Note: “Minimal Byzantine Quorums” is superseded by “Min-
imal Byzantine Storage” (Technical Report TR-02-38), avail-
able at

http://www.cs.utexas.edu/ftp/pub/techreports/tr02-38.ps.Z

Minimal Byzantine Quorums

Jean-Philippe Martin, Lorenzo Alvisi, Michael Dahlin

Abstract

Byzantine quorum systems can provide fault tolerant
storage in hazardous environments, but the redundant
servers they require increase software development and
hardware costs. In order to minimize the number of
servers required to implement Byzantine quorum ser-
vices, we develop a new algorithm that uses a “Listen-
ers” pattern of network communication to detect and
resolve ordering ambiguities created by concurrent ac-
cesses to the system. In our analysis of this algorithm,
we (1) identify the lower bound on the number of servers
required to implement distributed data services in a
Byzantine environment, (2) describe new protocols that
reduce the number of servers necessary for generic data
while providing strong consistency semantics, and (3)
show that the new protocols match the lower bounds for
the number of servers and provide the best consistency
semantics for this number of servers.

1 Introduction

Quorum systems [6] are valuable tools for implementing
highly available distributed data services. These systems
store a shared variable at at a set of servers and perform
read and write operations at some subset of servers (a
quorum). Each protocol defines some intersection prop-
erty for the quorums which, combined with the protocol
description itself, ensures that each read has access to
the most recently written value of the variable. Practi-
cal use of quorum systems necessitates they enforce the
intersection property even in the presence of failures. To
guarantee data integrity and availability in the presence
of arbitrary (Byzantine) failures, Malkhi and Reiter [10]
introduce a special kind of quorum system called mask-
ing quorum system. They also introduce dissemination
quorum systems that can be used by services that sup-
port self-verifying data, i.e., data that cannot be unde-
tectably altered by a faulty server, such as data that
have been digitally signed or associated with message
authentication codes (MACs) [4].

The number of servers in a Byzantine quorum sys-
tem is an important metric because these systems rely on
server failures being independent. Therefore, to reduce

the correlation of software failures, each server should
use a different software implementation [16]. Reducing
the number of servers therefore reduces the development
and software maintenance cost of these systems in addi-
tion to lowering the hardware resource demands (e.g.,
processors or disks). Furthermore, for large software
systems only a fixed number of implementations may
be available, and it may be expensive or otherwise in-
feasible to create additional implementations. In such a
situation, a new protocol requiring fewer servers may en-
able replication techniques in situations where they were
not previously applicable.

To reduce the number of servers we present a BQS
protocol called Small Byzantine Quorums with Listen-
ers (SBQ-L). In this protocol we use a “Listeners” pat-
tern of communication to detect and resolve ordering
ambiguities when reads and writes simultaneously ac-
cess a shared variable. Whereas other algorithms use
a fixed number of communication rounds, servers and
readers using SBQ-L exchange additional messages when
writes are concurrent with reads. This pattern allows
the reader to monitor the evolution of the global state
instead of relying on a snapshot. As a result, we can
provide strong consistency semantics using fewer servers
than before. We call this communication model “Listen-
ers” because of its similarity with the Listeners object-
oriented pattern introduced by Gamma et. al. [8].

Our work produced three primary results, summa-
rized in Table 1: (1) new lower bounds for the BQS
problem, (2) a new SBQ-L protocol, and (3) a proof that
these protocols are tight in the sense that they require
the minimal number of servers.

The first contribution of this paper is the develop-
ment of three new lower bounds under the common as-
sumption of asynchronous reliable authenticated chan-
nels [1, 2, 10, 11, 12]. The first bound states that block-
ing protocols (defined in Section 3) require at least 3f+1
servers to provide even the weak safe consistency seman-
tics [9] in the presence of f Byzantine failures. Second,
non-blocking protocols require at least 2f + 1 servers to
provide safe semantics. Third, non-blocking protocols
with fewer than 3f + 1 servers cannot provide atomic
semantics.

Our second contribution is a new protocol, SBQ-L,
in two variants: blocking and non-blocking. As shown

Existing Protocols

SBQ-L

blocking, self-verifying

3f+1, regular [10],[14]%;
3f+1, atomic [11],[5]!*?

3f+1, atomic? (tight)

blocking, generic

4f+1, safe [10, 11]%,[14]*
4f+1, partial-atomic [15]2

3f+1, atomic® (tight)

non-blocking, self-verifying

2f+1, regular [14]

2f+1, regular (tight)

non-blocking, generic

3f+1, safe [14]

2f+1, regular (tight)

(1) Does not require reliable channels.

(2) Tolerates faulty clients.

Table 1: Required number of servers and semantics for various protocols for Byzantine distributed shared memory.
New results and improvements over previous protocols are shown in italics.

in lines 2 and 4 of the table, the blocking variant of
SBQ-L reduces the number of servers required for stor-
ing generic data (i.e., data that is not self-verifying) from
4f + 1 to 3f + 1 compared to existing protocols and the
non-blocking variant reduces this number from 3f +1 to
2f + 1. Furthermore, using this low number of servers
we provide atomic semantics for the blocking protocol
while, for generic data, previous work could only guar-
antee the weaker safe or partial-atomic [15] semantics.
Our non-blocking protocol provides regular semantics,
improving upon the safe semantics provided by existing
non-blocking protocols.

Our final contribution, listed in the rightmost column
of the table, is to demonstrate that our new protocol is
tight with respect to both the number of servers and the
consistency semantics (defined by Lamport [9]) for that
number of servers. Blocking SBQ-L requires the mini-
mal number of servers for a blocking protocol, and pro-
vides the strongest consistency semantics described by
Lamport, atomic semantics. Non-blocking SBQ-L also
requires the minimal number of servers for non-blocking
protocols. With this number of servers, it is not possible
to implement atomic semantics. Instead, non-blocking
SBQ-L provides Lamport’s next strongest consistency
level: regular semantics.

