
An Adaptive Cache Structure for Future High-Performance Systems

Changkyu Kim Doug Burger Stephen W. Keckler

Computer Architecture and Technology Laboratory
Department of Computer Sciences

Tech Report TR-02-10
The University of Texas at Austin

cart@cs.utexas.edu — www.cs.utexas.edu/users/cart

Abstract

On-chip cache sizes are likely to continue to grow over the next
decade as working sets, available chip capacity, and memoryla-
tencies all increase. Traditional cache architectures, with fixed
sizes and discrete latencies, lock one organization down atdesign
time, which will provide inferior performance across a range of
workloads. In addition, expected increases in on-chip communi-
cation delays will make the time to retrieve data in a cache a func-
tion of the data’s physical location. Consequently, cache access
times will become a continuum of latencies rather than a single
one. This non-uniformity will make static organizations partic-
ularly limited for single-chip servers, in which multiple proces-
sors will be different distances from the cache controller.In this
paper, we propose a set of adaptive, high-performance cachede-
sign, called Non-Uniform Cache Architectures (NUCAs). We ex-
tend these physical designs with logical policies that allow im-
portant data to migrate closer to the processor within the same
cache. We show that these adaptive level-two NUCA designs pro-
vide 1.6 times the performance of a Uniform Cache Architecture of
any size, and that the adaptive NUCA scheme outperforms static
NUCA schemes by 9% for multi-megabyte, on-chip server caches
with large numbers of banks.

1 Introduction

Long memory latencies and limited off-chip bandwidth
have driven steady, consistent increases in the sizes of on-
chip caches. Processors in late 1980s only included a small
level-1 cache (such as the 8KB cache on the first Intel
80486), and these structures grew to 64-128KB in the mid
1990’s [19]. Today’s high performance processors have
continued to increase cache capacities, such as the Alpha
21364 [10] with a 1.5MB L2 cache, and the HP PA-8700
with 2.25MB of combined on-chip cache capacity [12]. The
size of cache memories integrated on the processor dies are

expected to continue to increase as the bandwidth demands
on the package grow [14], as smaller technologies permit
more bits permm2, and as larger workloads produce cor-
respondingly larger working sets. Demonstrating the likely
trend toward even larger on-chip memory systems is the de-
velopment of large off-chip level-3 caches in today’s com-
puters, such as those found in IBM’s POWER4 systems [8].

Current multi-level cache hierarchies are organized into
a few discrete levels. Typically, each level replicates
the contents of the smaller level above it (if inclusion is
obeyed), and accesses to the levels in the cache hierarchy
are serialized. An access to main memory requires misses in
all levels of the hierarchy, assuming that parallel lookupsare
not used. Cache designers have typically sized the caches so
that each successively larger level of cache has an order of
magnitude greater capacity and access time. For many ap-
plications, the large increase in cache capacity at each level
greatly reduces number of misses there and compensates for
the added overheads of having the additional level.

In future technologies, large on-chip caches with a sin-
gle, discrete hit latency will be undesirable, due to increas-
ing global wire delays across the chip [23]. Data residing
in the part of a large cache close to the processor could be
accessed much faster than data that reside physically farther
from the processor. For example, according to our projec-
tions the closest bank in a 16-megabyte, on-chip level-two
cache built in a 50-nanometer process technology, could be
accessed in 5 cycles, while an access to the farthest bank
might take 25 cycles. A secondary problem with a mono-
lithic cache architecture is that it can force accesses to be
sequentialized, resulting in higher latencies when accesses
are pending. While this problem can be mitigated by adding
additional ports to the cache, the cost of these ports for a
large cache is prohibitive.

Allowing the banks within a cache to be accessed at


