Small Byzantine Quorum Systems

Jean-Philippe Martin, Lorenzo Alvisi, Michael Dahlin

University of Texas at Austin - Dept. of Computer Science
Email: {jpmartin, lorenzo, dahlip@cs.utexas.edu

Abstract

In this paper we present two protocols for asynchronous Biyza Quorum Systems (BQS) built on top of reliable
channels—one for self-verifying data and the other for aatgad Our protocols toleratg’ Byzantine failures withf
fewer servers than existing solutions by eliminating neaesal work in the write protocol and by using read and
write quorums of different sizes. In practice, howeverjeegring asynchronous reliable channels is difficult in pan
environments. To address this concern, we modify the @ligisynchronous BQS protocol of Malkhi and Reiter to
work on unreliable channels and discuss how our two new dsgnous protocols can be used to derive an efficient

protocol for synchronous Byzantine systems.

1. Introduction

Quorum systems are valuable tools for implementing highfgilable distributed shared memory. The
principle behind their use is that if a shared variable isest@t a set of servers, then read and write operations
need only be performed at some set of serveguurm). The intersection property of quorums ensures that
each read has access to the most recently written value eéttable. Any practical use of quorum systems
must account for the possibility that some of the servers Inegfaulty; hence, quorum systems must enforce
the intersection property even in the presence of failuMdahlki and Reiter introduce quorum systems,
called masking quorum systemthat guarantee data availability in the presence of amyitByzanting
failures [24]. They also introduce a special class of quosystemsdissemination quorum systemghich

can be used by services that suppaif-verifying datai.e. data that cannot be undetectably altered by a
faulty server, such as data that have been digitally sighedbleratef Byzantine failures, masking quorum
systems must include at lealst + 1 servers, while dissemination quorum systems need3hly 1 servers

to provide the same guarantee.

In this paper, we present two new quorum systems, one forrigeteta and the other for self-verifying
data, that need onlyf + 1 servers an@f + 1 servers, respectively, to tolerateByzantine failures. These
results apply in the same system model used by Mahlki anceRéi¢. one in which communication is
authenticated and reliable, but asynchronous.

Our quorums thus use fewer servers to tolerate a given nuafifeifures than previously possible. Re-
ducing the required number of servers is particularly ingoorwhere Byzantine protocols protect against

security breaches of servers [8, 9, 25, 39]. Note that usimaBtine protocols to tolerate security breaches
is sound only if server failures are independent, i.e. ibkieg into one server does not increase the prob-
ability of successfully breaking into others. AchievingcBuailure independence may require developing
and maintaining multiple independent implementationshefderver and underlying operating system [33].
Because implementing these multiple variations is expenshe number of different implementations is,
in practice, limited. It is therefore essential to minimibe number of servers needed to tolerate a given
number of failures.

We call our new quorum systerasmaskinganda-disseminationwhere the leading “a” indicates the dis-
tinguishing characteristic of these quorums, namely, ttiheyt are asymmetric with respect to the operations
they support: reads and writes use quorum of different sizes

The key insight that allows us to exploit asymmetric quorusnthe recognition that assuming reliable
communication has different implications for read and eviperations. Although reads need a response
from aread quorumof servers in order to return a reliable value, writes do remchto be explicitly ac-
knowledged by a correspondingrite quorum a reliable communication abstraction already guarantees
that every value written by a correct client will eventuallg stored by every correct server in the write
guorum, and the writer itself has no use for the knowledgettieawrite completed. We call read and write
protocols that exploit this insight Small Byzantine Quor(8BQ protocols.

Reliable asynchronous communication is a common model yaaBtine quorum algorithms [24, 25],
and our protocol aggressively exploits that model’s priipgrto improve efficiency. In an asynchronous
system, unfortunately, if the underlying network is urable then the presence of even crash failures can
pose significant challenges to engineering a reliable ngesgdayer because a message sender cannot dis-
tinguish a crashed receiver from a slow one. For examplen iigynchronous reliable messaging layer
requires senders to buffer and retransmit unacknowledgessages, a failed receiver can force the system
to consume unbounded amounts of buffer memory.

To understand such practical concerns, we explore the-tfisidor building Byzantine quorum sys-
tems (BQS) as we vary the properties of the underlying conication infrastructure. In this analysis, we
consider not just the SBQ protocols but also existing pa®fb, 24].

We begin by strengthening the reliable and asynchronousntorication model to consider systems that
implementreliable and synchronousommunication. Under these assumptions, read and writequis
that toleratef Byzantine failures require justf + 1 servers for generic datgf (+ 1 for self-verifying
data) [5]. However, these protocols are vulnerableltmv reads even a single faulty server can delay
each read until a timeout occurs. Unfortunately, for sonstesys of practical interest, the natural timeout
at which network transmission should be abandoned is longpeced to the desired performance of read
operations. Unexpectedly, our analysis suggests that sgatems that assume a reliable and synchronous
networks may still choose to use asynchronou8QS protocol such as the original SBQ. Such systems
may use timeouts in the networking layer to bound netwontansimission buffers, but they may choose an

asynchronous BQS protocol to allow reads to proceed at @joserned by the speed of the fastest quorum
of servers rather than at a rate governed by communicatweotits to failed servers. To address these
trade-offs more generally, we develop a new class of symcu® SBQ protocols, which we call S-SBQ.
S-SBQ protocols can be tuned with respect to two parameferie maximum number of faulty servers

for which the protocol is safe and live, andt < f), the maximum number of faulty servers for which the
protocol is free from slow reads. When= 0, S-SBQ uses the same number of servers as the synchronous
protocol described in [5], and when= f, S-SBQ is identical to the asynchronous SBQ protocol.

We then explore the implications of weakening the assumpmif@synchronous reliable communication.
We considerauthenticated unreliable asynchronous netwpikswhich protocols must explicitly manage
both server faults and network faults, and show that theuqu@ystems and protocols introduced by Mahlki
and Reiter for reliable asynchronous networks can be eesignded to operate in this weaker model.

In summary, our analysis results in a series of Byzantinguquasystems and protocols over a range of
system models, with increasing numbers of servers reqtorederate progressively weaker system models.
For generic date&2f + 1 servers are needed for synchronous reliable network sgsidmare timeouts are
short,2f + 1 to 3f + 1 for synchronous reliable network systems where timeowslarg, 3f + 1 for
asynchronous reliable network systems, dyidt- 1 for asynchronous unreliable network systems. Self-
verifying-data allows systems to be built for each of thesmnarios using fewer servers.

The rest of this paper is organized as follows: Section Zqres the system model. Section 3. presents
the new a-masking and a-dissemination quorum systems.ioBettdiscusses the design space of BQS
protocols under different system models. Section 5. puts@aults in perspective with related work and
Section 6. summarizes our conclusions.

2. System Model

We assume the system model commonly adopted by previoussvi@yle, 24, 25, 26] that have applied
guorum systems in the Byzantine failure model. In particudar system consists of an arbitrary number
of clients and a sel/ of data servers such that the numbet= |U| of servers is fixed. Ajuorum system
Q C 2V is a non empty set of subsets Uf each of which is called guorum We denote withQ, the
set of quorums used by read operatioremad quorumpsand with @,, and the set of quorums used by write
operationsfrite quorums$. Any pair of read and write quorums intersect, apd= Q, U Q,,.

Servers can be eitheorrector faulty. A correct server follows its specification; a faulty sergan arbi-
trarily deviate from its specification. Following [24], wefihe afail-prone systenB C 2V as a nonempty
set of subsets d¥, none of which is contained in another, such that s@ne B contains all faulty servers.
Fail-prone systems can be used to express the confitimasholdassumption that up to a threshofdof
servers fail (in which caség contains all sets of servers) but they can also describe more general situations
as when some computers are known to be more likely to fail ttlaers.

The set of clients of the service is disjoint frdim We restrict our attention in this work to server failures;
clients are assumed to be correct. Clients communicateseiters over point-to-point channels. In this
paper, we consider Byzantine quorum systems for the fotiguwimodels of communication:

Reliable SynchronousA correct procesg receives a message from another correct progéisand only
if p sent it; furthermoreq can determine thai was the sender of the message. Also, there exists a
bound on message delivery time that can be used to timeded faiocesses that do not respond to
requests [5].

Reliable Asynchronous A correct procesg receives a message from another correct proedssnd only
if p sent it; furthermoreg can determine that was the sender of the message. However, no bound is
assumed on message transmission times [24].

Authenticated Unreliable Asynchronous If a correct procesg sends a message infinitely often to another
correct process, theng will eventually receive the message and know that it camm fspa correct
process; receives a message only if a correct progesent the message; and no bound is assumed
on message transmission times.

We will explicitly state which model is assumed at each pointur discussion.

