
Small Byzantine Quorum Systems

Jean-Philippe Martin, Lorenzo Alvisi, Michael Dahlin

University of Texas at Austin - Dept. of Computer Science
Email: fjpmartin, lorenzo, dahling@cs.utexas.edu

Abstract

In this paper we present two protocols for asynchronous Byzantine Quorum Systems (BQS) built on top of reliable

channels—one for self-verifying data and the other for any data. Our protocols toleratef Byzantine failures withf
fewer servers than existing solutions by eliminating nonessential work in the write protocol and by using read and

write quorums of different sizes. In practice, however, engineering asynchronous reliable channels is difficult in many

environments. To address this concern, we modify the original asynchronous BQS protocol of Malkhi and Reiter to

work on unreliable channels and discuss how our two new asynchronous protocols can be used to derive an efficient

protocol for synchronous Byzantine systems.

1. Introduction

Quorum systems are valuable tools for implementing highly available distributed shared memory. The

principle behind their use is that if a shared variable is stored at a set of servers, then read and write operations

need only be performed at some set of servers (aquorum). The intersection property of quorums ensures that

each read has access to the most recently written value of thevariable. Any practical use of quorum systems

must account for the possibility that some of the servers maybe faulty; hence, quorum systems must enforce

the intersection property even in the presence of failures.Mahlki and Reiter introduce quorum systems,

called masking quorum systems, that guarantee data availability in the presence of arbitrary (Byzantine)

failures [24]. They also introduce a special class of quorumsystems,dissemination quorum systems, which

can be used by services that supportself-verifying data, i.e. data that cannot be undetectably altered by a

faulty server, such as data that have been digitally signed.To toleratef Byzantine failures, masking quorum

systems must include at least4f +1 servers, while dissemination quorum systems need only3f +1 servers

to provide the same guarantee.

In this paper, we present two new quorum systems, one for generic data and the other for self-verifying

data, that need only3f + 1 servers and2f + 1 servers, respectively, to toleratef Byzantine failures. These

results apply in the same system model used by Mahlki and Reiter, i.e. one in which communication is

authenticated and reliable, but asynchronous.

Our quorums thus use fewer servers to tolerate a given numberof failures than previously possible. Re-

ducing the required number of servers is particularly important where Byzantine protocols protect against



security breaches of servers [8, 9, 25, 39]. Note that using Byzantine protocols to tolerate security breaches

is sound only if server failures are independent, i.e. if breaking into one server does not increase the prob-

ability of successfully breaking into others. Achieving such failure independence may require developing

and maintaining multiple independent implementations of the server and underlying operating system [33].

Because implementing these multiple variations is expensive, the number of different implementations is,

in practice, limited. It is therefore essential to minimizethe number of servers needed to tolerate a given

number of failures.

We call our new quorum systemsa-maskinganda-dissemination, where the leading “a” indicates the dis-

tinguishing characteristic of these quorums, namely, thatthey are asymmetric with respect to the operations

they support: reads and writes use quorum of different sizes.

The key insight that allows us to exploit asymmetric quorumsis the recognition that assuming reliable

communication has different implications for read and write operations. Although reads need a response

from a read quorumof servers in order to return a reliable value, writes do not need to be explicitly ac-

knowledged by a correspondingwrite quorum: a reliable communication abstraction already guarantees

that every value written by a correct client will eventuallybe stored by every correct server in the write

quorum, and the writer itself has no use for the knowledge that the write completed. We call read and write

protocols that exploit this insight Small Byzantine Quorum(SBQ) protocols.

Reliable asynchronous communication is a common model for Byzantine quorum algorithms [24, 25],

and our protocol aggressively exploits that model’s properties to improve efficiency. In an asynchronous

system, unfortunately, if the underlying network is unreliable then the presence of even crash failures can

pose significant challenges to engineering a reliable messaging layer because a message sender cannot dis-

tinguish a crashed receiver from a slow one. For example, if an asynchronous reliable messaging layer

requires senders to buffer and retransmit unacknowledged messages, a failed receiver can force the system

to consume unbounded amounts of buffer memory.

To understand such practical concerns, we explore the trade-offs for building Byzantine quorum sys-

tems (BQS) as we vary the properties of the underlying communication infrastructure. In this analysis, we

consider not just the SBQ protocols but also existing protocols [5, 24].

We begin by strengthening the reliable and asynchronous communication model to consider systems that

implementreliable and synchronouscommunication. Under these assumptions, read and write protocols

that toleratef Byzantine failures require just2f + 1 servers for generic data (f + 1 for self-verifying

data) [5]. However, these protocols are vulnerable toslow reads: even a single faulty server can delay

each read until a timeout occurs. Unfortunately, for some systems of practical interest, the natural timeout

at which network transmission should be abandoned is long compared to the desired performance of read

operations. Unexpectedly, our analysis suggests that somesystems that assume a reliable and synchronous

networks may still choose to use anasynchronousBQS protocol such as the original SBQ. Such systems

may use timeouts in the networking layer to bound network retransmission buffers, but they may choose an

2



asynchronous BQS protocol to allow reads to proceed at a rategoverned by the speed of the fastest quorum

of servers rather than at a rate governed by communication timeouts to failed servers. To address these

trade-offs more generally, we develop a new class of synchronous SBQ protocols, which we call S-SBQ.

S-SBQ protocols can be tuned with respect to two parameters:f , the maximum number of faulty servers

for which the protocol is safe and live, andt (t � f ), the maximum number of faulty servers for which the

protocol is free from slow reads. Whent = 0, S-SBQ uses the same number of servers as the synchronous

protocol described in [5], and whent = f , S-SBQ is identical to the asynchronous SBQ protocol.

We then explore the implications of weakening the assumption of asynchronous reliable communication.

We considerauthenticated unreliable asynchronous networks, in which protocols must explicitly manage

both server faults and network faults, and show that the quorum systems and protocols introduced by Mahlki

and Reiter for reliable asynchronous networks can be easilyextended to operate in this weaker model.

In summary, our analysis results in a series of Byzantine quorum systems and protocols over a range of

system models, with increasing numbers of servers requiredto tolerate progressively weaker system models.

For generic data,2f + 1 servers are needed for synchronous reliable network systems where timeouts are

short,2f + 1 to 3f + 1 for synchronous reliable network systems where timeouts are long,3f + 1 for

asynchronous reliable network systems, and4f + 1 for asynchronous unreliable network systems. Self-

verifying-data allows systems to be built for each of these scenarios usingf fewer servers.

The rest of this paper is organized as follows: Section 2. presents the system model. Section 3. presents

the new a-masking and a-dissemination quorum systems. Section 4. discusses the design space of BQS

protocols under different system models. Section 5. puts our results in perspective with related work and

Section 6. summarizes our conclusions.

2. System Model

We assume the system model commonly adopted by previous works [3, 5, 24, 25, 26] that have applied

quorum systems in the Byzantine failure model. In particular, our system consists of an arbitrary number

of clients and a setU of data servers such that the numbern = jU j of servers is fixed. Aquorum systemQ � 2U is a non empty set of subsets ofU , each of which is called aquorum. We denote withQr the

set of quorums used by read operations (read quorums) and withQw and the set of quorums used by write

operations(write quorums). Any pair of read and write quorums intersect, andQ = Qr [Qw.

Servers can be eithercorrector faulty. A correct server follows its specification; a faulty servercan arbi-

trarily deviate from its specification. Following [24], we define afail-prone systemB � 2U as a nonempty

set of subsets ofU , none of which is contained in another, such that someB 2 B contains all faulty servers.

Fail-prone systems can be used to express the commonf-thresholdassumption that up to a thresholdf of

servers fail (in which case,B contains all sets off servers) but they can also describe more general situations,

as when some computers are known to be more likely to fail thanothers.

3



The set of clients of the service is disjoint fromU . We restrict our attention in this work to server failures;

clients are assumed to be correct. Clients communicate withservers over point-to-point channels. In this

paper, we consider Byzantine quorum systems for the following models of communication:

Reliable SynchronousA correct processq receives a message from another correct processp if and only

if p sent it; furthermore,q can determine thatp was the sender of the message. Also, there exists a

bound on message delivery time that can be used to timeout failed processes that do not respond to

requests [5].

Reliable Asynchronous A correct processq receives a message from another correct processp if and only

if p sent it; furthermore,q can determine thatp was the sender of the message. However, no bound is

assumed on message transmission times [24].

Authenticated Unreliable Asynchronous If a correct processp sends a message infinitely often to another

correct processq, thenq will eventually receive the message and know that it came from p; a correct

processq receives a message only if a correct processp sent the message; and no bound is assumed

on message transmission times.

We will explicitly state which model is assumed at each pointof our discussion.

3. Small Byzantine Quorums

Figures 1 and 2 show our Small Byzantine Quorum (SBQ) protocols for generic and self-verifying data,

respectively, under the assumption of reliable asynchronous communication. To write data� to a variablev in either protocol, a client first queries a read quorum of servers to choose a timestamp that is larger than

the timestamp for any completed write (steps 1-4) and then sends the data and the new timestamp to a write

quorum of servers (step 5). To read data, a client queries a read quorum of servers for their most recent

values (steps 1-2) and then chooses and returns the valid answer with highest timestamp (step 3-4). Each

correct server updates its local variable and timestamp to the valueshts;�i received by a client only ifts is

larger than the timestamp currently associated with�.

