CYRF: A Framework for Window-based Unicast
Congestion Control *

Nishanth R. Sastry' Simon S. Lam
nishanth_sastry@us.ibm.com lam@cs.utexas.edu

Department of Computer Sciences,
The University of Texas at Austin
TR-02-09

January 30, 2002
Revised September 23, 2002

Abstract

This work presents a comprehensive theoretical framework of window-
based congestion control protocols called CYRF (for Choose Your Resp-
onse Function) that are designed to converge to fairness and efficiency. We
first derive a sufficient condition for convergence to fairness. Using this, we
show how fair window increase/decrease policies can be constructed from
suitable pairs of monotonically non-decreasing functions. We also give
a new characterization of TCP-friendliness and simple rules for smooth
CYRF flows to be TCP-friendly.

Specific protocols that meet the needs of a given situation can be de-
signed within this framework. We experimentally investigate two CYRF
protocols for streaming media-like applications: LOG, a protocol suitable
for applications that need to trade-off between smoothness and aggres-
siveness, and SIGMOID, which is designed to be “TCP-friendly” even in
a network with drop-tail queues (unlike other non-linear window based
protocols)

1 Introduction

Van Jacobson’s congestion control and avoidance mechanisms for TCP [11]
have been instrumental for the success and stability of the Internet. Chiu
and Jain [6] proved that, assuming synchronous feedback, any additive-increase
multiplicative-decrease (AIMD) mechanism such as TCP converges to fairness

*Research sponsored in part by Texas Advanced Research Program grant no. 003658-0439-
2001
tCurrently with IBM.

and efficiency. Thus these mechanisms allow flows to equitably share a bottle-
neck link’s bandwidth by adjusting their sending rates, while at the same time
efficiently utilizing all of the available bandwidth. This is arguably the main
reason for the success of TCP. We say an end-to-end congestion control protocol
is feasible if and only if it ensures convergence to fairness and efficiency, at least
under “ideal” conditions.

While TCP’s AIMD response function is appropriate for applications with
elastic bandwidth requirements, it results in degraded performance for appli-
cations such as streaming media which need smoother increase/decrease poli-
cies. Consequently, several new congestion control protocols such as RAP [23],
TFRC [10], General AIMD or GAIMD [31] and Binomial Congestion Con-
trol [2] have been designed targeting the needs of specific applications, especially
streaming media. Because legacy TCP flows still dominate the Internet, it is
desirable that these protocols be TCP-friendly [17,18], which roughly means
that all flows must send at the same mean rate as a TCP flow. Thus, the de-
sign of such protocols is complex because of additional constraints imposed by
application needs such as smoothness and network or deployment issues such as
TCP-friendliness.

To simplify the task of designing a feasible protocol that also suits a given sit-
uation, we propose a window-based congestion control framework called CYRF
(for Choose Your Response Function) which guarantees convergence to fair-
ness and efficiency. By choosing specific window increase and decrease policies
(or response functions), CYRF can be easily adapted to suit different needs.

Our main theoretical result is that given two monotonically non-decreasing
functions f(z) and g(z), f(z) > 0 and 0 < g(z) < 1for all z > 1, a set of flows
using the following increase/decrease policy converges to fairness and efficiency
(under assumptions detailed in Section 3):

Z:x(t+R) <« z(t)+=z)/f(=(t))

D:z(t+R) +« x(t)—=z(t)g(z(t)) (1)
Throughout this paper, we use z(t) to represent the current window size and
z(t + R), the next window, after a round-trip time R. We also use Z for the
increase policy and D for the decrease policy.

We term these protocols as step-wise convergent because each application
of the above policy moves the system closer to fairness. We also obtain a more
general class of smooth epoch-wise convergent protocols called 1-CYRF that
allow unfair decrease steps but still converge to fairness over each congestion
epoch if we drop the requirement that g(z) be monotonic, and instead only ask
that the product f(z)g(z) be monotonically non-decreasing, and always greater
than 1 for z > 1.

Next, we look at a specific application of this framework: transporting
streaming media-like applications. As stated before, the traditional model for
this class of applications requires smoothness and TCP-friendliness. We first in-
troduce a new characterization of TCP-friendliness and then show that a smooth

CYRF flow will be TCP-friendly in steady state if

f(@)g(z) <z (2)

Observe from Equation 1 that a slowly increasing function for f(z) results
in an aggressive protocol that makes full use of network bandwidth as soon as
it becomes available. Similarly a slowly increasing g(z) results in a smoother
response to congestion indications. We cannot choose an arbitrarily aggressive
increase policy together with a very smooth decrease policy because of the above
constraint (Equation 2). Thus there is a continuum of protocols with different
degrees of smoothness.

While smoother protocols are better from the application’s point of view,
this is true only in steady-state. Aggressive protocols are also more responsive to
congestion indications and thus have better transient and dynamic behaviors [3,
30]. We design and experimentally investigate a 1-CYRF protocol called LOG,
with aggressiveness and smoothness properties intermediate to that of ITAD and
SQRT, the two other non-linear (binomial) congestion controls that have been
previously studied [2].

Finally, we briefly describe a CYRF protocol called SIGMOID that repre-
sents a novel approach to congestion control for streaming media applications.
Clearly, with the traditional model, we cannot escape the fundamental trade-off
between smoothness and responsiveness, which is essential in dynamic situa-
tions. Furthermore, non-linear window-based congestion control protocols such
as LOG, ITAD and SQRT do not interact well with TCP in the presence of
droptail queues. SIGMOID avoids both these problems by behaving exactly
like TCP when the window size is large enough. It has a dynamic behaviour
exactly like TCP. It also ensures a minimum window size and thus achieves a
minimum throughput. Thus, when used with a playout buffer, smoothness is
no longer an essential requirement. Experiments show that with the ideal min-
imum window size, SIGMOID interacts quite well with TCP with both RED
and DropTail queues in the network.

An interesting aspect of this work is that all commonly known window-based
protocols, namely TCP, GAIMD and Binomial Congestion Control are special
cases of CYRF (some binomial congestion control protocols are only a special
case of 1-CYRF), thus providing a powerful unified framework for the analysis
of these protocols. For example, we obtain new proofs for the fairness and TCP-
friendliness of these protocols as special cases of the results for CYRF. We also
discuss a classification of window-based protocols based on CYRF.

The rest of this paper is organized as follows. In Section 2, we describe
related proposals. Section 3 explains some of the simplifying assumptions used
in our analysis and derives sufficient conditions for 2 and n > 2 flows to converge
to fairness and efficiency. This is used in section 4 as the basis for CYRF. We
then characterize TCP-friendliness and describe LOG in section 5. Sections 6
and 7 present our simulations on LOG and the SIGMOID protocol. Section 8
concludes the work.

2 Related Work

TCP is the most widely used congestion control mechanism today. Most mod-
ern TCP implementations [29] incorporate algorithms introduced by Van Jacob-
son [1,11] into 4.3BSD to fix the original 1988 congestion collapse. In congestion
avoidance mode, TCP increases its window size by 1 when a window is acknowl-
edged, and decreases the window to half its previous size when a loss is detected.
Thus its increase and decrease policies are given by:

T:z(t+R) « =z(t)+1
D:z(t+R) «+ x(t)—=x(t)/2 (3)

Congestion avoidance was simultaneously investigated in a series of papers
by Jain, Ramakrishnan and Chiu which is summarized in [13]. Prominent con-
gestion control protocols in classical networking literature include Clark et al. s
NETBLT [7], Cheriton and Williamson’s VMTP [5], Ramakrishnan and Jain’s
DECBIt [21] and Wang and Crowcroft’s Tri-S [28].

The notion of TCP-friendliness [17,18] has given rise to a number of new
proposals [2,10,23,24,27,31] for the transport of streaming multimedia.

