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In the last decade, the relational data model has been extended in nu-

merous ways, including geographic information systems, abstract data types

and object models, constraint and temporal databases, and on-line analytical

processing. We study the indexing requirements of these data models. In many

cases, these requirements are fulfilled by efficient techniques for multidimen-

sional range search. Previous techniques for multidimensional range search,

such as the R-tree and its variants, are based on ad hoc assumptions on the na-

ture of the workloads they index, and have been known to suffer from reduced

scalability and robustness. We adopt an alternative approach; our study fo-

cuses on techniques that provide worst-case performance guarantees, and thus

overcome these deficiencies.
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Indexability, proposed by Hellerstein, Koutsoupias and Papadimitriou,

is a novel memory model for external memory. In indexability, the complexity

of indexing is quantified by two parameters: storage redundancy and access

overhead. Indexability focuses on the inherent trade-off between these two

parameters. We study multidimensional range search under indexability. Our

results are of two kinds; indexing schemes for various problems, and corre-

sponding lower bounds. We develop indexing schemes for interval manage-

ment, multidimensional arrays, and various types of planar range search. We

derive a lower-bounds theorem for arbitrary indexing schemes, and apply it

to multidimensional range search, proving most of our indexing schemes to be

optimal.

We then leverage our theoretical work to the design of access meth-

ods. We solve the long-standing open problem of an optimal external-memory

priority search tree. Our structure, the EPS-tree, is based on indexability

results. We also explore dynamization, and develop techniques with optimal

amortized and worst-case cost. We implement and evaluate experimentally

our access method. Our experiments demonstrate that EPS-trees achieve ex-

cellent search and update performance, comparable to that of B+-trees on

one-dimensional datasets. Our experiments with large datasets demonstrate

the scalability and robustness of our techniques. We also affirm the relevance

of space-I/O trade-off in achieving high indexing performance.

We conclude that the EPS-tree is an efficient, robust access method for

a wide range of problems. Its success affirms the merits of systematic use of

redundancy, and nominates indexability as a prominent methodology.
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Chapter 1

Introduction

The adoption of a new data model by large-scale database systems requires

efficient indexing techniques for implementing its language features on sec-

ondary storage. Such was the case for the the relational model, in the early

70’s. Before its advent, the data models of choice were the hierarchical, and the

network (CODACYL) data model. Both models exposed to the application

the physical layout of disk-resident data. The relational model [Cod70] de-

parted from this practice by hiding the actual structure of secondary storage.

Thus, efficient associative access to the data became imperative. Almost con-

currently, in 1970, Bayer and McCreight discovered the B-tree [BM70, BM72],

and solved the most critical case of associative access: one-dimensional range

searching of ordered sets of keys of type string, numeric, date, etc. It is widely

believed that relational databases would not have enjoyed the popularity they

enjoy, had the B-tree not accompanied them with such superb timing.

Analogous events took place in the mid-80’s, when the development

of structures such as the grid file [NHS84], the kd-B-tree [Rob84], and of

course the R-tree [Gut85] launched the era of Geographic Information Systems
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(GIS), by supporting efficient multi-dimensional range searching for geographic

data. In subsequent years, a plethora of techniques was developed, including

extensions of the R-tree, (R+-tree [SRF87], R*-tree [BKSS90]), techniques

based on z-orders and other space filling curves, various quad-trees, and various

special-purpose structures.

However, the multidimensional range search problem has proved to be

vastly more challenging than one-dimensional range search. Even for the sim-

plest multidimensional range search problems, no technique is widely acknowl-

edged to be superior. Instead, there is a variety of data structures for concep-

tually similar range search problems. Choosing the best structure is a matter

of the type and statistics of the data to be indexed, and also depends on

the implementation complexity that can be afforded—since some of the best

structures tend to have rather intricate implementations.

This situation is in sharp contrast with the ubiquity of the B-tree (and

its variants) for one-dimensional range searching. where it is possible, and has

actually been the practice in real systems, to use the same B/B+-tree imple-

mentation to answer any problem which can be stated a one-dimensional range

search. Whether the data is numeric, representing sales figures, or strings rep-

resenting last names, the same data structure is used to support point and

range searching. This ubiquity can be summarized in the following statement:

the B-tree exhibits optimal search performance, using optimal disk space. Of

course, this statement, must be qualified by a definition of the cost model

under which the B-tree is optimal.
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1.1 New data models

The generality of the relational model is probably its most appealing fea-

ture. However, the implementation of this model by the majority of commer-

cial database systems is somewhat restrictive. Initially motivated by On-Line

Transaction Processing (OLTP), with a strong focus in business applications,

the database vendors created complex monolithic systems, highly optimized

to serve their main markets, but with weak support for other data-intensive

tasks. This bias is reflected throughout a typical database product. SQL is

arguably one of the most inadequate software development languages, totally

lacking in modularity and extensibility, but actually quite adequate for busi-

ness accounting software. Transaction support is also geared heavily towards

a limited class of applications. This situation has been denounced repeatedly

by both researchers and practitioners on technical grounds, but marketing

concerns seem to override all technical arguments.

This situation has created a rather segmented database industry, with

one large segment providing the mainstream database products for business ac-

counting, and a number of smaller segments serving the needs of various other

data-intensive applications, such as Geographic Information Systems (GIS),

scientific and engineering applications, on-line analytical processing for busi-

ness data (OLAP), computer-aided design (CAD), computed-aided software

engineering (CASE), document management, workflow applications etc. Many

of these peripheral segments build their products upon mainstream database

platforms, but only use them as glorified storage servers, and employing only

the most basic functionality.

Each of the many application-specific extensions of the relational model

3



is based on its own augmentation of the basic relational query language–

typically some SQL dialect. Prime directions of augmentation include the

introduction of new data types (such as geometric types), new semantics for

relations (e.g. versions), more flexible storage management (such as datacubes

for OLAP), additional modularity enhancements (such as classes, inheritance

and encapsulation), novel transaction semantics (e.g. temporal extensions that

can access previous database states), and interoperability (for data warehous-

ing and e-commerce).

This variety of application domains reflects aspects of the real world,

and is not a problem of itself. However, its consequences in the engineering

of database systems have been somewhat problematic. Ideally, the different

semantic models would be implemented as little more than translation layers,

translating application semantics into programs over a small, robust set of

primitive data management operations. These primitive operations would be

implemented at a low-level layer which should be oblivious to the high-level

semantics of the application at hand. In reality, the technology is far from

this desirable state. Only the basic relational database technology is currently

commoditized. Any extensions to the basic relational model, such as the ones

mentioned above, currently require extensive specialized support at the lowest

layers of the system.
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1.2 Challenges in indexing for new data mod-

els

With respect to indexing in particular, specialized indexing support is cur-

rently the rule, in almost all application areas. This situation is reflected in

the thrust of the indexing research, both academic and industrial. Indexing

is one of the most active research areas in the database field. However, much

of the effort is in developing special-purpose index structures, driven by the

needs and characteristics of particular applications. This trend has some un-

desirable consequences. The major consequence is increased costs. Developing

specialized solutions for small markets increases development costs. Also, the

specialized solutions tend to be less stable, less optimized, and less robust, and

thus incur higher operational costs.

In order to address the increased costs, most database vendors have re-

cently provided low-level extensibility support for their general-purpose database

products. This support is usually in the form of Application Programming In-

terfaces (APIs) to the storage management layer of their products, and has

come under names such as “data blades” or “data cartridges”. Although such

facilities are helpful, the development cost of index structures is still significant.

Another source of complexity is the proliferation of data structures for

conceptually similar problems. A thorough survey of spatial access methods

by Gaede and Günther [GG98], lists over 50 spatial access methods (SAMs).

Furthermore, despite a large research effort in this area, no clear winner has

emerged. According to [GG98],

“Even for experts, it becomes more and more difficult to recognize

5



[...these access methods’] merits and faults...”.

Furthermore, most of these techniques are not known to have robust perfor-

mance over a wide range of problem parameters. Shifting needs in the same

application domain, such as increased amounts of data, or new types of queries,

may render previously efficient methods virtually useless.

This situation motivated research into some fundamental issues. On

direction was the study of implementation abstractions, suitable for index-

ing. The pioneering work in this respect was the development of GiST, the

Generalized Search Tree [HNP95] of Hellerstein, Naughton and Pfeffer. GiST

implements parameterized search and update procedures, where the user can

customize these operations by applying domain-specific heuristics. The success

of GiST is not in improving access performance, but in substantially lowering

the implementation cost of index methods.

The search and update operations of GiST, although not unduly re-

strictive, impose some limits onto the kinds of search that they allow. Thus,

the developers of GiST recognized the need for a “theory of indexability”, a

theoretical framework that would “...describe whether or not trying to index

a given dataset is practical for a given set of queries.”

In the early 1990s, a few researchers pioneered a new approach into

multidimensional indexing. Motivated by maturing techniques from computa-

tional geometry, they sought to develop a new breed of indexing techniques,

with provably good performance for fundamental multi-dimensional search

problems. Quickly it became apparent, that provably good performance was

achievable, but often at a price; increased storage cost for the index structure.

Also, some of the initial techniques developed would not meet the theoretically

optimal performance expectations. Finally, these techniques had substantially
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higher implementation complexity than their heuristic counterparts. For these

reasons, these techniques have not yet been adopted into practice.

The call for a “theory of indexability” was answered by Hellerstein,

Koutsoupias and Papadimitriou [HKP97], with the introduction of a new

model of indexing, which strived to reconcile the theoretical work with some

of the practical concerns that it had raised. The new model was particularly

suited for the study of lower bounds, which was the focus of most of the results

in [HKP97], but it also introduced a bold departure from previous theoreti-

cal models. Whereas previous models incorporated both the locality and the

search aspects of indexing, indexability focused on the locality exclusively,

abstracting away the search aspects of the problem.

1.3 Our thesis

In this dissertation, we develop the theory of indexability, with an emphasis

on its application to multidimensional search. Our work includes both a broad

theoretical study of indexing within this theoretical framework, but also ex-

tends to the application of the theoretical corpus towards practical solutions.

Our results can be summarized as follows:

• We adopt indexability as a general, structured external memory model,

suitable for indexing. Indexability introduces the workload as an ab-

straction of range search, and the indexing scheme as an abstraction of

access method.

• We apply indexability to the important problem of two-dimensional

range search. We develop indexing schemes for all special cases of this

7



problem. These include interval management, three-sided search, or-

thogonal segment intersection, orthogonal range search, and rectangle

intersection.

• We also apply indexability to other problems of practical interest, includ-

ing indexing multidimensional arrays, and indexing set-valued attributes.

• We develop a general theory of indexability lower bounds. We apply our

theory to two-dimensional range search, and prove our indexing schemes

to be optimal, or, in one case, almost optimal. We obtain similar results

for multidimensional arrays and set-valued attributes.

• Leveraging our results on indexability, we solve the long-standing open

problem of optimal three-sided range search in external memory. Our

access method, the EPS-tree, is an adaptation of McCreight’s priority

search tree [McC85] to external memory. The EPS-tree achieves optimal

search performance. We also develop update techniques with asymptot-

ically optimal amortized and worst-case costs.

• We perform the first thorough experimental evaluation of an asymptot-

ically optimal access method for multi-dimensional range search. Such

techniques have been proposed before for other problems (e.g. [KRV+93,

VV96b, RS94, AV96]), but were not evaluated empirically. Thus, they

were considered by many (e.g. [ST99]) of mainly theoretical interest.

Our results on the EPS-tree indicate that it exhibits excellent perfor-

mance, scalability to large datasets, and robustness under various query

distributions.

8



It is our thesis that provably efficient indexing methods are a valuable

alternative for multi-dimensional range search, suitable for the increased in-

dexing requirements of new data models. A critical aspect of most of these

techniques is the disciplined use of redundancy. In this context, indexability

is a valuable tool for the development of such indexing methods.
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Chapter 2

Overview of Multidimensional

Range Search

The basic range search problem is stated as follows: given any finite set of

objects I, selected from a (possibly infinite) domainD ⊇ I, a (possibly infinite)

set of ranges R, and an incidence relation p ⊆ D × R, we wish to preprocess

I into a data structure, such that, for a given range r ∈ R, all records x ∈ I,

such that (x, r) ∈ p, can be retrieved efficiently. We often write (x, r) ∈ p

in its predicate form p(x, r). Thus, a range search problem is defined by the

triple (D,R, p).

Range search is of fundamental importance to databases; it corresponds

to the generalized select operator of relational algebra, or, as it is sometimes

called, θ-selection. The basic problem statement can be further elaborated, in

various ways that we will examine next.

One generalization of the problem, introduced by Fredman [Fre80, Fre81],

is as follows: let (S,⊕) be a semigroup, that is, let ⊕ be an associative and

10



commutative operation over S. Also, let f be a mapping from D to S. For a

given range r ∈ R, we wish to compute the semigroup sum⊕
x∈I∧p(x,r)

f(x)

This generalization can model the computation of range aggregates, such as

the well-known SQL aggregates MIN, MAX, SUM, AVG, and COUNT. The

basic range search problem—sometimes called the range-reporting problem, is

stated by taking S = 2D, ⊕ to be set union, and f(x) = {x} to turn an object

x into a singleton set.

Another distinction is between static vs. dynamic range search. In the

static case, the dataset I is considered fixed. In the dynamic case, the data

structure must be accompanied by algorithms, that support updates of the

dataset I, that is, insertion of new elements, or deletion of existing elements.

Special cases also apply. For example, in some cases we are interested in

insertions only. In other cases, we are interested in replacements, that is, a

deletion followed by an insertion.

Data structures for solving range search problems, are always speci-

fied within a particular memory model. In turn, the choice of memory model

dictates the cost measures that determine the quality of the data structure.

Typical cost measures reflect appropriate notions of space cost or time cost.

Main memory data structures are typically described in the RAM model, or

in the pointer machine model. Magnetic disks are modeled by block-oriented

memory models, sometimes called external memory models.1 External mem-

ory models are usually parameterized by the block size. This parameter is

1This is slightly abusive terminology, since, strictly speaking, external memory includes
non-blocked devices, such as tapes.
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introduced as a succinct way of reflecting technological aspects of magnetic

disks, and in particular the high latency cost associated with disk head move-

ment. In these models, space is measured in disk blocks, and time is measured

in number of block I/O operations. A popular model is the Parallel Disk Model

(PDM), introduced by Vitter and Shriver [VS94].

Arguably the most important, and certainly the most studied area of

range search, is geometric range search, where the domain D and the range set

R are spaces of geometric objects (points, lines, circles, rectangles, etc.), and

the incidence relation p is some geometric relation (containment, intersection,

alignment, etc.).

Of interest to databases, and particularly so for supporting new data

models, is multi-attribute search. There, the domain D and range space R are

composed as cartesian products of domain and range spaces, and the incidence

relation p is composed as a boolean conjunction. More precisely, let relation

pi ⊆ Di×Ri be seen as an incidence relation over domain Di and range space

Ri, for i = 1, . . . , d. Then, let D = D1 × . . . × Dd, and R = R1 × . . . × Rd.

Also, let C(q1, . . . , qd) be a d-ary boolean function, and define the incidence

relation p ⊆ D ×R as

p(x, r) ≡ C
(
p1(x1, r1), . . . , pd(xd, rd)

)
,

where x = (x1, . . . , xd) and r = (r1, . . . , rd).

In the most common case in database applications, (Di, Ri, pi) will be

a simple, one-dimensional range search problem, where Di is a totally ordered

type (integer, string, date etc.), Ri = Di ×Di, is the set of pairs over Di, and

pi(x, (y1, y2)) ≡ y1 < x < y2.
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When the boolean function C(q1, . . . , qd) is the conjunction

C(q1, . . . , qd) =
d∧
i=1

qi,

the problem is known as multidimensional range search.

It is not hard to see that, the case of arbitrary boolean function C can

be reduced to multidimensional range search. Also, by appropriate transfor-

mations, a number of quite diverse range search problems, including many

geometric range search problems,2 can be solved efficiently by reduction to

multidimensional range search. Finally, multidimensional range search gener-

alizes two important types of database search, partial match queries and exact

match queries.

Because of its importance, multidimensional range search is the most

intensely studied case of range search, and it is also the main focus of this

dissertation. We now survey the work related to this problem.

2.1 Multidimensional range search in compu-

tational geometry

In the early days of computational geometry, multidimensional range search,

also known as orthogonal range search, was one of the fundamental areas

of interest. This interest produced a wealth of results, of which only few

can be mentioned here. A number of books (e.g. [Sam89a, Sam89b]) and

surveys (e.g. [Meh84, Mat94, AE97]) cover the subject very thoroughly.

2In the context of geometric range search, the term used is orthogonal range search.
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2.1.1 Quadtree and kd-tree

One of the earliest data structures was the quad-tree, proposed by Finkel and

Bentley [FB74]. In its simplest form, the quadtree is a tertiary tree. Given

a set of planar points, and a splitting point, the set is split into four subsets,

corresponding to the four quadrants defined by the splitting point. The root of

the tree stores the splitting point, and each of these four subsets is recursively

processed, and stored in the four subtrees of the root.

The quadtree is one of the most intensely studied data structures.

The survey by Samet [Sam84] reports much of the relevant work. Unfortu-

nately, the quadtree has bad worst-case behavior. Because of their simplicity,

quadtrees have been externalized in various ways (e.g. [TVM98]). They are

well suited for applications where the dataset is strongly regular, such as a

rasterized image.

The kd-tree, introduced by Bentley [Ben75], improves upon the worst-

case query cost of quadtrees. For a set of n d-dimensional points, the kd-tree

requires time O(dn1−1/d + t) to answer an orthogonal range query returning t

points.

Let S be a set of d-dimensional points. Every node of the kd-tree is

associated with a subset of S. The root is associated with S. At every node of

the kd-tree, depending on its distance δ from the root, the node’s associated

set is split into two parts, based on coordinate x(δ mod d)+1. The two subsets

resulting from the split, are recursively associated with the children of the

node.

The kd-B-tree, introduced by Robinson [Rob84], was one of the earliest

spatial access methods proposed. It is an adaptation of kd-trees to external
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memory, combining the kd-tree and the B-tree. The kd-B-tree was the point of

departure for Lomet and Salzberg [LS90], who introduced the hB-tree (which

stands for “holey brick” B-tree). Another extension of the kd-B-tree was the

LSD-tree of Henrich, Six and Widmayer [HSW89]. The main contribution

of these extensions is a more efficient process of performing updates, which

increases their robustness.

2.1.2 Processing intervals

A number of techniques for processing intervals have been proposed. Often,

these techniques were developed as parts of more general techniques. For

example, the segment tree was invented by Bentley, to solve Klee’s measure

problem, i.e., to compute the area of the union of n (possibly overlapping)

rectangles. Also, the interval tree of Edelsbrunner was developed to solve the

rectangle intersection problem (report all pairs of intersecting rectangles, from

a given set of n rectangles). The general problem of answering range queries

over sets of intervals is known as interval management.

These data structures have been the focus of significant effort in ex-

ternalization. The I/O-optimal solution to interval management was given

in [KRV+93]. Their solution, called the metablock tree, was fairly involved,

and did not allow deletion. Ramaswamy and Subramanian proposed path

caching [RS94], a technique that externalizes the interval and segment tree

(and also the priority search tree, discussed below). However, this technique

requires non-optimal space. In particular, the interval tree obtained by path

caching requires O( n
B

logB) disk blocks. Arge and Vitter [AV96] finally suc-

ceeded in fully externalizing the interval tree, with optimal query I/O, space,
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and worst-case dynamic update cost.

2.1.3 Priority search tree

Virtually all planar orthogonal range search problems, can be solved opti-

mally in main memory, by techniques based on the priority search tree of

McCreight [McC85]. We will present this data structure in some detail, in

Ch. 6. This data structure solves optimally the dynamic case of three-sided

queries: organize a set of planar points, so that the points contained in a region

of the form [x1, x2]× [−∞, y] can be retrieved efficiently.

Because of its importance, the priority search tree has been the focus

of many externalization attempts. Icking et al. [IKO87] proposed a structure

using optimal space, but with query cost O(log2 n + t/B) I/Os. The XP-

tree of [BG90] also uses optimal space, but the query cost is O(logB n + t)

I/Os. Using path caching [RS94], the resulting structure has optimal query

cost O(logB n+t/B) I/Os, but requires non-linear space of O( n
B

log logB) disk

blocks, and the update cost is O(logB n) amortized. Finally, Samoladas, and

independently Arge and Vitter, solved the problem optimally in both space

and time, with optimal worst-case update cost. These results are reported in

this work, and also in [ASV99].

2.1.4 Range tree

The range tree was discovered independently by Bentley [Ben80], Lueker [Lue78],

Willard [Wil78], and Lee and Wong [LW80]. In two dimensions, the range tree

is simply a balanced search tree over the x-coordinate of the points. Further-

more, in each node u is rooted another search tree, built over the points in u’s
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subtree, and ordered by the y-coordinate. Extension to higher dimensions is

done recursively.

As described, the range tree over a d-dimensional point set, requires

spaceO(n logd−1 n), and can answer range queries in timeO(logd n+t). Willard

and Lueker [WL85] develop a comprehensive set of techniques for adding range

search capability to dynamic data structures. Also, trade-offs between space

and time are possible. Their techniques explore the theory of range trees.

2.1.5 Filtering search

One of the most elegant techniques in range searching is that of filtering search.

This technique was explored by Chazelle [Cha86], although it was implicitly

used in a few previous results (e.g. [McC85]). The technique is only applicable

in range-reporting search, where the size of the result can grow as large as the

original dataset. The basic principle of filtering search is quite simple; when

the output of a query is large, the search can be slow. Chazelle used the

principle of filtering search to devise new data structures for a number of basic

range-reporting problems. Many of the techniques presented in that paper,

were later adopted in different settings, including external memory.

For the interval stabbing problem, Chazelle offered a radically new tech-

nique, which was based on clustering. Given a set S of n intervals, it is possible

to construct subsets S1, . . . , Sk ⊆ S, with
∑k

i=1 |Si| = O(n), such that for any

stabbing query of size t, it is enough to “filter” one of the sets Si, and keep

only those intervals that satisfy the query, at the same time guaranteeing that

t = Θ(|Si|). A number of researchers applied this idea to different domains.

Ramaswamy [Ram97] combined this idea with B+-trees to support indexing
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for constraint and temporal databases. Kriegel et al. [KPS00] evaluate the im-

plementation of this technique in the SQL procedural language of the Oracle8i

server.

Another result of [Cha86] was the first optimal data structure for two-

dimensional range search, on a pointer machine. Solutions based on the range

tree would achieve optimal time, but with slightly suboptimal space O(n log n).

Chazelle showed that it was a simple matter to apply the principle of filtering

search, to improve space to O(n log n/ log log n), and even further, to allow for

optimal space-time trade-off. This technique was adapted to external storage

by [SR95, ASV99].

In the same paper, Chazelle introduced the concept of a hive graph.

This structure was used to improve the search cost of many previous data

structures. It was later generalized by Chazelle and Guibas [CG86a, CG86b]

to the technique of fractional cascading.

Other problems solved in [Cha86] using filtering search included point

enclosure, segment intersection, and k nearest neighbors.

2.1.6 Orthogonal Geometric Range Search

Most of the techniques for orthogonal range search are based on range trees.

The problem has received extensive treatment for decades. Thus, we shall only

survey a few of the major, or more recent results. More extensive surveys can

be found in [Meh84, PS85, AE97].

The best data structures known today are due to Alstrup et al. [ABR00].

They improved on the previous best bounds due to Chazelle [Cha86, Cha88].

The work of [ABR00] introduces two data structures for orthogonal range
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search in R2, one requiring O(log log n+ t) time and O(n logε n) space, and the

other requiring O((log log n)2 +t log log n) time and O(n log log n) space. They

also show that any data structure for R2, with O(f(n) + t) time complexity

and O(s(n)) space complexity, can be used to construct a data structure for

R
d, with O

(
f(n)( logn

log logn
)d−2 +t

)
time and O(s(n) logd−2+ε n) space complexity.

The above results are obtained in the RAM memory model. For the

more restrictive pointer machine model, Chazelle [Cha90a] shows that there

exists a data structure with time complexity O(logd−1+ε n + t) and space

O(n(log n/ log log n)d−1). In external memory, significantly less is known.

Of practical interest are restricted cases of orthogonal search in R2 and

R
3. The priority search tree [McC85] of McCreight handles all special problems

in R2 optimally. For R3, the main problem is that of dominance search; given

any query point p, retrieve all points in the data set that are dominated by p in

every dimension. Chazelle and Edelsbrunner [CE85, CE87] provide solutions

taking linear space and query time O(log2 n+t). Makris and Tsakalidis [MT98]

improve the bound to O(log n + t) on the RAM, and to O(log n log log n + t)

on the pointer machine, still with linear space.

In external memory, significantly less is known. The P-range tree Sub-

ramanian and Ramaswamy [SR95] can answer two-dimensional three-sided

range queries with slightly suboptimal O(logB n + t/B + IL∗(B)) I/Os per

query,3 using linear space. For two-dimensional range search, a structure of

O(( n
B

) log(n/B)
log logB n

) blocks can be used. Ravi Kanth and Singh [KS89] study the

case of non-replicating structures, and provide a structure withO((n/B)(d−1)/d+

t/B) access cost and optimal update cost O(logB n). They also show that this

3IL∗(B) is the iterated log∗ function, i.e., the number of times we must apply log∗ to B
before the result becomes ≤ 2.
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cost is optimal for non-replicating structures. Theirs is the only external-

memory optimal technique that extends to arbitrary dimensions.

