
Note: \Minimal Byzantine Quorums" is superseded by \Min-imal Byzantine Storage" (Te
hni
al Report TR-02-38), avail-able athttp://www.
s.utexas.edu/ftp/pub/te
hreports/tr02-38.ps.Z

1

Minimal Byzantine QuorumsJean-Philippe Martin, Lorenzo Alvisi, Mi
hael DahlinAbstra
tByzantine quorum systems
an provide fault tolerantstorage in hazardous environments, but the redundantservers they require in
rease software development andhardware
osts. In order to minimize the number ofservers required to implement Byzantine quorum ser-vi
es, we develop a new algorithm that uses a \Listen-ers" pattern of network
ommuni
ation to dete
t andresolve ordering ambiguities
reated by
on
urrent a
-
esses to the system. In our analysis of this algorithm,we (1) identify the lower bound on the number of serversrequired to implement distributed data servi
es in aByzantine environment, (2) des
ribe new proto
ols thatredu
e the number of servers ne
essary for generi
 datawhile providing strong
onsisten
y semanti
s, and (3)show that the new proto
ols mat
h the lower bounds forthe number of servers and provide the best
onsisten
ysemanti
s for this number of servers.1 Introdu
tionQuorum systems [6℄ are valuable tools for implementinghighly available distributed data servi
es. These systemsstore a shared variable at at a set of servers and performread and write operations at some subset of servers (aquorum). Ea
h proto
ol de�nes some interse
tion prop-erty for the quorums whi
h,
ombined with the proto
oldes
ription itself, ensures that ea
h read has a

ess tothe most re
ently written value of the variable. Pra
ti-
al use of quorum systems ne
essitates they enfor
e theinterse
tion property even in the presen
e of failures. Toguarantee data integrity and availability in the presen
eof arbitrary (Byzantine) failures, Malkhi and Reiter [10℄introdu
e a spe
ial kind of quorum system
alled mask-ing quorum system. They also introdu
e disseminationquorum systems that
an be used by servi
es that sup-port self-verifying data, i.e., data that
annot be unde-te
tably altered by a faulty server, su
h as data thathave been digitally signed or asso
iated with messageauthenti
ation
odes (MACs) [4℄.The number of servers in a Byzantine quorum sys-tem is an important metri
 be
ause these systems rely onserver failures being independent. Therefore, to redu
e

the
orrelation of software failures, ea
h server shoulduse a di�erent software implementation [16℄. Redu
ingthe number of servers therefore redu
es the developmentand software maintenan
e
ost of these systems in addi-tion to lowering the hardware resour
e demands (e.g.,pro
essors or disks). Furthermore, for large softwaresystems only a �xed number of implementations maybe available, and it may be expensive or otherwise in-feasible to
reate additional implementations. In su
h asituation, a new proto
ol requiring fewer servers may en-able repli
ation te
hniques in situations where they werenot previously appli
able.To redu
e the number of servers we present a BQSproto
ol
alled Small Byzantine Quorums with Listen-ers (SBQ-L). In this proto
ol we use a \Listeners" pat-tern of
ommuni
ation to dete
t and resolve orderingambiguities when reads and writes simultaneously a
-
ess a shared variable. Whereas other algorithms usea �xed number of
ommuni
ation rounds, servers andreaders using SBQ-L ex
hange additional messages whenwrites are
on
urrent with reads. This pattern allowsthe reader to monitor the evolution of the global stateinstead of relying on a snapshot. As a result, we
anprovide strong
onsisten
y semanti
s using fewer serversthan before. We
all this
ommuni
ation model \Listen-ers" be
ause of its similarity with the Listeners obje
t-oriented pattern introdu
ed by Gamma et. al. [8℄.Our work produ
ed three primary results, summa-rized in Table 1: (1) new lower bounds for the BQSproblem, (2) a new SBQ-L proto
ol, and (3) a proof thatthese proto
ols are tight in the sense that they requirethe minimal number of servers.The �rst
ontribution of this paper is the develop-ment of three new lower bounds under the
ommon as-sumption of asyn
hronous reliable authenti
ated
han-nels [1, 2, 10, 11, 12℄. The �rst bound states that blo
k-ing proto
ols (de�ned in Se
tion 3) require at least 3f+1servers to provide even the weak safe
onsisten
y seman-ti
s [9℄ in the presen
e of f Byzantine failures. Se
ond,non-blo
king proto
ols require at least 2f +1 servers toprovide safe semanti
s. Third, non-blo
king proto
olswith fewer than 3f + 1 servers
annot provide atomi
semanti
s.Our se
ond
ontribution is a new proto
ol, SBQ-L,in two variants: blo
king and non-blo
king. As shown2

Existing Proto
ols SBQ-L3f+1, regular [10℄,[14℄1;blo
king, self-verifying 3f+1, atomi
 [11℄,[5℄1;2 3f+1, atomi
2 (tight)4f+1, safe [10, 11℄2,[14℄1blo
king, generi
 4f+1, partial-atomi
 [15℄2 3f+1, atomi
2 (tight)non-blo
king, self-verifying 2f+1, regular [14℄ 2f+1, regular (tight)non-blo
king, generi
 3f+1, safe [14℄ 2f+1, regular (tight)(1) Does not require reliable
hannels.(2) Tolerates faulty
lients.Table 1: Required number of servers and semanti
s for various proto
ols for Byzantine distributed shared memory.New results and improvements over previous proto
ols are shown in itali
s.in lines 2 and 4 of the table, the blo
king variant ofSBQ-L redu
es the number of servers required for stor-ing generi
 data (i.e., data that is not self-verifying) from4f +1 to 3f +1
ompared to existing proto
ols and thenon-blo
king variant redu
es this number from 3f+1 to2f + 1. Furthermore, using this low number of serverswe provide atomi
 semanti
s for the blo
king proto
olwhile, for generi
 data, previous work
ould only guar-antee the weaker safe or partial-atomi
 [15℄ semanti
s.Our non-blo
king proto
ol provides regular semanti
s,improving upon the safe semanti
s provided by existingnon-blo
king proto
ols.Our �nal
ontribution, listed in the rightmost
olumnof the table, is to demonstrate that our new proto
ol istight with respe
t to both the number of servers and the
onsisten
y semanti
s (de�ned by Lamport [9℄) for thatnumber of servers. Blo
king SBQ-L requires the mini-mal number of servers for a blo
king proto
ol, and pro-vides the strongest
onsisten
y semanti
s des
ribed byLamport, atomi
 semanti
s. Non-blo
king SBQ-L alsorequires the minimal number of servers for non-blo
kingproto
ols. With this number of servers, it is not possibleto implement atomi
 semanti
s. Instead, non-blo
kingSBQ-L provides Lamport's next strongest
onsisten
ylevel: regular semanti
s.It is surprising that SBQ-L performs equally wellwith generi
 or self-verifying data; other proto
ols re-quire more servers for generi
 data, as the middle
olumnof Table 1 illustrates. Conversely, this paper shows dif-ferent bounds for blo
king and non-blo
king proto
ols,whi
h suggests this latter distin
tion is fundamental.The SBQ-L proto
ol uses
ommuni
ation to redu
ethe number of servers and improve
onsisten
y seman-ti
s, but this additional
ommuni
ation is a potentialdisadvantage of the SBQ-L proto
ol. Fortunately, it islimited to one message per server for ea
h read whenthere is no
on
urren
y; if
on
urren
y is present, thenthe number of additional messages per server is propor-tional to the number of
on
urrent writes. Se
tion 8

