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tWe present a faster all-pairs shortest paths algorithm for arbitrary real-weighted dire
ted graphs.The algorithm works in the fundamental 
omparison-addition model and runs in O(mn + n2 log log n)time, where m and n are the number of edges & verti
es, respe
tively. This is stri
tly faster thanJohnson's algorithm (for arbitrary edge-weights) and Dijkstra's algorithm (for positive edge-weights)when m = o(n log n) and mat
hes the running time of Hagerup's APSP algorithm, whi
h assumesinteger edge-weights and a more powerful model of 
omputation.Our algorithm is based on a generalization of Hagerup's \
omponent hierar
hy" to real-weighted di-re
ted graphs. The 
omponent hierar
hy approa
h, �rst initiated by Thorup, is a non-greedy method for
omputing single-sour
e shortest paths, and, by repeated appli
ation, all-pairs shortest paths. Compo-nent hierar
hy-based algorithms have been designed for integer-weighted graphs, dire
ted and undire
ted,and real-weighted undire
ted graphs. We show that in a pre
ise sense, adapting the 
omponent hierar
hyapproa
h to the general 
ase (arbitrary real-weighted dire
ted graphs) is more 
ompli
ated that for therestri
ted graph 
lasses treated earlier.1 Introdu
tionNearly all known shortest path algorithms 
an be easily separated into two groups: those whi
h assumereal-weighted graphs, where reals are manipulated only by 
omparison and addition operations, and thosewhi
h assume integer-weighted graphs and a suite of RAM-type operations to a
t on the edge-weights. Thestandard algorithms, established early on by Dijkstra [Dij59℄, Bellman-Ford, Floyd-Warshall and others (see[CLR90℄), all work in the 
omparison-addition model with real edge-weights. Sin
e then most progress onshortest paths problems has 
ome by assuming integral edge-weights. Te
hniques based on s
aling, integermatrix multipli
ation and fast integer sorting only work with integer edge-weights, and until re
ently [PR02℄it appeared as though the 
omponent hierar
hy approa
h used in [Tho99, Hag00℄ also required integers. Werefer the reader to a re
ent survey paper [Z01℄ for more ba
kground and referen
es.The state of the art in APSP for real-weighted, sparse dire
ted graphs is (surprisingly) a 
ombinationof two standard textbook algorithms. Johnson [J77℄ showed that an arbitrarily-weighted graph is redu
ibleto a positively-weighted graph su
h that shortest paths remain un
hanged (assuming no negative 
y
les�This work was supported by Texas Advan
ed Resear
h Program Grant 003658-0029-1999 and an MCD Graduate Fellowship.1



and hen
e `shortest path' is well-de�ned.) The redu
tion makes one 
all to the Bellman-Ford algorithm andtakes O(mn) time. For positively-weighted graphs, Dijkstra's algorithm [Dij59, FT87℄ solves the single-sour
eshortest path problem (SSSP) in O(m+ n logn) time, implying an APSP algorithm for arbitrarily-weightedgraphs running in O(mn+n2 logn) time. This is the best bound to date for dire
ted graphs, however thereis a faster algorithm [PR02℄ for undire
ted APSP running in O(mn�(m;n)) time. It is worth mentioningthat several algorithms with good average-
ase performan
e (e.g., [MT87, KKP93, M01, G01℄) 
an improveupon this bound (either in the mn or n2 logn term), however ea
h assumes random edge-weights and manyassume the 
omplete graph.The re
ent 
omponent hierar
hy (CH) based algorithms [Tho99, Hag00, PR02℄ either redu
e or eliminatethe sorting bottlene
k in Dijkstra's algorithm. Thorup, who �rst des
ribed the CH approa
h, showed thatundire
ted SSSP on non-negative, integer-weighted graphs 
an be solved in O(m) time, assuming edge-weightsare subje
t to typi