A noteworthy aspect of the protocol is that unlike operations on read quorums, an operation on a write

quorum does not wait for replies from the servers it contacts. For reliable asynchronous communication, the

eventual delivery of all messages sent by a correct client tocorrect servers is assured, and the write oper-

ation can complete without gathering information from the servers to which the write messages have been

sent. Note, however, that this means that a client’s local write operation mayreturn before the global write

completes. In order to define an order among reads and writes, we say thata global write operation com-

pletes when all correct servers in some write quorum have finished processing the STORE messages sent in

step 5 of the write() operation defined in Figures 1 and 2. Furthermore, we say that a write operationw1
4



happens beforea write operationw2 if w1 ends (according to the above definition) beforew2 starts. A dis-

advantage of this definition of write completion is that a client issuing a write may not know when the write

completes. This is not a problem from a theoretical standpoint, since this knowledge is required by neither

safe semantics (provided by the SBQ protocol for generic data) nor regular semantics (provided by the SBQ

protocol for self-verifying data) [21]. Furthermore, completion of write operations is both well defined from

the point of view of an observer external to the system, andtimely, in the sense that completion cannot be

delayed by faulty servers because it only depends on actionstaken by correct processes. Nonetheless, SBQ

protocols do carry a price: they do not support the implicit synchronization that can be obtained through

write operations that block until the write completes. Fortunately, there are several interesting applications

that do not require this implicit synchronization, either because they don’t need any synchronization (e.g.,

in networked sensors [18], nodes producing data often do notneed to receive acknowledgments, implicit

or explicit, from consumers) or because they only require end-to-end explicit acknowledgments in which

clients synchronize by reading values written to various memory locations by other clients. For instance,

two clients can communicate using an SBQ protocol in the sameway as two pen-pals communicate through

regular mail: in both cases, the writer relies on the fact that its message will be eventually received, even if

it does not know when. Its counterpart can assure the writer of the receipt of his message by acknowledging

it in his next message.

The rest of this section explains this protocol in more detail. We first describe how quorums are con-

structed and why the SBQ protocols’ quorums are small, needing only 3f + 1 servers in the threshold

f-threshold case for generic data and2f + 1 for self-verifying data. We then compare our protocol to ex-

isting protocols to identify the differences and explain why these differences allow quorums based on SBQ

protocols to be smaller than those of existing protocols forreliable asynchronous communications systems.

Finally, we step through the details of the SBQ protocol and provide a proof of its correctness.

3.1. Quorum definition

The key advantage of SBQ protocols over existing Byzantine quorum systems protocols is their reduction

in the number of servers required by the system. This reduction stems from the different constraints SBQ

places on read and write quorums. Because the protocol places asymmetric constraints on read and write

quorums, it can use asymmetric masking quorums (a-masking quorums) for generic data and asymmetric

dissemination quorums (a-dissemination quorums) for self-verifying data in place of the traditional (sym-

metric) masking and dissemination quorums [24].

To understand how the protocol’s constraints on quorum construction influence the minimum number of

services required by a system, consider the simple case off-threshold quorums for self-verifying data under

the SBQ protocol and letjQrj andjQwj denote, respectively, the size of read and write quorums. Inorder to

guarantee safety and liveness for this protocol, there are effectively three constraints that must be met:

5



Write(�)

1. send (GET-TS) to all servers.

2. wait until received timestamptsi from each serversi in a read quorum.

3. let last ts be the largest received timestamp.

4. choose a new timestampnew ts that is larger than bothlast ts and any timestamp previously chosen by this server.

5. send (STORE,�; new ts) to a write quorum of servers.� =Read()

1. send (GET) to all servers.

2. wait until received pairsh�i; tsii from each serversi in a read quorumQr.

3. f Build a set A’ containing all pairs returned by a voucher set of serversg
computeA0 = fh�; tsi j (9B+ � Qr :: (8B 2 B : B+ 6� B : (8su 2 B+ :: �u = � ^ tsu = ts)))g

4. if A0 6= ; then
select the pairh�; tsi with the highest timestampts
return�

else
return?

Figure 1:SBQ protocol for generic (non-self-verifying) data

Write(�)

1. send (GET-TS) to all servers.

2. wait until received timestamptsi from each serversi in a read quorum.

3. let last ts be the largest received timestamp.

4. choose a new timestampnew ts that is larger than bothlast ts and any timestamp previously chosen by this server.

5. send (STORE,�; new ts) to a write quorum of servers.� =Read()

1. send (GET) to all servers.

2. wait until received pairsh�i; tsii from each serversi in a read quorumQr.

3. discard all pairs that are not verifiable.

4. select among the remaining pairs the pairh�; tsi with the highest timestamp
return�

Figure 2:SBQ protocol for self-verifying data

6



SBQ1. jQrj � n� f (Availability)

This constraint is required for step 2 of Read() and step 2 of Write() to be live.

SBQ2. jQrj+ jQwj � n � f + 1 (Consistency)

This constraint is required for the intersection of reads (in step 2 of Read() and step 2 of Write()) and

writes (in step 5 of Write()) to be large enough to ensure thateach read intersects with each completed

write in at least one correct server. This constraint is essential for the safety of the protocol.

SBQ3. jQwj � n (Realism)

The following values meet these constraints:jQwj = dn+12 e + f and jQrj = dn+12 e. Substituting this

value forjQrj into SBQ1 givesn � 2f + 1.

Similar reasoning applies for non-self-verifying data, where the consistency constraint requires that read

and write quorums intersect in a majority of correct processes. SBQ2 then becomes:

SBQ20. jQrj+ jQwj � n � 2f + 1 (Consistency)

The corresponding bound forn is n � 3f + 1.

The above arguments capture the intuition behind a-maskingand a-dissemination quorums. We now

define them formally.

3.1.1 Asymmetric quorum systemsWe say that a setV of servers is avoucher set, if, under all possible

failure scenarios, it is guaranteed to contain at least one correct server, i.e.8B 2 B : V 6� B.

We define asymmetric quorum system for generic (non-self-verifying) data and self verifying data as

follows.

Definition 1 A quorum system is ana-masking quorum systemif the sets of read and write quorumsQr
andQw have the following properties.

AM-Consistency The intersection of any pair of read and write quorums alwayscontains a voucher set

consisting entirely of correct servers.8Qr 2 Qr8Qw 2 Qw8B1; B2 2 B : Qr \Qw n B1 6� B2
AM-Availability One read quorum is always available.8B 2 B 9Qr 2 Qr : B \Qr = ;
Definition 2 A quorum system is ana-dissemination quorum systemif the sets of read and write quorumsQr andQr have the following properties.

AD-Consistency The intersection of any pair of read of read and write quorumsis a voucher set.8Qr 2 Qr8Qw 2 Qw8B 2 B : Qr \Qw 6� B
7



AD-Availability One read quorum is always available.8B 2 B 9Qr 2 Qr : B \Qr = ;
Note that the consistency requirement is easier to discharge when the data is self-verifying. As a result, in

the f-threshold case, a-masking quorums requiren � 3f + 1, jQrj = dn+f+12 e, andjQwj = dn+f+12 e+ f ,

while a-dissemination quorum systems only needn � 2f + 1, jQrj = dn+12 e, andjQwj = dn+12 e+ f .

3.2. Comparison with existing protocols

The SBQ protocols for generic and self-verifying data are similar to the protocols introduced by Mahlki

and Reiter for masking and dissemination quorum systems [24]. There are two differences between these

protocols and SBQ protocols. First, in the Write(�) operation, in place of the SBQ protocol’s step 5, which

just sends data to a write quorum, earlier protocols for masking and dissemination quorum systems first

send the data and then wait for acknowledgments from a quorumof servers. In essence, these protocols

send writes to a quorum ofresponsiveservers while SBQ sends writes to a quorum of servers that mayor

may not be responsive. Second, earlier protocols use same-sized quorums for both reads and writes, while

the SBQ protocols allow asymmetric read and write quorums.

To illustrate these differences, consider thef-threshold case. In addition to the constraints SBQ1, SBQ2,

and SBQ3 listed above, Mahlki and Reiter protocols (MR protocols for short) add two more constraints.

First, MR protocols require that writes wait for a write quorum of acknowledgments.

MR1. jQjw � n� f (Availability)

Second, MR protocols use symmetric quorums.

MR2. jQjr = jQjw = jQj (Symmetry)

Note that because MR1 and SBQ1 impose symmetric constraintson read and write quorums the use of

symmetric quorums is a natural design decision for MR protocols. Note also that either of MR1 and MR2,

when combined with constraints SBQ1 to SBQ3, is sufficient inthe f-threshold case to increase byf the

number of servers required to toleratef failures: generic data now requiresn � 4f + 1 servers, with

minimum quorum sizejQj = n+2f+12 (n � 3f+1 andjQj = n+f+12 for self-verifying data). The following

table compares the quorum sizes in thef-threshold case for the MR protocols and the SBQ protocols.

