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Abstra
tThe k-means algorithm with 
osine similarity, also known as the spheri
al k-means algo-rithm, is a popular method for 
lustering do
ument 
olle
tions. However, spheri
al k-means
an often yield qualitatively poor results, espe
ially for small 
lusters, say 25-30 do
umentsper 
luster, where it tends to get stu
k at a lo
al maximum far away from the optimal. In thispaper, we present the �rst-variation prin
iple that re�nes a given 
lustering by in
remen-tally moving data points between 
lusters, thus a
hieving a higher obje
tive fun
tion value.Combining �rst-variation with spheri
al k-means yields a powerful ping-pong strategy thatoften qualitatively improves k-means 
lustering. We present several experimental results toshow that our proposed method works well in 
lustering high-dimensional and sparse textdata.keywords: 
lustering, high-dimensional, k-means, re�nement algorithm, �rst variation.
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11. Introdu
tionClustering or grouping do
ument 
olle
tions into 
on
eptually meaningful 
lusters is a well-studied problem. A starting point for applying 
lustering algorithms to unstru
tured do
ument
olle
tions is to 
reate a ve
tor spa
e model, alternatively known as a bag-of-words model [17℄.The basi
 idea is (a) to extra
t unique 
ontent-bearing words from the set of do
uments treatingthese words as features and (b) to then represent ea
h do
ument as a ve
tor of 
ertain weightedword frequen
ies in this feature spa
e. Typi
ally, a large number of words exist in even amoderately sized set of do
uments where a few thousand words or more are 
ommon; hen
e thedo
ument ve
tors are very high-dimensional. In addition, a single do
ument typi
ally 
ontainsonly a small fra
tion of the total number of words in the entire 
olle
tion; hen
e, the do
umentve
tors are generally very sparse, i.e., 
ontain a lot of zero entries.The k-means algorithm is a popular method for 
lustering a set of data ve
tors [5, 2, 18℄.The 
lassi
al version of k-means uses Eu
lidean distan
e, however this distan
e measure is ofteninappropriate for its appli
ation to 
lustering a 
olle
tion of do
uments [21℄. An e�e
tive measureof similarity between do
uments, and one that is often used in information retrieval, is 
osinesimilarity, whi
h uses the 
osine of the angle between do
ument ve
tors [17℄. The k-meansalgorithm 
an be adapted to use the 
osine similarity metri
, see [16℄, to yield the spheri
alk-means algorithm, so named be
ause the algorithm operates on ve
tors that lie on the unitsphere [4℄. Sin
e it uses 
osine similarity, spheri
al k-means exploits the sparsity of do
umentve
tors and is highly eÆ
ient [3℄.The size of desired 
lusters is an important requirement for a 
lustering solution. Froma large 
orpus where the number of do
uments may range from 100,000 to a few million, tosmall do
ument 
olle
tions, su
h as 
lustering web sear
h results where the typi
al number ofdo
uments is 100-200, the end user often wants to see small 
lusters of relevant do
uments. Inaddition, hierar
hi
al 
lustering of large 
olle
tions often leads to small do
ument 
lusters deepdown in the tree hierar
hy.The spheri
al k-means algorithm, similar to the Eu
lidean algorithm, is a hill-
limbing pro-
edure and is prone to getting stu
k at a lo
al optimum (�nding the global optimum is NP-
omplete). For large do
ument 
lusters, it has been found to yield good results in pra
ti
e,i.e., the lo
al optimum found yields good 
on
eptual 
lusters [4, 21, 3℄. However, as shown inSe
tion 3, spheri
al k-means often produ
es poor results on small and moderately sized 
lusters



2where it tends to get stu
k in a qualitatively inferior lo
al optimum.In this paper, we present an algorithm for re�ning the 
lusters produ
ed by the spheri
alk-means algorithm. Our re�nement algorithm alternates between two phases: (a) �rst-variationand (b) spheri
al k-means itself. A �rst-variation step moves a single do
ument from one 
lusterto another, thereby in
reasing the obje
tive fun
tion value. Multiple iterations of �rst-variationallow an es
ape from lo
al maximum, so that fresh iterations of spheri
al k-means 
an be appliedto further in
rease the obje
tive fun
tion. This ping-pong strategy yields a powerful re�nementalgorithm whi
h often qualitatively improves k-means 
lustering. Note that our re�nementalgorithm always improves upon the input 
lustering in terms of the obje
tive fun
tion value.We present several experimental results to validate these 
laims.Many variants of the k-means algorithm, su
h as \bat
h" and \in
remental" versions havebeen proposed in the literature, see Se
tion 6 for a dis
ussion. The main 
ontribution of ourpaper is our ping-pong strategy that alternates between \bat
h" k-means and �rst-variationiterations, thereby harnessing the power of both in terms of improved results and 
omputationalspeed.We now give an outline of the paper. In Se
tion 2, we present the spheri
al k-means algorithmwhile Se
tion 3 presents s
enarios in whi
h this algorithm performs poorly. In Se
tion 4, weintrodu
e the �rst-variation method and in Se
tion 4.1, we present our proposed re�nementalgorithm that ping-pongs between �rst variation and spheri
al k-means. Experimental resultsin Se
tion 5 show that our re�nement algorithm yields qualitatively better results giving higherobje
tive fun
tion values. In Se
tion 6 we dis
uss related work and �nally, in Se
tion 7 wepresent our 
on
lusions and future work.2. Spheri
al k-means algorithmWe start with some ne
essary notation. Let d be the number of do
uments, w be the numberof words and let X = fx1;x2; : : : ;xdg denote the set of non-negative do
ument ve
tors, whereea
h xi 2 Rw and kxik2 = 1, i.e., ea
h xi lies on the unit sphere. A 
lustering of the do
ument
olle
tion is its partitioning into the disjoint subsets �1; �2; :::; �k, i.e.,k[j=1�j = X and �j \ �l = �; j 6= l:



3For a 
luster � we denote the sum Xx2� x by s(�). The 
on
ept ve
tor of the 
luster � is de�nedby 
(�) = s(�)ks(�)k ;i.e., the 
on
ept ve
tor of the 
luster � is the normalized expe
tation of �. We de�ne the\quality" or \
oheren
e" of a non empty 
luster � asq (�) = Xx2� xT 
(�) = ks(�)k: (2.1)We set q(�) = 0 for 
onvenien
e. Finally, for a partition f�jgkj=1 we de�ne the obje
tive fun
tionto be the sum of the qualities of the k 
lusters:Q �f�jgkj=1� = kXj=1 q (�j) = kXj=1 Xx2�j xT 
j ;where we have written 
j for 
(�j). The goal is to �nd a 
lustering that maximizes the value ofthe above obje
tive fun
tion. In what follows we present the spheri
al k-means algorithm whi
his an iterative pro
ess that generates a sequen
e of partitionsn�(0)l okl=1 ;n�(1)l okl=1 ; : : : ;n�(t)l okl=1 ; : : : with Q�n�(t+1)j okj=1� � Q�n�(t)j okj=1� : (2.2)To emphasize the relationship between the partitions n�(t)l okl=1 and n�(t+1)j okj=1 we shall denoten�(t+1)j okj=1 by nextKM�n�(t)l ok(t)l=1�. For a partition n�(t)l okl=1 with 
on
ept ve
tors 
(t)l =
��(t)l �, and a do
ument ve
tor x 2 �(t)i we denote by present(t;x) and max(t;x) two spe
ialindi
es de�ned as follows:present(t;x) = i; max(t;x) = argmaxl xT 
(t)l :When there is no ambiguity we shall suppress the iteration parameter t and denote the indi
esjust by present(x) and max(x). With the above notation, we are ready to present the spheri
alk-means algorithm:Given a user supplied toleran
e tol > 0 do the following:1. Start with a partitioning n�(0)l okl=1 and the 
on
ept ve
tors 
(0)1 ; 
(0)2 ; : : : ; 
(0)k asso
iatedwith the partitioning. Set the index of iteration t = 0.



42. For ea
h do
ument ve
tor x 2 X �nd the 
on
ept ve
tor 
max(x) 
losest in 
osine similarityto x (unless stated otherwise we break ties arbitrarily). Next, 
ompute the new partitioningn�(t+1)l okl=1 = nextKM�n�(t)l ok(t)l=1� indu
ed by the old 
on
ept ve
tors n
(t)l okl=1:�(t+1)l = fx 2 X : l = max(x)g ; 1 � l � k: (2.3)3. Compute the new 
on
ept ve
tors 
orresponding to the partitioning 
omputed in (2.3):
(t+1)l = s(�(t+1)l )ks(�(t+1)l )k :4. If �Q�nextKM�n�(t)l ok(t)l=1���Q�n�(t)l okl=1� > tol�in
rement t by 1go to step 2 above.5. Stop.As noted in (2.2), it 
an be shown that the above algorithm is a gradient-as
ent s
heme,i.e., the obje
tive fun
tion value does not de
rease from one iteration to the next. See [4℄ fordetails. Like any other gradient-as
ent s
heme, the spheri
al k-means algorithm is prone to lo
almaxima.3. Inadequa
y of k-meansIn this se
tion, we present some s
enarios in whi
h the spheri
al k-means algorithm 
an getstu
k in a qualitatively poor lo
al maximum.Example 3.1 Consider the three unit ve
tors in R2:x1 = (1; 0)T ; x2 = (
os �; sin �)T ; x3 = (0; 1)T :


