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Minimal Byzantine QuorumsJean-Philippe Martin, Lorenzo Alvisi, Mihael DahlinAbstratByzantine quorum systems an provide fault tolerantstorage in hazardous environments, but the redundantservers they require inrease software development andhardware osts. In order to minimize the number ofservers required to implement Byzantine quorum ser-vies, we develop a new algorithm that uses a \Listen-ers" pattern of network ommuniation to detet andresolve ordering ambiguities reated by onurrent a-esses to the system. In our analysis of this algorithm,we (1) identify the lower bound on the number of serversrequired to implement distributed data servies in aByzantine environment, (2) desribe new protools thatredue the number of servers neessary for generi datawhile providing strong onsisteny semantis, and (3)show that the new protools math the lower bounds forthe number of servers and provide the best onsistenysemantis for this number of servers.1 IntrodutionQuorum systems [6℄ are valuable tools for implementinghighly available distributed data servies. These systemsstore a shared variable at at a set of servers and performread and write operations at some subset of servers (aquorum). Eah protool de�nes some intersetion prop-erty for the quorums whih, ombined with the protooldesription itself, ensures that eah read has aess tothe most reently written value of the variable. Prati-al use of quorum systems neessitates they enfore theintersetion property even in the presene of failures. Toguarantee data integrity and availability in the preseneof arbitrary (Byzantine) failures, Malkhi and Reiter [10℄introdue a speial kind of quorum system alled mask-ing quorum system. They also introdue disseminationquorum systems that an be used by servies that sup-port self-verifying data, i.e., data that annot be unde-tetably altered by a faulty server, suh as data thathave been digitally signed or assoiated with messageauthentiation odes (MACs) [4℄.The number of servers in a Byzantine quorum sys-tem is an important metri beause these systems rely onserver failures being independent. Therefore, to redue

the orrelation of software failures, eah server shoulduse a di�erent software implementation [16℄. Reduingthe number of servers therefore redues the developmentand software maintenane ost of these systems in addi-tion to lowering the hardware resoure demands (e.g.,proessors or disks). Furthermore, for large softwaresystems only a �xed number of implementations maybe available, and it may be expensive or otherwise in-feasible to reate additional implementations. In suh asituation, a new protool requiring fewer servers may en-able repliation tehniques in situations where they werenot previously appliable.To redue the number of servers we present a BQSprotool alled Small Byzantine Quorums with Listen-ers (SBQ-L). In this protool we use a \Listeners" pat-tern of ommuniation to detet and resolve orderingambiguities when reads and writes simultaneously a-ess a shared variable. Whereas other algorithms usea �xed number of ommuniation rounds, servers andreaders using SBQ-L exhange additional messages whenwrites are onurrent with reads. This pattern allowsthe reader to monitor the evolution of the global stateinstead of relying on a snapshot. As a result, we anprovide strong onsisteny semantis using fewer serversthan before. We all this ommuniation model \Listen-ers" beause of its similarity with the Listeners objet-oriented pattern introdued by Gamma et. al. [8℄.Our work produed three primary results, summa-rized in Table 1: (1) new lower bounds for the BQSproblem, (2) a new SBQ-L protool, and (3) a proof thatthese protools are tight in the sense that they requirethe minimal number of servers.The �rst ontribution of this paper is the develop-ment of three new lower bounds under the ommon as-sumption of asynhronous reliable authentiated han-nels [1, 2, 10, 11, 12℄. The �rst bound states that blok-ing protools (de�ned in Setion 3) require at least 3f+1servers to provide even the weak safe onsisteny seman-tis [9℄ in the presene of f Byzantine failures. Seond,non-bloking protools require at least 2f +1 servers toprovide safe semantis. Third, non-bloking protoolswith fewer than 3f + 1 servers annot provide atomisemantis.Our seond ontribution is a new protool, SBQ-L,in two variants: bloking and non-bloking. As shown2



Existing Protools SBQ-L3f+1, regular [10℄,[14℄1;bloking, self-verifying 3f+1, atomi [11℄,[5℄1;2 3f+1, atomi2 (tight)4f+1, safe [10, 11℄2,[14℄1bloking, generi 4f+1, partial-atomi [15℄2 3f+1, atomi2 (tight)non-bloking, self-verifying 2f+1, regular [14℄ 2f+1, regular (tight)non-bloking, generi 3f+1, safe [14℄ 2f+1, regular (tight)(1) Does not require reliable hannels.(2) Tolerates faulty lients.Table 1: Required number of servers and semantis for various protools for Byzantine distributed shared memory.New results and improvements over previous protools are shown in italis.in lines 2 and 4 of the table, the bloking variant ofSBQ-L redues the number of servers required for stor-ing generi data (i.e., data that is not self-verifying) from4f +1 to 3f +1 ompared to existing protools and thenon-bloking variant redues this number from 3f+1 to2f + 1. Furthermore, using this low number of serverswe provide atomi semantis for the bloking protoolwhile, for generi data, previous work ould only guar-antee the weaker safe or partial-atomi [15℄ semantis.Our non-bloking protool provides regular semantis,improving upon the safe semantis provided by existingnon-bloking protools.Our �nal ontribution, listed in the rightmost olumnof the table, is to demonstrate that our new protool istight with respet to both the number of servers and theonsisteny semantis (de�ned by Lamport [9℄) for thatnumber of servers. Bloking SBQ-L requires the mini-mal number of servers for a bloking protool, and pro-vides the strongest onsisteny semantis desribed byLamport, atomi semantis. Non-bloking SBQ-L alsorequires the minimal number of servers for non-blokingprotools. With this number of servers, it is not possibleto implement atomi semantis. Instead, non-blokingSBQ-L provides Lamport's next strongest onsistenylevel: regular semantis.It is surprising that SBQ-L performs equally wellwith generi or self-verifying data; other protools re-quire more servers for generi data, as the middle olumnof Table 1 illustrates. Conversely, this paper shows dif-ferent bounds for bloking and non-bloking protools,whih suggests this latter distintion is fundamental.The SBQ-L protool uses ommuniation to reduethe number of servers and improve onsisteny seman-tis, but this additional ommuniation is a potentialdisadvantage of the SBQ-L protool. Fortunately, it islimited to one message per server for eah read whenthere is no onurreny; if onurreny is present, thenthe number of additional messages per server is propor-tional to the number of onurrent writes. Setion 8