It is surprising that SBQ-L performs equally well
with generic or self-verifying data; other protocols re-
quire more servers for generic data, as the middle column
of Table 1 illustrates. Conversely, this paper shows dif-
ferent bounds for blocking and non-blocking protocols,
which suggests this latter distinction is fundamental.

The SBQ-L protocol uses communication to reduce
the number of servers and improve consistency seman-
tics, but this additional communication is a potential
disadvantage of the SBQ-L protocol. Fortunately, it is
limited to one message per server for each read when
there is no concurrency; if concurrency is present, then
the number of additional messages per server is propor-
tional to the number of concurrent writes. Section 8

presents measurements of the latency increase due to
concurrent writes.

The rest of this paper is organized as follows: Sec-
tion 2 presents our model and assumptions. Section 3
reviews the different semantics that distributed shared
memory can provide, and Section 4 proves bounds on the
number of servers required to implement these seman-
tics. Both the non-blocking and the blocking protocols
are presented in Section 5, as well as an extension of the
blocking protocol to prevent them. Section 6 proves the
correctness of both protocols. Section 7 discusses the
trade-offs between bandwidth and concurrency and Sec-
tion 8 presents experiments that quantify this trade-off
in a working prototype. Section 9 discusses related work
and we conclude in the last section.

2 Model

We assume a system model commonly adopted by pre-
vious works that have applied quorum systems in the
Byzantine failure model [1, 2, 10, 11, 12].

In particular, our model consists of an arbitrary num-
ber of clients and a set U of data servers such that the
number n = |U| of servers is fixed. A quorum system
Q C 2V is a non-empty set of subsets of U, each of
which is called a quorum.

Servers can be either correct or faulty. A correct
server follows its specification; a faulty server can arbi-
trarily deviate from its specification. Following Malkhi
and Reiter [10], we define a fail-prone system B C 2V
as a non empty set of subsets of U, none of which is
contained in another, such that some B € B contains
all faulty servers. Fail-prone systems can be used to de-
scribe the common f-threshold assumption that up to a
threshold f of servers fail (in which case B contains all
sets of f servers), but they can also describe more gen-
eral situations, as when some computers are known to
be more likely to fail than others.

The set of clients of the service is disjoint from U.
Initially, we restrict our attention to server failures and
assume that clients are correct. We relax this assump-
tion in Section 5.3. Clients communicate with servers
over point-to-point channels that are authenticated, re-
liable, and asynchronous.

3 Consistency Semantics

Consistency semantics define system behavior in the
presence of concurrency. We first review Lamport’s def-
initions of safe, regular, and atomic semantics. In the
course of our work we find that the distinction between
blocking and non-blocking writes is important.

Lamport [9] defines the three semantics for dis-
tributed shared memory listed below. His original defini-
tions exclude concurrent writes, so we present extended
definitions that include these [15].

We assign a time, using a global clock, to the start
and end (or completion) of each operation. We say that
an operation A happens before another operation B if A
ends before B starts. We then require that all writes be
totally ordered using a relation — (serialized order) that
is consistent with the happens before relation. In this
total order, we call write w the latest completed write if
there is no other write w' such that w — w'.

e safe semantics guarantee that a read that is not
concurrent with any write returns the value of the
latest completed write. A read concurrent with a
write can return any value.

e regular semantics provide safe semantics and guar-
antee that if a read is concurrent with one or more
writes then it returns either the latest completed
write or one of the values being written concur-
rently.

e atomic semantics provide regular semantics and
guarantee that clients see writes in an order con-
sistent with —.

The above definitions do not specify when write com-
pletion occurs; the choice is left to the specific protocol.
In all cases, the completion of a write is a well-defined
event. The definition of the write completion predicate
influences the properties of the resulting protocol.

If the protocol defines the write completion predi-
cate so that completion can be determined locally by a
writer, we call the protocol blocking and we say it sup-
ports blocking safe, regular or atomic semantics. This
definition is intuitive and therefore implicitly assumed
in most previous work. These protocols typically imple-
ment a blocking write, in which the Write() function

only returns after the write operation has completed.
Note that blocking protocols may also choose to im-
plement a non-blocking write operation and provide a
separate mechanism (e.g., a barrier) to let the client de-
termine when a write completes.

If instead a protocol’s write completion predicate de-
pends on the global state in such a way that comple-
tion cannot be determined by a client, then we call the
protocol non-blocking and say that it supports only non-
blocking semantics. Non-blocking protocols cannot pro-
vide blocking writes. The SBQ protocol [14], for exam-
ple, is non-blocking: writes complete when a quorum of
correct servers have finished processing the write. This
completion event is well-defined but clients cannot deter-
mine when it happens because they lack the knowledge
of which servers are faulty.

As an example of a system where a non-blocking pro-
tocol is sufficient, consider a network of sensors measur-
ing some value and writing it to the distributed shared
memory. The reader always wants the most recent avail-
able value that corresponds to the physical situation and
does not care if a particular write has completed. Also,
it is acceptable for some writes to be replaced with a
newer value before they are ever read. Therefore no sen-
sor should wait for the completion of its last write be-
fore writing a newer measured value, and non-blocking
semantics are appropriate.

4 Bounds

In this section we prove lower bounds on the number of
servers required to implement minimal consistency se-
mantics (safe semantics) for blocking and non-blocking
writes. The bound for blocking protocols is 3f + 1 and
that for non-blocking protocols is 2f + 1. We also show
that atomic semantics cannot be achieved with fewer
than 3f + 1 servers, so minimal non-blocking protocols
cannot provide atomic semantics.

These bounds indicate that a trade-off exists between
the number of servers and blocking semantics. In cases
where the writer does not need to determine when its
writes completes non-blocking protocols reduce the num-
ber of servers.

In Section 5 we present protocols that meet the
bounds presented in this section.