presents measurements of the laten
y in
rease due to
on
urrent writes.The rest of this paper is organized as follows: Se
-tion 2 presents our model and assumptions. Se
tion 3reviews the di�erent semanti
s that distributed sharedmemory
an provide, and Se
tion 4 proves bounds on thenumber of servers required to implement these seman-ti
s. Both the non-blo
king and the blo
king proto
olsare presented in Se
tion 5, as well as an extension of theblo
king proto
ol to prevent them. Se
tion 6 proves the
orre
tness of both proto
ols. Se
tion 7 dis
usses thetrade-o�s between bandwidth and
on
urren
y and Se
-tion 8 presents experiments that quantify this trade-o�in a working prototype. Se
tion 9 dis
usses related workand we
on
lude in the last se
tion.2 ModelWe assume a system model
ommonly adopted by pre-vious works that have applied quorum systems in theByzantine failure model [1, 2, 10, 11, 12℄.In parti
ular, our model
onsists of an arbitrary num-ber of
lients and a set U of data servers su
h that thenumber n = jU j of servers is �xed. A quorum systemQ � 2U is a non-empty set of subsets of U , ea
h ofwhi
h is
alled a quorum.Servers
an be either
orre
t or faulty. A
orre
tserver follows its spe
i�
ation; a faulty server
an arbi-trarily deviate from its spe
i�
ation. Following Malkhiand Reiter [10℄, we de�ne a fail-prone system B � 2Uas a non empty set of subsets of U , none of whi
h is
ontained in another, su
h that some B 2 B
ontainsall faulty servers. Fail-prone systems
an be used to de-s
ribe the
ommon f-threshold assumption that up to athreshold f of servers fail (in whi
h
ase B
ontains allsets of f servers), but they
an also des
ribe more gen-eral situations, as when some
omputers are known tobe more likely to fail than others.3

The set of
lients of the servi
e is disjoint from U .Initially, we restri
t our attention to server failures andassume that
lients are
orre
t. We relax this assump-tion in Se
tion 5.3. Clients
ommuni
ate with serversover point-to-point
hannels that are authenti
ated, re-liable, and asyn
hronous.3 Consisten
y Semanti
sConsisten
y semanti
s de�ne system behavior in thepresen
e of
on
urren
y. We �rst review Lamport's def-initions of safe, regular, and atomi
 semanti
s. In the
ourse of our work we �nd that the distin
tion betweenblo
king and non-blo
king writes is important.Lamport [9℄ de�nes the three semanti
s for dis-tributed shared memory listed below. His original de�ni-tions ex
lude
on
urrent writes, so we present extendedde�nitions that in
lude these [15℄.We assign a time, using a global
lo
k, to the startand end (or
ompletion) of ea
h operation. We say thatan operation A happens before another operation B if Aends before B starts. We then require that all writes betotally ordered using a relation! (serialized order) thatis
onsistent with the happens before relation. In thistotal order, we
all write w the latest
ompleted write ifthere is no other write w0 su
h that w ! w0.� safe semanti
s guarantee that a read that is not
on
urrent with any write returns the value of thelatest
ompleted write. A read
on
urrent with awrite
an return any value.� regular semanti
s provide safe semanti
s and guar-antee that if a read is
on
urrent with one or morewrites then it returns either the latest
ompletedwrite or one of the values being written
on
ur-rently.� atomi
 semanti
s provide regular semanti
s andguarantee that
lients see writes in an order
on-sistent with !.The above de�nitions do not spe
ify when write
om-pletion o

urs; the
hoi
e is left to the spe
i�
 proto
ol.In all
ases, the
ompletion of a write is a well-de�nedevent. The de�nition of the write
ompletion predi
atein
uen
es the properties of the resulting proto
ol.If the proto
ol de�nes the write
ompletion predi-
ate so that
ompletion
an be determined lo
ally by awriter, we
all the proto
ol blo
king and we say it sup-ports blo
king safe, regular or atomi
 semanti
s. Thisde�nition is intuitive and therefore impli
itly assumedin most previous work. These proto
ols typi
ally imple-ment a blo
king write, in whi
h the Write() fun
tion

only returns after the write operation has
ompleted.Note that blo
king proto
ols may also
hoose to im-plement a non-blo
king write operation and provide aseparate me
hanism (e.g., a barrier) to let the
lient de-termine when a write
ompletes.If instead a proto
ol's write
ompletion predi
ate de-pends on the global state in su
h a way that
omple-tion
annot be determined by a
lient, then we
all theproto
ol non-blo
king and say that it supports only non-blo
king semanti
s. Non-blo
king proto
ols
annot pro-vide blo
king writes. The SBQ proto
ol [14℄, for exam-ple, is non-blo
king: writes
omplete when a quorum of
orre
t servers have �nished pro
essing the write. This
ompletion event is well-de�ned but
lients
annot deter-mine when it happens be
ause they la
k the knowledgeof whi
h servers are faulty.As an example of a system where a non-blo
king pro-to
ol is suÆ
ient,
onsider a network of sensors measur-ing some value and writing it to the distributed sharedmemory. The reader always wants the most re
ent avail-able value that
orresponds to the physi
al situation anddoes not
are if a parti
ular write has
ompleted. Also,it is a

eptable for some writes to be repla
ed with anewer value before they are ever read. Therefore no sen-sor should wait for the
ompletion of its last write be-fore writing a newer measured value, and non-blo
kingsemanti
s are appropriate.4 BoundsIn this se
tion we prove lower bounds on the number ofservers required to implement minimal
onsisten
y se-manti
s (safe semanti
s) for blo
king and non-blo
kingwrites. The bound for blo
king proto
ols is 3f + 1 andthat for non-blo
king proto
ols is 2f + 1. We also showthat atomi
 semanti
s
annot be a
hieved with fewerthan 3f + 1 servers, so minimal non-blo
king proto
ols
annot provide atomi
 semanti
s.These bounds indi
ate that a trade-o� exists betweenthe number of servers and blo
king semanti
s. In
aseswhere the writer does not need to determine when itswrites
ompletes non-blo
king proto
ols redu
e the num-ber of servers.In Se
tion 5 we present proto
ols that meet thebounds presented in this se
tion.4.1 Non-Blo
king Proto
olsTheorem 1. In the reliable authenti
ated asyn
hronousmodel with Byzantine failures, no live proto
ol
an satisfythe safe semanti
s for distributed shared memory using2f servers.4