For generic data (minimum values):

MR SBQ

Server count 4f + 1 3f + 1
Write quorum dn+2f+12 e dn+f+12 e+ f
Read quorum dn+2f+12 e dn+f+12 e

For self-verifying data (minimum values):

MR SBQ

Server count 3f + 1 2f + 1
Write quorum dn+f+12 e dn+12 e+ f
Read quorum dn+f+12 e dn+12 e

8



Because SBQ quorums are formed under strictly weaker constraints than the dissemination and masking

quorums used in the MR protocols, the SBQ quorums never need to be larger than the MR quorums. For a

given number of failures, even though SBQ’s write quorum is alarger fraction of all servers than MR’s write

quorum, the absolute number of servers to which writes must be sent is no larger because the total number

of servers is correspondingly smaller. In particular, for minimal n both SBQ and MR have write quorums

of size2f + 1 in the self-verifying-data case, and asn increases, both protocols’ write quorums grow at the

same rate.

Conversely, for a given number of servers, the SBQ protocolscan tolerate more failures than the MR

protocols. For example in the case of self-verifying data and with 13 servers, MR can tolerate 4 failures

and SBQ can tolerate 6. The quorum sizes are 9 for MR and 13/7 for SBQ (for the write/read quorum,

respectively).

Finally, we note that SBQ protocols use the same reliable asynchronous messaging system model as

MR protocols, and, as we show in the next section, they provide the same consistency guarantees: regular

semantics in the case of self-verifying data and safe semantics otherwise.

Although SBQ protocols can reach the same level of fault-tolerance with fewer servers, they sacrifice

something in order to get these improvements: a writer that uses SBQ can not determine when a write

operation ends. A mitigating factor is that all write operations are guaranteed to end eventually.

Section 4. shows that as a result, our protocol cannot be adapted to unreliable networks. Instead, we adapt

the original protocols of Mahlki and Reiter to this more general model.

3.3. Correctness

The SBQ protocols given in Figures 1 and 2 implement, respectively, safe semantics for a-masking quo-

rum systems and regular semantics for a-dissemination quorum systems. The proofs of these claims, not

surprisingly, resemble the proofs of the same claims given by Mahlki and Reiter for their masking and dis-

semination quorum systems. In the interest of space, we onlygive the results for a-masking quorum systems,

and state, without proof, the results for a-dissemination quorum systems.

3.3.1 Safe semantics in a-masking quorum systemsSafe semantics [21] guarantees that a read operation

concurrent with no write operation returns the most recently written value. If there is a write concurrent with

a read, then safe semantics allow the read to return an arbitrary value—in which case, any live protocol triv-

ially guarantees safe semantics. The following lemmas prove that the SBQ protocol for non-self-verifying

data given in Figure 1 implement a multi-reader multi-writer safevariable.

Lemma 1 The SBQ read and write protocols for both a-masking and a-dissemination quorum systems are

live.

9



PROOF. The only time in which a client is blocked, for both the read and the write protocol, is in step

2. In both cases, the client is waiting for responses from a read quorum of servers. By AM-Availability

(respectively AD-Availability), a responsive read quorumalways exists. �
Lemma 2 Letw1 andw2 be two SBQ write operations in an a-masking or a-dissemination quorum system,

and letts1 andts2 be their corresponding timestamps. Ifw1 happens beforew2, thents1 < ts2 .

PROOF. If w1 happens beforew2, then, by definition,w1 has completed beforew2 starts. By our

definition of completion, all correct servers in a write quorum Qw1 have storedts1. By Lemma 1,w2
can collect a set of timestamps from a read quorumQr. Because of AM-Consistency (respectively AD-

Availability), Qr andQw intersect in at least one correct servers. Because timestamps kept by a correct

server are monotonically increasing,s will return a timestamptss � ts1. Since by the write protocol the

timestamp ofw2 is larger than any of the collected timestamps, it follows that ts1 < ts2. �
Lemma 3 In a-masking quorum systems, a read operation not concurrent with any write operation returns

the most recently written value.

PROOF. LetW be the set of write operations that preceded the read, and letw� 2W be the write operation

with the highest timestamp. By Lemma 2,w� did not precede any operation inW and therefore there exists

a serialization of the operations inW in whichw� is the most recently written value. By Lemma 1, a read

quorum will respond to the read with a set of value/timestamppairs, and by AM-Consistency, that read

quorum includes a voucher set of correct servers that receivedw�. Since the timestamp of correct servers is

monotonically increasing, andw� is the write with the highest timestamp, each of the servers in this voucher

set returnsw�’s value. Furthermore, by definition, any value returned by avoucher set of servers has been

previously written. Because the read protocol decides on the value returned by a voucher set that has the

highest timestamp, the read operation returnsw�, the most recently written value. �
3.3.2 Regular semantics in a-dissemination quorum systemsThe following lemmas, that we give with-

out proof, establish that the SBQ protocol for a-dissemination quorum systems given in Figure 2 implements

a regular variable. The proofs are very similar to those given above for a-masking quorum systems and safe

variables and can be found in [27].

Lemma 4 A read operation that is not concurrent with any write operation returns the result of the most

recently written value.

Lemma 5 A read operation that is concurrent with one or more write operations returns either the most

recently written value, or one of the values being written bythe concurrent write operations.

10



4. Network models

Both the MR and the SBQ protocols assume areliable asynchronous network: for any pair of correct ma-

chinesA andB, if A sends a message, thenB is guaranteed to eventually receive it. In some systems, the

network subsystem is such that assuming reliable communication is natural. In many other cases, however,

the underlying network hardware provides weaker guarantees such asunreliable asynchronous communi-

cation, in which each message sent has a non-zero probability of arriving at its destination but there are no

bounds on message delivery time. In that case, communicating machines commonly attempt to construct a

network layer that provides a reliable network abstractionover unreliable network hardware.

Unfortunately, Byzantine machine failures can make it difficult to engineer a reliable messaging abstrac-

tion over an unreliable network substrate. In particular, we are concerned about bounding memory con-

sumption of message buffers. Commonly, a system achieves reliable message delivery by requiring a sender

to buffer and occasionally retransmit each message it sendsuntil it receives an acknowledgment from the

receiver [1, 16, 29]. In an asynchronous system, such an approach can consume unbounded buffer memory

even if failures are restricted to crash failures [31]. Thisdanger arises because a correct but slow machine

cannot be distinguished from a faulty (crashed) machine. Therefore, a sender can never safely delete an

unacknowledged message from its buffer.

For a fail-stop system model, this problem may not be a large concern because there exist reasonable

engineering approaches to avoid the need for infinite memorywhile providing a reasonable approximation

of reliable asynchronous messaging. For example, several reliable messaging systems [1, 2, 20] store unac-

knowledged messages on in an on-disk log. It may be safe in practice to assume that it is extremely unlikely

that the log will overflow by assuming (1) a large log, (2) a reasonable bound on crash or partition durations,

and (3) that a machine will acknowledge received messages after the repair of a crash or partition. Although

such an approach may be theoretically unsatisfying (it implicitly assumes a bound on the duration of fail-

ures and therefore is no longer, strictly speaking, an asynchronous system), this approach seems common in

practice.

Unfortunately, when we design a system to tolerate Byzantine failures, such assumptions may no longer

hold. In particular, we would like to be able to construct protocols that behave well even if faulty machines

remain faulty for arbitrary periods of time or never return to a state when they acknowledge receipt of

messages or both. In those circumstances, a faulty server can easily force clients to consume infinite memory

by never acknowledging messages.

The subsections below address the interaction of network models and Byzantine quorum systems. We

focus on the problem of engineering practical systems that,for example, do not allow a misbehaving receiver

to force the system to run slow or to consume unbounded network buffer space. We discuss three strategies:

1. Engineer the network to provide (a good approximation of)the reliable asynchronous messaging

abstraction without requiring infinite memory.

11



This approach is an extension of the approach discussed above for fail-stop systems, and it is a natural

match with existing protocols [24] as well as the SBQ protocols discussed above. We qualitatively

discuss the new issues that arise in Byzantine systems, and we provide example scenarios where such

an approach may be appropriate and effective.

2. Strengthen the system abstraction to providereliable synchronous messagingand take advantage of

the stronger semantics.

Byzantine quorum protocols exist for synchronous systems [5], but as we describe below, when fail-

ures occur these protocols may be vulnerable toslow readsthat include timeouts on the critical path.

For systems where the natural network timeouts exceed the desired read performance, we propose two

options that still can make use of network timeouts to bound buffer memory consumption but that are

less vulnerable to slow reads than existing protocols. First, we argue that even in systems with a syn-

chronous network layer that makes use of timeouts,asynchronousByzantine quorum protocols—such

as our original SBQ protocol—may be an attractive option because they are “self-timing” and their

performance is not limited by failed servers or timeouts. Second, to address these trade-offs more

generally, we develop the S-SBQ protocol, a synchronous version of our SBQ protocol that allows a

system to use a tunable number of additional servers to reduce its vulnerability to slow reads.