4.1 Non-Blocking Protocols

Theorem 1. In the reliable authenticated asynchronous
model with Byzantine failures, no live protocol can satisfy
the safe semantics for distributed shared memory using
2f servers.

To prove this impossibility, we show that under these
assumptions any protocol must violate either safety or
liveness.

Definition 1. A message m has gone through server s
if the sending of m causally depends on some message
sent by s.

Lemma 1. A read protocol in which all executions must
receive messages that have gone through at least f + 1
distinct servers before the read can complete is not live.

If servers 0 to f — 1 crash then no message can go
through them. In this case, the reader can only receive
messages that have gone through the remaining f servers
and not every read can complete. d

Lemma 2. A read protocol in which there exists an ex-
ecution e where the received messages have only gone
through f or fewer distinct servers does not satisfy safe
semantics.

Consider a system in which the servers have states
ag ...a2¢—1, the shared variable has value A, and a read
for the variable follows execution e with non-zero prob-
ability. Execution e returns a value for the read based
on messages that have gone through f or fewer servers
and so returns A. Without loss of generality, suppose e
only receives messages that have gone through servers 0
to f — 1. Suppose that a later write changes the value of
the variable to B, and a subsequent read request reaches
the servers. Further suppose that servers 0 to f — 1 are
faulty and behave as if their state were ag...ay_1. This
is possible because they have been in these states before.
The faulty servers then send the same answers as they
would have when the variable had value A. Formulat-
ing these answers must not require communication with
the other servers; otherwise, these messages would have
gone through more than f servers. With these answers,
there is a non-zero probability that the reader follows
execution e and decides on the incorrect value A. d

The proof of the theorem derives from the fact that
the two lemmas cover all possible protocols. a

Note that the proof is not limited to the f-threshold
model and makes no assumption of deterministic behav-
ior from the protocol. The proof also covers protocols
which use integrity checks in their messages since faulty
servers have all the necessary information to create the
messages they send.

4.2 Blocking Protocols

Theorem 2. In the reliable authenticated asynchronous
model with Byzantine failures, no live protocol can satisfy

the safe blocking semantics for distributed shared mem-
ory using 3f servers.

Theorem 2’s proof is similar to Theorem 1’s. We
state the main lemmas here. The full proof appears in
the Appendix of the extended technical report [13].

Lemma 3. A read protocol in which all executions must
receive messages that have gone through at least 2f + 1
distinct servers before the read can complete is not live.

Lemma 4. A read protocol in which there exists an ex-
ecution e where the received messages have only gone
through 2f or fewer distinct servers does not satisfy safe
semantics.

4.3 Atomic Semantics

Blocking semantics require 3f + 1 servers. We now show
that this same limit of 3f + 1 servers is the minimum
number of servers necessary for implementing atomic se-
mantics, even for a non-blocking protocol.

Theorem 3. In the reliable authenticated asynchronous
model with Byzantine failures, no protocol for distributed
shared memory can implement atomic semantics with
fewer than 3f + 1 servers.

To prove this by contradiction, suppose there exists
some protocol p that implements atomic semantics using
fewer than 3 f+1 servers. p can be used to implement the
following blocking protocol: when writing some value z,
repeatedly read until the read function returns z or a
more recent value. Then, write another token value t.
Finally, repeatedly read until the read function returns
t or some other more recent value.

The two read sections in this example program show
that in the serialized order, x must come before ¢. Be-
cause p is atomic and ¢ has been read, no other client can
possibly read anymore. Therefore, it is not necessary
to continue the write for z; it has effectively completed.
This is a contradiction because no blocking protocol can
exist with fewer than 3f + 1 servers due to Theorem 2.
O

A simplified proof writing only value z but not ¢
would not be sufficient because knowing that the writer
can read its own value does not necessarily mean that
other clients cannot read older values.

5 The SBQ-L Protocols

In this section we show the f-threshold non-blocking
and blocking versions of the SBQ-L protocol’. SBQ-
L is based both on the insights from the non-blocking

1The more general version (using the fail-prone model) is pre-
sented in the Appendix to the extended technical report [13].

“Small Byzantine Quorums” (SBQ) protocol [14] and
on the Listeners communication pattern. The Listener
pattern is the key idea behind our protocol, allowing it
to use fewer servers than other protocols while providing
stronger semantics for generic data.

5.1

Figure 1 presents the f-threshold SBQ-L blocking pro-
tocol for generic data. The initial value of the protocol’s
variables is shown in Figure 2. In lines W1 through W6,
the Write() function queries a quorum of servers in or-
der to determine the new timestamp. The writer then
sends its timestamped data to all servers at line W8 and
wait for acknowledgments at lines W9 and W10. The
Read() function queries all servers in line R2 and waits
for messages in lines R3 to R13. An unusual feature of
this protocol is that servers send more than one reply
if writes are in progress. For each read in progress, a
reader maintains a matrix of the different answers and
timestamps from the servers (answers[]). The read
decides on a value at line R13 once the reader can de-
termine that a quorum of servers vouch for the same
data item and timestamp, and a notification is sent to
the servers at line R14 to indicate the completion of the
read. A naive implementation of this technique could
result in the client’s memory usage being unbounded;
instead, the protocol only retains at most f + 1 answers
from each server. We show in Section 6 that the read
protocol is correct.

This protocol differs from previous protocols because
of its communication pattern. Intuitively, other proto-
cols take a “snapshot” of the situation. The SBQ-L pro-
tocol looks at the evolution of the situation in time: it
records a “movie”. This communication makes it possi-
ble to disambiguate situations where concurrent writes
are such that no majority emerges immediately. Our
approach causes the server to send more messages than
in other protocols, however, other than the single addi-
tional READ_COMPLETE message sent to each server
at line R14, additional messages are only sent when
writes are concurrent with a read.