To prove this impossibility, we show that under theseassumptions any proto
ol must violate either safety orliveness.De�nition 1. A message m has gone through server sif the sending of m
ausally depends on some messagesent by s.Lemma 1. A read proto
ol in whi
h all exe
utions mustre
eive messages that have gone through at least f + 1distin
t servers before the read
an
omplete is not live.If servers 0 to f � 1
rash then no message
an gothrough them. In this
ase, the reader
an only re
eivemessages that have gone through the remaining f serversand not every read
an
omplete. �Lemma 2. A read proto
ol in whi
h there exists an ex-e
ution e where the re
eived messages have only gonethrough f or fewer distin
t servers does not satisfy safesemanti
s.Consider a system in whi
h the servers have statesa0 : : : a2f�1, the shared variable has value A, and a readfor the variable follows exe
ution e with non-zero prob-ability. Exe
ution e returns a value for the read basedon messages that have gone through f or fewer serversand so returns A. Without loss of generality, suppose eonly re
eives messages that have gone through servers 0to f �1. Suppose that a later write
hanges the value ofthe variable to B, and a subsequent read request rea
hesthe servers. Further suppose that servers 0 to f � 1 arefaulty and behave as if their state were a0 : : : af�1. Thisis possible be
ause they have been in these states before.The faulty servers then send the same answers as theywould have when the variable had value A. Formulat-ing these answers must not require
ommuni
ation withthe other servers; otherwise, these messages would havegone through more than f servers. With these answers,there is a non-zero probability that the reader followsexe
ution e and de
ides on the in
orre
t value A. �The proof of the theorem derives from the fa
t thatthe two lemmas
over all possible proto
ols. �Note that the proof is not limited to the f -thresholdmodel and makes no assumption of deterministi
 behav-ior from the proto
ol. The proof also
overs proto
olswhi
h use integrity
he
ks in their messages sin
e faultyservers have all the ne
essary information to
reate themessages they send.4.2 Blo
king Proto
olsTheorem 2. In the reliable authenti
ated asyn
hronousmodel with Byzantine failures, no live proto
ol
an satisfy

the safe blo
king semanti
s for distributed shared mem-ory using 3f servers.Theorem 2's proof is similar to Theorem 1's. Westate the main lemmas here. The full proof appears inthe Appendix of the extended te
hni
al report [13℄.Lemma 3. A read proto
ol in whi
h all exe
utions mustre
eive messages that have gone through at least 2f + 1distin
t servers before the read
an
omplete is not live.Lemma 4. A read proto
ol in whi
h there exists an ex-e
ution e where the re
eived messages have only gonethrough 2f or fewer distin
t servers does not satisfy safesemanti
s.4.3 Atomi
 Semanti
sBlo
king semanti
s require 3f+1 servers. We now showthat this same limit of 3f + 1 servers is the minimumnumber of servers ne
essary for implementing atomi
 se-manti
s, even for a non-blo
king proto
ol.Theorem 3. In the reliable authenti
ated asyn
hronousmodel with Byzantine failures, no proto
ol for distributedshared memory
an implement atomi
 semanti
s withfewer than 3f + 1 servers.To prove this by
ontradi
tion, suppose there existssome proto
ol p that implements atomi
 semanti
s usingfewer than 3f+1 servers. p
an be used to implement thefollowing blo
king proto
ol: when writing some value x,repeatedly read until the read fun
tion returns x or amore re
ent value. Then, write another token value t.Finally, repeatedly read until the read fun
tion returnst or some other more re
ent value.The two read se
tions in this example program showthat in the serialized order, x must
ome before t. Be-
ause p is atomi
 and t has been read, no other
lient
anpossibly read x anymore. Therefore, it is not ne
essaryto
ontinue the write for x; it has e�e
tively
ompleted.This is a
ontradi
tion be
ause no blo
king proto
ol
anexist with fewer than 3f + 1 servers due to Theorem 2.� A simpli�ed proof writing only value x but not twould not be suÆ
ient be
ause knowing that the writer
an read its own value does not ne
essarily mean thatother
lients
annot read older values.5 The SBQ-L Proto
olsIn this se
tion we show the f -threshold non-blo
kingand blo
king versions of the SBQ-L proto
ol1. SBQ-L is based both on the insights from the non-blo
king1The more general version (using the fail-prone model) is pre-sented in the Appendix to the extended te
hni
al report [13℄.5

\Small Byzantine Quorums" (SBQ) proto
ol [14℄ andon the Listeners
ommuni
ation pattern. The Listenerpattern is the key idea behind our proto
ol, allowing itto use fewer servers than other proto
ols while providingstronger semanti
s for generi
 data.5.1 Blo
king Proto
olFigure 1 presents the f -threshold SBQ-L blo
king pro-to
ol for generi
 data. The initial value of the proto
ol'svariables is shown in Figure 2. In lines W1 through W6,the Write() fun
tion queries a quorum of servers in or-der to determine the new timestamp. The writer thensends its timestamped data to all servers at line W8 andwait for a
knowledgments at lines W9 and W10. TheRead() fun
tion queries all servers in line R2 and waitsfor messages in lines R3 to R13. An unusual feature ofthis proto
ol is that servers send more than one replyif writes are in progress. For ea
h read in progress, areader maintains a matrix of the di�erent answers andtimestamps from the servers (answers[℄). The readde
ides on a value at line R13 on
e the reader
an de-termine that a quorum of servers vou
h for the samedata item and timestamp, and a noti�
ation is sent tothe servers at line R14 to indi
ate the
ompletion of theread. A naive implementation of this te
hnique
ouldresult in the
lient's memory usage being unbounded;instead, the proto
ol only retains at most f +1 answersfrom ea
h server. We show in Se
tion 6 that the readproto
ol is
orre
t.This proto
ol di�ers from previous proto
ols be
auseof its
ommuni
ation pattern. Intuitively, other proto-
ols take a \snapshot" of the situation. The SBQ-L pro-to
ol looks at the evolution of the situation in time: itre
ords a \movie". This
ommuni
ation makes it possi-ble to disambiguate situations where
on
urrent writesare su
h that no majority emerges immediately. Ourapproa
h
auses the server to send more messages thanin other proto
ols, however, other than the single addi-tional READ COMPLETE message sent to ea
h serverat line R14, additional messages are only sent whenwrites are
on
urrent with a read.Figure 1 shows the proto
ol for
lients. Servers followsimpler rules: they only store a single timestamped dataversion, repla
ing it whenever they re
eive a STOREmessage with a newer timestamp. When re
eiving a readrequest, they send the
ontents of this storage. Serversin SBQ-L di�er from previous proto
ols in what we
allthe Listeners
ommuni
ation pattern: after sending the�rst message, the server keeps a list of
lients who havea read in progress. Later, if they re
eive a STORE mes-sage, then in addition to the normal pro
essing they e
hothe
ontents of the store message to the \listening" read-

