onstruted twie { one for eah hek. Themahine losure method is more eÆient, as in some of our examples, proesses111

are trivially mahine losed. We added the ability to hek mahine losure toCOSPAN.In our urrent implementation, we use the non-overlapping semantissine it requires that we only hek ondition C1. We would like to takeadvantage of the linear-time (Theorems 12,14) model heking algorithms todisharge the obligation P1==Q2 j= Q1 (similarly for the other obligation) inC1. We use Lemma 0 to replae the possibly more expensive hek P1==P2 j=nT by the omputationally heaper hek P1==P2 j=o T .We used Rtdt in onjuntion with COSPAN to verify two systems.The �rst is a synhronous memory aess ontroller and the seond is Luent'sSynthesizable PCI Interfae Core.5.4.1 Memory Aess Controller
arbiter.rqst

clock

00 10

arbiter.gnt

memory.ack

memory.data

arbiter.req

arbiter.addr

arbiter.read

Figure 5.2: Read Transation for the Memory Aess ControllerThe memory aess ontroller system has an arbiter that provides ar-112

bitration between two user proesses and a memory ontroller that ontrolsthree target proesses. The user proesses may non-deterministially requesta transation and the arbiter grants one user permission to initiate the trans-ation. That user proess may then issue a memory instrution by assertingeither the read or write line and putting an address the 2 bit address bus.The target whose tag mathes the address awakens, servies the request, thenasserts the ak line on ompletion.We veri�ed that this system satis�ed both read and write memory trans-ations formulated as SRTDs as shown in Figure 5.2. Table 5.1 presentsthe veri�ation statistis of both the ompositional and non-ompositionalapproahes. In Table 5.1, Arb and Mem refer to the arbiter and memoryontroller implementation proesses and Arb0 and Mem0 are the automati-ally generated helper proesses. m(Arb/Mem0) and m(Arb0//Mem) referto the mahine losure hek performed by COSPAN. Ta (Tm) is the !-NFAfor the SRTD fragment that orresponds to proess Arb (Mem). Table 5.1indiates that the ompositional heks are more eÆient than model hekingArb==Mem j= T diretly. The ost of heking Arb==Mem0 j= Ta is morethan heking Arb0==Mem j= Tm and this is beause most of the signals in theSRTDs for both the read and write transations belonged to the arbiter.5.4.2 Luent's PCI Synthesizable CoreThe seond example is the Luent Tehnologies PCI Interfae Core, whih is aset of building bloks that bridges an industry standard PCI Bus interfae toa high performane F-Bus. The F-Bus supports multiple masters and slavesand there are separate master and slave interfaes to the PCI Bus. The PCI113

Model Checking
Task

Number of
Variables

Number of
Reachable States Bdd Size

Space
(MBytes)

Time
(seconds)

SRTD for the read transaction

1.9e+06 14772 0 2

SRTD for the write transaction

1.0e+06 14551 0

1.1e+05 17993

1.1e+06 34861

1.1e+05 16854 2 11

220 7.3e+05 42844

2.5e+06

1.9e+04 14793

50084 22 73

3

2.6e+06

3.8e+04 15432

T

0

6

14

260

114

86

129

201

106

99

112

258

23

46

772254834

2

40

6717

T

mc(Arb’//Mem)

mc(Arb//Mem’)

Arb//Mem

Arb’//Mem

mc(Arb’//Mem)

mc(Arb//Mem’)

Arb//Mem

Arb//Mem’

Arb//Mem’

Arb’//Mem Tm

Tm

Ta

Ta

Table 5.1: Veri�ation Statistis for Memory Aess Controller DesignInterfae Core is designed to be fully ompatible with the PCI Loal Busspei�ation [Gro95℄.In the previous hapter, we used Luent's PCI Bus Funtional Model[BL96℄, whih is a sophistiated environment that was developed to test thePCI Interfae Core for funtionality and ompliane with the PCI spei�ation.The Funtional Model onsists of the PCI Core bloks and abstrat modelsfor both the PCI Bus and the F-Bus. This model has about 1500 boundedstate variables and was too large for model heking diretly. We, therefore,114