The closest in approach to CYRF are GAIMD and Binomial congestion
control, which are both shown to be special cases of CYRF. GAIMD [13, 31]
generalizes TCP to an Additive Increase Multiplicative Decrease (AIMD) pol-
icy with different increase and decrease parameters. Its increase and decrease
policies are given by

IT:z(t+R) « z(t)+a; a>0
D:z(t+R) « z(t)—pz(t); 0<pf<1 (4)

with a = 33/(2 — 3) for TCP-friendliness[9].! Binomial congestion control [2]
proposes the following non-linear increase/decrease policies:

T:z2(t+R) « z{t)+a/zt)*; a>0
D:z(t+R) « =z(t)—pz(t); 0<B<1 (5)

with the further condition that k¥ + [= 1 to ensure TCP-friendliness. We can
use [> 1 only if we know that the maximum window size is z < (1/8)'~1. Oth-
erwise, we will need to separately deal with the possibility of negative window
sizes after an application of D. A similar policy is briefly considered in section 4
of the Chiu-Jain paper [6].

Notice that plugging o = 1 and g = 1/2 for GAIMD (Equation 4) gives
us TCP. GAIMD itself is a special case of the binomial algorithm(Equation 5)
with £ = 0 and I = 1. SQRT (k¥ =1 = 0.5) and IIAD (k = 1, = 0) are two
non-linear binomial controls in [2] that we will use in later sections.

IThis does not consider the effect of timeouts. [31] gives a slightly different condition for
TCP-friendliness with timeouts.

TFRC [10] is a rate-based scheme which directly uses the TCP through-
put equation [19] to estimate its sending rate. TEAR [24] estimates the TCP-
friendly rate by emulating the entire TCP state machine at the receiver. RAP [23]
modifies the inter-packet gap to provide fine-grained delay-based congestion
avoidance. The Loss-Delay Adjustment Algorithm [27] uses feedback from
RTP [26] for rate adjustment.

In this work, we do not look at multicast congestion control. We also do not
consider application-specific adaptive approaches such as [22] that try to make
the best use of the available network support. We consider all flows equal so
that schemes like MulTCP [8] fall outside our framework. Similarly, we allow
only binary feedback, either through packet loss or an ECN-like indication.
Thus proposals such as Explicit Window Adaptation [15] which requires per-
flow network feedback are not considered. Finally, we confine ourselves to the
classical memoryless model of congestion control. Thus recent schemes such as
SIMD [14] fall outside our scope.

3 Convergence Requirements

In this section, we first outline the simplifying assumptions made in the rest
of the paper and then formalize the notions of convergence to fairness and
efficiency.

3.1 Notation

Following Chiu and Jain [6], in the rest of this work we adopt the following
conventions for notation. We use z; to represent the current window size of the
it flow. Az; denotes a change to it due to the application of an increase policy
7 or a decrease policy D. In general, the numerical subscript ¢ will be used to
denote a quantity on flow ¢, and the number of flows is represented by n.

3.2 The Model

The following analysis uses Chiu and Jain’s synchronous feedback assumption [6]
that all the flows in the network get the same feedback and get this feedback
simultaneously. Furthermore, the feedback is binary and limited to a single bit
indicating whether the network is overloaded(1) or if there is additional available
bandwidth (0). This feedback can be implicit, for example, through packet
losses, or through an explicit mechanism such as a “congestion experienced” bit
in an ECN aware network [20, 21].

If the network feedback is 1, then the next window size is determined by
the decrease policy D, otherwise, the increase policy Z is applied. Usually, this
adjustment occurs upon receiving an ACK. Here we use the continuous fluid
model which assumes that this happens as a continuous process.

We also assume a saturated sender whose window size is limited only by the
network, and not by the receiver’s window or the amount of outstanding data

at the sender. Finally, we ignore mechanisms such as slow-start by assuming
that steady state has been reached.

3.3 1l-responsiveness

Steady state can be characterized by a sequence of congestion epochs which we
define as the largest period of time which contains (and ends with) exactly one
application of the decrease policy. Most analyses (for example, [2,9]) implicitly
assume that each congestion epoch has at least one application of an increase
policy, or equivalently, that each decrease is preceded by at least one increase.
With the synchronous feedback assumption, this means that for each flow, the
decrease in window size from a single application of D must at least wipe out
the previous increase resulting from the last application of Z, so that the next
feedback from the network does not indicate overload. In other words, the
following criterion must be satisfied:

|A(wr)] < |A(wp)] (6)

where A(wz) is the increase resulting from a single application of Z and A(wp)
the decrease in window size because of D. We term protocols which satisfy
Equation 6 for sufficiently large window sizes as 1-responsive to distinguish
them from k-responsive protocols which require £ > 1 applications of D to
offset an increase.

Unless otherwise stated, the protocols are assumed to be 1-responsive. As
can be seen from Equations 3, 4 and 5, many interesting protocols like TCP,
GAIMD and the TCP-friendly version of Binomial Congestion Control are 1-
responsive in general 2. Thus, this is not a very restrictive assumption.

3.4 Smoothness

While smoothness is not a “necessary” property, smooth protocols are now being
studied with great interest as possible transport protocols for streaming media
applications. We will later show how to design new smooth protocols with the
useful characteristics of TCP-friendliness and epoch-wise convergence.
Smoothness has been used as a metric in previous work (e.g. [9] and [30]).
Below we formalize a slightly different (but compatible) notion of smoothness.
Intuitively, the smoother a flow is, the lesser will be its decrease in response
to a congestion indication from the network. In this work, we say a protocol
is smooth if its increase and decrease policies are smooth. A window increase
(decrease) policy x;1r < @z + Az, is said to be smooth if the window size
increase (decrease) from a single application of the policy is at least an order
of magnitude smaller than the current window size, for large enough windows.
Formally, we write
|Az| < z (7)

2Note that the minimum possible window size is 1 and for this window, Equation 6 fails.
But we assume a congestion epoch with a sufficiently large minimum window size.

3.5 Convergence to Efficency

We require the system to react in such a way as to move the total bottleneck link
utilization closer to the link capacity. This can be achieved if the total utilization
across all flows (i.e., sum of window sizes) increases when the bottleneck link is
underutilized and decreases when the bottleneck link is overloaded. This is just
the principle of negative feedback [6]. An easy way to achieve this is to have
each flow increase its window size when the bottleneck link is under-utilized and
decrease its window size when the bottleneck link is overloaded.

3.6 Convergence to fairness

Fairness is the most important criterion for the feasibility of any end-to-end
congestion control protocol. Intuitively, this means that regardless of the initial
window size values, all flows sharing a single bottleneck link must eventually
end up with identical window sizes at each instant (in steady state).

When the eventual goal of equal window sizes is not satisfied, the flows
share the link unfairly. To quantify this, we use the Jain-Chiu-Hawe Fairness
index [12] F:

2

n(3 ?)
Observe that F is a continuous differentiable function upperbounded by 1, and
this upperbound is reached when the allocation is totally fair (z1 = z2 = ... =

In this section, we derive a simple sufficient condition that guarantees con-
vergence to fairness. The following numerical example will motivate and provide
an intuitive feel for the result:

Example 1: Consider two flows with windows of size 1 = 8 and zo = 10. If
an application of the increase policy must result in a fair window size of 11 for
both, the smaller flow must change (increase) by a larger amount: Az; = 3,
as compared to Axy = 1. Similarly, if a decrease must result in a fair window
size of 7, the smaller flow must decrease by a smaller amount, or equivalently,
change by a larger amount: Az; = —1 which is greater than Axzy = —3.]

Thus the signed change in the window size Az, must be greater for the flow
with the smaller window. The theorem below shows that it is sufficient for the
signed proportional change Az /z, to be greater.