3. Weaken the system abstraction to assumeauthenticated unreliable asynchronous messagingand strengthen

the Byzantine quorum protocol to handle not just server failures but also to handle message loss and

to bound buffer consumption.

Below, we show new U-masking and U-dissemination protocolsthat adapt the masking and dissem-

ination protocols from Malkhi and Reiter to explicitly manage retransmission and network buffers.

Once a quorum of machines has completed an operation, a client may safely delete unacknowledged

messages from its send buffer; thus the fact that Malkhi an Reiter’s protocols acknowledge all op-

erations, including writes, makes it easy to adapt them to unreliable networks. We show that these

protocols work even though they may delete messages destined to both correct and faulty servers.

Table 1 summarizes the key results discussed in this section. Our analysis results in a series of Byzantine

quorum systems and protocols over a range of system models, with increasing numbers of servers required

to tolerate progressively weaker system models. For generic data,2f+1 servers are needed for synchronous

reliable network systems where timeouts are short,2f+1 to3f+1 for synchronous reliable network systems

where timeouts are long,3f + 1 for asynchronous reliable network systems, and4f + 1 for asynchronous

unreliable network systems. Self-verifying-data allows systems to be built for each of these scenarios usingf fewer servers.

12



Network Protocol Minimum servers

Model generic data self-verifying data

reliable synchronous Bazzi [5] 2f+1 f+1

(fast timeouts)

reliable synchronous S-SBQ 2f+1 to 3f+1 f+1 to 2f+1

(slow timeouts) SBQ 3f+1 2f+1

reliable asynchronous SBQ 3f+1 2f+1

unreliable asynchronousU-masking/U-dissemination 4f+1 3f+1

Table 1:Summary of protocols toleratingf Byzantine failures for different network models.

4.1. Engineering an asynchronous reliable network

If one can engineer an asynchronous reliable network, Malkhi and Reiter’s original protocols or our new

SBQ protocols work well. This approach is appealing becauseit rests on a clean separation of concerns

between the network protocol and the Byzantine quorum protocol. Such a separation simplifies theoretical

analysis, and it appears to work reasonably well in practicefor fail-stop quorum systems.

However, as discussed above, if the network layer is also subject to arbitrary Byzantine failures, a faulty

receiver can prevent a sender from ever deleting buffered messages. Nonetheless, one can engineer a reason-

able approximation of an asynchronous reliable network abstraction when one can (1) restrict the failures to

which the network layer is vulnerable or (2) restrict the workload so that infinite buffering is not a concern.

To illustrate when this network model is appropriate, we provide a few examples of both types of restriction

below.

Restricting network failures. In some systems, the Byzantine quorum protocol layer is vulnerable to arbi-

trary Byzantine failures, but the network layer is less vulnerable. For example, some systems have highly re-

liable physical networks. Examples include “System/Storage Area Networks” (SANs) (such as Myrinet [6]

and Fibre Channel [34]), networks for Massively Parallel Processors (MPPs) (such as the Thinking Machines

CM5 and Cray T3D), networks with built-in redundancy and automatic fail-over such as Autonet [36], and

networks with automatic link-level retransmission [32]. Asecond, related, approach to bounding memory

consumption by assuming a restricted model of network failures is to construct a network protocol without

relying on acknowledgments to free network retransmissionbuffers. For example, consider the case where

the primary cause of message loss is bit errors from transient electronic interference, where each packet

has a probabilityp of arriving at its destination. A sender that retransmits a message a constant number

of times or with sufficient forward error control redundancy[7, 19] may in this case regard the packet as

successfully sent, even if no acknowledgments are received; such a system may still use acknowledgments

to reduce the number of retransmissions in the common case ofa responsive sender, but it might make the

13



reasonable engineering approximation that a message sent,say, ten times has been delivered to the receiver

with high probability, even if no acknowledgment has been received. A third approach that insulates the

network layer from some failures is to rely on protection across software modules. For example, in some

systems the network layer may be a protected kernel subsystem and may be considered less vulnerable to

Byzantine failures than higher-level protocols.

Restricting the workload. Rather than restricting the network failure model, some systems may approxi-

mate reliable asynchronous messaging with finite buffers byassuming a restricted workload. If the request

rate is low and the retransmission buffer large (e.g., on disk as in MQS [1] or Bayou [14]), then a system

may reasonably buffer all sent messages regardless of whether they have been acknowledged. An example

of a system where such an assumption is natural is a system that already maintains a persistent log of all

transactions for another purpose such as auditing.

4.2. Synchronous network

Given the challenges to engineering a reliable asynchronous network, it may not be much more difficult to

engineer a reliable synchronous network which allows network buffers to be bounded by placing an upper

bound on delivery time. In effect, such a system declares that a server has failed if it fails to acknowledge a

message within a prescribed time.

An obvious strategy to constructing Byzantine storage in a synchronous system is to use time-outs not

only to garbage collect network buffers but also to detect server failures at the BQS-protocol level. This

additional information can improve the efficiency of the BQSprotocol. In particular, Bazzi [5] describes a

synchronous BQS protocol for generic (or self-verifying) data that requires just2f +1 (or f +1) servers to

provide storage with safe (or regular) semantics. Bazzi’s read protocol for self-verifying data, for example,

sends read requests to allf + 1 servers, waits forf + 1 replies or time-outs, and then returns the correct

value with the highest timestamp from the set of replies.

The disadvantage of such an approach is that a single faulty server can force each read request to wait

for a timeout. Unfortunately, for many systems the natural network timeout may be long or it may be

difficult to estimate precisely. For example, empirical measurements of network failures show a heavy-

tailed distribution for the duration of Internet connectivity failures, with significant numbers of failures

lasting several minutes and some network failures lasting hours [11]. As another example, TCP’s protocol

for establishing an initial connection attempts retransmissions at increasing intervals that can exceed one

minute if several packet losses occur in a row [4]. Furthermore, selecting a timeout at which retransmission

will be abandoned will often be an engineering estimate of a time beyond which successful retransmission

is unlikely rather than a true fundamental bound on possiblemessage delays. Therefore, it may often be

desirable to conservatively set such timeouts to be as long as possible in order to avoid introducing spurious

14



server failures. When messages can be buffered on disks, timeouts of minutes, hours, or longer may be

desirable.

Unfortunately, if a synchronous BQS protocol is used, such timeouts would result in unacceptable read

performance for many applications. In some cases, the impact of long timeouts can be mitigated by having

clients track which servers have timed out in the past so thatclients can avoid sending messages to or waiting

for servers known to have failed. Unfortunately, this solution is not always appropriate. For example, for

some applications or environments such an approach can (1) increase the complexity of a client, (2) increase

the complexity of server recovery [9], (3) inflict a timeout that is too long (e.g., minutes or hours) to be

accepted for even a single operation per client, or (4) remain vulnerable to a server that consistently responds

a few moments before a series of timeouts.

An alternative approach is to use an asynchronous Byzantinequorum protocol over a synchronous net-

work. In this approach, a server that fails to acknowledge a message within a timeout is defined to have

failed, and the network layer uses timeouts to bound buffer consumption by deleting messages to failed

servers. The Byzantine quorum protocol, however, is asynchronous and does not make use of timeouts.

This approach has the advantage of being “self-timing” – reads and writes proceed at the rate of the correct

servers rather than the rate imposed by failed servers and timeouts. The price for this speed is that the SBQ

protocol requiresf more servers than Bazzi’s synchronous protocol.

This naturally raises the question of how much performance can be achieved using fewer additional

servers. In fact, a continuum exists between (a) the option of synchronous protocols such as Bazzi’s that use2f + 1 servers for generic data but that can suffer slow reads if even one server is faulty and (b) the option

of asynchronous protocols that use3f +1 servers for generic data servers but that can keep all failedservers

off the critical path of read and write operations. We cover this complete continuum by adapting the SBQ

protocol to the reliable synchronous network model. The resulting protocol, S-SBQ, provides two different

guarantees: it can still toleratef failures, and in addition it is guaranteed to complete operations without

waiting for time-outs until the number of failures reaches some thresholdt (t � f ). We say that S-SBQ is

f-safe, t-fast. By comparison, the Bazzi protocol is f-safe, 0-fast and theasynchronous BQS protocols are

f-safe, f-fast. The quorum construction used by S-SBQ allows it to be f-safe, t-fast usingf + t+ 1 servers

(2f + t+ 1 for non-self-verifying data). Because the choice of the value oft is left to the implementor, S-

SBQ can either use as few servers as Bazzi’s protocol or always be self-timing like SBQ. More interestingly,

its performance can be adjusted to any intermediate scenario.

Due to space constraints, the complete description of S-SBQas well as the quorum constructions it uses

is deferred to Appendix 3.1.. Note that even though the discussion of the previous paragraph was limited to

the threshold case, S-SBQ uses a more general failure model that includes not only a fail-prone system but

also a newdelay-prone systemto describe the conditions under which the protocol must be fast.

The following theorems describe the key behaviors of the S-SBQ protocol.

Theorem 1 The S-SBQ protocol for self-verifying data follows regularsemantics and the S-SBQ protocol

15



for non-self-verifying data follows safe semantics.(Safety)

This theorem expresses the safety of the protocol. Its proofderives from the intersection property of our

quorum construction.