Figure 1 shows the protocol for clients. Servers follow
simpler rules: they only store a single timestamped data
version, replacing it whenever they receive a STORE
message with a newer timestamp. When receiving a read
request, they send the contents of this storage. Servers
in SBQ-L differ from previous protocols in what we call
the Listeners communication pattern: after sending the
first message, the server keeps a list of clients who have
a read in progress. Later, if they receive a STORE mes-
sage, then in addition to the normal processing they echo
the contents of the store message to the “listening” read-

Blocking Protocol

ers — including messages with a timestamp that is not
as recent as the data’s current one but more recent than
the data’s timestamp at the start of the read. This lis-
tening process continues until the server receives a the
READ_COMPLETE message from the client indicating
that the read has completed. Note that in practice these
messages would only be sent if the writer is authorized
to modify that variable. Also, they need only be sent to
readers accessing the variable being written.

This protocol requires a minimum of 3f + 1 servers
and provides blocking atomic semantics. We prove its
correctness in Section 6. As shown in Theorem 2, 3f + 1
is the optimal number of servers for blocking protocols.

5.2 Non-Blocking Protocol

The blocking SBQ-L protocol of the previous section re-
quires at least 3f + 1 servers. This number can be re-
duced to 2f + 1 if the protocol is modified to become
non-blocking.

Since in a non-blocking protocol the writer is not re-
quired to know when the write completes, we can remove
lines W9 and W10 of the Write() function in which the
writer waits for acknowledgments. The STORE mes-
sages sent earlier (at line W8) are guaranteed to reach
their destination because we assume that the channels
are reliable. The reader can find a discussion of the
implications of assuming reliable links in Byzantine en-
vironments in our previous work [14].

We then modify the size of the quorums, ¢, to [nTH]
instead of [%f"'l] previously. This is possible because
eliminating the acknowledgments eliminates a constraint
on the overlap of read and write quorums [14].

Recall that in non-blocking protocols, the write func-
tion does not determine when the write has completed:
instead, the completion must be specified by the pro-
tocol. We therefore specify that the write completes
when ¢ = [”T'H] correct servers are done processing the
STORE message. Note that this definition ensures that
write completion cannot be unduly delayed by the ac-
tions of faulty servers in that they cannot delay writes
more than crashed servers would.

This protocol requires only 2f + 1 servers and pro-
vides regular semantics. We prove the correctness of this
protocol in Section 6. As shown in Theorem 1, 2f + 1
is the optimal number of servers for non-blocking proto-
cols.

Pierce [15] presents a general technique to transform
any regular protocol into one that satisfies atomic se-
mantics. This technique, however, only works for block-
ing protocols and therefore does not apply to this case.

W1 ‘Write(D) {

Wit}

send (QUERY_TS) to all servers

receive answer (TS, ts) from server isvr set ts[isvr] := ts

wait until the ts[] array contains ¢ answers.

maz_ts := maz{ts[]}

ts = min{t € T, : maz_ts < t Alast_ts < t}

// ts € T. is larger than all answers and previous timestamp
last_ts :=ts

send (STORE, D, ts) to all servers.

receive answer (ACK,ts) from server ¢

wait until ¢ servers have sent an ACK message

R1 (D,ts) = Read() {

R2 send (READ) to all servers.
R3 loop {
R4 receive answer (VALUE,D, ts) from server s // (possibly more than one answer per server)
R5 if ts > latest[s].ts then latest[s] := (D, ts)
R6 if s S: // we call this event an “entrance”
R7 S:=SuU{s}
R8 T := the f + 1 largest timestamps in latest[]
R9 for all isvr, for all jtime ¢ T, delete answer[isvr, jtime]
R10 for all isvr,
R11 if latestlisvr].ts € T then answer[isvr, latest[isvr].ts] := latest[isvr]
R12 if ts € T then answer[s,ts] := (D, ts)
R13 } until 3D, ts, S |S| > g A (Vi: i €S :answerli, ts] = (D, ts))
// i.e., loop until ¢ servers agree on a (D,ts) value
R14 send (READ_COMPLETE) to all servers
R15 return (D, ts)
R16 }
Figure 1: Blocking SBQ-L protocol for the f-threshold error model.
variable initial value notes
q [%] or [(n+1)/2] Quorum size in the blocking and non-blocking case, respectively
T. Set of timestamps for client ¢ | The sets used by different clients are disjoint
last_ts 0 Largest timestamp written by a particular server
latest[] 0 A vector storing the largest timestamp received from each server and the
associated data
answer][] 0 Sparse matrix storing at most f + 1 data and timestamps received from
each server
S 0 The set of servers from which the reader has received an answer

Figure 2: Variables

5.3 Faulty Clients

The protocols in the previous two sections are suscepti-
ble to faulty clients: by sending a different value to each
server (a “poisonous write”), a faulty writer can prevent
future read attempts from terminating because no read
can gather a quorum of identical answers.

Poisonous writes are a common vulnerability for
Byzantine storage protocols and, in the case of the block-
ing protocol, we can adopt the technique introduced by
Malkhi and Reiter [10] to handle faulty clients. This
technique adds a two-phase commit to the STORE func-
tion at the servers that makes sure that the same value
is also being written to other servers. These writes are
therefore guaranteed to not put the system in an incor-
rect state where reads would hang. Furthermore, the
correctness proof in Section 6 still holds with this mod-
ification.

The other difficulty is that a faulty reader can ne-
glect to notify the servers that the read has completed
and therefore prevent the read from terminating. This is
identical to faulty readers that, in other protocols, con-
tinuously send read requests. We are exploring ways to
bound the number of echoes that a single read request
can trigger.

6 Correctness

In this section we prove the correctness of the two f-
threshold versions of the SBQ-L protocol presented in
this paper.

6.1 Blocking Threshold SBQ-L

Theorem 4. The blocking f-threshold SBQ-L protocol
provides atomic semantics.

Lemma 5 (Regularity). The blocking f-threshold
SBQ-L satisfies regular semantics, assuming it is live.

