
Nizar Noorani
CS379H
12/20/2001

1

University of Texas At Austin
Department of Computer Science

Comparison of a Simulation System in
Haskell vs. Java

!

Reading and Research - CS379H
Nizar Noorani

Instructor: Hamilton Richards

Nizar Noorani
CS379H
12/20/2001

2

CONTENTS

I. ABSTRACT
II. INTRODUCTION
III. DESCRIPTION OF RESTAURANTSIM
IV. DESIGN OF RESTAURANTSIM
V. SIMULATION SYSTEMS AND THEIR USE
VI. DESIGN OF RESTAURANTSIM (continued)
VII. IMPLEMENTATION IN JAVA
VIII. IMPLEMENTATION IN HASKELL
IX. COMPARISION OF THE TWO IMPLEMENTATIONS
X. CONCLUSION

APPENDIX
SELECTED BIBLIOGRAPHY

Nizar Noorani
CS379H
12/20/2001

3

Abstract:

This paper examines the differences involved in implementing a program in an
imperative language versus a pure functional language and discusses the advantages and
disadvantages of these differences.

In particular, this paper discusses the design of a simulation system and its
implementation in the Object-Oriented language Java and the pure functional language
Haskell. It will then examine the two implementations and make appropriate
conclusions.

Introduction:

The simulation system designed and implemented is a fast-food restaurant, called
RestaurantSim. As we will see below, the activities involved in a fast-food restaurant
make the restaurant an excellent candidate to be implemented as a simulation system.

Description of RestaurantSim:

RestaurantSim is responsible for simulating the events and activities that occur at
a fast-food restaurant. Some of the events that take place at RestaurantSim are the
following:

1. Customer arrives at the restaurant
2. Customer leaves the restaurant without ordering
3. Customer leaves the restaurant with the order

Some of the activities that occur at RestaurantSim are:

1. A cashier serves a customer
2. A cook assembles an order
3. A grill is used to cook the meals in an order

In order to perform these activities and events, ResturantSim needs employees
and inventory. It, therefore, contains the following employees:

• Cashiers who will serve customers
• Cooks who will assemble orders to be cooked by a grill.

It also contains the following inventory:

• Grills that will be used in cooking the meals
• Meals.

Nizar Noorani
CS379H
12/20/2001

4

Design of RestaurantSim:

Let us now consider how we might implement a system that adheres to the
description given above.

First note that the activities of RestaurantSim are performed in a sequential order
with respect to a specific event. For instance, a cashier serves a customer only after the
customer has entered the store. Another observation is that some amount of time elapses
between the occurrences of two events in which one follows the other.

 Below is a sequential diagram that depicts the flow of time and the sequential
order in which activities are performed at RestaurantSim with respect to a customer.

RestaurantSim
Sequential Diagram

It is also possible that two customers might arrive the restaurant at the same time.
If only one cashier is available, then this would require one customer to wait while the
other is being served. If two cashiers are available then the two customers will be served
concurrently. Thus with each activity there is a time associated that specifies when the
activity will occur.

In the light of these observations, one possible approach is to implement the
restaurant as a simulation system of discrete events. Before we go further with our
discussion of RestaurantSim, let�s first describe what a simulation system is and how it is
used.

Nizar Noorani
CS379H
12/20/2001

5

Simulation systems and their use

Simulation systems are used to model many real world systems, including
business, economic, social, biological, physical, or chemical systems.

The idea behind a simulation system is to describe the behavior of an activity
through the use of mathematical or logical models. These models can then be
implemented using a computer.

There are two major types of simulation systems - Discrete and Continuous
systems. A system is regarded as a continuous or a discrete system, depending upon the
way that it changes from one state to another. In a continuous system, the values for a
variable maybe continuous functions of time; whereas in a discrete system, the value for
a variable may change only at discrete instants.