In three dimensions, the only result to date is due to Vengroff and

Vitter [VV96b], who show how to index a dataset in O( n
B

log n
B

) blocks, and

achieve a query cost of O
(
(log log logB n) log n

B
+ t/B

)
I/Os for dominance

queries. General three-dimensional range search can be performed with the

same access cost, using space O( n
B

log4 n
B

) blocks.

2.1.7 Other geometric range search problems

Computational geometry has studied other range search problems, besides

orthogonal range search. Of these the most important is arguably simplex

range search, and its special case of half-space range search. A simplex in Rd

is the intersection of d + 1 half-spaces, e.g. a triangle is a simplex in R2, a

quadrilateral is a simplex in R3, etc. The simplex range search problem is

to organize a set of points in Rd, so that all points inside a given simplex

can be reported efficiently. The problem has attracted considerable attention,

and has motivated some of the most elegant results in the past two decades.

Here, we shall mention selectively some basic techniques, that gave rise to

recent results for external memory. For some excellent surveys, as well as

more complete references, see [AE97, Mat94].

The earliest technique was the partition tree, proposed by Willard [Wil82].

It became the basis for most linear-space data structures for this problem.

The original data structure had query cost O(nlog4 3 + t) for d = 2. This

was improved by a series of papers, most notably by the seminal result of

Haussler and Welzl [HW87], who derived a cost of O(n1− 1
d(d−1)

+ε + t). Vari-
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ous improvements followed, culminating with the result of Matous̆ek [Mat92],

who obtained O(n1−1/bd/2cpolylog(n) + t) query cost, still with linear space.

These techniques were adapted to external memory by the works of Agarwal et

al. [AAE+98], Kollios, Gunopoulos and Tsotras [KGT99], and Agarwal, Arge

and Erickson [AAE00].

Another series of techniques began with the work of Chazelle, Guibas

and Lee [CGL85], who introduced to the problem the concept of arrangements.

For the planar case, their technique achieves optimal time O(log n + t) with

linear space. However, generalizing the approach to higher dimensions, intro-

duces non-linear space, typically exponential to the problem dimension. For

example, the extension of Matous̆ek [Mat92] can answer halfspace queries in

R
d in time O(log n+ t), but requires O(nbd/2cpolylog(n)) space. However, the

technique is useful at least in low dimensions, and has been externalized by

Agarwal et al. [AAE+98].

2.1.8 Lower bounds

In many geometric range search problems, there is no solution with both op-

timal time and space complexity. This state of things was observed early

on, with many researchers calling for either improved upper bounds, or lower

bounds that would resolve the issue.

Some early lower bounds by Fredman [Fre80, Fre81], Yao [Yao82] and

Vaidya [Vai89] indicated that indeed, optimal query time O(log n + t) with

linear space was impossible for many problems. However, it was the work

of Chazelle [Cha95, Cha90a, Cha90b] that provided tight lower bounds for

orthogonal range search, in various memory models (for main memory).
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The results of Chazelle were not extended in external memory for some

time. Subramanian and Ramaswamy [SR95] attempted to extend the result

of Chazelle for the two-dimensional case. Unfortunately, their published proof

is seriously flawed. Hellerstein, Koutsoupias and Papadimitriou [HKP97] in-

troduced the indexability model, and published the first lower bounds, for

restricted cases of two-dimensional search. Subsequently, Koutsoupias and

Taylor [KT98, KT99] provided lower bounds for orthogonal range search, but

within a simplified complexity framework, where the effect of the block size

is not accounted for. Samoladas and Miranker [SM98] introduced a gen-

eral framework for lower bounds, and proved tight bounds for restricted d-

dimensional range search problems. Arge, Samoladas and Vitter [ASV99]

combined this technique with the results of [KT98], and provided strong lower

bounds for two-dimensional search, along with lower bounds on the space-I/O

trade-off. These results have been obtained in the context of the indexability

memory model. Extended discussion of this work can be found in Ch. 5 of

this dissertation.

2.1.9 Persistence

Ordinary data structures are, in a sense, ephemeral; the past state of the data

structure is erased, when an update is made. In persistent data structures, past

states are available to access. There are two versions of persistence, depending

on whether past states are also available for update. A fully persistent data

structure allows past states to be updated (creating a new branch of versions

at that state). In a partially persistent structure, only the most recent state

can be updated (thus, the versions are linearly ordered).
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Driscoll et al. [DSST89] introduced a general technique for making

main-memory, linked data structures persistent. Previously, persistence was

considered on a case-by-case basis, often within the context of more general

problems. For example, Sarnak and Tarjan [ST86] use persistence to perform

planar point location. Besides these applications, persistence can be used to

support many of the operations in temporal databases [ST99].

The techniques of Driscoll et al. motivated a number of techniques for

external persistent versions of the B-tree. Lanka and Mays [LM91] proposed

the first, fully persistent B+-tree. Subsequent works by Becker et al. [BGO+96]

and Varman and Verma [VV97] refined the approach, by addressing a number

of practical issues, such as thrashing, and retirement of old versions to tertiary

storage.

2.2 Multidimensional range search in databases

To a large extent, the initial development of multidimensional range search

techniques for databases took little advantage of the advances in computa-

tional geometry. The contrast between the two bodies of work is striking;

there is little, if any, geometry (in the mathematical sense) to be found in

the mainstream database techniques for multidimensional range search, even

in those application areas where the data is inherently geometric (e.g. geo-

graphic information systems).

Database research did incorporate some of the early works in computa-

tional geometry, most notably quadtrees and kd-trees. These techniques gave

rise to a number of database methods, most notably the kd-B-tree [Rob84],

the hB-tree [LS90], and the LSD-tree [HSW89]. Apart from these, which were

23



discussed in the previous section, the majority of the multidimensional access

methods can trace their ancestry to one or more of the following three tech-

niques: the grid file [NHS84], z-ordering [OM84], and the R-tree [Gut85]. We

survey briefly the main ideas behind these techniques and their many refine-

ments. For more complete surveys, we recommend the paper by Gaede and

Günther [GG98], which focuses on spatial access methods, and also that of

Salzberg and Tsotras [ST99] which concentrates on temporal access methods.

2.2.1 The grid file

The grid file is an adaptation of the idea of extendible hashing of Fagin et al.

[FNPS79]. The original technique was proposed by Nievergelt, Hinterberger

and Sevcik [NHS84]. The main idea behind the grid file is as follows: the

date space is partitioned by a grid. Each cell of the grid is associated with a

single bucket. Buckets can be associated with more than one cell. A query is

mapped against the grid, and the buckets corresponding to the resulting cells

are fetched. Insertion may cause a cell’s bucket to overflow. In this case, the

cell must be split. This is done by adding a new grid line, splitting a whole

row or column (for 2-d data) of cells. Deletions are harder to handle.

A number of extensions to the basic technique were proposed. We

selectively mention Hinrichs [Hin85], who proposed a two-level grid file, and

Freeston [Fre87], who proposed the BANG file, which replaced the original

grid with a more versatile method of partitioning the space.
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2.2.2 Space-filling curves

A space-filling curve is a one-dimensional curve that passes through all points

of a d-dimensional space. Consider the discrete planar case; the regular grid

G = [0 : n] × [0 : n] contains l = (n + 1)2 points. A space-filling curve is a

bijective mapping f from G to L = [0 : l − 1]. We are interested in locality-

preserving space-filling curves; that is, for points p1, p2 ∈ G where ‖p1− p2‖ is

small, we wish |f(p1)− f(p2)| to be small, with high likelihood.

Given a set S of points inG, we can transform each point p ∈ S into f(p)

and store the set {f(p)|p ∈ S} into a B+-tree, or any other one-dimensional

index. Given a query rectangle r = [x1 : y1]× [x2 : y2] ⊆ G, we wish to retrieve

S ∩ r. Rectangle r can be transformed through f into a sequence of intervals

[a1 : b1], . . . , [ak : bk], all subsets of L, where k is minimum. Thus, we can

pose these k one-dimensional queries to the B+-tree holding our transformed

dataset S, and retrieve the answer to our query.

The approach described is appealing both for its simplicity, and for the

fact that it is implemented by a B+-tree, which negates the need for special

index structures in the database. The drawback of the approach is that the

number of one-dimensional queries k can become large, and thus performance

may suffer. Thus, it is critical to select an appropriate space-filling curve,

that will keep k small most of the time. The most popular candidates are

the Peano curve (also known as z-order), proposed initially by Orenstein and

Merret [OM84], and the Hilbert curve, proposed originally by Faloutsos and

Rong [FR91]. These techniques can easily be extended to dimensions higher

than 2.
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2.2.3 Storing spatial objects using point access methods

Both the techniques based on the grid file, and those using space-filling curves,

are natively capable of storing only multidimensional points. However, in many

applications, more general spatial objects, such as lines, rectangles, or arbi-

trary polygons, must be stored. Of these, rectangles are the most popular,

because other kinds of objects can be approximated by their minimum bound-

ing rectangle (MBR). In this setting, the queries of interest are intersection

queries for a given query rectangle (other types of queries are possible).

A simple approach at storing rectangles in point access methods, is to

transform a d-dimensional (hyper) rectangle into a point in 2d-space. Under

this transformation, a rectangular intersection query is transformed into a 2d-

dimensional dominance query. This transformation was employed in the DOT

(Double Transformation) technique of Faloutsos and Rong [FR91], in the work

of Kanellakis et al. [KRV+93] (for d = 1), and in a number of other works.

For objects with complicated shape, it may be desirable to decompose

them into multiple rectangles, if using the object’s MBR provides a crude

approximation. Gaede [Gae95] studies empirically the effects of redundancy

introduced by this approach.

2.2.4 R-tree and its variants

Perhaps the most popular access method for spatial objects is the R-tree, in-

troduced by Guttman [Gut85]. In contrast to other techniques, the R-tree

can store points, rectangles, line segments, and many other geometric objects.

Although versatile, the original R-tree suffered from serious performance prob-

lems, both with respect to search and with respect to update operations. Thus,
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the initial work was followed by a very large number of extensions, each at-

tempting to ameliorate a particular shortcoming of the original method.

The basic idea behind the R-tree, is surprisingly devoid of any geomet-

ric, spatial, or other data-dependent considerations. The R-tree cannot fairly

be called a spatial access method; rather, it is an ingenious extension of the

concept of the B+-tree, based on robust engineering concepts of external mem-

ory. This generality was recognized in the Generalized Search Tree (GiST) of

Hellerstein, Naughton and Pfeffer [HNP95], where the generality of the R-tree

approach was formalized and brought to center stage.

Basic R-tree operation

Consider a dataset S of n objects. The type of objects is intentionally left

unspecified. Partition arbitrarily the set S into blocks. Each block can be

described by a predicate, suitable for the type of objects stored. For example, if

rectangles and points are stored, the predicate may be the minimum bounding

rectangle for the contents of the block.

If there are B objects per block, roughly n/B blocks are created. Con-

sider the set of n/B predicates describing these blocks as a new dataset, and

repeat the process, creating n/B2 blocks. Keep repeating this process, until a

single block is created. The result is a hierarchical structure, a balanced tree,

of height logB n, occupying O(n/B) disk blocks. The original n/B blocks are

the leaves of the tree, and the single block of the final phase is the root.

To answer a range query, whose nature is intentionally left unspecified,

work as follows; traverse recursively the tree, starting from the root. At each

node visited, pose the query against the predicates stored in the node, and

descend to those nodes whose predicates are not disjoint with the query.
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Insertion is performed by selecting arbitrarily a particular path, from

the root to a leaf of the tree, where the object is to be placed. If the leaf is not

full, insert the object, and adjust the predicates along the selected path. If

the leaf is full, split it arbitrarily into two leaves, containing a roughly equal

number of objects. Propagate the insertion higher in the tree, similarly to

the insertion for B+-trees. Deletion of an object is performed along the same

lines. In the case of node underflow caused by a deletion, select a sibling of

the underflowing node arbitrarily, and merge the two nodes into one.

We have emphasized the word arbitrarily a number of times in the

above description, namely in the policies for tree construction (bulk loading),

insertion, and deletion operations. We must qualify this statement carefully.

Indeed, correctness of the basic process can be guaranteed by any policy, even

one making random choices. However, search performance is very strongly

related to the particular choice of policy. Inappropriate policies may result in

access methods that “know the value of everything and the cost of nothing”

[Aok99]. Despite a vast research effort on appropriate policies, no totally sat-

isfactory candidates have been found, even for restricted application domains.

We now survey some of the many proposals, along with the main extensions

to R-trees.

The original R-tree

The original R-tree was proposed as a method for storing d-dimensional points

and rectangles. The node predicates were the MBRs of the node’s contents.

Under these choices, one factor affecting performance, is the amount of overlap

between the MBRs of the nodes. Guttman [Gut85] proposed a number of

different policies, to minimize overlap during insertion, including one with
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complexity O(B) (linear split), and one with complexity O(B2) (quadratic

split).

We must remark here, that overlap is itself a heuristic measure of the

quality of a particular R-tree. Even when there is no overlap, an R-tree can

have bad performance. For example, consider an R-tree storing the points of a

regular grid, where each leaf node stores adjacent points belonging to a single

row of the grid. Although the leaves do not overlap at all, the performance

for even simple queries can be very bad.

Variants of the original R-tree

Kamel and Faloutsos [KF94] introduced the Hilbert R-tree, an elegant variant

utilizing the Hilbert space-filling curve. In particular, the original partitioning

of the dataset, to create the leaves of the tree, is obtained by first ordering the

dataset on the (one-dimensional) Hilbert value of the keys, and then splitting

the resulting sequence into blocks. The leaf where a new record is to be inserted

is chosen by the same principle. Thus, the Hilbert R-tree can be seen as both

an R-tree, and a B+-tree on the Hilbert values of the records.

Other notable variants include the packed R-tree of Roussopoulos and

Leifker [RL85], and the sphere tree of Oosterom [Oos90].

The R+-tree

The R+-tree of Sellis, Roussopoulos and Faloutsos [SRF87] attempts to side-

step the performance problems caused by node overlap in the original R-tree.

In the R+-tree, there is no overlap between the MBRs of same-level tree nodes.

This can be achieved, by replicating each object into every node whose MBR

intersects it. This strategy was shown empirically to improve search perfor-
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mance. However, it comes with increased cost and complexity for updates. In

the simplest case of no node overflow, an inserted object may have to be stored

in multiple leaves. When nodes must be split, several complications can arise.

A novel aspect of the R+-tree approach, is the (ad hoc) introduction of

redundancy, for the purpose of improving data clustering. This aspect relates

to our own thesis, that limited redundancy can be a practical method for

performance increase.

The R*-tree

Another interesting technique for addressing the overlap problem, was intro-

duced by Beckmann et al. [BKSS90]. Their structure, called the R*-tree, intro-

duces a sophisticated insertion procedure for the R-tree, called forced reinsert:

when a node overflows, it is not split immediately; instead, a percentage of its

contents is removed (the authors suggest an ad hoc value of 30%), and these

entries are reinserted one by one into the tree. Even when there is no split,

insertion is more sophisticated than the methods of Guttman [Gut85].

The R*-tree was empirically shown to improve search performance by

up to 50%, compared to the basic R-tree. Also, space utilization was improved.

The P-tree

In many R-tree variants, the predicates describing tree nodes are (hyper) rect-

angles. A notable exception is the P-tree of Jagadish [Jag90]. In the P-tree,

a node’s predicate can be an arbitrary polyhedron. This approach can sub-

stantially improve the approximation of the contents of a node. In the exper-

iments reported in [Jag90], it was found that 10-gons are a good choice for

two-dimensional data. A drawback of the approach is that 10-gons require
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more storage space than rectangles, and thus the degree of the tree nodes is

reduced, leading to P-trees that are higher than corresponding R-trees.

R-tree variants for temporal data

A number of R-tree variants have been developed specifically for storing tem-

poral data. In a temporal database, time is often represented as an additional

data dimension. In particular, time periods can be represented as intervals on

the temporal dimension.

An important technique is the SR-tree proposed by Kolovson and Stone-

braker [KS91]. This structure is a combination of R-trees and segment trees.

The main idea behind the SR-tree is that very long intervals are stored in

internal nodes, instead of leaf nodes, similarly to segment trees. Again, this is

done in order to reduce the overlap at the tree leaves.

Another variant for temporal queries is the bitemporal R-tree of Kumar,

Tsotras and Faloutsos [KTF98], which is a partially persistent version (see

§2.1.9) of the R-tree.

The performance of R-trees

Because of their importance, R-trees have been the target of extensive ana-

lytical study. It is well-known that the worst-case access cost of R-trees can

be very bad. However, many researchers studied their expected performance,

under reasonable assumptions on the distribution of queries and data, and the

quality of the clustering.

In a seminal paper, Faloutsos and Kamel [FK94] introduce the concept

of fractal dimension, as a way of describing datasets whose distribution departs

from the uniform. They provide analytical and empirical results on the positive
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effect on performance of datasets with fractal dimension lower than the spatial

dimension of the data.

In most other works, the data distribution is assumed to be uniform.

Notable analytical works include that of Pagel et al. [PST+93], and the work

of Theodoridis, Stefanakis and Sellis [TSS00].

2.3 Final remarks

The areas of multidimensional range search and indexing are two of the broad-

est, multi-discipline areas in computer science. The results presented in this

chapter are, by necessity, only a small part of the full volume of work in these

areas. We chose to expand only in those works and concepts that play an

immediate role in our work, and even so, we had to omit many important con-

tributions. In this section, we attempt to ameliorate this situation, by citing

a number of survey articles and books, where the interested reader may find

more information.

The amount of theory and techniques on B+-trees is proportional to

their paramount importance in databases. Although slightly outdated, the

classic survey of Comer [Com79] is a thorough presentation of the main con-

cepts in this area.

External-memory range search is part of the broader area of external

memory algorithms. The most important results from this emerging area can

be found in a recent survey by Vitter [Vit99].

An active area of mathematics with many applications in geometric

range search, is the area of geometric discrepancy. A recent book by Ma-

tous̆ek [Mat99] provides a thorough coverage of the area.
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Much of the material surveyed in this chapter is presented more thor-

oughly in a recent book by Manolopoulos, Theodoridis and Tsotras [MTT99].
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Chapter 3

Theory of Indexability

In this chapter we set out a simple framework for describing indexing problems,

and for measuring the efficiency of a particular indexing scheme for a given

problem. The presented approach was proposed by [HKP97], under the name

“theory of indexability”.

Indexability has two, relatively distinct parts. First, it introduces a set-

theoretic specification and terminology for range-reporting problems. Second,

and most important, it proposes a new memory model for range search, and its

accompanying performance measures. To a large extent, both of these parts

have been adopted before in many relevant settings.

3.1 Indexing Workloads

Access methods must be evaluated in the context of a particular workload,

consisting of a finite subset of some domain together with a set of queries.

More formally, we have the following definition:
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Definition 3.1. A workload W is a tuple W = (D, I,Q), where D is a non-

empty set (the domain), I ⊆ D is a non-empty finite set (the instance), and

Q is a set of subsets of I (the query set).

Example: One of the workloads discussed later, models two-dimensional

arrays, where queries are arbitrary subarrays. This workload consists of the

domain R2, the instance I = {(i, j) : 1 ≤ i, j,≤ n}, and the family of “range

queries” Q[a, b, c, d] = {(i, j) : a ≤ i ≤ b, c ≤ j ≤ d}, one for each quadruple

(a, b, c, d) with 1 ≤ a ≤ b ≤ n, 1 ≤ c ≤ d ≤ n. Notice that this is a family

of workloads, with instances of increasing cardinality, one for each n ≥ 0.

Another family of workloads (the set inclusion queries) has as its domain, for

each n, all subsets of {1, 2, . . . , n}, and for each subset I of the domain, the

set of queries Q = {QS : S ⊆ {1, 2, . . . , n}}, where QS = {T ∈ I : T ⊆ S}.

In the terminology of combinatorics, W is a simple hypergraph, where

I is the vertex set, and Q is the edge set. We do not use this terminology here,

choosing instead to define terms more natural for databases. There is no analog

of the domain D in hypergraphs. We could have dropped it from our definition,

but it is suggestive of a parameterization of workloads (for example, all two-

dimensional range-query workloads have the same domain). It is worth noting

that the hypergraph abstraction has been used in related work to measure the

quality of existing indexing schemes on particular workloads [SKH99].

3.2 Indexing Schemes

Definition 3.2. An indexing scheme S = (W,B) consists of a workload W =

(D, I,Q), and for some positive integer B a set B of B-subsets of I, such that
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B covers I.

We refer to the elements of B as blocks, and to B as the set of blocks.

We refer to B as the block size. Notice that an indexing scheme is a simple,

B-regular hypergraph with vertex set I.

3.3 Performance Measures

We now define two performance measures on indexing schemes, redundancy

and access overhead, which relate to the performance of an indexing scheme in

terms of space and query I/O cost, respectively. In both cases, the measures

are normalized by the ideal performance (linear space and size of the query,

respectively). In the following definitions, let S = (W,B) be an indexing

scheme of block size B on workload W = (D, I,Q), and let N = |I|.

3.3.1 Storage Redundancy

Definition 3.3. The redundancy r(x) of x ∈ I is defined as the number of

blocks that contain x:

r(x) = |{b ∈ B : x ∈ b}|

The redundancy r of S is then defined as the average of r(x) over all

objects:

r =
1

N

∑
x∈I

r(x)

It is easy to see that the number of blocks is |B| = rN
B

.
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3.3.2 Access Overhead

Definition 3.4. A set of blocks U covers a query Q, iff Q ⊆
⋃
U .

Definition 3.5. A cover set CQ for query Q is a minimum-size set of blocks

that covers Q.

Notice that a query may have multiple cover sets.

Definition 3.6. The access overhead A(Q) of query Q is defined as

A(Q) =
|CQ|⌈
|Q|
B

⌉
where CQ is a cover set for Q.

It is easy to see that 1 ≤ A(Q) ≤ B, since any query Q will be covered

by at least d |Q|
B
e and at most |Q| blocks.

We now define the access overhead A of indexing scheme S, to be the

maximum of A(Q) over all queries.

Definition 3.7. The access overhead A for indexing scheme S is

A = max
Q∈Q

A(Q)

Notice that, although the redundancy is defined as an average (over

all data items), the access overhead is a maximum (over all queries). This

is less inconsistent and arbitrary than it may seem at first. By averaging

over all data items we capture the true space performance of the indexing

scheme, while averaging time performance over all queries would be much less

defensible; queries are generally not equiprobable, and guarantees, and thus

worst-case analysis, are desirable in the context of query response time.
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3.3.3 Some Trivial Bounds and Trade-offs

Based on standard properties of databases and disks, we assume that the

number of objects N is always much greater than the block size B, although

B is not limited in any concrete way.

For any indexing scheme S, the minimum possible redundancy is 1,

when B is a partition of I, and the maximum sensible redundancy is
(
N−1
B−1

)
,

when B =
(
I
B

)
. For S having maximum redundancy, A is exactly 1, which

is minimum; in that case, every query Q can be covered by a set of disjoint

blocks whose union contains Q. Also, for r = 1 it is easy to devise a problem

where A = B, which is maximum (e.g. Q =
(
I
B

)
).

3.4 Discussion

There are many similarities between indexability and previously proposed

models. For example, Nodine, Goodrich and Vitter [NGV96], adopt simi-

lar cost metrics to study the performance of graph search in external memory.

Also, indexability’s definition of a workload has been used before, notably by

Fredman [Fre80], in the context of studying range search. We discuss issues

related to indexability and other competing models for external memory.

A striking aspect of indexability is that it totally omits any aspects of

search. For a model applied to range search, this is at least surprising. This

is not standard practice for memory models; on the contrary, most memory

models focus almost exclusively on search, in the sense that they carefully

specify the conditions under which various parts of the memory can be ac-

cessed. For example, the RAM model allows access to arbitrary locations, and
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allows arithmetic operations on memory addresses. The pointer machine dis-

allows such operations. There, access to a memory location has to be through

a special token, the pointer.

In indexability, there are no provisions for modeling the computation of

a query’s cover set. This is reflected in the definition of indexing schemes, as

well as in the definitions of the cost metrics. This omission can be justified in

at least two ways.

First, experience with existing access methods indicates that, in prac-

tice, search does not introduce additional I/O costs in query processing. In

real systems, there is usually enough main memory available, to fit short de-

scriptions for all disk blocks. For example, it is typical for most internal blocks

of a B+-tree to reside in a main-memory buffer. Some access methods, such

as the grid file, go as far as requiring that a catalog fit in main memory. Thus,

from a performance point of view, search incurs only CPU costs in practice.

Second, in many range search problems, devising an efficient search

scheme seems to be less challenging than devising a good clustering of the

data on disk. In fact, given a good clustering, it is often straightforward to

construct a search scheme on top of it.

Thus, the omission of search is not as arbitrary as it may seem at first.

It offers the advantage of focusing the model on what seems to be the salient

aspect of most range search problems, that of locality.

The choice of indexability cost metrics restricts the scope of the model

to range reporting problems only. For example, indexability is not suitable

for modeling some kinds of search. Notably, nearest-neighbor search under

indexability is a trivial problem, because the answer to a query is a single

record, and thus the access overhead of every query can be optimal A = 1,
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with redundancy r = 1. The locality issues involved in nearest-neighbor search

cannot be captured in this model.

Another limitation incurred by the definition of workload, is that in-

dexability cannot model problems where the answer is a general function of

the dataset. Query results are restricted to be subsets of the dataset. Thus,

indexability cannot model general range queries over a semigroup.

