The Austin Protocol Compiler
Reference Manual

Tommy M. McGuire
September 20, 2002

This manual provides a reference for the Austin Protocol giten the APT lan-
guage, and the runtime system. It describes the basic usdlye compiler, the fun-
damentals of the execution of the APT language, the syntdbsamantics of the lan-
guage, and the C interface provided by the runtime systenttengenerated code.

Contents

1 The APT language and the apcc compiler 2
1.1 Basicoperation 2
1.2 Compiling, linking,andrunning 2
1.3 Languagebehavior 3
1.4 Includesandimports 4
1.5 MeSsages e e 4
1.6 Processes e 6
1.7 Declarations 6
1.8 ACLiONS 6
19 Statements. 7
1.10 EXPressions v v v i i e e e e e 8

2 The Cinterface 9
2.1 Basicoperation 9
22 TheAPTengine. 10
2.3 Processinitialization o oo 01
2.4 Messageaddressing e 10
25 Messagehandling L 11

A Reference grammar 12
A.l Lexicalelements 12

1 The APT language and the apcc compiler

APT, the language provided by the Austin Protocol Compisdbased on AP, a formal
notation for designing network protocols created by MohaBeGouda.[1]

APT is intended to be used with AP, by designing and (if negftechally verifying
a protocol using AP and then translating that protocol inRIAor compilation. As a
result, the syntax of APT is intended to be very similar ta tféAP, but APT is not
identical to AP. There are some syntactic and many semaiffécahces.

The Austin Protocol Compiler is made up of two parts, a coergihd a runtime
library. The compiler is mostly written in Python[2], a hidgwvel, object-oriented, in-
terpreted language. The compiler uses a parsing toolkitemrin C that interfaces
Python with a parser built using the Bison parser generatditiae Flex scanner gen-
erator. The runtime library is written in C.

The compiler is about 1100 lines of Python, 1100 lines of Glierparsing tool kit,
and 475 lines of Bison/Flex specifications. (In this RefessWanual, the grammar in
Appendix A is generated from the Bison/Flex specificatichat grammar describes
most of the 475 lines.)

The runtime libarary is about 1200 lines of C code, divided @00 lines of rela-
tively generic runtime engine code and 300 lines of UDP djmeobde.

For a simple protocol specification, the vending machineg@ss is 30 lines in APT,
of which 10 lines define the messages sent between proc@¥sesending machine
process compiles into about 200 lines of C. Of the 200 linbeua100 are message
handling (the message structures and functions to redd/them to the network for-
mat), 55 are the actions from the process, and the remairelasad for record keeping
and initialization.

When compiled on Linux and the debugging information rendiottee vendor pro-
cess is 9KB, including the runtime library functions.

For information on getting started and suggestions on usirgAustin Protocol
Compiler, sed@he Austin Protocol Compiler Tutoridl

1.1 Basic operation

The APT language is not intended to be a complete systemsgmoging language. It
relies on C to provide basic input/output and other serwitgselated to network pro-
tocols. In particular, function calls (page 9) are passedriranslated to the generated
C code, allowing the use of any C library facility.

What APT provides is the infrastructure for network protseesending and re-
ceiving messages, basic calculations and protocol logittimmeout handling.

1.2 Compiling, linking, and running

To compile an APT process specification (from a file ending.&p™.), run the com-
mand

apcc file.ap

1In production.

This command will produce “file.c” and “file.h”. Using the fations described in
section 2, the C interface, create a file containing the C rhuaintion which includes
file.h. Compile file.c and any other files needed by the apiitinaand link with the
APT runtime libarary, libAPC.a.

1.3 Language behavior

Each APT program consists of any number of message defisi{gaction 1.5) and
a singlé APT process definition (section 1.8)The message specifications describe
the fields and on-the-wire format of any messages sent oivegté the protocol.
The process specification describes the state of the pigbosoess (in the form of
variables) and the actions taken by the process in resporitseltdcal state, messages
it receives, or timeouts.