ers { in
luding messages with a timestamp that is notas re
ent as the data's
urrent one but more re
ent thanthe data's timestamp at the start of the read. This lis-tening pro
ess
ontinues until the server re
eives a theREAD COMPLETE message from the
lient indi
atingthat the read has
ompleted. Note that in pra
ti
e thesemessages would only be sent if the writer is authorizedto modify that variable. Also, they need only be sent toreaders a

essing the variable being written.This proto
ol requires a minimum of 3f + 1 serversand provides blo
king atomi
 semanti
s. We prove its
orre
tness in Se
tion 6. As shown in Theorem 2, 3f+1is the optimal number of servers for blo
king proto
ols.5.2 Non-Blo
king Proto
olThe blo
king SBQ-L proto
ol of the previous se
tion re-quires at least 3f + 1 servers. This number
an be re-du
ed to 2f + 1 if the proto
ol is modi�ed to be
omenon-blo
king.Sin
e in a non-blo
king proto
ol the writer is not re-quired to know when the write
ompletes, we
an removelines W9 and W10 of the Write() fun
tion in whi
h thewriter waits for a
knowledgments. The STORE mes-sages sent earlier (at line W8) are guaranteed to rea
htheir destination be
ause we assume that the
hannelsare reliable. The reader
an �nd a dis
ussion of theimpli
ations of assuming reliable links in Byzantine en-vironments in our previous work [14℄.We then modify the size of the quorums, q, to dn+12 einstead of dn+f+12 e previously. This is possible be
auseeliminating the a
knowledgments eliminates a
onstrainton the overlap of read and write quorums [14℄.Re
all that in non-blo
king proto
ols, the write fun
-tion does not determine when the write has
ompleted:instead, the
ompletion must be spe
i�ed by the pro-to
ol. We therefore spe
ify that the write
ompleteswhen q = dn+12 e
orre
t servers are done pro
essing theSTORE message. Note that this de�nition ensures thatwrite
ompletion
annot be unduly delayed by the a
-tions of faulty servers in that they
annot delay writesmore than
rashed servers would.This proto
ol requires only 2f + 1 servers and pro-vides regular semanti
s. We prove the
orre
tness of thisproto
ol in Se
tion 6. As shown in Theorem 1, 2f + 1is the optimal number of servers for non-blo
king proto-
ols.Pier
e [15℄ presents a general te
hnique to transformany regular proto
ol into one that satis�es atomi
 se-manti
s. This te
hnique, however, only works for blo
k-ing proto
ols and therefore does not apply to this
ase.6

W1 Write(D) fW2 send (QUERY TS) to all serversW3 re
eive answer (TS, ts) from server isvr set ts[isvr℄ := tsW4 wait until the ts[℄ array
ontains q answers.W5 max ts := maxfts[℄gW6 ts := minft 2 T
 : max ts < t ^ last ts < tg// ts 2 T
 is larger than all answers and previous timestampW7 last ts := tsW8 send (STORE, D; ts) to all servers.W9 re
eive answer (ACK,ts) from server iW10 wait until q servers have sent an ACK messageW11 gR1 (D,ts) = Read() fR2 send (READ) to all servers.R3 loop fR4 re
eive answer (VALUE,D; ts) from server s // (possibly more than one answer per server)R5 if ts > latest[s℄:ts then latest[s℄ := (D; ts)R6 if s 62 S: // we
all this event an \entran
e"R7 S := S [fsgR8 T := the f + 1 largest timestamps in latest[℄R9 for all isvr, for all jtime 62 T , delete answer[isvr; jtime℄R10 for all isvr,R11 if latest[isvr℄:ts 2 T then answer[isvr; latest[isvr℄:ts℄ := latest[isvr℄R12 if ts 2 T then answer[s; ts℄ := (D; ts)R13 g until 9D; ts; S :: jSj � q ^ (8i : i 2 S : answer[i; ts℄ = (D; ts))// i.e., loop until q servers agree on a (D,ts) valueR14 send (READ COMPLETE) to all serversR15 return (D; ts)R16 g Figure 1: Blo
king SBQ-L proto
ol for the f-threshold error model.
variable initial value notesq dn+f+12 e or d(n+ 1)=2e Quorum size in the blo
king and non-blo
king
ase, respe
tivelyT
 Set of timestamps for
lient
 The sets used by di�erent
lients are disjointlast ts 0 Largest timestamp written by a parti
ular serverlatest[℄ ; A ve
tor storing the largest timestamp re
eived from ea
h server and theasso
iated dataanswer[℄ ; Sparse matrix storing at most f + 1 data and timestamps re
eived fromea
h serverS ; The set of servers from whi
h the reader has re
eived an answerFigure 2: Variables

7

5.3 Faulty ClientsThe proto
ols in the previous two se
tions are sus
epti-ble to faulty
lients: by sending a di�erent value to ea
hserver (a \poisonous write"), a faulty writer
an preventfuture read attempts from terminating be
ause no read
an gather a quorum of identi
al answers.Poisonous writes are a
ommon vulnerability forByzantine storage proto
ols and, in the
ase of the blo
k-ing proto
ol, we
an adopt the te
hnique introdu
ed byMalkhi and Reiter [10℄ to handle faulty
lients. Thiste
hnique adds a two-phase
ommit to the STORE fun
-tion at the servers that makes sure that the same valueis also being written to other servers. These writes aretherefore guaranteed to not put the system in an in
or-re
t state where reads would hang. Furthermore, the
orre
tness proof in Se
tion 6 still holds with this mod-i�
ation.The other diÆ
ulty is that a faulty reader
an ne-gle
t to notify the servers that the read has
ompletedand therefore prevent the read from terminating. This isidenti
al to faulty readers that, in other proto
ols,
on-tinuously send read requests. We are exploring ways tobound the number of e
hoes that a single read request
an trigger.6 Corre
tnessIn this se
tion we prove the
orre
tness of the two f -threshold versions of the SBQ-L proto
ol presented inthis paper.6.1 Blo
king Threshold SBQ-LTheorem 4. The blo
king f-threshold SBQ-L proto
olprovides atomi
 semanti
s.Lemma 5 (Regularity). The blo
king f-thresholdSBQ-L satis�es regular semanti
s, assuming it is live.In the
ase where no
on
urrent write is in progress,the reader eventually re
eives an answer from thedn+f+12 e
orre
t servers and de
ides on their value (stepR13). There are not enough other servers to make thereader de
ide on any other value.If a write is in progress and the reader de
ides ona value then this value has been vou
hed for by qr =dn+f+12 e servers (line R13). By de�nition, qw = dn+f+12 eservers have seen the latest
ompleted write. Sin
e qr +qw > n+ f , these two quorums interse
t in at least one
orre
t server C that has seen the latest
ompleted write.Sin
e C is
orre
t, it follows the proto
ol and there-fore it sent the value of the
ompleted write, the valueof a write with a higher timestamp, or both. �

Lemma 6 (Atomi
ity). The blo
king threshold SBQ-L satis�es atomi
 semanti
s, assuming it is live.The blo
king version of the proto
ol providesstronger semanti
s than the non-blo
king. It guaran-tees atomi
 semanti
s, in whi
h the writes are ordereda

ording to their timestamps. To prove this, we showthat after a write for a given timestamp ts1
ompletes,no read
an de
ide on a value with an earlier timestamp.Suppose a write with timestamp ts1 has
ompleted;then dn+f+12 e servers agree on this timestamp. Even ifthe faulty (f) and untimely (u) servers send the sameolder reply ts0, they
annot form a quorum (q). Moreformally: f + u < q() f + n� dn+ f + 12 e < dn+ f + 12 e(f + n < 2dn+ f + 12 e (f + n < f + n+ 1 �Lemma 7 (Liveness). All fun
tions of the non-blo
king threshold SBQ-L eventually terminate.Write. The Write() fun
tion is trivially live be
ause itswaits (in steps W4 and W10) expe
t q = d(n+f +1)=2eanswers and q � n� f so these answers are guaranteedto eventually arrive.Read. Even though it only tra
ks f +1 di�erent times-tamps simultaneously (lines R11 and R12), the Read()fun
tion is live. Consider the last entran
e, i.e., the lasttime line R7 of Read() is exe
uted. The latest[℄ ar-ray
ontains a value for ea
h server;
onsider the largestlatest[℄.ts asso
iated with a
orre
t server, tsmax.The
lient has not dis
arded any data item with times-tamp tsmax
oming from a
orre
t server (otherwise that
orre
t server would have a higher timestamp asso
iatedwith it). tsmax is in T be
ause T
ontains the f + 1largest timestamps in latest[℄. Sin
e all
lients are
orre
t, they send the same value to all servers and there-fore all
orre
t servers will eventually see the write withtimestamp tsmax and will e
ho it to the reader. As weknow, q � n � f so there are enough
orre
t servers toguarantee that the read for that timestamp will eventu-ally
omplete.This proof also illustrates the bene�ts of the Listeners
ommuni
ation: if several writes are in progress, theninitially ea
h server
ould hold a di�erent timestamp.The ongoing
ommuni
ation allows the reader to followthe writes and identify the
orre
t value.STORE, QUERY TS. The server's STORE andQUERY TS fun
tions terminate be
ause they have noloops.8

READ. The server's READ fun
tion terminates be-
ause the
lient's Read() terminates and
lients are
or-re
t. �This
on
ludes the
orre
tness proof. We have shownthat the proto
ol always returns a
orre
t value and thatit terminates. Note that it
ould terminate before theevents we des
ribe in the proof; we merely show that theproto
ol eventually terminates.6.2 Non-Blo
king Threshold SBQ-LTheorem 5. The non-blo
king threshold SBQ-L proto-
ol provides regular semanti
s.The proof for liveness is identi
al to the proof for theblo
king
ase above. The regularity proof is similar tothat of the blo
king
ase, using the smaller quorum size:The read proto
ol de
ides (at line R13) on a value thatis vou
hed for by qr = dn+12 e servers. By de�nition of
ompletion, qw = dn+12 e
orre
t servers have seen thelatest
ompleted write. Sin
e qr + qw > n, these twoquorums interse
t in at least one
orre
t server C thathas seen the latest
ompleted write. �7 Pra
ti
al ConsiderationsOur Listener me
hanism allows the SBQ-L proto
ols touse the optimal number of servers but (1) the
ommu-ni
ation pattern it requires
auses more messages to beex
hanged than in other proto
ols, (2) the read proto-
ol does not de
ide on a value immediately, and (3) thereader stores messages in memory before de
iding. Inthe next three subse
tions we quantify the number ofadditional messages, dis
uss the proto
ol laten
y, andshow an upper bound on memory usage.7.1 Additional MessagesThe read proto
ol may wait for several messages beforede
iding on a value. The write proto
ol su�ers fromno su
h wait: writes always require the same number ofmessages, regardless of the level of
on
urren
y. SBQ-L'swrite operation requires 3nmessages in the non-blo
king
ase and 4n messages in the blo
king
ase, where n isthe number of servers. This
ommuni
ation is identi
alto previous results: the non-blo
king SBQ proto
ol [14℄uses 3n messages and the blo
king MR proto
ol [10℄ re-quires 4n messages.The behavior of the SBQ-L read operation dependson the number of
on
urrent writes. Other proto
ols(both SBQ and MR) ex
hange a maximum of 2n mes-sages for ea
h read. SBQ-L requires up to 3n messages

when there is no
on
urren
y. In parti
ular, step R14adds a new round of messages. Additional messagesare ex
hanged when there is
on
urren
y: be
ause theservers e
ho all
on
urrent write messages to the reader,if
 writes are
on
urrent with a parti
ular read thenthat read will use 3n+
n messages.For some systems, there is little or no
on
urren
y inthe
ommon
ase. Even with additional messages in the
ase of
on
urren
y, the laten
y in
rease is not as severeas one may fear be
ause most of these message ex
hangesare asyn
hronous and unidire
tional: the SBQ-L proto-
ol will not wait for 3n+
n message roundtrips. This isapparent in the experimental results of Se
tion 8.7.2 Live Lo
kIn a system su
h as SBQ-L, it must be ensured thatboth reads and writes will
omplete even if the system isunder a heavy load. In SBQ-L, writes
annot starve be-
ause their operation is independent of
on
urrent reads.Reads, however,
an be starved if an in�nite number ofwrites are in progress and if the servers always
hoose toserve the writes before sending the e
ho messages.There is an easy way to guarantee this does not hap-pen. When serving a write request while a read is inprogress, servers queue an e
ho message. The livenessof both readers and writers is guaranteed if we requireservers to send these e
hoes before pro
essing the nextwrite request. A read will therefore eventually re
eivethe ne
essary e
hoes to
omplete even if an arbitrarynumber of writes are
on
urrent with the read.Another related
on
ern is that of laten
y:
an readsbe
ome arbitrarily slow? In the asyn
hronous model,there is no bound on the duration of reads. However,if we assume that writes never last longer than w unitsof time and that there are