Theorem 1 (2-Flow Fairness Condition) Two flows with window sizes
and o, 1 < T2, sharing a bottleneck link will eventually converge to and main-
tain a totally fair allocation of bottleneck link bandwidth if the following condition
is satisfied (after each application of an increase policy T and decrease policy D
or over any reasonably small period of time):

Al‘l S Al‘z (9)

T I

At least one of the two policies must ensure a strict inequality.

Proof: The proof proceeds as follows: Suppose two flows with windows
and x5 share a bottleneck link. Let AF be the change in F corresponding to a
small change Az in 21 and Az, in 5. If AF is positive at each application of
an increase/decrease policy, then eventually F reaches its maximum value of 1
regardless of its initial value, and the system moves to a totally fair allocation.
Thus we only need to ensure AF > 0 always.

For n = 2, Equation 8 becomes

. (z1 + 22)?

©2(af +a3)
Using

OF OF

F=— -
d o, dxq + . dzs

and making the continuous fluid approximation that the changes Az and Axs
represent infinitesimal changes to z; and x:

dz1 ~ Az, drs = Azs and dF ~ AF (10)
we get
{(m% + :U%) (1 +x2) — (1 + 562)2 ml} Az
(2] + 23)?
{(m% + CU%) (2 +x1) — (22 + m1)2 mg} Axy

(23 +23)?

AF =

+

Imposing the condition AF > 0, we get

(x2 + 22)(Azy + Axs) > (z1 + 22) (z1A21 + T2A20) (11)

Simplifying, and using z» — ;1 > 0, we can write

Any o Azp
T T2

Note that we need at least one of Z or D to ensure AF > 0 so that F increases
over each congestion epoch and eventually becomes 1. Thus at least one of them
must have a strict inequality in Equation 9. Also, once z; = x5, this equality is
maintained under synchronous feedback and the values of the window sizes will
increase or decrease in lockstep with each other. [|

We can use a linear interpolation of the window size between two applications
of Z for GAIMD and TCP, so that drqy = Az, des = Axs and dF = AF which
is stronger than Equation 10. Thus the above proof applies to these protocols
even though the changes Az, and Az, are not infinitesimal.

This is used in the following corollary which gives a new algebraic proof of
convergence to fairness for two GAIMD (or TCP) flows. Chiu and Jain [6] give a

different proof for the convergence of GAIMD under the same conditions. This
validates the correctness of our results in a way. We also give the first algebraic
proof of convergence for binomial congestion control. (The original proof in [2]
is a geometric proof based on the chiu-jain phase plot.)

Corollary 2 Two TCP or GAIMD flows converge to fairness under the as-
sumption of synchronized feedback

Proof: For TCP, Ax = 1 for the increase policy and Equation 9 becomes:
1/xy > 1/z2if 1 < xp. Similarly Az = —x/2 for the decrease policy and
Equation 9 reduces to —(1/2) = —(1/2).

For GAIMD, Az = « for the increase policy and Equation 9 becomes:

afry > ajzeif £1 < xo. Similarly Az = —fx for the decrease policy and
Equation 9 reduces to —8 = —f. []

For Binomial congestion control, Az = a/z* for the increase policy and
Equation 9 becomes: a/z¥™' > a/zh™lif z; < z,. Similarly Az = —pa!

for the decrease policy and Equation 9 reduces to —Ba:ll_l > —Bwé‘l if 11 < 2.
Thus, the increase and decrease policy separately ensure convergence to fairness
only if £ > —1and [> 1.

However, SQRT and ITAD, the two instances of binomial congestion control
experimentally evaluated in [2] have values of [< 1. Also, as discussed in
section 2, we can use [> 1 only if we know the maximum window size. The
following corollary shows that binomial congestion control converges to fairness
if k,1 > 0, which is satisfied by both SQRT (k¥ = 1/2, | = 1/2) and IIAD
(k=1,1=0).

The proof proceeds as follows: We have shown above that each application
of an increase policy increases fairness if £ > —1. Thus any sequence of window
size updates using only the increase policy increases fairness. The proof shows
that even though the decrease policy will worsen fairness when 0 <[< 1, the
increase in fairness from the previous application of the increase policy more
than offsets this decrease in fairness. Also, for sufficiently large window sizes,
binomial congestion control is 1-responsive. Thus each application of a decrease
policy is always preceded by an increase policy, so that the value of F increases
over each congestion epoch.

Corollary 3 Binomial congestion control converges to fairness if k,1 > 0.

Proof: Clearly, binomial congestion control with k,[> 0 satisfies the 1-respon-
siveness criterion (Equation 6) for sufficiently large window sizes. Thus, each
application of a decrease policy is preceded by an application of the increase
policy.

Suppose the window sizes of the two flows are z1, z2 (21 < x2), just before
the application of the increase policy that is followed by an application of the
decrease policy. It is sufficient to show that the fairness index increases over this
subsequence of window size adjustments (an increase followed by a decrrease)
since we already know that sequences consisting only of applications of increase

policy improve the fairness index if & > —1. (Because of 1-responsiveness we
need not consider a subsequence with two or more window decreases.)
We need to show that if 1 < z»,

T T

G- B+ %) - fat)
1 1 2 T3

1 T2
Approximating B(z + a/2*)! ~ B!, we need to prove

G = Bx) 5 - B(a)
1 > 2
T - To

Or,
a— Bttt o — pabt!
wllé-‘rl = w12<>+1

But when z; < x5, we have 1/z¥" > 1/25%! and o — g2f™ > o — abt!
because k£ +1 > 0.

Thus the decrease in fairness due to the application of the decrease policy is
offset by the increase in fairness resulting from the previous increase in window
size. Thus F always improves over a congestion epoch, and binomial congestion
control converges to fairness even if 0 <[< 1. []

Theorem 1 can be extended for n flows:

Theorem 4 (n-Flow Fairness Condition) n-flows with windows 1 ,zs,. .. Ty
converge to fairness if the following condition is satisfied (after each application
of an increase policy T and decrease policy D or over any reasonably small period
of time):

i=n i=n i=n i=n
Zw?ZAwl > Z%Z%sz (12)
i=1 =1 =1 i=1

Again, at least one of the two policies should ensure a strict inequality.

The proof is very similar to the 2-flow case. Notice that the n-flow result
reduces to Equation 11 for n = 2.

Corollary 5 N GAIMD or TCP flows converge to fairness

Proof: We derive the results for GAIMD. We can show that n TCP flows
converge to fairness in exactly the same way. In fact, the result for GAIMD
implies the result for TCP because TCP is a special case of GAIMD.

e Case 1: The increase policy satisfies Equation 12.

In this case Ax; = a. Since F is upperbounded by 1, we get (from Equa-

tion 8)
o (e

~ n(X)

10

Rewriting this, we get,
i=n i=n i=n i=n
)IEDIED IS SO
i=1 =1 i=1 =1
Multiplying both sides by «,
i=n i=n i=n i=n
YIEDIIED 3
i=1 =1 i=1 =1
which is Equation 12 with Az; = a.

e Case 2: The decrease policy satisfies Equation 12

In this case Axz; = Bx;. Equation 12 becomes

i=n i=n i=n i=n

2 _
E T; E Br; = E T; E x; - By
i=1 =1 =1 i=1

Thus, GAIMD ensures that each application of the increase policy leads to
an increase in fairness, but maintains the fairness index when the decrease policy
is applied.

|

It can be shown that n binomial flows also satisfy Equation 12 and hence
converge to fairness. The proof sketch is very similar to the proof for Theo-
rem 9. However, this result is easily obtained in section 4.2 as a special case of
Theorem 10. Thus we have:

Corollary 6 n > 2 binomial flows converge to fairness.

