
The Austin Protocol Compiler
Reference Manual

Tommy M. McGuire

September 20, 2002

This manual provides a reference for the Austin Protocol Compiler, the APT lan-
guage, and the runtime system. It describes the basic usage of the compiler, the fun-
damentals of the execution of the APT language, the syntax and semantics of the lan-
guage, and the C interface provided by the runtime system andthe generated code.

Contents

1 The APT language and the apcc compiler 2
1.1 Basic operation . 2
1.2 Compiling, linking, and running . 2
1.3 Language behavior . 3
1.4 Includes and imports . 4
1.5 Messages . 4
1.6 Processes . 6
1.7 Declarations . 6
1.8 Actions . 6
1.9 Statements . 7
1.10 Expressions . 8

2 The C interface 9
2.1 Basic operation . 9
2.2 The APT engine . 10
2.3 Process initialization . 10
2.4 Message addressing . 10
2.5 Message handling . 11

A Reference grammar 12
A.1 Lexical elements . 12

1

1 The APT language and the apcc compiler

APT, the language provided by the Austin Protocol Compiler,is based on AP, a formal
notation for designing network protocols created by Mohamed G. Gouda.[1]

APT is intended to be used with AP, by designing and (if needed) formally verifying
a protocol using AP and then translating that protocol into APT for compilation. As a
result, the syntax of APT is intended to be very similar to that of AP, but APT is not
identical to AP. There are some syntactic and many semantic differences.

The Austin Protocol Compiler is made up of two parts, a compiler and a runtime
library. The compiler is mostly written in Python[2], a high-level, object-oriented, in-
terpreted language. The compiler uses a parsing toolkit written in C that interfaces
Python with a parser built using the Bison parser generator and the Flex scanner gen-
erator. The runtime library is written in C.

The compiler is about 1100 lines of Python, 1100 lines of C forthe parsing tool kit,
and 475 lines of Bison/Flex specifications. (In this Reference Manual, the grammar in
Appendix A is generated from the Bison/Flex specifications;that grammar describes
most of the 475 lines.)

The runtime libarary is about 1200 lines of C code, divided into 900 lines of rela-
tively generic runtime engine code and 300 lines of UDP specific code.

For a simple protocol specification, the vending machine process is 30 lines in APT,
of which 10 lines define the messages sent between processes.The vending machine
process compiles into about 200 lines of C. Of the 200 lines, about 100 are message
handling (the message structures and functions to read/write them to the network for-
mat), 55 are the actions from the process, and the remainder are used for record keeping
and initialization.

When compiled on Linux and the debugging information removed, the vendor pro-
cess is 9KB, including the runtime library functions.

For information on getting started and suggestions on usingthe Austin Protocol
Compiler, seeThe Austin Protocol Compiler Tutorial.1

1.1 Basic operation

The APT language is not intended to be a complete systems programming language. It
relies on C to provide basic input/output and other servicesnot related to network pro-
tocols. In particular, function calls (page 9) are passed onuntranslated to the generated
C code, allowing the use of any C library facility.

What APT provides is the infrastructure for network protocols—sending and re-
ceiving messages, basic calculations and protocol logic, and timeout handling.

1.2 Compiling, linking, and running

To compile an APT process specification (from a file ending in “.ap”.), run the com-
mand

apcc file.ap
1In production.

2

This command will produce “file.c” and “file.h”. Using the functions described in
section 2, the C interface, create a file containing the C mainfunction which includes
file.h. Compile file.c and any other files needed by the application and link with the
APT runtime libarary, libAPC.a.

1.3 Language behavior

Each APT program consists of any number of message definitions (section 1.5) and
a single2 APT process definition (section 1.6).3 The message specifications describe
the fields and on-the-wire format of any messages sent or received in the protocol.
The process specification describes the state of the protocol process (in the form of
variables) and the actions taken by the process in response to its local state, messages
it receives, or timeouts.