presents measurements of the lateny inrease due toonurrent writes.The rest of this paper is organized as follows: Se-tion 2 presents our model and assumptions. Setion 3reviews the di�erent semantis that distributed sharedmemory an provide, and Setion 4 proves bounds on thenumber of servers required to implement these seman-tis. Both the non-bloking and the bloking protoolsare presented in Setion 5, as well as an extension of thebloking protool to prevent them. Setion 6 proves theorretness of both protools. Setion 7 disusses thetrade-o�s between bandwidth and onurreny and Se-tion 8 presents experiments that quantify this trade-o�in a working prototype. Setion 9 disusses related workand we onlude in the last setion.2 ModelWe assume a system model ommonly adopted by pre-vious works that have applied quorum systems in theByzantine failure model [1, 2, 10, 11, 12℄.In partiular, our model onsists of an arbitrary num-ber of lients and a set U of data servers suh that thenumber n = jU j of servers is �xed. A quorum systemQ � 2U is a non-empty set of subsets of U , eah ofwhih is alled a quorum.Servers an be either orret or faulty. A orretserver follows its spei�ation; a faulty server an arbi-trarily deviate from its spei�ation. Following Malkhiand Reiter [10℄, we de�ne a fail-prone system B � 2Uas a non empty set of subsets of U , none of whih isontained in another, suh that some B 2 B ontainsall faulty servers. Fail-prone systems an be used to de-sribe the ommon f-threshold assumption that up to athreshold f of servers fail (in whih ase B ontains allsets of f servers), but they an also desribe more gen-eral situations, as when some omputers are known tobe more likely to fail than others.3



The set of lients of the servie is disjoint from U .Initially, we restrit our attention to server failures andassume that lients are orret. We relax this assump-tion in Setion 5.3. Clients ommuniate with serversover point-to-point hannels that are authentiated, re-liable, and asynhronous.3 Consisteny SemantisConsisteny semantis de�ne system behavior in thepresene of onurreny. We �rst review Lamport's def-initions of safe, regular, and atomi semantis. In theourse of our work we �nd that the distintion betweenbloking and non-bloking writes is important.Lamport [9℄ de�nes the three semantis for dis-tributed shared memory listed below. His original de�ni-tions exlude onurrent writes, so we present extendedde�nitions that inlude these [15℄.We assign a time, using a global lok, to the startand end (or ompletion) of eah operation. We say thatan operation A happens before another operation B if Aends before B starts. We then require that all writes betotally ordered using a relation! (serialized order) thatis onsistent with the happens before relation. In thistotal order, we all write w the latest ompleted write ifthere is no other write w0 suh that w ! w0.� safe semantis guarantee that a read that is notonurrent with any write returns the value of thelatest ompleted write. A read onurrent with awrite an return any value.� regular semantis provide safe semantis and guar-antee that if a read is onurrent with one or morewrites then it returns either the latest ompletedwrite or one of the values being written onur-rently.� atomi semantis provide regular semantis andguarantee that lients see writes in an order on-sistent with !.The above de�nitions do not speify when write om-pletion ours; the hoie is left to the spei� protool.In all ases, the ompletion of a write is a well-de�nedevent. The de�nition of the write ompletion prediateinuenes the properties of the resulting protool.If the protool de�nes the write ompletion predi-ate so that ompletion an be determined loally by awriter, we all the protool bloking and we say it sup-ports bloking safe, regular or atomi semantis. Thisde�nition is intuitive and therefore impliitly assumedin most previous work. These protools typially imple-ment a bloking write, in whih the Write() funtion

only returns after the write operation has ompleted.Note that bloking protools may also hoose to im-plement a non-bloking write operation and provide aseparate mehanism (e.g., a barrier) to let the lient de-termine when a write ompletes.If instead a protool's write ompletion prediate de-pends on the global state in suh a way that omple-tion annot be determined by a lient, then we all theprotool non-bloking and say that it supports only non-bloking semantis. Non-bloking protools annot pro-vide bloking writes. The SBQ protool [14℄, for exam-ple, is non-bloking: writes omplete when a quorum oforret servers have �nished proessing the write. Thisompletion event is well-de�ned but lients annot deter-mine when it happens beause they lak the knowledgeof whih servers are faulty.As an example of a system where a non-bloking pro-tool is suÆient, onsider a network of sensors measur-ing some value and writing it to the distributed sharedmemory. The reader always wants the most reent avail-able value that orresponds to the physial situation anddoes not are if a partiular write has ompleted. Also,it is aeptable for some writes to be replaed with anewer value before they are ever read. Therefore no sen-sor should wait for the ompletion of its last write be-fore writing a newer measured value, and non-blokingsemantis are appropriate.4 BoundsIn this setion we prove lower bounds on the number ofservers required to implement minimal onsisteny se-mantis (safe semantis) for bloking and non-blokingwrites. The bound for bloking protools is 3f + 1 andthat for non-bloking protools is 2f + 1. We also showthat atomi semantis annot be ahieved with fewerthan 3f + 1 servers, so minimal non-bloking protoolsannot provide atomi semantis.These bounds indiate that a trade-o� exists betweenthe number of servers and bloking semantis. In aseswhere the writer does not need to determine when itswrites ompletes non-bloking protools redue the num-ber of servers.In Setion 5 we present protools that meet thebounds presented in this setion.4.1 Non-Bloking ProtoolsTheorem 1. In the reliable authentiated asynhronousmodel with Byzantine failures, no live protool an satisfythe safe semantis for distributed shared memory using2f servers.4