In execution, a process begins by checking its local actamdescribed below, and
then waiting for either a message to be received or a tim@ontdur. If a message is
received, the message is tested against the processisractipns—if a receive action
matches the message, the statements of the correspontioy @ae executed and if
no action matches the message, it is discarded. If a timemuirs, the statements of
the timeout action are executed. In either case, the lotialrecare again checked, and
then the process waits again.

Local actions (page 7) have guards that are predicateerefi@g only local vari-
ables of the process. During execution, the guards of the lxtions are evaluated,
and if a guard evaluates to true, the statements associ#tethat action are executed.
This process is repeated until all of the guards of locabasthave evaluated to false.
At that point, the process cannot change state again withastde events and so the
process waits for either incoming messages or timeouts.

Receive actions (page 7) have guards that@reexpressions. During execution,
when a message has been received, each receive guard stegi@gainst it until one
of them returns true—a receive guard is evaluated by atiegfa parse the message
mentioned in the receive guard and succeeds if the consttdd fn the message parse
to their constant values. (For more information, see sestib5 on messages, 1.8 on
actions, and 2 on the C interface, below.)

Timeout actions (page 7) have guards that are timeout deidas—these provide
only a name for the action. Timeout actions are invoked bystatements. An act
statement specifys a timeout action name and a delay. Somefiter the delay has
expired (after the execution of an act statement), thersés of the timeout action
are executed.

The timeout actions are executed “in order.” When a statémen

act A in 50000
is executed and followed by the execution of a statment

act A in 10000

2This limitation may be removed in future versions.
3Do not confuse this process with an operating system prodéssAPT process is a translation of the
AP process formalism and not necessarily related to an tipgrsystem process.

before the 50 millisecond delay has expired, the first execudf timeout A will be
approximately 50 ms after the execution of the first act staté no matter how much
time passes between the execution of the two act statenteatsecond execution of
timeout A may happen immediately after the first if the ex@oubf the second act
statement happened within 40 ms of the execution of the fitsttatement.

1.4 Includes and imports

Before examining the APT language more closely, there aceféatures of the lan-
guage which should be mentioned. APT allows two directigedrfcluding text into
either the protocol being read by the APT compiler or the Cecprbduced by the
compiler.

import “file” The import directive textually inserts the contents of adilehe point
of the directive, before the directive has been read by thepder.

include “file” An include directive is passed along to the C file that is gateer
by the compiler, for example allowing a C header file to beudeld to declare
functions, constants and other C identifiers.

This directive can be placed anywhere at the top level of ke lfiefore the
process.

1.5 Messages

[external] message message-name [(in-funct, out-funct)]
begin

field-name: size [= value] [, field-name: size [= value]]...
end

The first elements of an APT file are message definitions. Thesage-name is used
by receive expressions and statements as described below.

The identifiers in-funct and out-funct provide the nameswad € functions that
optionally process the message buffer. In-funct is callechédiately after the mes-
sage’s fields have been parsed from the buffer, and can beasedfy a checksum,
for example. Out-funct is called after the message’s fieleteen written to a mes-
sage buffer, but before it is sent. It can be used to computeaksum. For more
information on these two functions, see section 2.5.

The fields, which should be separated by semicolons, carfadield-name, a size
(in bits or bytes), and an optional constant value. Therévemekinds of fields:

integer fields

field-name: constant bits [= value]

An integral field has a constant width, measured in bits. fitaasmitted on the
wire in network byte order. The size should not exceed thdlemat either 32
bits, for compatibility with other systems, or the size ofiarsigned long integer,
for the generated code to be correct.

If the field has a value, the field is set to that value immedjdiefore the mes-
sage is sent. The value also identifies received messageseskon 1.8.

data fields

field-name: expression bytes

A data field can have a constant or variable width, which issuesd in bytes.
A field of this type is transmitted as a byte array.