On the other hand, because of its limitations, indexability is particularly

amenable to combinatorial analysis. This is a major advantage, as combina-

torics offers a vast arsenal of techniques to a wealth of problems. Thus, despite

its limitations, indexability is a useful model for studying a large number of

interesting problems.
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Chapter 4

Indexing schemes

We now investigate the construction of indexing schemes for some fundamen-

tal two-dimensional range search problems. However, we first introduce the

indexability model, and some handy definitions, by studying the trivial case

of one-dimensional range queries.

4.1 Linear indexing scheme

Let D be an ordered domain, with ≺ as the order relation. Let I be a finite

subset of D . We wish to answer range queries over I, i.e., given a, b ∈ D , a ≺ b,

to retrieve all x ∈ I such that a ≺ x ≺ b.

Definition 4.1. A sequence of blocks b1, . . . , bK is linear for order ≺, if for

all 1 ≤ i < j ≤ K,

x ∈ bi ∧ y ∈ bj ⇒ x ≺ y

When the order relation ≺ is implied, we omit it and simply speak of a

linear sequence of blocks.
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Definition 4.2. A set I is packed into a linear sequence of blocks iff the

sequence has length d|I|/Be.

Now we estimate the access overhead for packed linear sequences of

blocks.

Proposition 4.1.1. A range query retrieving t elements requires at most

dt− 1

B
e+ 1 blocks from a packed linear sequence.

Proof. Fix some t. If some query requires more than dt− 1

B
e + 1 blocks to

be answered, it has more than t elements. Indeed, trivially, the (at least)

dt− 1

B
e + 2 blocks will form a subsequence of the linear sequence (else some

blocks are not required). The first and last of these contribute at least an

element each, and the middle ones contribute exactly B elements each. Thus,

the query has at least t+ 1 elements.

By the above proposition we conclude that the access overhead for a

packed linear sequence is A = 2. Now, consider the case where some linear

sequence of blocks is not packed. The following proposition applies:

Proposition 4.1.2. For a linear sequence of blocks, such that every k adjacent

blocks have at least B/l elements each, the access overhead is A ≤ k(l+1)−1.

Proof. Let a query require c blocks. For some m and u, 0 ≤ u < k, c = km+u.

The number of elements t returned by the query is t ≥ mB/l + u. We have

t ≥ B

kl
km+ u

=
B

kl
c−

(B
kl
− 1
)
u

Thus, c ≤ kl
t

B
+ u, which proves the proposition.

42



Linear sequences with the property of the above proposition are fre-

quently used as parts of indexing schemes.

4.2 Interval queries

At first glance, intervals do not appear to be two-dimensional objects, since

they represent ranges of a totally ordered domain. However, it is often helpful

to identify an interval with a 2-d point on the plane, and a set of intervals

with a set of 2-d points. We shall consider open intervals (x, y), where x is the

startpoint and y is the endpoint. We call x and y the bounds of the interval.

For a set of open intervals I, we wish to retrieve all intervals (x, y) ∈ I

which intersect a given query interval (a, b). Two intervals intersect iff

x < b ∧ a < y (4.1)

or, in words, iff the startpoint of each is before the endpoint of the other. A

useful observation is that Eq. 4.1 can be decomposed into two conditions:

(a < x < b) ∨ (x < a < y) (4.2)

The left term of the disjunction is simply a range query on the startpoint of the

intervals. The right term is called a point-enclosure, or stabbing query: given

a point, retrieve all intervals that enclose it. Thus, the interval intersection

problem reduces to the stabbing query problem. A geometric representation

of interval queries is shown in Fig. 4.1, where the decomposition of an interval

intersection query becomes plainly visible.

Stabbing queries are a rather simple workload, and can serve as a good

example with which to demonstrate some of the basic techniques for construct-

ing indexing schemes. For this reason, we shall provide multiple solutions,
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y=
x

(b,a)
(a,a)

Figure 4.1: Interval intersection as two-dimensional range search. Each point
(x, y) corresponds to an interval. Query interval (a, b) corresponds to the
upper-left quadrant of point (b, a). A stabbing query at point a corresponds
to the upper-left quadrant of point (a, a).

which will enable us to introduce techniques that will be applied later to more

challenging problems.

4.2.1 The persistence approach

The concept of persistence was discussed in §2.1.9. Persistent data structures

allow queries not only on the current state of a data structure, but on past

states as well. Here, we provide a solution to the interval stabbing problem

based on this technique.

Consider the dynamic set maintenance problem, defined as follows: we

wish to dynamically maintain a set of blocks which stores a dynamic set of

keys, i.e., a sequence of sets of keys, where each set in the sequence is derived

from the previous one by either an insertion or by a deletion of a key. At each
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time, we wish to retrieve the full set. In a database, a relation which undergoes

insertions and deletions is an example of our problem. At each time, we wish

to retrieve the whole relation. Mathematically, we can represent this problem

by a finite sequence St of sets, such that |St 4 St+1| = 1.1 To ensure that a

key is not re-inserted once it is deleted, we require that for each key x, and

each three times t1 ≤ t2 ≤ t3,

x ∈ St1 ∧ x ∈ St3 ⇒ x ∈ St2

Observe that a persistent solution for the above problem is in fact a

(static) solution for interval intersection. Let I be a set of n intervals. We

will maintain dynamically a subset of I. The sorted sequence si of all 2n

interval bounds will define the sequence of insertions and deletions. Thus, if

si is the startpoint of an interval, it corresponds to its insertion, and if si is

the endpoint it corresponds to its deletion. Clearly, a stabbing query over the

set of intervals I corresponds to a query of some state of the dynamic set.

We now analyse a simple solution for persistent dynamic set manage-

ment, within the indexability framework. The queries of our workload are

represented by the sets St. Naturally, we will require that the constructed

indexing scheme must cover every query St with at most Ad|St|/Be of its

blocks.

To construct our indexing scheme, we maintain a set E of active blocks.

Initially, E contains a single empty block. We also define αt(b) = b ∩ St to be

the set of active elements of block b at time t. We iterate over all insert/delete

operations in chronological order. The maintenance of E at time t is done as

follows:

1For sets A,B, A4B = A ∪B −A ∩B is the symmetric difference of A and B.
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Case 1: The operation at t is the insertion of key x.

I1. If some block in E has free space, add x to it.

I2. If no block has free space, but some block b has fewer than B/2 active

elements (i.e., |αt(b)| < B/2), replace b by a new block containing

at(b) ∪ {x}.

I3. If none of the above conditions apply, create a new block containing

x.

Case 2: The operation is a deletion of key x.

D. Let b be the block that contains x. If |αt(b)| ≤ B/4, and some other

block b′ also has |αt(b′)| ≤ B/4, then remove both b and b′ from E

and replace them with a new block containing αt(b) ∪ αt(b′).

We claim that the access overheadA of the indexing scheme is small, and

also that the redundancy r is small. Our argument is based on the following

invariant:

Invariant 4.2.1. At every time t, the following three apply:

1. The union of all blocks in E covers St.

2. The blocks of E are pairwise disjoint.

3. We say that a block underflows, iff |αt(b)| < B/4. There is at most one

block in E that underflows.

Proof. The parts of the invariant are easily proved by induction. They are true

initially, since there is only one initial empty block in E. Assume they are true
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at step t. At step t+1, (1) and (2) are trivially true. For (3), let the operation

be an insertion; (3) will still be true if I1 or I2 apply, since the number of

active elements of all blocks can only increase. Also, if I3 applies, then by the

condition of I3 there was no underflowing block in E, thus the newly created

block is the only underflowing block. Finally, if a deletion occurs at t+1, then

this deletion can cause the block containing the deleted element to underflow.

But then, if there is another underflowing block, the two will be immediately

merged, and thus there will again be at most one underflowing block.

Now, we show that the access overhead A is at most 5. To see this,

observe that our invariant guarantees that to cover the query corresponding

to time t, we need only to use the blocks contained in E at time t. Let Kt

be the number of blocks in E at time t. As all but one contain at least B/4

active elements, we conclude that

|St| ≥ (Kt − 1)
B

4

and thus query St is covered with an access overhead of at most 5.

The redundancy will also be r = O(1) for our indexing scheme. The

argument is as follows: A new block can be created by steps I2, I3 and D.

In each case, the new block will be at least half-empty. Thus, at least B/2

insertions following the creation, can be satisfied by the space in the new

block. We conclude that the number u of blocks created by steps I2 and I3 is

at most 2n/B. Now, let v be the number of blocks created by step D. Since

step D creates a new block that replaces two previous ones, we can conclude

that v ≤ u − 1. The total number of blocks is u + v ≤ 4n/B, and thus the

redundancy is r ≤ 4.
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In this section we have not attempted to obtain a good indexing scheme,

and thus the constants of redundancy and access overhead are high. In sub-

sequent sections, more sophisticated techniques will provide better constants.

4.2.2 A partitioning approach

We now develop a different approach to construct an indexing scheme for

interval stabbing. For one-dimensional points, a simple partitioning of the

sorted dataset provides an optimal indexing scheme. In this section, we explore

a partitioning technique for interval stabbing queries. However, instead of

partitioning the dataset, we will partition the set of queries. The origins of

this technique can be found in [Cha86].

We begin with some useful definitions.

Proposition 4.2.1. For a sequence {si} of n ≥ 1 elements from an ordered

domain D , there exists an element a ∈ D such that there are at most n/2

elements of {si} strictly less than a and at most n/2 elements of {si} strictly

greater than a. The element a is called a bisector of the sequence.

Proof. Sort {si} into sequence x1, x2, . . . , xn. Then, xdn/2e is a bisector.

A strictly increasing sequence {xi}, 1 ≤ i ≤ n, of length n ≥ 0, defines

n+ 1 regions on D . For n = 0 the region is D itself. We denote these regions

as

ri = {x ∈ D |xi < x < xi+1} , 0 ≤ i ≤ n

(where x0 = −∞ and xn+1 = +∞). We refer to such a set of regions as a

decomposition, and we say that sequence {xi} induces the decomposition.
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Consider the dataset as a set I of n open intervals over some ordered

domain D , and some decomposition of m + 1 regions, induced by {xi}, 1 ≤

i ≤ m. We say that interval (x, y) ∈ I covers region ri, iff ri ⊆ (x, y). For

0 ≤ i ≤ j ≤ m, let Ci,j ⊆ I be those elements of I which cover all regions

ri, ri+1, . . . , rj, and let Si,j ⊆ I be those intervals that intersect some of the

regions ri, ri+1, . . . , rj. Note that Ci,j ⊆ Si,j and also the equations

Si,j =

j⋃
k=i

Sk,k

Ci,j =

j⋂
k=i

Ck,k

For dataset I, for block size B and any λ > 1, we consider a decompo-

sition induced by {xi}, 1 ≤ i ≤ m, with the following two properties:

λ (|Ci,i|+B) ≥ |Si,i|+B for 0 ≤ i ≤ m (4.3)

λ (|Ci,i+1|+B) ≤ |Si,i+1|+B for 0 ≤ i < m (4.4)

For this decomposition, construct an indexing scheme for I as follows:

1. For each i, 1 ≤ i ≤ m, construct packed blocks by storing all intervals

that enclose point xi.

2. Also, construct a packed linear sequence of dn/Be blocks, storing all

intervals in ascending order of their startpoint.

A query defined by a closed interval [a, b], is answered as follows: there

is a unique i such that xi ≤ a < xi+1. Retrieve the blocks of the intervals

intersecting xi (provided i > 0), and also retrieve all intervals whose startpoint

lies between xi and b, from the packed linear sequence.
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We now use Eqs.(4.3) and (4.4) to analyze this indexing scheme.

Eq. (4.3) suffices to guarantee that the access overhead of any query will

be small. Indeed, consider query [a, b] and let i be such that xi ≤ a < xi+1. As

stated, we will retrieve all dU1/Be blocks storing the U1 intervals containing xi,

and also all d(U2− 1)/Be+ 1 blocks of the packed linear sequence, containing

all intervals with endpoints between xi and b. Some of the intervals from

these blocks will not belong to the query, namely those intervals (x, y) with

xi ≤ y < a. There are at most |Si,i|−|Ci,i| such intervals. Let t be the number

of intervals in the query. Then,

U1 + U2 ≤ t+ |Si,i| − |Ci,i|.

From Eq. 4.3, we get

U1 + U2 ≤ t+ (λ− 1)(|Ci,i|+B),

and since t ≥ |Ci,i|, we have

U1 + U2 ≤ λt+ (λ− 1)B.

If V is the total number of retrieved blocks,

V = dU1

B
e+ dU2 − 1

B
e+ 1

≤ U1 + U2 + 3B − 1

B

≤ λt

B
+ λ+ 2

≤ 2(λ+ 1)

⌈
t

B

⌉
and thus the access overhead is

A ≤ 2λ+ 2 (4.5)
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Eq. (4.4) suffices to guarantee that the redundancy is small. The set of

intervals containing point xi is Si−1,i−1 ∩ Si,i. Thus, the total space required

will include the dn/Be blocks of the packed linear sequence, as well as K blocks

for storing the containing intervals for each xi, where

K =
m∑
i=1

⌈
|Si−1,i−1 ∩ Si,i|

B

⌉
≤ m+

1

B

m∑
i=1

|Si−1,i−1 ∩ Si,i| (4.6)

blocks. To bound the above sum, observe that

Si−1,i−1 ∩ Si,i = (Si−1,i−1 ∩ Si,i − Ci−1,i−1) ∪

(Si−1,i−1 ∩ Si,i − Ci,i) ∪

Ci−1,i

⊆ (Si−1,i−1 − Ci−1,i−1) ∪ (Si,i − Ci,i) ∪ Ci−1,i

(since Si−1,i−1 ∩Si,i ⊇ Ci−1,i−1 ∩Ci,i = Ci−1,i). Notice that Si,j −Ci,j is the set

of intervals with at least one endpoint in ri ∪ . . . ∪ rj. Thus,

K ≤ m+
1

B

m∑
i=1

(
|Si−1,i−1 − Ci−1,i−1|+ |Si,i − Ci,i|+ |Ci−1,i|

)
≤ m+

4n

B
+

1

B

m∑
i=1

|Ci−1,i|

≤ m+
4n

B
+

1

B

m∑
i=1

( |Si−1,i| − |Ci−1,i|
λ− 1

−B
)

≤
(

4 +
2

λ− 1

) n
B

from which we conclude that

r ≤ 5 +
2

λ− 1
(4.7)

We must also show that decompositions which satisfy properties (4.3)

and (4.4) do exist. The argument is by a two-phase construction, including a

splitting phase and a merging phase.
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Assume any initial decomposition, induced by {xi}, 1 ≤ i ≤ n. Let some

region ri of this decomposition violate Eq. (4.3). Proposition 4.2.1 implies that

there exists some x ∈ D that bisects the set of 2|Si,i − Ci,i| endpoints of the

intervals in set Si,i − Ci,i. Use this x to split region ri, and thus replace ri by

two new regions. Repeat the splitting process until all regions satisfy Eq. (4.3).

Indeed, the extreme decomposition into 2n+1 regions, where Si,i−Ci,i = ∅ for

all i, does satisfy Eq. (4.3), since λ > 1, so the splitting process will terminate.

Now, given any decomposition such that all regions satisfy Eq. (4.3),

process this decomposition as follows: repeatedly select adjacent regions ri and

ri+1 that violate Eq. (4.4). Merge these two regions, by replacing them with a

new region representing their union. Since the initial decompositions violated

Eq. 4.4, the new region satisfies Eq.(4.3). Also, the size of the decomposition

has decreased by 1. The extreme case of a decomposition with a single region

will trivially satisfy Eq.(4.4). So the merging phase also terminates, and it

will yield a desired decomposition.

In general, the order of the phases cannot be reversed. Also, note

that the splitting phase can be bypassed by assuming that its end result is

the extremal decomposition induced by the ordered sequence of all interval

endpoints in the dataset. Then, the merging phase can process the regions

serially from (say) left to right, and obtain a desired decomposition.

The preceding analysis is summarized in the following theorem:

Theorem 4.3. Given set I of n intervals, and a desired access overhead

A ≥ 4, there exists an indexing scheme for interval intersection queries with

redundancy

r ≤ 5 +
4

A− 4
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The performance of the indexing scheme described in this section is not

superior to that of the previous section. Yet, the construction is interesting

theoretically, because of the separation of the argument along Eqs. 4.3 and

4.4.

4.3 Intersecting segments

Let DH and DV be two totally ordered domains. We call DH the horizon-

tal domain, and DV the vertical domain. A horizontal segment is a triple

(x1, x2, y) ∈ DH × DH × DV , with x1 < x2. Similarly, a vertical segment

(x, y1, y2) ∈ DH ×DV ×DV has y1 < y2.

The orthogonal segment intersection problem is defined as follows: given

a set I of n horizontal segments, and a query defined by vertical segment

(a, b1, b2), retrieve all segments (x1, x2, y) ∈ I such that

x1 < a < x2 and b1 < y < b2

A geometric depiction is shown in Fig. 4.2. In order to provide full generality

(a,b )

(a,b )

(x ,y) (x ,y)1 2

2

1

Figure 4.2: A set of horizontal segments, and a vertical segment intersecting
three of them.
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to our problem, we will assume that both domains DH and DV contain positive

and negative infinities, i.e., each has a minimal and a maximal element. Thus,

horizontal and vertical segments can be infinite in one or both directions. With

this addition, interval intersection generalizes a number of other problems,

among them interval stabbing and interval intersection.

We describe a solution to this problem based on the idea of persistence.

That is, we consider the problem of inserting and/or deleting elements from

a linear sequence of blocks on the order of DV . Domain DH will serve as

the temporal domain. Informally, a horizontal segment (x1, x2, y) is added to

the linear sequence at a time corresponding to x1, and is deleted at a time

corresponding to x2.

More precisely, the set of n horizontal segments I is processed as a

sequence {si} of 2n insertion/deletion operations. To horizontal segment

(x1, x2, y) corresponds an insertion operation ins(x1, x2, y) and a deletion op-

eration del(x1, x2, y). Define function τ as:

τ(ins(x1, x2, y)) = (x1, x2, y)

τ(del(x1, x2, y)) = (x2, x1, y)

Operations are sorted in {si} in ascending lexicographic order of τ , i.e.,

i < j ⇒ τ(si)≤̇τ(sj)

(where ≤̇ is the lexicographic order over D2
H ×DV ).

To each integer 0 ≤ t ≤ 2n corresponds a state St, which is a subset of

I. State St+1 is defined by state St and operation st+1 as follows:

1. If st+1 = ins(x1, y, x2), let St+1 = St ∪ {(x1, x2, y)}.
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2. If st+1 = del(x1, x2, y), let St+1 = St − {(x1, x2, y)}.

A persistent range query is defined as follows: for every t and range (a, b) with

a, b ∈ DV , a < b, retrieve all elements (x1, x2, y) ∈ St with a < y < b. Each

segment intersection query over I, defined by a vertical segment (τ, a, b), can

be transformed to some t and range (a, b), so that the answer to the segment

intersection query is the same as the answer the range query (a, b) on St. Note

that the converse need not be true, if segment endpoints are not in general

position.

To construct an indexing scheme, we iterate in order over the sequence

of operations {si}. Through the iteration we maintain a linear sequence E of

blocks for the order of DV . Initially, E contains a single, empty block. At

time t, the sequence is updated to reflect the insert/delete operation st. For

a block b, αt(b) denotes the set of active elements of b at time t, i.e., the set

b ∩ St. The maintenance of E is done as follows:

1. If st = ins(x1, x2, y), locate a block b in the sequence, corresponding to

y. If,

(a) b has space available, add (x1, x2, y) to it, else,

(b) if |αt(b)| < B/2, replace b in E by a block containing αt(b) ∪

{(x1, x2, y)}, else,

(c) replace b by two blocks, which split evenly between them the set

αt(b) ∪ {(x1, x2, y)}.

2. If st = del(x1, x2, y), let b be the block b containing (x1, x2, y). Then,

(a) if |αt(b)| = 0 and b is not the only element of E, remove it from E.

Else,
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(b) if, for one of the (at most) two adjacent blocks of b, say block b′, it is

|αt(b)|+ |αt(b′)| ≤ B/2, merge b and b′ into a new block containing

all active elements of the merged blocks. Replace the merged blocks

with the new one in E.

We now show that the blocks produced by the above algorithm, form

an efficient indexing scheme for segment intersection. First, observe that the

algorithm is correct, i.e., that E is indeed at all times a linear sequence. Also,

at every step t, the contents of all blocks subsume St. To answer a query

(a, b) over St, we use the blocks that were contained in E at step t of the

construction.

At all times t, every two adjacent blocks in E contain at least B/2

active elements. This can be shown by considering the various cases of the

construction algorithm. Since E is a linear sequence, by Prop. 4.1.2, the access

overhead is A ≤ 6.

A newly created block (by step 1b,1c or 2b) will have at least B/2 free

space initially. Thus, the blocks created by steps 1b and 1c can be attributed

to at least B/2 insertion operations. Since there are n insertion operations,

the number of blocks created by insertions is at most 2n/B. When a block is

created by step 2b (merging), the size of E decreases by one, and thus there

are at most 2n/b blocks created by this step as well. We conclude that r ≤ 4.

The presented solution can be modified to improve redundancy, to the

detriment of access overhead. This is done by modifying the processing of

deletions. For some k ≥ 2 (with case k = 2 corresponding to the original),

step 2b is modified to be as follows:

2b-1 repeatedly replace each maximal subsequence of E of length at least
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k, and such that the blocks in the subsequence collectively contain at

most B/2 active elements, by a single block containing all their active

elements.

Each replacement of the above kind will reduce the length of E by k− 1, and

thus there will be at most
2n

(k − 1)B
blocks produced by this step. However,

the access overhead is now (by Prop. 4.1.2) A ≤ 3k, and thus we obtain the

following general result:

Theorem 4.4. Given a set I of n horizontal segments, there exists an indexing

scheme for segment intersection queries with redundancy

r ≤ 2 +
6

A− 3

for any access overhead A ≥ 6.

4.3.1 Three-sided queries

The three-sided query problem is to index a set of points in the plane such that

given a, b, c with a < b, to retrieve the points (x, y) such that a < x < b and

y < c. A geometric representation of this problem is shown in Fig. 4.3. The

problem is a special case of segment intersection, but we study it separately

because of its practical applications. In particular, we derive improved bounds

for redundancy and access overhead.

The improvement comes from a modification of the algorithm for seg-

ment intersection. We select the negative direction on the y-axis to be our

temporal dimension. That is, each point in the dataset is a segment which

starts at −∞. This choice enables us to improve the construction of an in-

dexing scheme as follows: instead of starting with an initial state S0 which is
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a b

c

Figure 4.3: A three-sided query over a set of points, defined by limits a,b and
c. The points can be thought as vertical segments extending to +∞, and the
query as a horizontal segment (a, b, c).

empty, that is, by a linear sequence of blocks E which contains only a single,

empty block, we begin with an initial state S0 = I, i.e., E initially is a packed

linear sequence, of n/B blocks. The algorithm then constructs additional

blocks by processing a sequence of deletions. Since no insertion is performed,

the only modification involves step 2b of the process of the previous section,

which for k ≥ 2 is modified as follows:

2b-2 repeatedly replace each maximal subsequence of E of length at least k,

such that the blocks in the subsequence collectively contain fewer than

B active elements, by a single block containing all their active elements.

Based on the analysis of the previous section, the following theorem can be

shown:

Theorem 4.5. For a set I of n points on the plane, there exists an indexing

scheme for three-sided queries with redundancy

r ≤ 1 +
2

A− 2
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for any access overhead A ≥ 4.

Proof. For a chosen value of k, the access overhead is (by Prop. 4.1.2) A ≤ 2k,

and the redundancy is r ≤ 1 +
1

k − 1
.

The important improvement in the constants of theorem 4.5 is a result of

the fact that the process has been reduced to a persistence problem involving

only deletions, which implies merging. Merging can be easily modified to

guarantee both good space utilization and small additional space overhead.

If the choice of time were made opposite, i.e in the positive direction of the

y-axis, a sequence of insertions would have be performed, which would not

improve the redundancy bounds significantly.

4.4 Four-sided queries

The four-sided query problem is the canonical range search problem in two

dimensions: index a set I of n points on the plane, so that given a query

rectangle with lower-left corner (a, b) and upper-right corner (c, d), all points

(x, y) such that a < x < c and b < y < d can be efficiently retrieved.

A solution for this problem is based on the solution derived previously

for three-sided queries. Our approach is based on the principle of divide-

and-conquer. In order to simplify our analysis, we will derive an asymptotic

expression of the redundancy, for a fixed access overhead A, but with small

hidden constants. We will also assume that numbers are rounded off nicely

into integers. This will only affect our analysis by small constant factors.

For some integer c > 1 to be determined later, divide the plane into c

horizontal stripes, so that each stripe contains n/c points of the dataset. Now,

59



consider a query whose rectangle intersects more than one of these stripes.

This query is decomposed into a number of one-dimensional range queries (at

most c − 2 of them) and into two three-sided queries. This is depicted in

Fig. 4.4.

Figure 4.4: The horizontal dashed lines divide the plane into 5 stripes. A
rectangle is decomposed into 2 one-dimensional queries and two three-sided
queries.

If the points inside each stripe are organized in an indexing scheme

which allows three-sided queries in both orientations (u-like and t-like ones),

then every query whose rectangle intersects more than one of the stripes can

be answered efficiently.

To handle all queries, we recursively divide each stripe into c sub-stripes.

This process continues until the stripes contain at most AB points each. Those

points are organized into A blocks, and a query falling inside such a stripe

will be answered by accessing all A blocks. The depth of this hierarchical

subdivision is logc
n
AB

.