RestaurantSim is an example of a discrete system. This is because it changes
state only at discrete instants. In particular, it changes state only at the start and end of an
activity. For example, the entrance of a customer marks the start of an activity. At this
point the restaurant enters a new state that reflects the fact that the restaurant now has a
customer waiting.

The way discrete systems are implemented is through the use of events, where a
time is specified with the occurrence of each event. The occurrence of an event then
causes other events to be scheduled giving them their corresponding times of occurrence.

Design of RestaurantSim

In our case, the start of each activity is marked by an event. Each event has a time
that specifies when it is to occur and the action that it is to perform. Following are the
different events that occur at RestaurantSim:

Event Type Cause of Creation Action

1. Customer Arrival Entrance of a customer. Creates a Serve Customer
event if a cashier is
available. If not, then
enqueue�s the customer in a
waiting queue. It also
creates a Customer Leaves
event, which allows a
customer to leave the
restaurant without ordering.

Nizar Noorani
CS379H
12/20/2001

6

2. Serve Customer Customer needs service from
a cashier and a cashier is
available for service.

Creates an Order Selected
event and a Cashier Free
event.

3. Customer Leaves A customer has the option to
leave while he/she is waiting
to be served by a cashier. A
probability that a customer
will leave increases with
respect to time.

Checks to see if the
customer is still waiting to
be served by a cashier. If
so, then another Customer
Leaves event is created.

4. Order Selected Customer has placed an
order. This also implies that
a cashier has finished serving
the customer.

Creates an Assemble Order
event if a cook is available.
If not, then enqueues the
order in a waiting queue.

5. Cashier Free A cashier becomes free. A
cashier is free when it is not
serving a customer.

Checks to see if any
customers are waiting for
service. If so, it dequeues
them and creates a Serve
Customer event.

6. Assemble Order An order needs to be
assembled by a cook and a
cook is available for service.

Creates an Order Assembled
event and a Cook Free
event.

7. Order Assembled A cook has assembled an
order. This also implies that
the cook has become free.

Creates a Cook Order event
if a grill is available. If not,
then enqueues the order in a
waiting queue.

8. Cook Free A cook becomes free. A
cook is free when it is not
assembling an order.

Checks to see if any orders
are waiting to be assembled.
If so, it dequeues them and
creates an Assemble Order
event.

9. Cook Order An order needs to be cooked
using a grill and a grill is
available for service.

Creates an Order Ready
event and a Grill Free event.

10. Order Ready An order is ready to be
delivered to the customer.
This also implies that the
grill has become free.

No new events created.

11. Grill Free A grill becomes free. A grill
is free when it is not being
used to cook an order.

Checks to see if any orders
are waiting to be cooked. If
so, it dequeues them and
creates a Cook Order event.

Nizar Noorani
CS379H
12/20/2001

7

12. Hire Employee An employee is hired. Creates Cashier, Cook or
Grill Free event depending
on the type of the employee
being hired. Adds the
employee to the existing list
of employees.

13. Fire Employee An employee is fired. Sets the employee�s status
to fired.

The occurrence of an event can create other events. Those events can then create
even more events. For example, the occurrence of a Customer Arrival event might create
a Serve Customer event, giving it a time of occurrence. Upon occurring, the Serve
Customer event will create two more events - Order Selected and Cashier Free event,
giving them their corresponding time of occurrence. It is through these series of
creations and occurrences of events that RestaurantSim operates.

Upon creation, all events get enqueued in a global priority queue shared by all
events. The events are prioritized by their time of occurrence. The restaurant�s central
operation consists of dequeuing events form this global queue and asking them to
perform their actions. The restaurant stops operation when the time of an event is greater
then the restaurant�s stop time.

Another issue that we need to address is what happens if two customers enter the
restaurant at the same time but there is only one cashier available. In this case, one
customer will have to wait while the other is being served. Thus a waiting queue is
needed where customers will be enqueued in the order they arrive. Similarly, waiting
queues are also required for orders that need to be assembled by cooks and for orders
whose meals need to be cooked using grills.