4 CYRF

In this section, we adopt a novel approach to protocol design. Since the pri-
mary motivation behind this work is the wide range of requirments of different
applications, we would like to know what latitude an application can have in
choosing a response function. We ask the question: “What is the class of in-
crease/decrease policies that satisfy Equation 97”. This yields a new family
of congestion control protocols that are designed to converge to fairness and
efficiency.

4.1 f(-),g(-) Congestion Control

Suppose two flows share a bottleneck. Assuming that Az is some function of x,
we can see that Equation 9 (and Example 1) implies some kind of monotonicity
for Az. Also, this function must be differentiable for the proof of Theorem 1
to apply. Furthermore, for convergence to efficiency, the principle of negative
feedback discussed in section 3.5 must be satisfied. These requirements are
expressed in the following theorem.

11

Theorem 7 (2-Flow Fairness for CYRF) Let f(z) and g(x) be any differ-
entiable monotonically non-decreasing functions (at least one of them strictly
increasing) with f(x) > 0 and 0 < g(z) < 1 for all x > 1. Then the increase
and decrease policies in FEquation 1 ensure converge to fairness and efficiency
for two flows sharing a bottleneck link.

Proof: Az = x(t)/f(x(t)) for the increase policy and Az = —z(t)g(z(t))
for the decrease policy.

Convergence to fairness: It is easy to see that, if z1, z2 (21 < z2), are the
two window sizes, then because of the monotonicity of f(-) and g(-), the increase
policy satisfies Equation 9: 1/f(z1) > 1/f(x2) and similarly for the decrease
policy,—g(z1) > —g(z2). Note that since at least one of the two functions is
strictly increasing, we have a strict inequality for at least one of the two policies
as required by Theorem 1.

Convergence to efficiency: For CYRF to be efficient, the principle of
negative feedback must apply and Z must increase the window and D must
decrease the window size. This is clearly satisfied for all window sizes z(t) > 1,
because Az is positive for the increase policy and negative for the decrease
policy (due to the constraints f(z(t)) > 0 and g(x(¢)) > 0).

The upperbound g(z) < 1 ensures that D does not lead to negative window
sizes.]

Because each application of an increase or decrease policy moves the system
towards fairness, we call this class of protocols as step-wise convergent.

For protocols with a smooth increase policy, we can drop the requirement
that g(z) be a monotonically non-decreasing function; instead, we only require
that f(z)g(z) be monotonically non-decreasing and greater than 1 for xz > ¢,
for some small constant c. We then obtain epoch-wise convergent protocols that
only converge over each congestion epoch. Note that we need either f(z) or
f(z)g(z) to be strictly increasing to meet the “strict inequality” requirement of
Theorem 1. We call this class of protocols 1-CYRF because if f(z)g(z) > 1, the
protocol is 1-responsive.

Theorem 8 (2-Flow Fairness for 1-CYRF) 1-CYRF converges to fairness
for n =2 flows.

Proof: In 1-CYRF, each application of the increase policy will still increase
the fairness index. However, the decrease policy can now worsen fairness if g(x)
is not monotonic. But if the increase in F can offset the decrease, the system
will still converge to fairness over each congestion epoch. To accomplish this,
we impose a stronger constraint that the increase in F from a single application
of 7 must be more than the decrease in F from a single application of D and
use the 1-responsiveness condition to ensure that each application of a decrease
policy is preceded by at least one increase. Thus, in deterministic steady-state,
F will still increase over each congestion epoch.

A single application of Z followed by an application of D increases fairness
if Equation 9 is satisfied. Here Az = z/f(z) — (z + z/f(x))g(z + 2/ f(z)) =~
z(1/f(z) — g(x)) because of smoothness. Thus we require 1/f(z1) — g(z1) >

12

1/f(z2) — g(z2) if 21 < x2. Notice that if f(z)g(x) is monotonically non-
decreasing, then

1 1— f(x)g(z
) = L@@
f(@) f(@)
is monotonically non-increasing. Thus the inequality required by Equation 9
will be automatically satisfied.]

CYRF was designed to converge to fairness for the two-flow case. The fol-
lowing theorem proves that CYRF converges to fairness for n > 2 flows also.

Theorem 9 (n-Flow Fairness for CYRF) CYRF converges to fairness for
n > 2 flows.

Proof: We will prove a stronger result, viz., that CYRF flows satisfy the suf-
ficiency condition given by Equation 12. The proof proceeds as follows: Without
loss of generality, we will order the flows by increasing window size. We then
use mathematical induction to show that if Equation 12 is satisfied with & flows,
adding a (k + 1)th flow with a larger window size preserves the fairness con-
dition. The key fact used is that 1/f(z) and —g(z) are both monotonically
non-increasing, so that 1/f(zr4+1) < 1/f(z;) and —g(xg+1) < —g(z41) for all
1<i<k.

e Case 1: The increase policy increases fairness.

Theorem 7 forms the base case.

Without loss of generality let z; < 25 < ... < 2 < zpp1 = X be the
window sizes of k + 1 flows. Suppose Equation 12 is satisfied with n < k
flows. Here, Az = z/f(x). So we get:

k k k k
2Dy 2 2 2 (13)

Consider n = k + 1. Because zx4+1 = X > x;, forall 1 <i <k, and f()
is monotonically non-decreasing, we can write

k

Xa?l— f X)

Rewriting, we get
X

2 Ny X u koo k

Adding Equation 13 and Equation 15, adding X3/ f(X) to both sides and

13

factoring, we get:

k 9 9 k T; X
(;x +X> (Z F(@) f(X)> =

(3

i & x? X2
(Z”) (Zm >>

i=1

This is just Equation 12 for n = k 4+ 1. Hence, by the principle of mathe-
matical induction, Equation 12 holds for any number of flows, n.

e Case 2: The decrease policy increases fairness. The algebra is exactly the
same as above, except that 1/f(-) is replaced by —g(-), which is also a
non-increasing function.

Since one of f(x) or g(z) is strictly increasing, one of the two policies Z or D
will ensure a strict inequality as required. [|

Note that the previous argument for convergence to efficiency still holds for
the n-flow case and need not be repeated again.

It can also be shown that 1-CYRF converges to fairness for n-flows. The
proof is very similar to Theorem 9. The increase case is exactly the same. In
the decrease case, instead of —g(-), we use 1/f(x) — g(x), which is a decreasing
function as shown above. Thus we have:

Theorem 10 (n-Flow Fairness for 1-CYRF) 1-CYRF converges to fairness
for n. > 2 flows.

4.2 Applications of CYRF

The first application of CYRF is a “natural” classification of window based
protocols. Observe that any window increase or decrease function can be written
in the form of Equation 1. However, if there is a range [z1, 2] where the f and g
are not monotonic, the function is not CYRF. In such a case we can construct an
increase/decrease step similar to Example 1 with window sizes in [z1, 2] which
decreases fairness. Thus CYRF implies stepwise convergence and vice-versa.

Notice that if f(z), g(z) are monotonically non-decreasing, so is their prod-
uct f(z)g(z). Thus if a CYRF protocol is smooth and 1-responsive (and all
important protocols are), it is also 1-CYRF. Clearly the converse is not true —
Binomial congestion control can be written in terms of Equation 1:

f@) =" /a; g(z) = p' (16)

However this is not CYRF for [< 1 because g(x) will then monotonically
decrease. Fortunately, all TCP-friendly Binomial controls satisfy k& + [= 1 [2]
so that f(x)g(z) = fz/a > 1 for x > (a/B). Thus TCP-friendly binomial
congestion control is 1-CYRF but not CYRF.

14

Epochwise Convergent
727
— 1.CYRF
|_ LG
| ??? ;
CYRF = | HAD,
i‘;g SQRT
A BINOMIAL
gent lSIGMOID ~__=___,ff‘“/

Figure 1: A Classification of Window-Based Protocols

Also, by substituting f(z) = z, and g(z) = 1/2 in Equation 1, we see that
TCP is a special case of CYRF. Similarly, GAIMD is also a special case of
CYRF (f(z) = z/a, and g(z) = B).