Each horizontal stripe created by this recursive subdivision must be

organized so as to answer both u-like and t-like three-sided queries. Let A1

be the access overhead for these queries. Note that the indexing scheme for
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three-sided queries of §4.3.1 will also answer one-dimensional range queries,

as it contains a packed linear sequence over all points. We now estimate

constants c and A1, which yield the desired access overhead A. Let a query

which retrieves T points be decomposed into c − 2 one-dimensional queries,

each of which retrieves Ti points, 1 ≤ i ≤ c − 2, and two three-sided queries

which retrieve Tu and Tt points respectively. The number of blocks accessed

is at most

c−2∑
i=1

(⌈Ti − 1

B

⌉
+ 1
)

+ A1

⌈
Tu
B

⌉
+ A1

⌈
Tt
B

⌉

≤ 2(c− 1) +
1

B

c−2∑
i=1

Ti + A1
Tu
B

+ A1 + A1
Tt
B

≤
(

2(c− 2) + 3A1

)⌈T
B

⌉
Thus, A1 and c must be selected so that

A = 2(c− 2) + 3A1 (4.8)

Now we compute the redundancy for whole indexing scheme. Each of

the logc
n
AB

levels of our hierarchical subdivision will contain the whole dataset,

and each will require at most

n

B

(
1 +

4

A1 − 2

)
blocks, as can be seen by Theorem 4.5. The redundancy is thus,

r ≤
(

1 +
4

A1 − 2

)
logc

n

AB
(4.9)

We can substitute A1 = (A+ 4−2c)/3 in the above equation, to obtain

r ≤ A− 2c+ 10

A− 2c+ 2
· log(n/AB)

log c
(4.10)
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The value of c which yields minimum redundancy r can be obtained by solving

the equation
∂r

∂c
= 0. After manipulations (see Appendix A) we obtain

A = 2(c− 2) + 4
√
c ln c+ 1− 2 (4.11)

By contrasting Eqs.(4.8) and (4.11) we see that for minimum redundancy, it

must be

A1 = 4
3

√
c ln c+ 1− 2

3

Thus, we can assert that c = Θ(A), and from Eq.(4.9) we have the following

theorem:

Theorem 4.6. For a set I of n points on the plane, there exists an indexing

scheme for four-sided range queries, with redundancy

r = O
( log(n/B)

logA

)

The above result is in a sense negative. This is an indexing scheme for

which the redundancy grows with the size of the dataset. Unfortunately, as

we will show later, the above relationship is optimal.

4.5 Multidimensional Arrays

We now turn our attention to a restricted form of range queries, namely those

where the points are arranged on a dense rectangular grid. Another statement

of the problem is to index an array, so that subarrays can be accessed efficiently.

To make this restricted case more interesting, we consider arrays of some fixed

dimension d ≥ 1.
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For a given d-dimensional array with Nd elements (N ≥ B), we fix

parameter c, to be determined later, and we consider all d-tuples of nonnegative

integers (i1, . . . , id), such that
∑d

k=1 ik = logcB. Each such tuple is called

a shape, and it is used to partition the array into subarrays of dimensions

ci1 × · · · × cid . Each subarray contains B elements, and is thus stored in a

block. Overall, the number of blocks K created thus is

K =

(
logcB + d− 1

d− 1

)
Nd

B

since there are
(

logcB+d−1
d−1

)
shapes. The redundancy is therefore

r =

(
logcB + d− 1

d− 1

)
(4.12)

Let X1×· · ·×Xd denote the dimensions of some subarray that we wish

to retrieve. The subarray is covered by blocks of the same shape (i1, . . . , id),

and in particular by a (hyper)cube of f1 × · · · × fd of blocks of this shape.

Thus, the total number of blocks is

f =
d∏

k=1

fk (4.13)

It is easy to see (by an argument similar to Prop. 4.1.1) that

fk ≤
⌈
Xk − 1

cik

⌉
+ 1

and thus

f ≤
d∏

k=1

(⌈
Xk − 1

cik

⌉
+ 1

)

≤
d∏

k=1

(
Xk

cik
+ 2

)
(4.14)
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Define the scaling factor λ as

λ =

(∏d
k=1 Xk

B

)1/d

and let

X̂k =
Xk

λ
for 1 ≤ k ≤ d

From the definition of λ we have

d∏
k=1

X̂k = B (4.15)

By substitution in Eq. 4.14 we obtain

f ≤
d∏

k=1

(
λ
X̂k

cik
+ 2
)

(4.16)

We now determine the shape of the blocks as follows: let îk = blogc X̂kc. By

Eq.(4.15),
∑d

k=1 îk ≤ logcB, thus there exists some shape (i1, . . . , ik) which

dominates tuple (î1, . . . , îd) in every coordinate. Pick any such shape. For the

chosen shape, the relation
X̂k

cik
≤ c holds for all k, and by substitution into

Eq.(4.16),

f ≤ (λc+ 2)d (4.17)

If λc < 2, the query is covered by at most 4d blocks. Assume λc ≥ 2. Eq.(4.17)

yields

f ≤ (2λc)d

≤ (2c)d
∏d

k=1 Xk

B

≤ (2c)d
⌈∏d

k=1 Xk

B

⌉
So, for every access overhead A ≥ 4d, we have c =

A1/d

2
≥ 2. The restriction

on the access overhead is slightly non-optimal, but cannot be removed for
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the type of indexing scheme constructed here. Indeed, consider a query of

dimensions B1/d × · · · × B1/d, strategically located so that in each dimension

(of length B1/d) it intersects two block lengths of the shape (B1/d, . . . , B1/d).

It can be shown easily that all other shapes will be at least as bad for such a

query. Thus, independent of the choice of c, the access overhead will always

be A ≥ 2d. Our stricter restriction of A ≥ 4d is a result of roundoff steps in

our analysis, but removing it would greatly complicate our formulas.

By combining our choice of c with Eq.(4.12), we obtain the following

theorem.

Theorem 4.7. Let W be a workload whose instance consists of the elements

of a d-dimensional array of size N × · · · ×N , and whose set of queries is the

set of all subarrays. For any access overhead A ≥ 4d, there exists an indexing

scheme of redundancy

r =

(
d logB

logA−d + d− 1

d− 1

)
For d a fixed constant, the redundancy is

r = Θ
(
logdAB

)
= Θ

((
logB

logA

)d)

but the hidden constant is of order O(dd). This is an instance of the infamous

“curse of dimensionality”, where space exponential in d is required to achieve

reasonable access overhead.

4.6 Point enclosure queries

The most practical planar range search problem, apart from range queries over

points, is intersection queries over rectangles. In this case, the dataset is a set
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of rectangles with sides parallel to the axes. A query, defined by a rectangle

ρ, must retrieve all rectangles of the dataset that intersect ρ.

The problem can be stated as a two-dimensional interval problem, where

each rectangle is defined by two intervals, ux and uy, and, given two query

intervals qx and qy, we must retrieve all rectangles such that ux intersects qx

and uy intersects qy. This view of the problem implies that a query can be

decomposed, along the lines of §4.2, into a union of four queries, namely:

• a four-sided range query,

• two segment intersection queries, and

• a point enclosure query.

Of these, all except point enclosure queries have already been studied. Thus,

we turn our attention to point enclosure queries, namely, given a dataset of

rectangles, and a query defined by a point p, retrieve all rectangles which

contain p.

A fundamental observation is that this problem is, in a sense, dual to

the four-sided query problem. Let R2 be the set of all planar rectangles, and

let u ⊆ R2×R2 be the intersection relation, i.e., for point p ∈ R2 and rectangle

ρ ∈ R2, p u ρ holds if, and only if, ρ encloses p. With this relation, the four-

sided query problem is defined by a finite set of points I ⊂ R2, and the a

query Qρ, defined by rectangle ρ, is

Qρ =
{
p ∈ R2 | p u ρ

}
∩ I

Dually, the point enclosure problem is defined by a finite set of rectangles J ,

and the query Qp defined by point p is

Qp =
{
ρ ∈ R2 | p u ρ

}
∩ J
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Note that in this sense, the segment intersection problem is dual to

itself. Also, the interval stabbing problem, studied previously, is dual to the

one-dimensional range search problem. Under this light, let us examine the

indexing schemes developed for these problems. The linear indexing scheme

of §4.1 partitions the key space into (equal) regions, and stores each region

separately (into a block). In contrast, the indexing scheme of §4.2 partitions

the query space, by partitioning the axis into disjoint intervals.

Inspired by this view of the previous techniques, we now examine the

indexing scheme of §4.4, hoping to derive a dual solution for point enclosure

queries. That indexing scheme works by defining a sequence of O(r) layers.

The layers form a hierarchical subdivision of the key space, of degree O(A).

Each key is stored once in every layer. Conversely, a query is decomposed into

O(A) subqueries on a single layer.

We are then seeking an indexing scheme for point enclosure, with the

following characteristics: the indexing defines a sequence of O(A) layers. The

layers form a hierarchical subdivision of the query space, of degree O(r). Each

key is replicated into O(r) copies, on a single layer. Finally, a query is mapped

to a single region in every layer.

Having stated our requirements, we now see that a solution derived

purely from duality arguments, does indeed exist. For simplicity, we do not

repeat the detailed analysis of §4.4, but use asymptotic cost expressions in-

stead.

Using d−1 horizontal lines, partition the plane into d horizontal stripes,

so that each stripe contains a roughly equal number of rectangle corners. Let

a rectangle ρ intersect k ≥ 1 of these horizontal lines, and thus intersect

k + 1 horizontal stripes. The rectangle will be associated with every stripe it
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a
b

c

f

e

d

p

Figure 4.5: A decomposition of the plane into d = 4 stripes, by three dashed
lines. The rectangles marked a, b, c, d, e, f , intersect at least two stripes each.
A query at point p is associated with a single stripe.

intersects. To handle rectangles that do not intersect any of the d − 1 lines,

we further subdivide each region into d subregions, and continue recursively

until the regions contain O(B) rectangle corners, in which case we store the

whole region in a single block. Thus, the total number of layers is

logd(n/B) (4.18)

Given a query defined by point p, decompose it into logd(n/B) sub-

queries, one for each layer. The query corresponds to a single horizontal stripe

in each layer. Each stripe is organized by splitting the intersecting rectangles

into three sets, U , L, and M . U contains all rectangles whose upper side fall

inside the stripe. Similarly, L holds all rectangles whose lower side falls into

the stripe. M contains the rest, those whose vertical sides span the full height

of the stripe. Now, the query at point p within the stripe can be answered as

the union of three queries as follows:
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• A segment intersection query over the contents of U , where the horizon-

tal segments are the upper sides of the rectangles in U , and the query

segment is the infinite vertical upward ray emanating from p.

• Another segment intersection query over the contents of L, where the

queries are the lower sides of the rectangles in L, and the query segment

is the infinite vertical downward ray emanating from p.

• Finally, an interval stabbing query over the contents ofM , where the keys

are the one-dimensional projections of the vertical sides of the rectangles

of M on the y-axis, and the query point is the y-coordinate of p.

All three types of queries can be answered with O(1) access overhead, using

indexing schemes of O(1) redundancy.

For any given query at point p, which retrieves Ti rectangles from layer

i, i = 1, . . . , logd(n/B), the total number C of blocks required is

C =

logd(n/B)∑
i=1

O(1)

⌈
Ti
B

⌉
= O(

T

B
+ logd(n/b))

and thus, A = O(logd
n
B

).

Also, let s = O(n/B) be the number of all stripes in all layers, and let

ni denote the number of rectangles stored in stripe i. Each rectangle is stored

in at most d stripes, so the total number K blocks required is

K =
s∑
i=1

O(
ni
B

) = O(d
n

B
+ s) = O(

dn

B
)

and thus r = O(d).

We conclude that
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Theorem 4.8. For a set I of n planar rectangles with sides parallel to the

axes, there exists an indexing scheme for point enclosure queries, with access

overhead

A = O
( log(n/B)

log r

)
Contrast the trade-off of the above theorem with the trade-off

r = O(logA(n/B))

for four-sided queries (from Theorem 4.6). Interestingly, the two trade-offs are

dual with respect to A and r. Although the construction of this section has

made this development more-or-less expected, as a general rule this is a most

amazing fact. We postpone further discussion of this matter, until after we

have studied lower bounds on these trade-offs, in chapter 5.

4.7 Discussion

We have studied orthogonal range search on the plane, by constructing index-

ing schemes for some fundamental problems. The techniques we have used

are well-understood techniques from computational geometry, with origins in

main-memory range search. We have contributed to this knowledge in two

ways; first, we provided external versions of these techniques, that are in-

dependent of the search component of the problem, which is the paragon of

main-memory analysis. Second, we have in all cases strived to explore the

space/access-cost trade-off which is inherent in these problems.

The relationship between locality and search is a fundamental concept

highlighted by our work. For main-memory data structures, the issue of local-

ity is equally important, but its expression is more intricate, because it seems
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hard to separate it from the issues of search. In indexability, the concept of

search is non-existent, and thus the basic combinatorial aspects of locality be-

come more apparent. Equally important, indexability analysis highlights the

effect of a variable block size, i.e., an additional parameter to the problem,

motivated by technological considerations, which generalizes the concept of

storage in ways not relevant to a pure main-memory approach.

The main contribution of indexability is arguably the explicit study of

the space/access-cost trade-off. Although this fundamental concept is used

widely in databases, it has typically been applied in ad-hoc ways. Within

indexability, the issue is brought to center stage, and it receives rigorous study

under formal assumptions. This is not a purely theoretical exercise. There

are numerous techniques, developed in a main-memory setting, which require

super-linear storage, if the access cost is to be low. Such techniques are unlikely

to be adopted into database practice, because even a logarithmic factor of

storage redundancy can become prohibitively expensive. 2 Thus, if databases

are to take advantage of such techniques, there must be opportunity to reduce

the storage requirements in a disciplined manner, which does not cancel the

desirable access cost advantages of the techniques.

Finally, we note that for all the indexing schemes developed in this

chapter, it is straightforward to develop corresponding search structures, and

thus derive static indexes for these problems. Static indexes can be useful in

databases, but their use is limited in special applications. However, it will turn

out that indexing schemes are very useful in deriving dynamic data structures

as well. We shall study these issues in some detail in chapter 6, where much

2This is not as big a problem in main-memory data structures, which have a short
lifetime, and in general work under different operational assumptions.
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of the development of this chapter will be used as foundation.
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Chapter 5

Lower Bounds on Indexing

We have studied a number of different workloads for various types of two-

dimensional range queries. In many of the cases studied in the previous chap-

ter, the access overhead and the redundancy were independent of the size of

the dataset. A notable exception was the four-sided range search problem,

where the indexing scheme developed in §4.4 had redundancy logarithmic in

n/B. Also, the indexing scheme for arrays (§4.5) required redundancy polylog-

arithmic in logB. It is natural to ask whether these redundancy requirements

show a failing of our techniques, or whether the indexing problems are indeed

hard.

In this chapter we develop a systematic approach for deriving lower

bounds on the trade-off between access overhead and redundancy for a given

workload.
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5.1 A General Theorem for Lower Bounds

In this section we provide a combinatorial analysis of indexing schemes, which

will culminate to our Redundancy Theorem. We first state and prove a set-

theoretic result that is of central importance to our proof. Note that this

theorem is not specific to indexing schemes, but is in fact a theorem in extremal

set theory.

Theorem 5.1. Let S1, S2, . . . , Sa (a ≥ 1) be non-empty finite sets, S = S1 ∪

S2∪ . . .∪Sa be their union, and L ≤ |S| be a positive integer. Let k denote the

maximum integer such that there exist k pair-wise disjoint sets P1, P2, . . . , Pk,

so that for all i, 1 ≤ i ≤ k,

1. |Pi| = L, and

2. Pi ⊆ Sj for some j, 1 ≤ j ≤ a.

or k = 0 if no such sets exist. Then,

k ≥
⌈
|S| − a(L− 1)

L

⌉
(5.1)

Proof. Let P = P1 ∪ P2 ∪ . . . ∪ Pk. By the maximality of k, for all 1 ≤ i ≤ a,

|Si−P | ≤ L− 1, else we could create an additional set Pk+1 using L elements

from Si − P . Thus,

|S| − kL = |(S1 ∪ . . . ∪ Sa)− P | ≤
a∑
i=1

|Si − L| ≤ a(L− 1)

from which the theorem follows.
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We now apply the above theorem to the domain of indexing schemes.

First we define a new concept, flakes.

Definition 5.2. Let S = (W,B) be an indexing scheme on workload W =

(I,Q). A flake is any set of objects F ⊆ I such that for some query Q and

some block b, F ⊆ Q ∩ b.

We now have the following lemma on flakes:

Lemma 5.1.1 (Flaking Lemma). Let S be an indexing scheme, A be the

access overhead, and 2 < η < B
A

be a real number. Then, any query Q with

|Q| ≥ B will contain at least (η − 2)A |Q|
B

flakes of size b B
ηA
c.

Proof. Choose a cover set for Q, say CQ = {b1, . . . , ba}, of size a. Let S1, . . . , Sa

be defined as Si = Q ∩ bi for 1 ≤ i ≤ a. We have a = A(Q)
⌈
|Q|
B

⌉
≤ A

⌈
|Q|
B

⌉
.

From Theorem 5.1 we know that the number k of flakes of size b B
ηA
c is at least

k ≥

⌈
|Q| − a(b B

ηA
c − 1)

b B
ηA
c

⌉
≥

|Q| − a(b B
ηA
c − 1)

b B
ηA
c

≥
|Q| − A

⌈
|Q|
B

⌉
(b B
ηA
c − 1)

b B
ηA
c

≥
|Q| − A

(
|Q|
B

+ 1
)

(b B
ηA
c − 1)

b B
ηA
c

≥
|Q| − A

(
|Q|
B

+ 1
)

( B
ηA
− 1)

B
ηA

≥ ηA|Q|
B

− A
(
|Q|
B

+ 1

)

≥ ηA|Q|
B

− 2A
|Q|
B

= A(η − 2)
|Q|
B

The last inequality follows from |Q| ≥ B.
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The Flaking Lemma cannot be improved beyond a constant factor. To

see this, multiply the number of flakes by the flake size:

(η − 2)A
|Q|
B
· B
ηA

=
η − 2

η
|Q|,

thus, the percentage of elements in the query that participate in some flake is

constant, η−2
η

.

We now prove a technical tool from extremal set theory, known as John-

son’s bound [Joh62]:

Lemma 5.1.2 (Johnson’s bound). Let S be a finite set, and S1, S2, . . . , Sk

be subsets of S, each of size at least α|S|, such that the intersection of any two

of them is of size at most β|S|. If β < α2

2−α , then k < α/β.

Proof. The law of inclusion/exclusion implies that

|S| ≥ |S1 ∪ . . . ∪ Sk|

≥
k∑
i=1

|Si| −
∑

1≤i<j≤k

|Si ∩ Sj|

≥ kα|S| −
(
k

2

)
|S|

which reduces to

βk2 − (2a+ b)k + 2 ≥ 0 (5.2)

If the above inequality is false for some integer l, then it must be k < l (because

existence of l′ > l sets Si would imply existence of l sets, a contradiction).

Now if Eq.(5.2) has two real roots, k1 < k2, whose distance is k2−k1 > 1,

then the interval (k1, k2) will contain some integer, and thus it must be k ≤ k1.

Let ∆ = (2α + β)2 − 8β. For the distance of the two roots to be more

than 1, it must be √
∆

β
> 1
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thus

(2α + β)2 − 8β > β2

which yields

β <
α2

2− α
Then, k is smaller than the smaller root, namely

k ≤ 2α + β −
√

∆

2β
=
α

β
+

1

2
−
√

∆

2β
<
α

β

which completes the proof.

We apply Johnson’s bound to flakes, to obtain the following lemma:

Lemma 5.1.3 (Packing Lemma). Let S be an indexing scheme, A be the

access overhead, and f1, . . . , fk be flakes of block b, of size at most
B

ηA
, and

such that for all i, j, 1 ≤ i < j ≤ k,

|fi ∩ fj| ≤
B

2(ηA)2

Then, k ≤ 2ηA.

Proof. We apply Lemma 5.1.2 (Johnson’s bound) with α =
1

ηA
and β =

1

2(ηA)2
. Since β < α2

2−α , we get k < α/β = 2ηA.

We are now ready to state and prove our main theorem.

Theorem 5.3 (Redundancy Theorem). Let S be an indexing scheme for

workload W = (I,Q), and Q1, Q2, . . . , QM be queries, such that for every i,

1 ≤ i ≤M :

1. |Qi| ≥ B, and
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2. |Qi ∩Qj| ≤
B

2(ηA)2
for all j 6= i, 1 ≤ j ≤M .

Then, the redundancy is bound by

r ≥ η − 2

2η

1

|I|

M∑
i=1

|Qi|

where 2 < η < B
A

is any real number such that B
ηA

is integer.

Proof. The proof has two steps. First, we compute the minimum number of

flakes associated with queries Q1, Q2, . . . QM . Let this number be f1. Then we

will compute the maximum number of flakes associated with each block. Let

this number be f2. Clearly, there will be at least K ≥ f1/f2 blocks in B.

Step 1 Consider any queryQi. By the Flaking Lemma, this query is associated

with at least (η− 2)A
|Qi|
B

distinct flakes of size
B

ηA
. Let F be such a flake. F

is not a flake of some other query Qj, j 6= i, because if it were, then it would

be a subset of Qj as well as of Qi, and thus |Qi ∩ Qj| ≥ B
ηA

> B
2(ηA)2 . We

conclude that

f1 =
M∑
i=1

(η − 2)A
|Qi|
B

=
(η − 2)A

B

M∑
i=1

|Qi|

Step 2: Consider any block b, and let F1, F2, . . . , Fk be the flakes associated

with this block. Each flake Fi is of size
1

ηA
B. Also, for two distinct flakes

Fi and Fj, i 6= j, |Fi ∩ Fj| ≤
1

2(ηA)2
B, by the following argument: If the

flakes are associated with the same query, then they are disjoint. If the flakes

are associated with different queries, then their intersection is bounded by the

intersection of these queries. Thus, we conclude that f2 ≤ 2ηA.

The proof is complete, by the inequality

K =
r|I|
B
≥ f1

f2

(5.3)
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which simplifies to

r ≥ η − 2

2η

1

|I|

M∑
i=1

|Qi|

An intuitive understanding of the Redundancy Theorem can be found

by observing that for any set of queries Q1, . . . , QM , it is trivial to construct

a set of
∑M

i=1

|Qi|
B

blocks, i.e., proportional to the total size of the queries, so

that each query is answered with A = 2. This can be done by packing each

individual query separately. The Redundancy Theorem states that, within a

constant factor, it may be impossible to improve this naive indexing scheme,

if the pairwise intersections of the queries are bounded. A set of such queries

is (in some sense) incompressible.

We should remark briefly as to the role of parameter η in the analysis

so far. Technically, the role of this parameter is to ensure that B
ηA

is inte-

ger. Strictly speaking, the parameter can be removed, as for example in the

following Corollary of of the Redundancy Theorem:

Corollary 5.1.1. Let S be an indexing scheme with access overhead A ≤
√
B/4, and let Q1, Q2, . . . , QM be queries, such that for every i, 1 ≤ i ≤M :

1. |Qi| ≥ B, and

2. |Qi ∩Qj| ≤ B
16A2 for all j 6= i, 1 ≤ j ≤M .

Then, the redundancy is bounded by

r ≥ 1

12|I|

M∑
i=1

|Qi|.
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Proof. Let η1 = 12/5 and η2 = 2
√

2. We first show that there exists η ∈ [η1, η2]

such that B
ηA

is integer. This follows from B
η1A
− B
η2A

= ( 1
η1
− 1
η2

)B
A
≥ ( 1

η1
− 1
η2

)16 >

1.

Using such a η in Theorem 5.3, the second premise becomes

|Qi ∩Qj| ≤
B

16A2
=

B

2(η2A)2
≤ B

2(ηA)2

and the factor η−2
2η

of the conclusion becomes

η − 2

2η
≥ η1 − 2

2η1

=
1

12
.

Thus, it is not necessary for this parameter to appear in lower-bound

formulas. Yet, as a matter of form, the existence of η in such formulas does

not introduce significant clutter, and we have chosen to retain it.

To apply the Redundancy Theorem in specific workloads, the goal is to

select a large number of incompressible queries, whose total size is parameter-

ized by the access overhead A. Then, the Redundancy Theorem immediately

yields a lower bound on the trade-off between redundancy and access overhead.

In the following, we apply this technique to some problems of interest.

5.2 Multidimensional arrays

In this section we apply the Redundancy Theorem to d-dimensional arrays,

where the set of points consists of the elements of an N×N×. . .×N array, and

the set of queries consists of all subarrays. First, we examine the 2-dimensional

case, and then we generalize to d dimensions.
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5.2.1 2-d arrays

To apply the Redundancy Theorem, we must identify queries Q1, Q2, . . . , QM ,

each of size at least B, and with pairwise intersections at most B/2(ηA)2.

We consider only queries of size cj × B

cj
, for j = 0, 1, . . . , logcB. For each

aspect ratio, we will partition the N × N space, obtaining a total of M =
N2

B
(1 + logcB) queries of size B each. Before we apply the theorem, we

compute parameter c.

Let j and j′ be integers 0 ≤ j < j′ ≤ logcB, and Qj and Qj′ be queries

of dimensions cj × B

cj
and cj

′ × B

cj′
respectively. Their intersection will have

dimensions at most cj × B
cj′

, and will contain at most
B

cj′−j
≤ B

c
elements.

Thus, we take c = 2(ηA)2.