Now that we have a procedure of implementing the various activities of the
restaurant, let�s consider the following question - How do we specify the number
employees and the amount of inventory that the restaurant will contain? Our approach is
to read this information from a text file. The text-file will contain the following
information in the format specified below:

Nizar Noorani
CS379H
12/20/2001

8

Start-time Stop-time
Total customers
Employee-type Start-time Stop-time Hourly-rate
..
..
..
Grill Start-time Stop-time
..
..
..
Meal Meal-type cost-price sale-price cook-time number-in-advance
Description of Meal
Meal

 ..
 ...

...

End of file.

The Start-time and Stop-time refer to time when restaurant starts and ends its
operation. Total customers specifies the total number of customers that will enter the
restaurant during its operation. Employee-type is the type of the Employee - cashier or
cook. For each employee, its start time, end time and hourly rate that he/she is paid,
should also be specified. There is no limit to how many employees the file can contain.
Following the employees, the input file should specify the number of grills to be installed
in the restaurant with their corresponding installation and uninstallation times. There is
no limit to how many grills the file can contain. Next, the input file should specify the
type of meals that the restaurant offers to its customers. Associated with each meal is its
cost price, sale price, the time required to cook it, the number of meals the restaurant can
cook in advance, and a description of the meal itself. There is no limit to how many
meal-types the file can contain.

Upon the end of its operation, the restaurant will print its output in a file specified
by the user. The output file will contain the following information:

Nizar Noorani
CS379H
12/20/2001

9

Sales and profit information:
1. Total sales:
2. Total cost:
3. Net profit:

Statistical Information:
1. Average customer interarrival time:

2. Employee Utilizations:
1.Utilization for cashiers

• Utilization for cashier #1
• ..
• ..

Average utilization for all cashiers:
2.Utilization for cooks

• Utilization for cook #1
• ..
• ..

Average utilization for all cooks:
3.Utilization for grills

• Utilization for grill #1
• ..
• ..

Average utilization for all grills:

 3. Average waiting times:
1. Average waiting time for a cashier:
2. Average waiting time for a cook:
3. Average waiting time for a grill:
4. Average wait for Customers:

3.Total customers that left:

4.Meal sold:
1. Number of Meal type #1 sold:
2. ..
3. ..

 Total meals sold:
 Total meals cooked:

End of statistics.

This concludes our discussion of designing RestaurantSim. Below is a diagram
that depicts the overall design of RestaurantSim.

Nizar Noorani
CS379H
12/20/2001

10

RestaurantSim
Overall Design

Note that not all events have been depicted in the diagram whose purpose is to
give an overall view of the design.

Now that we have a well-formed design of RestaurantSim, we can start to
implement it in a programming language. I will discuss the implementation of
RestaurantSim in Java, a modern imperative language, and then in Haskell, a pure
functional language.

Nizar Noorani
CS379H
12/20/2001

11

Implementation in Java

An Object-Oriented approach will be adopted in implementing RestaurantSim.
RestaurantSim will contain the following objects:

• Event objects that implement a specific type of event. For example, we
have an ArrivalEvent object that is created when a customer enters the
restaurant.

• Priority queue: A priority queue where all events will be enqueued upon
creation. The queue will be sorted with respect to time.

• Waiting queues: Since it is possible that a customer might have to wait for
a cashier or an order might have to wait to be assembled by a cook or to be
cooked by a grill.

• The various Employee objects that the restaurant will contain.
• Lists to store the various employees.
• A Restaurant object: whose primary responsibility will be dequeue events

from the priority queue and ask them to perform their actions.

Implementing the Restaurant:

The restaurant will be the central object within our system. It will create and
contain all other objects within RestaurantSim. Its primary operation will be to dequeue
an event from a priority queue, shared by all events, and ask the event to perform its
action. It will repeat this procedure until the time of an event is equal to the restaurant's
stop time. The restaurant will then print out the statistical information collected during
its operation. Below is a high-level pseudocode of the Restaurant object.