To prove this impossibility, we show that under theseassumptions any protool must violate either safety orliveness.De�nition 1. A message m has gone through server sif the sending of m ausally depends on some messagesent by s.Lemma 1. A read protool in whih all exeutions mustreeive messages that have gone through at least f + 1distint servers before the read an omplete is not live.If servers 0 to f � 1 rash then no message an gothrough them. In this ase, the reader an only reeivemessages that have gone through the remaining f serversand not every read an omplete. �Lemma 2. A read protool in whih there exists an ex-eution e where the reeived messages have only gonethrough f or fewer distint servers does not satisfy safesemantis.Consider a system in whih the servers have statesa0 : : : a2f�1, the shared variable has value A, and a readfor the variable follows exeution e with non-zero prob-ability. Exeution e returns a value for the read basedon messages that have gone through f or fewer serversand so returns A. Without loss of generality, suppose eonly reeives messages that have gone through servers 0to f �1. Suppose that a later write hanges the value ofthe variable to B, and a subsequent read request reahesthe servers. Further suppose that servers 0 to f � 1 arefaulty and behave as if their state were a0 : : : af�1. Thisis possible beause they have been in these states before.The faulty servers then send the same answers as theywould have when the variable had value A. Formulat-ing these answers must not require ommuniation withthe other servers; otherwise, these messages would havegone through more than f servers. With these answers,there is a non-zero probability that the reader followsexeution e and deides on the inorret value A. �The proof of the theorem derives from the fat thatthe two lemmas over all possible protools. �Note that the proof is not limited to the f -thresholdmodel and makes no assumption of deterministi behav-ior from the protool. The proof also overs protoolswhih use integrity heks in their messages sine faultyservers have all the neessary information to reate themessages they send.4.2 Bloking ProtoolsTheorem 2. In the reliable authentiated asynhronousmodel with Byzantine failures, no live protool an satisfy

the safe bloking semantis for distributed shared mem-ory using 3f servers.Theorem 2's proof is similar to Theorem 1's. Westate the main lemmas here. The full proof appears inthe Appendix of the extended tehnial report [13℄.Lemma 3. A read protool in whih all exeutions mustreeive messages that have gone through at least 2f + 1distint servers before the read an omplete is not live.Lemma 4. A read protool in whih there exists an ex-eution e where the reeived messages have only gonethrough 2f or fewer distint servers does not satisfy safesemantis.4.3 Atomi SemantisBloking semantis require 3f+1 servers. We now showthat this same limit of 3f + 1 servers is the minimumnumber of servers neessary for implementing atomi se-mantis, even for a non-bloking protool.Theorem 3. In the reliable authentiated asynhronousmodel with Byzantine failures, no protool for distributedshared memory an implement atomi semantis withfewer than 3f + 1 servers.To prove this by ontradition, suppose there existssome protool p that implements atomi semantis usingfewer than 3f+1 servers. p an be used to implement thefollowing bloking protool: when writing some value x,repeatedly read until the read funtion returns x or amore reent value. Then, write another token value t.Finally, repeatedly read until the read funtion returnst or some other more reent value.The two read setions in this example program showthat in the serialized order, x must ome before t. Be-ause p is atomi and t has been read, no other lient anpossibly read x anymore. Therefore, it is not neessaryto ontinue the write for x; it has e�etively ompleted.This is a ontradition beause no bloking protool anexist with fewer than 3f + 1 servers due to Theorem 2.� A simpli�ed proof writing only value x but not twould not be suÆient beause knowing that the writeran read its own value does not neessarily mean thatother lients annot read older values.5 The SBQ-L ProtoolsIn this setion we show the f -threshold non-blokingand bloking versions of the SBQ-L protool1. SBQ-L is based both on the insights from the non-bloking1The more general version (using the fail-prone model) is pre-sented in the Appendix to the extended tehnial report [13℄.5