al RAM operations. This immediately implies an O(mn) time APSP algorithm. Hagerup[Hag00℄ assumed the same non-negative integer/RAM model and showed SSSP on dire
ted graphs 
an besolved in O(m log logC + n log logn) time, and APSP in O(mn + n2 log logn) time. Here C is the largestinteger edge weight. Re
ently Pettie & Rama
handran [PR02℄ adapted Thorup's algorithm to real-weightedgraphs and the pointer ma
hine model [Tar79℄, whi
h is weaker than the RAM, yielding an undire
tedAPSP algorithm running in O(mn�(m;n)) time, where � is the inverse-A
kermann fun
tion. Pettie [Pet01℄gave a CH-based APSP algorithm for dire
ted graphs that performs O(mn log�(m;n)) 
omparison/additionoperations, however there is no known implementation of this algorithm with the same asymptoti
 overhead.The CH approa
h also turns out to be pra
ti
al; an experimental study of Pettie et al. [PRS02℄ of asimpli�ed version of [PR02℄ shows it to be de
isively faster than Dijkstra's algorithm, if the one-time 
ost of
onstru
ting the CH is o�set by a suÆ
ient number of SSSP 
omputations.In this paper we adapt the 
omponent hierar
hy approa
h to real-weighted dire
ted graphs, giving anAPSP algorithm running in O(mn + n2 log logn) time. Our algorithm di�ers from previous CH-basedalgorithms in its overall stru
ture. In [Tho99, Hag00, PR02℄, a 
omponent hierar
hy is 
onstru
ted in onephase, and in the next phase SSSP 
an be 
omputed any number of times in (nearly-)linear time per SSSP
omputation. In Se
tion 4.3 we show that if we adhere to the basi
 CH framework, the stru
ture of the
omponent hierar
hy does not provide enough information to 
ompute SSSP in O(m) + o(n logn) time. Inour algorithm we have a three-phase stru
ture. After the CH is 
onstru
ted (phase 1), we take the time togather a slew of approximate shortest path-related statisti
s (phase 2) whi
h will allow us to 
ompute APSPfaster in phase 3. For a parameter k, if we spend O(mnd lognk e) time in phase 2, the s-sour
es shortest pathsproblem is solved in phase 3 in O(s � (m+ n log k + n log logn)) time. Setting k = logn; s = n gives us the
laimed APSP result, though improvements 
an still be had for s = !(m= logn).2 PreliminariesThe input is a weighted, dire
ted graph G = (V;E; `) where jV j = n; jEj = m, and ` : E ! R assigns a reallength to every edge. The length of a path is de�ned to be the sum of its 
onstituent edge lengths. We letd(u; v) denote the length of the shortest path from u to v, or 1 if none exists. The single-sour
e shortestpaths problem is to 
ompute d(s; v) for some sour
e vertex s and every vertex v while the all-pairs shortestpath problem is to 
ompute d(u; v) for all u; v. Generalizing the d notation, let d(u;H) (resp. d(H;u)) bethe shortest distan
e from u to any vertex in the subgraph H (from any vertex in H to u). H may also bean obje
t that is asso
iated with a subgraph, not ne
essarily the subgraph itself. It was mentioned in theintrodu
tion that the APSP problem is redu
ible in O(mn) time to one of the same size but having onlypositive edge lengths. We therefore assume that ` : E ! R+ assigns only positive lengths.2.1 The Comparison-Addition ModelIn the 
omparison-addition model real numbers are only subje
t to 
omparisons and additions. Comparisonsdetermine the larger of two given reals, and addition of existing reals is the only means for generating newreals. A 
omparison-addition based algorithm, whi
h is modeled as a de
ision tree with additions, 
hooseswhi
h operations to make based on the out
omes of previous 
omparisons.This model 
annot distinguish between integers and arbitrary reals, and 
annot produ
e a spe
i�
 integerin a real variable. Therefore, when we say some variable or quantity is an integer, we mean that it is kept in2



an integer variable. The only additional property assumed of integers is that they may be used to index anarray. We will only produ
e polynomially-bounded integers, whereas reals are assumed to take on arbitraryvalues.This model is elegant and suÆ
iently powerful to solve shortest path problems (the standard textbookalgorithms of Dijkstra, Bellman-Ford, Floyd-Warshall, and min-plus matrix multipli
ation assume nothingmore). The pra
ti
ality of this model stems from its universality: 
omparison-addition based algorithmsinherently work with a variety of numeri
al data types and 
an be ported to di�erent platforms with littleor no modi�
ation | see [PRS02℄.3 Dijkstra's AlgorithmDijkstra's SSSP algorithm visits verti
es in order of in
reasing distan
e from the sour
e s. It maintains aset S of visited verti
es, initially empty, and a tentative distan
e D(v) for all v 2 V satisfying the followinginvariant.Invariant 0 For v 2 S D(v) = d(s; v) and for v 62 S D(v) is the shortest distan
e from s to v using onlyintermediate verti
es from S.Dijkstra's method for growing the set S while maintaining Invariant 0 is to visit verti
es greedily. Inea
h step, Dijkstra's algorithm identi�es the vertex v 62 S with minimum tentative distan
e, sets S :=S [ fvg, and updates tentative distan
es. This involves relaxing ea
h outgoing edge (v; w), setting D(w) :=minfD(w); D(v) + `(v; w)g. The algorithm halts when S = V , and therefore D(v) = d(s; v) | the tentativedistan
es equal the shortest distan
es.Component hierar
hy-based algorithms alsomaintain Invariant 0, though in a non-greedy fashion. Through-out the paper D;S; s mean the same thing as in Dijkstra's algorithm, and the terms \visit" and \relax" areessentially the same.4 The Component Hierar
hyWe assume a familiarity with the 
omponent hierar
hy approa
h [Tho99, Hag00, PR02℄. See Appendix Afor an overview.Hagerup [Hag00℄ 
onstru
ted a CH for dire
ted graphs and positive integer edge lengths in O(m log logC)time, where C is the largest edge weight. For real edge lengths his method 
an be adapted, using te
hniquesakin to those in [PR02℄, to run in O(m log log r+log r) time, where r is the ratio of the maximum-to-minimumedge length. Below we de�ne a 
omponent hierar
hy for real-weighted dire
ted graphs; it 
an be 
onstru
tedin O(m logn) time using a 
ombination of the te
hniques from [Hag00, PR02℄. We omit the proof.4.1 The CH for Real-weighted Dire
ted GraphsAssume w.l.o.g. that G is strongly 
onne
ted. This 
an be enfor
ed without altering the �nite distan
esby adding an n-
y
le with very long edges. As in [PR02℄ we �rst produ
e the edge lengths in sortedorder: `1; : : : ; `m. We then �nd a set of \normalizing" edge lengths f`j : `j > n � `j�1g [ f`1g. Let rkbe the kth smallest normalizing edge. For ea
h edge j between rk and rk+1 � 1 we determine the i s.t.2i`rk � `j < 2i+1`rk . In other words, we �nd a fa
tor 2 approximation of every edge length divided by itsasso
iated normalizing edge length. The CH is 
omposed of layered strata, where stratum k, level i nodes
orrespond to the strongly 
onne
ted 
omponents (SCCs) of the graph restri
ted to edges with length lessthan `rk �2i. If x is a stratum k, level i node we let norm(x) = `rk �2i�1; Most quantities relating to x will bemeasured in units of norm(x). Let Cx denote the SCC asso
iated with a CH node x, and let diam(Cx) (thediameter) be the longest shortest path between two distin
t verti
es in Cx. The 
hildren of x, fx1; : : : ; x�gare those stratum k, level i� 1 CH nodes whose SCCs fCx1 ; : : : ; Cx�g are subgraphs of Cx. (If i = 0, i.e. xis at the \bottom" of its stratum, then its 