The expression describing the width can only use constattemames of pre-
vious fields in the message. The field should also be byteedign the message.

A message declared as “external” will not have the readervenitér functions
defined in the C code produced by the compiler. For more infion, see section 2
on the C interface, below.

For example, the following message skeleton defines a messagg”:

message msg
begin
field1: 8 bits = 12;
field2: 15 bits ;
field3: 1 bit;
field4: field2 bytes
end

The first field defines a message field called field1 which is$8lbitg and has the
constant value 12. When a message with this field is sent, tits &t this location in
the message will have the value 12. When any message isedcerch receive action
will be tested against it, and a receive action with a messpgeifier (see section 1.8)
which has this field will not match if the 8 bits at this locatido not have the value 12.

The next field,

field2: 15 bits

can be assigned a value in an action (see section 1.6 belodjylaen the message is
sent in that action, the 15 bits at this location will havet theelue. When a message
with this field is successfully received, the value of thisdfiean be accessed in the
receiving action.

The last field,

field4: field2 bytes

describes a variable-width data field whose size is definetthdyalue of the second
field. This field will have a C type of “char *” in the generatedde. See section 1.10
for more information.

1.6 Processes

process process-name
[const declarations...][var declarations...]
begin action [[] action]... end

Theconst andvar keywords precede lists of constant and variable declarstio
used by the process, separated by semicolons. Both cohstadhtvariables are op-
tional. The actions, separated by boxes (“[]"), define theecof the process.

1.7 Declarations

identifier [, identifier]... : type [= initial-value]
The available types are

lower..upper Integer ranges. These are translated to unsigned longeirstég the
generated code. Since the actual values are limited to tigeeraf unsigned long
integers, a range is preferred over the integer type belowdigables.

integer Unsigned long integers.

address The address of a process. Address do not allow initializesgstant ad-
dresses can be set using the C interface (see section 2 imdtovg starting the
engine. Variable addreses are set when messages are degelwe statements
of the process.

Receive actions referencing constant and variable adeeiffer in that con-
stant addresses are tested against the source of the mag#agsource is not
the same as the address, the action is not enabled. Vargdiesses match any
source address and are assigned the source value.

array [size] of type Declares an array of size elements of the specified type. The
elements are referenced from 0 to size-1.

1.8 Actions
Actions in APT have the following basic format:
guard — statements

(where the arrow is the two characters>3. In AP, an action is considered enabled
when the guard would evaluate to true. When an enabled asticimoosen, its state-
ments are executed. In APT, the execution is somewhat monplatated (see section
1.3), but is intended to behave similarly. There are thrpedyof actions.

local actions Local actions have guards which are boolean expressionsen\itie
guard evaluates to true, the statements of the action acerexe

receive actions Receive actions have guards of the form

rcv message from address

When a message is received by the process, the reader fufmtieach of the
messages used in a receive guard is called with the mesd$ale réader func-
tion is successful in parsing the message, the source of #ssage is tested
against a constant address, or the source of the messageyisesbto a variable
address. If the message and the source address allow, tdvetds of the action
are executed.

timeout actions Timeout actions have guards of the form

timeout identifier

where the identifier is uniqgue among the actions of the psocHse timeout ac-
tionis initially disabled. When an action of the processoeies aract statement
(described below in section 1.9) referencing the identifirer timeout action will
become enabled after the delay specified in the act statement

1.9 Statements

There are seven types of statements. The statements im&atcother blocks are
separated by semicolons.

skip The skip statement does nothing.
assignment

variable [, variable]... := expression [, expression |...

The expressions of the assignment statement are evaluadettien the values
are assigned to the variables.