\Small Byzantine Quorums" (SBQ) protool [14℄ andon the Listeners ommuniation pattern. The Listenerpattern is the key idea behind our protool, allowing itto use fewer servers than other protools while providingstronger semantis for generi data.5.1 Bloking ProtoolFigure 1 presents the f -threshold SBQ-L bloking pro-tool for generi data. The initial value of the protool'svariables is shown in Figure 2. In lines W1 through W6,the Write() funtion queries a quorum of servers in or-der to determine the new timestamp. The writer thensends its timestamped data to all servers at line W8 andwait for aknowledgments at lines W9 and W10. TheRead() funtion queries all servers in line R2 and waitsfor messages in lines R3 to R13. An unusual feature ofthis protool is that servers send more than one replyif writes are in progress. For eah read in progress, areader maintains a matrix of the di�erent answers andtimestamps from the servers (answers[℄). The readdeides on a value at line R13 one the reader an de-termine that a quorum of servers vouh for the samedata item and timestamp, and a noti�ation is sent tothe servers at line R14 to indiate the ompletion of theread. A naive implementation of this tehnique ouldresult in the lient's memory usage being unbounded;instead, the protool only retains at most f +1 answersfrom eah server. We show in Setion 6 that the readprotool is orret.This protool di�ers from previous protools beauseof its ommuniation pattern. Intuitively, other proto-ols take a \snapshot" of the situation. The SBQ-L pro-tool looks at the evolution of the situation in time: itreords a \movie". This ommuniation makes it possi-ble to disambiguate situations where onurrent writesare suh that no majority emerges immediately. Ourapproah auses the server to send more messages thanin other protools, however, other than the single addi-tional READ COMPLETE message sent to eah serverat line R14, additional messages are only sent whenwrites are onurrent with a read.Figure 1 shows the protool for lients. Servers followsimpler rules: they only store a single timestamped dataversion, replaing it whenever they reeive a STOREmessage with a newer timestamp. When reeiving a readrequest, they send the ontents of this storage. Serversin SBQ-L di�er from previous protools in what we allthe Listeners ommuniation pattern: after sending the�rst message, the server keeps a list of lients who havea read in progress. Later, if they reeive a STORE mes-sage, then in addition to the normal proessing they ehothe ontents of the store message to the \listening" read-

ers { inluding messages with a timestamp that is notas reent as the data's urrent one but more reent thanthe data's timestamp at the start of the read. This lis-tening proess ontinues until the server reeives a theREAD COMPLETE message from the lient indiatingthat the read has ompleted. Note that in pratie thesemessages would only be sent if the writer is authorizedto modify that variable. Also, they need only be sent toreaders aessing the variable being written.This protool requires a minimum of 3f + 1 serversand provides bloking atomi semantis. We prove itsorretness in Setion 6. As shown in Theorem 2, 3f+1is the optimal number of servers for bloking protools.5.2 Non-Bloking ProtoolThe bloking SBQ-L protool of the previous setion re-quires at least 3f + 1 servers. This number an be re-dued to 2f + 1 if the protool is modi�ed to beomenon-bloking.Sine in a non-bloking protool the writer is not re-quired to know when the write ompletes, we an removelines W9 and W10 of the Write() funtion in whih thewriter waits for aknowledgments. The STORE mes-sages sent earlier (at line W8) are guaranteed to reahtheir destination beause we assume that the hannelsare reliable. The reader an �nd a disussion of theimpliations of assuming reliable links in Byzantine en-vironments in our previous work [14℄.We then modify the size of the quorums, q, to dn+12 einstead of dn+f+12 e previously. This is possible beauseeliminating the aknowledgments eliminates a onstrainton the overlap of read and write quorums [14℄.Reall that in non-bloking protools, the write fun-tion does not determine when the write has ompleted:instead, the ompletion must be spei�ed by the pro-tool. We therefore speify that the write ompleteswhen q = dn+12 e orret servers are done proessing theSTORE message. Note that this de�nition ensures thatwrite ompletion annot be unduly delayed by the a-tions of faulty servers in that they annot delay writesmore than rashed servers would.This protool requires only 2f + 1 servers and pro-vides regular semantis. We prove the orretness of thisprotool in Setion 6. As shown in Theorem 1, 2f + 1is the optimal number of servers for non-bloking proto-ols.Piere [15℄ presents a general tehnique to transformany regular protool into one that satis�es atomi se-mantis. This tehnique, however, only works for blok-ing protools and therefore does not apply to this ase.6



W1 Write(D) fW2 send (QUERY TS) to all serversW3 reeive answer (TS, ts) from server isvr set ts[isvr℄ := tsW4 wait until the ts[ ℄ array ontains q answers.W5 max ts := maxfts[ ℄gW6 ts := minft 2 T : max ts < t ^ last ts < tg// ts 2 T is larger than all answers and previous timestampW7 last ts := tsW8 send (STORE, D; ts) to all servers.W9 reeive answer (ACK,ts) from server iW10 wait until q servers have sent an ACK messageW11 gR1 (D,ts) = Read() fR2 send (READ) to all servers.R3 loop fR4 reeive answer (VALUE,D; ts) from server s // (possibly more than one answer per server)R5 if ts > latest[s℄:ts then latest[s℄ := (D; ts)R6 if s 62 S: // we all this event an \entrane"R7 S := S [ fsgR8 T := the f + 1 largest timestamps in latest[ ℄R9 for all isvr, for all jtime 62 T , delete answer[isvr; jtime℄R10 for all isvr,R11 if latest[isvr℄:ts 2 T then answer[isvr; latest[isvr℄:ts℄ := latest[isvr℄R12 if ts 2 T then answer[s; ts℄ := (D; ts)R13 g until 9D; ts; S :: jSj � q ^ (8i : i 2 S : answer[i; ts℄ = (D; ts))// i.e., loop until q servers agree on a (D,ts) valueR14 send (READ COMPLETE) to all serversR15 return (D; ts)R16 g Figure 1: Bloking SBQ-L protool for the f-threshold error model.
variable initial value notesq dn+f+12 e or d(n+ 1)=2e Quorum size in the bloking and non-bloking ase, respetivelyT Set of timestamps for lient  The sets used by di�erent lients are disjointlast ts 0 Largest timestamp written by a partiular serverlatest[ ℄ ; A vetor storing the largest timestamp reeived from eah server and theassoiated dataanswer[ ℄ ; Sparse matrix storing at most f + 1 data and timestamps reeived fromeah serverS ; The set of servers from whih the reader has reeived an answerFigure 2: Variables