In execution, a process begins by checking its local actions, as described below, and
then waiting for either a message to be received or a timeout to occur. If a message is
received, the message is tested against the process’s receive actions—if a receive action
matches the message, the statements of the corresponding action are executed and if
no action matches the message, it is discarded. If a timeout occurs, the statements of
the timeout action are executed. In either case, the local actions are again checked, and
then the process waits again.

Local actions (page 7) have guards that are predicates referencing only local vari-
ables of the process. During execution, the guards of the local actions are evaluated,
and if a guard evaluates to true, the statements associated with that action are executed.
This process is repeated until all of the guards of local actions have evaluated to false.
At that point, the process cannot change state again withoutoutside events and so the
process waits for either incoming messages or timeouts.

Receive actions (page 7) have guards that arercv expressions. During execution,
when a message has been received, each receive guard is evaluated against it until one
of them returns true—a receive guard is evaluated by attempting to parse the message
mentioned in the receive guard and succeeds if the constant fields in the message parse
to their constant values. (For more information, see sections 1.5 on messages, 1.8 on
actions, and 2 on the C interface, below.)

Timeout actions (page 7) have guards that are timeout declarations—these provide
only a name for the action. Timeout actions are invoked by actstatements. An act
statement specifys a timeout action name and a delay. Sometime after the delay has
expired (after the execution of an act statement), the statements of the timeout action
are executed.

The timeout actions are executed “in order.” When a statement

act A in 50000

is executed and followed by the execution of a statment

act A in 10000
2This limitation may be removed in future versions.
3Do not confuse this process with an operating system process. The APT process is a translation of the

AP process formalism and not necessarily related to an operating system process.

3

before the 50 millisecond delay has expired, the first execution of timeout A will be
approximately 50 ms after the execution of the first act statement no matter how much
time passes between the execution of the two act statements;the second execution of
timeout A may happen immediately after the first if the execution of the second act
statement happened within 40 ms of the execution of the first act statement.

1.4 Includes and imports

Before examining the APT language more closely, there are two features of the lan-
guage which should be mentioned. APT allows two directives for including text into
either the protocol being read by the APT compiler or the C code produced by the
compiler.

import “file” The import directive textually inserts the contents of a fileat the point
of the directive, before the directive has been read by the compiler.

include “file” An include directive is passed along to the C file that is generated
by the compiler, for example allowing a C header file to be included to declare
functions, constants and other C identifiers.

This directive can be placed anywhere at the top level of the file, before the
process.

1.5 Messages

[external] message message-name [(in-funct, out-funct)]
begin

field-name: size [= value] [, field-name: size [= value]]...
end

The first elements of an APT file are message definitions. The message-name is used
by receive expressions and statements as described below.

The identifiers in-funct and out-funct provide the names of two C functions that
optionally process the message buffer. In-funct is called immediately after the mes-
sage’s fields have been parsed from the buffer, and can be usedto verify a checksum,
for example. Out-funct is called after the message’s fields have been written to a mes-
sage buffer, but before it is sent. It can be used to compute a checksum. For more
information on these two functions, see section 2.5.

The fields, which should be separated by semicolons, consistof a field-name, a size
(in bits or bytes), and an optional constant value. There aretwo kinds of fields:

integer fields

field-name: constant bits [= value]

4

An integral field has a constant width, measured in bits. It istransmitted on the
wire in network byte order. The size should not exceed the smaller of either 32
bits, for compatibility with other systems, or the size of anunsigned long integer,
for the generated code to be correct.

If the field has a value, the field is set to that value immediately before the mes-
sage is sent. The value also identifies received messages; see section 1.8.

data fields

field-name: expression bytes

A data field can have a constant or variable width, which is measured in bytes.
A field of this type is transmitted as a byte array.

The expression describing the width can only use constants or the names of pre-
vious fields in the message. The field should also be byte-aligned in the message.