Possible left-hand-sides are variable identifiers, aredgrences (page 9), and
field references (page 8).

send

send message to address

This statement causes the writer function for message talede and the re-
sulting buffer to be sent to the address.

conditional

if condition — statements [[| condition — statements]... fi

Each condition is evaluated. The first which evaluates te tesults in the exe-
cution of the statements associated with it.

loop

do condition — statements od

The boolean condition is evaluated, and if it evaluatesue the statements are
executed and the condition is evaluated again. If the cimmdi$ false, the do
statment ends execution.

timeout activation

act identifier in delay

Execution of this statement will enable the timeout actiesogiated with the
identifier after the delay. The delay is specified in microsets.

The timer used by the timeout mechanism is somewhat unugualtimeout
action is activated more than once, the executions occuder®f activation—
the delay used by an activation of a timeout is the maximurhetielay specified
by the act statement and any currently outstanding delays.

function call A function call can be used as a statement.

1.10 Expressions

Integer variables in APT are represented as C unsigned.loftys operators for ex-
pressions are the usual suspects<r=>, <=, >=, <> (not equal)| (boolean or), &
(boolean and), +, -, *, /, and unarfpoolean negation), and - (arithmetic negation).

Additional expressions are message field references, gfanences, and function
calls.

message field references

message.field

When used in expressions, the value of this expression igte of the field—

either from a received message or a message that will bearater statement.
Message fields can also be assigned to by being mentionee ¢eftthand-side
of assignment statements.

Integer fields are translated to unsigned longs and datas fagkel translated to
char pointers. In a received message, the value of a datadialgointer to the
actual message buffer; this value will not be valid afterabdon receiving the
message. In a message to be sent, the value assigned to dh&hfield point
to an array of characters of the size described in the meskgption and this
pointer should remain valid at least until ttend statement.

array references

identifier[expression][[expression]...]

The identifier should be an array and the expression prowdesfset into the
array. Arrays are indexed from zero.

function calls

identifier(expression [, expression]...)

Function calls can be either expressions or statementdjichvease their value
is ignored and they act as procedures. These function aalpassed along
unchanged to the C code produced by the compiler.

Function arguments are the primary use of quote-delimitedgs since there
are no string variables and (aside from import and includectives) no other
use for them in the language. Strings are also passed alafmgaoged to the C
code produced by the compiler.

2 The Cinterface

Note: This section, and the runtime system, is subject togdaue to planned en-
hancements, including exploring the use of multiple APE@sses using a single pro-
tocol engine.

The Austin Protocol Compiler is intended to be used simjlarlthe Lex and Yacc
compiler construction tools—to generate code that will bdedded in another pro-
gram. The output of the compiler is C source code that musinized with other C
functions in order to create a working program.

2.1 Basic operation

The C code which uses the output of the compiler must do fangth
1. Initalize the APT runtime engine.
2. Initialize the process.
3. Set any constant (or variable) addresses needed by tbegsto
4. Invoke the APT runtime engine.

Additionally, the external code can provide functions teaste and decode mes-
sages, if the message handling provided by the compilertisufficient.

For all of the functions, if an error occurs (the exact nagificn method for er-
rors is described below with the individual functions), tragiableprtcl_err is set to a
character string describing the error.

2.2 The APT engine

The first and last steps involve direct interaction with tH&TAuntime engine.
The current runtime library provides support for protocsgading and receiving
UDP messages. Initalizing the APT engine is handled by thetfon call

int UDP_initalize_engine(int port)

This function returns true in case of error. The port is a UBR pumber, at which the
engine will listen for incoming messages.
Invoking the engine is handled by the function call

int engine()

This call does not return until the protocol engine has eithiéed or terminated. Ter-
mination is indicated by a false return value.

2.3 Process initialization

Once the runtime engine is initialized, it is necessary ttaiive the process that the
engine will be executing. This initialization is handleddyde generated by the com-
piler, but a special function must be called. This functias the form

int process_identifier ()

where the “identifier” segment of the function name is repthby the process name
specified in the APT code. For example, if a prooesssspecified in APT, the function
will be calledprocess._v.