Restaurant(String inFile, String outFile,
 long stopTime){

// creates the employees and the inventory
ReadFileAndSetupRestaurant(inFile);
// now start operation
startOperation();

}

void startOperation(){
do {
 if(!priorityQ.isEmpty()){

Event e = priorityQ.dequeue();
e.performEvent();

 }
}while(stopTime >= e.getTimeOfEvent());
// Compute the statistical information and write to
// outFile
computeStatisticalInformation(outFile);

Nizar Noorani
CS379H
12/20/2001

12

The ReadAndSetupRestaurant() function creates the employees and the inventory
as specified by the inputFile. Thus, the Restaurant contains lists of employees and the
inventory within the Restaurant:

// list of employees
ArrayList cashierList, cookList;
//list of inventory
ArrayList mealsList, grillList.

The employees and inventory of the restaurant will be used by many events. For
example, both the ServeCustomerEvent and the CashierFreeEvent will require a cashier
to carry out their actions. For this reason, the employee and inventory lists within the
restaurant will be globally visible to all objects within RestaurantSim.

RestaurantSim will also need waiting queues in case a customer has to wait for a
cashier or an order has to wait to be cooked or assembled. Implementation details of
these waiting queues are described below.

Implementing queues

RestaurantSim contains the following queues:

• A priority queue, called mainEventQ, that contains events that are
prioritized by their time of occurrence

• Several waiting queues that are used when an object needs to wait for
service.

The priority queue is an instance of class PriorityEventQueue.
PriorityEventQueue extends EventQueue and implements the insert() function that
inserts an event in the queue with respect to its time. In particular, it will insert an event
in front of another event in the list that has time greater then or equal the one that is
being inserted. All events get enqueued in this queue and are dequeued from this queue
by the restaurant. This queue is therefore shared among all events.

The waiting queues are instances of class EventQueue. An EventQueue is a
queue of Events and provides the basic functionality of a queue. RestaurantSim contains
the following waiting queues:

• cashierQueue, which is used when a customer has to wait for a cashier
• cookQueue, which is used when an order has to wait to be assembled by a

cook and,
• grillQueue, which is used when an order has to wait to be cooked using a

grill.

Notice that the waiting queues are of type EventQueue. This means that when an
entity (cashier, cook, grill) has to wait to be serviced, we enqueue the last event that
occurred before the wait. For example, if a customer needs to wait for a cashier, then we

Nizar Noorani
CS379H
12/20/2001

13

enqueue its ArrivalEvent in the waiting queue. A question that raises here is why do we
enqueue the entire event instead of just the entity waiting for the service. The reason for
this is that we wish to measure the time the entity had to wait for the next service. Thus,
we store the previous event performed since it will be used to compute this information.

Implementing the Events

All events within RestaurantSim have the following in common:

• A time specifying when the event is to occur
• The action to be performed upon occurrence

Thus, one way to implement events is to have an abstract class Event, which will
contain the characteristics common to all events. In particular, all events will have the
following functions in common:

void setTimeOfEvent(long time);
long getTimeOfEvent();
void performEvent();

The function performEvent() performs the actual action associated with an event.
For example, ArrivalEvent's performEvent() function checks to see if there is a cashier
available to serve the customer. If so, it generates a ServeCustomerEvent. If not, it
enqueues itself in the cashierQueue. Since each event will have its own implementation
of the performEvent() function, the function will be declared as abstract in our class
Event. All other events will then extend the class Event and provide their own definition
of the performEvent() function.