on
urrent writes, then inthe worst
ase (taking failures into a

ount), reads willbe delayed by no more than min(
w; nw). This resultfollows be
ause in the worst
ase, f servers are faultyand return very high timestamps so that only one row ofanswer[℄
ontains answers from
orre
t servers. Also,in the worst
ase ea
h entran
e (line R6) o

urs justbefore the monitored write
an be read. The boundfollows from the fa
t that there are at most n entran
es.7.3 Bu�er MemoryIn SBQ-L, readers maintain a bu�er in memory dur-ing ea
h read operation (the answer[℄ sparse matrix).While other proto
ols only need to identify a majorityand as su
h require n units of memory, the SBQ-L pro-to
ol maintains a short history of the values written atea
h server. As a result, the read operation in SBQ-L re-quires up to n(f+1) units of memory: the set T
ontains9

at most f+1 elements (line 8) and the answer[℄ matrixtherefore never
ontains more than n
olumns and f +1rows (lines 9 and 12). In a system storing more than oneshared variable, if multiple variables are read in parallelthen ea
h individual read requires its own bu�er of sizen(f + 1).8 ExperimentsWe
onstru
t a simple prototype to study the overheadof the extra messages used to deal with
on
urren
y inSBQ-L. The prototype is written in C++, stores data inmain memory and
ommuni
ates via TCP.Our testbed
onsists of 3 servers and 6
lient ma-
hines, 5 of whi
h a
t as writers and 1 as a reader.The reader ma
hine is a SUN Ultra10 with a 440MhzUltraSPARC-IIi pro
essor running SunOS 8.5. Theother ma
hines are Dell Dimension 4100 with a 800MhzPentiumIII pro
essor running Debian Linux 2.2.19. Thenetwork
onne
ting these ma
hines is a 100Mbits/sswit
hed Ethernet.In this experiment, we vary the number of writersand therefore the level of
on
urren
y. The writers re-peatedly exe
ute the non-blo
king write proto
ol, writ-ing 1000 bytes of data to all servers. The reader mea-sures the average time for 20
onse
utive reads, and theservers are instrumented to measure the number of ad-ditional messages sent during the Listeners phase.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5

re
ad

 la
te

nc
y

(m
s)

of active writersThe above graph shows the read laten
y as a fun
tionof the number of a
tive writers. Ea
h point representsthe average duration of 20 reads.We �nd, as expe
ted, that in
reasing
on
urren
yhas a measurable but modest e�e
t on the laten
y ofthe reads.

9 Related WorkAlthough both Byzantine failures [7℄ and quorums sys-tems [6℄ have been studied for a long time, interest inquorum systems for Byzantine failures is relatively re-
ent; the subje
t was �rst explored by Malkhi and Reiter[10, 11℄. They redu
ed the number of servers involved in
ommuni
ation [12℄, but not the total number of servers;their work ex
lusively
overs blo
king systems.In previous work we introdu
ed non-blo
king proto-
ols that require 3f +1 servers (2f +1 for self-verifyingdata) [14℄. In the present paper we expand on that workand redu
e the bound to 2f+1 for generi
 data and pro-vide regular semanti
s instead of safe by using Listeners;we also prove lower bounds on the number of servers forthese semanti
s and meet them.Bazzi [2℄ explored Byzantine quorums in a syn-
hronous environment with reliable
hannels. In that
ontext it is possible to require fewer servers (f + 1for self-verifying data, 2f + 1 otherwise). This resultis not dire
tly
omparable to ours sin
e it uses a di�er-ent model; we leave as future work the appli
ation ofthe Listeners idea of SBQ-L to the syn
hronous networkmodel.Several papers [3, 12℄ study the load of Byzantinequorum systems, a measure of how in
reasing the num-ber of servers in
uen
es the amount of work ea
h indi-vidual server has to perform (if at all). Although these
onsiderations are interesting, our motivation for addingservers to the system is to in
rease reliability, not per-forman
e: therefore we leave
onsiderations of the loadof servers under the SBQ-Listeners proto
ols as futurework.Bazzi [3℄ uses the term non-blo
king quorum systemto mean something di�erent from what we
all non-blo
king proto
ols. Re
all that a non-blo
king proto
olis one where a
lient
annot determine when its writes
omplete. A non-blo
king quorum system is a quorumsystem in whi
h the writer does not need to identify alive quorum but instead sends a message to a quorum ofservers without
on
erning himself with whether theseservers are responsive or not. A

ording to this de�-nition, both the blo
king and the non-blo
king SBQ-Lproto
ols use non-blo
king quorum systems.Phalanx [11℄ builds shared data abstra
tions and pro-vides a lo
king servi
e, both of whi
h
an tolerate Byzan-tine failure of servers or
lients. It requires blo
king se-manti
s in order to implement lo
ks. Phalanx
an handlefaulty
lients while providing safe semanti
s using 4f+1servers.Castro and Liskov [5℄ present a repli
ation algorithmthat requires 3f+1 servers and, unlike most of the workpresented above,
an tolerate unreliable network links10

and faulty
lients. Their proto
ol uses
ryptography toprodu
e self-verifying data and provides linearizability(therefore blo
king semanti
s); their proto
ol is fast inthe
ommon
ase. Our work shows that blo
king seman-ti
s
annot be provided using fewer servers. Instead, weshow a non-blo
king proto
ol with 2f+1 servers. In the
ase of non-blo
king semanti
s, however, it is ne
essaryto assume reliable links.10 Con
lusionWe present two proto
ols for shared variables, one thatprovides non-blo
king regular semanti
s using 2f + 1servers and the other that provides blo
king atomi
 se-manti
s using 3f + 1 servers. This redu
es by f thenumber of servers needed by previous proto
ols in thereliable asyn
hronous
ommuni
ation model when notassuming self-verifying data. Our proto
ols are stronglyinspired by quorum systems but use an original
ommu-ni
ation pattern, the Listeners. The proto
ols
an beadapted to either the f -threshold or the fail-prone errormodel.The more theoreti
al
ontribution of this paper isthe proof of a tight bound on the number of servers. Weshow that 3f+1 servers are ne
essary to provide blo
kingsemanti
s and 2f +1 servers are required otherwise. Wefurther show that 3f +1 servers are required for atomi
semanti
s even for non-blo
king proto
ols.Several proto
ols [5, 10, 11, 14, 16℄ use digital signa-tures (or MAC) to redu
e the number of servers. It istherefore surprising that we were able to meet the mini-mum number of servers without using
ryptography. In-stead, our proto
ols send one additional message to allservers and other additional messages that only o

ur if
on
urrent writes are in progress.Sin
e our proto
ols for blo
king and non-blo
king se-manti
s are nearly identi
al, it is possible to use bothsystems simultaneously. The server side of the proto-
ols are the same, therefore the servers do not need tobe aware of the model used. Instead, the
lients
anagree on whether to use blo
king or non-blo
king se-manti
s on a per-variable basis. The
lients that
hoosenon-blo
king semanti
s
an tolerate more failures: thisproperty is unique to the SBQ-L proto
ol.11 A
knowledgmentsThe authors would like to thank Jian Yin for several veryinteresting
onversations and Alison Smith for helpful
omments on the paper's presentation.