A C declaration is provided in thiile.h generated by the compiler. This function
takes no arguments, and returns true in the case of an erothenwise false.

2.4 Message addressing

In the code generated by the compiler, a variable of typeesddwill be assigned a
value by the receive action when a message arrives. Thigsatlee process to respond
to messages coming from any source, including those whe&hatrpreviously known.
On the other hand, constants of type address are treatedia®pthe tests for receive
action guards—if the source address of the message doesanch the constant ad-
dress, the receive action is not enabled. For constant sgeas well as for variable
addresses which are used to send messages before any aredear initial value
must be provided.

Since the value of an address depends on the communicatibdseunderlying
the APT runtime system, these values are not handled by thdakiguage or compiler.
Instead, addresses are manipulated by the identifier prdwidthe APT source, which
is referenced as a C character string. The C code which uségrtbtions produced by
the compiler should use theet_address function to assign an address’s initial value.

int set_address(char *name, char *address)

10

For generality here, as well, the address is also treatedCasharacter string. For
UDP addresses, the address string should be in the form

host name:port

where the host name is optional and defaults to the localdrasthe port is the UDP
port number on the specified host. The name given is the foentised in the APT
program to send and receive messages.

The set_address function returns true and segstcl_err in case of an error. It
returns false otherwise.

2.5 Message handling

By default, based on the message definitions provided todhmpiter, the code gener-
ated by the compiler includes functions for marshalling ancharshalling messages to
and from the network format. These functions, called a waitel a reader respectively,
move the data of the message between the C structure rapmegtihe message fields
in the generated code and a character array buffer useddaseireceive messages.

A message definition can optionally identify two C functidosbe called by the
reader and writer, respectively, in order to perform anycpssing that requires the
actual message buffer. For more information, see sectmn 1.

int in_funct(unsigned char *in, int in_length, msg *message)
int out_funct(unsigned char *out, int out_length, msg *message)

(The actual functions should have “msg” replaced by the nafitke message. The
structure has a type definition allowing the dst and src po&tb reference the structure
to be read into or sent from.)

For messages marked as external, the compiler does notagetiee reader and
writer functions. The user is expected to provide the fuondj matching the following
declarations:

int read_msg(unsigned char *in, int in_len, msg *dst)
int write_msg(msg *src, unsigned char *out, int *out_len)

The reader function should initialize the structure pairteby dst and then read the
information from the incoming buffer in, which has a lengfesified by inlen bytes.
If the buffer contains a correct message, the function shmtlrn true. Otherwise, it
should return false.

The writer function should initialize the outgoing buffeatp which has outen
bytes, and then write the fields specified by the structunetpdito by src to the buffer.
It should return false in case of error and true otherwise.

The fields of the message can be referenced in the structuhelsame names as
given in the APT message definition.

11

A Reference grammar

This grammar is generated by y2I, the YaccAgX utility by Kris Van Hees, from the
Bison grammar used by the compiler. y2I is included in thers@udlistribution’s doc
directory to make rebuilding this document easier. y2| ipye@ht © 1994-2000 by
Kris Van Hees, Belgium.

The conventions used in the grammar are:

¢ {...} indicates zero or more copies of the contained elements.
¢ [..] indicates zero or one copies of the contained elements.

e (..|...) indicates a choice between the contained elements.

o Literal text is between quotation marks.

e The[] box is the two characterg | ".

A.1 Lexical elements
The elements unspecified by the grammar are
ID A letter, followed by any number of letters or numbers.

STRING A quote-delimited string which does not span lines. Intemates and
newlines can be escaped by a backslash, however. (Striagzoarcapable of
being manipulated in APT, but can be used as arguments todfidus.)

NUMBER One or more decimal digits.