Implementing the Employees

Our implementation of the employees within RestaurantSim will follow a
structure similar to that of events. We have a class Employee which contains the
functions and fields common to all employees. In particular, it contains the following
functions:

Employee(int Id, long startTime, double salary)
// returns the employee id
int getNumber();
// employee stops working at this time
void setStopTime();
// sets the employee to busy or free
void putBusy(boolean status);
// returns true if the employee is busy
boolean isBusy();
//sets the empoyee to fired or employed
void putFired(boolean status);
// returns true if the employee is fired
boolean isFired();
// set the employees new salary

Nizar Noorani
CS379H
12/20/2001

14

void setSalary(double newSalary);
// returns the employees current salary
double getSalary();
// returns the employees start time
long getStartTime();
// return the time the employee stopped working
long getEndTime();
// starts an employees idle time, called everytime an
// employees status is set to free
void startIdleTime();
// stops an employee idle time, called everytime an //
// employees status is set to busy
void stopIdleTime();
// returns the employee total idle time
long getTotalIdleTime();
// returns the employee's total salary
double getTotalSalary();
 // the average utilization of this employee
float getAverageUtilization();

Each class of employee then extends the Employee class and add the additional
functions that it requires. For example, the class Cashier extends class Employee and
adds the function, getSales() which returns a cashier�s total sales.

This concludes our discussion of the implementation of RestaurantSim in Java.

Implementation in Haskell

Let us now take a look at the implementation of RestaurantSim in the modern
functional language Haskell.

Following the principles of good software design, the implementation of
ResturantSim in Haskell is broken up into the following modules:

• The Restaurant module
• The EmployeeInterface module
• The EventInterface module
• The AllEmployees module
• The AllEvents module
• The EventQueue module

Implementing the Restaurant module:

The Restaurant module is the central module within RestaurantSim. It has the
following responsibilities:

• To create, setup and start a restaurant�s operation
• To print out statistical information collected during the restaurant's

operation.

Nizar Noorani
CS379H
12/20/2001

15

The Restaurant module also implements the actual Restaurant. The Restaurant is
implemented as a data type and contains the following fields:

• stopTime: which specifies the time when the Restaurant will stop its
operation

• mainEventQ: where all events get enqueued upon creation.
• employeeList: which contains all the employees that work at

RestaurantSim
• waitingQueue: which contains all the events that waiting are for

service.
• StatInfo: which is of type StatisticalInformation. StatisticalInformation

is a data type that contains all the statistical information that
RestaurantSim will compute.

Calling the newRestaurant function and passing it the appropriate parameters
accomplishes the task of creating, setting up and starting a restaurant's operation. The
newRestaurant function is implemented as follows:

newRestaurant stopTime inFile =
startOperation (setupRestaurant stopTime inFile

 createRestaurant)

The createRestaurant function returns as its output a new Restaurant with all its
fields initialized to either null or 0. The setupRestaurant function takes a Restaurant as
one of its inputs and updates it by initializing the Restaurants� fields to the values
specified by inFile. It then returns this updated Restaurant as its output.

This updated restaurant can now start its operation. This is accomplished by
calling the startOperation function. The startOperation is a recursive function that takes
a Restaurant as its input and returns an updated Restaurant that has finished its operation
as its output. It is implemented as follows:

startOperation rest
 | (stopTime rest) >= getTimeOfEvent event = rest
 | otherwise = startOperation (performEvent event newR)

 where
 (event, newQ) = dequeue (mainEventQ rest)
 newR = { mainEventQ = newQ }

The Restaurant module also contains a computeStat function, which computes the
statistical information collected during the Restaurants� operation, and output an updated
Restaurant that reflects these changes. This function can now be called giving it the
updated Restaurant, produced by startOperation, as one of its inputs. The computeStat
function takes the name of file, where the output is to be printed, as its other input.

It should now be clear that the RestaurantSim program is run as follows:

Nizar Noorani
CS379H
12/20/2001

16

ComputeStat (newRestaurant stopTime inFile) outFile

Implementing the EmployeeInterface:

The EmployeeInterface module is the module that is shared by all employees. It
defines the data type Employee that is used to construct the different types of employees.

The data type Employee is implemented as follows:

data Employee = Cashier { inCommon:: CommonOfEmployees,
 totalSales :: Double, � }

 | Cook { inCommon :: CommonOfEmployees, � }
 | �

CommonOfEmployees is a data type that consists of the fields to all employees.