We are now ready to apply the Redundancy Theorem. From the theo-

rem,

r ≥ η − 2

2η

MB

N2
(5.4)

=
η − 2

2η

1

N2

(
B
N2

B
(1 + logcB)

)
=

η − 2

2η
(1 + logcB)

≥ η − 2

2η
logcB

=
η − 2

2η

logB

log(2η2A2)
(5.5)

and thus we have shown that

Theorem 5.4. Let W be a workload whose instance consists of the elements

of an N ×N array, and the set of queries is the set of all subarrays. For any

indexing scheme,

r ≥ logB

8 logA+ 20
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Proof. Straightforward for η = 4, from Eq.(5.5).

5.2.2 d-dimensional arrays

We can generalize the above technique to d-dimensional arrays. We consider

queries of size B, with dimensions cj1×cj2×. . .×cjd , for all nonnegative integer

j1, j2, . . . , jd, such that
∑d

k=1 jk = logcB. For each sequence j1, j2, . . . , jd,

we partition the d-dimensional cube into Nd/B subarrays, of dimensions cj1×

cj2 × . . .× cjd .

In order to select the appropriate value for c, we consider the size of

pairwise intersections of rectangles with different dimensions. It is easy to

see that c = 2(ηA)2 is applicable in this case also, guaranteeing that the

intersection of any two rectangles will have size at most B
2(ηA)2 .

We also use the well-known fact that the number of distinct sequences

of d nonnegative integers, whose sum is n, is given by(
n+ d− 1

d− 1

)
(cf. Bose-Einstein distribution).

Thus, the total number of queries (each of size B) will be

M =
Nd

B

( logB
log 2(ηA)2 + d− 1

d− 1

)
and for the redundancy we have

r ≥ η − 2

2η

( logB
log 2(ηA)2 + d− 1

d− 1

)
For d a constant, the above quantity is a polynomial of degree d − 1. Thus,

we have shown the following theorem:
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Theorem 5.5. Let W be a workload whose instance is the set of all elements of

an Nd array, and the set of queries consists of all subarrays. The redundancy

of any indexing scheme of access overhead A is bound by

r = Ω

(( logB
logA

+ d− 1

d− 1

))
= Ω

((
logB

logA

)d−1
)

The trade-offs obtained for the array workloads do not depend on the

size of the instance, but do depend on the block size B. Our results in this

section indicate that the indexing scheme derived in §4.5 is optimal, when

the dimension d is a fixed constant. Notice that our lower bound implies a

constant factor for redundancy which is independent of d. Thus, the O(dd)

hidden constant for the indexing scheme of §4.5 is not known to be necessary.

This is typical in the study of high-dimensional range search, where known

lower bounds generally do not reflect the “curse of dimensionality”.

5.3 Planar Orthogonal Range Queries

We now turn our attention to the general problem of two-dimensional range

queries, where the set of points on the plane is the worst possible. The anal-

ysis of two-dimensional arrays of the previous section resulted in a Ω(logAB)

lower bound on the redundancy, which is weaker than the upper bound of the

indexing scheme of §4.4, which is O(logA(n/B)). Unfortunately, we show that

the upper bound of §4.4 is tight. That is, there are planar point sets which

are much harder to index than two-dimensional arrays. One such set was used

by Chazelle [Cha90a] in his proof of a lower bound for this same problem, in

the context of the pointer machine, which we also adopt in this section.

We construct a hard instance I of n points on the plane, for given n,
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block size B, and desired access overhead A. Set c = d2(ηA)2e, and m = logc n.

For every m-ary tuple

(v1, . . . , vm) ∈ {0, 1, . . . , c− 1}m

define coordinates

x =
m∑
i=1

vic
i−1 (5.6)

y =
m∑
i=1

vm−ic
i−1 (5.7)

and let (x, y) belong in I. In other words, if vi are though of as c-ary digits,

let the set I contain all cm = n points of the form

(〈v1v2 . . . vm−1vm〉, 〈vmvm−1 . . . v2v1〉)

where 〈s〉 is the integral value of a string s of c-ary digits.

For this planar set of points, we show the following:

Proposition 5.3.1. A ck × cl rectangle defined by

ckp ≤ x < ck(p+ 1) for some 0 ≤ p < cm−k

clq ≤ y < cl(q + 1) for some 0 ≤ q < cm−l

contains exactly ck+l−m points.

Proof. Let point (x, y) correspond to m-ary vector (v1, . . . , vm), as defined

by Eqs. (5.6) and (5.7). The x-restriction of the rectangle requires that

〈v1v2 . . . vm−k〉 = p. Similarly, the y-restriction requires that 〈vmvm−1 . . . vl+1〉 =

q. Thus, the remaining k+l−m variables, from vm−k+1 to vl, are free to assume

any value in {0, 1, . . . , c − 1}, and to each assignment to them corresponds a

point that belongs to the rectangle. We conclude that the rectangle contains

ck+l−m points.
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We now use the above proposition to compute a large number of B-size

queries. For a query to have size B, ck+l−m = B, or equivalently

k + l = m+ logcB

Since k, l ≤ m, there are exactly m− logcB+1 = logc(n/B)+1 legal combina-

tions of k and l, each defining a particular aspect ratio. For each aspect ratio,

we partition our dataset with rectangles, producing c2m−k−l = n/B queries of

the same aspect ratio. Thus, we have a total of

n

B

(
logc(n/B) + 1

)
(5.8)

queries of size B each.

We verify that these queries intersect in at most B/c places. Indeed,

for any two queries, if their dimensions correspond to the same values of k

and l, then they are disjoint. Otherwise, let the first query have dimensions

ck1 × cl1 and the second have dimensions ck2 × cl2 . Without loss of generality,

assume k1 > k2 and thus l1 < l2. Their intersection is a rectangle of dimensions

ck2 × cl1 . But k2 + l1 ≤ k2 + l2− 1, and thus by Prop 5.3.1 it contains at most

B/c points.

Having checked all the conditions of the Redundancy Theorem, we can

now state the following theorem:

Theorem 5.6. For some set of n planar points, every indexing scheme of

access overhead A will have redundancy at least

r ≥ η − 2

2η

(
log(n/B)

log(2(ηA)2 + 1)
+ 1

)
= Ω

(
log(n/B)

logA

)
Proof. Straightforward application of the redundancy theorem, using Eq.(5.8),

and c = d2(ηA)2e.
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This lower bound matches within a small constant factor the upper

bound of Theorem 4.6, and shows that the indexing scheme of §4.4 has optimal

redundancy (within a constant factor) for the desired access overhead.

5.4 Point Enclosure Queries

We now turn our attention to the point enclosure problem, defined in §4.6,

and study its indexability trade-off. The analysis of this section is somewhat

weaker than those of previous sections, in the sense that we restrict the range

of n and B over which our analysis will hold. In particular, we will construct

a family of hard datasets for this problem, only for the case where the size n

of the dataset is n ≥ B2B.

Let N = n/B. Consider the two-dimensional N ×N grid

{(x, y) ∈ N2 | 0 ≤ x, y < N}

To keep the formulas short, we define the following constants:

α = N1/(B−1)

γ = 1− 1

2(ηA)2

λ = (αN)γ

By a rectangle of size u× v we mean a rectangle whose horizontal side spans

exactly u columns of the grid, and whose vertical side spans exactly v rows.

However, the corners of the rectangle are not points on the grid, i.e., with

integer coordinates, but lie on arbitrary points off the grid. Fig. 5.1 shows two

such rectangles.
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Figure 5.1: A 6× 2 and a 3× 4 rectangle on the 9× 9grid.

The dataset consists of rectangles of sizes αi×N
αi

, for i = 0, 1, . . . , B−1.

Note that since N ≥ 2B, it is α ≥ 2. This last requirement is the reason for

our restriction to very large values of n. For each i, a rectangle intersects N

grid points, and thus we can tile the N × N grid with N rectangles of size

αi × N

αi
. Thus, the total number of rectangles is indeed n.

We now select a set of hard queries, in order to apply the Redundancy

Theorem. Queries will be identified with points of the N ×N grid, thus each

query will have size B (it will contain exactly one rectangle of size αi× (N/αi)

for each i = 0, . . . , B − 1). Thus, we are free to select any M points on the

grid, as long as they satisfy the condition that every two queries must intersect

by at most
B

2(ηA)2
= (1−γ)B. For M such points, the Redundancy Theorem

immediately gives a lower bound on redundancy of

η − 2

2η

M

N
(5.9)

The following proposition bounds the number of rectangles stabbed by

two grid points.

Proposition 5.4.1. For any two points (x1, y1) and (x2, y2) on the N × N
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grid, if,

(|x1 − x2|+ 1)(|y1 − y2|+ 1) ≥ λ

then the points belong to at most (1− γ)B =
B

2(ηA)2
rectangles.

Proof. Let i1 be the minimum number such that a rectangle of size αi1 ×

(N/αi1) intersects both points. Since the horizontal side of the rectangle must

extend at least as much as |x1 − x2|, we conclude that

i1 = dlogα(|x1 − x2|+ 1)e (5.10)

Similarly, let i2 be the maximum integer such that a rectangle of size αi2 ×

(N/αi2) intersects both points. It must be

logaN − i2 = B − 1− i2 = dlogα(|y1 − y2|+ 1)e (5.11)

For each i, with i1 ≤ i ≤ i2, the two points will be enclosed by at most one

rectangle of size αi×(N/αi). It follows that we must have i2−i1+1 ≤ (1−γ)B.

By substituting Eqs.(5.10) and (5.11) we get

dlogα(|x1 − x2|+ 1)e+ dlogα(|y1 − y2|+ 1)e ≥ γB

which follows from the assumption

(|x1 − x2|+ 1)(|y1 − y2|+ 1) ≥ λ

Thus, the problem is reduced in selecting a set of points on the N ×N

grid, of maximum size, satisfying the condition of Prop. 5.4.1.

A suitable set of points is the so-called Fibonacci lattice. A lattice

defined by vectors ~a,~b ∈ R2 is the set of points{
(u~a+ v~b | u, v ∈ Z

}
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The Fibonacci numbers are defined by the well-known recurrence Fk+2 =

Fk+1 +Fk, where F0 = 0 and F1 = 1. A closed formula for Fibonacci numbers

is

Fk =
1√
5

(
φk − (1− φ)k

)
where φ = (1 +

√
5)/2 is the golden ratio. The Fibonacci lattice Fk of order

k ≥ 2 is the lattice defined by the vectors (0, Fk) and (1, Fk−1). This lattice

was studied by Chor et al. [CLRS86] who showed the following theorem:

Theorem 5.7 (Chor et al.). For any two points (x1, y1), (x2, y2) ∈ F2k+1,

(|x1 − x2|+ 1)(|y1 − y2|+ 1) ≥ (Fk + 1)(Fk+1 + 1)

Also, Fiat and Shamir [FS89] have shown that

Theorem 5.8 (Fiat and Shamir). Every rectilinear oriented rectangle of

area E intersects the lattice Fk in E/Fk ± logφ(Fk)/3 points.

For the set of queries, we choose the set of points of Fibonacci lattice

F2k+1 which fall within the N ×N grid. From Theorem 5.7, it is clear that k

must satisfy

(Fk + 1)(Fk+1 + 1) ≥ λ

We use the following well-known Fibonacci identities (e.g. see Vajda’s book [Vaj89]):

Fi+j = Fi+1Fj + FiFj−1 Fn = φiFn−i + (1− φ)n−iFi
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We have

F2k−1 = F2k − F2k−2

= FkFk+1 + Fk−1Fk − Fk−1Fk − Fk−2Fk−1

= FkFk+1 − Fk−2Fk−1

< (Fk + 1)(Fk+1 + 1)

Thus, we select k so that

F2k−3 ≤ λ ≤ F2k−1

and we conclude that

F2k+1 = φ4F2k−3 + (1− φ)2k−3F4 ≤ φ4λ

(since (1−φ)2k−3 is negative). By Theorem 5.8, the number of points of lattice

F2k+1 that intersect the N × N grid, is approximately N2/F2k+1 and thus at

least N2/(φ4λ). Thus, from Eq.(5.9), we have the following theorem.

Theorem 5.9. For some set of n ≥ B2B−1 planar rectangles with sides par-

allel to the axes, every indexing scheme for point enclosure queries, of access

overhead A, will have redundancy

r ≥ η−2
2ηφ4

(
n

B

) 1
2(ηA)2

This trade-off can be written as

A2 = Ω
( log(n/B)

log r

)
which should be contrasted with the A = O(logr(n/B)) trade-off of §4.6. It

can be seen that the two results differ by a factor of O(
√

logr(n/B)), which is
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quite significant. However, it must be noted that this factor affects the access

overhead, and not the redundancy, and thus is not as severe.

We do not know whether this lower bound, or the upper bound of §4.6 is

tight. The issue is perplexed even further by results for this problem in main

memory. It is known that this problem can be solved by a (main-memory)

data structure of linear size O(n), with a search time of O(log n + t) (for a

query retrieving t points). These bounds are best possible for any range search

problem, thus the problem is known not to be hard in main memory. Note

that neither of our bounds contradict these results, because if one were to set

A = log(n/B) in the trade-off formulas, it would be r = Ω(1). However, our

analysis shows that indeed this problem’s storage linearity is only apparent;

when the obligatory O(log n) search factor of the cost is removed, the cost does

not reduce to O(t), as it does for other types of two-dimensional range search,

unless slight polynomial space redundancy is allowed. For practical values of

n and A however, this slight non-linearity will not be of any importance.

As a final observation, let us remark on the duality of the lower bound

expression between this problem and its dual, the four-sided range search over

points. Note that the duality of the two lower bounds is perfect, within a

constant factor, if the redundancy r and the expression 2(ηA)2 are exchanged.

It begs the following hard question: is this duality a coincidence, specific to

these problems and perhaps their extensions in higher dimensions, or is this a

fundamental indexability property, for broad classes of problems?
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5.5 Set queries

The problem of indexing sets is defined as follows: given an arbitrary set of

sets of keys, construct an index such that each set can be retrieved efficiently.

The sets of keys may be though to correspond to a set-valued attribute of some

relation. Today, such queries are answered by a sequence of point queries, i.e.,

retrieving each key in the set individually. This solution has of course the

highest possible access overhead. We study the effect of using redundancy in

decreasing the access overhead.

From an indexability point of view, the problem stated above is simply

the general indexability problem, and thus under-specified. However, prac-

tical considerations can be used to derive a more concrete specification. In

particular, we can assume that the queries have small size, where by “small”

we mean smaller than the block size B. This assumption has the unfortunate

consequence that it disallows use of the Redundancy Theorem. A second con-

sideration is to assume that the set of queries is very large, that is, the set of

queries includes all “small” subsets.

Many different workloads can be constructed from the above consider-

ations. An interesting workload is the λ-set workload Kn,λ, whose instance is

the set {1, . . . , n} and whose query set is the set of all λ-subsets of the instance,

where λ ≤ B. We show that these workloads are far worse than 2-dimensional

queries.

To analyze set workloads, we prove a corollary of the following famous

theorem by Turán [Tur41, JW96]:

Theorem 5.10 (Turán’s Theorem). If a simple graph of n vertices has
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more than

(p− 2)n2

2(p− 1)
− r(p− 1− r)

2(p− 1)
( where r = n mod p)

edges, then it contains a complete graph of p vertices (a p-clique).

For a given graph, an independent set is a subset of its vertices such

that there is no edge between any pair of these vertices.

Corollary 5.5.1. If a simple graph of n vertices has fewer than

n2 − n(p− 1)

2(p− 1)

edges, then it has an independent set of size p.

Proof. Let G(V,E) be the graph, and let G̃(V, Ẽ) with

Ẽ =

{
(v1, v2) ∈

(
V

2

) ∣∣∣ (v1, v2) 6∈ E
}

Then,

|Ẽ| =
(
n

2

)
− |E| > (p− 2)n2

2(p− 1)

and thus by Turán’s Theorem G̃ has a p-clique. The vertices of the clique form

an independent set in G.

We now show a lower bound for set workloads.

Theorem 5.11. For workload Kn,λ(I,Q), B ≥ λ, any indexing scheme with

redundancy

r <
n− λ+ 1

(λ− 1)(B − 1)

has the worst possible access overhead A = λ.
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Proof. Construct graph G(I, E) where (x1, x2) ∈ E iff there exists a block

containing both x1 and x2. This graph will have at most

r
n

B

(
B

2

)
<
n2 − n(λ− 1)

2(λ− 1)

edges. By Corollary 5.5.1, it has an independent set of size λ. This set,

taken as a query, will require exactly λ distinct blocks to be covered (by the

construction of G).

The last theorem states that Kn,λ requires space at least quadratic in

n/B to avoid the worst possible access overhead. We show that within a factor

of 2, the bound of the theorem is tight.

Theorem 5.12. For workload Kn,λ and B ≥ λ there exists an indexing scheme

of access overhead A = λ− 1 and redundancy

r =
2n

(λ− 1)B
− 1

Proof. We fix an arbitrary partition of the instance into λ−1 sets, S1, . . . , Sλ−1,

of roughly equal size. For each set Si, we will construct suitable blocks so that

for any x, x′ ∈ Si there is a single block containing both. Then, for every query

Q, some elements x1 and x2 will belong to the same set Si, and thus will be

covered by a single block, and so A(Q) ≤ λ− 1.

To construct blocks for set Si, we arbitrarily partition the set Si into

k = 2n
(λ−1)B

sets tj, j = 1, . . . , k of size B/2 each. For each pair of these sets we

construct a block containing their union. Thus, for any pair of elements of Si,

there exists a block containing both.

For each of the λ − 1 sets Si we constructed
(
k
2

)
blocks. The total

number of blocks constructed thus is

(λ− 1)

( 2n
(λ−1)B

2

)
=
n

B

(
2n

(λ− 1)B
− 1

)
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which yields the required redundancy.

It is suggested from the above analysis, that set workloads are not

amenable to indexing with worst-case guarantees.

5.6 Discussion

In the context of indexability, the analysis of indexing schemes focuses not

just on the complexity of the indexing problem, but on the space/access-cost

trade-off as well. It has been typical for lower bounds analysis, to make some

original assumption, e.g. of linear space, or of linear access cost, and then

proceed to derive lower bounds on the other parameter. An investigation of

the trade-off has been considered more challenging.

It is thus the good fortune of indexability, that its minimalist simplicity

allows for the statement of the Redundancy Theorem. This has been demon-

strated to be a powerful tool, decoupling almost completely any combinatorial

argument of indexing hardness from the underlying geometry of the problem.

In all the lower bounds results in this chapter, the main argument has been

driven almost completely by geometric considerations, mainly by discrepancy

properties [Mat99] of geometric datasets. In all cases, the Redundancy Theo-

rem yielded optimal or close to optimal trade-off bounds. This is, we believe,

a strong argument of its utility.

5.6.1 Refinements of Redundancy Theorem

It is possible that, in some circumstances, the requirements of the Redundancy

Theorem will introduce unwanted restrictions on the parameters of the prob-
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lem. In such cases, better results may be achieved by a refinement of the two

components of the Redundancy Theorem, namely the Flaking Lemma (5.1.1)

and the Packing Lemma (5.1.3). Also, it may be beneficial to alter slightly

the size of flakes considered. Briefly, the refined argument could be as follows:

1. By a refined Flaking Lemma, each query corresponds to some minimum

number of flakes.

2. By a refined Packing Lemma, each block corresponds to a maximum

number of flakes (under a restriction on the pairwise intersections of the

flakes).

3. A selected set of queries is used to construct many flakes, few of which

correspond to each block. Thus, a least required number of blocks can

be asserted.

In the general case, such modifications will only give very small improvements,

of a constant factor at most 2.
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Chapter 6

Indexing for 3-Sided Queries

So far, our study of indexability concentrated to variants of planar range

search. In this context, we were able to construct indexing schemes for many

planar range search problems, and we showed corresponding lower bounds.

However, indexing schemes are not index structures, because they do not in-

clude a search facility. In addition, indexability analysis does not include any

considerations of updates. It might then be—prematurely—concluded that

indexability is useful only as a theory for lower bounds, with indexing scheme

construction being interesting insofar as it proves those lower bounds to be

tight.

In this chapter, we demonstrate such conclusions to be wrong. This is

done in two ways; first, we demonstrate that indexing scheme constructions

can be used hierarchically to develop search structures, and thus full indexes.

Such hierarchical constructs will, however, typically yield only static solutions.

Database indexes are strongly desired to be dynamic, i.e, to allow insertion and

deletion of keys. It might then be concluded—again prematurely— that index-

ability will not be useful in such situations. This conclusion is also shown to
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be false. In this chapter, we use indexing scheme construction techniques from

Ch. 4 to develop dynamic index structures for planar range search problems.

6.1 Hierarchical Search

In this section we consider the segment intersection problem, and show that

there is a natural hierarchical extension that can be used to build a search

structure upon an indexing scheme.

Let I be a set of n horizontal segments. In §4.3 an indexing scheme for

segment intersection is constructed, with r ≤ 2 + 6/(A− 3). The construction

follows the idea of persistence; a vertical line sweeps the plane, from x = −∞

to x = +∞. During this sweep operation, a linear sequence E of blocks (§4.1)

is maintained, updated with insertions and deletions of horizontal segments, as

the sweep line crosses their endpoints. The maintenance of E, by the steps of

the algorithm of page 55, is done by the following block-modifying operations:

Add: a new key is inserted into some block of E, at step 1a.

Flush: a block of E is replaced by another block, at step 1b.

Split: a block of E is split into two blocks, at step 1c.

Drop: a block of E is removed, at step 2a.

Merge: two blocks of E are merged into a new block, at step 2b.

A query corresponding to a vertical segment (a, b1, b2), is answered by the

blocks that are in E at the step which corresponds to a, the x-position of the

query segment, and which correspond (since E is a linear sequence) to the
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interval (b1, b2). Thus, our task is to locate the appropriate blocks, for any

query segment (a, b1, b2).

Every block-modifying operation listed above, except the first, will ac-

tually modify the set of blocks in E, by adding one or two new blocks, which

correspond to one or two removed blocks. We can draw a directed graph from

the removed blocks to the inserted ones, to denote the dependency between all

the blocks in the indexing scheme, as shown in Fig. 6.1. However, this diagram

3
6

8

5

42
9

7
10

1

Figure 6.1: The graph shows the set of blocks of an indexing scheme, and
the dependencies between them. Blocks 1, 3 and 6 split, blocks 9 and 10 are
created by merge, block 2 is flushed, and block 7 is dropped.

does not show the relative order of the various operations. A diagram that

shows the relative order of operations is the diagram of Fig. 6.2, which shows

a partitioning of the plane into regions, each region corresponding to some

block. The region is formed at the x position where the block is created, and

extends to the x position where the block is removed from E. The upper and

lower sides of the region denote the upper and lower limits of the key range in

the block. A block may correspond to more than one region, as for example

block 8 does. This happens exactly when some block—in this case block 7—

is dropped. Intuitively, this case corresponds to a “dummy” merge between

blocks 7 and 8. Thus, the regions can be split into rectangles, whose overall
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Figure 6.2: This partitioning of the plane corresponds to the dependency graph
of Fig. 6.1. Numbers indicate the blocks corresponding to each rectangle. The
shown vertical segment corresponds to a query that will be answered by blocks
5 and 6.

number is O(n/B).

Given a vertical segment defining a query, the blocks to be retrieved are

exactly the blocks whose regions it intersects, as in the example of Fig. 6.2. We

create a new set of horizontal segments, by taking the upper and lower side of

each rectangle of each region, totally O(n/B) such segments. This set of hori-

zontal segments can be processed to form a new indexing scheme, of O(n/B2)

blocks. We proceed in this manner, building a hierarchy of O(logB(n/B)) lay-

ers, each describing the blocks of the layer below it. It is not hard to see that

given any query defined by a vertical segment, we can recursively descend this

hierarchy to search for the blocks that answer the query. The total cost of the

search operation will be O(logB(n/B)). The total space used will be O(n/B)

blocks, since each layer has only approximately a fraction of 1/B blocks of the

layer below it.

Having constructed a search structure for the segment intersection prob-
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lem, it is quite straightforward to construct search structures for all planar

range search problems in Ch. 4. These search structures will perform optimal

search, that is to say, will only add a factor of O(logB(n/B)) to the access

cost of the query. In many cases, the resulting index structure will be optimal.

However, notice that the structures derived by this technique will, in general,

not allow efficient updates.

6.2 Priority Search Trees

We now turn our attention to the construction of an efficient index structure

for answering three-sided queries. Our index structure is the external-memory

analog of the priority search tree of McCreight [McC85]. For completeness,

we briefly describe the main-memory data structure, and then discuss the

difficulties of “externalizing” this, and many other similar data structures.

6.2.1 The Priority Search Tree

The priority search tree is a combination of a one-dimensional search tree

and a priority queue (or heap). It is an elegant dynamic data structure for

main memory, optimally answering three-sided queries (cf §4.3.1) over a set

of planar points. Let I be a set of planar points, and T a regular search tree

(e.g., a red-black tree [GS78]) over the x-coordinates of the points. Each node

in T is augmented with an additional point, the y-key. The augmentation is

done recursively. At every node u of T , the y-key is the key with the least

y-coordinate of all keys in the subtree of u, except those that are y-keys in u’s

ancestors. If there is no such key, the node has no y-key. Thus, the priority

search tree requires linear space O(n). Fig. 6.3 shows such a tree over 7 points.
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Figure 6.3: The set of 7 points is organized into a Priority Search Tree. Each
node of the tree is possibly augmented with the y-key.