Theorem 2 The S-SBQ protocols are live (i.e. all requests eventually terminate).(Liveness)

It is easy to show by inspection that all protocol operationsterminate at most after a time-out delay. The

next theorem expresses the conditions under which the protocol does not need to wait for this delay.

Theorem 3 The S-SBQ protocols are self-timed as long as the failure setis covered by some delay scenario.

(Performance)

This derives from the availability property of the quorums.

It is also straightforward to adapt Bazzi’s protocol to construct an f-safe, t-fast version by adding more

servers. However, because Bazzi’s protocol includes synchronous acknowledgments of writes, the natural

definition of such an “S-Bazzi” protocol retains symmetric read and write quorums and therefore requires2f + 2t+ 1 servers for generic data (f + 2t+ 1 servers for self-verifying data).

4.3. Unreliable asynchronous network

In this section we describe a U-masking and U-disseminationByzantine quorum protocol forauthenticated

unreliable networksas defined in Section 2 in which the protocol deals with network-layer failures, retrans-

mission, and buffering. We also show how variations of this protocol can bound network retransmission

buffer consumption. This protocol is a straightforward extension of Malkhi and Reiter’s protocol for asyn-

chronous reliable networks [24]. Due to space constraints,we summarize the protocol and its properties in

this section. We refer the reader to [27] for a full statementof the protocol as well as proofs for the theorems

and lemmas stated in this section.

Although the model used by Malkhi and Reiter’s original protocol ensures that all correct servers receive

all transmitted messages, the protocol itself only relies on a quorum of servers receiving each message. Thus,

once a sender receives responses to a request from a quorum ofmachines, it may safely stop retransmitting

that request. Because the protocol requires explicit responses to all requests, including writes, it is simple

to adapt it to manage retransmission buffers. In particular, we modify the protocol to replace each step that

waits for a quorum of replies to instead repeatedly resend the message sent in the previous step to all servers

that have not responded until a quorum of servers has responded. Note that a sender can space the repeated

resends arbitrarily far apart in time as long as it follows analgorithm that ensures an infinite number of

retries to a receiver if no response from that receiver is ever received and if the send to that receiver is not

cancelled. Also note that these application-level retransmissions provide weaker guarantees than the reliable

16



asynchronous networking abstraction because some correctservers may not receive messages transmitted to

them.

The resulting U-masking (or U-dissemination) protocol provides safe (or regular) semantics for generic

(or self-verifying) data. The protocol is live because the availability property guarantees that it must always

eventually stop resending messages: under an unreliable asynchronous network as defined here, a message

sent repeatedly must eventually reach its destination. Given that, we show that each send/receive/wait step

is equivalent to a reliable asynchronous send to a responsive quorum of servers. Then, the proof of safety

and liveness follows Malkhi and Reiter’s original proof.

The advantage of managing message retransmission in the Byzantine quorum protocol as opposed to ab-

stracting it into the communications layer is that doing so makes it easy to bound buffer consumption even

if a server’s network protocol software is considered vulnerable to Byzantine failures of the server. In par-

ticular, under these protocols, a read or write request may consume client buffer memory proportional ton,

the number of servers. If a client issues
 concurrent operations, then the client’s total memory consumption

is O(n
). Unfortunately, in an asynchronous system, each request may take arbitrary time to complete, so

may, in general, be unbounded. Fortunately, this protocol is amenable to several techniques for bounding the

number of outstanding requests from each client. For example, if a client application using the BQS system

is single-threaded and blocks for reads and writes, then system buffer consumption is naturally bounded to

O(n) buffers per client.

A more general solution is for the protocol itself to manage allocation and deallocation from a finite set

of buffer and to block incoming requests when insufficient buffers are available to complete a request. In

particular, in the Finite Buffer U-masking or U-dissemination protocol, we assumeL local buffers and add

a step FIRST before and a step LAST after both the read and the write function.

FIRST) Wait for n local buffers to be available then lockn local buffers.

LAST) Unlock then local buffers claimed in step FIRST.

We provide the complete proofs for the following three theorems in our technical report [27].

Theorem 4 The Finite Buffer U-masking protocol for generic data follows safe semantics and the Finite

Buffer U-dissemination protocol for self-verifying data follows regular semantics.(Safety)

The safety of the Finite Buffer protocol follows from the fact that each send/wait/repeat step is equivalent

to a reliable asynchronous send and the safety properties ofMalkhi and Reiter’s original protocol.

Theorem 5 The Finite Buffer U-masking and U-dissemination protocolsare live (i.e. all requests eventually

terminate).(Liveness)

17



This follows from three facts: (1) step FIRST terminates because the rest of the protocol is live, (2) each

network send/wait/resend step terminates because it must eventually reach a responsive set of servers, and

(3) the original Malkhi and Reiter protocols terminate.

Theorem 6 The Finite Buffer U-masking and U-dissemination protocol consumes at mostL buffers.(Finite

Buffering)

This follows from the locking of step FIRST.

5. Related Work

There is a significant body of work on quorum systems [12, 13, 15, 17, 23, 37] but Byzantine failures were

first considered by Malkhi and Reiter [24]. They have extended this work in other directions, for example by

distinguishing between crash and Byzantine failures [26].In the same work, Malkhi and Reiter show how

to use smaller quorums (as opposed to smaller quorumsystems, as examined here), of sizeO(pn). These

constructions however require as many total servers as their previous work. Investigating whether our SBQ

protocols can be adapted to these smaller quorums remains future work. Malkhi and Reiter’s seminal paper

on Byzantine quorums [24] also explores the load of the quorum system and present a quorum construction

which does not requires the clients to know about the failurescenarios. Exploring these concepts in the

context of SBQ is future work as well.

The idea of distinct read and write quorums has been exploredbefore [13] but not in the context of

Byzantine failures.

Bazzi [5] explored Byzantine quorums in a synchronous environment, with reliable channels. In this

context it is possible to require fewer servers (f + 1 for self-verifying data,2f + 1 otherwise). He uses

symmetric quorums. Our work shows an alternative asynchronous algorithm that can efficiently utilize

additional servers to avoid slow reads.

Triantafillou and Taylor [38] have extended work in quorums under a fail-stop assumption by reasoning

about the location of the replicas. They present results which provide similar availability to quorum systems

but with improved latency. Extending these results to Byzantine environments remains future work.

Phalanx [25] builds shared data abstractions and provides alocking service, both of which can tolerate

Byzantine failure of servers or clients. It uses dissemination and masking quorums. Asymmetric quorums

would not be appropriate in this case because to implement locks, one must be able to determine when the

write operation completes.

Distributed storage can also be implemented using Rampart [30], a toolkit for distributed applications

in Byzantine environments. Rampart does not use quorum systems but instead relies on the state machine

approach [35] to implement the abstraction of highly available distributed shared memory.

Castro and Liskov [10] also attacked the problem of reliablestorage under Byzantine failures. They

18



implement a Byzantine-fault-tolerant NFS service using a technique different from quorum systems. They

use self-verifying data and can toleratef Byzantine failures using3f + 1 servers.

When using non-self-verifying data, faulty servers can force new timestamps to take arbitrarily large

values. This is a problem because in practice timestamps canonly take values from a finite range and

therefore faulty servers can compromise the safety of the protocol. All the quorum protocols discussed in

this paper are vulnerable to this problem, but it can be solved by applying known techniques [22].

6. Conclusion

We present two Small Byzantine Quorum (SBQ) protocols for shared variables, one that provides safe se-

mantics for generic data using3f +1 servers and the other that provides regular semantics for self-verifying

data using2f + 1 servers. This reduces byf the number of servers needed by previous protocols in the

reliable asynchronous communication model. Our protocolsuse novel a-masking and the a-dissemination

quorums. They differ from existing quorums for Byzantine systems in that they make a distinction between

read and write quorums.

The reliable channels required by our protocols can be difficult to engineer, particularly when Byzantine

failures are a concern. We therefore consider Byzantine quorum protocols with different system models.

In the case of reliable synchronous networks, protocols that rely on synchrony can be forced to wait for

a time-out if faulty servers do not reply. It can therefore beadvantageous to use asynchronous protocols

and to use the synchrony assumption only in the network layer. We propose an intermediate protocol for

the synchronous model which toleratesf Byzantine failures but also provides the guarantee of self-timed

operation as long as the number of actual failures does not exceed a thresholdt (t � f).
For the case of unreliable asynchronous networks we show howto adapt Malkhi and Reiter’s protocol

to this environment to provide safe semantics using4f + 1 servers or, if the data is self-verifying, regular

semantics using3f + 1 servers.

A limitation of the asymmetric quorums used by the SBQ protocols is that the implicit synchronization

provided by blocking writes is lost. We are exploring the benefits and limitations of solutions that combine

SBQ protocols with explicit end-to-end acknowledgments ofwrites that have been successfully read.

References

[1] MQSeries, IBM,http://www-4.ibm.com/software/ts/mqseries/.

[2] MSMQ, Microsoft,http://www.microsoft.com/msmq/.