3. Small Byzantine Quorums

Figures 1 and 2 show our Small Byzantine Quorum (SBQ) prdgofmy generic and self-verifying data,
respectively, under the assumption of reliable asynchusrmmmmunication. To write data to a variable
v in either protocol, a client first queries a read quorum o¥eser to choose a timestamp that is larger than
the timestamp for any completed write (steps 1-4) and thedssthe data and the new timestamp to a write
quorum of servers (step 5). To read data, a client querieadchgaorum of servers for their most recent
values (steps 1-2) and then chooses and returns the valideamsth highest timestamp (step 3-4). Each
correct server updates its local variable and timestamipetodluests, A) received by a client only ifs is
larger than the timestamp currently associated with

A noteworthy aspect of the protocol is that unlike operaion read quorums, an operation on a write
guorum does not wait for replies from the servers it contdets reliable asynchronous communication, the
eventual delivery of all messages sent by a correct clieobtect servers is assured, and the write oper-
ation can complete without gathering information from tkevers to which the write messages have been
sent. Note, however, that this means that a client’s locaewiperation mayeturn before the global write
completes In order to define an order among reads and writes, we sawthlatal write operation com-
pletes when all correct servers in some write quorum havehiia processing the STORE messages sent in
step 5 of the write() operation defined in Figures 1 and 2. Heunbore, we say that a write operation

happens befora write operationu- if w; ends (according to the above definition) befarestarts. A dis-
advantage of this definition of write completion is that @ctiissuing a write may not know when the write
completes. This is not a problem from a theoretical stamtpsince this knowledge is required by neither
safe semantics (provided by the SBQ protocol for generig)dair regular semantics (provided by the SBQ
protocol for self-verifying data) [21]. Furthermore, col@ion of write operations is both well defined from
the point of view of an observer external to the system, tandly, in the sense that completion cannot be
delayed by faulty servers because it only depends on adtdes by correct processes. Nonetheless, SBQ
protocols do carry a price: they do not support the impligitchronization that can be obtained through
write operations that block until the write completes. Bodtely, there are several interesting applications
that do not require this implicit synchronization, eith@chuse they don’t need any synchronization (e.g.,
in networked sensors [18], nodes producing data often doeed to receive acknowledgments, implicit
or explicit, from consumers) or because they only requirdterend explicit acknowledgments in which
clients synchronize by reading values written to variousnmg locations by other clients. For instance,
two clients can communicate using an SBQ protocol in the saayeas two pen-pals communicate through
regular mail: in both cases, the writer relies on the fact itisanessage will be eventually received, even if
it does not know when. Its counterpart can assure the wiiitdreareceipt of his message by acknowledging
it in his next message.

The rest of this section explains this protocol in more detéle first describe how quorums are con-
structed and why the SBQ protocols’ quorums are small, mgednly 3f + 1 servers in the threshold
f-threshold case for generic data ahfl+ 1 for self-verifying data. We then compare our protocol to ex-
isting protocols to identify the differences and explainnthese differences allow quorums based on SBQ
protocols to be smaller than those of existing protocolgdbable asynchronous communications systems.
Finally, we step through the details of the SBQ protocol am¥ige a proof of its correctness.

3.1. Quorum definition

The key advantage of SBQ protocols over existing Byzantunargm systems protocols is their reduction
in the number of servers required by the system. This realusgiems from the different constraints SBQ
places on read and write quorums. Because the protocolspésyenmetric constraints on read and write
guorums, it can use asymmetric masking quoruaamésking quorumsfor generic data and asymmetric
dissemination quorumsa{dissemination quorurdgor self-verifying data in place of the traditional (sym-
metric) masking and dissemination quorums [24].

To understand how the protocol’s constraints on quorumtaactton influence the minimum number of
services required by a system, consider the simple casthagshold quorums for self-verifying data under
the SBQ protocol and 1eQ),.| and|@,,| denote, respectively, the size of read and write quorumsrder to
guarantee safety and liveness for this protocol, therefeetieely three constraints that must be met:

Write(A)

1. send (GET-TS) to all servers.
. wait until received timestamps; from each serves; in a read quorum.
. letlastts be the largest received timestamp.

. choose a new timestamew _ts that is larger than botfast.ts and any timestamp previously chosen by this server.

a A w0 N

. send (STORE\, new-ts) to a write quorum of servers.
A =Read()
1. send (GET) to all servers.
2. wait until received pairgA,, ts;) from each serves; in a read quorun®,..

3. { Build a set A’ containing all pairs returned by a voucher seservers}
computed’ = {(A,ts) | (3BT CQy = (VBeB:Bt Z B:(Vsy € Bt 11 Ay = A Atsy = ts)))}

4. if A" £ (then
select the paifA, ¢s) with the highest timestamis
returnA
else
return L

Figure 1:SBQ protocol for generic (non-self-verifying) data

Write(A)

1. send (GET-TS) to all servers.
. wait until received timestamps; from each serves; in a read quorum.
. letlastts be the largest received timestamp.

. choose a new timestamyew _ts that is larger than botfast.ts and any timestamp previously chosen by this server.

a b~ W N

. send (STOREA, new_ts) to a write quorum of servers.

A =Read()

1. send (GET) to all servers.

2. wait until received pairgA;, ts;) from each serves; in a read quorun®,.
3. discard all pairs that are not verifiable.
4

. select among the remaining pairs the gair, ¢s) with the highest timestamp
returnA

Figure 2:SBQ protocol for self-verifying data

SBQL. |Q,| < n — f (Availability)

This constraint is required for step 2 of Read() and step 2 () to be live.

SBQ2. |Q,| + |Qw| — n > f + 1 (Consistency
This constraint is required for the intersection of readss{ep 2 of Read() and step 2 of Write()) and

writes (in step 5 of Write()) to be large enough to ensure ¢hah read intersects with each completed
write in at least one correct server. This constraint isr&seor the safety of the protocol.

SBQ3. |Qy| < n (Realisn)

The following values meet these constraint@,,| = [2] + f and|Q,| = [2$}]. Substituting this
value for|@,| into SBQ1 gives: > 2f + 1.

Similar reasoning applies for non-self-verifying data,emthe consistency constraint requires that read
and write quorums intersect in a majority of correct proeesSBQ2 then becomes:

SBQZ. |Q,| + |Qw| — n > 2f + 1 (Consistency

The corresponding bound farisn > 3f + 1.
The above arguments capture the intuition behind a-maskintha-dissemination quorums. We now
define them formally.

3.1.1 Asymmetric quorum systemsWe say that a sét’ of servers is aoucher setif, under all possible
failure scenarios, it is guaranteed to contain at least omect server, i.eVvB € B: V ¢ B.

We define asymmetric quorum system for generic (non-seifyiteg) data and self verifying data as
follows.

Definition 1 A quorum system is am-masking quorum systerhthe sets of read and write quorungg,
and @,, have the following properties.

AM-Consistency The intersection of any pair of read and write quorums alw@ysgains a voucher set
consisting entirely of correct servers.

VQT- S QTVQw S QWVBl,Bz e B: Qr N Qw \ B, Z B

AM-Availability One read quorum is always available.
VBeBIQ, € Q,:BNQ, =10

Definition 2 A quorum system is am-dissemination quorum systdfrthe sets of read and write quorums
Q. and @, have the following properties.

AD-Consistency The intersection of any pair of read of read and write quorigiasvoucher set.
VQ, € Q,VQ, € Qu,VBEB:Q,NQ, L B

AD-Availability One read quorum is always available.
VBeBIR, € Q,:BNQ, =10

Note that the consistency requirement is easier to disehagn the data is self-verifying. As a result, in
thef-threshold case, a-masking quorums require 3f + 1, |Q,| = [+, and|Q,| = [*H] + f,
while a-dissemination quorum systems only need 2f + 1, |Q,| = [2E], and|Q,| = [25] + f.

3.2. Comparison with existing protocols

The SBQ protocols for generic and self-verifying data areilar to the protocols introduced by Mahlki
and Reiter for masking and dissemination quorum systeris [B4ere are two differences between these
protocols and SBQ protocols. First, in the Wridg(operation, in place of the SBQ protocol’s step 5, which
just sends data to a write quorum, earlier protocols for mngsknd dissemination quorum systems first
send the data and then wait for acknowledgments from a quofuservers. In essence, these protocols
send writes to a quorum oésponsiveservers while SBQ sends writes to a quorum of servers thatanay
may not be responsive. Second, earlier protocols use saetd-guorums for both reads and writes, while
the SBQ protocols allow asymmetric read and write quorums.

To illustrate these differences, consider tiibreshold case. In addition to the constraints SBQ1, SBQ2,
and SBQ3 listed above, Mahlki and Reiter protocols (MR prok® for short) add two more constraints.

First, MR protocols require that writes wait for a write quor of acknowledgments.

MR1. |Ql» < n — f (Availability)
Second, MR protocols use symmetric quorums.

MR2. Q| = |Qlw» = |Q] (Symmetry

Note that because MR1 and SBQ1 impose symmetric consti@intsad and write quorums the use of
symmetric quorums is a natural design decision for MR pr@d\ote also that either of MR1 and MR2,
when combined with constraints SBQ1 to SBQ3, is sufficierthf-threshold case to increase lfythe
number of servers required to toleragfefailures: generic data now requires > 4f + 1 servers, with
minimum quorum sizéQ| = %f“ (n>3f+1land|Q| = %f“ for self-verifying data). The following
table compares the quorum sizes in Hibreshold case for the MR protocols and the SBQ protocols.