Given a tree-sided query (a, b, c), the goal is to retrieve those points

(x, y) such that a < x < b and y < c. Search proceeds recursively, starting at

the root. At each visited node, both keys are reported if they satisfy the query

condition. 1 The search stops at any node whose y-key has a y-coordinate

higher than c, since all its descendants are guaranteed not to be in the query,

or to have been reported already. Of course, the search is also pruned for those

nodes that do not satisfy the x-restriction of the query. The asymptotic cost

of a search is O(log n + t), where t is the number of points retrieved by the

query. To see this, consider the nodes visited by the search. O(log n) nodes

will be “fringe” nodes, whose subtree only partially satisfies the x-restriction

of the query. For the rest of visited nodes, the cost of visiting a node that does

not contribute a key in the query is amortized by the fact that its parent node

1To avoid reporting a key twice, the x-key is reported only if it is higher than the y-key.
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did contribute a point (its y-key).

Updates of the priority search tree are also efficient. Their efficiency

is derived by the underlying efficiency of the search tree. Given an insertion

or deletion, the tree is updated by a number of rotations of its nodes. For

each rotation, a cost of O(log n) must be paid in order to update the y-keys.

However, many search trees, such as the red-black tree, are known to require

only a constant number of rotations per update (for the red-black tree, at most

3). Thus, the overall update cost is O(log n).

6.2.2 Externalization

The asymptotic lower bounds for any range searching index structure are as

follows: the total space is Ω(n/B) blocks, a search costs Ω(logB n+ t/B) I/O

operations (where t stands for the number of keys returned by the search),

and updates require Ω(logB n) operations. These bounds correspond to main-

memory bounds of Ω(n), Ω(log n+ t), and Ω(log n) respectively.

A straightforward approach (e.g. see Diwan et al.[DRSS96]) to ex-

ternalizing any tree-like data structure from main memory, is to partition

the nodes of the tree into blocks, so that each block contains a subtree of

height roughly logB. Thus, the height of the corresponding external tree is

O((log n)/(logB)), or, as it is usually written, O(logB n) (in this context, n

is the number of nodes of the main-memory structure, and B is the number

of such nodes that fit into a block). Also, the disk space required is O(n/B)

blocks. Unfortunately, this simple-minded construction will not, in general,

maintain the efficiency of search in main memory. This is true for the prior-

ity search tree, but also for other main-memory data structures, such as the
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interval tree, the segment tree, etc.

The cause of the inefficiency lies in the high arity of index structures. In

a binary tree, the cost of search is kept comparable to the number of reported

points, O(t), by amortizing the cost of visiting nodes that do not report points.

Since each node has at most two children, the total overhead is within a factor

of 2 of t. The nodes of index structures however have O(B) children, and the

overhead would be within a factor of O(B). Thus, pruning the search requires

much more involved techniques.

One technique addressing this problem is path caching, proposed by

Ramaswamy and Subramanian [RS94]. Path caching augments each internal

index node with additional data blocks, which cluster efficiently paths of the

subtree of the node. This is a generic approach to the problem, but has a few

drawbacks:

• The disk space is not O(n/B) (linear) anymore.

• Updates are not optimal, because the additional blocks must be updated

as well, which is not easy to do.

The techniques introduced in the following sections, overcome these drawbacks.

6.3 External Priority Search Trees

We now turn our attention to the construction of External Priority Search

Trees (EPS-trees for short). Through this construction, we introduce a number

of new techniques for index structure implementation. To keep the discussion

simple, and to better explore the possible design trade-offs, we develop the

EPS-tree in stages. In this section, we concentrate on developing a static
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EPS-tree, and concentrate on the search and bulk-loading operations. The

update techniques are developed incrementally in upcoming sections.

The purpose of this, and upcoming sections, is to describe the construc-

tion of a practical index structure. To achieve the highest possible preciseness,

a major part of our description will be through the use of C-like pseudo-code.

6.3.1 Modeling the problem

The keys of an EPS-tree are tuples (x, y) from X × Y , where X and Y are

arbitrary, totally ordered types, such as numbers or strings. The index shall

only use the ordering predicate from each type, <x and <y respectively.

For notational convenience, we assume that each type has special con-

stants +∞ and −∞, representing greatest and least elements respectively.

These constants may exist natively in the types, or they may be easily imple-

mented by simple encoding techniques.

We introduce two alternative ordering predicates between keys, ≺xand

≺y, defined as

(x1, y1) ≺x (x2, y2) ≡ (x1 <x x2) ∨ (x1 = x2 ∧ y1 <y y2) (6.1)

(x1, y1) ≺y (x2, y2) ≡ (y1 <y y2) ∨ (y1 = y2 ∧ x1 <x x2) (6.2)

This notation has two advantages. First, it introduces the general position

assumption, i.e, for any pair of distinct keys, p and p′, exactly one of p ≺x p′

and p′ ≺x p holds (similarly for ≺y). Second, it allows a single notation

to express open and closed bounds of a query constraint. For example, a

constraint on key p of the form a <x p.x is written as (a,+∞) ≺x p, whereas

a constraint of the form a ≤x p.x is written as (a,−∞) ≺x p. Using this

notation, we modify the statement of the 3-sided query problem as follows:
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given keys a = (a1, a2), b = (b1, b2) and c = (c1, c2), with a2, b2, c1 ∈

{−∞,+∞}, retrieve all keys p = (x, y) of the dataset such that

a ≺x p ≺x b and p ≺y c.

With this notation, all comparisons in the EPS-tree algorithms are between

points, never between point coordinates. We assume that the keys in an EPS-

tree are unique. Duplicate keys can be treated by well-known tagging tech-

niques.

6.3.2 General Structure

The EPS-tree is embedded into a B+-tree built on the ≺x-order of the keys. In

the B+-tree, all keys are stored in the leaves of the tree, and the internal (non-

leaf) nodes of the tree contain discriminator keys, i.e., the keys in the internal

nodes need not be actual keys in the dataset. This allows for compression on

the internal nodes and can significantly increase the tree’s degree. B+-trees

are the index structure of choice in most database implementations.

We introduce some notation for B+-tree nodes. Let u be any node in

the B+-tree.

• For node u, not the root, u↑ denotes the parent of u.

• I denotes the set of keys stored in the B+-tree.

• For node u, [u] denotes the range of X which corresponds to u. This

range is recursively. For u the root, [u] = X . For u not the root, the

discriminating keys stored in u↑ (an internal node), determine the range

in the obvious way. By a slight abuse of notation, we write p ∈ [u] for a

key p, if its x-coordinate lies in [u].
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• For a node u, {u} denotes the set of keys stored in the leaves which are

descendants of u. Thus, for u a leaf, {u} denotes the contents of block

u.

• |u| denotes the size of node u, i.e., the number of children for internal

nodes, and the number of keys for leaf nodes.

• For internal node u, ui stands for the i-th child of u.

• For internal node u, up (p a key) stands for the (unique) child v of u

such that p ∈ [v].

There are two trivial modifications to the structure of B+-tree nodes.

One only applies to leaf nodes and will be described later. The other only

applies to internal nodes. Each internal node is associated with its child cache

(CC). A CC is a small subindex, used to reduce the cost of search. Thus, each

internal node of the B+-tree has an additional pointer to its own CC.

In order to describe the search and update procedures of the EPS-tree,

we must specify the abstract interface (API) of the CC structures. The actual

implementation of the CCs will be postponed for later. To specify the interface

to the CCs, we introduce the concept of Y -sets. Y -sets correspond to the y-

keys of the (main-memory) priority search tree, as discussed in §6.2.1. Note

that, in the context of Y -sets, the term “set” has the meaning of “container

of keys”, not the usual mathematical meaning. In other words, Y -sets have

dynamic state. On the other hand, Y -sets are not explicitly stored as separate

containers. Instead, groups of Y -sets are collectively materialized within each

CC.

Each node u in the B+-tree, except the root, has its own Y -set, denoted
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by Y (u). The Y -set of node u is a subset of {u}. In addition, the following

invariants apply to Y -sets:

1. If node u is a proper ancestor of node v 6= u, for all p ∈ Y (u) and

p′ ∈ Y (v),

p ≺y p′

2. If u is an ancestor of leaf v (possibly v = u), and p ∈ Y (u), and p′ ∈ v

does not belong in any Y -set, then

p ≺y p′

3. For any node u, |Y (u)| ≤ Ymax, where Ymax is a parameter of the tree,

representing the maximum allowable Y -set size.

Parameter Ymax , together with the B-tree’s block size B (maximum

number of keys per disk page) are the only parameters of the EPS-tree. In

practice, Ymax should be comparable to B. Theoretically speaking, the EPS-

tree is optimal iff Ymax = Θ(B). We shall defer practical issues to the exper-

imental section, where we describe the trade-offs associated with Ymax. Note

however, that for Ymax = 0, the EPS-tree is identical to a B+-tree.

With respect to the Y -sets of the ancestors of a node, we say that node

u is a bottom, and we write buc, iff the union of the Y -sets of all ancestors of

u (including u), exhausts {u}. For a bottom node u, all proper descendants

of u are also bottom, and their Y -sets are empty.

The final modification to the structure of the underlying B+-tree can

now be stated. Each leaf node u maintains efficiently the set U(u) ⊆ {u} of

keys that belong to no Y -set (including the leaf’s own Y -set). Because of the
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second invariant for Y -sets, the set U(u) can be maintained by marking the

≺y-least key that does not belong to a Y -set. We denote this key by LNB(v).

If all the keys of a leaf belong to some Y -set, LNB(v) is set to (+∞,+∞)

(not a key). This is equivalent to bvc.

LNB is an acronym for “Least Not Bubbled”, where a key is “bubbled”

if it belongs to some some Y -set. The choice of term will become apparent

later.

We now describe the abstract interface of the CC. The CC of internal

int Ysize(int i) Return the size of Y [i], at most Ymax.
List Find(Query Q(a, b, c)) Return a list of pointers to disk blocks,

of minimum size, containing all points
p from all Y -sets that belong to query
(a, b, c).

boolean bottom(int i) returns true iff child i is bottom.

void Insert(Key p, int i) Insert key p into Y [i].
void Delete(Key p) Delete p from its associated Y -set.
void SplitSet(int i, Key p) Split Y [i] into two Y -sets, containing

the points ≺x-left and ≺x-right of p re-
spectively.

void Merge(int i) Merge Y -sets Y [i] and Y [i+ 1].
Key LeastKey() Return the ≺y-least key p among all Y -

sets
Key GreatestKey(int i) Return ≺y-greatest element of Y [i].
void SplitCache(int i) Returns a new CC containing all Y -sets

Y [j] for j ≥ i. These sets are deleted
from the CC.

void MergeCache(CCache C) Append all the Y -sets of CC C to the
array of Y -sets.

Table 6.1: The abstract interface (API) of Child Caches, in pseudo-code no-
tation.
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node u, denoted by CC(u), stores a sequence of |u| Y -sets, one for each child

of u. The sequence order reflects the x-order of the children of u. Let us

denote by Y [i] the i-th Y -set of a CC. Note that, by definition, the Y -sets of a

CC are disjoint. The API of CCs is shown in Table 6.1, in pseudo-C notation.

The CC interface definition is straightforward. In this section, we only

use the calls Ysize, bottom and Find. The other calls of the CC API are

used by the updating techniques, developed in later sections.

6.3.3 Querying the EPS-tree

Because the EPS-tree is structurally a B+-tree (with two trivial modifications),

it can answer point and x-range queries exactly like the B+-tree. There is no

reduction in efficiency over the B+-tree. Thus, we only concern ourselves with

pure 3-sided queries. For query Q(a, b, c), Q(p) denotes a predicate which is

true iff key p belongs to the 3-sided range (a, b, c).

Alg. 6.1 defines the procedure Search, which is used to report all the

points of a 3-sided query. The search process starts at the root and descends

recursively down the tree. At an internal node, it will pose the query to

the node’s CC, and then descend only to those children whose full Y -set was

reported, or to the (at most 2) children whose x-range contains the x-restriction

points, a and b, of query (a, b, c). At a leaf node, the lnb is used to determine

which keys have been reported already (since they belong in the Y -set of some

parent) and report the rest.
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Algorithm 6.1 Recursive tree search for 3-sided queries.

1. Search(Query Q(a, b, c), TreeNode u)
2. {
3. if(u is a leaf)
4. foreach key p ∈ u where (p 6≺y LNB(v) and Q(p))
5. Report(p);
6. else { // report from CC and recurse
7. int rep[|u|] = {0, ..., 0}; // count keys reported per Y -set
8. foreach block b ∈ CC(u).Find(Q)
9. foreach key p ∈ b where (Q(p)) {

10. Report(p);
11. rep[up] ++ ;
12. }
13. foreach int i ∈ {1, . . . , |v|}
14. where (rep[i] = CC(u).Ysize(i) or ui = ua or ui = ub)
15. if(! CC(u).bottom(i)) Search(Q(a, b, c), ui);
16. }
17. }

6.4 Implementation of Child Caches

The basic idea behind the construction of the Child Cache is the following:

the data in the CC is organized as an indexing scheme, using the techniques

of §4.3.1. Each CC will hold a dataset consisting of the union of all Y -sets

it stores. The maximum number of keys in the CC, is BYmax. By Thm. 4.5,

we can construct an indexing scheme on these keys, for any access overhead

A ≥ 4 and r = 1 + 2/(A − 2). Let us fix A = 4. The total number of blocks

of the indexing scheme, will be 2Ymax. We will show that, in order to query

this indexing scheme, we only need to store Θ(Ymax) bytes of information.

For a suitable choice of Ymax = Θ(B), this information can fit into a 1-block

“catalog”. We now present this basic idea in more detail.
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6.4.1 Basic structure

A CC consists of a catalog block C, and a number of data blocks, which contain

key/value pairs, like the leafs of the B+-tree. The data blocks are split into

base and internal. Each data block can fit B keys (the same number as B+-tree

leaves).

The base blocks contain all keys of the cache, sorted by ≺x and packed.

Thus, if the cache has n keys, there are Db = dn/Be base blocks. The number

of internal data blocks will be Di = Db − 1. Since the cache contains at most

B Y -sets, and each Y -set has size at most Ymax, the maximum number of base

blocks is Ymax. The purpose of the catalog block C is to store information that

describes the data blocks (base and internal). This information is organized

as shown in Table 6.2

N the number of keys in all base blocks.
NY the number of Y -sets in the cache.

Y Size[B] array storing the size of each Y -set.
bot[B] a bit vector demarking whether a child is bottom.
NB the number of base data blocks.

bB[Ymax] array storing pointers to the base data blocks.
bI [Ymax − 1] array storing pointers to the internal data blocks.

R pointer to a special data block called the root.
K[Ymax − 1] this array stores keys that describe the contents of the

base and internal blocks.

Table 6.2: The attributes stored in the catalog block of a child cache.
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6.4.2 Construction of a Child Cache

To build the cache on the set of keys in the cache (for all Y -sets), first sort

the keys in x-order, and store them into fully packed base data blocks. Record

the pointers to these blocks in the bB array of the catalog. Also, for each base

block bB[i] except bB[0] (i > 0), store into K[i − 1].x the x-coordinate of the

≺x-lowest key of the block.

The internal blocks are built by the iteration of Alg. 6.2, which cor-

responds to the technique of §4.3.1. To build the internal data blocks, af-

Algorithm 6.2 Construct internal blocks of Child Cache.

1. BuildInternal(Block bB[N ])
2. {
3. Block S[N ] := bB;
4. int pos[N ] := {0, 1, 2, . . . , N − 1};
5. Key H[N − 1]; // holds merging heights
6. for(int i = 0 ; i < N − 2 ; i++)
7. H[i] := MergingHeight(S[i], S[i+ 1]);
8.

9. while(S.size > 1) {
10. Key p := Maximum(H, ≺y);
11. int i := oneof {j : H[j] = p};
12. Block M := Merge(S[i],S[i+ 1],p);
13. K[pos[i]].y := p.y; // update catalog block
14. bI [pos[i]] := M ; // update catalog block
15. Replace S[i], S[i+ 1] by M and update H;
16. Replace pos[i], pos[i+ 1] by pos[i+ 1];
17. }
18. R := S[0]; // the root block
19. }

ter having built the base blocks, use a sequence S of blocks (line 3). Ini-

tially, the sequence contains all the base blocks, arranged in the sequence

113



based on their x-position. For each pair of adjacent blocks S[i] and S[i + 1],

MergingHeight(S[i],S[i+ i]) is the key p from one of these blocks such that

there are totally exactly B−1 keys below p in those blocks. Merge(S[i],S[i+

1],p) returns a new (internal) data block containing all keys of the original

blocks not ≺y-greater than p. Fig. 6.4 depicts the result of this process graph-

ically.
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Figure 6.4: Structure of a CC. On the left, the data blocks of the CC, dashed
arrows designate merging during construction. On the right, plane partitioning
recorded in array K. Dashed line shows a 3-sided query, coverable by blocks
i1 and b3.

6.4.3 Querying the Child Cache

When a call Find(Q(a, b, c) is made to the cache, a list of data blocks is com-

puted and returned. These blocks must contain all data relevant to the query.

Array K[i] in the catalog block is used to select the fewest possible blocks. The
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contents of the K[i] array can be visualized as depicted in Fig.6.4. Alg. 6.3

computes a minimum-size list of data blocks that relate to a given query. The

Algorithm 6.3 Cover query with data blocks.

1. List Find(Query Q(a, b, c)) {
2. {
3. List L := ();
4. if(N = 0) return L; else if(NB = 1) { L.append(R); return L; }
5.

6. int low := max{i | j < i =⇒ K[j] ≺x a};
7. int high := max{i | j < i =⇒ b 6≺x K[j]};
8. Block β := bB[low];
9. for(int p := low; p < high; ++ p)

10. if(K[p] ≺y c)
11. { L.append(β); β := bB[p+ 1]; }
12. else if (K[p] ≺y Γ(β))
13. β := bI [p];
14. L.append(β);
15. return L;
16. }

algorithm works by iterating through a slice of array K, determined by the

query’s x-restriction (a, b). A block pointer β points to the next candidate

block to insert into the result. The function Γ(β), that appears on line 12 of

Alg. 6.3, is defined a follows:

Γ(β) =

K[j] if β = bI [j] for some j;

(+∞,+∞) otherwise.

(6.3)

The process of Alg. 6.3 has the advantage that it does not explicitly

refer to the order of construction of the internal blocks, i.e, the “tree” of

Fig. 6.4 (left), but instead infers enough, using only the data in array K. This
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is advantageous, because it removes any need of storing any such information

for internal blocks, into the catalog block. These space savings allows greater

values of Ymax, whose range is limited by the capacity of the catalog block.

However, it is not obvious that Alg. 6.3 is correct, or that indeed the returned

list is of minimum size. Thus, additional explanation is warranted.

Some definitions are necessary. Let β be a block. This block corresponds

to some planar region ρ(β), of the plane partitioning of Fig. 6.4, which is

determined by array K. The x-span of β, χ(β), is simply the interval of the

x-axis corresponding to the horizontal side(s) of ρ(β). Also, the height of β

is the y-coordinate of the top side of ρ(β), or +∞ if β is a base block whose

region ρ(β) is unbounded on top. Note that the height of β is equal to the

y-coordinate of Γ(β), defined in Eq. 6.3. Finally, the extent of β, E(β), is

the (open) rectangular region χ(β)× (−∞,Γ(β)). In Fig. 6.4, the two shaded

regions correspond to E(i1) and E(b3).

We first discuss correctness, i.e, that the list of blocks returned indeed

covers the query. Let Q(a, b, c) be some query, and L = β1β2 . . . βm be the list

returned by Alg. 6.3. Using the above definitions, we can see that correctness

can be assured by the following sufficient properties:

1. The x-region of the query, (a, b), must be covered everywhere, i.e,⋃
β∈L

χ(β) ⊇ (a, b)

2. The height of each block is higher than the query height, i.e.,

∀i, 1 ≤ i ≤ m, c ≺y Γ(βi)

The second property is easy to show; it follows from the loop invariant

c ≺y Γ(β) (6.4)

116



Trivially, this holds when β is a base block. For β an internal block, this is

assured by the combined effect of the if conditions, when execution reaches

line 13. Since L contains only blocks that β pointed to at some instant, the

property is assured.

We now prove the first property. An internal block β is a derivative of

a (base or internal) block β′, if β = β′, or if β was constructed (by Alg. 6.2)

by merging on some derivative of β′. This is denoted by β′ → β. Also, define

β ←→ β′ ≡ β′ → β ∨ β → β′.

The following properties are easy to see:

β′ → β ⇐⇒ χ(β′) ⊆ χ(β) (6.5)

β′ ←6−→ β ⇐⇒ χ(β) ∩ χ(β′) = ∅ (6.6)

Now, the main observation is that each internal block is “surrounded” in array

bI by the blocks that derive it. Formally, for any 0 ≤ i < j < k < NB − 1,

bI [i]→ bI [k] =⇒ bI [j]→ bI [k], and (6.7)

bI [k]→ bI [i] =⇒ bI [j]→ bI [i]. (6.8)

Similarly, the base blocks that derive an internal block β, are compactly stored

in array bB; for any 0 ≤ i < j < k < NB,

bB[i]→ β ∧ bB[k]→ β =⇒ bB[j]→ β. (6.9)

The above properties are easily shown inductively from Alg. 6.2, line 16.

Now, consider the values of loop variable p, when execution enters

line 11. Using Eqs. (6.5) to (6.9), it can be seen that

⋃
β∈L

χ(β) ⊇
high⋃
p=low

χ(bB[p]) ⊇ (a, b)
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Let us now examine whether the list returned by Alg. 6.3 is of minimum

length. Note that a minimum-length list is not unique in general. For example,

for the space partitioning shown in Fig. 6.5, there is no list of 1 block covering

b0 b1 b3

K[0]

K[1]

K[2]

i2

i1

b2

i0

Figure 6.5: An example of a query with multiple minimum lists that cover it.

the shown query, but there are 4 lists of 2 blocks each, namely, b1b2, i0b2, b1i2

and i0i2. Alg. 6.3 will, for this case, return b1b2. We should clarify that, by

a minimum-size list we do not mean minimum-size among all lists that cover

the keys of the query, but minimum-size among all lists such that⋃
β∈L

E(β) ⊇ Q,

in other words, it is required that the extents of blocks must cover the query’s

region. As an example, consider Fig. 6.5. Assume that the small areas ρ(i0)∩Q

and ρ(i2) ∩ Q do not contain any points. Then, the shown query could be

covered by i1 alone. However, we do not consider i1 a legal cover.

We now sketch the proof that L (returned by Alg. 6.3) is of minimum

size (in the above sense). Suppose that a strictly shorter cover exists, and
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take an minimum-size such cover, say L0. It is not hard to see that optimality

implies that for β, β′ ∈ L0, β 6= β′, it must be β ←6−→ β′.

Some reflection shows that, for some block of L0, say β, region χ(β)

would be covered by more than one block in L, say β1, β2. But then, from

Eq. 6.5, β1 → β and β2 → β. However, in this case, it must be Γ(β) ≺y c,

(follows from the if conditions). Thus, block β is extraneous in L0, since its

span χ(β) must be covered by other block β′ ∈ L0, and thus β′ → β. This

contradicts the optimality assumption for L0.

The final conclusion follows from Thm. 4.5. The size of L is at most

4dt/Be, where t is the number of keys in the CC, contained in Q.

6.5 Search cost of the EPS-tree

Having completed the analysis of CC query performance, we return to the

EPS-tree, and study the I/O cost of queries, by computing the total cost of

procedure Search, shown in Alg. 6.1.

Let Q(a, b, c) be some query, and let t be the number of points reported

for Q. Let procedure Search visit k internal nodes, u1, . . . , uk. For each visited

internal node ui, let fi be the number of blocks returned by the call to Find

(on line 8 of Alg. 6.1). Also, let ti be the number of points reported from these

blocks. Finally, let ci be the number of children of ui that are visited.

Let us consider the total number of I/Os. The total number of B+-

tree nodes visited is 1 +
∑k

i=1 ci. To see this, observe that
∑k

i=1 ci counts

every visited node except the root. Also, for each a visited internal node ui,

the call to the CC will require fi + 1 I/Os (the number of pages returned by

CC(ui).Find(Q), plus the catalog block). Thus, the total number of accessed
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pages is

C = k +
k∑
i=1

fi + 1 +
k∑
i=1

ci (6.10)

Now, from the analysis of the CC access of §6.4.3, we have that fi ≤ 4dti/Be.

Thus,

C ≤ 5k + 4
t

B
+ 1 +

k∑
i=1

ci (6.11)

Also, k ≤ 1 +
∑k

i=1 ci, thus,

C ≤ 4
t

B
+ 6 + 6

k∑
i=1

ci (6.12)

We now focus on the execution of procedure Search, for some internal

node ui, and in particular on estimating ci, the number of children of ui visited.

The condition for visiting a child node of ui appears on line 14 of Alg. 6.1.

There are two cases:

• First, a child v is visited if a ∈ [v] or b ∈ [v]. Let hi denote the number

of such children (trivially, hi ≤ 2).

• Second, for a child not in the above case, it is visited if its full Y -set is

reported in query Q. Let ei be the number of such children.

We thus have ci = hi + ei. It is easy to see that, if H ≤ dlogB/2(n/B)e ≤

logB n+ 1 is the height of the B+-tree, it is

k∑
i=1

hi ≤ 2H − 1 (6.13)

and thus, Eq. 6.12 becomes

C ≤ 4
t

B
+ 2 logB n+ 7 +

k∑
i=1

ei (6.14)
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Let v1, . . . , vei be the children of ui visited because their full Y -set was reported,

and let yij, 1 ≤ j ≤ ei be the number of keys from Y (vj) reported.