A message declared as “external” will not have the reader andwriter functions
defined in the C code produced by the compiler. For more information, see section 2
on the C interface, below.

For example, the following message skeleton defines a message, “msg”:

message msg
begin

field1: 8 bits = 12;
field2: 15 bits ;
field3: 1 bit ;
field4: field2 bytes

end

The first field defines a message field called field1 which is 8 bits long and has the
constant value 12. When a message with this field is sent, the 8bits at this location in
the message will have the value 12. When any message is received, each receive action
will be tested against it, and a receive action with a messagespecifier (see section 1.8)
which has this field will not match if the 8 bits at this location do not have the value 12.

The next field,

field2: 15 bits

can be assigned a value in an action (see section 1.6 below), and when the message is
sent in that action, the 15 bits at this location will have that value. When a message
with this field is successfully received, the value of this field can be accessed in the
receiving action.

The last field,

field4: field2 bytes

describes a variable-width data field whose size is defined bythe value of the second
field. This field will have a C type of “char *” in the generated code. See section 1.10
for more information.

5

1.6 Processes

process process-name
[const declarations: : :] [var declarations: : :]
begin action [[] action]... end

Theconst andvar keywords precede lists of constant and variable declarations
used by the process, separated by semicolons. Both constants and variables are op-
tional. The actions, separated by boxes (“[]”), define the code of the process.

1.7 Declarations

identifier [, identifier]... : type [= initial-value]

The available types are

lower..upper Integer ranges. These are translated to unsigned long integers in the
generated code. Since the actual values are limited to the range of unsigned long
integers, a range is preferred over the integer type below for variables.

integer Unsigned long integers.

address The address of a process. Address do not allow initializers;constant ad-
dresses can be set using the C interface (see section 2 below)before starting the
engine. Variable addreses are set when messages are received or by statements
of the process.

Receive actions referencing constant and variable addresses differ in that con-
stant addresses are tested against the source of the message; if the source is not
the same as the address, the action is not enabled. Variable addresses match any
source address and are assigned the source value.

array [size] of type Declares an array of size elements of the specified type. The
elements are referenced from 0 to size-1.

1.8 Actions

Actions in APT have the following basic format:

guard ! statements

(where the arrow is the two characters “–>”). In AP, an action is considered enabled
when the guard would evaluate to true. When an enabled actionis choosen, its state-
ments are executed. In APT, the execution is somewhat more complicated (see section
1.3), but is intended to behave similarly. There are three types of actions.

6

local actions Local actions have guards which are boolean expressions. When the
guard evaluates to true, the statements of the action are executed.

receive actionsReceive actions have guards of the form

rcv message from address

When a message is received by the process, the reader function for each of the
messages used in a receive guard is called with the message. If the reader func-
tion is successful in parsing the message, the source of the message is tested
against a constant address, or the source of the message is assigned to a variable
address. If the message and the source address allow, the statements of the action
are executed.

timeout actions Timeout actions have guards of the form

timeout identifier

where the identifier is unique among the actions of the process. The timeout ac-
tion is initially disabled. When an action of the process executes anact statement
(described below in section 1.9) referencing the identifier, the timeout action will
become enabled after the delay specified in the act statement.

1.9 Statements

There are seven types of statements. The statements in actions or other blocks are
separated by semicolons.

skip The skip statement does nothing.

assignment

variable [, variable]... := expression [, expression]...

The expressions of the assignment statement are evaluated and then the values
are assigned to the variables.

Possible left-hand-sides are variable identifiers, array references (page 9), and
field references (page 8).

send

send message to address

This statement causes the writer function for message to be called, and the re-
sulting buffer to be sent to the address.

conditional

if condition ! statements [condition ! statements]... fi

7

Each condition is evaluated. The first which evaluates to true results in the exe-
cution of the statements associated with it.

loop

do condition ! statements od

The boolean condition is evaluated, and if it evaluates to true the statements are
executed and the condition is evaluated again. If the condition is false, the do
statment ends execution.

timeout activation

act identifier in delay

Execution of this statement will enable the timeout action associated with the
identifier after the delay. The delay is specified in microseconds.

