A Faster All-pairs Shortest Path Algorithm
for Real-weighted Sparse Graphs*

Seth Pettie
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
seth@cs.utexas.edu

TR-02-13

February 26, 2002

Abstract

We present a faster all-pairs shortest paths algorithm for arbitrary real-weighted directed graphs.
The algorithm works in the fundamental comparison-addition model and runs in O(mn + n?®loglog n)
time, where m and n are the number of edges & vertices, respectively. This is strictly faster than
Johnson’s algorithm (for arbitrary edge-weights) and Dijkstra’s algorithm (for positive edge-weights)
when m = o(nlogn) and matches the running time of Hagerup’s APSP algorithm, which assumes
integer edge-weights and a more powerful model of computation.

Our algorithm is based on a generalization of Hagerup’s “component hierarchy” to real-weighted di-
rected graphs. The component hierarchy approach, first initiated by Thorup, is a non-greedy method for
computing single-source shortest paths, and, by repeated application, all-pairs shortest paths. Compo-
nent hierarchy-based algorithms have been designed for integer-weighted graphs, directed and undirected,
and real-weighted undirected graphs. We show that in a precise sense, adapting the component hierarchy
approach to the general case (arbitrary real-weighted directed graphs) is more complicated that for the
restricted graph classes treated earlier.

1 Introduction

Nearly all known shortest path algorithms can be easily separated into two groups: those which assume
real-weighted graphs, where reals are manipulated only by comparison and addition operations, and those
which assume integer-weighted graphs and a suite of RAM-type operations to act on the edge-weights. The
standard algorithms, established early on by Dijkstra [Dij59], Bellman-Ford, Floyd-Warshall and others (see
[CLR90]), all work in the comparison-addition model with real edge-weights. Since then most progress on
shortest paths problems has come by assuming integral edge-weights. Techniques based on scaling, integer
matrix multiplication and fast integer sorting only work with integer edge-weights, and until recently [PR02]
it appeared as though the component hierarchy approach used in [Tho99, Hag00] also required integers. We
refer the reader to a recent survey paper [Z01] for more background and references.

The state of the art in APSP for real-weighted, sparse directed graphs is (surprisingly) a combination
of two standard textbook algorithms. Johnson [J77] showed that an arbitrarily-weighted graph is reducible
to a positively-weighted graph such that shortest paths remain unchanged (assuming no negative cycles

*This work was supported by Texas Advanced Research Program Grant 003658-0029-1999 and an MCD Graduate Fellowship.

and hence ‘shortest path’ is well-defined.) The reduction makes one call to the Bellman-Ford algorithm and
takes O(mn) time. For positively-weighted graphs, Dijkstra’s algorithm [Dij59, FT87] solves the single-source
shortest path problem (SSSP) in O(m + nlogn) time, implying an APSP algorithm for arbitrarily-weighted
graphs running in O(mn + n?logn) time. This is the best bound to date for directed graphs, however there
is a faster algorithm [PRO2] for undirected APSP running in O(mna(m,n)) time. It is worth mentioning
that several algorithms with good average-case performance (e.g., [MT87, KKP93, M01, GO1]) can improve
upon this bound (either in the mn or n?logn term), however each assumes random edge-weights and many
assume the complete graph.

The recent component hierarchy (CH) based algorithms [Tho99, Hag00, PR02] either reduce or eliminate
the sorting bottleneck in Dijkstra’s algorithm. Thorup, who first described the CH approach, showed that
undirected SSSP on non-negative, integer-weighted graphs can be solved in O(m) time, assuming edge-weights
are subject to typical RAM operations. This immediately implies an O(mn) time APSP algorithm. Hagerup
[Hag00] assumed the same non-negative integer/RAM model and showed SSSP on directed graphs can be
solved in O(mloglogC + nloglogn) time, and APSP in O(mn + n?loglogn) time. Here C is the largest
integer edge weight. Recently Pettie & Ramachandran [PR02] adapted Thorup’s algorithm to real-weighted
graphs and the pointer machine model [Tar79], which is weaker than the RAM, yielding an undirected
APSP algorithm running in O(mna(m,n)) time, where « is the inverse-Ackermann function. Pettie [Pet01]
gave a CH-based APSP algorithm for directed graphs that performs O(mn loga(m,n)) comparison/addition
operations, however there is no known implementation of this algorithm with the same asymptotic overhead.
The CH approach also turns out to be practical; an experimental study of Pettie et al. [PRS02] of a
simplified version of [PR02] shows it to be decisively faster than Dijkstra’s algorithm, if the one-time cost of
constructing the CH is offset by a sufficient number of SSSP computations.

