
Re�ning lusters in high dimensional text dataInderjit S. Dhillon �, Yuqiang Guan y, and J. Kogan zJan 7, 2002
AbstratThe k-means algorithm with osine similarity, also known as the spherial k-means algo-rithm, is a popular method for lustering doument olletions. However, spherial k-meansan often yield qualitatively poor results, espeially for small lusters, say 25-30 doumentsper luster, where it tends to get stuk at a loal maximum far away from the optimal. In thispaper, we present the �rst-variation priniple that re�nes a given lustering by inremen-tally moving data points between lusters, thus ahieving a higher objetive funtion value.Combining �rst-variation with spherial k-means yields a powerful ping-pong strategy thatoften qualitatively improves k-means lustering. We present several experimental results toshow that our proposed method works well in lustering high-dimensional and sparse textdata.keywords: lustering, high-dimensional, k-means, re�nement algorithm, �rst variation.
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11. IntrodutionClustering or grouping doument olletions into oneptually meaningful lusters is a well-studied problem. A starting point for applying lustering algorithms to unstrutured doumentolletions is to reate a vetor spae model, alternatively known as a bag-of-words model [17℄.The basi idea is (a) to extrat unique ontent-bearing words from the set of douments treatingthese words as features and (b) to then represent eah doument as a vetor of ertain weightedword frequenies in this feature spae. Typially, a large number of words exist in even amoderately sized set of douments where a few thousand words or more are ommon; hene thedoument vetors are very high-dimensional. In addition, a single doument typially ontainsonly a small fration of the total number of words in the entire olletion; hene, the doumentvetors are generally very sparse, i.e., ontain a lot of zero entries.The k-means algorithm is a popular method for lustering a set of data vetors [5, 2, 18℄.The lassial version of k-means uses Eulidean distane, however this distane measure is ofteninappropriate for its appliation to lustering a olletion of douments [21℄. An e�etive measureof similarity between douments, and one that is often used in information retrieval, is osinesimilarity, whih uses the osine of the angle between doument vetors [17℄. The k-meansalgorithm an be adapted to use the osine similarity metri, see [16℄, to yield the spherialk-means algorithm, so named beause the algorithm operates on vetors that lie on the unitsphere [4℄. Sine it uses osine similarity, spherial k-means exploits the sparsity of doumentvetors and is highly eÆient [3℄.The size of desired lusters is an important requirement for a lustering solution. Froma large orpus where the number of douments may range from 100,000 to a few million, tosmall doument olletions, suh as lustering web searh results where the typial number ofdouments is 100-200, the end user often wants to see small lusters of relevant douments. Inaddition, hierarhial lustering of large olletions often leads to small doument lusters deepdown in the tree hierarhy.The spherial k-means algorithm, similar to the Eulidean algorithm, is a hill-limbing pro-edure and is prone to getting stuk at a loal optimum (�nding the global optimum is NP-omplete). For large doument lusters, it has been found to yield good results in pratie,i.e., the loal optimum found yields good oneptual lusters [4, 21, 3℄. However, as shown inSetion 3, spherial k-means often produes poor results on small and moderately sized lusters



2where it tends to get stuk in a qualitatively inferior loal optimum.In this paper, we present an algorithm for re�ning the lusters produed by the spherialk-means algorithm. Our re�nement algorithm alternates between two phases: (a) �rst-variationand (b) spherial k-means itself. A �rst-variation step moves a single doument from one lusterto another, thereby inreasing the objetive funtion value. Multiple iterations of �rst-variationallow an esape from loal maximum, so that fresh iterations of spherial k-means an be appliedto further inrease the objetive funtion. This ping-pong strategy yields a powerful re�nementalgorithm whih often qualitatively improves k-means lustering. Note that our re�nementalgorithm always improves upon the input lustering in terms of the objetive funtion value.We present several experimental results to validate these laims.Many variants of the k-means algorithm, suh as \bath" and \inremental" versions havebeen proposed in the literature, see Setion 6 for a disussion. The main ontribution of ourpaper is our ping-pong strategy that alternates between \bath" k-means and �rst-variationiterations, thereby harnessing the power of both in terms of improved results and omputationalspeed.We now give an outline of the paper. In Setion 2, we present the spherial k-means algorithmwhile Setion 3 presents senarios in whih this algorithm performs poorly. In Setion 4, weintrodue the �rst-variation method and in Setion 4.1, we present our proposed re�nementalgorithm that ping-pongs between �rst variation and spherial k-means. Experimental resultsin Setion 5 show that our re�nement algorithm yields qualitatively better results giving higherobjetive funtion values. In Setion 6 we disuss related work and �nally, in Setion 7 wepresent our onlusions and future work.2. Spherial k-means algorithmWe start with some neessary notation. Let d be the number of douments, w be the numberof words and let X = fx1;x2; : : : ;xdg denote the set of non-negative doument vetors, whereeah xi 2 Rw and kxik2 = 1, i.e., eah xi lies on the unit sphere. A lustering of the doumentolletion is its partitioning into the disjoint subsets �1; �2; :::; �k, i.e.,k[j=1�j = X and �j \ �l = �; j 6= l:



3For a luster � we denote the sum Xx2� x by s(�). The onept vetor of the luster � is de�nedby (�) = s(�)ks(�)k ;i.e., the onept vetor of the luster � is the normalized expetation of �. We de�ne the\quality" or \oherene" of a non empty luster � asq (�) = Xx2� xT (�) = ks(�)k: (2.1)We set q(�) = 0 for onveniene. Finally, for a partition f�jgkj=1 we de�ne the objetive funtionto be the sum of the qualities of the k lusters:Q �f�jgkj=1� = kXj=1 q (�j) = kXj=1 Xx2�j xT j ;where we have written j for (�j). The goal is to �nd a lustering that maximizes the value ofthe above objetive funtion. In what follows we present the spherial k-means algorithm whihis an iterative proess that generates a sequene of partitionsn�(0)l okl=1 ;n�(1)l okl=1 ; : : : ;n�(t)l okl=1 ; : : : with Q�n�(t+1)j okj=1� � Q�n�(t)j okj=1� : (2.2)To emphasize the relationship between the partitions n�(t)l okl=1 and n�(t+1)j okj=1 we shall denoten�(t+1)j okj=1 by nextKM�n�(t)l ok(t)l=1�. For a partition n�(t)l okl=1 with onept vetors (t)l =��(t)l �, and a doument vetor x 2 �(t)i we denote by present(t;x) and max(t;x) two speialindies de�ned as follows:present(t;x) = i; max(t;x) = argmaxl xT (t)l :When there is no ambiguity we shall suppress the iteration parameter t and denote the indiesjust by present(x) and max(x). With the above notation, we are ready to present the spherialk-means algorithm:Given a user supplied tolerane tol > 0 do the following:1. Start with a partitioning n�(0)l okl=1 and the onept vetors (0)1 ; (0)2 ; : : : ; (0)k assoiatedwith the partitioning. Set the index of iteration t = 0.



42. For eah doument vetor x 2 X �nd the onept vetor max(x) losest in osine similarityto x (unless stated otherwise we break ties arbitrarily). Next, ompute the new partitioningn�(t+1)l okl=1 = nextKM�n�(t)l ok(t)l=1� indued by the old onept vetors n(t)l okl=1:�(t+1)l = fx 2 X : l = max(x)g ; 1 � l � k: (2.3)3. Compute the new onept vetors orresponding to the partitioning omputed in (2.3):(t+1)l = s(�(t+1)l )ks(�(t+1)l )k :4. If �Q�nextKM�n�(t)l ok(t)l=1���Q�n�(t)l okl=1� > tol�inrement t by 1go to step 2 above.5. Stop.As noted in (2.2), it an be shown that the above algorithm is a gradient-asent sheme,i.e., the objetive funtion value does not derease from one iteration to the next. See [4℄ fordetails. Like any other gradient-asent sheme, the spherial k-means algorithm is prone to loalmaxima.3. Inadequay of k-meansIn this setion, we present some senarios in whih the spherial k-means algorithm an getstuk in a qualitatively poor loal maximum.Example 3.1 Consider the three unit vetors in R2:x1 = (1; 0)T ; x2 = (os �; sin �)T ; x3 = (0; 1)T :