Implementing the AllEmployees module

The AllEmployees module defines the functions common to all employees.
These functions are similar to the ones defined in our implementation of RestaurantSim
in Java with one exception. In our Haskell implementation we do not associate with each
employee a variable to specify whether or not the employee is busy. The reason for this
is that the employeeList contains only the employees that are free. Thus, when the
service of an employee is required, it is removed from the employeeList. Upon the
completion of its service, at which point it is considered free, it is added back to the
employeeList.

A question that one might ask at this point is the following: If employeeList
contains all the employees, regardless of their type, then how does one retrieve a specific
type of employee from the list? A specific type of employee is retrieved from the
employeeList through the use of the higher-order function getOne. In particular, a
specific type of employee is retrieved as follows:

(theEmply, newList) = getEmployee emplyType employeeList

getEmployee ofType xs = getOne (checkType ofType) xs

getOne :: (a->Bool)->[a]->(a, [a])
getOne p (x:xs)
 | p x = (x, xs)
 | otherwise = (r, x:ys)
 where
 (r, ys) = getOne p xs

where, the checkType function compares two employees to see if they are the
same type and returns true if they are, false otherwise. The function getOne is then used

Nizar Noorani
CS379H
12/20/2001

17

to retrieve a specific type of employee. Note that the function getOne assumes that the
list is not empty.

The AllEmployee module also contains functions that are specific to an employee
type. For example, it defines the getTotalSales function that is used to get the total sales
of a cashier.

Implementing the EventInterface module

The EventInterface module is the module that is shared by all events. It defines
the data type Event and is used to construct the different types of events.

The data type Event is implemented as follows:

data Event = Customer Arrival { time :: Time,
 cust :: Customer }

 | Serve Customer { time :: Time, � }
 | �

where, time specifies the time the event is to occur.

Implementing the AllEvents module

The AllEvents module defines the functions common to all events. In particular,
it defines the getTimeOfEvent, setTimeOfEvent, and performEvent functions. Below is a
description of the functions:

-- takes an event and returns its time of
 -- occurrence

 getTimeOfEvent :: a -> Time
-- update an events time to the time given as
-- input

 setTimeOfEvent :: Time -> a -> a
--b is the entity on which the event will perform
-- its action
performEvent :: a -> b -> b

The performEvent function takes as one of its inputs, an entity upon which to
perform the action of the event. In our case, this entity is Restaurant. The performEvent
will take a Restaurant as one of its inputs, and output an updated Restaurant that results
from performing the action of the event.

The performEvent function is redefined for each event, since each event will
perform a different action depending on its type. For example, the action associated with
an Arrival Event differs from the action associated with a Customer Leaves Event. Thus,
both the events will need to provide their own definitions of the performEvent function.
In particular, we have

performEvent (Evnt t (Arrv Cust)) =

Nizar Noorani
CS379H
12/20/2001

18

--its defintion

performEvent (Evnt t (CustLeaves t)) =
-- its definition

�

Implementing the EventQueue module:

The EventQueue module consists of an implementation of a priority queue. A list
is used to model the queue. Thus, we have the following data type:

data EventQueue a = Qu [a]

Functions are then defined and exported from the module EventQueue that allow
Qu [a] to be treated as a priority queue.

Comparing the two implementations

The two implementations will be compared with respect to the following criteria:

• Language attributes
• Code size

The two implementations were very similar except for a few differences. I will
first discuss the advantages that the Java implementation had over the Haskell
implementation and the features of Java that led to these advantages.

Inheritance in Java

Inheritance in Java provides the means through which a software application can
be extended to support additional functionality. It also enables new applications to reuse
code implemented my existing applications.

Using inheritance, RestaurantSim can be extended in several ways. Below we
look at a few of them.