In this paper we adapt the component hierarchy approach to real-weighted directed graphs, giving an
APSP algorithm running in O(mn + n?loglogn) time. Our algorithm differs from previous CH-based
algorithms in its overall structure. In [Tho99, Hag00, PR02], a component hierarchy is constructed in one
phase, and in the next phase SSSP can be computed any number of times in (nearly-)linear time per SSSP
computation. In Section 4.3 we show that if we adhere to the basic CH framework, the structure of the
component hierarchy does not provide enough information to compute SSSP in O(m) + o(nlogn) time. In
our algorithm we have a three-phase structure. After the CH is constructed (phase 1), we take the time to
gather a slew of approximate shortest path-related statistics (phase 2) which will allow us to compute APSP
faster in phase 3. For a parameter k, if we spend O(mn[l"%]) time in phase 2, the s-sources shortest paths
problem is solved in phase 3 in O(s - (m + nlogk + nloglogn)) time. Setting k& = logn, s = n gives us the
claimed APSP result, though improvements can still be had for s = w(m/logn).

2 Preliminaries

The input is a weighted, directed graph G = (V, E, £) where |V| =n,|E| =m, and ¢ : E — R assigns a real
length to every edge. The length of a path is defined to be the sum of its constituent edge lengths. We let
d(u,v) denote the length of the shortest path from u to v, or oo if none exists. The single-source shortest
paths problem is to compute d(s,v) for some source vertex s and every vertex v while the all-pairs shortest
path problem is to compute d(u,v) for all u,v. Generalizing the d notation, let d(u, H) (resp. d(H,u)) be
the shortest distance from u to any vertex in the subgraph H (from any vertex in H to u). H may also be
an object that is associated with a subgraph, not necessarily the subgraph itself. It was mentioned in the
introduction that the APSP problem is reducible in O(mn) time to one of the same size but having only
positive edge lengths. We therefore assume that £ : E — R assigns only positive lengths.

2.1 The Comparison-Addition Model

In the comparison-addition model real numbers are only subject to comparisons and additions. Comparisons
determine the larger of two given reals, and addition of existing reals is the only means for generating new
reals. A comparison-addition based algorithm, which is modeled as a decision tree with additions, chooses
which operations to make based on the outcomes of previous comparisons.

This model cannot distinguish between integers and arbitrary reals, and cannot produce a specific integer
in a real variable. Therefore, when we say some variable or quantity is an integer, we mean that it is kept in

an integer variable. The only additional property assumed of integers is that they may be used to index an
array. We will only produce polynomially-bounded integers, whereas reals are assumed to take on arbitrary
values.

This model is elegant and sufficiently powerful to solve shortest path problems (the standard textbook
algorithms of Dijkstra, Bellman-Ford, Floyd-Warshall, and min-plus matrix multiplication assume nothing
more). The practicality of this model stems from its universality: comparison-addition based algorithms
inherently work with a variety of numerical data types and can be ported to different platforms with little
or no modification — see [PRS02].

3 Dijkstra’s Algorithm

Dijkstra’s SSSP algorithm visits vertices in order of increasing distance from the source s. It maintains a
set S of visited vertices, initially empty, and a tentative distance D(v) for all v € V satisfying the following
invariant.

Invariant 0 For v € S D(v) = d(s,v) and for v € S D(v) is the shortest distance from s to v using only
intermediate vertices from S.

Dijkstra’s method for growing the set S while maintaining Invariant 0 is to visit vertices greedily. In
each step, Dijkstra’s algorithm identifies the vertex v ¢ S with minimum tentative distance, sets S :=
S U {v}, and updates tentative distances. This involves relazing each outgoing edge (v, w), setting D(w) :=
min{D(w), D(v) + ¢(v,w)}. The algorithm halts when S =V, and therefore D(v) = d(s,v) — the tentative
distances equal the shortest distances.

Component hierarchy-based algorithms also maintain Invariant 0, though in a non-greedy fashion. Through-
out the paper D, S, s mean the same thing as in Dijkstra’s algorithm, and the terms “visit” and “relax” are
essentially the same.

4 The Component Hierarchy

We assume a familiarity with the component hierarchy approach [Tho99, Hag00, PR02]. See Appendix A
for an overview.