[3] L. Alvisi, D. Malkhi, E. Pierce, and R. Wright. Dynamic byzantine quorum systems. InProceedings of the
International Conference on Dependable Systems and Networks, June 2000.

[4] G. Banga and P. Druschel. Measuring the capacity of a web server. InUsenix Symposium on Internet Technolo-
gies and Systems, October 1997.

[5] R. A. Bazzi. Synchronous byzantine quorum systems. InProceedings of the sixteenth annual ACM symposium
on Principles of distributed computing, pages 259–266, 1997.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L.Seitz, J. N. Seizovic, and W. Su. Myrinet: A
gigabit-per-second local area network.IEEE Micro, 15(1):29–36, 1995.

19



[7] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of
bulk data. InSIGCOMM, pages 56–67, 1998.

[8] M. Castro and B. Liskov. Authenticated byzantine fault tolerance without public-key cryptography. Technical
Report /LCS/TM-595, MIT, 1999.

[9] M. Castro and B. Liskov. Proactive recovery in a byzantine-fault-tolerant system. InProceedings of the Fourth
Symposium on Operating Systems Design and Implementation (OSDI ’00), San Diego, USA, pages 273–287,
October 2000.

[10] M. Castro and NB. Liskov. Practical byzantine fault tolerance. InProceedings of the Third Symposium on
Operating Systems Design and Implementation (OSDI ’99), New Orleans, USA, pages 173–186, February 1999.

[11] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-endWAN service availability. InThird Usenix Symposium
on Internet Technologies and Systems (USITS01), March 2001.

[12] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid protocol: A high performance scheme for maintaining
replicated data.Knowledge and Data Engineering, 4(6):582–592, 1992.

[13] S. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in a partitioned network: a survey.ACM Computing
Surveys (CSUR) Volume 17, Issue 3, pages 341–370, September 1985.

[14] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and B. B. Welch. The bayou architecture:
Support for data sharing among mobile users. InProceedings IEEE Workshop on Mobile Computing Systems &
Applications, pages 2–7, Santa Cruz, California, 8-9 1994.

[15] D. K. Gifford. Weighted voting for replicated data. InProceedings of the 7th ACM Symposium on Operating
Systems Principles (SOSP), pages 150–162, 1979.

[16] J. Gray and A. Reuter. Transaction processing: Concepts and techniques, 1993.

[17] M. Herlihy. A quorum-consensus replication method forabstract data types. InACM Transactions on Computer
Systems (TOCS) Volume 4 , Issue 1, pages 32–53, 1986.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.Pister. System architecture directions for networked
sensors. InProceedings of the Ninth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’00), Cambridge, USA, pages 93–104, October 2000.

[19] C. Huitema. The case for packet level fec, 1996.

[20] A. D. Joseph, F. A. deLespinasse, J. A. Tauber, D. K. Gifford, and F. M. Kaashoek. Rover: A Toolkit for Mobile
Information Access. InProceedings of the 15th ACM Symposium on Operating Systems Principles, pages 156–
171, Copper Mountain, Co., 1995.

[21] L. Lamport. On interprocess communications.Distributed Computing, pages 77–101, 1986.

[22] M. Li, . Tromp, and P. M. B. Vitányi. How to share concurrent wait-free variables.Journal of the ACM,
43(4):723–746, 1996.

[23] N. A. Lynch and A. A. Shvartsman. Robust emulation of shared memory using dynamic quorum-acknowledged
broadcasts. InSymposium on Fault-Tolerant Computing, pages 272–281, 1997.

[24] D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, pages 203–213, 1998.

[25] D. Malkhi and M. Reiter. Secure and scalable replication in phalanx. InProc. 17th IEEE Symposium on Reliable
Distributed Systems, West Lafayette, Indiana, USA, Oct 1998.

[26] D. Malkhi, M. Reiter, and A. Wool. The load and availability of byzantine quorum systems. InProceedings 16th
ACM Symposium on Principles of Distributed Computing (PODC), pages 249–257, August 1997.

[27] J-P. Martin, L. Alvisi, and M. Dahlin. Small byzantine quorum systems. Technical report, University of Texas at
Austin, Department of Computer Sciences, December 2001.

[28] E. Pierce and L. Alvisi. A recipe for atomic semantics for byzantine quorum systems. Technical report, Univer-
sity of Texas at Austin, Department of Computer Sciences, May 2000.

[29] J. Postel. Transmission control protocol. Technical Report RFC-793, Internet Engineering Task Force Network
Working Group, September 1981.

[30] M. Reiter. The rampart toolkit for building high-integrity services. InDagstuhl Seminar on Distributed Systems,
pages 99–110, 1994.

20



[31] A. Ricciardi. personal communication, November 2001.

[32] J. Robinson. Reliable link layer protocols. TechnicalReport RFC-935, Internet Engineering Task Force Network
Working Group, January 1985.

[33] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstraction to improve fault tolerance. InProceedings of
the 18th Symposium on Operating Systems Principles (SOSP ’01), October 2001.

[34] M. Sachs and A. Varma. Fibre channel.IEEE Communications, pages 40–49, August 1996.

[35] F. B. Schneider. Implementing fault–tolerant services using the state machine approach: A tutorial.Computing
Surveys, 22(3):299–319, September 1990.

[36] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer, E. Satterthwaite, and C. Thacker.
Autonet: A high-speed, self-configuring local area networkusing point-to-point links.IEEE Journal on Selected
Areas in Communications, 9(8), October 1991.

[37] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy databases.Database
Systems, 4(2):180–209, 1979.

[38] P. Triantafillou and D. J. Taylor. The location-based paradigm for replication: Achieving efficiency and avail-
ability in distributed systems. InIEEE Transactions on Software Engineering, 21/1, pages 1–18, January 1995.

[39] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed on-line certification authority.
Technical Report 2000-1828, Department of Computer Science, Cornell University, Ithaca, NY USA, 2000.

21



A Malkhi and Reiter’s protocols

The SBQ protocols, the a-masking and a-dissemination quorum construction, and their analysis draw on

Malkhi and Reiter’s original protocol and quorum systems [24]. In this section, we review Malkhi and

Reiter’s original definitions and restate their protocol ina notation similar to that used to describe our SBQ

protocols in Figures 1 and 2.

1.1. Masking Quorum systems

Masking quorum systems provide consistent data replication even if some of the servers in the quorum

system are arbitrarily faulty. They are defined as follows [24].

Definition 3 A quorum systemQM is a masking quorum systemfor a fail-prone systemB if the following

properties are satisfied.

M-Consistency: 8Q1; Q2 2 QM 8B1; B2 2 B : (Q1 \Q2) n B1 6� B2
M-Availability: 8B 2 B 9Q1 2 QM : B \Q1 = ;

The first property implies that, in the f-threshold case, theintersection of two quorums contains a majority

of correct servers (sincejB1j = jB2j). The second property guarantees that there always exists at least one

quorum which contains no faulty processes. For an f-maskingquorum system, these properties requiren � 4f + 1, and quorums of sizejQj � dn+2f+12 e.
Read and Write Protocols for Masking Quorum Systems The protocols for reading and writing data

in masking quorum systems implement multiple-writer, multiple-readersafevariables [21]. Protocols for

partial regular semantics have also been proposed [28]. Theprotocols assume that each client
 has access

to a setT
 of timestamps, and that the sets used by different clients are disjoint. Read and write operations

are defined as follows [24].

Write. For a client
 to write a valuev, it queries servers to obtain a set of timestampsA = f< tu >gu2Q
for some quorumQ; chooses timestampt 2 T
 greater than the highest timestamp value inA and

greater than any timestamp it has chosen in the past; and sends the update< v; t > to servers until it

has received an acknowledgment for this update from every server in some quorumQ0.
Read. For a client to read a variablex, it queries servers to obtain a set of value/timestamp pairsA = f<vu; tu >gu2Q for some quorumQ. The client the computes a setA0 that contains all pairs returned by

at least one correct server. Formally,A0 = f< v; t > : 9B+ � Q [8B 2 B[B+ 6� B℄ ^ 8u 2 B+[vu = v ^ tu = t℄℄g
The client then chooses the pair< v; t > in A0 with the highest timestamp, and choosesv as the result

of the read operation; ifA0 is empty, the client returns? (a null value, indicating that the read failed).

22



Write(�)

1. send (GET-TS) to all servers.

2. wait until received timestamptsi from each serversi in a masking quorum.

3. let last ts be the largest received timestamp.

4. choose a new timestampnew ts that is larger than bothlast ts and any timestamp previously chosen by this server.

5. send (STORE,new ts;�) to all servers.

6. wait until received an acknowledgment from each serversi in a masking quorum.hts;�i=Read()

1. send (GET) to all servers.

2. wait until received pairsh�i; tsii from each serversi in a masking quorumQ.

3. f Build a setG containing all pairs returned by a voucher set of servers.g
ComputeG = fhts;�ij(9B+ � Q :: (8B 2 B : B+ 6� B : (8su 2 B+ :: �u = � ^ tsu = ts)))g

4. if G 6= ; then
select the pairh�; tsi with the highest timestampts
returnh�; tsi

else
return?