Figure 1 summarizes the relationships. The rectangles represent new classes
introduced in this work, and the ovals show known classes. Specific protocols
in each class are given in italics. As the “??7” marks indicate, we do not know
of any useful protocols that are 1-CYRF but not CYRF or protocols that are
epoch-convergent but not 1-CYRF. We believe that TCP-friendly 1-CYRF may
represent the widest class of smooth window-based memoryless binary feedback
TCP-friendly congestion control protocols that always converge to fairness.

CYRF can also be thought of as a framework for analyzing window-based
protocols. For example, it follows from the above discussion that Binomial,
GAIMD and TCP converge to fairness and efficiency because they fall within the
CYRF framework. The next section shows that the rules for TCP-friendliness
in GAIMD and Binomial congestion control can also be derived as special cases
of the results for CYRF.

In the rest of the paper, we will demonstrate a third application of this
framework by designing two protocols suitable for streaming media-like appli-
cations.

5 TCP-Friendly CYRF

Smooth protocols are now being widely studied because streaming media flows
require smooth transport for effective playout at the receiver end. Such protocols
are also required to be TCP-friendly. We first obtain a useful approximation
valid in smooth protocols and characterize TCP-friendliness in steady-state.

15

Using this, we obtain a simple rule for CYRF to be TCP-friendly. We then
design a TCP-friendly 1-CYRF protocol called LOG with the aim of reconciling
the conflicting needs of smoothness and a fast dynamic response to congestion.

5.1 Smoothness

Recall that a window increase or decrease policy ziyr ¢ x; + Ax, is smooth if
|Az| € x

Suppose the increase policy of a smooth protocol is successively applied two
times: Ty + Tt + Az, Tipor — Tirr + A(zrpr). Because |Az| € z and
|A(zt+-R)| € Tty R, We can write Tipop =~ @ + 2A(x;) or in general,

TiynR & T + nA(x4) (17)

for n successive applications of Z (n being of at most the order of z so that the
errors dont add up significantly). This proves the smoothness lemma:

Lemma 1 (Smoothness Lemma) In 1-responsive protocols, the successive
window sizes after each application of a smooth increase policy during a conges-
tion epoch can be approximated by an arithmetic series.

In particular, this applies to smooth CYRF protocols in steady state. Sup-
pose X is the maximum window size in the epoch, just before the application of
D. For l-responsive protocols, D is also the last window change in the current
epoch. The window size just after the application of D, X — X g(X), is also the
initial window size for the epoch because of the steady-state condition. Using
this with the arithmetic series approximation, the number of applications of the
increase policy is given by the number of terms in the series:

n=f(X)g(X)+ 1= f(X)g(X) (18)
and number of packets sent during the epoch is the sum of the terms:

S = 5X(2 - g(X) (19)

5.2 TCP-friendliness

An arbitrarily smooth and aggressive protocol is dangerous because it cannot
respond fast enough to congestion indications. To protect all flows, and in
particular, legacy TCP flows that dominate the Internet, we require the notion
of TCP-compatibility [4], which states that no flow should send more than a
comparable conformant TCP flow (same RTT, MTU etc). This is easily achieved
by maintaining the arrival rate to at most some suitable constant ¢, times the
square root of the packet loss rate p [18]. This is called TCP-friendliness. The
following theorem gives a new characterization of TCP-friendliness in steady-
state:

16

Theorem 11 (TCP-Friendliness) A 1-responsive flow is TCP-friendly in de-
terministic steady-state if and only if the number of packets, S, , sent during a
congestion epoch is related to n, the number of applications of the increase policy

during that epoch as:
Sp o n? (20)

Proof: Suppose the packet size is B and the steady-state (or average) round-
trip time is R. Then the (long-term) throughput over the epoch is given by
T = S,B/nR. Note that B and R are constant for a given flow, so T' &< S,,/n.

= Assuming S,, « n?, or equivalently, n oc /S, we have T' o /S, But by
definition, the loss rate p for 1-responsive protocols in steady-state is given by
p = 1/5,% (Also, note that S, # 0 because of 1-responsiveness). Thus we get
T x 1/,/p, which is the standard condition for TCP-friendliness.

< Assume T « 1/,/p or equivalently T’ o« /S,. Since T S, /n, we get
S, o< n2.]

Corollary 12 A smooth CYRF flow is TCP-friendly in steady-state if and only
if
f(x)g(z) oc (21)

Proof: Substituting from Equations 18 and 19 in Equation 20, we see that
X(2—-9(X))/2x f(X)g(X) if a CYRF flow must be TCP-friendly. If g(-) <« 2
(Fig. 2 shows that this is valid for the three protocols discussed in the next
section.), we get Equation 21.

Note that Equation 21 also implies 1-responsiveness, which was an implicit
assumption in the above theorem. [|

We observe in passing that by substituting from Equation 16 in Equation 21,
we get k + | = 1, which is the rule for binomial congestion control to be TCP-
friendly. We can also obtain the rule for GAIMD by a slightly more exact
analysis that also finds the constant of proportionality in Equation 20. This is
discussed next.

5.3 TCP-Compatibility

As stated in Section 5.2, the notion of TCP-compatibility requires that no flow
should send more than a comparable conformant TCP flow. TCP-friendliness
advocates maintaining the arrival rate to at most some suitable constant ¢, times
the square root of the packet loss rate.

We give a stricter version of Theorem 11 which also derives the constant
of proportionality for Equation 20 and thus achieves strict TCP-compatibility.
Using this, we derive the rule for CYRF to be TCP-compatible. We also show
how the condition for the tcp-compatibility of GAIMD can be obtained as a
special case of the result for CYRF.

3p = k/S,, for k-responsive protocols.

17

Theorem 13 (TCP-Compatibility) A 1-responsive protocol with a conges-
tion epoch of size n during which S, packets are sent is TCP-compatible in
deterministic steady-state if:

n? 2
o _Zz 22
S =3 (22)
Proof: From Theorem 11 we know that if
2
n
Lo 23
= (23)

for some constant ¢, then the protocol is TCP-friendly in steady state.

To get the proportionality constant, we just need to plug in the values of n
and S,, for some TCP-compatible protocol. In particular, we know that TCP
itself is TCP-compatible.

Suppose the maximum window size in a TCP congestion epoch is Wrpep.
This is the window size after the last increase in the epoch. It is followed by
an application of the decrease policy, which decreases the window to Wrep /2
and the next congestion epoch starts*. In steady state, the initial window size
of each congestion epoch is the same and hence equal to the final window size
of the epoch. Also, from Equation 3 we can see that the successive window
sizes during a sequence of applications of the increase policy form an arithmetic
series with a term difference of 1. Thus we have

Wrep =Wrep/24+ (n —1)

This gives us

n =~ WTCP/2
We also get the number of packets sent during the epoch as the sum of the
series: 5
n WTC’P 3WTCP
n=—=|2—— 1) 1) —==
S 5 < 5t (n—1)) 3
Plugging these values into Equation 23, we get
n? 2
Sn 3
for TCP-compatibility.]

By a very similar argument, we can show that a k-responsive protocol is
TCP-compatible if
kn? 2
oz 24
5. =3 (24)

Corollary 14 A smooth CYRF flow is TCP-compatible in steady-state if and
only if
X(2-y9(X))

39(X) (25)

fX) =

4As in the proof of Thm. 11, this follows from our definition of the congestion epoch and
the fact that TCP is 1-responsive

18

Proof: Substituting from Equations 18 and 19 in Equation 22 we get

21+ (X)g(X) _ 2
Xe-g(X) 3
Simplifying,
e f) 2 X2 9(x)
o 39(X)

|

Notice that this can be reduced to the TCP-friendliness condition (Corol-

lary 12). As in the proof of Corollary 12, if g(X) <« 2 we can write f(X)g(X) =
X/3 or f(X)g(X) x X which is Equation 21.