7



5.3 Faulty ClientsThe protools in the previous two setions are susepti-ble to faulty lients: by sending a di�erent value to eahserver (a \poisonous write"), a faulty writer an preventfuture read attempts from terminating beause no readan gather a quorum of idential answers.Poisonous writes are a ommon vulnerability forByzantine storage protools and, in the ase of the blok-ing protool, we an adopt the tehnique introdued byMalkhi and Reiter [10℄ to handle faulty lients. Thistehnique adds a two-phase ommit to the STORE fun-tion at the servers that makes sure that the same valueis also being written to other servers. These writes aretherefore guaranteed to not put the system in an inor-ret state where reads would hang. Furthermore, theorretness proof in Setion 6 still holds with this mod-i�ation.The other diÆulty is that a faulty reader an ne-glet to notify the servers that the read has ompletedand therefore prevent the read from terminating. This isidential to faulty readers that, in other protools, on-tinuously send read requests. We are exploring ways tobound the number of ehoes that a single read requestan trigger.6 CorretnessIn this setion we prove the orretness of the two f -threshold versions of the SBQ-L protool presented inthis paper.6.1 Bloking Threshold SBQ-LTheorem 4. The bloking f-threshold SBQ-L protoolprovides atomi semantis.Lemma 5 (Regularity). The bloking f-thresholdSBQ-L satis�es regular semantis, assuming it is live.In the ase where no onurrent write is in progress,the reader eventually reeives an answer from thedn+f+12 e orret servers and deides on their value (stepR13). There are not enough other servers to make thereader deide on any other value.If a write is in progress and the reader deides ona value then this value has been vouhed for by qr =dn+f+12 e servers (line R13). By de�nition, qw = dn+f+12 eservers have seen the latest ompleted write. Sine qr +qw > n+ f , these two quorums interset in at least oneorret server C that has seen the latest ompleted write.Sine C is orret, it follows the protool and there-fore it sent the value of the ompleted write, the valueof a write with a higher timestamp, or both. �

Lemma 6 (Atomiity). The bloking threshold SBQ-L satis�es atomi semantis, assuming it is live.The bloking version of the protool providesstronger semantis than the non-bloking. It guaran-tees atomi semantis, in whih the writes are orderedaording to their timestamps. To prove this, we showthat after a write for a given timestamp ts1 ompletes,no read an deide on a value with an earlier timestamp.Suppose a write with timestamp ts1 has ompleted;then dn+f+12 e servers agree on this timestamp. Even ifthe faulty (f) and untimely (u) servers send the sameolder reply ts0, they annot form a quorum (q). Moreformally: f + u < q() f + n� dn+ f + 12 e < dn+ f + 12 e( f + n < 2dn+ f + 12 e ( f + n < f + n+ 1 �Lemma 7 (Liveness). All funtions of the non-bloking threshold SBQ-L eventually terminate.Write. The Write() funtion is trivially live beause itswaits (in steps W4 and W10) expet q = d(n+f +1)=2eanswers and q � n� f so these answers are guaranteedto eventually arrive.Read. Even though it only traks f +1 di�erent times-tamps simultaneously (lines R11 and R12), the Read()funtion is live. Consider the last entrane, i.e., the lasttime line R7 of Read() is exeuted. The latest[℄ ar-ray ontains a value for eah server; onsider the largestlatest[℄.ts assoiated with a orret server, tsmax.The lient has not disarded any data item with times-tamp tsmax oming from a orret server (otherwise thatorret server would have a higher timestamp assoiatedwith it). tsmax is in T beause T ontains the f + 1largest timestamps in latest[℄. Sine all lients areorret, they send the same value to all servers and there-fore all orret servers will eventually see the write withtimestamp tsmax and will eho it to the reader. As weknow, q � n � f so there are enough orret servers toguarantee that the read for that timestamp will eventu-ally omplete.This proof also illustrates the bene�ts of the Listenersommuniation: if several writes are in progress, theninitially eah server ould hold a di�erent timestamp.The ongoing ommuniation allows the reader to followthe writes and identify the orret value.STORE, QUERY TS. The server's STORE andQUERY TS funtions terminate beause they have noloops.8



READ. The server's READ funtion terminates be-ause the lient's Read() terminates and lients are or-ret. �This onludes the orretness proof. We have shownthat the protool always returns a orret value and thatit terminates. Note that it ould terminate before theevents we desribe in the proof; we merely show that theprotool eventually terminates.6.2 Non-Bloking Threshold SBQ-LTheorem 5. The non-bloking threshold SBQ-L proto-ol provides regular semantis.The proof for liveness is idential to the proof for thebloking ase above. The regularity proof is similar tothat of the bloking ase, using the smaller quorum size:The read protool deides (at line R13) on a value thatis vouhed for by qr = dn+12 e servers. By de�nition ofompletion, qw = dn+12 e orret servers have seen thelatest ompleted write. Sine qr + qw > n, these twoquorums interset in at least one orret server C thathas seen the latest ompleted write. �7 Pratial ConsiderationsOur Listener mehanism allows the SBQ-L protools touse the optimal number of servers but (1) the ommu-niation pattern it requires auses more messages to beexhanged than in other protools, (2) the read proto-ol does not deide on a value immediately, and (3) thereader stores messages in memory before deiding. Inthe next three subsetions we quantify the number ofadditional messages, disuss the protool lateny, andshow an upper bound on memory usage.7.1 Additional MessagesThe read protool may wait for several messages beforedeiding on a value. The write protool su�ers fromno suh wait: writes always require the same number ofmessages, regardless of the level of onurreny. SBQ-L'swrite operation requires 3nmessages in the non-blokingase and 4n messages in the bloking ase, where n isthe number of servers. This ommuniation is identialto previous results: the non-bloking SBQ protool [14℄uses 3n messages and the bloking MR protool [10℄ re-quires 4n messages.The behavior of the SBQ-L read operation dependson the number of onurrent writes. Other protools(both SBQ and MR) exhange a maximum of 2n mes-sages for eah read. SBQ-L requires up to 3n messages