Referen
es[1℄ L. Alvisi, D. Malkhi, E. Pier
e, and R. Wright. Dynami
Byzantine quorum systems. In Pro
eedings of the Inter-national Conferen
e on Dependable Systems and Net-works, June 2000.[2℄ R. A. Bazzi. Syn
hronous Byzantine quorum systems.In Pro
eedings of the sixteenth annual ACM symposiumon Prin
iples of distributed
omputing, pages 259{266,1997.[3℄ R. A. Bazzi. A

ess
ost for asyn
hronous Byzantinequorum systems. Distributed Computing Journal volume14, Issue 1, pages 41{48, January 2001.[4℄ M. Castro and B. Liskov. Authenti
ated Byzantine faulttoleran
e without publi
-key
ryptography. Te
hni
alReport /LCS/TM-595, MIT, 1999.[5℄ M. Castro and NB. Liskov. Pra
ti
al Byzantine faulttoleran
e. In Pro
eedings of the Third Symposium onOperating Systems Design and Implementation (OSDI'99), New Orleans, USA, pages 173{186, February 1999.[6℄ S. Davidson, H. Gar
ia-Molina, and D. Skeen. Consis-ten
y in a partitioned network: a survey. ACM Comput-ing Surveys (CSUR) Volume 17, Issue 3, pages 341{370,September 1985.[7℄ M. J. Fis
her, N. A. Lyn
h, and M. S. Paterson. Impos-sibility of distributed
onsensus with one faulty pro
ess.Te
hni
al Report MIT/LCS/TR-282, 1982.[8℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-sign Patterns. Addison Wesley, O
tober 1994. ISBN0-201-63361-2.[9℄ L. Lamport. On interpro
ess
ommuni
ations. Dis-tributed Computing, pages 77{101, 1986.[10℄ D. Malkhi and M. Reiter. Byzantine quorum systems.Distributed Computing, pages 203{213, 1998.[11℄ D. Malkhi and M. Reiter. Se
ure and s
alable repli
ationin phalanx. In Pro
. 17th IEEE Symposium on ReliableDistributed Systems, West Lafayette, Indiana, USA, O
t1998.[12℄ D. Malkhi, M. Reiter, and A. Wool. The load andavailability of Byzantine quorum systems. In Pro
eed-ings 16th ACM Symposium on Prin
iples of DistributedComputing (PODC), pages 249{257, August 1997.[13℄ J-P. Martin, L. Alvisi, and M. Dahlin. Mini-mal Byzantine quorum systems. Te
hni
al re-port, University of Texas at Austin, Depart-ment of Computer S
ien
es, February 2002.www.
s.utexas.edu/home/department/pubsforms.shtml.[14℄ J-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantinequorum systems. Te
hni
al Report TR-02-01, Univer-sity of Texas at Austin, Department of Computer S
i-en
es, January 2002.[15℄ E. Pier
e and L. Alvisi. A re
ipe for atomi
 semanti
s forByzantine quorum systems. Te
hni
al report, Universityof Texas at Austin, Department of Computer S
ien
es,May 2000.[16℄ R. Rodrigues, M. Castro, and B. Liskov. BASE: Usingabstra
tion to improve fault toleran
e. In Pro
eedingsof the 18th Symposium on Operating Systems Prin
iples(SOSP '01), O
tober 2001.11

A Lower Bound for Blo
kingProto
olsExpanding on the work of Se
tion 4, we prove the lowerbound for the number of servers for blo
king proto
ols.Theorem 2. In the reliable authenti
ated asyn
hronousmodel with Byzantine failures, no live proto
ol
an satisfythe safe blo
king semanti
s for distributed shared mem-ory using 3f servers.To prove this impossibility, we show that under theseassumptions any proto
ol must violate either safety orliveness.Lemma 3. A read proto
ol in whi
h all exe
utions mustre
eive messages that have gone through at least 2f + 1distin
t servers before the read
an
omplete is not live.If the servers 0 to f � 1
rash then no message
ango through them. In this
ase, the reader
an only re-
eive messages that have gone through the remaining 2fservers and the reads
annot all
omplete. �Lemma 4. A read proto
ol in whi
h there exists an ex-e
ution e where the re
eived messages have only gonethrough 2f or fewer distin
t servers does not satisfy safesemanti
s.Sin
e the write is blo
king, the writer must be ableto determine the
ompletion of the write from messagesthat have gone through at most 2f servers in order tobe live. Consider a system in whi
h the servers havestate a0 : : : a3f�1, the shared variable has value A, anda read for the variable follows exe
ution e with non-zeroprobability. Exe
ution e re
eives messages from serversf to 3f � 1 and returns a value for the read based onmessages that have gone through 2f or fewer servers; inthis
ase, it returns A. Suppose that a later write
hangesthe value of the variable to B. Suppose therefore thatafter
ompletion of the writes the servers are in statesb0 : : : b2f�1; a2f : : : a3f�1. Further suppose that serversf to 2f � 1 are faulty and behave as if their states wereaf : : : a2f�1. This is possible be
ause they have beenin these states before. Suppose that the reader re
eivesanswers from servers f to 3f � 1. The faulty serverssend the same answers as they would have if the variablehad value A. Formulating these answers must not require
ommuni
ation with the other servers be
ause otherwisethese messages would have gone through more than 2fservers. In this situation, there is a non-zero probabilitythat the reader follows exe
ution e and de
ides on thein
orre
t value A. �

The proof of the theorem derives from the fa
t thatthe two lemmas
over all possible proto
ols. �B Generalized Blo
king Proto
olThe blo
king proto
ol
an be generalized to a fail-pronesystem instead of the simpler f -threshold
ase presentedin Se
tion 5. Our quorums Q 2 Q must obey the follow-ing properties:Consisten
y: The interse
tion of any pair of quorums
ontains one
orre
t server.8Q1; Q2 2 Q 8B 2 B : Q1 \Q2 6� BAvailability: One quorum is always available.8B 2 B 9Q 2 Q : B \Q = ;The Write() fun
tion is modi�ed to return on
e it re-
eives an a
knowledgment from a quorum. The modi�edRead() is presented in Figure 3. It is similar to that ofthe f -threshold proto
ol, ex
ept for line R13 in whi
h itde
ides on a value after re
eiving the same answer froma quorum of servers.C Generalized Non-Blo
kingProto
olThe generalized proto
ol above
an be adapted to non-blo
king semanti
s, whi
h allows the number of serversto be redu
ed.In the non-blo
king
ase, the quorums Q 2 Q mustobey the following properties:Consisten
y: All quorums interse
t8Q1; Q2 2 Q : Q1 \Q2 6= ;Availability: One quorum is always available8B 2 B 9Q 2 Q : B \Q = ;Witness Quality: No failure s
enario is a quorum8Q 2 Q 8B 2 B : Q 6� BLines W9 and W10 are removed from the Write()operation. We say that the write
ompletes when a quo-rum
onsisting entirely of
orre
t servers has �nishedpro
essing the write message.12

W1 Write(D) fW2 send (QUERY TS) to all serversW3 loop fW3 re
eive answer (TS, ts) from server isvr1[ex℄ Wx
urrent[isvr℄ := tsW4 g until the ts[℄ array
overs a quorum of servers.W5 max ts := maxf
urrent[℄gW6 my ts := minft 2 Cts : max ts < t ^ last ts < tg// my ts is larger than all answers and previous timestampW7 last ts := my tsW8 send (STORE, D; ts) to all servers.W9 re
eive answer (ACK,ts) from server iW10 wait until a quorum servers have sent an ACK message, i.e. 9Qw 2 Q :: Qw � figW11 gR1 (D,ts) = Read() fR2 send (READ) to all servers.R3 loop fR4 re
eive answer (VALUE,D; ts) from server s // (possibly more than one answer per server)R5 if ts > latest[s℄:ts then latest[s℄ := (D; ts)R6 if s 62 S: // we
all this event an \entran
e"R7 S := S [fsgR8 T := the f + 1 largest timestamps in latest[℄R9 for all isvr, for all jtime 62 T , delete answer[isvr; jtime℄R10 for all isvr,R11 if latest[isvr℄:ts 2 T then answer[isvr; latest[isvr℄:ts℄ := latest[isvr℄R12 if ts 2 T then answer[s; ts℄ := (D; ts)R13 g until 9D; ts;Qr :: Qr 2 Q ^ (8i : i 2 S : answer[i; ts℄ = (D; ts))// i.e. loop until a quorum of servers agree on a (D,ts) valueR14 send (READ COMPLETE) to all serversR15 return (D; ts)R16 g Figure 3: Generalized blo
king SBQ-L proto
ol

13

We
all f the size of the largest failure s
enario. TheRead() operation is identi
al ex
ept that it uses the quo-rums de�ned in this se
tion.Although the proto
ol works for any
hoi
e of fail-prone system, its memory
onsumption depends on thesize of the largest failure s
enario.D Corre
tnessD.1 Generalized Blo
king SBQ-LTheorem 6. The blo
king generalized SBQ-L proto
olprovides atomi
 semanti
s.Lemma 8 (Regularity). The blo
king generalizedSBQ-L proto
ol satis�es regular semanti
s, assuming itis live.We
all Qw the quorum of servers (not ne
essarily all
orre
t) that have seen the latest
ompleted write.The availability property guarantees that the readerwill eventually re
eive an answer from some quorum, andthe
onsisten
y property guarantees that this answer willbe
orre
t.If a write is in progress and the reader de
ides ona value from some quorum Q then this value has beenvou
hed for by at least one
orre
t server that has seenthe latest
ompleted write sin
e the interse
tion of Qand Qw
ontains a
orre
t server. �Similarly to the threshold version, this blo
king pro-to
ol guarantees atomi
 semanti
s. The serialized orderof the writes is that of the timestamps. To prove this, wesimply show that after a write for a given timestamp ts1
ompletes, no read
an de
ide on a value with an earliertimestamp.Lemma 9 (Atomi
ity). The blo
king generalizedSBQ-L proto
ol satis�es atomi
 semanti
s, assuming itis live.Suppose a write with timestamp ts1 has
ompleted:a quorum Q1 2 Q of servers agree on this timestamp.Even if the faulty and untimely servers send the sameolder reply ts0, they
annot form a quorum. More for-mally: (U � Q1) [B 62 Q, whi
h we prove by showingthat O = (U �Q1) [B does not obey
onsisten
y.O \Q1 = ((U �Q1) \Q1) [(B \Q1) = B \Q1 � BThis violates Consisten
y:8Q1; Q2 2 Q8B 2 B : Q1 \Q2 6� B �

Lemma 10 (Liveness). All fun
tions of the blo
kinggeneralized SBQ-L eventually terminate.Write. All writes eventually
omplete be
ause of theavailability property.Read. Consider the last entran
e. There is a valuefor latest[℄ asso
iated with ea
h server;
onsider thelargest latest[℄.ts asso
iated with a
orre
t server,tsmax. The
lient has not dis
arded any data item withtimestamp tsmax
oming from a
orre
t server (other-wise that
orre
t server would have a higher timestampasso
iated with it). tsmax is in T be
ause T
ontainsthe f + 1 largest timestamps in latest[℄. Sin
e all
lients are
orre
t, all
orre
t servers will eventually seethe tsmax write and e
ho it ba
k to the reader. Theavailability property guarantees that there are enough
orre
t servers for the e
hoes to eventually form a quo-rum.STORE, QUERY TS. The server's STORE andQUERY TS fun
tions terminate be
ause they have noloops.READ. The server's READ fun
tion terminates be-
ause the
lient's Read() terminates and
lients are
or-re
t. �D.2 Generalized Non-blo
king SBQ-LTheorem 7. The non-blo
king generalized SBQ-L pro-to
ol provides regular semanti
s.Lemma 11 (Regularity). The non-blo
king general-ized SBQ-L proto
ol satis�es regular semanti
s, assum-ing it is live.This proof is similar to that of the previous se
tion,ex
ept that it takes into a

ount the di�erent de�ni-tion for write
ompletion and the di�erent quorum
on-straints.We
all Q
w the quorum of
orre
t servers that hasseen the latest
ompleted write.If the reader de
ides on a value from some quorumQ then this value has been vou
hed for by at least one
orre
t server that has seen the latest
ompleted writesin
e Q and Q
w interse
t. �The proof for liveness is identi
al to that of the blo
k-ing
ase. �
14