Corollary 15 GAIMD is TCP-compatible if

36

“=e-p) (26)
Proof: Although GAIMD is not a smooth protocol, we can see from Equation 4
that Equations 18 and 19 also hold for GAIMD. Thus the proofs of Theorems 11
and 13 and hence Corollary 14 hold for GAIMD (and TCP) also. Substituting
f(z) = z/a, and g(x) = B, we get the result. [|
This is a simplified condition for GAIMD to be TCP-compatible ignoring
the effect of timeouts. A slightly different proof of this result is given by [9].
Again, this verifies Equation 25 in a way. [31] gives a different condition taking

timeouts into consideration.

54 LOG

CYRF represents a wide class of window-based protocols. Applications can
choose different f(z) and g(z) to get different window-based protocols. For
example, from Equation 1 it is easy to see that an application that uses a slowly
increasing function for f(z) will be more aggressive and make full use of network
bandwidth as soon as it becomes available. Similarly a slowly increasing g(x)
results in a smoother response to congestion indications. We cannot choose
an arbitrarily aggressive increase policy together with a very smooth decrease
policy because of the TCP-friendliness constraint (Equation 2). Thus there is a
continuum of protocols with different degrees of smoothness.

While smoother protocols are better (from the application point of view,
for streaming media applications), this is true only in steady-state. Aggressive
protocols are also more responsive protocols usually have better transient and
dynamic behaviors [3, 30].

Here we trade-off between smoothness and dynamic or transient behaviour
by designing a protocol whose properties are “between” SQRT (k =1 = 0.5
in eqn. 5) and IIAD (k = 1, I = 0), the two non-linear binomial controls
studied in [2]. From Equation 16, we see ITAD is smoother than SQRT because
griap(z) = 1/z is always less than gsqrr(z) = 1/y/z. As shown in Figure 2,

19

08 | I i
1
[N
0.6 - | -
)
04 -

0.2

Figure 2: g(z) for SQRT, ITAD and LOG

by choosing a function that lies between these two, such as g(z) = log(z)/z, we
get a new protocol with intermediate properties. For this to be TCP-friendly,
we need f(z) oc 2%/log(x) (from Corollary 12). Thus the increase and decrease
policies in Equation 1 become:

IZ:z(t+R) <+ =(t)+log(x)/z
D:z(t+R) <« xz(t) —0.5%log(z) (27)

We call this protocol LOG. From fig. 2, we see that just like ITAD and SQRT,
g(x) for LOG is a decreasing function and hence LOG is only 1-CYRF. The
decrease policy will worsen fairness. However, unlike ITAD or SQRT, ¢(z) in-
creases for very small window values; thus LOG is CYRF in this region. Due
to this, it is likely to perform better in extremely congested situations when
the window sizes are small. It is interesting to note that LOG falls outside the
binomial class of protocols, and yet it falls “between” ITAD and SQRT.

6 Experiments

We have implemented CYRF in the ns-2 network simulator® by changing TCP’s
congestion avoidance mechanism to use arbitrary increase or decrease functions.
CYREF inherits other mechanisms such as slow-start and timeouts from TCP.
We use LOG as an example CYRF protocol to verify some of the previous re-
sults. We will also examine the properties of LOG and then propose SIGMOID,
a protocol that overcomes the “TCP-unfriendliness” of ITAD, SQRT and LOG
in the presence of droptail queues.

5 Available from http://www.isi.edu/nsnam/ns/

20

Most of the experiments use the standard “dumb bell” topology: a single
bottleneck link with a default bandwidth of 10Mb and a delay of 1ms. RED
queues with a maximum queue size Q4. equal to the bandwidth-delay product
and maximum and minimum drop thresholds at 20 and 80 percent of (). are
used. n flows are started at random times in the first two seconds. All flows use
1KDb packets and saturated senders are simulated by using the FTP application
in ns. A random number of Reno TCP flows in the opposite direction form
background traffic.

6.1 Verification

T T
Fairness Index
Flow 1 (scaled) --——-----
Flow 2 (scaled) ----------

Ideal Fairness -

0

~

Scaled cwnd,Faimess index

O Fr N W M O O

30 40 50 60 70
Time (Seconds)

Figure 3: Fairness Index and cwnd of 2 competing LOG flows

In this section, we will verify the theoretical results of this paper. Fig. 3
shows the scaled cwnd values of 2 competing flows and the corresponding Chiu-
Jain-Hawe fairness index These results show that LOG rapidly converges to a
value of F near 1 verifying the results of Theorems 1 and 7. The repeated instan-
taneous decreases in fairness are because of packet drops (mostly random RED
drops). Note that LOG is a 1-CYRF protocol and drops invoke the decrease
policy which worsens fairness.

Fig. 4 shows the congestion window evolution of a single LOG flow. The
points are decimated by plotting one in every 20 cwnd values for clarity. We
also give the linear best-fit for the cwnd values (taking all cwnd values into
account) which clearly shows the validity of the arithmetic-series approximation
in Lemma 1.

In the next experiment, we investigate the interaction between LOG and
TCP. We use the multiple-bottleneck topology shown in Fig. 5. The inter-
router links are 10Mb with a delay of 1ms, and the others are 100Mb with 24ms
delay, designed to saturate the routers. All queues are RED. X-Flowi is the

21

Linear Best Fit for cwnd

cwnd

Verifying Smoothness Lemma for LOG

o i I I LOG I(Decirr_'lato._edl) +
14 [Best-Fit Line -------- |
12 —i .
10 —é il .
g I ﬁg CEALAUE L T aF -
! eI R G A R S PO s
o AT iy Wil il 1
! SN I ni‘[‘. HER
abl oz oa A i L"’”w‘ i .
e
%kt :
O 1 1 1 1 1
o 10 20 30 40 50 60
Time
Figure 4: LOG Congestion Window Evolution
X-Fowl x.ginkl X-Sink2
TCP TCPSi nk
10M i OMb
LT e
L LOGSI nk
X-Flow2 X-Flow3 X-Sink3
Figure 5: Multiple-Bottlenecks:Topology
300 T T T T T T
LOG
TCP -
250 - -
200 - -
150 -
100 -
50 - 7]
(0]) I - it |‘ \ o e ‘|
o 5 10 15 20 25 30 35

Time (Seconds)

Figure 6: Multilink-Bottlenecks:Window Size Variation

22

source of a TCP/Reno cross-flow to X-Sinki that starts at a random time in
the first two seconds. A TCP/Reno flow from TCP to TCPSink and a LOG
flow from LOG to LOGSink are examined. Fig 6 shows that the congestion
window of the LOG flow varies much more smoothly than TCP and shares the
bandwidth effectively. Similar results were obtained for the dumb-bell topology.

a

LOG +
TCP =<
Mean LOG ----------
=T . Mean TCP -
T .
=1
S 25 |
=
=
=3
=
k=1 2 |
51
N
g
<
s 1.5 x y |
- N * X i 8 < + x kS x . B
S x %
* % R . x i % « 3 ; %
1+ = e % % i R X PR S X : S £ % |
% S s P z
- N + N b * + T T
0.5 5 x |
S
o .
o 10 20 30 40 50 60 - 50

Time (seconds)

Figure 7: Normalized Throughput (Kb/500ms)

Fig. 7 shows the normalized throughputs of n TCP and n LOG flows in the
single bottleneck case. This shows the TCP-friendliness of LOG as predicted
by theory. (LOG/IIAD and LOG/SQRT interactions are quite similar and are
omitted for space reasons).