when there is no onurreny. In partiular, step R14adds a new round of messages. Additional messagesare exhanged when there is onurreny: beause theservers eho all onurrent write messages to the reader,if  writes are onurrent with a partiular read thenthat read will use 3n+ n messages.For some systems, there is little or no onurreny inthe ommon ase. Even with additional messages in thease of onurreny, the lateny inrease is not as severeas one may fear beause most of these message exhangesare asynhronous and unidiretional: the SBQ-L proto-ol will not wait for 3n+ n message roundtrips. This isapparent in the experimental results of Setion 8.7.2 Live LokIn a system suh as SBQ-L, it must be ensured thatboth reads and writes will omplete even if the system isunder a heavy load. In SBQ-L, writes annot starve be-ause their operation is independent of onurrent reads.Reads, however, an be starved if an in�nite number ofwrites are in progress and if the servers always hoose toserve the writes before sending the eho messages.There is an easy way to guarantee this does not hap-pen. When serving a write request while a read is inprogress, servers queue an eho message. The livenessof both readers and writers is guaranteed if we requireservers to send these ehoes before proessing the nextwrite request. A read will therefore eventually reeivethe neessary ehoes to omplete even if an arbitrarynumber of writes are onurrent with the read.Another related onern is that of lateny: an readsbeome arbitrarily slow? In the asynhronous model,there is no bound on the duration of reads. However,if we assume that writes never last longer than w unitsof time and that there are  onurrent writes, then inthe worst ase (taking failures into aount), reads willbe delayed by no more than min(w; nw). This resultfollows beause in the worst ase, f servers are faultyand return very high timestamps so that only one row ofanswer[℄ ontains answers from orret servers. Also,in the worst ase eah entrane (line R6) ours justbefore the monitored write an be read. The boundfollows from the fat that there are at most n entranes.7.3 Bu�er MemoryIn SBQ-L, readers maintain a bu�er in memory dur-ing eah read operation (the answer[℄ sparse matrix).While other protools only need to identify a majorityand as suh require n units of memory, the SBQ-L pro-tool maintains a short history of the values written ateah server. As a result, the read operation in SBQ-L re-quires up to n(f+1) units of memory: the set T ontains9



at most f+1 elements (line 8) and the answer[℄ matrixtherefore never ontains more than n olumns and f +1rows (lines 9 and 12). In a system storing more than oneshared variable, if multiple variables are read in parallelthen eah individual read requires its own bu�er of sizen(f + 1).8 ExperimentsWe onstrut a simple prototype to study the overheadof the extra messages used to deal with onurreny inSBQ-L. The prototype is written in C++, stores data inmain memory and ommuniates via TCP.Our testbed onsists of 3 servers and 6 lient ma-hines, 5 of whih at as writers and 1 as a reader.The reader mahine is a SUN Ultra10 with a 440MhzUltraSPARC-IIi proessor running SunOS 8.5. Theother mahines are Dell Dimension 4100 with a 800MhzPentiumIII proessor running Debian Linux 2.2.19. Thenetwork onneting these mahines is a 100Mbits/sswithed Ethernet.In this experiment, we vary the number of writersand therefore the level of onurreny. The writers re-peatedly exeute the non-bloking write protool, writ-ing 1000 bytes of data to all servers. The reader mea-sures the average time for 20 onseutive reads, and theservers are instrumented to measure the number of ad-ditional messages sent during the Listeners phase.
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9 Related WorkAlthough both Byzantine failures [7℄ and quorums sys-tems [6℄ have been studied for a long time, interest inquorum systems for Byzantine failures is relatively re-ent; the subjet was �rst explored by Malkhi and Reiter[10, 11℄. They redued the number of servers involved inommuniation [12℄, but not the total number of servers;their work exlusively overs bloking systems.In previous work we introdued non-bloking proto-ols that require 3f +1 servers (2f +1 for self-verifyingdata) [14℄. In the present paper we expand on that workand redue the bound to 2f+1 for generi data and pro-vide regular semantis instead of safe by using Listeners;we also prove lower bounds on the number of servers forthese semantis and meet them.Bazzi [2℄ explored Byzantine quorums in a syn-hronous environment with reliable hannels. In thatontext it is possible to require fewer servers (f + 1for self-verifying data, 2f + 1 otherwise). This resultis not diretly omparable to ours sine it uses a di�er-ent model; we leave as future work the appliation ofthe Listeners idea of SBQ-L to the synhronous networkmodel.Several papers [3, 12℄ study the load of Byzantinequorum systems, a measure of how inreasing the num-ber of servers inuenes the amount of work eah indi-vidual server has to perform (if at all). Although theseonsiderations are interesting, our motivation for addingservers to the system is to inrease reliability, not per-formane: therefore we leave onsiderations of the loadof servers under the SBQ-Listeners protools as futurework.Bazzi [3℄ uses the term non-bloking quorum systemto mean something di�erent from what we all non-bloking protools. Reall that a non-bloking protoolis one where a lient annot determine when its writesomplete. A non-bloking quorum system is a quorumsystem in whih the writer does not need to identify alive quorum but instead sends a message to a quorum ofservers without onerning himself with whether theseservers are responsive or not. Aording to this de�-nition, both the bloking and the non-bloking SBQ-Lprotools use non-bloking quorum systems.Phalanx [11℄ builds shared data abstrations and pro-vides a loking servie, both of whih an tolerate Byzan-tine failure of servers or lients. It requires bloking se-mantis in order to implement loks. Phalanx an handlefaulty lients while providing safe semantis using 4f+1servers.Castro and Liskov [5℄ present a repliation algorithmthat requires 3f+1 servers and, unlike most of the workpresented above, an tolerate unreliable network links10