Figure 3: MR protocol for generic (non-self-verifying) data

Figure 3 describes this protocol using a notation similar tothe one used to describe the SBQ protocol for

generic data in Figure 1.

1.2. Dissemination Quorum systems

Dissemination quorum systems guarantee high availabilityfor self-verifying data. They are defined as fol-

lows [24].

Definition 4 A quorum systemQD is a dissemination quorum systemfor a fail-prone systemB if the fol-

lowing properties are satisfied.

D-Consistency: 8Q1; Q2 2 QD 8B 2 B : (Q1 \Q2) 6� B
D-Availability: 8B 2 B 9Q1 2 QD : B \Q1 = ;

The first property guarantees that the intersection of any two quorums contains at least one non-faulty

process. The second property, as in masking quorum systems,guarantees that there exists at least one

quorum which contains no faulty process. For an f-thresholdquorum system, these properties requiren �3f + 1, and quorums of sizejQj � dn+f+12 e.
Read and Write Protocols for Dissemination Quorum Systems. The self-verifying nature of the data

stored by dissemination quorum systems makes it possible toimplement shared variables with strong se-

mantics. The following read and write protocols implement amultiple-writer multiple-readerregular vari-

able [21] for dissemination quorum systems. Read and write protocols for achievingatomicsemantics [21]

have also been proposed [25].

23



Write(�)

1. send (GET-TS) to all servers.

2. wait until received signed timestampftsig
lienti from each serversi in a dissemination quorum.

3. let lastts be the largest valid timestamp in the answers.

4. choose a new timestampnew ts that is larger than bothlast ts and any timestamp previously chosen by this server.

5. send (STORE,fnew tsg
lient,fnew ts;�g
lient) to all servers.hts;�i=Read()

1. send (GET) to all servers.

2. wait until received signed timestampftsig
lienti from each serversi in a dissemination quorum.

3. discard all pairs that are not verifiable.

4. if all pairs were discarded
return?

else
return the remaining pairhts;�i with the highest timestamp.

Figure 4: MR protocol for self-verifying data

Write. Identical to the write protocol used in masking quorum systems.

Read. For a client to read a variablex, it queries servers to obtain a set of value/timestamp pairsA = f<vu; tu >gu2Q from some quorumQ. The client then discards those pairs that are not verifiable(e.g.,

using an appropriate digital signature verification algorithm) and chooses from the remaining pairs

the pair< v; t > with the largest timestamp.v is the result of the read operation.

Figure 4 describes this protocol using a notation similar tothe one used to describe the SBQ protocol for

generic data in Figure 1.

24



B Correctness of SBQ

In Section 3. we asserted that the SBQ protocol for generic data implements safe semantics and that the

version for self-verifying data implements regular semantics. We proved the correctness of the protocol for

generic data in Section 3.3.1. We now treat of case of self-verifying data.

2.1. Regular Semantics in a-dissemination quorum systems

Lemma 6 A read operation returns either the most recently written value, or the value being written by

some concurrent write operation.

Let W be the set of write operations that preceded the read, and let w� 2 W be the write operation with

the highest timestamp. By Lemma 2,w� did not precede any operation inW and therefore there exists a

serialization of the operations inW in whichw� is the most recently written value. By Lemma 1, a read

quorum will respond to the read with a set of value/timestamppairs, and by AD-Consistency, that read

quorum will contain an answer from a voucher set that received w�. Since the timestamp of correct servers

is monotonically increasing andw� is the write inW with the highest timestamp, the correct server in the

voucher set will return eitherw�’s value or a verifiable value with a higher timestamp. Furthermore, any

verifiable value has previously been written. Because the read protocol decides on the verifiable value that

has the highest timestamp, the read operation returns either the most recently written valuew� or a valuew+ with higher timestamp. Sincew� is the completed write with the highest timestamp, it follows that the

valuew+ is associated with a concurrent write. �
Lemma 7 A read operation that is not concurrent with any write operation returns the result of the most

recently written value.

This is a corollary of the previous lemma. �

25



C S-SBQ

3.1. Adapting SBQ to Synchronous Networks

SBQ, as described in Figures 1 and 2, requires a number of servers (2f +1 or 3f +1) that is appropriate for

asynchronous networks. In the case of synchronous networks, it is possible to modify the protocol to take

advantage of time-outs and therefore require fewer servers. We present S-SBQ, which requires onlyf + 1
servers (2f + 1 for non-self-verifying data).

In this variant of SBQ, we modify step 2 of the write operationfor self-verifying data as follows.

2. Wait for a read quorum of answers or time-outs.

Let A be the set of servers that either replied with (ACK-GET-TS; ftsigsome 
lient) or whose link

timed out.

LetA grow until9Q1 2 Qr : Q1 � A.

Step 2 of the read operation is modified similarly.

2. Wait for a read quorum of answers or time-outs.

LetA be the set of servers that either replied with (ACK-GET,fts;�g
lient) or whose link timed out.

LetA grow until9Q1 2 Qr : Q1 � A.

Similar changes apply to the case of non-self-verifying data, the only difference being the absence of the

signature in the data read.

We now modify the quorum construction to express the fact that the construction of S-SBQ is not only

determined by a requirement on fault tolerance but also by a requirement on fast (self-timed) reads.

3.2. f/t-masking quorum system

The quorum systems for asynchronous networks consider a fail-prone systemS which contains all possible

failure scenarios that the protocol is expected to be able tosurvive. To this we add thedelay-prone systemS0 that contains all possibledelay scenarios. A delay scenario is a subset of some failure scenario. The

requirement is that as long as the failures do not expand beyond any delay scenario, the protocol must not

suffer from slow reads. Because this quorum construction has two different bounds, one for performance

and one for safety, we call it af/t-masking quorum system.

S-Consistency: 8Q1 2 Qr8Q2 2 Qw8B1; B2 2 S : Q1 \Q2 n B1 6� B2
S-Performance: 8B0 2 S0 9Q1 2 Qr : B0 \Q1 = ;

26



In the threshold case where all delay scenarios have sized the minimum number of required servers isn = 2f + d+ 1.

Is it always possible to build such a quorum system if sufficiently many servers are available. This

derives from the fact that self-verifying (and non-self-verifying) data quorums exist and that delay scenarios

are subsets of failure scenarios.

3.3. f/t-dissemination quorum system

This quorum construction is specific to self-verifying data. Its performance constraint is identical to that of

the f/t-masking quorum system but the consistency constraint is optimized for self-verifying data, allowing

for smaller quorums.

SV-Consistency: 8Q1 2 Qr8Q2 2 Qw8B 2 S : Q1 \Q2 6� B
SV-Performance: 8B0 2 S0 9Q1 2 Qr : B0 \Q1 = ;

In the threshold case where all delay scenarios have sized the minimum number of required servers isn = f + d+ 1.

3.4. Correctness

In this section we revisit the key properties of S-SBQ presented initially in Section 4.2. and present a proof

for each. For clarity we consider self-verifying and non-self-verifying data separately, even though several

of the proofs for self-verifying data apply to the case of non-self-verifying data as well.

3.4.1 Self-Verifying Data

Lemma 8 (timestamp consistency)So long as at least one failure scenario covers the failure set, if a write

operation A completes before a write operation B then the timestamp associated with B is larger than the

timestamp associated with A.

This lemma shows that our choice of timestamp values is appropriate. It allows us to reason about the

real-time ordering of writes based on their relative timestamps.

If write operationA has completed then (by our definition of completion), all correct servers in a write

quorum have finished processing the write message. The S-Consistency property (or AS-Consistency for

self-verifying data) of the f/t-masking (f/t-dissemination, respectively) quorum construction guarantees thatA’s timestampts will be read in phase 2 of the write function. Because that value comes from a correct

server it will be valid. Therefore the timestamp chosen forB will be larger thants. �
27



Lemma 9 (safety) So long as at least one failure scenario covers the failure set, the S-SBQ protocol for

self-verifying data follows regular semantics.

Because of the self-verifying nature of the data, faulty servers cannot modify the timestamp in their

answer. Any valid answer they provide (i.e. answer that has not been modified) is therefore necessarily

correct. Correct servers only send correct answers, therefore all valid answers will also be correct. Because

the read protocol decides on a valid answer, we can deduce that the chosen value will also be correct.

The SV-consistency property of the f/t-dissemination quorum construction guarantees that the read quo-

rum will include at least one correct serverA which sent timely data. We use Section 3.3.’s definition of

timely, i.e. timely data either comes from the completed write with highest timestamp (thelatest completed

write) or data from a write that is concurrent with the read.

The previous lemma guarantees that correct data with a timely timestamp comes from either the last

completed write operation or a write operation that has not completed yet.

The read protocol selects the valid answer with the highest timestamp. BecauseA’s timely answer is

considered, the chosen answer will necessarily have a timestamp that is greater or equal to that of the latest

completed write. It follows that this timestamp is associated either with the latest completed write or with a

write that is concurrent with the read. By definition, that answer is timely.