For generic data (minimum values): For self-verifying data (minimum values):
MR SBQ MR SBQ
Servercount| 4f+1 3f+1 Servercount| 3f+1 2f+1
Write quorum | [2420HL) | oty g g Write quorum | [2H[HL] | [odly oy f
Read quorum| [“H2/+1] | (ot Read quorum| [“H[1] | [nil)

Because SBQ quorums are formed under strictly weaker @nistithan the dissemination and masking
quorums used in the MR protocols, the SBQ quorums never meke farger than the MR quorums. For a
given number of failures, even though SBQ’s write quorumléger fraction of all servers than MR'’s write
qguorum, the absolute number of servers to which writes meisieint is no larger because the total number
of servers is correspondingly smaller. In particular, fanimal » both SBQ and MR have write quorums
of size2f + 1 in the self-verifying-data case, anda#creases, both protocols’ write quorums grow at the
same rate.

Conversely, for a given number of servers, the SBQ protocalstolerate more failures than the MR
protocols. For example in the case of self-verifying datd aith 13 servers, MR can tolerate 4 failures
and SBQ can tolerate 6. The quorum sizes are 9 for MR and 18/3BQ (for the write/read quorum,
respectively).

Finally, we note that SBQ protocols use the same reliabledspnous messaging system model as
MR protocols, and, as we show in the next section, they peothié same consistency guarantees: regular
semantics in the case of self-verifying data and safe seécsastherwise.

Although SBQ protocols can reach the same level of faudireoice with fewer servers, they sacrifice
something in order to get these improvements: a writer teas . BBQ can not determine when a write
operation ends. A mitigating factor is that all write op@&as are guaranteed to end eventually.

Section 4. shows that as a result, our protocol cannot baedipunreliable networks. Instead, we adapt
the original protocols of Mahlki and Reiter to this more gethenodel.

3.3. Correctness

The SBQ protocols given in Figures 1 and 2 implement, regpdygt safe semantics for a-masking quo-
rum systems and regular semantics for a-disseminationuqusystems. The proofs of these claims, not
surprisingly, resemble the proofs of the same claims giweMahlki and Reiter for their masking and dis-
semination quorum systems. In the interest of space, wegivéythe results for a-masking quorum systems,
and state, without proof, the results for a-disseminatioorgm systems.

3.3.1 Safe semantics in a-masking quorum systen&afe semantics [21] guarantees that a read operation
concurrent with no write operation returns the most regantlitten value. If there is a write concurrent with
aread, then safe semantics allow the read to return anasgbitalue—in which case, any live protocol triv-
ially guarantees safe semantics. The following lemmaseptbat the SBQ protocol for non-self-verifying
data given in Figure 1 implement a multi-reader multi-wrgafevariable.

Lemma 1 The SBQ read and write protocols for both a-masking and aedignation quorum systems are
live.

ProOOE The only time in which a client is blocked, for both the ream dhe write protocol, is in step
2. In both cases, the client is waiting for responses fromad Bpiorum of servers. By AM-Availability
(respectively AD-Availability), a responsive read quoraiways exists. O

Lemma 2 Letw; andws be two SBQ write operations in an a-masking or a-dissenonaguorum system,
and letts; andts, be their corresponding timestampsadf happens befores,, thents; < tss .

PrROOF If w; happens beforevs, then, by definition,w; has completed before, starts. By our
definition of completion, all correct servers in a write quor@,,, have storeds;. By Lemma 1,w»
can collect a set of timestamps from a read quo@m Because of AM-Consistency (respectively AD-
Availability), @, and@,, intersect in at least one correct sergerBecause timestamps kept by a correct
server are monotonically increasingwill return a timestamps,; > ts;. Since by the write protocol the
timestamp ofw, is larger than any of the collected timestamps, it follonat th; < tss. O

Lemma 3 In a-masking quorum systems, a read operation not concuwvéh any write operation returns
the most recently written value.

PrROOF LetW be the set of write operations that preceded the read, and letiW be the write operation
with the highest timestamp. By Lemmas2; did not precede any operationliti and therefore there exists
a serialization of the operations W in which w* is the most recently written value. By Lemma 1, a read
quorum will respond to the read with a set of value/timestgrajps, and by AM-Consistency, that read
qguorum includes a voucher set of correct servers that redeiv. Since the timestamp of correct servers is
monotonically increasing, and* is the write with the highest timestamp, each of the servetisis voucher
set returngv*’s value. Furthermore, by definition, any value returned bpacher set of servers has been
previously written. Because the read protocol decides ervétue returned by a voucher set that has the
highest timestamp, the read operation returiisthe most recently written value. O

3.3.2 Regular semantics in a-dissemination quorum systenhe following lemmas, that we give with-
out proof, establish that the SBQ protocol for a-dissennaguorum systems given in Figure 2 implements
aregularvariable. The proofs are very similar to those given abovefmasking quorum systems and safe
variables and can be found in [27].

Lemma 4 A read operation that is not concurrent with any write op@atreturns the result of the most
recently written value.

Lemma5 A read operation that is concurrent with one or more write i@b@ns returns either the most
recently written value, or one of the values being writterti®yconcurrent write operations.

10

4. Network models

Both the MR and the SBQ protocols assumelable asynchronous netwarltor any pair of correct ma-
chinesA and B, if A sends a message, th8nis guaranteed to eventually receive it. In some systems, the
network subsystem is such that assuming reliable commtimice natural. In many other cases, however,
the underlying network hardware provides weaker guarargeeh asinreliable asynchronous communi-
cation, in which each message sent has a non-zero probability isfrayiat its destination but there are no
bounds on message delivery time. In that case, commungcatathines commonly attempt to construct a
network layer that provides a reliable network abstractieer unreliable network hardware.

Unfortunately, Byzantine machine failures can make it dliffi to engineer a reliable messaging abstrac-
tion over an unreliable network substrate. In particulag ave concerned about bounding memory con-
sumption of message buffers. Commonly, a system achieliableemessage delivery by requiring a sender
to buffer and occasionally retransmit each message it semilsit receives an acknowledgment from the
receiver [1, 16, 29]. In an asynchronous system, such amaplprcan consume unbounded buffer memory
even if failures are restricted to crash failures [31]. Tdaesiger arises because a correct but slow machine
cannot be distinguished from a faulty (crashed) machineer@fbre, a sender can never safely delete an
unacknowledged message from its buffer.

For a fail-stop system model, this problem may not be a lagyeern because there exist reasonable
engineering approaches to avoid the need for infinite memvbile providing a reasonable approximation
of reliable asynchronous messaging. For example, seaiable messaging systems [1, 2, 20] store unac-
knowledged messages on in an on-disk log. It may be safe atigeao assume that it is extremely unlikely
that the log will overflow by assuming (1) a large log, (2) as@@able bound on crash or partition durations,
and (3) that a machine will acknowledge received messagesthaé repair of a crash or partition. Although
such an approach may be theoretically unsatisfying (it icityl assumes a bound on the duration of fail-
ures and therefore is no longer, strictly speaking, an dspmous system), this approach seems common in
practice.

Unfortunately, when we design a system to tolerate Byzarftilures, such assumptions may no longer
hold. In particular, we would like to be able to constructtpomls that behave well even if faulty machines
remain faulty for arbitrary periods of time or never retuma state when they acknowledge receipt of
messages or both. In those circumstances, a faulty semweiasiy force clients to consume infinite memory
by never acknowledging messages.

The subsections below address the interaction of netwoittetaand Byzantine quorum systems. We
focus on the problem of engineering practical systems ftiagxample, do not allow a misbehaving receiver
to force the system to run slow or to consume unbounded nktdfer space. We discuss three strategies:

1. Engineer the network to provide (a good approximationtio reliable asynchronous messaging
abstraction without requiring infinite memory.

11

This approach is an extension of the approach discusse@ &ofail-stop systems, and it is a natural
match with existing protocols [24] as well as the SBQ proteabscussed above. We qualitatively
discuss the new issues that arise in Byzantine systems, @ipdovide example scenarios where such
an approach may be appropriate and effective.

2. Strengthen the system abstraction to provaimable synchronous messagiand take advantage of
the stronger semantics.

Byzantine quorum protocols exist for synchronous systéhlt as we describe below, when fail-
ures occur these protocols may be vulnerablgldar readghat include timeouts on the critical path.
For systems where the natural network timeouts exceed Hieedeead performance, we propose two
options that still can make use of network timeouts to bowrfteb memory consumption but that are
less vulnerable to slow reads than existing protocolst,kirs argue that even in systems with a syn-
chronous network layer that makes use of timecaggnchronou8yzantine quorum protocols—such
as our original SBQ protocol—may be an attractive optionalnise they are “self-timing” and their
performance is not limited by failed servers or timeoutscdpe, to address these trade-offs more
generally, we develop the S-SBQ protocol, a synchronousiareiof our SBQ protocol that allows a
system to use a tunable number of additional servers to egithigulnerability to slow reads.

3. Weaken the system abstraction to assaaikenticated unreliable asynchronous messagimgjstrengthen
the Byzantine quorum protocol to handle not just serveufad but also to handle message loss and
to bound buffer consumption.