The timer used by the timeout mechanism is somewhat unusual;if a timeout
action is activated more than once, the executions occur in order of activation—
the delay used by an activation of a timeout is the maximum of the delay specified
by the act statement and any currently outstanding delays.

function call A function call can be used as a statement.

1.10 Expressions

Integer variables in APT are represented as C unsigned longs. The operators for ex-
pressions are the usual suspects: =,<, >, <=, >=,<> (not equal),j (boolean or), &
(boolean and), +, -, *, /, and unary~(boolean negation), and - (arithmetic negation).

Additional expressions are message field references, arrayreferences, and function
calls.

message field references

message.field

When used in expressions, the value of this expression is thevalue of the field—
either from a received message or a message that will be sent by a later statement.
Message fields can also be assigned to by being mentioned on the left-hand-side
of assignment statements.

Integer fields are translated to unsigned longs and data fields are translated to
char pointers. In a received message, the value of a data fieldis a pointer to the
actual message buffer; this value will not be valid after theaction receiving the
message. In a message to be sent, the value assigned to the field should point
to an array of characters of the size described in the messagedefinition and this
pointer should remain valid at least until thesend statement.

array references

8

identifier[expression][[expression]...]

The identifier should be an array and the expression providesan offset into the
array. Arrays are indexed from zero.

function calls

identifier(expression [, expression]...)

Function calls can be either expressions or statements, in which case their value
is ignored and they act as procedures. These function calls are passed along
unchanged to the C code produced by the compiler.

Function arguments are the primary use of quote-delimited strings since there
are no string variables and (aside from import and include directives) no other
use for them in the language. Strings are also passed along unchanged to the C
code produced by the compiler.

2 The C interface

Note: This section, and the runtime system, is subject to change due to planned en-
hancements, including exploring the use of multiple APT processes using a single pro-
tocol engine.

The Austin Protocol Compiler is intended to be used similarly to the Lex and Yacc
compiler construction tools—to generate code that will be embedded in another pro-
gram. The output of the compiler is C source code that must be linked with other C
functions in order to create a working program.

2.1 Basic operation

The C code which uses the output of the compiler must do four things:

1. Initalize the APT runtime engine.

2. Initialize the process.

3. Set any constant (or variable) addresses needed by the process.

4. Invoke the APT runtime engine.

Additionally, the external code can provide functions to encode and decode mes-
sages, if the message handling provided by the compiler is not sufficient.

For all of the functions, if an error occurs (the exact notification method for er-
rors is described below with the individual functions), thevariableprtcl err is set to a
character string describing the error.

9

2.2 The APT engine

The first and last steps involve direct interaction with the APT runtime engine.
The current runtime library provides support for protocolssending and receiving

UDP messages. Initalizing the APT engine is handled by the function call

int UDP initalize engine(int port)

This function returns true in case of error. The port is a UDP port number, at which the
engine will listen for incoming messages.

Invoking the engine is handled by the function call

int engine()

This call does not return until the protocol engine has either failed or terminated. Ter-
mination is indicated by a false return value.

2.3 Process initialization

Once the runtime engine is initialized, it is necessary to initialize the process that the
engine will be executing. This initialization is handled bycode generated by the com-
piler, but a special function must be called. This function has the form

int process identifier ()

where the “identifier” segment of the function name is replaced by the process name
specified in the APT code. For example, if a processv is specified in APT, the function
will be calledprocess v.

A C declaration is provided in thefile.h generated by the compiler. This function
takes no arguments, and returns true in the case of an error orotherwise false.