The chosen value will therefore be correct and timely. Because the previous lemma shows that our

definition of timely corresponds to the real-time ordering of the write operations, we can conclude that

S-SBQ obeys the regular semantics in the case of self-verifying data. �
Lemma 10 (liveness)The S-SBQ protocols are live (i.e. all requests eventually terminate).

There are two places in the protocol where waits occur: step 2of the write operation and step 2 of the

read operation. After a time-out duration, the setA will contain all servers (Since the request was sent to

all servers). Because all quorums are subsets of the server universe,9Q1 2 Qr : Q1 � A will hold and the

wait will stop. Therefore, each of these two waits will stop at most after a time-out delay. This is true for

both the self-verifying and the non-self-verifying versions of S-SBQ �
The next theorem expresses the conditions under which the protocol does not need to wait for this delay.

Lemma 11 (performance) The S-SBQ protocols are self-timed as long as the failure setis covered by some

delay scenario.

We revisit the two locations in the protocol where a wait occurs, but this time show that a shorter wait is

possible if sufficiently few failures occured. Since the wait functions are identical, we treat them together.

The wait completes as soon as the setA of answers covers a read quorum. If the failure set is smaller

than some delay scenario then the S-Performance property ofthe f/t-masking quorum system (or the SV-

Performance of f/t-dissemination quorums for self-verifying data) guarantees that there exists a read quorum

28



R consisting only of correct servers. These servers will reply as soon as they see the request andAwill grow

to contain the read quorumR. The operation will therefore continue in a self-timed manner. �
3.4.2 Non-Self-Verifying Data

Lemma 12 (safety) So long as at least one failure scenario covers the failure set, the S-SBQ protocol for

non-self-verifying data follows safe semantics.

We first show that the chosen answer will be correct.

Faulty servers can send arbitrary answers to the read query.However because the read protocol decides

on a value vouched for by more servers than a failure set can cover, answers that no correct server vouches

for are rejected. Therefore, the chosen answer is correct.

We now show that the chosen answer obeys safe semantics, thatis if there is no concurrent write then the

read will decide on the value of one of thelast writes, which we define as a write that has completed and

that is not followed by any other write.

Consider the last write with the highest timestamp. We will call this thelatest completed write. Because

this write has completed, all correct servers in some write quorumW have finished processing it. The S-

Consistency property guarantees that the intersection between the read quorum used in the read operation

and the correct servers inW is larger than any failure scenario. Because of its sufficient size, this answer

will not be rejected (we say it is valid).

In fact, the latest completed write will be the chosen answerbecause it has the highest timestamp. We

already know that only correct answers are chosen. Because there is no concurrent write, Lemma 8 ensures

that the latest completed write has the highest timestamp inthe system. This concludes the proof of this

lemma since the read operation selects the valid answer withthe highest timestamp and we know that the

latest completed write is valid. �
The liveness and performance of the S-SBQ protocol for non-self-verifying data is shown in Lemmas 10

and 11. The proof of these lemmas is general enough to apply equally well in the case of non-self-verifying

data.

3.5. Conclusion

The two previous subsections have shown that the S-SBQ protocol is regular for self-verifying data and safe

for non-self-verifying data. This result should not come asa surprize as it is similar to that of the SBQ

protocol itself.

The SBQ protocol is designed for reliable asynchronous networks. The S-SBQ protocol is appropriate for

reliablesynchronousnetworks. It differentiates itself from existing protocols [5] by providing performance

guarantees. S-SBQ does not allow the writer to determine when its write operation has completed. In cases

where this information is necessary, the writer can sacrifice performance and wait for a time-out value: the

29



write is then guaranteed to have completed. If the time-out value is too long then the implementor should

consider an asynchronous protocol, for example the MR [24] or MR-U protocol.

30



D Extending MR to unreliable networks

In this section we extend the MR protocols toauthenticated unreliable asynchronouschannels. A message

sent in such a channel is only guaranteed to reach its destination if sent an infinite number of times. There

is no bound on message delivery time.

Our variant is a straightforward extension of Malkhi and Reiter’s original protocols. It uses the same

quorum constructions and therefore require the same numberof servers:3f + 1 for self-verifying data and4f + 1 otherwise.

4.1. Protocols

For the case of self-verifying data, we use a dissemination quorum system and the protocol described in

Figure 5. The protocol differs from the original only in two aspects. First, it introduces an arbitrary time-out

value to deal with the unreliable channels. All messages will be repeated if no acknowledgment is received

within this time-out period, until a quorum of servers acknowledged the message.

The second difference between the two protocols is that MR-Uuses nounces to identify duplicate mes-

sages. This is necessary because messages are sent multipletimes and therefore more than one copy of a

message may reach its destination.

In the case of non-self-verifying data, the protocol of Figure 6 is used along with masking quorums

systems. This variant differs from Malkhi and Reiter’s original protocol in the same way as the protocol

previously described: it introduces resends and nounces.

4.2. Correctness

The proof of correctness for the MR-U protocol can be derivedfrom that of the MR protocols. The necessary

insights are the following.

Lemma 13 The only communication primitive used by the MR protocols isthe reliable send to a quorum

(called “Q-RPC” in their Phalanx paper [25]).

This can be determined by examining the proof they provide and noting that it does not make use of the

messages sent outside of a quorum. �
Lemma 14 MR-U implements reliable send to a quorum.

All the communication in the protocol follows the same pattern: a client repeatedly sends a message to

all servers and waits for a quorums of answers. The network guarantees we require are sufficient to ensure

that both the client’s message and the server’s reply will get through (since servers answer every message,

including duplicate messages). This communication pattern therefore succeeds in reaching a quorum of

servers. �
31



Write(�)

1. wait until n buffers can be allocated. Allocate them.

2. letu be a nounce.

3. send (GET-TS,u) to all servers. When a link times out (i.e. when no ack was received within the time-out
interval), resend.

4. wait until received an answer (ACK-GET-TS; u; tsi) from each serversi in a dissemination quorum.

5. choose a new timestampnew ts that is larger than anytsi and that any timestamp previously chosen by this
server.

6. send (STORE,u+ 1; fnew ts;�g
lient) to all servers. If a link times out before we get an ACK, resend.

7. wait until received an answer (ACK-STORE; u+ 1; ts) from each serversi in a dissemination quorum.

8. release then buffers.hts;�i=Read()

1. wait until n buffers can be allocated. Allocate them.

2. Letu be a nounce.

3. Send (GET,u) to all servers. When a link times out (i.e. when no ack was received within the time-out interval),
resend.

4. wait until received an answer (ACK-GET,u; ftsi;�ig
lienti ) from each serversi in a dissemination quorum.

5. Discard all pairs that are not verifiable.

6. Select among the remaining pairs the pairhts;�i with the highest timestamp and return it.

7. release then buffers.

Figure 5:MR-U protocol for self-verifying data

32



Write(�)

1. wait untiln buffers can be allocated.

2. Letu be a nounce.

3. Send (GET-TS; u) to all servers. When a link times out, resend.

4. Wait for a quorum of answers (using the buffers allocated in the initial step).
LetA be the set of servers that replied with (ACK-GET-TS; u; tsi)
LetA grow until9Q1 2 Q : Q1 � A.

5. Let the timestampts be larger than the largest timestamp in the answers.

6. Send (STORE,u+ 1; fts;�g
lient) to all servers. If a link times out before we get an ACK, resend.

7. Wait for a quorum of acks (using the buffers allocated in the initial step).
LetA be the set of servers that replied with (ACK-STORE; u+ 1; ts)
LetA grow until9Q1 2 Q : Q1 � A.

8. release then buffers.(ts;�)=Read()

1. wait untiln buffers can be allocated.

2. Letu be a nounce.

3. Send (GET; u) to all servers. When a link times out, resend.

4. Wait for a quorum of answers of the form (ACK-GET,u; ts;�) (using the buffers allocated in the initial step).
LetA be the set of servers that replied with (ACK-GET,u; ts;�).
LetA grow until9Q1 2 Q : Q1 � A.

5. Compute the set of answers that we know are vouched for by atleast one correct server.A0 = f(ts;�) : 9B+ � Q[8B 2 S[B+ 6� S℄ ^ 8i 2 B+[tsi = ts ^�i = �℄℄g.

6. Return(ts0;�0), the value ofA0 with the largest timestamp. IfA0 is empty then return?.

7. release then buffers.

Figure 6:MR-U protocol for non-self-verifying data

33



Lemma 15 MR-U deals succesfully with duplicate messages.

The only remaining difference between the communication with the MR-U and the MR protocols is the

fact that the former may duplicate messages. Duplicate requests to servers will not harm the server state:

read requests do not modify it and write requests are orderedaccording to their timestamp instead of the

order of their arrival.

The danger lies in clients accepting an answer which belonged to a previous request. Fortunately, the

protocol uses nounces to be able to match answers to the corresponding request and therefore duplicate

messages are not a problem. �
Lemma 16 MR-U is safe and live even when only finite memory is available.

The first and last operations in every request ensure that theprotocol only uses finite memory. These steps

do not affect safety, and we showed in Section 4.3. that they do not affect liveness either. The argument was

that once memory is allocated, it will eventually be freed. Therefore, threads will eventually be able to

allocate memory and the MR-U protocol is therefore live. �

34