Below, we show new U-masking and U-dissemination prototttd$ adapt the masking and dissem-
ination protocols from Malkhi and Reiter to explicitly mag@retransmission and network buffers.
Once a quorum of machines has completed an operation, & ciegnsafely delete unacknowledged
messages from its send buffer; thus the fact that Malkhi aiteReprotocols acknowledge all op-
erations, including writes, makes it easy to adapt them teliable networks. We show that these
protocols work even though they may delete messages destirth correct and faulty servers.

Table 1 summarizes the key results discussed in this se@onanalysis results in a series of Byzantine
guorum systems and protocols over a range of system modétsinareasing numbers of servers required
to tolerate progressively weaker system models. For gedata,2 f + 1 servers are needed for synchronous
reliable network systems where timeouts are si2gr; 1 to 3 f +1 for synchronous reliable network systems
where timeouts are long,f + 1 for asynchronous reliable network systems, aifidt- 1 for asynchronous
unreliable network systems. Self-verifying-data allowstems to be built for each of these scenarios using
f fewer servers.

12

Network Protocol Minimum servers
Model generic data‘ self-verifying data
reliable synchronous Bazzi [5] 2f+1 f+1
(fast timeouts)

reliable synchronous S-SBQ 2f+1 to 3f+1 f+1 to 2f+1
(slow timeouts) SBQ 3f+1 2f+1
reliable asynchronous SBQ 3f+1 2f+1
unreliable asynchronous U-masking/U-dissemination 4f+1 3f+1

Table 1:Summary of protocols toleratinf) Byzantine failures for different network models.

4.1. Engineering an asynchronous reliable network

If one can engineer an asynchronous reliable network, Malkd Reiter’s original protocols or our new
SBQ protocols work well. This approach is appealing becausests on a clean separation of concerns
between the network protocol and the Byzantine quorum pobté&Such a separation simplifies theoretical
analysis, and it appears to work reasonably well in pradticéail-stop quorum systems.

However, as discussed above, if the network layer is alsgsutn arbitrary Byzantine failures, a faulty
receiver can prevent a sender from ever deleting bufferexsages. Nonetheless, one can engineer a reason-
able approximation of an asynchronous reliable networkratison when one can (1) restrict the failures to
which the network layer is vulnerable or (2) restrict the kboad so that infinite buffering is not a concern.
To illustrate when this network model is appropriate, wevjite a few examples of both types of restriction
below.

Restricting network failures. In some systems, the Byzantine quorum protocol layer isaralle to arbi-
trary Byzantine failures, but the network layer is less eudtble. For example, some systems have highly re-
liable physical networks. Examples include “System/SjerArea Networks” (SANSs) (such as Myrinet [6]
and Fibre Channel [34]), networks for Massively Paralleld@ssors (MPPs) (such as the Thinking Machines
CMS5 and Cray T3D), networks with built-in redundancy andoaudtic fail-over such as Autonet [36], and
networks with automatic link-level retransmission [32].s@cond, related, approach to bounding memory
consumption by assuming a restricted model of networkradlis to construct a network protocol without
relying on acknowledgments to free network retransmisbigffers. For example, consider the case where
the primary cause of message loss is bit errors from transieotronic interference, where each packet
has a probabilityp of arriving at its destination. A sender that retransmits essage a constant number
of times or with sufficient forward error control redundari@y 19] may in this case regard the packet as
successfully sent, even if no acknowledgments are recedadh a system may still use acknowledgments
to reduce the number of retransmissions in the common caseesponsive sender, but it might make the

13

reasonable engineering approximation that a messagessgnten times has been delivered to the receiver
with high probability, even if no acknowledgment has beerenged. A third approach that insulates the
network layer from some failures is to rely on protectionogsrsoftware modules. For example, in some
systems the network layer may be a protected kernel sulnsyeatel may be considered less vulnerable to
Byzantine failures than higher-level protocols.

Restricting the workload. Rather than restricting the network failure model, someéesgs may approxi-
mate reliable asynchronous messaging with finite bufferadsyming a restricted workload. If the request
rate is low and the retransmission buffer large (e.g., ok dgssin MQS [1] or Bayou [14]), then a system
may reasonably buffer all sent messages regardless of bty have been acknowledged. An example
of a system where such an assumption is natural is a systeéraltady maintains a persistent log of all
transactions for another purpose such as auditing.

4.2. Synchronous network

Given the challenges to engineering a reliable asynchonetwork, it may not be much more difficult to

engineer a reliable synchronous network which allows negtaffers to be bounded by placing an upper
bound on delivery time. In effect, such a system declargsatisarver has failed if it fails to acknowledge a
message within a prescribed time.

An obvious strategy to constructing Byzantine storage igreclsronous system is to use time-outs not
only to garbage collect network buffers but also to detentesefailures at the BQS-protocol level. This
additional information can improve the efficiency of the BQ®tocol. In particular, Bazzi [5] describes a
synchronous BQS protocol for generic (or self-verifying}althat requires jugtf + 1 (or f + 1) servers to
provide storage with safe (or regular) semantics. Bazeeslmrotocol for self-verifying data, for example,
sends read requests to @l 1 servers, waits foif + 1 replies or time-outs, and then returns the correct
value with the highest timestamp from the set of replies.

The disadvantage of such an approach is that a single faattgiscan force each read request to wait
for a timeout. Unfortunately, for many systems the natuetiMork timeout may be long or it may be
difficult to estimate precisely. For example, empirical sw@aments of network failures show a heavy-
tailed distribution for the duration of Internet connettivfailures, with significant numbers of failures
lasting several minutes and some network failures lastmgs[11]. As another example, TCP’s protocol
for establishing an initial connection attempts retrarssions at increasing intervals that can exceed one
minute if several packet losses occur in a row [4]. Furtheamselecting a timeout at which retransmission
will be abandoned will often be an engineering estimate afha beyond which successful retransmission
is unlikely rather than a true fundamental bound on possit@ssage delays. Therefore, it may often be
desirable to conservatively set such timeouts to be as Ispgssible in order to avoid introducing spurious

14

server failures. When messages can be buffered on disksoui® of minutes, hours, or longer may be
desirable.

Unfortunately, if a synchronous BQS protocol is used, sunleduts would result in unacceptable read
performance for many applications. In some cases, the ingbdeng timeouts can be mitigated by having
clients track which servers have timed out in the past sactheatts can avoid sending messages to or waiting
for servers known to have failed. Unfortunately, this Solutis not always appropriate. For example, for
some applications or environments such an approach camcfEgrise the complexity of a client, (2) increase
the complexity of server recovery [9], (3) inflict a timeotiat is too long (e.g., minutes or hours) to be
accepted for even a single operation per client, or (4) remainerable to a server that consistently responds
a few moments before a series of timeouts.

An alternative approach is to use an asynchronous Byzaqtioeum protocol over a synchronous net-
work. In this approach, a server that fails to acknowledgeeasage within a timeout is defined to have
failed, and the network layer uses timeouts to bound bufd@msemption by deleting messages to failed
servers. The Byzantine quorum protocol, however, is aggmcus and does not make use of timeouts.
This approach has the advantage of being “self-timing” dsend writes proceed at the rate of the correct
servers rather than the rate imposed by failed servers meatits. The price for this speed is that the SBQ
protocol requires’ more servers than Bazzi’'s synchronous protocol.

This naturally raises the question of how much performarare lwe achieved using fewer additional
servers. In fact, a continuum exists between (a) the opfiegrechronous protocols such as Bazzi's that use
2f + 1 servers for generic data but that can suffer slow reads if eme server is faulty and (b) the option
of asynchronous protocols that usg+ 1 servers for generic data servers but that can keep all fedlecers
off the critical path of read and write operations. We covés tomplete continuum by adapting the SBQ
protocol to the reliable synchronous network model. Thealteg protocol, S-SBQ, provides two different
guarantees: it can still toleraggfailures, and in addition it is guaranteed to complete djgara without
waiting for time-outs until the number of failures reachems threshold (¢t < f). We say that S-SBQ is
f-safe, t-fast By comparison, the Bazzi protocol is f-safe, 0-fast andasgnchronous BQS protocols are
f-safe, f-fast. The quorum construction used by S-SBQ allivwo be f-safe, t-fast using + ¢ + 1 servers
(2f + t + 1 for non-self-verifying data). Because the choice of theigaift is left to the implementor, S-
SBQ can either use as few servers as Bazzi's protocol or alagelf-timing like SBQ. More interestingly,
its performance can be adjusted to any intermediate scenari

Due to space constraints, the complete description of S-&3@ell as the quorum constructions it uses
is deferred to Appendix 3.1.. Note that even though the dision of the previous paragraph was limited to
the threshold case, S-SBQ uses a more general failure nfatehtludes not only a fail-prone system but
also a newdelay-prone systeno describe the conditions under which the protocol musabe f

The following theorems describe the key behaviors of theB® $rotocol.

Theorem 1 The S-SBQ protocol for self-verifying data follows regus@mantics and the S-SBQ protocol

15

for non-self-verifying data follows safe semantiSafety)

This theorem expresses the safety of the protocol. Its gten¥es from the intersection property of our
qguorum construction.