2.4 Message addressing

In the code generated by the compiler, a variable of type address will be assigned a
value by the receive action when a message arrives. This allows the process to respond
to messages coming from any source, including those which are not previously known.
On the other hand, constants of type address are treated as parts of the tests for receive
action guards—if the source address of the message does not match the constant ad-
dress, the receive action is not enabled. For constant addresses, as well as for variable
addresses which are used to send messages before any are received, an initial value
must be provided.

Since the value of an address depends on the communication methods underlying
the APT runtime system, these values are not handled by the APT language or compiler.
Instead, addresses are manipulated by the identifier provided in the APT source, which
is referenced as a C character string. The C code which uses the functions produced by
the compiler should use theset address function to assign an address’s initial value.

int set address(char *name, char *address)

10

For generality here, as well, the address is also treated as aC character string. For
UDP addresses, the address string should be in the form

host name:port

where the host name is optional and defaults to the local hostand the port is the UDP
port number on the specified host. The name given is the identifier used in the APT
program to send and receive messages.

The set address function returns true and setsprtcl err in case of an error. It
returns false otherwise.

2.5 Message handling

By default, based on the message definitions provided to the compiler, the code gener-
ated by the compiler includes functions for marshalling andunmarshalling messages to
and from the network format. These functions, called a writer and a reader respectively,
move the data of the message between the C structure represtenting the message fields
in the generated code and a character array buffer used to send and receive messages.

A message definition can optionally identify two C functionsto be called by the
reader and writer, respectively, in order to perform any processing that requires the
actual message buffer. For more information, see section 1.5.

int in funct(unsigned char *in, int in length, msg *message)
int out funct(unsigned char *out, int out length, msg *message)

(The actual functions should have “msg” replaced by the nameof the message. The
structure has a type definition allowing the dst and src pointers to reference the structure
to be read into or sent from.)

For messages marked as external, the compiler does not generate the reader and
writer functions. The user is expected to provide the functions, matching the following
declarations:

int read msg(unsigned char *in, int in len, msg *dst)
int write msg(msg *src, unsigned char *out, int *out len)

The reader function should initialize the structure pointed to by dst and then read the
information from the incoming buffer in, which has a length specified by inlen bytes.
If the buffer contains a correct message, the function should return true. Otherwise, it
should return false.

The writer function should initialize the outgoing buffer out, which has outlen
bytes, and then write the fields specified by the structure pointed to by src to the buffer.
It should return false in case of error and true otherwise.

The fields of the message can be referenced in the structure bythe same names as
given in the APT message definition.

11

A Reference grammar

This grammar is generated by y2l, the Yacc to LATEX utility by Kris Van Hees, from the
Bison grammar used by the compiler. y2l is included in the source distribution’s doc
directory to make rebuilding this document easier. y2l is copyright c 1994-2000 by
Kris Van Hees, Belgium.

The conventions used in the grammar are:� f...g indicates zero or more copies of the contained elements.� [...℄ indicates zero or one copies of the contained elements.� (...j...) indicates a choice between the contained elements.� Literal text is between quotation marks.� The[℄ box is the two characters “[]”.

A.1 Lexical elements

The elements unspecified by the grammar are

ID A letter, followed by any number of letters or numbers.

STRING A quote-delimited string which does not span lines. Internal quotes and
newlines can be escaped by a backslash, however. (Strings are not capable of
being manipulated in APT, but can be used as arguments to C functions.)

NUMBER One or more decimal digits.