6.2 The Trough-Test Benchmark

In order to study the relative dynamic behaviors of IIAD, SQRT and CYRF(LOG),
we performed the following experiment: n TCP flows and n flows of one of these
protocols share the dumb bell topology described previously. A CBR flow with
a rate equal to half the bottleneck link bandwidth also flows in the same direc-
tion. Background traffic in the opposite direction consists of a random number
of TCP flows. At time ¢; = 50 seconds, the CBR flow is stopped. At ¢ty = 80
seconds, it starts again. This “bandwidth trough” caused by stopping the CBR
flow between t; and t» allows us to measure several useful metrics. These are
summarized in Table 1. Each metric was measured over 10 repeated experi-
ments. The figures in the table represent the average values. In the rest of
this section, “steady-state” is used to refer to a time betwen ¢ = 20 and ¢ = 30
seconds, when all the startup transients have been stabilized, and the CBR flow
is still running.

When additional bandwidth becomes available at t1, smoother protocols take
more time to make use of it. Similarly, an overly aggressive protocol can ramp

23

Protocol | Utilization Drop Steady State Steady State
Metric(%) | Metric(%) | Utilization(%) | Drop Rate(%)
TCP 20.8557 1.94642 94.8312 5.59690
SQRT 22.4542 3.98332 95.0987 4.47275
LOG 21.8173 3.94338 95.1109 3.76404
ITAD 25.0437 4.87134 94.9525 3.82518

Table 1: Trough-Test Metrics

up too much and may have to reduce its window, thus losing some utilization.
We define the Utilization Metric of a protocol as the product of the drop in
utilization at ¢; (from the utilization at steady state) and the amount of time it
takes to get back to 95 percent of the steady state utilization. This is a measure
of the additional amount of data that could have been sent by an “ideal protocol”
that adapts to the available bandwidth. (The utilization metric, multiplied by
the bottleneck link bandwidth gives the additional amount of data in terms of
bits or bytes.) Obviously, this number must be as small as possible. The table
shows that LOG hits a sweet spot between overly aggressive and overly smooth
protocols (All numbers are percentage values).

Similarly, we see an increased drop rate (upto 10-15 times the steady state
drop rate!) at t2. This is because the smoother protocols cannot reduce their
sending rates fast enough to accomodate the CBR flow and thus saturate the
link. We measure this by the Drop Metric, which is given by the product of the
additional drop rate (as compared to the steady-state drop rate) and the time
required to get back to 1.5 times the steady-state drop rate. This is similar to
the metric defined in [3], except that we use the difference in the drop-rates at
ty and at steady-state, instead of using the drop-rate at t5 directly. Again, this
number should be as low as possible and the table shows that LOG achieves
a reasonably low metric (Numbers given are percentage values). Observe that
smoothness can make a huge difference in times of sudden congestion such as
at t. The metric for TCP is considerably smaller than the others, and ITAD
performs much worse than the other protocols.

Finally, we measured the average drop rate and link utilization in steady
state, when the CBR flow is running, the results show that LOG achieves the
highest utilization (95.11 percent) and the least drop rate (3.76 percent). Each
number is marginally better than the other protocols.

7 SIGMOID

All the previous experiments used RED queues. Now we show that LOG
(and other non-linear window-based “TCP-friendly” protocols) become “TCP-
unfriendly” in the face of drop-tail queues and severely congested situations.
Fig. 8 (b) shows the window sizes of competing LOG and TCP flows in the

24

Window Variation of LOG/TCP flows (Drop Tail Queue) Window Variation of LOG/TCP flows (RED Queue)

35 T T T T T 60 T T T T T
LOG ——
TCP —------
30]
25 H g
° 7 °
g g
]] 1
3 | 3
120 120
60 T T T T T 60 T T T T T
IAD ——
TCP —------
1 50 H 1
1 a0 1
2 2
1 30 1 1
3 3

120 120

Window Variation of SQRT/TCP flows (Drop Tail Queue) Window Variation of SQRT/TCP flows (RED Queue)
35 T T T T T 60 T T T T T
SQRT SQRT
TCP - TCP -
30 H 4 |
25 H 1
20 H 1

cwnd
cwnd

120 120
Window Variation of SIG/TCP flows (Drop Tail Queue) Window Variation of SIG/TCP flows (RED Queue)
55 T T T T T T T T T
Sigmoid —— Sigmoid ——
50 TCP - B TCP
Minimum cwnd -- Minimum cwnd
45 Sigmoid knee-point 1 Sigmoid knee-point
40 Timeout ——-- | Timeout ——--

cwnd

120

Figure 8: RED-Effect:(a) and (b) LOG, (c) and (d) ITAD, (e) and (f) SQRT,
(g) and (h) SIGMOID. The left hand figures use drop-tail queues, and the right
hand figures use RED queues.

25

standard bottleneck link topology described in the previous section, with a bot-
tleneck bandwidth changed to 1Mb (from 10Mb in the other experiments) and
RED queues in the bottleneck routers. Fig. 8 (a) shows that LOG grabs an un-
fair share of bandwidth in the same simulation with drop-tail queues. Similar
results have been reported in [2] for ITAD and SQRT. Figs. 8 (c) to (f) confirm
their results.

This happens because drop tail queues can back-up and overflow in con-
gested situations. TCP reduces its sending rate by half to flush the queue.
The “smoother” non-TCP flows reduce by a smaller amount. Thus they grab
more bandwidth and the queue does not get flushed. Because they use different
window increase/decrease policies, TCP and other non-TCP flows see different
drop-rates when the queue becomes full. However, the non-TCP flows are de-
signed to send at a rate inversely proportional to the square root of the loss-rate
which causes the disparity. RED varies the drop rate as a function of the queue
size making all TCP-friendly flows see the same drop rate thus eliminating this
problem.

Clearly, the root cause for the problem is smoothness. Also, smooth flows
with larger window sizes cause more damage [16]. We now propose a solution
called SIGMOID that works around this issue by behaving exactly like TCP
when the window size is large enough. Thus it has a dynamic behavior exactly
like TCP for large windows. It also tries to ensure a minimum window size by
reducing the window decrease for smaller windows and thus achieves a minimum
throughput. Thus, when used with a playout buffer, smoothness is no longer an
essential requirement — When there is available bandwidth, SIGMOID ramps up
quickly exactly like TCP, thus filling the playout buffer. In times of congestion,
a continuous playout stream is still possible because of the achieved minimum
throughput.

Thus SIGMOID works by replacing the TCP-friendliness requirement with
the requirement that the flow should be considerate to TCP when the window
size is large enough. The smoothness requirement is obviated by allowing a
fast TCP-style window increase together with playout buffers and a minimum
througput “guarantee”. Figures 8 (g) and (h) show that SIGMOID performs
much better than the other non-linear congestion controls in the same conditions
as before with virtually no difference between the drop-tail and RED queue
configurations.

We conclude by showing how to implement the SIGMOID requirements.
This is easily done in the CYRF framework. Clearly, we need a function g(x)
that is similar to that of TCP(grcp(x) = 0.5) for large windows and near zero
for smaller windows. The sigmoid function

Cc

ey (28)

has the shape we are looking for. ¢ is the maximum of this function. a deter-
mines how smoothly the function changes from a value near 0 to a value near
c. Smaller values of a give a smoother knee. The knee-point on the z-axis can
be changed by altering k. Fig. 9 shows the possibilities. The increase function

26

can be the same as TCP. Thus we get the following increase/decrease policy for
SIGMOID:

IT:z(t+R) < =z(t)+1
D:z(t+R) « x(t) —cx(t)/(1 + e o@OR) (29)

Figs. 8 (g) and (h) use ¢ = 0.5, @ = 0.5 and k¥ = 10. Above the knee
point, SIGMOID behaves exactly like TCP because g(x) saturates to a value of
grep(z) = 0.5. Below it, g(x) ~ 0, so that the decrease policy leaves the win-
dow size virtually unchanged and thus a minimum throughput is guaranteed.
Choosing the right knee-point is extremely important for the proper operation
of SIGMOID since this determines the minimum throughput of the SIGMOID
flow and thus the maximum throughput of the other flows.