In the case where no concurrent write is in progress,
the reader eventually receives an answer from the
[%f“] correct servers and decides on their value (step
R13). There are not enough other servers to make the
reader decide on any other value.

If a write is in progress and the reader decides on
a value then this value has been vouched for by ¢, =
[%f“] servers (line R13). By definition, g, = [%f“]
servers have seen the latest completed write. Since ¢, +
qw > n + f, these two quorums intersect in at least one
correct server C' that has seen the latest completed write.

Since C' is correct, it follows the protocol and there-
fore it sent the value of the completed write, the value
of a write with a higher timestamp, or both. O

Lemma 6 (Atomicity). The blocking threshold SBQ-
L satisfies atomic semantics, assuming it is live.

The blocking version of the protocol provides
stronger semantics than the non-blocking. It guaran-
tees atomic semantics, in which the writes are ordered
according to their timestamps. To prove this, we show
that after a write for a given timestamp ts; completes,
no read can decide on a value with an earlier timestamp.

Suppose a write with timestamp ts; has completed;
then f%fﬂ] servers agree on this timestamp. Even if
the faulty (f) and untimely (u) servers send the same
older reply tsp, they cannot form a quorum (g). More
formally:

ftu<gq
n+f+1 n+f+1
L s h By LA e
1
= f+n<2[7n+;“r 1< f+n<f+n+1
d
Lemma 7 (Liveness). All functions of the non-

blocking threshold SBQ-L eventually terminate.

Write. The Write() function is trivially live because its
waits (in steps W4 and W10) expect ¢ = [(n+ f+1)/2]
answers and ¢ < n — f so these answers are guaranteed
to eventually arrive.

Read. Even though it only tracks f + 1 different times-
tamps simultaneously (lines R11 and R12), the Read()
function is live. Consider the last entrance, i.e., the last
time line R7 of Read() is executed. The latest[] ar-
ray contains a value for each server; consider the largest
latest[].ts associated with a correct server, ts,,qz.
The client has not discarded any data item with times-
tamp ¢8,,4, coming from a correct server (otherwise that
correct server would have a higher timestamp associated
with it). ¢S4, is in T because T' contains the f + 1
largest timestamps in latest[]. Since all clients are
correct, they send the same value to all servers and there-
fore all correct servers will eventually see the write with
timestamp t$,,4, and will echo it to the reader. As we
know, ¢ < n — f so there are enough correct servers to
guarantee that the read for that timestamp will eventu-
ally complete.

This proof also illustrates the benefits of the Listeners
communication: if several writes are in progress, then
initially each server could hold a different timestamp.
The ongoing communication allows the reader to follow
the writes and identify the correct value.

STORE, QUERY_TS. The server’'s STORE and
QUERY_TS functions terminate because they have no
loops.

READ. The server’s READ function terminates be-
cause the client’s Read() terminates and clients are cor-
rect. (]

This concludes the correctness proof. We have shown
that the protocol always returns a correct value and that
it terminates. Note that it could terminate before the
events we describe in the proof; we merely show that the
protocol eventually terminates.

6.2 Non-Blocking Threshold SBQ-L

Theorem 5. The non-blocking threshold SBQ-L proto-
col provides regular semantics.

The proof for liveness is identical to the proof for the
blocking case above. The regularity proof is similar to
that of the blocking case, using the smaller quorum size:
The read protocol decides (at line R13) on a value that
is vouched for by ¢, = [nTH] servers. By definition of
completion, ¢, = [”T'H] correct servers have seen the
latest completed write. Since ¢, + ¢, > n, these two
quorums intersect in at least one correct server C' that
has seen the latest completed write. a

7 Practical Considerations

Our Listener mechanism allows the SBQ-L protocols to
use the optimal number of servers but (1) the commu-
nication pattern it requires causes more messages to be
exchanged than in other protocols, (2) the read proto-
col does not decide on a value immediately, and (3) the
reader stores messages in memory before deciding. In
the next three subsections we quantify the number of
additional messages, discuss the protocol latency, and
show an upper bound on memory usage.

7.1 Additional Messages

The read protocol may wait for several messages before
deciding on a value. The write protocol suffers from
no such wait: writes always require the same number of
messages, regardless of the level of concurrency. SBQ-L’s
write operation requires 3n messages in the non-blocking
case and 4n messages in the blocking case, where n is
the number of servers. This communication is identical
to previous results: the non-blocking SBQ protocol [14]
uses 3n messages and the blocking MR protocol [10] re-
quires 4n messages.

The behavior of the SBQ-L read operation depends
on the number of concurrent writes. Other protocols
(both SBQ and MR) exchange a maximum of 2n mes-
sages for each read. SBQ-L requires up to 3n messages

when there is no concurrency. In particular, step R14
adds a new round of messages. Additional messages
are exchanged when there is concurrency: because the
servers echo all concurrent write messages to the reader,
if ¢ writes are concurrent with a particular read then
that read will use 3n + cn messages.

For some systems, there is little or no concurrency in
the common case. Even with additional messages in the
case of concurrency, the latency increase is not as severe
as one may fear because most of these message exchanges
are asynchronous and unidirectional: the SBQ-L proto-
col will not wait for 3n + c¢n message roundtrips. This is
apparent in the experimental results of Section 8.

7.2 Live Lock

In a system such as SBQ-L, it must be ensured that
both reads and writes will complete even if the system is
under a heavy load. In SBQ-L, writes cannot starve be-
cause their operation is independent of concurrent reads.
Reads, however, can be starved if an infinite number of
writes are in progress and if the servers always choose to
serve the writes before sending the echo messages.
There is an easy way to guarantee this does not hap-
pen. When serving a write request while a read is in
progress, servers queue an echo message. The liveness
of both readers and writers is guaranteed if we require
servers to send these echoes before processing the next
write request. A read will therefore eventually receive
the necessary echoes to complete even if an arbitrary
number of writes are concurrent with the read.
Another related concern is that of latency: can reads
become arbitrarily slow? In the asynchronous model,
there is no bound on the duration of reads. However,
if we assume that writes never last longer than w units
of time and that there are ¢ concurrent writes, then in
the worst case (taking failures into account), reads will
be delayed by no more than min(cw,nw). This result
follows because in the worst case, f servers are faulty
and return very high timestamps so that only one row of
answer [] contains answers from correct servers. Also,
in the worst case each entrance (line R6) occurs just
before the monitored write can be read. The bound
follows from the fact that there are at most n entrances.