Adding additional types of employees:

Using Java�s feature of inheritance, the design of RestaurantSim can be
extended to contain new employees, without requiring any of the existing classes
to change. We simply create a new class, which extends the existing class
Employee. For example, we can add Janitor�s to RestaurantSim as follows:

1. Create a new class Janitor that extends class Employee.
2. Add to class Janitor the additional functionality that it needs.

Nizar Noorani
CS379H
12/20/2001

19

In Haskell, adding new types of employees requires a modification to the
data type Employee in the EmployeeInterface. In particular, Employee is
modified to contain Janitor as one of its constructors:

data Employee = Cashier { inCommon :: CommonOfEmployees,
 totalSales :: Double, �}

 | �
 | Janitor { inCoommon :: CommonOfEmployees,

 --additional fields }

If the janitor provides additional functionality then these functions would
need to be implemented either in a new file or the existing AllEmployees module.

One approach that would prevent existing files from being modified is to
create a type class Employee and then make the different types of employees
instances of the class. However, this will introduce a lot more work. Since there
are several functions that all employees have in common, making each type of
employee and instance of class Employee requires that these functions be defined
again for every new employee type. To avoid this extra work, Employee was
implemented as a data type.

Adding additional events:

Similarly, the design of RestaurantSim can be extended to contain
additional events. Additional events are implemented by extending the existing
class Event. For instance, we can add a CleanStore event to RestaurantSim as
follows:

1. Create a new class CleanStoreEvent by extending the class Event.
2. Define the performEvent() function to perform the actions specific to

this event.

Note that no existing classes need to be modified just by adding a new
type of event.

In Haskell, just like employees, adding new types of events would require
a modification to the data type Event in EventInterface. In particular, Event will
now contain the additional constructor CleanStore:

data Action = Arrv { time :: Time, � }|
 �

 CleanStore { time :: Time, � }

A modification to AllEvents module will also be required, by adding a
definition of the performEvent function for the CleanStore event.

Update operations and static types:

Nizar Noorani
CS379H
12/20/2001

20

Because Java allows static variables, we were able to organize the
computation of statistical information collected during the operation of
RestaurantSim. In particular, each object was responsible for computing the
statistical information relevant to it. For example, the class Cashier was
responsible for computing the average wait time for a cashier and its total sales.

Because Haskell does not support static variables, we were unable to
organize the computation of statistical information in the manner described above.
Instead, we were forced to save all the statistical information in one place, namely
the data type Restaurant. This increased coupling between the data type
Restaurant and the other entities within RestaurantSim.

An approach that would reduce coupling and prevent all the statistical
information from being saved within that data type Restaurant, is to have each
object keep track of its own statistical information. For instance, each cashier will
compute its average wait time. At the end of its operation, Restaurant will then
compute the average wait time of a cashier by summing the waiting times for each
cashier and then dividing it by the number of cashiers. This approach was not
taken simply because it was overlooked.

Advantages of Haskell

We will now take a look at the advantages that the Haskell implementation had
over the corresponding Java implementation.

Polymorphism

One of the key features of functional languages is polymorphism. This
feature allows programs to contain generic functions that can be applied over
many different types. For example, polymorphism in Haskell allows us to use
generic list manipulating functions over any type of list.

Creating the list of employees:

In Java, there is no way to maintain type-information when storing objects
in containers, except through the explicit creation of a type-specific container.
When stored in a container, all objects get converted to the type Object. Hence
there is no way to distinguish between the types of two objects stored within the
list.

This led to create separate lists for each type of employees and waiting
queues. For instance, RestaurantSim contains a cashierList that is used to store
cashiers. Similarly, it contains a cashierQueue that is used to store ArrivalEvents.

Nizar Noorani
CS379H
12/20/2001

21

However in the Haskell implementation, only a single list of employees,
[Employee], was needed, which contained all the employees. The filter function
was then used to retrieve a specific type of employee. Similarly, we maintained a
single EventQueue for all events waiting for service. A three-line function filterQ
was then implemented to retrieve a specific type of event.