Theorem 2 The S-SBQ protocols are live (i.e. all requests eventuatipinate).(Liveness)

It is easy to show by inspection that all protocol operatitamminate at most after a time-out delay. The
next theorem expresses the conditions under which theqmiotimes not need to wait for this delay.

Theorem 3 The S-SBQ protocols are self-timed as long as the failuris ssivered by some delay scenario.
(Performance)

This derives from the availability property of the quorums.
It is also straightforward to adapt Bazzi's protocol to domst an f-safe, t-fast version by adding more
servers. However, because Bazzi's protocol includes sgnclus acknowledgments of writes, the natural
definition of such an “S-Bazzi” protocol retains symmetéad and write quorums and therefore requires
2f 4 2t + 1 servers for generic datg @ 2t + 1 servers for self-verifying data).

4.3. Unreliable asynchronous network

In this section we describe a U-masking and U-dissemind@imantine quorum protocol fauthenticated
unreliable networksas defined in Section 2 in which the protocol deals with netwayer failures, retrans-
mission, and buffering. We also show how variations of thistgcol can bound network retransmission
buffer consumption. This protocol is a straightforwardesmsion of Malkhi and Reiter’s protocol for asyn-
chronous reliable networks [24]. Due to space constraimtssummarize the protocol and its properties in
this section. We refer the reader to [27] for a full statenadrthe protocol as well as proofs for the theorems
and lemmas stated in this section.

Although the model used by Malkhi and Reiter’s original piaail ensures that all correct servers receive
all transmitted messages, the protocol itself only reliea quorum of servers receiving each message. Thus,
once a sender receives responses to a request from a quornatloines, it may safely stop retransmitting
that request. Because the protocol requires explicit resgoto all requests, including writes, it is simple
to adapt it to manage retransmission buffers. In particwarmodify the protocol to replace each step that
waits for a quorum of replies to instead repeatedly reseadbssage sent in the previous step to all servers
that have not responded until a quorum of servers has resgdoibte that a sender can space the repeated
resends arbitrarily far apart in time as long as it followsadgorithm that ensures an infinite number of
retries to a receiver if no response from that receiver is m@eived and if the send to that receiver is not
cancelled. Also note that these application-level retrassions provide weaker guarantees than the reliable

16

asynchronous networking abstraction because some ceg®&rs may not receive messages transmitted to
them.

The resulting U-masking (or U-dissemination) protocolvides safe (or regular) semantics for generic
(or self-verifying) data. The protocol is live because thailability property guarantees that it must always
eventually stop resending messages: under an unreliaplerasnous network as defined here, a message
sent repeatedly must eventually reach its destinationer@iliat, we show that each send/receive/wait step
is equivalent to a reliable asynchronous send to a respsiorum of servers. Then, the proof of safety
and liveness follows Malkhi and Reiter’s original proof.

The advantage of managing message retransmission in trefyz quorum protocol as opposed to ab-
stracting it into the communications layer is that doing sakes it easy to bound buffer consumption even
if a server’s network protocol software is considered vidbée to Byzantine failures of the server. In par-
ticular, under these protocols, a read or write request magume client buffer memory proportionalsno
the number of servers. If a client issuesoncurrent operations, then the client’s total memory gomsion
is O(nc). Unfortunately, in an asynchronous system, each requagtake arbitrary time to complete, 80
may, in general, be unbounded. Fortunately, this prot@caiienable to several techniques for bounding the
number of outstanding requests from each client. For exani@ client application using the BQS system
is single-threaded and blocks for reads and writes, thetersybuffer consumption is naturally bounded to
O(n) buffers per client.

A more general solution is for the protocol itself to manatiecation and deallocation from a finite set
of buffer and to block incoming requests when insufficierffdrs are available to complete a request. In
particular, in the Finite Buffer U-masking or U-dissemioatprotocol, we assumeé local buffers and add
a step FIRST before and a step LAST after both the read andriteefunction.

FIRST) Wait for n local buffers to be available then loeklocal buffers.

LAST) Unlock then local buffers claimed in step FIRST.
We provide the complete proofs for the following three tlegos in our technical report [27].

Theorem 4 The Finite Buffer U-masking protocol for generic data fol safe semantics and the Finite
Buffer U-dissemination protocol for self-verifying datdléws regular semantic{Safety)

The safety of the Finite Buffer protocol follows from the faleat each send/wait/repeat step is equivalent
to a reliable asynchronous send and the safety propertidal&hi and Reiter’s original protocol.

Theorem 5 The Finite Buffer U-masking and U-dissemination protoewtslive (i.e. all requests eventually
terminate).(Liveness)

17

This follows from three facts: (1) step FIRST terminatesause the rest of the protocol is live, (2) each
network send/wait/resend step terminates because it mestually reach a responsive set of servers, and
(3) the original Malkhi and Reiter protocols terminate.

Theorem 6 The Finite Buffer U-masking and U-dissemination protoamisumes at modt buffers. (Finite
Buffering)

This follows from the locking of step FIRST.

5. Related Work

There is a significant body of work on quorum systems [12, 53,17, 23, 37] but Byzantine failures were
first considered by Malkhi and Reiter [24]. They have extehitiés work in other directions, for example by
distinguishing between crash and Byzantine failures [26the same work, Malkhi and Reiter show how
to use smaller quorums (as opposed to smaller quaystemsas examined here), of siZ&y/n). These
constructions however require as many total servers aspgt®iious work. Investigating whether our SBQ
protocols can be adapted to these smaller quorums remaims fnork. Malkhi and Reiter’'s seminal paper
on Byzantine quorums [24] also explores the load of the quaystem and present a quorum construction
which does not requires the clients to know about the faikoenarios. Exploring these concepts in the
context of SBQ is future work as well.

The idea of distinct read and write quorums has been exploedare [13] but not in the context of
Byzantine failures.

Bazzi [5] explored Byzantine quorums in a synchronous erwirent, with reliable channels. In this
context it is possible to require fewer servefsH 1 for self-verifying data2f + 1 otherwise). He uses
symmetric quorums. Our work shows an alternative asyndusralgorithm that can efficiently utilize
additional servers to avoid slow reads.

Triantafillou and Taylor [38] have extended work in quorunmsler a fail-stop assumption by reasoning
about the location of the replicas. They present resultshvpiovide similar availability to quorum systems
but with improved latency. Extending these results to Byin@renvironments remains future work.

Phalanx [25] builds shared data abstractions and provideskiang service, both of which can tolerate
Byzantine failure of servers or clients. It uses dissenmmaand masking quorums. Asymmetric quorums
would not be appropriate in this case because to implemeks|@ne must be able to determine when the
write operation completes.

Distributed storage can also be implemented using Rampalt & toolkit for distributed applications
in Byzantine environments. Rampart does not use quoruneragsbut instead relies on the state machine
approach [35] to implement the abstraction of highly adddalistributed shared memory.

Castro and Liskov [10] also attacked the problem of reliaitdage under Byzantine failures. They

18

implement a Byzantine-fault-tolerant NFS service usinganhique different from quorum systems. They
use self-verifying data and can tolergt@yzantine failures using§f + 1 servers.

When using non-self-verifying data, faulty servers carcéonew timestamps to take arbitrarily large
values. This is a problem because in practice timestampoebntake values from a finite range and
therefore faulty servers can compromise the safety of towpol. All the quorum protocols discussed in
this paper are vulnerable to this problem, but it can be sidbyeapplying known techniques [22].

6. Conclusion

We present two Small Byzantine Quorum (SBQ) protocols ferett variables, one that provides safe se-
mantics for generic data usisg + 1 servers and the other that provides regular semanticslfeveséying

data usin@®2f + 1 servers. This reduces bfythe number of servers needed by previous protocols in the
reliable asynchronous communication model. Our protoasésnovel a-masking and the a-dissemination
quorums. They differ from existing quorums for Byzantinstsyns in that they make a distinction between
read and write quorums.

The reliable channels required by our protocols can be diffio engineer, particularly when Byzantine
failures are a concern. We therefore consider Byzantineugugrotocols with different system models.

In the case of reliable synchronous networks, protocolsriétg on synchrony can be forced to wait for
a time-out if faulty servers do not reply. It can thereforedalwantageous to use asynchronous protocols
and to use the synchrony assumption only in the network .Iayésr propose an intermediate protocol for
the synchronous model which tolerate8Byzantine failures but also provides the guarantee oftsakd
operation as long as the number of actual failures does meeexa threshold (¢t < f).

For the case of unreliable asynchronous networks we showthi@dapt Malkhi and Reiter’s protocol
to this environment to provide safe semantics udifigt 1 servers or, if the data is self-verifying, regular
semantics usindf + 1 servers.

A limitation of the asymmetric quorums used by the SBQ prol®ds that the implicit synchronization
provided by blocking writes is lost. We are exploring the é&fés and limitations of solutions that combine
SBQ protocols with explicit end-to-end acknowledgmentsvifes that have been successfully read.

References

[1] MQSeries, IBM,http://ww 4. i bm coni sof t war e/t s/ ngseri es/.
[2] MSMQ, Microsoft,htt p: // www. m crosoft.com nmsny/ .

[3] L. Alvisi, D. Malkhi, E. Pierce, and R. Wright. Dynamic kgntine quorum systems. Froceedings of the
International Conference on Dependable Systems and Nitnwame 2000.