Assume that for some δ > 0, and for all ui,

δBei ≤
ei∑
j=1

yij (6.15)

By
∑ei

j=1 yij ≤ ti and the above condition, Eq. 6.14 yields

C ≤ 2 logB n+ 7 + (4 + 1/δ)
t

B
(6.16)

A static EPS-tree can be constructed so that yij = Ymax. Then, δ = Ymax/B,

and, if Ymax = Θ(B), we have C = O
(
logB n+ t/B

)
.

Thus, optimality of search cost reduces to the condition of Eqs. 6.15–

6.16. These two equations reveal the main idea behind our approach; amortize

the cost of extending the search to a node’s children, on the number of query

outputs produced by the Y -sets of these nodes. The degree of amortization is

expressed by δ, which affects the access overhead by a factor of 1/δ.

The preceding analysis is more detailed than required for a static EPS-

tree, but it is useful in that it guides the construction of a dynamic EPS-tree.

In the dynamic case, assuming yij = Ymax for all i and j is not feasible, because

B+-tree node splits may cause Y -sets to split unevenly. One approach would

be to re-balance eagerly these Y -sets, but then the cost of updates would be

too high. Instead, all we must guarantee is an update scheme where the total

sum
∑ei

j=1 yij of Eq. 6.15 remains high for every visited node ui.

6.6 Construction of EPS-trees

We now describe a simple and efficient construction technique for a EPS-tree

over a given dataset. This operation, also known as bulk loading, is of great
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practical importance, thus it deserves a short discussion.

We assume that the dataset has size n, and resides in a disk file, sorted

on the ≺x order. To construct an EPS-tree, we first construct the underlying

B+-tree. This can be done by well-known techniques (see [Com79]), for any

chosen fill factor fB, i.e., the nodes of the resulting B+-tree will have fBB

elements each (where 1/2 < fB ≤ 1). A fill factor less than 1 may be desired,

when insertions to the tree are expected. For a fill factor of 1, each insertion

would split the (originally) packed block, which results both in expensive in-

sertions, and in reduced efficiency for later range searches. Practical fill factor

are typically fB ≈ 0.8. The total number of I/Os required, is (approximately)

(1 + 1/fB) n
B

.

Having constructed the underlying B+-tree, it is now possible to con-

struct a CC for each internal node. Unfortunately, we do not know how to

perform this operation in a linear number of I/Os. In fact, we conjecture

that this is not possible. We show how to construct the child caches in

O
(
(n/B) logM(n/B)

)
I/Os, where M is the amount of main memory used,

measured in disk blocks. We conjecture that this cost is asymptotically tight.

Each Child Cache will hold a number of Y -sets. Parameter Ymax of the

tree determines the maximum allowable Y -set size. Like for B+-tree blocks

however, a fill factor 0 < fY ≤ 1 for the constructed Y -sets may be chosen.

Note that in the case of Y -sets, smaller values of fY reduce space requirement,

whereas smaller fB will increase the space requirement for the B+-tree. On

the other hand, smaller values of fY will increase the worst-case query cost

(cf. Eq. 6.16). For the chosen value of fY , the construction of CCs will create

Y -sets of size at most fY Ymax. Note that it is possible for some Y -sets to have

smaller size. This can happen for some node u, if buc, i.e., the node is bottom.
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For the chosen values of fB and fY , the total space for all CCs will be

approximately
fY Ymax

fBB
(n/B)

blocks, and thus the total space of the constructed EPS-tree will be approxi-

mately (
fY
Ymax

B
+

1

fB

) n
B

blocks.

To construct the Child Caches, we work with the levels of the B+-tree.

Level l of the B+-tree consists of the list of B+-tree nodes at distance l from

the leaves, i.e., all leaf nodes are on level 0, and level l > 0 consists of all nodes

whose children are at level l−1. The root is at level L−1, where L is number

of levels of the tree. The height of the B+-tree is H = L− 1. In the B+-tree,

all the nodes of each level form a linked list, sorted on the their x-ordering.

The construction of CCs begins at the root’s level and proceeds down-

wards. When processing level l, the process constructs the Y -sets of all nodes

at levels l + 1, . . . , l + k, for some k ≥ 1, and thus creates the CCs for levels

l, . . . , l + k − 1. The parameter k is determined by the available memory M .

The memory must be large enough to fit (fBB)i Y -sets for level l + i + 1,

0 ≤ i < k. Thus, the following inequality must hold:

fY Ymax

k−1∑
i=0

(fBB)i ≈ fY Ymax(fBB)k − 1 ≤MB

from which we obtain

k ≤ 1 +
logM + logB − log(fY Ymax)

log(fBB)

The processing of each level proceeds by reading the input, and main-

taining a tree of heaps (priority queues) in main memory, corresponding to the
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Y -sets of a k-level subtree of some node in layer l + 1. As soon as the Y -sets

for all children of node u are computed, the CC of u is built on disk. Thus, the

total I/O during CC construction is that of H/k = O(logM(n/B)) scans of the

dataset. A final scan of the leaves of the B+-tree is needed, to update their

LNB. Since these I/Os are roughly sequential, the overall process is efficient.

6.7 Making the EPS-tree dynamic

We now turn our attention to techniques for efficient updates to the EPS-tree.

Central to these techniques, is the ability to perform efficient updates to CCs,

i.e., an efficient implementation for the CC API of Table 6.1. Thus, we first

concentrate on this issue. Then, we discuss updates to the EPS-tree.

As we will show in this section, it is possible to achieve O(logB n) worst-

case update cost, by using highly complicated update techniques for the CCs.

Because implementation complexity may render these techniques impractical,

we also show how to achieve O(logB n) amortized update cost, with simpler

implementation.

6.7.1 Updates to a Child Cache

The main update operations on CCs are insertion/deletion of keys to Y -sets,

and split/merge of CCs.

Split of a CC can be done by building two new CCs out of the old

one, in O(Ymax) I/Os. Merging can be done also by building, with the same

cost. An important observation is that the building operation need not be

a continuous operation, but can be split up into O(Ymax) steps of O(1) I/Os

each. Between two steps, all information of the rebuilding may be removed
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from main memory. More precisely, the building has two stages: building the

base blocks, and building the internal blocks, by Alg. 6.2. Observe that the

state variables for both procedures can fit into O(1) blocks. For example, the

state for procedure BuildInternal (Alg. 6.2) consists of the variables S, pos

and H, defined in lines 3–5 of Alg. 6.2. Thus, each step can cost O(1) I/Os for

loading the procedure’s state, and O(1) I/Os that produce O(1) data blocks

of the new cache.

Insertion and deletion for Y -sets must also be done by rebuilding. How-

ever, rebuilding for each insertion/deletion of a point would be prohibitively

expensive. Instead, a special block, called the update block, can be added to

the CC. Insertions and deletions of elements can be recorded to the update

block. When the block becomes full, the CC can be rebuilt. Thus, the amor-

tized cost of a Y -set update is O(1) I/Os. With a slight modification, we can

obtain O(1) worst-case cost. We either use two update blocks, or we split a

single update block into two parts. Thus, we get two update areas. We then

use one area—the active area—to record Y -set updates, while the contents

of the other area—the frozen area—are incorporated into a new CC by a re-

building process. Thus, each Y -set update involves the following: record the

update into the active update area (1 I/O), and perform O(1) work in building

a new CC, on the contents of the existing base blocks, modified by the updates

recorded in the frozen area. The amount of work of each rebuilding step must

be large enough to guarantee that the rebuilding will be finished before the

active update area becomes full.

The operations of Y -set updates and split/merge of CCs can be com-

bined, albeit with significant implementation complexity. This is outlined in

the following statement:
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Proposition 6.7.1. Using multiple Child Caches with Ymax = O(B), we can

amortize the work of a sequence of Y -set updates and split/merge operations,

in O(1) I/Os per step, provided that for some fixed constant k, there are at

most k split/merge operations in every subsequence of operations of size Ymax.

Procedure Find (Alg. 6.3) on these CCs will return O(t/B) blocks for a query

retrieving t elements from the CC. The total number of records stored in the

CCs must be O(BYmax). (The hidden constants in these complexities depend

on k).

Proof. We only sketch the argument. The basic idea is to maintain an array

of pointers to at most k subsumed CCs. A call to Find can be computed by

posing the query to each subsumed CC, and concatenating the returned lists.

The condition that split/merge operations do not happen too often, guarantees

that there exists a suitable rebuilding schedule of O(1) I/Os per step, so that

the number of subsumed CCs does not grow above k.

We now briefly discuss the implementation of the rest of the CC API,

namely operations SplitSet, LeastKey and GreatestKey (see Table 6.2).

The LeastKey operation can be implemented by examining the root block

of the CC, incorporating any changes from the update block. This will re-

quire O(1) I/Os. Also, GreatestKey can be implemented in O(1) I/Os, by

retrieving all O(Ymax) keys of the desired Y -set, and selecting the ≺y-highest

(again, the update block must be scanned). It is easy to retrieve all points in

a Y -set, from the base blocks of the CC. Finally, SplitSet and Merge are

simply operations on array YSize, which resides in the catalog block, and cost

1 I/O.

Our CC implementation involved a number of design choices, that re-
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quire some justification. In designing the CC, we consistently chose to favor

efficient search over simplified updates. A number of alternative implemen-

tations are possible. For example, each Y -set may be maintained in its own

block, replacing our implementation’s base blocks. This choice would simplify

somewhat the updates of CCs, but would require more complicated search,

and would likely incur a small constant access overhead for queries. Choosing

to favor search over update is a well-established engineering rule in database

indexing.

The implementation complexity of some of the operations outlined in

this section can be somewhat daunting in a real setting. This could qualify

the EPS-tree as impractical. However, our experimental results, presented

in Ch. 7, show that the requirement for worst-case EPS-tree updates is not

necessary for an efficient solution. An optimal amortized update cost should be

sufficient in practice. For such an EPS-tree implementation, it suffices to assure

O(1) amortized Y -set updates for the CCs of the EPS-tree. In particular,

it suffices for the CC to have a single update block. When that block is

full, the CC is rebuilt in one step of O(Ymax) I/Os. CC splits and merges

also happen immediately, with a cost of O(Ymax) I/Os. We shall refer to

the CC implementation outlined here as the ACC (Amortized Child Cache)

implementation, and to the full implementation described by Prop. 6.7.1, as

the WCC (Worst-case CC) implementation.

We summarize the update complexities of CC operations, in Table 6.3.
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ACC (amortized) ACC (worst-case) WCC

YSize 1 1 O(1)
Find 1 1 O(1)
bottom 1 1 O(1)

Insert 2 O(Ymax) O(1)
Delete 2 O(Ymax) O(1)
SplitSet 1 1 O(1)
Merge 1 1 O(1)
LeastKey 2 2 O(1)
GreatestKey 3 3 O(1)
SplitCache 2Ymax + 1 2Ymax + 1 O(1)†
MergeCache 2Ymax + 1 2Ymax + 1 O(1)†

Table 6.3: The I/O cost of Child Cache API operations.
†with the caveats of Prop. 6.7.1

6.7.2 Two operations on Y -sets

The Y -sets of an EPS-tree are re-organized using two EPS-tree operations:

bubble-up and trickle-down. These operations are dual. Each operation orig-

inates at a particular node, and is propagated downward in the tree. Alg. 6.4

shows the pseudo-code for these two operations. Note that a bubble-up or

trickle-down to node u will affect Y (u), and thus must update the CC of u’s

parent.

The bubble-up operation on node u increases the size of Y (u) by one.

This is done by moving a key “upwards”, i.e., retrieving the LNB of u, if u is

leaf, or retrieving a key from the Y -set Y (v) of some child v of u, if u is not

leaf. In the latter case, the bubble-up recursively extends to v, so that Y (v)

does not decrease in size.

The trickle-down operation on node u decreases the size of Y (u), by
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Algorithm 6.4 Trickle-down and bubble-up.

1. TrickleDown(Node u)
2. { 3.Key p := CC(u↑).GreatestKey(u);
4. CC(u↑).Delete(p);
5. if( u is leaf )
6. adjust LNB(u);
7. else {
8. if(CC(u).YSetSize(up)=Ymax)
9. TrickleDown(up); // make space

10. CC(u).Insert(p, up);
11. }
12. }
13.

14. BubbleUp(Node u)
15. {
16. if( u is leaf ) {
17. CC(u↑).Insert(LNB(u), u);
18. adjust LNB(u);
19. } else {
20. Key p = CC(u).LeastKey();
21. if(CC(u).YSetSize(up) ≤ Ymax/2)
22. BubbleUp(w, u);
23. CC(u).Delete(p);
24. CC(u↑).Insert(p, u);
25. }
26. }
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moving a key “downwards”, in a dual manner to bubble-up.

6.7.3 Insertion in EPS-trees

We will now describe the insertion operation. The description is stated in terms

of well-known B+-tree operations, and CC API operations already discussed.

To make the description cleaner, we introduce a concept that relates to B+-

tree updates.

Consider an insertion into a B+-tree (a similar description applies to

deletions). We will define a B+-tree node to be the designated node for the

insertion. Let u be the leaf where the inserted key will reside. If u does not

split as a result of the insertion, the u is the designated node. If u splits, the

split is propagated towards the root, splitting ancestors until some ancestor v

that does not split. In this case, v is the designated node. Fig. 6.6 depicts this

a

b

c

d

a

b’ b’’

c’ c’’

d’ d’’

Figure 6.6: The root-to-leaf path to the left is from a tree, before an insertion
into leaf d. To the right, some ancestors of d have split. The designated node
is a.

case. Finally, it may happen that the splits propagate to the root, which splits

too, increasing the height of the B+-tree. In this case, there is no designated

node.

We now describe the insertion procedure into an EPS-tree. Let p be
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the inserted key. Insertion will follow these steps:

1. Insert p into the B+-tree. Let u be the leaf containing p (after the

insertion, i.e., after all splits), and let d0 be the designated node of the

insertion (or be null if the root split).

2. Perform any SplitCache operations required (one for each internal node

that split).

3. If p ≺y LNB(u), examine the path from root to leaf u, to locate the

node v for which p must be inserted into Y (v), in order to maintain the

Y -set invariant. This can be done by calling LeastKey for the CCs of

the nodes on the path. If |Y (v)| = Ymax, call TrickleDown(v). Then,

insert p into Y (v).

4. If d0 is undefined, or d0 is the root, we are done.

5. Else, let d−1 and d1 be the left and right siblings of d (if they exist).

For each Y (di), such that |Y (di)| < Ymax/2, call BubbleUp(di) dYmax

B
e

times. Note: in practice, dYmax

B
e = 1.

All of the above steps, except the last, are easy to justify. The purpose

of the last step, which is called the rebalance step, is not immediately obvious.

It will be justified by the forthcoming discussion.

6.7.4 Analysis of insertion cost

The cost of an insertion operation is determined by the choice of implemen-

tation for Child Caches. From Table 6.3, it can be seen that the worst-case

cost for the WCC implementation is O(logB n). This can be seen easily, by
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inspecting the steps of the insertion process. The only point of interest is to

assure that the caveat of Prop. 6.7.1 is obeyed. Indeed, consider the interval

between two successive calls to SplitCache on the CC of some internal node

u. Right after the first call, u had exactly B/2 children (because it had just

split). Right before the second call, it had B children (because then it split).

Thus, during this time, it had become the designated node B/2 times. There-

fore, at least B/2 bubble-ups were called on its children, which translate to at

least B/2 insertions into u’s CC. Thus, there are at least B/2 Y -set updates

between two calls to SplitCache.

For the ACC implementation, the amortized cost of insertion isO(logB n).

In the worst case, an insertion can cause logB n splits, and thus a cost of

O(Ymax logB n) I/Os. However, the frequency of such splits is very low. Over

a large number of insertions, only one in every (approximately) B/2 insertions

will cause a split of some leaf. Thus, the amortized cost isO((2Ymax/B) logB n) =

O(logB n).

6.7.5 Search in Dynamic EPS-trees

The Search procedure of Alg. 6.1 will return a correct result for dynamic

EPS-trees, but in some rare circumstances, its cost may not be optimal. We

explain the problem, and describe a slight modification that assures optimal

cost.

The source of the problem is that, when a node u of the B+-tree splits

into nodes u1 and u2, as a result of some insertion, Y (u) does not, in general,

split into equal parts. Without loss of generality, let |Y (u1)| ≤ |Y (u2)|. It

is possible that Y (u1) can be empty, or contain very few elements. Such an
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extreme case is shown in Fig. 6.7. In the following, a node whose Y -set contains

fewer than Ymax/4 elements is called a light node, otherwise it is a heavy node.

Figure 6.7: The Y -sets of sibling nodes, after splitting. The shown query
(dashed line) will report all keys from the light nodes’ Y -sets.

If there are no light nodes in the EPS-tree, the optimality condition of

Eq. 6.15,

δBei ≤
ei∑
j=1

yij,

is satisfied for δ = Ymax

4B
. In the presence of light nodes however, 1/δ = O(1)

cannot be achieved, without slight modifications of procedures Search and

BubbleUp. We now explain this issue.

The rebalance step of the insertion procedure (step 5), assures that

every node that splits has at least Ymax/2 elements in its Y -set. This is be-

cause, between the time a node was created and the time the node splits,

it has become the designated node B/2 times, and thus receives at least

(B/2)dYmax/Be ≥ Ymax/2 bubble-ups. In what follows, let u be a node that

split into a light node u1 and a heavy node u2 (if |Y (u)| ≥ Ymax/2, then at

least one of u1 and u2 is heavy).
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The pitfall of procedure Search is that it will extend the search to the

light node u1, if Y (u1) is fully reported. The cost of extending the search

cannot, in this case, be amortized on the number of reported points with

optimal efficiency.

The remedy is based on the following important observation: imme-

diately after the split, the search need not descend to u1, unless the whole

contents of Y (u2) are also fully reported. If search is modified in this way,

amortization of its cost is again efficient. To make our discussion precise, we

introduce two definitions.

Definition 6.1. A key p ∈ I is below node u if, and only if, for some ancestor

v of u (including u itself), p ∈ Y (v). Otherwise, p is above u.

Definition 6.2. Let u1 and u2 be adjacent sibling (children of the same node)

EPS-tree nodes, and assume u1 is light and u2 is heavy. We say that u1 and

u2 are joined if, and only if, for all p ∈ [u1], p is above u1 implies that p is

above u2.

We can now restate our important observation as follows: immediately

after the split, nodes u1 and u2 are joined. When two nodes are joined, search

need not descend to the light node, unless both their Y -sets are fully reported.

Thus, our task is reduced to maintaining joinedness over a number

of subsequent operations, so that u1 can receive enough bubble-ups by the

rebalance step (step 5) of the EPS-tree insertion procedure. Once it holds,

joinedness can be broken if u2 (the heavy node) receives bubble-ups. Trickle-

downs to u2, or bubble-ups to u1, do not break joinedness. Also, trickle-downs

are never applied to u1, while u1 is light (a light node’s Y -set does not reduce

in size).
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Thus, to maintain joinedness, we can simply modify procedure Bub-

bleUp, and in particular lines 21–22 of Alg. 6.4. These are the lines that

recursively extend the bubble-up to a child node that had an element of its

Y -set bubbled-up. The modified version will confirm that u2 is the heavy side

of a joined pair of nodes, and will assign the bubble-up to the light node of the

joined pair. We omit pseudo-code for this process, as we omit pseudo-code for

the modifications of Alg. 6.1.

6.7.6 Deletion in EPS-trees

Removing a key from the EPS-tree is straightforward, unless the deletion

causes some nodes to merge. In this case, EPS-tree deletion suffers from

the problems of deletion in B+-trees, such as thrashing [Com79]. As discussed

in [ASV99], a global rebuilding technique (e.g. see Overmars [Ove83]) can be

used, where keys are not immediately removed from leaves, but instead the

structure is rebuilt after Θ(n) deletions. This technique can achieve O(logB n)

amortized deletion cost, and is in fact quite popular in database practice (it

is often called reorganization).

If it is acceptable for deletion costs to be high (in the case of B+-tree

node merges), deletion can be performed relatively simply, along the same

lines as insertion: perform B+-tree deletion, and maintain the Y -set invariants.

Maintaining Y -set invariants can be expensive when two nodes merge, because

the union of their Y -sets is not, in general, a legal Y -set for the new merged

node. Thus, up to Ω(Ymax) trickle-downs and bubble-ups may need to be

performed, to maintain correctness. Yet, assuming that merges only happen

rarely, the expected cost of deletion is O(logB n).
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The above discussion seems to be of academic interest with the given

state of affairs in the database industry. In many commercial implementations

of B+-trees, merging of B+-tree nodes never happens [GG98]; instead, nodes

are allowed to underflow, and are only removed when they become empty. Un-

der this state of operations, deletion in EPS-trees consists of simply removing

the key from its leaf node, and possibly from the Y -set it resides in (if the

key is bubbled). Naturally, worst-case search cost can be adversely affected

if many nodes underflow (as is the case for B+-tree search costs). However,

deletions seem to be less important in practical settings.

6.8 Conclusions

This chapter examined techniques for implementing index structures for two-

dimensional range queries. The focus was on the EPS-tree, a new access

method for three-sided queries, with asymptotically optimal worst-case per-

formance. The detail of the presentation was high, in order to demonstrate the

practical decisions involved in designing such data structures. We now review

some of the main conclusions from the material presented.

6.8.1 Practical aspects of indexability

Although the indexability model does not include a search component, we

have shown that indexing schemes can be useful in index construction. The

Child Cache subindex is derived directly from the indexing scheme of 4.3.1.

The approach can be generalized to other problems, beyond 3-sided queries.

In the survey of Vitter [Vit99] this technique is called bootstrapping.

The general idea behind bootstrapping is to externalize a main-memory
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data structure, by using small subindices (designed as indexing schemes) to

perform filtering search [Cha86]. In various forms, this technique was employed

by Ramaswamy and Subramanian in the P-range tree [SR95], by Arge and

Vitter in the External Interval Tree [AV96], and by Vengroff and Vitter in

their 3-dimensional index structures [VV96a]. Since our work, it has been

employed by Agarwal et al. [AAE+98] to indexing for half-space queries, and

moving points on the plane [AAE00].

The main merit of bootstrapping as a general approach, is that it does

not (potentially) suffer from the weaknesses of the Path Caching technique of

Ramaswamy and Subramanian, discussed in Sec. 6.2.2. The main drawback

is that it assumes a solution to the underlying indexability problem. Such

solutions seem to be hard for many problems of interest.

6.8.2 Dynamizing external data structures

The update procedures of our dynamic EPS-tree are undoubtedly more com-

plicated than typical in indexing techniques. It is desirable to develop simpler

update techniques, that do not sacrifice performance. Such techniques would

not only benefit the EPS-tree but other dynamic index structures as well, like

the External Interval Tree, or the p-range tree, whose update operations are

(at least) equally complicated.

6.8.3 EPS*-trees

An alternative to our EPS-tree design could be to merge B+-tree internal nodes

with the catalog blocks of their corresponding CCs. However, our choice to

maintain these as separate blocks has a desirable consequence; it allows for
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multiple choices of the y-dimension to be served by the same underlying B+-

tree. For example, it may be desired that both open-above (i.e., t-like) and

open-below (i.e., u-like) 3-sided queries be supported over the same dataset,

as in the case of 4-sided indexing scheme of §4.4. With our design, it suffices

to augment each B+-tree internal node with multiple CCs, and each B+-tree

leaf node with multiple LNBs. Updates will work well, because the B+-tree

update procedure is independent of any CC state. In fact, with our design,

3-sided query capability can be added or removed from the underlying B+-

tree at will, simply by creating and destroying the CCs of internal nodes. We

designate such multi-CC trees as EPS*-trees.

In addition, our decision not to compromise the underlying B+-tree,

assures that 1-dimensional range queries over the B+-tree attribute will have

excellent performance. One application where this may prove important is

interval management. An interval intersection query can be seen as a 3-sided

query. However, as shown in Sec. 4.2, an interval intersection query can also

be split into two disjoint, smaller queries, one of which is an interval stabbing

query, and the other a one-dimensional range query. In our design, we can use

the underlying B+-tree to answer the one-dimensional query, and three-sided

search to answer the stabbing query. For large queries, where the cost of the

one-dimensional query dominates by far the cost of the stabbing query, our

design will probably achieve superior performance, since the one-dimensional

query is answered with the efficiency of a B+-tree.
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Chapter 7

Empirical Evaluation of

EPS-trees

The performance analysis of the EPS-tree has, so far, concentrated on worst-

case search and update cost. From a practical perspective, an analysis of

expected cost is also important. In this chapter, we carry out a thorough

experimental study of EPS-trees. Our goals are two-fold; first, to measure the

average performance of EPS-trees, and second, to estimate the implementation

complexity of the various EPS-tree operations, and contrast it against the

performance gains.

The worst-case I/O of Eq. 6.16 is already within a constant factor of

optimal. Thus, the only question about the average-case I/O is, what is the

average-case constant factor. The question becomes more interesting when

one considers the role of parameter Ymax in the worst-case cost. In general,

larger values of Ymax decrease the I/O cost of search, and increase disk space

consumption and update cost. One goal is to study the effect of the choice of
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Ymax on average access cost.

There are additional experimental goals, relating to search performance.

Some derive from the approximate nature of I/O modeling, in the analysis of

the previous chapter. The access cost for real disks varies significantly when

the I/Os are sequential, vs. random. Another related issue is the effect of

caching some disk blocks in a main memory buffer. This is a standard feature

of modern systems, and is well-known to reduce significantly the actual access

cost of queries.