7.3 Buffer Memory

In SBQ-L, readers maintain a buffer in memory dur-
ing each read operation (the answer[] sparse matrix).
While other protocols only need to identify a majority
and as such require n units of memory, the SBQ-L pro-
tocol maintains a short history of the values written at
each server. As a result, the read operation in SBQ-L re-
quires up to n(f+1) units of memory: the set 7" contains

at most f+1 elements (line 8) and the answer [] matrix
therefore never contains more than n columns and f +1
rows (lines 9 and 12). In a system storing more than one
shared variable, if multiple variables are read in parallel
then each individual read requires its own buffer of size

n(f+1).

8 Experiments

We construct a simple prototype to study the overhead
of the extra messages used to deal with concurrency in
SBQ-L. The prototype is written in C++, stores data in
main memory and communicates via TCP.

Our testbed consists of 3 servers and 6 client ma-
chines, 5 of which act as writers and 1 as a reader.
The reader machine is a SUN Ultral0 with a 440Mhz
UltraSPARC-IIi processor running SunOS 8.5. The
other machines are Dell Dimension 4100 with a 800Mhz
PentiumIII processor running Debian Linux 2.2.19. The
network connecting these machines is a 100Mbits/s
switched Ethernet.

In this experiment, we vary the number of writers
and therefore the level of concurrency. The writers re-
peatedly execute the non-blocking write protocol, writ-
ing 1000 bytes of data to all servers. The reader mea-
sures the average time for 20 consecutive reads, and the
servers are instrumented to measure the number of ad-
ditional messages sent during the Listeners phase.

4.5

4

35

I

3

25

2

read latency (ms)

15

1

0.5

1
2
of active writers

3

0

The above graph shows the read latency as a function
of the number of active writers. Each point represents
the average duration of 20 reads.

We find, as expected, that increasing concurrency
has a measurable but modest effect on the latency of
the reads.

10

9 Related Work

Although both Byzantine failures [7] and quorums sys-
tems [6] have been studied for a long time, interest in
quorum systems for Byzantine failures is relatively re-
cent; the subject was first explored by Malkhi and Reiter
[10, 11]. They reduced the number of servers involved in
communication [12], but not the total number of servers;
their work exclusively covers blocking systems.

In previous work we introduced non-blocking proto-
cols that require 3f + 1 servers (2f + 1 for self-verifying
data) [14]. In the present paper we expand on that work
and reduce the bound to 2f + 1 for generic data and pro-
vide regular semantics instead of safe by using Listeners;
we also prove lower bounds on the number of servers for
these semantics and meet them.

Bazzi [2] explored Byzantine quorums in a syn-
chronous environment with reliable channels. In that
context it is possible to require fewer servers (f + 1
for self-verifying data, 2f + 1 otherwise). This result
is not directly comparable to ours since it uses a differ-
ent model; we leave as future work the application of
the Listeners idea of SBQ-L to the synchronous network
model.

Several papers [3, 12] study the load of Byzantine
quorum systems, a measure of how increasing the num-
ber of servers influences the amount of work each indi-
vidual server has to perform (if at all). Although these
considerations are interesting, our motivation for adding
servers to the system is to increase reliability, not per-
formance: therefore we leave considerations of the load
of servers under the SBQ-Listeners protocols as future
work.

Bazzi [3] uses the term non-blocking quorum system
to mean something different from what we call non-
blocking protocols. Recall that a non-blocking protocol
is one where a client cannot determine when its writes
complete. A non-blocking quorum system is a quorum
system in which the writer does not need to identify a
live quorum but instead sends a message to a quorum of
servers without concerning himself with whether these
servers are responsive or not. According to this defi-
nition, both the blocking and the non-blocking SBQ-L
protocols use non-blocking quorum systems.

Phalanx [11] builds shared data abstractions and pro-
vides a locking service, both of which can tolerate Byzan-
tine failure of servers or clients. It requires blocking se-
mantics in order to implement locks. Phalanx can handle
faulty clients while providing safe semantics using 41+ 1
servers.

Castro and Liskov [5] present a replication algorithm
that requires 3 f + 1 servers and, unlike most of the work
presented above, can tolerate unreliable network links

and faulty clients. Their protocol uses cryptography to
produce self-verifying data and provides linearizability
(therefore blocking semantics); their protocol is fast in
the common case. Our work shows that blocking seman-
tics cannot be provided using fewer servers. Instead, we
show a non-blocking protocol with 2f +1 servers. In the
case of non-blocking semantics, however, it is necessary
to assume reliable links.

10 Conclusion

We present two protocols for shared variables, one that
provides non-blocking regular semantics using 2f + 1
servers and the other that provides blocking atomic se-
mantics using 3f + 1 servers. This reduces by f the
number of servers needed by previous protocols in the
reliable asynchronous communication model when not
assuming self-verifying data. Our protocols are strongly
inspired by quorum systems but use an original commu-
nication pattern, the Listeners. The protocols can be
adapted to either the f-threshold or the fail-prone error
model.

The more theoretical contribution of this paper is
the proof of a tight bound on the number of servers. We
show that 3 f+1 servers are necessary to provide blocking
semantics and 2f + 1 servers are required otherwise. We
further show that 3f + 1 servers are required for atomic
semantics even for non-blocking protocols.