[4] G.Banga and P. Druschel. Measuring the capacity of a weles. InUsenix Symposium on Internet Technolo-
gies and System®ctober 1997.

[5] R. A. Bazzi. Synchronous byzantine quorum systemsProceedings of the sixteenth annual ACM symposium
on Principles of distributed computingages 259-266, 1997.

[6] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, CSeitz, J. N. Seizovic, and W. Su. Myrinet: A
gigabit-per-second local area netwolkEEE Micro, 15(1):29-36, 1995.

19

[7] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A diditountain approach to reliable distribution of
bulk data. INSIGCOMM pages 56-67, 1998.

[8] M. Castro and B. Liskov. Authenticated byzantine faolerance without public-key cryptography. Technical
Report /LCS/TM-595, MIT, 1999.

[9] M. Castro and B. Liskov. Proactive recovery in a byzaetfault-tolerant system. IRroceedings of the Fourth
Symposium on Operating Systems Design and Implement@®DI(’00), San Diego, USApages 273-287,
October 2000.

[10] M. Castro and NB. Liskov. Practical byzantine faultei@nce. InProceedings of the Third Symposium on
Operating Systems Design and Implementation (OSDI '99), @deans, USApages 173-186, February 1999.

[11] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-&#&N service availability. InThird Usenix Symposium
on Internet Technologies and Systems (USIT3@a&jch 2001.

[12] S.Y. Cheung, M. H. Ammar, and M. Ahamad. The grid protoéohigh performance scheme for maintaining
replicated dataknowledge and Data Engineering(6):582-592, 1992.

[13] S. Davidson, H. Garcia-Molina, and D. Skeen. Consisgen a partitioned network: a survexCM Computing
Surveys (CSUR) Volume 17, Issy@&ges 341-370, September 1985.

[14] A.J. Demers, K. Petersen, M. J. Spreitzer, D. B. TerryMMTheimer, and B. B. Welch. The bayou architecture:
Support for data sharing among mobile usersPioceedings IEEE Workshop on Mobile Computing Systems &
Applications pages 2—7, Santa Cruz, California, 8-9 1994.

[15] D. K. Gifford. Weighted voting for replicated data. Rroceedings of the 7th ACM Symposium on Operating
Systems Principles (SOSPrges 150-162, 1979.

[16] J. Gray and A. Reuter. Transaction processing: Coscapd techniques, 1993.

[17] M. Herlihy. A quorum-consensus replication methoddbstract data types. lCM Transactions on Computer
Systems (TOCS) Volume 4 , Issypdges 32-53, 1986.

[18] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and Rister. System architecture directions for networked
sensors. IProceedings of the Ninth International Conference on Aetttural Support for Programming Lan-
guages and Operating Systems (ASPLOS '00), Cambridge, pig&s 93-104, October 2000.

[19] C. Huitema. The case for packet level fec, 1996.

[20] A.D. Joseph, F. A. deLespinasse, J. A. Tauber, D. K.d&iffand F. M. Kaashoek. Rover: A Toolkit for Mobile
Information Access. IfProceedings of the 15th ACM Symposium on Operating Systentsghes pages 156—
171, Copper Mountain, Co., 1995.

[21] L. Lamport. On interprocess communicatiodsstributed Computingpages 77-101, 1986.

[22] M. Li, . Tromp, and P. M. B. Vitanyi. How to share concent wait-free variables.Journal of the ACM
43(4):723-746,1996.

[23] N. A. Lynch and A. A. Shvartsman. Robust emulation ofrgldamemory using dynamic quorum-acknowledged
broadcasts. lIBymposium on Fault-Tolerant Computjpgges 272-281, 1997.

[24] D. Malkhi and M. Reiter. Byzantine quorum systenisstributed Computingpages 203-213, 1998.

[25] D. Malkhi and M. Reiter. Secure and scalable repliaatrophalanx. IrProc. 17th IEEE Symposium on Reliable
Distributed Systems, West Lafayette, Indiana, |USé 1998.

[26] D. Malkhi, M. Reiter, and A. Wool. The load and availatyilof byzantine quorum systems. Rroceedings 16th
ACM Symposium on Principles of Distributed Computing (PQp@ges 249-257, August 1997.

[27] J-P. Martin, L. Alvisi, and M. Dahlin. Small byzantineigrum systems. Technical report, University of Texas at
Austin, Department of Computer Sciences, December 2001.

[28] E. Pierce and L. Alvisi. A recipe for atomic semantics ligzantine quorum systems. Technical report, Univer-
sity of Texas at Austin, Department of Computer Sciences; RQ00.

[29] J. Postel. Transmission control protocol. Technicgp&t RFC-793, Internet Engineering Task Force Network
Working Group, September 1981.

[30] M. Reiter. The rampart toolkit for building high-intaty services. InDagstuhl Seminar on Distributed Systems
pages 99-110, 1994.

20

[31] A. Ricciardi. personal communication, November 2001.

[32] J. Robinson. Reliable link layer protocols. Techniraport RFC-935, Internet Engineering Task Force Network
Working Group, January 1985.

[33] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using aéstion to improve fault tolerance. Proceedings of
the 18th Symposium on Operating Systems Principles (SA3R06tober 2001.

[34] M. Sachs and A. Varma. Fibre channdtEE Communicationgpages 40—49, August 1996.

[35] F. B. Schneider. Implementing fault—tolerant sersicsing the state machine approach: A tutor@mputing
Surveys22(3):299-319, September 1990.

[36] M. Schroeder, A. Birrell, M. Burrows, H. Murray, R. Nelegim, T. Rodeheffer, E. Satterthwaite, and C. Thacker.
Autonet: A high-speed, self-configuring local area netwasing point-to-point linksIEEE Journal on Selected
Areas in Communication9(8), October 1991.

[37] R. H. Thomas. A majority consensus approach to conaggreontrol for multiple copy databaseBatabase
Systems4(2):180-209, 1979.

[38] P. Triantafillou and D. J. Taylor. The location-basedauigm for replication: Achieving efficiency and avail-
ability in distributed systems. IlEEE Transactions on Software Engineering, 2ages 1-18, January 1995.

[39] L. Zhou, F. B. Schneider, and R. van Renesse. COCA: Arsedistributed on-line certification authority.
Technical Report 2000-1828, Department of Computer Seig@ornell University, Ithaca, NY USA, 2000.

21

A Malkhi and Reiter’s protocols

The SBQ protocols, the a-masking and a-dissemination guaanstruction, and their analysis draw on
Malkhi and Reiter’s original protocol and quorum system4][2In this section, we review Malkhi and
Reiter’s original definitions and restate their protoco&inotation similar to that used to describe our SBQ
protocols in Figures 1 and 2.

1.1. Masking Quorum systems

Masking quorum systems provide consistent data replicagicen if some of the servers in the quorum
system are arbitrarily faulty. They are defined as follow4] [2

Definition 3 A quorum systen@ », is amasking quorum systefor a fail-prone systens if the following
properties are satisfied.

M-Consistency: VQ1,Q2 € Qm VB1,B2 € B: (Q1NQ2)\ Br £ B>
M-Availability: VBeBIQ1 € Qm: BNQR1 =0
The first property implies that, in the f-threshold case,itiersection of two quorums contains a majority
of correct servers (sindé3;| = |Bz|). The second property guarantees that there always existssh one
quorum which contains no faulty processes. For an f-masgumyum system, these properties require
n > 4f + 1, and quorums of sizgQ| > [*H3+1],

Read and Write Protocols for Masking Quorum Systems The protocols for reading and writing data
in masking quorum systems implement multiple-writer, nplétreadersafevariables [21]. Protocols for
partial regular semantics have also been proposed [28]pfdiecols assume that each clierttas access
to a setT, of timestamps, and that the sets used by different clieetsligjoint. Read and write operations
are defined as follows [24].

Write. For a clientc to write a valuew, it queries servers to obtain a set of timestamps {< t, >}uco
for some quorun@; chooses timestamp € T, greater than the highest timestamp valuediand
greater than any timestamp it has chosen in the past; and Hemdpdate< v, t > to servers until it
has received an acknowledgment for this update from evewgisi some quorund)’.

Read. For a client to read a variable, it queries servers to obtain a set of value/timestamp phits {<
Vu, tu >}ucq for some quorun®. The client the computes a sét that contains all pairs returned by
at least one correct server. Formally,

A'={<v,t>: 3BT CQ[VB € B[B" € B]AYu € BT[v, =vAt, =t]]}

The client then chooses the pairv, t > in A’ with the highest timestamp, and choosess the result
of the read operation; ift’ is empty, the client returns (a null value, indicating that the read failed).

22

Write(A)
1. send (GET-TS) to all servers.
. wait until received timestamps; from each serves; in a masking quorum.
. letlastts be the largest received timestamp.
. choose a new timestamyew _ts that is larger than bottast ts and any timestamp previously chosen by this server.

. send (STORmew_ts, A) to all servers.
. wait until received an acknowledgment from each segyén a masking quorum.

o 0o~ WDN

(ts, A)=Read()

=

. send (GET) to all servers.