and faulty lients. Their protool uses ryptography toprodue self-verifying data and provides linearizability(therefore bloking semantis); their protool is fast inthe ommon ase. Our work shows that bloking seman-tis annot be provided using fewer servers. Instead, weshow a non-bloking protool with 2f+1 servers. In thease of non-bloking semantis, however, it is neessaryto assume reliable links.10 ConlusionWe present two protools for shared variables, one thatprovides non-bloking regular semantis using 2f + 1servers and the other that provides bloking atomi se-mantis using 3f + 1 servers. This redues by f thenumber of servers needed by previous protools in thereliable asynhronous ommuniation model when notassuming self-verifying data. Our protools are stronglyinspired by quorum systems but use an original ommu-niation pattern, the Listeners. The protools an beadapted to either the f -threshold or the fail-prone errormodel.The more theoretial ontribution of this paper isthe proof of a tight bound on the number of servers. Weshow that 3f+1 servers are neessary to provide blokingsemantis and 2f +1 servers are required otherwise. Wefurther show that 3f +1 servers are required for atomisemantis even for non-bloking protools.Several protools [5, 10, 11, 14, 16℄ use digital signa-tures (or MAC) to redue the number of servers. It istherefore surprising that we were able to meet the mini-mum number of servers without using ryptography. In-stead, our protools send one additional message to allservers and other additional messages that only our ifonurrent writes are in progress.Sine our protools for bloking and non-bloking se-mantis are nearly idential, it is possible to use bothsystems simultaneously. The server side of the proto-ols are the same, therefore the servers do not need tobe aware of the model used. Instead, the lients anagree on whether to use bloking or non-bloking se-mantis on a per-variable basis. The lients that hoosenon-bloking semantis an tolerate more failures: thisproperty is unique to the SBQ-L protool.11 AknowledgmentsThe authors would like to thank Jian Yin for several veryinteresting onversations and Alison Smith for helpfulomments on the paper's presentation.
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A Lower Bound for BlokingProtoolsExpanding on the work of Setion 4, we prove the lowerbound for the number of servers for bloking protools.Theorem 2. In the reliable authentiated asynhronousmodel with Byzantine failures, no live protool an satisfythe safe bloking semantis for distributed shared mem-ory using 3f servers.To prove this impossibility, we show that under theseassumptions any protool must violate either safety orliveness.Lemma 3. A read protool in whih all exeutions mustreeive messages that have gone through at least 2f + 1distint servers before the read an omplete is not live.If the servers 0 to f � 1 rash then no message ango through them. In this ase, the reader an only re-eive messages that have gone through the remaining 2fservers and the reads annot all omplete. �Lemma 4. A read protool in whih there exists an ex-eution e where the reeived messages have only gonethrough 2f or fewer distint servers does not satisfy safesemantis.Sine the write is bloking, the writer must be ableto determine the ompletion of the write from messagesthat have gone through at most 2f servers in order tobe live. Consider a system in whih the servers havestate a0 : : : a3f�1, the shared variable has value A, anda read for the variable follows exeution e with non-zeroprobability. Exeution e reeives messages from serversf to 3f � 1 and returns a value for the read based onmessages that have gone through 2f or fewer servers; inthis ase, it returns A. Suppose that a later write hangesthe value of the variable to B. Suppose therefore thatafter ompletion of the writes the servers are in statesb0 : : : b2f�1; a2f : : : a3f�1. Further suppose that serversf to 2f � 1 are faulty and behave as if their states wereaf : : : a2f�1. This is possible beause they have beenin these states before. Suppose that the reader reeivesanswers from servers f to 3f � 1. The faulty serverssend the same answers as they would have if the variablehad value A. Formulating these answers must not requireommuniation with the other servers beause otherwisethese messages would have gone through more than 2fservers. In this situation, there is a non-zero probabilitythat the reader follows exeution e and deides on theinorret value A. �

The proof of the theorem derives from the fat thatthe two lemmas over all possible protools. �B Generalized Bloking ProtoolThe bloking protool an be generalized to a fail-pronesystem instead of the simpler f -threshold ase presentedin Setion 5. Our quorums Q 2 Q must obey the follow-ing properties:Consisteny: The intersetion of any pair of quorumsontains one orret server.8Q1; Q2 2 Q 8B 2 B : Q1 \Q2 6� BAvailability: One quorum is always available.8B 2 B 9Q 2 Q : B \Q = ;The Write() funtion is modi�ed to return one it re-eives an aknowledgment from a quorum. The modi�edRead() is presented in Figure 3. It is similar to that ofthe f -threshold protool, exept for line R13 in whih itdeides on a value after reeiving the same answer froma quorum of servers.C Generalized Non-BlokingProtoolThe generalized protool above an be adapted to non-bloking semantis, whih allows the number of serversto be redued.In the non-bloking ase, the quorums Q 2 Q mustobey the following properties:Consisteny: All quorums interset8Q1; Q2 2 Q : Q1 \Q2 6= ;Availability: One quorum is always available8B 2 B 9Q 2 Q : B \Q = ;Witness Quality: No failure senario is a quorum8Q 2 Q 8B 2 B : Q 6� BLines W9 and W10 are removed from the Write()operation. We say that the write ompletes when a quo-rum onsisting entirely of orret servers has �nishedproessing the write message.12