This simplification led to the creation of events that could be implemented
on all employees, instead of having a separate event of each of type of employee.
For instance, in Java we had the following events that are very similar except for
the fact that they operated on different employees:

• FreeCashierEvent
• FreeCookEvent
• FreeGrillEvent
• HireCashierEvent
• HireCookEvent
• HireGrillEvent
• FireCashierEvent
• FireGrillEvent
• FireCookEvent

In Haskell, because all employees were stored in one list, namely
employeeList, we were able to combine the above nine events to the following
three events:

• FreeEmployeeEvent
• HireEmployeeEvent
• FireEmployeeEvent

Higher-order functions:

Another important feature that Haskell provides is the ability to define
higher-order functions. A function is higher-order if it takes a function as an
argument or returns a function as a result, or both. Using this feature, functions
can be composed of parts � a general higher order function and some particular
specializing functions.

The use of the higher-order getOne function:

In the Haskell implementation, we defined a higher-order function getOne
that is used to retrieve a specific type of employee. The use of this higher-order
function played an important role in combining the events mentioned above.

The use of polymorphism and higher-order functions leads to another
simplification. When new types of employees are added to RestaurantSim, the
new employee also needs to be added to the Restaurant�s employeeList. In

Nizar Noorani
CS379H
12/20/2001

22

Haskell, because there is only a single list of employees, no modification to the
Restaurant module is required. However, in the Java implementation there are
separate lists for each employee. Thus, a new list needs to be created for the new
employee in class Restaurant.

The Java implementation can be modified so that only a single list of
employees would be required. Futhermore, we would also have the ability to add
and remove new employee types during run time. This can be accomplished by
adopting two design patterns � Abstract Factory and Prototype.1 The purpose of
these two patterns is allow an application to be independent of how its products
are created. In particular, we would have an AbstractEmployee class that will be
responsible for creating different types of employees. For more information on
what these design patterns are and how they are used, please refer to the �

Note that the two design patterns can be adopted in both the Java and the
Haskell implementation.

Code-size

The code sizes for the two implementations were within a close range of each
other.

• Code-size for the Java implementation : 1567
• Code-size for the Haskell implementation : 1004

Both the numbers represent the total numbers of lines of code.

Conclusion

Because the implementation of RestaurantSim in Java and Haskell were so
similar, one conclusion that can be drawn is that a well-organized design leads to an easy
to code and flexible implementation, provided that the language supports the features
required by the design. In the case of RestaurantSim, we followed the design used in
implementing simulation systems. The overall functionality of the Restaurant was
simple:

• Dequeue an event and perform its action.
• The action in turn creates and enqueues other events.

Thus because both the implementations followed a similar structure their code
size and implementation were very similar.

1 For more information on what these design patterns are and how they are used, please refer to Design
Patterns: Elements of Reusable Object-Oriented Software by Gamma, Helm, Johnson, Vlissides.

Nizar Noorani
CS379H
12/20/2001

23

APPENDICES

CODE FOR THE IMPLEMENTATION IN JAVA:

Can be accessed from: www.cs.utexas.edu/users/noorani/cs379/java_code

CODE FOR THE IMPLEMENTATION IN HASKELL:

Can be accessed from: www.cs.utexas.edu/users/noorani/cs379/haskell_code

WORKS CITED

Thompson, Simon. (1999). Haskell: the Craft of Functinal Programming. Harlow, England:

Addision Wesley Longman Limited.

www.cs.utexas.edu/users/noorani/cs379/java_code
www.cs.utexas.edu/users/noorani/cs379/haskell_code

Nizar Noorani
CS379H
12/20/2001

24

Hughes, John. (1984). Why Functional Programming Matters. Sweden.

Maisel, H. Gnugnoli, G. (1972). Simulation of Discrete Stochastic Systems. Chicago, US:

Science Research Association, Inc.

Gamma, E. Helm, R. Johnson, R. Vlissides, J. (1995). Design Patterns: Elements of Resuable

Object-Oriented Software. Boston, US: Addision Wesley.