hildren are the stratum k� 1 nodes of maximum level, fxjg, s.t.the fCxjg are subgraphs of Cx.) Let C
x be derived from Cx by 
ontra
ting the SCCs fCxjg, and CDAGx bederived from C
x by removing edges with length at least norm(x). That is, there is a 
orresponden
e between3



verti
es in C
x and the 
hildren of x in the 
omponent hierar
hy; we will frequently use the same notation torefer to both. It is 
onvenient to think of single-
hild nodes in the CH being spli
ed out, hen
e the 
hildrenof a node are not ne
essarily all on the same stratum/level, but the CH is linear in size.The following lemma, variants of whi
h were used in [Tho99, Hag00, PR02℄, is useful for asso
iating therunning time of our algorithm with 
ertain CH statisti
s. Its proof is straightforward; it appears in AppendixB.Lemma 4.1 (i) Xx2CH jV (C
x)j � 2n(ii) Xx2CH diam(Cx)norm(x) � 8n(iii) �����x 2 CH : diam(Cx)norm(x) > k����� � 8nk4.2 Computing SSSPComponent hierar
hy-based algorithms also maintain Dijkstra's Invariant 0. However, they do not ne
essarilyvisit verti
es in in
reasing distan
e from the sour
e. Re
all that the D-value of a vertex was its tentativedistan
e from the sour
e s. We extend the D notation to CH nodes by letting D(x) = minv2CxfD(v)g (i.e.minimum over leaf des
endants of x.) The Visit pro
edure, given below, takes a CH node x and some interval[a; b) and visits all verti
es v 2 Cx whose d(s; v)-values lie in [a; b). If Cx is a single vertex and D(x) 2 [a; b),we mark Cx as visited and relax all its outgoing edges. Otherwise we delegate the responsibility of visitingverti
es in [a; b) to the 
hildren of x. SSSP are 
omputed from s by setting S = ;, D(s) = 0, D(v) = 1for v 6= s and 
alling Visit(root(CH); [0;1)). One may refer to [Tho99, Hag00, PR02℄ for more detaileddes
riptions of the basi
 
omponent hierar
hy algorithm or proofs of its 
orre
tness. We will 
all a nodea
tive if it has been visited at least on
e, and ina
tive otherwise.Visit(x; [a; b))If Cx is a single vertex and D(x) 2 [a; b) thenVisit Cx:Let S := S [ fCxg(1) Relax Cx's outgoing edgesReturn.If Visit(x; � ) is being 
alled for the �rst time, then(2) Initialize x's bu
ket array:Create ddiam(Cx)=norm(x)e + 1 bu
ketsLet the �rst bu
ket start at t0, a real number s.t. a � t0 � D(x).Label bu
ket j with its asso
iated interval:[t0 + j � norm(x); t0 + (j + 1) � norm(x)).(3) Bu
ket x's 
hildren by their D-values.t refers to the start of the 
urrent bu
ket's interval (Initially t = t0.)While S \ Cx 6= Cx and t < bWhile bu
ket [t; t+ norm(x)) is not empty(4) Choose a suitable node y from bu
ket [t; t+ norm(x))Visit(y; [t; t+ norm(x)))If S \ Cy 6= Cy, put y in bu
ket [t+ norm(x); t + 2 � norm(x))t := t+ norm(x)Some lines whi
h need elaboration are marked by a number.4



1. Visiting verti
es and relaxing edges is done just as in Dijkstra's algorithm. Relaxing an edge (u; v)may 
ause an ina
tive an
estor of v in the CH to be bu
keted or re-bu
keted if relaxing (u; v) 
ausedits D-value (tentative distan
e) to de
rease.2. Bu
kets in the bu
ket array represent 
onse
utive intervals of width norm(x), whi
h together form aninterval that 
ontains d(s; v) for all v 2 Cx. We will refer to bu
kets by their pla
e in the bu
ket array(e.g. the �rst bu
ket) or by the endpoints of the interval they represent (e.g. bu
ket [t; t+ norm(x))).There is some subtlety to 
hoosing the starting point t0 of the �rst bu
ket. The 
on
ern is that we mayhave a fra
tional interval left over1 if b, the end of the given interval, is not aligned with t0+q �norm(x)for some q. As in [PR02℄, we 
hoose the initial t0 as follows: if D(x) + diam(Cx) < b then we will notrea