W1 Write(D) fW2 send (QUERY TS) to all serversW3 loop fW3 reeive answer (TS, ts) from server isvr1[ex℄ Wx urrent[isvr℄ := tsW4 g until the ts[ ℄ array overs a quorum of servers.W5 max ts := maxfurrent[ ℄gW6 my ts := minft 2 Cts : max ts < t ^ last ts < tg// my ts is larger than all answers and previous timestampW7 last ts := my tsW8 send (STORE, D; ts) to all servers.W9 reeive answer (ACK,ts) from server iW10 wait until a quorum servers have sent an ACK message, i.e. 9Qw 2 Q :: Qw � figW11 gR1 (D,ts) = Read() fR2 send (READ) to all servers.R3 loop fR4 reeive answer (VALUE,D; ts) from server s // (possibly more than one answer per server)R5 if ts > latest[s℄:ts then latest[s℄ := (D; ts)R6 if s 62 S: // we all this event an \entrane"R7 S := S [ fsgR8 T := the f + 1 largest timestamps in latest[ ℄R9 for all isvr, for all jtime 62 T , delete answer[isvr; jtime℄R10 for all isvr,R11 if latest[isvr℄:ts 2 T then answer[isvr; latest[isvr℄:ts℄ := latest[isvr℄R12 if ts 2 T then answer[s; ts℄ := (D; ts)R13 g until 9D; ts;Qr :: Qr 2 Q ^ (8i : i 2 S : answer[i; ts℄ = (D; ts))// i.e. loop until a quorum of servers agree on a (D,ts) valueR14 send (READ COMPLETE) to all serversR15 return (D; ts)R16 g Figure 3: Generalized bloking SBQ-L protool
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We all f the size of the largest failure senario. TheRead() operation is idential exept that it uses the quo-rums de�ned in this setion.Although the protool works for any hoie of fail-prone system, its memory onsumption depends on thesize of the largest failure senario.D CorretnessD.1 Generalized Bloking SBQ-LTheorem 6. The bloking generalized SBQ-L protoolprovides atomi semantis.Lemma 8 (Regularity). The bloking generalizedSBQ-L protool satis�es regular semantis, assuming itis live.We all Qw the quorum of servers (not neessarily allorret) that have seen the latest ompleted write.The availability property guarantees that the readerwill eventually reeive an answer from some quorum, andthe onsisteny property guarantees that this answer willbe orret.If a write is in progress and the reader deides ona value from some quorum Q then this value has beenvouhed for by at least one orret server that has seenthe latest ompleted write sine the intersetion of Qand Qw ontains a orret server. �Similarly to the threshold version, this bloking pro-tool guarantees atomi semantis. The serialized orderof the writes is that of the timestamps. To prove this, wesimply show that after a write for a given timestamp ts1ompletes, no read an deide on a value with an earliertimestamp.Lemma 9 (Atomiity). The bloking generalizedSBQ-L protool satis�es atomi semantis, assuming itis live.Suppose a write with timestamp ts1 has ompleted:a quorum Q1 2 Q of servers agree on this timestamp.Even if the faulty and untimely servers send the sameolder reply ts0, they annot form a quorum. More for-mally: (U � Q1) [ B 62 Q, whih we prove by showingthat O = (U �Q1) [ B does not obey onsisteny.O \Q1 = ((U �Q1) \Q1) [ (B \Q1) = B \Q1 � BThis violates Consisteny:8Q1; Q2 2 Q8B 2 B : Q1 \Q2 6� B �

Lemma 10 (Liveness). All funtions of the blokinggeneralized SBQ-L eventually terminate.Write. All writes eventually omplete beause of theavailability property.Read. Consider the last entrane. There is a valuefor latest[℄ assoiated with eah server; onsider thelargest latest[℄.ts assoiated with a orret server,tsmax. The lient has not disarded any data item withtimestamp tsmax oming from a orret server (other-wise that orret server would have a higher timestampassoiated with it). tsmax is in T beause T ontainsthe f + 1 largest timestamps in latest[℄. Sine alllients are orret, all orret servers will eventually seethe tsmax write and eho it bak to the reader. Theavailability property guarantees that there are enoughorret servers for the ehoes to eventually form a quo-rum.STORE, QUERY TS. The server's STORE andQUERY TS funtions terminate beause they have noloops.READ. The server's READ funtion terminates be-ause the lient's Read() terminates and lients are or-ret. �D.2 Generalized Non-bloking SBQ-LTheorem 7. The non-bloking generalized SBQ-L pro-tool provides regular semantis.Lemma 11 (Regularity). The non-bloking general-ized SBQ-L protool satis�es regular semantis, assum-ing it is live.This proof is similar to that of the previous setion,exept that it takes into aount the di�erent de�ni-tion for write ompletion and the di�erent quorum on-straints.We all Qw the quorum of orret servers that hasseen the latest ompleted write.If the reader deides on a value from some quorumQ then this value has been vouhed for by at least oneorret server that has seen the latest ompleted writesine Q and Qw interset. �The proof for liveness is idential to that of the blok-ing ase. �
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