N

. wait until received pair§A;, ts;) from each serves; in a masking quorun@.

w

. { Build a setG containing all pairs returned by a voucher set of servérs.
ComputeG = {{ts,A)|(ABT C Q = (VB € B: Bt Z B: (Vsy € BT :: Ay = A Atsy = ts)))}
4. if G # Dthen

select the paifA, ¢s) with the highest timestamis
return(A, ts)

Figure 3: MR protocol for generic (non-self-verifying) dat

Figure 3 describes this protocol using a notation simildhtoone used to describe the SBQ protocol for
generic data in Figure 1.

1.2. Dissemination Quorum systems

Dissemination quorum systems guarantee high availabditgelf-verifying data. They are defined as fol-
lows [24].

Definition 4 A quorum systend@p is a dissemination quorum systefor a fail-prone systens if the fol-
lowing properties are satisfied.

D-Consistency: VQ1,Q: € QpVBEB: (Q1NQ2) LB
D-Availability: VBeB3IQ1€Qp: BNQ, =0

The first property guarantees that the intersection of amyduorums contains at least one non-faulty
process. The second property, as in masking quorum systamsantees that there exists at least one
guorum which contains no faulty process. For an f-thresljolorum system, these properties requirg

R 1
3f + 1, and quorums of sizgQ| > [*H+1].

Read and Write Protocols for Dissemination Quorum Systems. The self-verifying nature of the data
stored by dissemination quorum systems makes it possibilaglement shared variables with strong se-
mantics. The following read and write protocols implememutiple-writer multiple-readeregular vari-
able [21] for dissemination quorum systems. Read and wratopols for achievingitomicsemantics [21]
have also been proposed [25].

23

Write(A)
1. send (GET-TS) to all servers.
2. wait until received signed timestar{jss; }ciient; from each serves; in a dissemination quorum.
3. letlastts be the largest valid timestamp in the answers.
4. choose a new timestamew__ts that is larger than botfast.ts and any timestamp previously chosen by this server.
5.

send (STOREpew_ts}cient . {new-ts, A} jient) to all servers.
(ts, A)=Read()
1. send (GET) to all servers.
2. wait until received signed timestam{s; }.i;ent; from each serves; in a dissemination quorum.

3. discard all pairs that are not verifiable.

4. if all pairs were discarded
return_L
return the remaining paifts, A) with the highest timestamp.

Figure 4: MR protocol for self-verifying data

Write. ldentical to the write protocol used in masking quorum syste

Read. For a client to read a variable it queries servers to obtain a set of value/timestamp phits {<
vy, tu > }tucg from some quorun@). The client then discards those pairs that are not verifigbte,
using an appropriate digital signature verification altpon) and chooses from the remaining pairs
the pair< v, t > with the largest timestamp. is the result of the read operation.

Figure 4 describes this protocol using a notation simildhtoone used to describe the SBQ protocol for
generic data in Figure 1.

24

B Correctness of SBQ

In Section 3. we asserted that the SBQ protocol for genetia idaplements safe semantics and that the
version for self-verifying data implements regular sereantWe proved the correctness of the protocol for
generic data in Section 3.3.1. We now treat of case of seifyugg data.

2.1. Regular Semantics in a-dissemination quorum systems

Lemma 6 A read operation returns either the most recently writtetugaor the value being written by
some concurrent write operation.

Let W be the set of write operations that preceded the realllednv* € W be the write operation with
the highest timestamp. By Lemma 2} did not precede any operation # and therefore there exists a
serialization of the operations ¥ in which w* is the most recently written value. By Lemma 1, a read
quorum will respond to the read with a set of value/timestgraps, and by AD-Consistency, that read
quorum will contain an answer from a voucher set that reckeiwe Since the timestamp of correct servers
is monotonically increasing and* is the write inT¥ with the highest timestamp, the correct server in the
voucher set will return eithew*’s value or a verifiable value with a higher timestamp. Furtt@re, any
verifiable value has previously been written. Because tad peotocol decides on the verifiable value that
has the highest timestamp, the read operation returng ¢fittenost recently written value* or a value
w™ with higher timestamp. Since* is the completed write with the highest timestamp, it fokkothiat the
valuew™ is associated with a concurrent write. O

Lemma 7 A read operation that is not concurrent with any write opeatreturns the result of the most
recently written value.

This is a corollary of the previous lemma. O

25

C S-SBQ

3.1. Adapting SBQ to Synchronous Networks

SBQ, as described in Figures 1 and 2, requires a number @arse@y + 1 or 3f + 1) that is appropriate for
asynchronous networks. In the case of synchronous netwibikgpossible to modify the protocol to take
advantage of time-outs and therefore require fewer serVespresent S-SBQ, which requires otfly- 1
serversZf + 1 for non-self-verifying data).

In this variant of SBQ, we modify step 2 of the write operatfonself-verifying data as follows.

2. Wait for a read quorum of answers or time-outs.
Let A be the set of servers that either replied with (ACK-GET-{tS;}some_ciient) OF Whose link
timed out.
Let A grow until 3@, € @, : Q1 C A.

Step 2 of the read operation is modified similarly.

2. Wait for a read quorum of answers or time-outs.
Let A be the set of servers that either replied with (ACK-GEE, A}jient) OF Wwhose link timed out.
Let A grow until 3@, € @, : Q1 C A.

Similar changes apply to the case of non-self-verifyingadtte only difference being the absence of the
signature in the data read.

We now modify the quorum construction to express the fadtttie construction of S-SBQ is not only
determined by a requirement on fault tolerance but also legiairement on fast (self-timed) reads.

3.2. flt-masking quorum system

The quorum systems for asynchronous networks considel-préaie systent which contains all possible
failure scenarios that the protocol is expected to be abseiteive. To this we add thdelay-prone system

S’ that contains all possibldelay scenarios A delay scenario is a subset of some failure scenario. The
requirement is that as long as the failures do not expandroegay delay scenario, the protocol must not
suffer from slow reads. Because this quorum constructiantiva different bounds, one for performance
and one for safety, we call itf&-masking quorum system

S-Consistency: V@1 € Q,VQ2 € QuVB1,Bo € S5S:Q1NQ2\ By By
S-Performance: VB'€e $'3Q,€Q,: B nQ; =10

26

In the threshold case where all delay scenarios havedsiie minimum number of required servers is
n=2f+d+1.

Is it always possible to build such a quorum system if suffitjemany servers are available. This
derives from the fact that self-verifying (and non-selfif§¢ng) data quorums exist and that delay scenarios
are subsets of failure scenarios.

3.3. f/t-dissemination quorum system

This quorum construction is specific to self-verifying ddta performance constraint is identical to that of
the fit-masking quorum system but the consistency comstimbptimized for self-verifying data, allowing
for smaller quorums.

SV-Consistency: VQ1 € Q,.VQ2€Q,YBES:Q1NQ2 LB
SV-Performance: VB'€ $'3Q:€Q,: BNQ,=10

In the threshold case where all delay scenarios havedsiie minimum number of required servers is
n=f+d+1.

3.4. Correctness

In this section we revisit the key properties of S-SBQ presgimitially in Section 4.2. and present a proof
for each. For clarity we consider self-verifying and nolf-serifying data separately, even though several
of the proofs for self-verifying data apply to the case of 1seff-verifying data as well.

3.4.1 Self-Verifying Data

Lemma 8 (timestamp consistency)So long as at least one failure scenario covers the failuteitsa write
operation A completes before a write operation B then thedtammp associated with B is larger than the
timestamp associated with A.

This lemma shows that our choice of timestamp values is @piate. It allows us to reason about the
real-time ordering of writes based on their relative tirmegbs.

If write operationA has completed then (by our definition of completion), allreot servers in a write
qguorum have finished processing the write message. The Sistemcy property (or AS-Consistency for
self-verifying data) of the f/t-masking (f/t-dissemirati respectively) quorum construction guarantees that
A’s timestampts will be read in phase 2 of the write function. Because thai?zalomes from a correct
server it will be valid. Therefore the timestamp chosenBowill be larger thants. O

27

Lemma 9 (safety) So long as at least one failure scenario covers the failutetbe S-SBQ protocol for
self-verifying data follows regular semantics.

Because of the self-verifying nature of the data, faultywses cannot modify the timestamp in their
answer. Any valid answer they provide (i.e. answer that l@sbaen modified) is therefore necessarily
correct. Correct servers only send correct answers, trerefl valid answers will also be correct. Because
the read protocol decides on a valid answer, we can deducththehosen value will also be correct.

The SV-consistency property of the f/t-dissemination guoiconstruction guarantees that the read quo-
rum will include at least one correct servarwhich sent timely data. We use Section 3.3.’s definition of
timely, i.e. timely data either comes from the completedewvith highest timestamp (tHatest completed
write) or data from a write that is concurrent with the read.

The previous lemma guarantees that correct data with aytitirakestamp comes from either the last
completed write operation or a write operation that has notpleted yet.

The read protocol selects the valid answer with the higheststamp. Becausd’s timely answer is
considered, the chosen answer will necessarily have atamgsthat is greater or equal to that of the latest
completed write. It follows that this timestamp is assaaiagither with the latest completed write or with a
write that is concurrent with the read. By definition, thaswaer is timely.