12

start
toplevel
messages
message

external
messagebody
fields

field
fieldtype
process
constants
variables
declarations
declaration
ids

type

actions
action

expression

fieldreference

toplevel
messages process

::= { messagé

externatiessageID messagebody
external ‘messagéID “ (" ID “ " ID “)” messagebody
“include” STRING
[“external” |
begin’ fields “end”’
{ field “,” } field
ID “:” fieldtype [“ =" expressior]
expression ([©it(s?)” | “byte(s?))
process ID constants variablestfegin” actions “end’
[“const declarationg
[“var” declarationg
{ declaration ;" } declaration
ids " type [“=" NUMBER]
{ID“,” }ID
“‘integer”
NUMBER “..” NUMBER
“address
“array” “[" NUMBER “]" “ of” type
{ action “|" } action
(‘expression“rcv” ID “ from” ID

“—>" statements

(" expression ¥”
expression £” expression
expression %" expression
expression £” expression
expression S="expression
expression £&=" expression
expression £>" expression
expression " expression
expression &” expression
expression4-” expression
expression =" expression
expression £” expression
expression /" expression
“™" expression
“—" expression
fieldreference
arrayreference
functioncall
ID
NUMBER
STRING

ID"ID

“timeout” ID)

13

arrayreference = (arrayreferend®) “[” expression |

functioncall n= IDY(" (expressions)” | “)")
statements = { statement;” } statement
statement = Skip”

| leftsides “=" expressions

| “send ID " to” expression

| “if” guardedstatementdi”

| “do” expression - >" statements ¢d”
| “act’ID“in” expression

| functioncall

leftsides = {leftside “” } leftside
leftside w= ID

| fieldreference

| arrayreference
expressions = { expression,” } expression
guardedstatements ::={ guardedstatemen}™ } guardedstatement
guardedstatement ::= expressions” statements

14

References

[1] Mohamed G. GoudaElements of Network Protocol Desigdohn Wiley & Sons,
1998.

[2] Python language website. http://www.python.org.

15

Index
prtcl_err, 9

Abstract Protocols, 2
Abstract Protocols-Timed, 2
act, 8
act statement, 3
actions, 6

local, 3,6

receive, 3,7

timeout, 3, 7
address, 6, 10
AP, 2,6
apcc

running, 2
APT, 2

execution, 3

program, 3, 9
array, 6
array expressions, 8
assignment, 8
assignment left-hand-sides, 7
assignment statements, 7
Austin Protocol Compiler Tutorial

Bison, 2

C functions
engine, 10
setaddress, 10
UDP.initialize_engine, 10
C, programming language, 2, 3, 9
conditional statements, 7
constant declaration, 6

data field, 5
declarations, 6
const, 6
var, 6
directives
import, 4
include, 4
do, 8

engine, 10

16

errors, runtime, 9
expressions, 8
array, 8
field reference, 8
function calls, 9
integer, 8
operators, 8
external message, 5

field, message
data, 5
expressions, 8
integer, 4

Flex, 2

function call
statements, 8

function calls
expressions, 9

Gouda, Mohamed G., 2

grammar, 12
ID, 12
NUMBER, 12
STRING, 12

ID, 12

if, 7

import directive, 4
include directive, 4
integer, 6

integer expressions, 8
integer field, 4

libAPC.a, 3

Linux, 2

local action, 3
local actions, 6
loop statements, 8

message, 3, 4, 11
buffer functions, 4, 11
external, 5, 11
field, 4, 11
expressions, 8

NUMBER, 12
operators, 8

port, UDP, 10
process, 3, 6
Python, 2

range, 6

rcv, 7

receive action, 3
receive actions, 7
runtime errors, 9
runtime library, 3

send statements, 7
setaddress, 10
skip statement, 7
statements, 7
act, 3
assignment, 7
conditional, 7
function calls, 8
loop, 8
send, 7
skip, 7
timeout activation, 8
STRING, 12

timeout, 7
timeout actions, 3, 7
timeout activation statements, 8
types, 6
address, 6
array, 6
integer, 6
range, 6

UDP port, 10, 11
UDP.initialize_engine, 10

variable declaration, 6

17