Hagerup [Hag00] constructed a CH for directed graphs and positive integer edge lengths in O(m loglog C')
time, where C' is the largest edge weight. For real edge lengths his method can be adapted, using techniques
akin to those in [PR02], to run in O(m loglogr+logr) time, where r is the ratio of the maximum-to-minimum
edge length. Below we define a component hierarchy for real-weighted directed graphs; it can be constructed
in O(mlogn) time using a combination of the techniques from [Hag00, PR02]. We omit the proof.

4.1 The CH for Real-weighted Directed Graphs

Assume w.l.o.g. that GG is strongly connected. This can be enforced without altering the finite distances
by adding an n-cycle with very long edges. As in [PR02] we first produce the edge lengths in sorted
order: fy,...,4,. We then find a set of “normalizing” edge lengths {¢; : ¢; > n-£;_1} U {{1}. Let ry
be the k' smallest normalizing edge. For each edge j between r, and 7,1 — 1 we determine the i s.t.
2i0,, < {¢; < 2¢%1¢, . In other words, we find a factor 2 approximation of every edge length divided by its
associated normalizing edge length. The CH is composed of layered strata, where stratum k, level ¢ nodes
correspond to the strongly connected components (SCCs) of the graph restricted to edges with length less
than ¢,, -2¢. If z is a stratum k, level i node we let norm(z) = £, -2°"1; Most quantities relating to z will be
measured in units of norm(z). Let C, denote the SCC associated with a CH node z, and let diam(C;) (the
diameter) be the longest shortest path between two distinct vertices in C,. The children of z, {z1,...,z,}
are those stratum k, level s — 1 CH nodes whose SCCs {Cy,,...,C;, } are subgraphs of C,. (If i =0, i.e. z
is at the “bottom” of its stratum, then its children are the stratum % — 1 nodes of maximum level, {z;}, s.t.
the {C,,} are subgraphs of C,.) Let C¢ be derived from C, by contracting the SCCs {Cy, }, and CP4C be
derived from C¢ by removing edges with length at least norm(z). That is, there is a correspondence between

vertices in C¢ and the children of 2 in the component hierarchy; we will frequently use the same notation to
refer to both. It is convenient to think of single-child nodes in the CH being spliced out, hence the children
of a node are not necessarily all on the same stratum/level, but the CH is linear in size.

The following lemma, variants of which were used in [Tho99, Hag00, PR02], is useful for associating the
running time of our algorithm with certain CH statistics. Its proof is straightforward; it appears in Appendix
B.

Lemma 4.1

) Y V()<

zcCH
3 diam(Cy)
E — <
(i) e norm(z) — &n
diam(Cy) 8n
) <=
(143) Hm €eCH norm(z) > k}‘ <7

4.2 Computing SSSP

Component hierarchy-based algorithms also maintain Dijkstra’s Invariant 0. However, they do not necessarily
visit vertices in increasing distance from the source. Recall that the D-value of a vertex was its tentative
distance from the source s. We extend the D notation to CH nodes by letting D(z) = min,ec, {D(v)} (i.e.
minimum over leaf descendants of z.) The Visit procedure, given below, takes a CH node z and some interval
[a,b) and visits all vertices v € C, whose d(s,v)-values lie in [a,). If C, is a single vertex and D(z) € [a,b),
we mark C, as visited and relax all its outgoing edges. Otherwise we delegate the responsibility of visiting
vertices in [a,b) to the children of . SSSP are computed from s by setting S = 0, D(s) = 0, D(v) = >
for v # s and calling Visit(root(CH),[0,00)). One may refer to [Tho99, Hag00, PR02] for more detailed
descriptions of the basic component hierarchy algorithm or proofs of its correctness. We will call a node
active if it has been visited at least once, and inactive otherwise.

Visit(z, [a, b))
If C, is a single vertex and D(z) € [a,b) then
Visit Cy -
Let S :=SU{C,}
(1) Relax C,’s outgoing edges
Return.
If Visit(z, -) is being called for the first time, then
(2) Initialize ©’s bucket array:
Create [diam(C;)/norm(z)] + 1 buckets
Let the first bucket start at tp, a real number s.t. a < tp < D(z).
Label bucket j with its associated interval:
[to + j - norm(z),to + (j + 1) - norm(x)).
(3) Bucket z’s children by their D-values.
t refers to the start of the current bucket’s interval (Initially ¢t = ¢.)
While SNCy #Cy and t < b
While bucket [t, ¢ + norm(z)) is not empty
(4) Choose a suitable node y from bucket [t,¢ + norm(z))
Visit(y, [t, t + norm(z)))
If SN Cy # Cy, put y in bucket [t + norm(z),t + 2 - norm(z))
t:=1t+ norm(z)

Some lines which need elaboration are marked by a number.