1 -
0.5/(1+exp(-0.5*(x-10))) ' P
0.9 0.5/(1+exp(-(x-10))) -------- |
1/(1+exp(-(x-10))) === g
0.5/(1+exp(-(x-15))) -
0.8 |
0.7 |
0.6 |
o5 T P
ot r 'v” //// —
0 . 3 B ," //// =
0.2 1
0-1 B /'/'//// —
o I ! e Lo)
-0 -5 0 5 10 15 20

Figure 9: Different SIGMOID Functions: Varying a, k and ¢

8 Conclusion

In this paper, we presented CYRF, a novel approach to protocol design that is
that it is designed to converge to fairness and efficiency. This allows protocol
designers to choose the appropriate response function given the application and
network issues at hand, without having to worry about fairness and efficiency.
Such protocols can also be made TCP-friendly easily. Using this framework,
we designed and evaluated a protocol called LOG, with intermediate smooth-
ness and aggressiveness. We also briefly discussed SIGMOID, a CYRF proto-
col which tries to address the “TCP-unfriendliness” of window-based non-TCP
protocols in the presence of droptail queues. It circumvents the smoothness
requirement for streaming media by taking a radically different approach.

27

On the theoretical front, we gave a new intuitive sufficient condition for
convergence to fairness and a new characterization of smoothness and TCP-
friendliness in steady-state. Both of these results can easily be made use of
outside the CYRF framework. CYRF itself includes most well-known window-
based protocols as special cases and can be used to understand these protocols
better. Finally, we gave a new classification of window-based protocols based
upon the results of this paper.

9 Note

This work is an extension of the first author’s Master’s thesis [25]. The theorems
in Sections 3, 4 and 5 were originally presented in that report.

References

[1] Mark Allman, Vern Paxson, and W. Stevens. TCP Congestion Control.
Internet Engineering Task Force, April 1999. RFC 2581 (Standards Track).

[2] D. Bansal and H. Balakrishnan. Binomial congestion control algorithms.
In Proceedings of IEEE INFOCOM 2001, April 2001.

[3] D. Bansal, H. Balakrishnan, S. Floyd, and S. Shenker. Dynamic behavior
of slowly-responsive congestion control algorithms. In Proceedings of ACM
SIGCOMM 2001, San Diego, CA, August 2001.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, and
S. Floyd. Recommendations on Queue Management and Congestion Avoid-
ance in the Internet. Internet Engineering Task Force, April 1998. RFC
2309 (Informational).

[5] D. Cheriton and C. Williamson. VMTP as the transport layer for high-
performance distributed systems. IEEE Communications Magazine, pages
37-44, June 1989.

[6] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algo-
rithms for congestion avoidance in computer networks. Computer Networks
and ISDN Systems, 17:1-14, 1989.

[7] D. Clark, M. Lambert, and L. Zhang. NETBLT: A high throughput trans-
port protocol. In Proceedings of ACM SIGCOMM ’88, August 1988.

[8] J. Crowcroft and P. Oechslin. Differentiated end-to-end internet services
using a weighted proportional fair sharing TCP. ACM Computer Commu-
nication Review, 28(3), July 1998.

[9] S. Floyd, M. Handley, and J. Padhye. A comparison of equation-based and
AIMD congestion control. Available from http://www.aciri.org/tfrc,
May 2000.

28

[10]

S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-based conges-
tion control for unicast applications. In Proceedings of ACM SIGCOMM
2000, August 1988. Extended version available as International Computer
Science Institute tech report TR-00-03, March 2000.

Van Jacobson and Mike Karels. Congestion avoidance and control. ACM
Computer Communication Review, 18(4):314-329, August 1990. Revised
version of Sigcomm ’88 paper.

R. Jain, D-M. Chiu, and W. Hawe. A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems. Techni-
cal Report TR-301, DEC Research Report, September 1984.

R. Jain, K. K. Ramakrishnan, and D-M. Chiu. Congestion avoidance in
computer networks with a connectionless network layer. Technical Report
DEC-TR-506, Digital Equipment Corporation, 1988. Reprinted in C. Par-
tridge, Ed., Innovations in Internetworking, published by Artech House,
October 1988.

Shudong Jin, Liang Guo, Ibrahim Matta, and Azer Bestavros. Tcp-friendly
simd congestion control and its convergence behavior. In Proceedings of
International Conference on Network Protocols 2001.

Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan. Explicit
window adaptation: A method to enhance TCP performance. In Proceed-
ings of IEEE INFOCOM 98, San Francisco, California, March/April 1998.

R. Mahajan and S. Floyd. Controlling high-bandwidth flows at the con-
gested router. In Proceedings of International Conference on Network Pro-
tocols 2001, Nov 2001.

J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based flow con-
trol. Technical Note sent to the end2end-interest mailing list, January
1997. Available from http://www.psc.edu/networking/papers/tcp_
friendly.html.

J. Mahdavi and S. Floyd. The TCP-friendly website. http://www.psc.
edu/networking/tcp_friendly.html, June 1999.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP through-
put: A simple model and its empirical validation. In Proceedings of ACM
SIGCOMM ’98, September 1998.

K. K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. Internet Engineering Task Force,
September 2001. RFC 3168 (Standards Track).

K. K. Ramakrishnan and Raj Jain. A binary feedback scheme for congestion

avoidance in computer networks. ACM Transactions on Computer Systems,
8(2):158-181, May 1990.

29

[22]

[23]

[24]

[26]

[27]

R. Rejaie, M. Handley, and D. Estrin. Quality adaptation for unicast audio
and video. In Proceedings of ACM SIGCOMM ’99, September 1999.

R. Rejaie, M. Handley, and D. Estrin. RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the internet. In Pro-
ceedings of IEEE INFOCOM 99, March 1999.

I. Rhee, V. Ozdemir, and Y. Yi. TEAR: TCP emulation at receivers — flow
control for multimedia streaming. Technical report, North Carolina State
University, April 2000.

Nishanth R. Sastry. Application Specific Unicast Congestion Control. Mas-
ter’s thesis, Department of Computer Sciences, The University of Texas at
Austin, December 2001. Also available as Technical Report TR-01-51, De-
partment of Computer Sciences, The University of Texas at Austin, and
from http://www.cs.utexas.edu/users/nishanth/thesis.html.

H. Schulzrinne, S. Cassner, R. Frederick, and V. Jacobson. RTP: A Trans-
port Protocol for Real-Time Applications. Internet Engineering Task Force,
January 1996. RFC 1889 (Standards Track).

D. Sisalem and H. Schulzrinne. The loss-delay based adjustment algorithm:
A TCP-friendly adaptation scheme. In Proc. 8th International Workshop
on Network and Operating System Support for Digital Audio and Video
(NOSSDAV), 1998.

Z. Wang and J. Crowcroft. A new congestion control scheme: Slow start
and search (tri-s). ACM Computer Communications Review, 21:32-43, Jan
1991.

G. Wright and W. R. Stevens. TCP/IP Illustrated, Volume 2: The Imple-
mentation. Addison Wesley, Reading, MA, 1995.

Y. R. Yang, M. S. Kim, and S. S. Lam. Transient behaviors of TCP-
friendly congestion control protocols. In Proceedings of IEEE INFOCOM
2001, Anchorage, Alaska, April 2001.

Y. R. Yang and S. S. Lam. General AIMD congestion control. In Pro-
ceedings of the 8th IEEFE International Conference on Network Protocols,
Osaka, Japan, November 2000.

30