clock

mcntrl.MC_Frame

mcntrl.MC_Irdy

scntrl.SC_Devsel

scntrl.SC_Trdy

scntrl.SC_StopFigure 5.3: Non-burst Property for PCI Corerestrited our veri�ation e�orts to a part of this design alled pim-ore thatdeals with basi PCI funtionality. The pim-ore onsists of the followingproesses ating in parallel: a master ontrollermntrl, a slave ontroller sntrl,a on�guration proess on�g and an address multiplexer admux. In additionthere is an environment proess pim-ENV that ontains all the inputs to thepim-ore proess. We added a number of onstraints on pim-ENV to reduethe size of the state spae. These onstraints were property spei� and weredi�erent for eah property we heked.We formulated a number of properties as SRTDs by looking at the tim-ing diagrams found in the PCI spei�ation [Gro95℄ and the PCI Core User'smanual [BL96℄. These SRTDs were de�ned over signals ontrolled by mntrland sntrl. We used Rtdt to automatially onstrut the helper proessesMC 0 and SC 0 and the property automata Tm and Ts. In Table 5.2, ENVrefers to the omposition of pim-ENV, on�g and admux, while MC and SCrefer to mntrl and sntrl respetively. Mahine losure was trivially satis�edsine the pim-ore proess did not ontain any fairness.115

 TmMcrl//Scrl’//E

Mcrl’//Scrl//E Ts

Mcrl//Scrl//E T

Mcrl’//Scrl//E Ts

 TmMcrl//Scrl’//E

Mcrl//Scrl//E T

Mcrl’//Scrl//E Ts

 TmMcrl//Scrl’//E

Model Checking
Task

Number of
Variables

Number of
Reachable States Bdd Size

Space
(MBytes)

Time
(seconds)

SRTD Burst Property 1

5.2e+05

1.2e+07 40

4.4e+08

SRTD Non Burst Property 1

SRTD Burst Property 2

273140

291

79

74

14

3

20

3

58 77411 3

127 587771 93 5281

− − 6725219 342Mcrl//Scrl//E

* did not complete due to shortage of space

T*

9.9e+06

3.8e+05

1.8e+08

2.5e+28

1.4e+09

293

44066

158490

42436

18241792331

138110

430

40

302

335 511

115488 9 124

74

Table 5.2: Veri�ation Statistis for PCI Synthesizable Core DesignThe basi bus transfer on the PCI is a burst, whih is omposed of anaddress phase followed by one or more data phases. In the non-burst mode,eah address phase is followed by exatly one data phase. The data transfersin the PCI protool are ontrolled by three signals PiFrame, PiIrdy andPiTrdy. The master of the bus drives the signal PiFrame to indiate thestart and end of a transation. PiIrdy is asserted by the master to indiatethat it is ready to transfer data. Similarly the slave uses PiTrdy to signal116

that it is ready for data transfer. Data is transferred between master andslave when both PiIrdy and PiTrdy are asserted on a rising lok edge. ThePiStop signal is used by the slave to indiate termination of the transationand the PiDevsel signal is used to indiate the hosen devie.
clock

mcntrl.MC_Frame

mcntrl.MC_Irdy

scntrl.SC_Devsel

scntrl.SC_TrdyFigure 5.4: Burst Property for PCI CoreThe �rst property in Table 5.2 stated that \in an ongoing transation,one the PiStop signal is asserted, the PiTrdy and PiDevsel signals remainonstant until the data phase ompletes (PiIrdy is deasserted)". The se-ond property, shown in Figure 5.4, spei�ed that \if PiFrame is deassertedwhen both PiIrdy and PiTrdy are asserted then the data phase ompletessuessfully ". The �nal property, shown in Figure 5.3, spei�ed the non-burstproperty, \if PiFrame is asserted for exatly one lok yle and PiIrdy,PiDevsel and PiTrdy are eventually asserted then in the next lok yle thetransation ends".Table 5.2 indiates that the ompositional heks are far more eÆientthan the orresponding non-ompositional heks. The non-ompositionalhek for the non-burst property ran out of memory, the numbers shown inTable 5.2 are the BDD size, spae and time just before memory exhaustion.117