Several protocols [5, 10, 11, 14, 16] use digital signa-
tures (or MAC) to reduce the number of servers. It is
therefore surprising that we were able to meet the mini-
mum number of servers without using cryptography. In-
stead, our protocols send one additional message to all
servers and other additional messages that only occur if
concurrent writes are in progress.

Since our protocols for blocking and non-blocking se-
mantics are nearly identical, it is possible to use both
systems simultaneously. The server side of the proto-
cols are the same, therefore the servers do not need to
be aware of the model used. Instead, the clients can
agree on whether to use blocking or non-blocking se-
mantics on a per-variable basis. The clients that choose
non-blocking semantics can tolerate more failures: this
property is unique to the SBQ-L protocol.

11 Acknowledgments

The authors would like to thank Jian Yin for several very
interesting conversations and Alison Smith for helpful
comments on the paper’s presentation.

11

References

[1] L. Alvisi, D. Malkhi, E. Pierce, and R. Wright. Dynamic
Byzantine quorum systems. In Proceedings of the Inter-
national Conference on Dependable Systems and Net-
works, June 2000.

R. A. Bazzi. Synchronous Byzantine quorum systems.
In Proceedings of the sizteenth annual ACM symposium
on Principles of distributed computing, pages 259-266,
1997.

R. A. Bazzi. Access cost for asynchronous Byzantine
quorum systems. Distributed Computing Journal volume
14, Issue 1, pages 41-48, January 2001.

M. Castro and B. Liskov. Authenticated Byzantine fault
tolerance without public-key cryptography. Technical
Report /LCS/TM-595, MIT, 1999.

M. Castro and NB. Liskov. Practical Byzantine fault
tolerance. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation (OSDI
’99), New Orleans, USA, pages 173-186, February 1999.

S. Davidson, H. Garcia-Molina, and D. Skeen. Consis-
tency in a partitioned network: a survey. ACM Comput-
ing Surveys (CSUR) Volume 17, Issue 3, pages 341-370,
September 1985.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty process.
Technical Report MIT/LCS/TR-282, 1982.

[2]

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns. Addison Wesley, October 1994. ISBN
0-201-63361-2.

[9] L. Lamport. On interprocess communications. Dis-

tributed Computing, pages 77-101, 1986.

D. Malkhi and M. Reiter. Byzantine quorum systems.
Distributed Computing, pages 203-213, 1998.

D. Malkhi and M. Reiter. Secure and scalable replication
in phalanx. In Proc. 17th IEEE Symposium on Reliable
Distributed Systems, West Lafayette, Indiana, USA, Oct
1998.

D. Malkhi, M. Reiter, and A. Wool. The load and
availability of Byzantine quorum systems. In Proceed-
ings 16th ACM Symposium on Principles of Distributed
Computing (PODC), pages 249-257, August 1997.

J-P. Martin, L. Alvisi, and M. Dabhlin. Mini-
mal Byzantine quorum systems. Technical re-
port, University of Texas at Austin, Depart-
ment of Computer Sciences, February 2002.
www.cs.utexas.edu/home/department/pubsforms.shtml.

J-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine
quorum systems. Technical Report TR-02-01, Univer-
sity of Texas at Austin, Department of Computer Sci-
ences, January 2002.

[11]

[12]

[13]

[14]

E. Pierce and L. Alvisi. A recipe for atomic semantics for
Byzantine quorum systems. Technical report, University
of Texas at Austin, Department of Computer Sciences,
May 2000.

R. Rodrigues, M. Castro, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. In Proceedings
of the 18th Symposium on Operating Systems Principles
(SOSP ’01), October 2001.

[15]

[16]

A Lower Bound for
Protocols

Blocking

Expanding on the work of Section 4, we prove the lower
bound for the number of servers for blocking protocols.

Theorem 2. In the reliable authenticated asynchronous
model with Byzantine failures, no live protocol can satisfy
the safe blocking semantics for distributed shared mem-
ory using 3f servers.

To prove this impossibility, we show that under these
assumptions any protocol must violate either safety or
liveness.

Lemma 3. A read protocol in which all executions must
receive messages that have gone through at least 2f + 1
distinct servers before the read can complete is not live.

If the servers 0 to f — 1 crash then no message can
go through them. In this case, the reader can only re-
ceive messages that have gone through the remaining 2 f
servers and the reads cannot all complete. d

Lemma 4. A read protocol in which there exists an ex-
ecution e where the received messages have only gone
through 2f or fewer distinct servers does not satisfy safe
semantics.

Since the write is blocking, the writer must be able
to determine the completion of the write from messages
that have gone through at most 2f servers in order to
be live. Consider a system in which the servers have
state ag...asf_1, the shared variable has value A, and
a read for the variable follows execution e with non-zero
probability. Execution e receives messages from servers
f to 3f — 1 and returns a value for the read based on
messages that have gone through 2f or fewer servers; in
this case, it returns A. Suppose that a later write changes
the value of the variable to B. Suppose therefore that
after completion of the writes the servers are in states
bo...baf_1,a2f...a37—1. Further suppose that servers
f to 2f —1 are faulty and behave as if their states were
ag...azs—1. This is possible because they have been
in these states before. Suppose that the reader receives
answers from servers f to 3f — 1. The faulty servers
send the same answers as they would have if the variable
had value A. Formulating these answers must not require
communication with the other servers because otherwise
these messages would have gone through more than 2f
servers. In this situation, there is a non-zero probability
that the reader follows execution e and decides on the
incorrect value A. d

12

The proof of the theorem derives from the fact that
the two lemmas cover all possible protocols. a

B Generalized Blocking Protocol

The blocking protocol can be generalized to a fail-prone
system instead of the simpler f-threshold case presented
in Section 5. Our quorums @) € Q must obey the follow-
ing properties:

Consistency: The intersection of any pair of quorums
contains one correct server.