1. Visiting vertices and relaxing edges is done just as in Dijkstra’s algorithm. Relaxing an edge (u,v)
may cause an inactive ancestor of v in the CH to be bucketed or re-bucketed if relaxing (u,v) caused
its D-value (tentative distance) to decrease.

2. Buckets in the bucket array represent consecutive intervals of width norm(z), which together form an
interval that contains d(s,v) for all v € C,. We will refer to buckets by their place in the bucket array
(e.g. the first bucket) or by the endpoints of the interval they represent (e.g. bucket [¢, ¢t + norm(z))).
There is some subtlety to choosing the starting point ¢y of the first bucket. The concern is that we may
have a fractional interval left over! if b, the end of the given interval, is not aligned with ¢y +¢-norm(z)
for some g. As in [PR02], we choose the initial ¢y as follows: if D(z) + diam(C;) < b then we will not
reach b anyway and the alignment problem does not arise; set t¢ = D(z). Otherwise, count back from
b in units of norm(z); find the minimum ¢ s.t. to = b — ¢ - norm(z) < D(z). One can also show that,
because of the wide separation in edge-lengths between strata, the fractional interval problem does not
arise when Visit makes inter-stratum recursive calls. Indeed, this motivated our definition of strata.

3. The only time we ask for the D-value of a CH node is when its parent has been visited, but it has yet
to be visited. Gabow’s [G85] split-findmin data-structure handles updating and querying D-values.

4. Hagerup noted that Invariant 0 is not maintained if nodes from the same bucket are visited in any
order; this is in contrast to the [Tho99, PR02] algorithms for undirected graphs, where nodes may be
visited in arbitrary order. In [Hag00] it is shown that Invariant O can be maintained if nodes from
the same bucket are visited in an order consistent with a topological ordering of CP4¢. Hagerup first
assigns numbers in {1,2,...,|V(C%)|} to the vertices in C¢ consistent with such an ordering, then
uses a van Emde Boas heap [VEKZT77] to prioritize nodes within the same bucket. The overhead for
managing the van Emde Boas structure is O(nloglogn) in total.

A CH node y is bucketed on two occasions: when its parent node x is first visited (item 2) or when some
edge (-,v), v € Cy is relaxed (item 1). We will actually think of the first kind of bucketing operation as an
edge relaxation too. When is first visited, D(y) corresponds to a path P;, from s to y, hence bucketing
y according to its D-value is tantamount to re-relazing the last edge in P,,. We are concerned with both
kinds of edge relaxations, of which there are no more than m + 2n = O(m).

4.3 A Lower Bound on Hagerup’s Algorithm

It is not difficult to show that Dijkstra’s algorithm is “just as hard as sorting”, that is, producing the vertices
in order of their d-values is just as hard as sorting n numbers. This implies an Q(m + nlogn) lower bound
on the complexity of Dijkstra’s algorithm in the comparison-addition model, and tells us that we must alter
our approach or strengthen the model in order to obtain faster shortest path algorithms. In this section we
give a similar lower bound on Hagerup’s algorithm [Hag00] in the comparison-addition model: we show that,
even given the graph’s component hierarchy, it too requires 2(m + nlogn) operations.

All CH-based algorithms satisfy the following Property:

Property 1 Ifu,v € V(C;) and d(s,v) > d(s,u) + norm(z), then u must be visited before v.

A permutation of the vertices is compatible with a certain edge-length function if visiting the vertices in
that order does not violate Property 1. We show that there is a directed graph and a family of n2(") distinct
edge-length functions, no two of which share a compatible permutation. It is worth noting that this lower
bound does not extend to undirected graphs — see [PR02].

Consider the graph depicted in Figure 1. It consists of the source vertex s and a large strongly connected
component C; containing the remaining n — 1 vertices. The C, subgraph is organized a little like a broom; it
has a “broom stick” of k — 1 vertices, whose head is w and whose tail connects to n —k vertices (the “bush”),
each of which is connected back to w (in the Figure w is drawn twice to avoid crossing lines.) All these
edges have length norm(z). The source s has one edge of length zero connecting it to w, and n — k edges
connecting it to the n — k vertices in the broom’s bush. Each of these n — k edges takes on lengths of the form

lHaving fractional intervals left over is not a problem in terms of correctness, but it does complicate the analysis.