The slave ontroller sntrl has a lot of interation with both on�g and admuxproesses and this resulted in these proesses being pulled into the one ofinuene. This is reeted in the signi�ant disparity in the numbers for thetwo ompositional heks.5.5 Related Work and ConlusionsCompositional reasoning for onurrently ative proesses has been the sub-jet of muh work over the past three deades. The earliest work in assume-guarantee reasoning [MC81, Jon81℄ was onerned about reasoning aboutsafety properties for networks of proesses. Many other assume-guaranteeproof rules, like those proposed in [Pnu85℄ [Sta85℄ [Kur87℄ [AH96℄ and [MM97℄,apply only to safety properties. There are more general proof rules, that anbe applied to both safety and liveness properties, whih are presented in thefollowing: [Pnu85℄ [Jos87℄ [CLM89℄ [GL94℄ [AL95℄ [AH95℄ [AH96℄ [MM99℄and [NT00℄. Our rule extends a simple reasoning rule, that is known tobe sound for safety properties, with an additional soundness hek for live-ness properties. Thus, in a sense, the rule isolates the diÆulties with rea-soning about liveness in the soundness hek. Unlike our rule, many otherproof rules, like [AL95℄ [MM99℄ [AH95℄ [AH96℄ and [HQRT98℄, have beenshown to be inomplete [NT00℄. Moreover, most of the earlier work (f.[Pnu85, AL95, AH96, MM99, NT00℄) applies only to restrited kinds of pro-esses or temporal logi formulas. In ontrast, our proess framework is verygeneral and plaes far fewer restritions on proesses.The possibility of using timing diagrams for ompositional veri�ationappears to have been �rst reognized in a paper by Josko [Jos87℄ on modu-118

lar reasoning. This paper, however, uses timing diagrams only for illustrativepurposes. In later work [HSD+93℄, [DH94℄, [DHKS94℄, [BW98b℄, [BW98a℄, aompositional veri�ation methodology proposed in [Jos93℄ is used to verifySymboli Timing Diagram (STD) [DJS94℄ properties. This work uses tim-ing diagrams as a onvenient notation for expressing temporal properties {the assume-guarantee reasoning is left to the veri�er. In ontrast, our workshows how assume-guarantee pairs an be generated mehanially from tim-ing diagram spei�ations, resulting in a ompletely automated ompositionalveri�ation method.In our work, we show that timing diagram spei�ations in the formof SRTDs are naturally deomposable into assume-guarantee properties aboutthe omponents of the system. We also show that, although timing diagramsan express liveness properties, the na��ve ompositional reasoning rule anbe applied safely, as the additional soundness hek always sueeds for thenon-overlapping semantis. We show how to apply the ompositional rulein a fully automated manner. Our experiments with the memory ontrollerand the PCI interfae ore show that ompositional reasoning an indeed bedone suessfully in this way, produing substantial savings in the time andspae required for the veri�ation. Although, in these examples, the naturaldeomposition of the timing diagram property suÆes for generating the helperproess, it is possible that this will not true in some ases. Thus, heuristisfor automatially generating helper proesses may be needed { whih we leavefor future work.
119

Chapter 6
The Rtdt Tool

6.1 IntrodutionThe Regular Timing Diagram Translator (Rtdt) tool provides a user-friendlygraphial editor, that is used to reate and edit SRTDs, plus a translatorthat implements the ompositional and non-ompositional model heking al-gorithms. Rtdt forms a formal and eÆient timing diagram interfae to themodel heker COSPAN [HHK96℄.The main features of the Rtdt tool are as follows.� A user friendly editor for graphially reating and editing SRTDs.� A translator that implements the non-ompositional algorithms and theompositional proof proedure desribed in Chapters 4 and 5.� The user an exeute COSPAN from within the Rtdt tool.� When a veri�ation hek fails, Rtdt displays the resulting error traeas an SRTD and allows the user the option of editing this diagram.120

6.2 Rtdt Design IssuesOur design goals for theRtdt tool were: easy of use, eÆieny, maintainabilityand portability. We hose JAVA as the programming language for two reasons,namely portability and the extensive graphial support. Unlike other timingdiagrams editors (f. [KM97℄), we designedRtdt's Graphial User Interfae toensure that the diagram at any point in the editing proess is well-formed. Forinstane, we use the user supplied lok triggering information in the editingproess to ensure that a rising edge triggered waveform only hanges state atthe rising edge. The implementation is leanly partitioned so that hangesmade to underlying model do not e�et either the editor or translator.Rtdt makes use of the JAVA Swing API for the graphis. The oreof the design is the intermediate representation of an SRTD, alled IR, whihis a reord that ontains the following information: number of lok yles,number of waveforms, position of the preondition, a list denoting the pausemarkers, a list of olumn names and a list of waveforms. Eah waveform is alist onsisting of the waveform name, the triggering edge of the lok and thevalue at eah lok point.The editor reads and writes the IR. When the editor reads an IR, itreates a Swing omponent alled a JTable. In order to display and edit anSRTD, instead of the table, we ustomized the JTable ell-editor and ell-renderer. The translator also inputs the IR and reates orresponding au-tomata desriptions in S/R, whih is the input language of COSPAN. The IRis written into a �le with extension \.td" and the orresponding S/R transla-tion is written into a �le with the extension \.td.sr".
121