VQl,Q2€QVB€BCQlﬂQ2gB

Availability: One quorum is always available.
VBeB3IQeQ:BNR =10

The Write() function is modified to return once it re-
ceives an acknowledgment from a quorum. The modified
Read() is presented in Figure 3. It is similar to that of
the f-threshold protocol, except for line R13 in which it
decides on a value after receiving the same answer from
a quorum of servers.

C Generalized

Protocol

Non-Blocking

The generalized protocol above can be adapted to non-
blocking semantics, which allows the number of servers
to be reduced.

In the non-blocking case, the quorums @ € Q must
obey the following properties:

Consistency: All quorums intersect

VQ1,Q2€Q:Q1NQ2 #0

Availability: One quorum is always available

VBeBIQeQ:BNQR=10

Witness Quality: No failure scenario is a quorum
VQeQVBeB:Q¢B

Lines W9 and W10 are removed from the Write()
operation. We say that the write completes when a quo-
rum consisting entirely of correct servers has finished
processing the write message.

W1 Write(D) {
w2 send (QUERY_TS) to all servers
w3 loop {
W3 receive answer (TS, ts) from server isvr
1[ex] Wx currentlisvr] := ts
W4 } until the ¢s[] array covers a quorum of servers.
W5 maz_ts := maz{current[]}
W6 my_ts := min{t € Cys : maz_ts < t Alast_ts < t}
// my_ts is larger than all answers and previous timestamp

w7 last_ts := my_ts
w8 send (STORE, D, ts) to all servers.
w9 receive answer (ACK,ts) from server ¢
W10 wait until a quorum servers have sent an ACK message, i.e. 3Q, € Q 1 Q. C {i}
Wil 3
R1 (D,ts) = Read() {
R2 send (READ) to all servers.
R3 loop {
R4 receive answer (VALUE,D, ts) from server s // (possibly more than one answer per server)
R5 if ts > latest[s].ts then latest[s] := (D, ts)
R6 if s ¢ S: // we call this event an “entrance”
R7 S:= S U{s}
R8 T := the f + 1 largest timestamps in latest[]
R9 for all isvr, for all jtime ¢ T, delete answer[isvr, jtime]
R10 for all isvr,
R11 if latest[isvr].ts € T then answer[isvr, latest[isvr].ts] := latest[isvr]
R12 if ts € T then answer[s,ts] := (D, ts)
R13 }until 3D, ts5,Q, 1 Q. € QA (Vi:i € S : answer[i,ts] = (D, ts))

// i.e. loop until a quorum of servers agree on a (D,ts) value
R14 send (READ_COMPLETE) to all servers
R15 return (D, ts)
R16 }

Figure 3: Generalized blocking SBQ-L protocol

13

We call f the size of the largest failure scenario. The
Read() operation is identical except that it uses the quo-
rums defined in this section.

Although the protocol works for any choice of fail-
prone system, its memory consumption depends on the
size of the largest failure scenario.

D Correctness

D.1 Generalized Blocking SBQ-L

Theorem 6. The blocking generalized SBQ-L protocol
provides atomic semantics.

Lemma 8 (Regularity). The blocking generalized
SBQ-L protocol satisfies reqular semantics, assuming it
is live.

We call @, the quorum of servers (not necessarily all
correct) that have seen the latest completed write.

The availability property guarantees that the reader
will eventually receive an answer from some quorum, and
the consistency property guarantees that this answer will
be correct.

If a write is in progress and the reader decides on
a value from some quorum () then this value has been
vouched for by at least one correct server that has seen
the latest completed write since the intersection of @
and @, contains a correct server. a

Similarly to the threshold version, this blocking pro-
tocol guarantees atomic semantics. The serialized order
of the writes is that of the timestamps. To prove this, we
simply show that after a write for a given timestamp ¢s;
completes, no read can decide on a value with an earlier
timestamp.

Lemma 9 (Atomicity). The blocking generalized
SBQ-L protocol satisfies atomic semantics, assuming it
is live.

Suppose a write with timestamp ts; has completed:
a quorum @, € Q of servers agree on this timestamp.
Even if the faulty and untimely servers send the same
older reply tsgy, they cannot form a quorum. More for-
mally: (U — Q1) UB ¢ Q, which we prove by showing
that O = (U — Q1) U B does not obey consistency.

ONQ:=((U-Q)NQ1)U(BNQ1)=BNQ1CHB
This violates Consistency:

VQ1,Q2€ QVBeB:Q1NQ2 ¢ B

14

Lemma 10 (Liveness). All functions of the blocking
generalized SBQ-L eventually terminate.

Write. All writes eventually complete because of the
availability property.

Read. Consider the last entrance. There is a value
for latest[] associated with each server; consider the
largest latest[].ts associated with a correct server,
tSmaz- The client has not discarded any data item with
timestamp ts;,4; coming from a correct server (other-
wise that correct server would have a higher timestamp
associated with it). ¢S4, is in T because T' contains
the f + 1 largest timestamps in latest[]. Since all
clients are correct, all correct servers will eventually see
the ts,,q4. write and echo it back to the reader. The
availability property guarantees that there are enough
correct servers for the echoes to eventually form a quo-
rum.

STORE, QUERY_TS. The server’'s STORE and
QUERY_TS functions terminate because they have no
loops.

READ. The server’s READ function terminates be-
cause the client’s Read() terminates and clients are cor-
rect. |

D.2 Generalized Non-blocking SBQ-L

Theorem 7. The non-blocking generalized SBQ-L pro-
tocol provides regular semantics.

Lemma 11 (Regularity). The non-blocking general-
ized SBQ-L protocol satisfies regular semantics, assum-
ing it is live.

This proof is similar to that of the previous section,
except that it takes into account the different defini-
tion for write completion and the different quorum con-
straints.

We call Q.,, the quorum of correct servers that has
seen the latest completed write.

If the reader decides on a value from some quorum
Q@ then this value has been vouched for by at least one
correct server that has seen the latest completed write
since @ and @), intersect. O

The proof for liveness is identical to that of the block-
ing case. a