12

start ::= toplevel
toplevel ::= messages process
messages ::= f messageg
message ::= external “message” ID messagebodyj external “message” ID “ (” ID “ ,” ID “)” messagebodyj “ include” STRING
external ::= [“external” ℄
messagebody ::= “begin” fields “end”
fields ::= f field “,” g field
field ::= ID “ :” fieldtype [“=” expression℄
fieldtype ::= expression (“bit(s?)” j “byte(s?)”)
process ::= “process” ID constants variables “begin” actions “end”
constants ::= [“const” declarations℄
variables ::= [“var” declarations℄
declarations ::= f declaration “;” g declaration
declaration ::= ids “:” type [“=” NUMBER ℄
ids ::= f ID “ ,” g ID
type ::= “integer”j NUMBER “..” NUMBERj “address”j “array ” “ [” NUMBER “ ℄” “ of” type
actions ::= f action “[℄” g action
action ::= (expressionj “ rcv” ID “ from ” ID j “ timeout” ID)

“�>” statements
expression ::= “(” expression “)”j expression “=” expressionj expression “>” expressionj expression “<” expressionj expression “>=” expressionj expression “<=” expressionj expression “<>” expressionj expression “j” expressionj expression “&” expressionj expression “+” expressionj expression “�” expressionj expression “�” expressionj expression “=” expressionj “ ˜” expressionj “�” expressionj fieldreferencej arrayreferencej functioncallj IDj NUMBERj STRING
fieldreference ::= ID “.” ID

13

arrayreference ::= (arrayreferencej ID) “ [” expression “℄”
functioncall ::= ID “(” (expressions “)” j “)”)
statements ::= f statement “;” g statement
statement ::= “skip”j leftsides “:=” expressionsj “send” ID “ to” expressionj “ if ” guardedstatements “fi”j “do” expression “�>” statements “od”j “act” ID “ in” expressionj functioncall
leftsides ::= f leftside “,” g leftside
leftside ::= IDj fieldreferencej arrayreference
expressions ::= f expression “,” g expression
guardedstatements ::=f guardedstatement “[℄” g guardedstatement
guardedstatement ::= expression “�>” statements

14

References

[1] Mohamed G. Gouda.Elements of Network Protocol Design. John Wiley & Sons,
1998.

[2] Python language website. http://www.python.org.

15

Index
prtcl err, 9

Abstract Protocols, 2
Abstract Protocols-Timed, 2
act, 8
act statement, 3
actions, 6

local, 3, 6
receive, 3, 7
timeout, 3, 7

address, 6, 10
AP, 2, 6
apcc

running, 2
APT, 2

execution, 3
program, 3, 9

array, 6
array expressions, 8
assignment, 8
assignment left-hand-sides, 7
assignment statements, 7
Austin Protocol Compiler Tutorial, 2

Bison, 2

C functions
engine, 10
setaddress, 10
UDP initialize engine, 10

C, programming language, 2, 3, 9
conditional statements, 7
constant declaration, 6

data field, 5
declarations, 6

const, 6
var, 6

directives
import, 4
include, 4

do, 8

engine, 10

errors, runtime, 9
expressions, 8

array, 8
field reference, 8
function calls, 9
integer, 8
operators, 8

external message, 5

field, message
data, 5
expressions, 8
integer, 4

Flex, 2
function call

statements, 8
function calls

expressions, 9

Gouda, Mohamed G., 2
grammar, 12

ID, 12
NUMBER, 12
STRING, 12

ID, 12
if, 7
import directive, 4
include directive, 4
integer, 6
integer expressions, 8
integer field, 4

libAPC.a, 3
Linux, 2
local action, 3
local actions, 6
loop statements, 8

message, 3, 4, 11
buffer functions, 4, 11
external, 5, 11
field, 4, 11

expressions, 8

16

NUMBER, 12

operators, 8

port, UDP, 10
process, 3, 6
Python, 2

range, 6
rcv, 7
receive action, 3
receive actions, 7
runtime errors, 9
runtime library, 3

send statements, 7
setaddress, 10
skip statement, 7
statements, 7

act, 3
assignment, 7
conditional, 7
function calls, 8
loop, 8
send, 7
skip, 7
timeout activation, 8

STRING, 12

timeout, 7
timeout actions, 3, 7
timeout activation statements, 8
types, 6

address, 6
array, 6
integer, 6
range, 6

UDP port, 10, 11
UDP initialize engine, 10

variable declaration, 6

17