h b anyway and the alignment problem does not arise; set t0 = D(x). Otherwise, 
ount ba
k fromb in units of norm(x); �nd the minimum q s.t. t0 = b� q � norm(x) � D(x). One 
an also show that,be
ause of the wide separation in edge-lengths between strata, the fra
tional interval problem does notarise when Visit makes inter-stratum re
ursive 
alls. Indeed, this motivated our de�nition of strata.3. The only time we ask for the D-value of a CH node is when its parent has been visited, but it has yetto be visited. Gabow's [G85℄ split-�ndmin data-stru
ture handles updating and querying D-values.4. Hagerup noted that Invariant 0 is not maintained if nodes from the same bu
ket are visited in anyorder; this is in 
ontrast to the [Tho99, PR02℄ algorithms for undire
ted graphs, where nodes may bevisited in arbitrary order. In [Hag00℄ it is shown that Invariant 0 
an be maintained if nodes fromthe same bu
ket are visited in an order 
onsistent with a topologi
al ordering of CDAGx . Hagerup �rstassigns numbers in f1; 2; : : : ; jV (C
x)jg to the verti
es in C
x 
onsistent with su
h an ordering, thenuses a van Emde Boas heap [vEKZ77℄ to prioritize nodes within the same bu
ket. The overhead formanaging the van Emde Boas stru
ture is O(n log logn) in total.A CH node y is bu
keted on two o

asions: when its parent node x is �rst visited (item 2) or when someedge (�; v), v 2 Cy is relaxed (item 1). We will a
tually think of the �rst kind of bu
keting operation as anedge relaxation too. When x is �rst visited, D(y) 
orresponds to a path Psy from s to y, hen
e bu
ketingy a

ording to its D-value is tantamount to re-relaxing the last edge in Psy . We are 
on
erned with bothkinds of edge relaxations, of whi
h there are no more than m+ 2n = O(m).4.3 A Lower Bound on Hagerup's AlgorithmIt is not diÆ
ult to show that Dijkstra's algorithm is \just as hard as sorting", that is, produ
ing the verti
esin order of their d-values is just as hard as sorting n numbers. This implies an 
(m+ n logn) lower boundon the 
omplexity of Dijkstra's algorithm in the 
omparison-addition model, and tells us that we must alterour approa
h or strengthen the model in order to obtain faster shortest path algorithms. In this se
tion wegive a similar lower bound on Hagerup's algorithm [Hag00℄ in the 
omparison-addition model: we show that,even given the graph's 
omponent hierar
hy, it too requires 
(m+ n logn) operations.All CH-based algorithms satisfy the following Property:Property 1 If u; v 2 V (Cx) and d(s; v) � d(s; u) + norm(x), then u must be visited before v.A permutation of the verti
es is 
ompatible with a 
ertain edge-length fun
tion if visiting the verti
es inthat order does not violate Property 1. We show that there is a dire
ted graph and a family of n
(n) distin
tedge-length fun
tions, no two of whi
h share a 
ompatible permutation. It is worth noting that this lowerbound does not extend to undire
ted graphs | see [PR02℄.Consider the graph depi
ted in Figure 1. It 
onsists of the sour
e vertex s and a large strongly 
onne
ted
omponent Cx 
ontaining the remaining n�1 verti
es. The Cx subgraph is organized a little like a broom; ithas a \broom sti
k" of k�1 verti
es, whose head is w and whose tail 
onne
ts to n�k verti
es (the \bush"),ea
h of whi
h is 
onne
ted ba
k to w (in the Figure w is drawn twi
e to avoid 
rossing lines.) All theseedges have length norm(x). The sour
e s has one edge of length zero 
onne
ting it to w, and n � k edges
onne
ting it to the n�k verti
es in the broom's bush. Ea
h of these n�k edges takes on lengths of the form1Having fra
tional intervals left over is not a problem in terms of 
orre
tness, but it does 
ompli
ate the analysis.5