The chosen value will therefore be correct and timely. Bseaile previous lemma shows that our
definition of timely corresponds to the real-time orderirfgttee write operations, we can conclude that
S-SBQ obeys the regular semantics in the case of self-usgifjata. O

Lemma 10 (liveness)The S-SBQ protocols are live (i.e. all requests eventualiyninate).

There are two places in the protocol where waits occur: steptBe write operation and step 2 of the
read operation. After a time-out duration, the detvill contain all servers (Since the request was sent to
all servers). Because all guorums are subsets of the samverse,3Q; € Q, : Q1 C A will hold and the
wait will stop. Therefore, each of these two waits will stapreost after a time-out delay. This is true for
both the self-verifying and the non-self-verifying verssoof S-SBQ O

The next theorem expresses the conditions under which tdteqm does not need to wait for this delay.

Lemma 11 (performance) The S-SBQ protocols are self-timed as long as the failurs setvered by some
delay scenario.

We revisit the two locations in the protocol where a wait as¢but this time show that a shorter wait is
possible if sufficiently few failures occured. Since the tfanctions are identical, we treat them together.

The wait completes as soon as the 4edf answers covers a read quorum. If the failure set is smaller
than some delay scenario then the S-Performance propethe dft-masking quorum system (or the SV-
Performance of f/t-dissemination quorums for self-venifydata) guarantees that there exists a read quorum

28

R consisting only of correct servers. These servers willraglsoon as they see the request Andll grow
to contain the read quoru. The operation will therefore continue in a self-timed mamn O

3.4.2 Non-Self-Verifying Data

Lemma 12 (safety) So long as at least one failure scenario covers the failutetee S-SBQ protocol for
non-self-verifying data follows safe semantics.

We first show that the chosen answer will be correct.

Faulty servers can send arbitrary answers to the read gdewever because the read protocol decides
on a value vouched for by more servers than a failure set car,canswers that no correct server vouches
for are rejected. Therefore, the chosen answer is correct.

We now show that the chosen answer obeys safe semantics iftthere is no concurrent write then the
read will decide on the value of one of thast writes which we define as a write that has completed and
that is not followed by any other write.

Consider the last write with the highest timestamp. We véll this thelatest completed writeBecause
this write has completed, all correct servers in some wuitgrgm W have finished processing it. The S-
Consistency property guarantees that the intersectiomeleet the read quorum used in the read operation
and the correct servers T is larger than any failure scenario. Because of its sufficere, this answer
will not be rejected (we say it is valid).

In fact, the latest completed write will be the chosen andvemause it has the highest timestamp. We
already know that only correct answers are chosen. Bechaeeis no concurrent write, Lemma 8 ensures
that the latest completed write has the highest timestantpeirsystem. This concludes the proof of this
lemma since the read operation selects the valid answertéthighest timestamp and we know that the
latest completed write is valid. O

The liveness and performance of the S-SBQ protocol for mifaverifying data is shown in Lemmas 10
and 11. The proof of these lemmas is general enough to appailggvell in the case of non-self-verifying
data.

3.5. Conclusion

The two previous subsections have shown that the S-SBQguidgregular for self-verifying data and safe
for non-self-verifying data. This result should not comeaasurprize as it is similar to that of the SBQ
protocol itself.

The SBQ protocol is designed for reliable asynchronous owdsv The S-SBQ protocol is appropriate for
reliablesynchronousetworks. It differentiates itself from existing protosdb] by providing performance
guarantees. S-SBQ does not allow the writer to determinanithavrite operation has completed. In cases
where this information is necessary, the writer can saerffierformance and wait for a time-out value: the

29

write is then guaranteed to have completed. If the time-alievis too long then the implementor should
consider an asynchronous protocol, for example the MR [24]R-U protocol.

30

D Extending MR to unreliable networks

In this section we extend the MR protocolsaothenticated unreliable asynchronocisannels. A message
sent in such a channel is only guaranteed to reach its déstiribsent an infinite number of times. There
is no bound on message delivery time.

Our variant is a straightforward extension of Malkhi andtBes$ original protocols. It uses the same
qguorum constructions and therefore require the same nuafitservers:3f + 1 for self-verifying data and
4f + 1 otherwise.

4.1. Protocols

For the case of self-verifying data, we use a disseminatissruqm system and the protocol described in
Figure 5. The protocol differs from the original only in twspects. First, it introduces an arbitrary time-out
value to deal with the unreliable channels. All messagelsheitepeated if no acknowledgment is received
within this time-out period, until a quorum of servers ackierged the message.

The second difference between the two protocols is that Misés nounces to identify duplicate mes-
sages. This is necessary because messages are sent ntinti@slend therefore more than one copy of a
message may reach its destination.

In the case of non-self-verifying data, the protocol of Fayé is used along with masking quorums
systems. This variant differs from Malkhi and Reiter’s ama protocol in the same way as the protocol
previously described: it introduces resends and nounces.

4.2. Correctness

The proof of correctness for the MR-U protocol can be derivenh that of the MR protocols. The necessary
insights are the following.

Lemma 13 The only communication primitive used by the MR protocotbésreliable send to a quorum
(called “Q-RPC” in their Phalanx paper [25]).

This can be determined by examining the proof they providerasiing that it does not make use of the
messages sent outside of a quorum. O

Lemma 14 MR-U implements reliable send to a quorum.

All the communication in the protocol follows the same paitea client repeatedly sends a message to
all servers and waits for a quorums of answers. The netwaakagiiees we require are sufficient to ensure
that both the client's message and the server’s reply wiltlyg@ugh (since servers answer every message,
including duplicate messages). This communication pattieerefore succeeds in reaching a quorum of

servers. O

31

Write(A)
1. wait until n buffers can be allocated. Allocate them.
2. letu be a nounce.

3. send (GET-TS) to all servers. When a link times out (i.e. when no ack wagiwed within the time-out
interval), resend.

4. wait until received an answer (ACK-GET-T%, ts;) from each serves; in a dissemination quorum.

5. choose a new timestamw_ts that is larger than anys; and that any timestamp previously chosen by this
server.

6. send (STORE, + 1, {new_ts, A}qent) to all servers. If a link times out before we get an ACK, raken
7. wait until received an answer (ACK-STORE + 1, ts) from each servey; in a dissemination quorum.
8. release the buffers.

(ts, A)y=Read()
1. wait until » buffers can be allocated. Allocate them.
2. Letu be anounce.

3. SendéGE'E;) to all servers. When a link times out (i.e. when no ack wasived within the time-out interval),
resend.

4. wait until received an answer (ACK-GET,{ts;, A; }ciient;) from each serves; in a dissemination quorum.
5. Discard all pairs that are not verifiable.

6. Select among the remaining pairs the gair A) with the highest timestamp and return it.
7. release the buffers.

Figure 5:MR-U protocol for self-verifying data

32

Write(A)

pownN

wait untiln buffers can be allocated.
Letu be a nounce.
Send (GET-T&u) to all servers. When a link times out, resend.

Wait for a quorum of answers (using the buffers allocatetthe initial step).
Let A be the set of servers that replied with (ACK-GET; TSt s;)
Let A grow untild@Q, € Q : @, C A.

5. Let the timestamps be larger than the largest timestamp in the answers.
6. Send (STORE,+ 1, {ts, A}cient) to all servers. If a link times out before we get an ACK, rasen
7. Wait for a quorum of acks (using the buffers allocated mittitial step).

8.

Let A be the set of servers that replied with (ACK-STQREF 1, ¢s)
Let A growuntil3Q; € Q : Q1 C A.

release the buffers.

(ts, A)=Read()

1.

wait untiln buffers can be allocated.

2. Letu be a nounce.
3.
4. Wait for a quorum of answers of the form (ACK-GJts, A) Susing the buffers allocated in the initial step).

Send (GETw) to all servers. When a link times out, resend.

Let A be the set of servers that replied with (ACK-GETi;s, A).
Let A growuntil3Q; € Q : Q1 C A.

Compute the set of answers that we know are vouched forlegsitone correct server.
A" ={(ts,A) : BT C Q|VB € S[BT € S| AVi € Bt[ts; = ts AN A; = A]]}.

6. Return(ts’, A'), the value ofd’ with the largest timestamp. K’ is empty then returd._.

7. release the buffers.

Figure 6:MR-U protocol for non-self-verifying data

33

Lemma 15 MR-U deals succesfully with duplicate messages.

The only remaining difference between the communicatiath tfie MR-U and the MR protocols is the
fact that the former may duplicate messages. Duplicateestguo servers will not harm the server state:
read requests do not modify it and write requests are ordaredrding to their timestamp instead of the
order of their arrival.

The danger lies in clients accepting an answer which bebtbtge previous request. Fortunately, the
protocol uses nounces to be able to match answers to thesponding request and therefore duplicate
messages are not a problem. O

Lemma 16 MR-U is safe and live even when only finite memory is available

The first and last operations in every request ensure tharttecol only uses finite memory. These steps
do not affect safety, and we showed in Section 4.3. that thayod affect liveness either. The argument was
that once memory is allocated, it will eventually be freechefiefore, threads will eventually be able to
allocate memory and the MR-U protocol is therefore live. O

34