A final goal concerns the implementation complexity of EPS-trees, com-

pared to practical index structures, and in particular, the trade-off between

implementation complexity and performance.

7.1 Experiment design

Our first task is to describe and justify the adopted experimental procedures.

An important choice is the evaluation workload, i.e., the dataset stored in the

EPS-tree, and set of queries whose performance is to be measured. The keys

returned by an EPS-tree query are retrieved from two sources: data blocks of

Child Caches, and leaves of the B+-tree. The contribution of these two sources

of data can vary, depending on the shape of a query, and the data distribution

of the underlying dataset. We chose a synthetic, uniformly distributed dataset.

For this dataset, we constructed a set of queries, by varying the query size, as

well as the aspect ratio. By this choice, we were able to exercise both types

of sources where data resided, with varying contributions from each type of

source.

In order to compare our results to other, well-known index structures,
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we faced a dilemma, because there are no well-known data structures for three-

sided queries. Comparing against some more general index structure, such as

the R-tree, would not provide a meaningful comparison,since the EPS-tree can

out-perform R-trees—and other similar structures of more general scope—by

orders of magnitude in some cases. Thus, we chose to compare EPS-trees

against B+-trees. Of course, B+-trees are not two-dimensional structures. In

order to have a meaningful comparison, we compare the access cost of the

EPS-tree answering a query of size t, to the cost of a B+-tree answering a one-

dimensional query of the same size t. Clearly, the result of such a comparison

is not to choose the “best” between these two structures, since we compared

them on different tasks. The rationale is the following: the access cost of a

B+-tree query of size t, is close to the absolute optimum cost that any type

of access method, retrieving t keys, would have to incur. Thus, by contrasting

the EPS-tree cost to such an optimum, we relate the performance of EPS-trees

to the physical parameters imposed by the hardware and operating system.

Our experiments are guided by a number of hypotheses that we seek to

validate. All of these hypotheses are founded in the theoretical analysis of the

previous chapters, where we concentrated on the number of I/Os as the only

performance metric.

• We expect the constant factor of average-case query cost to be smaller

than that of the worst-case query cost. Intuitively, we expect it to

be about half of the worst-case constant, for our uniformly distributed

dataset. By query cost, we understand not only the number of blocks

accessed, but also the time per query.

• We expect that for some “hard” queries, the actual cost will be very
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close to the worst-case cost. Those will be the queries where search cost

is just barely amortized better than what worst-case analysis predicts.

• We expect that smaller values of Ymax will yield inferior performance over

larger values, with the effect being more pronounced for certain “hard”

queries. Thus, we validate the notion that I/O cost can be improved by

disciplined use of redundancy.

• We expect EPS-tree performance to be within a small constant factor of

B+-tree performance on average, for same-size query searches, even when

the B+-tree is laid sequentially on disk. Our expectation is based on the

fact that CC data blocks were also laid sequentially (this is possible

because CCs are static indexes). Thus, we did not expect the EPS-tree

to be penalized too much from random disk seeks.

• We expect that the effect of the main-memory buffer will be very bene-

ficial to access cost, as it is for most other tree-like index structures. In

particular, we expect that the cost of search will be, to a large extent,

hidden by the effects of the buffer. Thus, the average number of real

I/Os should approximate the indexability access overhead. From §4.3.1,

the worst-case indexability overhead is A = 4. On average however, we

expect the I/Os per query to be (roughly) only 2 logB n+ 2dt/Be.

• We expected the real I/O cost per update to be comparable to that of

the B+-tree. Our reason is that the additional work of EPS-tree updates

involves mainly operations on the update blocks of CCs. The number of

these update blocks is equal to the number of internal tree nodes, and

most of them will fit in the main-memory buffer. Thus, updates to the
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CCs will not cost as much in real I/O operations.

Our experimental results confirmed these hypotheses.

7.2 Experiment setup

Our workload simulated a secondary index over a database table. We con-

structed a dataset of 100,000,000 keys, where each key consisted of a tuple of

4-byte integers. Each key had an associated 4-byte datum, which was unused—

presumed to represent a physical pointer in our hypothetical database table.

Thus, each record was 12 bytes long, and the ideal space requirement for our

dataset was approximately 1.2 Gbytes.

Using this dataset, we constructed a number of EPS-trees, for different

values of Ymax. The block size was set to 4 kbytes. The internal and leaf nodes

of the EPS-tree had a fill factor of 0.8. Thus, each leaf node of the EPS-tree

would hold roughly 4096×0.8/12 ≈ 270 keys, and also that was the maximum

branching factor of the internal nodes of the EPS-tree. Our main-memory

buffer was set to 64 Mbytes, or almost 5% of the raw data size.

Our hardware was an Intel Pentium III 650MHz machine, with 128 Mbytes

of RAM. Our disk was a 35 Gbyte Maxtor Diamond, with a 2 Mbyte on-disk

cache. Its nominal access time was 9ms. The disk was accessed through a

UltraDMA/66 interface, and had a maximum transfer rate of 16 Mbytes/sec.

In order to establish a baseline of the performance of our system, we

constructed a B+-tree over our dataset, and ran a large workload of one-

dimensional queries over it. For our block size of 4 kbytes, and load factor

0.8, the B+-tree had approximately 270 keys per leaf block. Although our

B+-tree (and all our indexes) were stored as operating system files, our bulk

143



loading process and the file system’s algorithms resulted in a mostly sequential

allocation of the B+-tree leaf blocks. This had the effect that, for large B+-

tree queries, the access cost was almost equal to the disk bandwidth (adjusted

for the B+-tree’s fill factor).

We ran a workload of uniformly distributed queries. The query size t

ranged from 10 to 100,000 keys. For each query, we measured four quantities:

the CPU time (CPU), the total wall-clock time (TOT), the number of block

accesses (ACC), either from disk, or from the main-memory buffer, and finally

the actual number of disk I/Os (IOS). Fig. 7.1 shows a scatter plot of ACC

and IOS, vs. the normalized query size dt/Be.

As can be seen in Fig. 7.1, the ACC results are very tightly correlated

to the query size. However, the IOS results have many points well below the

number of block accesses. This is the effect of the main-memory buffer.

In order to approximate analytically the displayed data, we computed

least-square approximations. From these we got

ACC = 3.4 + d t
B
e (7.1)

IOS = 1.1 + 0.96d t
B
e (7.2)

The formula for ACC is interpreted as follows: our B+-tree had height 3, thus,

each query would access 3 internal nodes, and between dt/Be and d(t−1)/Be+

1 leaves. Thus, about 40% of the queries needed d(t− 1)/Be+ 1 blocks.

The formula for IOS has a coefficient of 0.96 with respect to the query

size. This is explained as the hit ratio of the buffer. The buffer had size

64 Mbytes, and the total B+-tree size was approximately 1.5 Gbytes. Thus,

the hit ratio was (roughly) 4% for leaf blocks. Note also that the expected

number of I/Os for accessing internal B+-tree nodes was 0.7 accesses per query
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Figure 7.1: Scatter plot showing block accesses and disk I/Os, vs. the normal-

ized query size dt/Be.
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Figure 7.2: Scatter plot showing CPU and total time, vs. the normalized

query size dt/Be.
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(this is equal to 1.1-0.4, where 0.4 is subtracted because 40% of the queries

would access d(t− 1)/Be+ 1 blocks).

Fig. 7.2 shows a scatter plot of the CPU and total time, against the

normalized query size dt/Be. Although the variance of the data is higher,

it can be seen that the times are linearly correlated to the query size, and

almost all of the queries completed in under 1 second. A least-squares linear

approximation gave the following formulas:

CPU = 1.95 + 1.26d t
B
e (in msec) (7.3)

TOT = 54 + 1.74d t
B
e (in msec) (7.4)

We should especially comment on the TOT formula, that the 54 msec overhead

is caused by the 1 or 2 disk seeks required by the query, but that then, most

of the leaf block accesses are very fast (1.74 msec on average), which implies

that the I/O was mostly sequential.

Having presented the performance of B+-trees on our experiment setup,

we are now ready to present the results for EPS-tree performance. The exper-

iment presented in this section should be considered a control experiment, to

help interpret the numbers to be presented subsequently.

7.3 EPS-tree query performance

In order to explore the effect of the Ymax parameter on the query performance

of EPS-trees, we constructed a number of different trees, where Ymax varied

from 15 to 170. We used a block size of 4 kbytes, and record size of 12 bytes.

Thus, the Y -sets of the EPS-trees ranged in size from 180 bytes to 2040 bytes.

For this range, the space overhead above the 1.5 Gbytes of the underlying B+-
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tree, ranged from 152 Mbytes to 1.5 Gbyte. Totally, the space consumption

was from 1.65 Gbytes to 3 Gbytes.

Our workload consisted of 10,000 three-sided queries, whose sizes ranged

from 10 to 100,000 records. These queries had varying shapes, from “broad

and short” to “thin and tall”. In the following, we will designate the shape of

a query by a parameter ρ. For a three-sided query Q(a, b, c), ρ(Q) is the ratio

c/ymax, where c is the y-restriction of the query, and ymax is the maximum

y-coordinate over all points in the dataset. Since our workload consisted of

queries with c ≤ ymax, ρ takes values between 0 and 1.

From the foregoing discussion, we should expect that the cost of a query

will depend strongly on parameters t and ρ of the query, and parameter Ymax

of the EPS-tree it was posed against. Our measurements fully support this

conclusion.

We begin with query performance on an EPS-tree with Ymax = 170.

Fig. 7.3 shows the block accesses (ACC) and disk I/Os (IOS). Each measure-

ment is shown as a colored point, depending on its ρ parameter. The color bar

on the right of the graphs associates the colors with the corresponding values

of ρ. As can be seen, the performance is linearly correlated to the query size.

However, the correlation becomes much stronger when the value of ρ is taken

into account. This agrees with our hypothesis, that the performance depends

on which parts of the EPS-tree nodes contribute to the search. For queries of

the same ρ, i.e., of the same height, the size of the query is a function of the

breadth of the query, and the fractions of contribution of CC data blocks and

B+-tree leaves remain unchanged. Thus, for fixed ρ, the performance is—as

it should be—more strongly correlated to the query size t.

The results of Fig. 7.3 demonstrate that, with respect to the number
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Figure 7.3: Scatter plot showing block accesses and disk I/Os, vs. dt/Be.
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of block accesses (either I/Os or buffer hits), the EPS-tree delivers excellent

performance. Indeed, the number of block accesses is within a factor of 2.5 of

the theoretical optimum dt/Be. The situation is also very good with respect

to the CPU and total time. Fig. 7.4 shows the relevant data. Notice that

the CPU time is relatively well-bounded, but the total time of some queries

is as big as 8.5 sec. Yet, overall, the total times of even the larger queries are

within 2 sec for the largest queries. Contrasting this number with the actual

I/Os performed for these largest queries (≈ 1000 I/Os from Fig. 7.3), we see

that the average time per disk I/O is roughly 2 msec. Clearly, most of these

I/Os are sequential. This confirms our hypothesis that the EPS-tree will not

be penalized too heavily by random seeks.

7.3.1 The effect of Ymax on performance

Our analytical results imply that the choice of Ymax should have a significant

effect on query performance. Indeed, our measurements indicate that this is

correct. Unfortunately, it would be quite difficult to visualize directly the

measurements over a broad range of Ymax, ρ and t. We can approximate the

performance measurements analytically, if we assume that query performance

is linear in dt/Be. By the our discussion so far, it should be clear that this

assumption is reasonable. Under this assumption, we can write the following
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expressions for our performance measures.

CCPU(ρ, Ymax, t) = KCPU(ρ, Ymax) + LCPU(ρ, Ymax)d t
B
e (7.5)

CTOT(ρ, Ymax, t) = KTOT(ρ, Ymax) + LTOT(ρ, Ymax)d t
B
e (7.6)

CACC(ρ, Ymax, t) = KACC(ρ, Ymax) + LACC(ρ, Ymax)d t
B
e (7.7)

CIOS(ρ, Ymax, t) = KIOS(ρ, Ymax) + LIOS(ρ, Ymax)d t
B
e (7.8)

We used piece-wise linear least-squares fitting to estimate the K(ρ, Ymax) and

L(ρ, Ymax) coefficients from our measurements. From these, we then computed

the averages over ρ. These are shown in Fig. 7.5. Two interesting observa-
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Figure 7.5: Average K and L coefficients for ACC and IOS.

tions follow. First, we expected that the LACC curve would be bounded by

O(B/Ymax). We observe that a similar relationship seems to exist for the av-

erage case. Note that the curve for LACC of Fig. 7.5 is essentially a space-I/O

trade-off; larger values of Ymax improve performance. Also, notice the KACC

is close to 12. This number is explained by our implementation. Each access
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of an internal EPS-tree node incurs 3 block accesses; the node itself, and the

catalog and update blocks of the corresponding Child Cache. Since the height

of the EPS-tree was 3, each query would access between 3 and 5 internal nodes,

thus would incur between 9 and 15 block accesses. However, as can be seen by

the curve for KIOS, most of these block accesses do not incur I/Os, but are

fetched from the buffer.
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Figure 7.6: Average K and L coefficients for CPU and TOT.

The average coefficients for CPU and TOT times are shown in Fig. 7.6.

It can be seen that the CPU time is significantly smaller than the wall-clock

time.

The cost formulas derived for the EPS-tree with Ymax = 155, averaged
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over ρ, are:

CCPU(t) = 6.3 + 1.9
⌈ t
B

⌉
(msec) (7.9)

CTOT(t) = 114 + 4.1d t
B
e (msec) (7.10)

CACC(t) = 12.7 + 1.5d t
B
e (blocks) (7.11)

CIOS(t) = 4.3 + 1.5d t
B
e (blocks) (7.12)

By contrasting these equations with those of the B+-tree from §7.2, we see

that EPS-tree performance is within a factor of 1.5 to 3 of the performance of

B+-trees, compared with respect to query result size.

7.3.2 The effect of ρ on performance

The average-case results presented so far, are significantly better that the

worst-case results derived analytically in the previous chapter. In particular,

the fact that the coefficient LACC will only improve from 3 to 1.5, as Ymax

ranges from a low value of 15 to a high value of 160, is intriguing. It could

possibly be argued that low values of Ymax could be sufficient to guarantee

acceptable query performance. A low Ymax would result not only in reduced

space usage, but also in more efficient updates.

Unfortunately, this is not the case. Our results indicate that there

exists a systematically derivable set of queries, whose performance can be sig-

nificantly worse than the average, for small values of Ymax. Fig. 7.7 depicts

KACC and LACC for different values of ρ. Each curve corresponds to a differ-

ent value of Ymax. From this figure, it becomes clear that, although for some

ρ the EPS-tree remains efficient even for small values of Ymax, there are values

of ρ where the performance will deteriorate significantly, almost by an order
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Figure 7.7: KACC(ρ, Ymax) and LACC(ρ, Ymax) vs. ρ.

of magnitude, unless Ymax is relatively large. The situation is similar with our

other performance measures, as shown in Fig. 7.8.
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Figure 7.8: The effect of ρ on IOS, CPU and TOT.
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7.4 Update performance

The update performance of EPS-trees is of significant practical importance.

As discussed in the previous chapter, EPS-trees can have O(logB n) update

cost, either amortized or worst-case, depending on implementation choices. In

this section, we study the average-case performance, and we contrast it with

that of the B+-tree.

Although EPS-tree insertion is a relatively complicated process, the

I/O cost of insertion is not expected to be significantly higher than that of

the B+-tree. Certainly, it will not be less, since an EPS-tree insertion will

include the B+-tree insertion step. This step will generally require only 1-2

I/Os, if the main-memory buffer is adequately large to fit most internal nodes.

The second step of EPS-tree insertion consists of maintaining Y -set invariants,

and the third step is rebalancing in the case of B+-tree node splits. Both of

these last two steps may cause multiple Child Cache updates, and possibly

leaf updates, as a result of trickle-down or bubble-up operations. However,

Child Cache updates typically require only a write to the update block. The

number of update blocks is equal to the number of internal nodes. Thus, it is

likely that the buffer will fit most update blocks, and thus many of these I/Os

can be avoided. For this reason, we expect EPS-tree insertions to be quite

efficient.

In order to validate this hypothesis, we constructed an EPS-tree over a

dataset of 100,000,000 keys, and inserted an additional 100,000 keys into it. We

measured CPU and total time, block accesses, and real I/Os per insertion. We

also constructed a B+-tree over the same dataset (ordered by the x-coordinates

of the points) and inserted the same 100,000 elements into the B+-tree. The
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results of these experiments are summarized in Fig. 7.9. As can be seen,
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Figure 7.9: EPS-tree update performance.

although the number of block accesses (ACC) is much larger for the EPS-

tree than for the B+-tree, the overhead for disk I/Os (IOS) and total time

(TOT) are not much higher. In fact, the difference in total time is much

smaller than expected, if the additional I/Os of the EPS-tree were random.

This is explained as follows: our constructed EPS-tree had strong sequential

locality. The insertions performed were not sufficient to destroy that locality
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significantly. Thus, the disk head did not have to move far for the additional

EPS-tree I/Os, and likely it would not have to move to a different track. Thus,

only rotational latency was paid most of the time.

Another conclusion from our experiments is that the amortized-cost

implementation of EPS-trees is preferable to the worst-case one. Child Cache

rebuilding happens relatively infrequently, and because most of the I/Os are

sequential, does not impact the total time significantly when it occurs. By

contrast, the worst-case implementation requires twice the number of I/Os,

and even worse, these I/Os will be mostly random. Thus, the worst-case

implementation could have a big negative impact on performance.

7.5 Implementation Complexity

The EPS-tree is capable of achieving very good query performance. Tradition-

ally though, performance has only been one of the concerns of the database

industry, when selecting multidimensional index structures to implement in

products. Most of the time, the industry has leaned towards the simplest in-

dex structures, even when alternatives were known to be significantly more

efficient.

In this section, we discuss the implementation complexity of our EPS-

tree implementation. Unfortunately, there is no concrete, objective measure

of complexity. Thus, we will limit our discussion in describing our code at a

high level, and will only provide some—admittedly crude—measures of code

size.

Our implementation was based on EMIL, the External Memory Infras-

tructure Library. EMIL is a C++ library, which provides an object-oriented
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API to the programmer of external data structures and algorithms. To the

extent possible, EMIL strives to abstract all explicit I/O operations. However,

the block-based nature of external memory is not hidden by EMIL. Instead,

EMIL provides facilities for organizing individual blocks, as if they were C++

objects. Thus, an internal B+-tree node would be constructed as an object,

with a few scalar and two array attributes (which would correspond to an

array of keys, and an array of pointers to child nodes). By treating a block

as an object, the coding of search algorithms is greatly simplified, while the

programmer retains full control over those aspects of the processing that are

critical to high I/O performance. EMIL exposes an interface built around two

primitive operations:

1. A disk space allocation interface, similar to C++ new and delete oper-

ators, with which the user can allocate blocks.

2. A “smart-pointer” facility, which hides I/O operations behind pointer

accesses.

In order to make a concrete evaluation of the implementation complexity

of the EPS-tree, we will first describe an implementation of the B+-tree. Using

EMIL, we implemented a templetized B+-tree structure, in 643 lines of C++

code. This is a full implementation, including B+-tree insertion and deletion,

an iterator interface for range queries, similar to that of the C++ Standard

Template Library, and a bulk-loading operation. A rough break-down of the

code in terms of functionality is shown in Table 7.1.

To the extent that code size is related to complexity, the EPS-tree is

significantly more complicated than the B+-tree. The relevant break-down is

given in Table 7.2. The bulk of the implementation effort was spent in two
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Code function Size (lines of code)
Class declarations/initialization 90
Insertion/deletion 250
Query 115
Bulk loader 150
Miscellaneous (comments etc.) 38
Total 643

Table 7.1: Implementation size of the components of a B+-tree.

Code function Size (lines of code)
Class declarations/initialization 870
Child cache Updates 530
Updates other than in Child Cache 590
Child cache query 70
EPS-tree query (except in Child Cache) 210
Bulk loader 361
Miscellaneous (comments etc.) 100
Total 2731

Table 7.2: Implementation size of the components of an EPS-tree.

areas; class declarations and initialization (870 lines), and updates (1120 lines).

A few comments are in order. First, the EPS-tree required significantly more

code for class declarations. Most of this code was used to specify the different

disk block formats required in an EPS-tree. Indeed, where the B+-tree only

has 2 kinds of blocks (internal and leaf blocks), the EPS-tree has an additional

3 kinds (CC update block, CC catalog and CC data blocks). Also, some of

these blocks (like the CC catalog block for example) have a rich structure, and

thus require more code to specify. However, the biggest amount of code by

far, is related to update processing. This reflects the complexity of the update
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operations described in the previous chapter.

Thus, we must conclude that the EPS-tree has non-trivial implemen-

tation complexity. However, this implementation complexity is not, in our

opinion, prohibitive. We believe that the performance benefits to be reaped,

outbalance the added cost of implementation, especially if the EPS-tree is used

to implement fundamental language features of a new data model.

7.6 Discussion

The experiments performed in this section complement the analytical results of

the previous chapter. They indicate that search and update performance of the

EPS-tree is very good, and despite the increased implementation complexity,

the EPS-tree is a very good candidate for three-sided range search indexing.

At a higher level, the results of this chapter help to support the case for

using redundancy for increasing index performance. The space-I/O trade-offs

studied analytically in the context of indexability, come into effect and impact

performance in the theoretically predicted way.

In particular with respect to indexability, our experiments validate our

claim that the contribution of search in the actual I/O cost is small, in the

presence of a main-memory buffer.
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Chapter 8

Conclusions

In this dissertation, we showed that provably efficient access methods are a

good candidate for serving the indexing needs of new data models. Despite

their increased complexity, they have superior performance, scalability, and

robustness, compared to access methods based on ad hoc assumptions about

the workload.

We adopted the indexability model to the study of multidimensional

range search in external memory. Indexability can be very useful as a simpli-

fying tool in developing access methods for these problems. It can be seen as

an intermediate step, from the problem statement to the actual access method,

which focuses attention on the clustering aspects of the problem, ignoring the

aspects of search. Its introduction leads to a simpler, more structured argu-

ment, and allows for the exploration of more implementation alternatives.
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8.1 Main contributions

Our contributions are both to the theory of indexing, as well as to practi-

cal concerns. The theoretical part of our work included the development of

indexability results for many types of range search, with emphasis on two-

dimensional problems. We managed to derive flexible indexing schemes, able

to trade space for I/O cost and vice versa. Notable contributions include the

first optimal indexing scheme for two-dimensional range search, and solving the

long-standing open problem of three-sided range search in external memory.

We also developed comprehensive techniques for lower bounds on these

trade-offs, and proved many of our techniques to be optimal. Our main contri-

bution is the discovery of a powerful theorem, which allows the study of lower

bounds to focus on combinatorial aspects of the problem at hand, with little

concern for issues related to external memory.

The practical part of our work focused on the application of indexabil-

ity to the design of access methods, and mainly on the design and empirical

evaluation of the EPS-tree, an asymptotically optimal access method for three-

sided queries, with efficient dynamic behavior. The EPS-tree is more general,

and asymptotically more efficient, than a number of previous access methods

for similar problems. We also carried out the first empirical study of an access

method with provably good access cost, and we demonstrated that our tech-

niques exhibit superior performance, and thus offer a valuable alternative to

existing ad hoc techniques. Our experimental results should encourage similar

studies of other access methods with asymptotic efficiency guarantees.
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8.2 Future work

A number of questions, both theoretical and practical, have emerged as a result

of our work. We briefly mention some of the main ones.

Our results on the two-dimensional point enclosure problem have iden-

tified a remarkable duality of space-I/O trade-off between dual range search

problems. We were unable to discover any general laws related to this phe-

nomenon, but we conjecture that such laws are there to be discovered. Results

in this direction could have applications in other scientific areas, such as in

geometric discrepancy theory and computational geometry.

An important line of work should be a treatment of three and four-

dimensional range search within the indexability context. Currently, only

(probably) suboptimal solutions are known. Results in this direction would

not only have significant practical impact, but would also generate new insights

for generalizing external range search to arbitrary dimensions.

On the practical side, there are two major areas of future work. First,

a concerted effort to simplify the techniques developed in this work, and par-

ticularly the update algorithms. Such developments are common in indexing,

where an initial breakthrough on a hard problem is followed by a number of

refinements that reduce the complexity of the original work, and make it more

appealing for practical adoption. The second avenue of work is the empirical

evaluation of access methods with non-linear space requirements, such as, an

access method for two-dimensional range search.
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Appendix A

Manipulations for §4.4

Let

r =
A− 2c+ 10

A− 2c+ 2
· log(n/AB)

log c
(A.1)

We wish to solve equation
∂r

∂c
= 0. This is equivalent to

∂

∂c

( A− 2c+ 10

(A− 2c+ 2) ln c

)
= 0

We have

∂

∂c

(A− 2c+ 10

A− 2c+ 2
· 1

ln c

)
=

∂

∂c

(A− 2c+ 10

A− 2c+ 2

)
· 1

ln c
+
A− 2c+ 10

A− 2c+ 2
· ∂(1/ ln c)

∂c

=
16

(A− 2c+ 2)2 ln c
− A− 2c+ 10

(A− 2c+ 2)c ln c

= 0
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and thus

16c ln c = (A+ 10− 2c)(A+ 2− 2c)

= (A+ 6− 2c+ 4)(A+ 6 + 2c− 4)

= (A+ 6− 2c)2 − 16

Thus,

16(c ln c+ 1) = (A+ 6− 2c)2

By solving with respect to A, we obtain

A = 2(c− 2) + 4
√
c ln c+ 1− 2 (A.2)
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