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Abstract

The k-means algorithm with cosine similarity, also known as the spherical k-means algo-
rithm, is a popular method for clustering document collections. However, spherical k-means
can often yield qualitatively poor results, especially for small clusters, say 25-30 documents
per cluster, where it tends to get stuck at a local maximum far away from the optimal. In this
paper, we present the first-variation principle that refines a given clustering by incremen-
tally moving data points between clusters, thus achieving a higher objective function value.
Combining first-variation with spherical k-means yields a powerful ping-pong strategy that
often qualitatively improves k-means clustering. We present several experimental results to
show that our proposed method works well in clustering high-dimensional and sparse text
data.
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1. Introduction

Clustering or grouping document collections into conceptually meaningful clusters is a well-
studied problem. A starting point for applying clustering algorithms to unstructured document
collections is to create a wvector space model, alternatively known as a bag-of-words model [17].
The basic idea is (a) to extract unique content-bearing words from the set of documents treating
these words as features and (b) to then represent each document as a vector of certain weighted
word frequencies in this feature space. Typically, a large number of words exist in even a
moderately sized set of documents where a few thousand words or more are common; hence the
document vectors are very high-dimensional. In addition, a single document typically contains
only a small fraction of the total number of words in the entire collection; hence, the document

vectors are generally very sparse, i.e., contain a lot of zero entries.

The k-means algorithm is a popular method for clustering a set of data vectors [5, 2, 18].
The classical version of k-means uses Euclidean distance, however this distance measure is often
inappropriate for its application to clustering a collection of documents [21]. An effective measure
of similarity between documents, and one that is often used in information retrieval, is cosine
similarity, which uses the cosine of the angle between document vectors [17]. The k-means
algorithm can be adapted to use the cosine similarity metric, see [16], to yield the spherical
k-means algorithm, so named because the algorithm operates on vectors that lie on the unit
sphere [4]. Since it uses cosine similarity, spherical k-means exploits the sparsity of document

vectors and is highly efficient [3].

The size of desired clusters is an important requirement for a clustering solution. From
a large corpus where the number of documents may range from 100,000 to a few million, to
small document collections, such as clustering web search results where the typical number of
documents is 100-200, the end user often wants to see small clusters of relevant documents. In
addition, hierarchical clustering of large collections often leads to small document clusters deep

down in the tree hierarchy.

The spherical k-means algorithm, similar to the Euclidean algorithm, is a hill-climbing pro-
cedure and is prone to getting stuck at a local optimum (finding the global optimum is NP-
complete). For large document clusters, it has been found to yield good results in practice,
i.e., the local optimum found yields good conceptual clusters [4, 21, 3]. However, as shown in

Section 3, spherical k-means often produces poor results on small and moderately sized clusters



where it tends to get stuck in a qualitatively inferior local optimum.

In this paper, we present an algorithm for refining the clusters produced by the spherical
k-means algorithm. Our refinement algorithm alternates between two phases: (a) first-variation
and (b) spherical k-means itself. A first-variation step moves a single document from one cluster
to another, thereby increasing the objective function value. Multiple iterations of first-variation
allow an escape from local maximum, so that fresh iterations of spherical k-means can be applied
to further increase the objective function. This ping-pong strategy yields a powerful refinement
algorithm which often qualitatively improves k-means clustering. Note that our refinement
algorithm always improves upon the input clustering in terms of the objective function value.

We present several experimental results to validate these claims.

Many variants of the k-means algorithm, such as “batch” and “incremental” versions have
been proposed in the literature, see Section 6 for a discussion. The main contribution of our
paper is our ping-pong strategy that alternates between “batch” k-means and first-variation
iterations, thereby harnessing the power of both in terms of improved results and computational

speed.

We now give an outline of the paper. In Section 2, we present the spherical k-means algorithm
while Section 3 presents scenarios in which this algorithm performs poorly. In Section 4, we
introduce the first-variation method and in Section 4.1, we present our proposed refinement
algorithm that ping-pongs between first variation and spherical k-means. Experimental results
in Section 5 show that our refinement algorithm yields qualitatively better results giving higher
objective function values. In Section 6 we discuss related work and finally, in Section 7 we

present our conclusions and future work.
2. Spherical k-means algorithm

We start with some necessary notation. Let d be the number of documents, w be the number
of words and let X = {x3,x2,...,%X4} denote the set of non-negative document vectors, where
each x; € R" and ||x;||2 = 1, i.e., each x; lies on the unit sphere. A clustering of the document

collection is its partitioning into the disjoint subsets my, 79, ..., T, i.e.,

Um=X and mnm=¢, j#L



For a cluster m we denote the sum Z x by s(m). The concept vector of the cluster 7 is defined
Xem
by
s()

) = sl

i.e., the concept vector of the cluster 7 is the normalized expectation of w. We define the
“quality” or “coherence” of a non empty cluster 7 as

q(m) =Y x"e(m) = |ls(m)]. (2.1)

Xemw

We set q(¢) = 0 for convenience. Finally, for a partition {7; }?:1 we define the objective function
to be the sum of the qualities of the k clusters:
. k k
T
Q ({Wj}jzl) = ZQ(WJ') = Z Z X G
j=1 j=1x€Em;
where we have written c; for ¢(7;). The goal is to find a clustering that maximizes the value of

the above objective function. In what follows we present the spherical k-means algorithm which

is an iterative process that generates a sequence of partitions
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To emphasize the relationship between the partitions {ﬂ'l }l ) and {77]- } _, we shall denote
= ]:
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{n](.tﬂ)}j:l by nextKM ({wl(t)}l_(1)>. (P;or a partition {wl(t)}lzl with concept vectors cgt) =
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c (ﬂ'l(t)), and a document vector x € 7;’ we denote by present(t,x) and max(t,x) two special

indices defined as follows:

T .(t)

present(t,x) = ¢, max(t,x) = arg mAx X" ¢ .

When there is no ambiguity we shall suppress the iteration parameter ¢ and denote the indices
just by present(x) and max(x). With the above notation, we are ready to present the spherical

k-means algorithm:

Given a user supplied tolerance tol > 0 do the following:

(0) .(0) (0)

k
1. Start with a partitioning {771(0)}[71 and the concept vectors ¢, ’,cy”,..., ¢, associated

with the partitioning. Set the index of iteration ¢t = 0.



2. For each document vector x € X find the concept vector cpax(x) closest in cosine similarity
to x (unless stated otherwise we break ties arbitrarily). Next, compute the new partitioning

k k(t k
{”l(Hl)} | = nextKkNM ({”l(t) }1(1)> induced by the old concept vectors {cl(t)}

=1

71_l(1t+1) ={xeX : l=max(x)}, 1 <l <k (2.3)

3. Compute the new concept vectors corresponding to the partitioning computed in (2.3):

ey s
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increment ¢ by 1

go to step 2 above.

5. Stop.

As noted in (2.2), it can be shown that the above algorithm is a gradient-ascent scheme,
i.e., the objective function value does not decrease from one iteration to the next. See [4] for
details. Like any other gradient-ascent scheme, the spherical k-means algorithm is prone to local

maxima.

3. Inadequacy of k-means

In this section, we present some scenarios in which the spherical k-means algorithm can get

stuck in a qualitatively poor local maximum.

Example 3.1 Consider the three unit vectors in R?:

x1 = (1,0)7, x3 = (cos 8,sin6)7, x3 = (0,1).



