
A Faster All-pairs Shortest Path Algorithmfor Real-weighted Sparse Graphs�Seth PettieDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712seth�s.utexas.eduTR-02-13February 26, 2002AbstratWe present a faster all-pairs shortest paths algorithm for arbitrary real-weighted direted graphs.The algorithm works in the fundamental omparison-addition model and runs in O(mn + n2 log log n)time, where m and n are the number of edges & verties, respetively. This is stritly faster thanJohnson's algorithm (for arbitrary edge-weights) and Dijkstra's algorithm (for positive edge-weights)when m = o(n log n) and mathes the running time of Hagerup's APSP algorithm, whih assumesinteger edge-weights and a more powerful model of omputation.Our algorithm is based on a generalization of Hagerup's \omponent hierarhy" to real-weighted di-reted graphs. The omponent hierarhy approah, �rst initiated by Thorup, is a non-greedy method foromputing single-soure shortest paths, and, by repeated appliation, all-pairs shortest paths. Compo-nent hierarhy-based algorithms have been designed for integer-weighted graphs, direted and undireted,and real-weighted undireted graphs. We show that in a preise sense, adapting the omponent hierarhyapproah to the general ase (arbitrary real-weighted direted graphs) is more ompliated that for therestrited graph lasses treated earlier.1 IntrodutionNearly all known shortest path algorithms an be easily separated into two groups: those whih assumereal-weighted graphs, where reals are manipulated only by omparison and addition operations, and thosewhih assume integer-weighted graphs and a suite of RAM-type operations to at on the edge-weights. Thestandard algorithms, established early on by Dijkstra [Dij59℄, Bellman-Ford, Floyd-Warshall and others (see[CLR90℄), all work in the omparison-addition model with real edge-weights. Sine then most progress onshortest paths problems has ome by assuming integral edge-weights. Tehniques based on saling, integermatrix multipliation and fast integer sorting only work with integer edge-weights, and until reently [PR02℄it appeared as though the omponent hierarhy approah used in [Tho99, Hag00℄ also required integers. Werefer the reader to a reent survey paper [Z01℄ for more bakground and referenes.The state of the art in APSP for real-weighted, sparse direted graphs is (surprisingly) a ombinationof two standard textbook algorithms. Johnson [J77℄ showed that an arbitrarily-weighted graph is reduibleto a positively-weighted graph suh that shortest paths remain unhanged (assuming no negative yles�This work was supported by Texas Advaned Researh Program Grant 003658-0029-1999 and an MCD Graduate Fellowship.1



and hene `shortest path' is well-de�ned.) The redution makes one all to the Bellman-Ford algorithm andtakes O(mn) time. For positively-weighted graphs, Dijkstra's algorithm [Dij59, FT87℄ solves the single-soureshortest path problem (SSSP) in O(m+ n logn) time, implying an APSP algorithm for arbitrarily-weightedgraphs running in O(mn+n2 logn) time. This is the best bound to date for direted graphs, however thereis a faster algorithm [PR02℄ for undireted APSP running in O(mn�(m;n)) time. It is worth mentioningthat several algorithms with good average-ase performane (e.g., [MT87, KKP93, M01, G01℄) an improveupon this bound (either in the mn or n2 logn term), however eah assumes random edge-weights and manyassume the omplete graph.The reent omponent hierarhy (CH) based algorithms [Tho99, Hag00, PR02℄ either redue or eliminatethe sorting bottlenek in Dijkstra's algorithm. Thorup, who �rst desribed the CH approah, showed thatundireted SSSP on non-negative, integer-weighted graphs an be solved in O(m) time, assuming edge-weightsare subjet to typial RAM operations. This immediately implies an O(mn) time APSP algorithm. Hagerup[Hag00℄ assumed the same non-negative integer/RAM model and showed SSSP on direted graphs an besolved in O(m log logC + n log logn) time, and APSP in O(mn + n2 log logn) time. Here C is the largestinteger edge weight. Reently Pettie & Ramahandran [PR02℄ adapted Thorup's algorithm to real-weightedgraphs and the pointer mahine model [Tar79℄, whih is weaker than the RAM, yielding an undiretedAPSP algorithm running in O(mn�(m;n)) time, where � is the inverse-Akermann funtion. Pettie [Pet01℄gave a CH-based APSP algorithm for direted graphs that performs O(mn log�(m;n)) omparison/additionoperations, however there is no known implementation of this algorithm with the same asymptoti overhead.The CH approah also turns out to be pratial; an experimental study of Pettie et al. [PRS02℄ of asimpli�ed version of [PR02℄ shows it to be deisively faster than Dijkstra's algorithm, if the one-time ost ofonstruting the CH is o�set by a suÆient number of SSSP omputations.In this paper we adapt the omponent hierarhy approah to real-weighted direted graphs, giving anAPSP algorithm running in O(mn + n2 log logn) time. Our algorithm di�ers from previous CH-basedalgorithms in its overall struture. In [Tho99, Hag00, PR02℄, a omponent hierarhy is onstruted in onephase, and in the next phase SSSP an be omputed any number of times in (nearly-)linear time per SSSPomputation. In Setion 4.3 we show that if we adhere to the basi CH framework, the struture of theomponent hierarhy does not provide enough information to ompute SSSP in O(m) + o(n logn) time. Inour algorithm we have a three-phase struture. After the CH is onstruted (phase 1), we take the time togather a slew of approximate shortest path-related statistis (phase 2) whih will allow us to ompute APSPfaster in phase 3. For a parameter k, if we spend O(mnd lognk e) time in phase 2, the s-soures shortest pathsproblem is solved in phase 3 in O(s � (m+ n log k + n log logn)) time. Setting k = logn; s = n gives us thelaimed APSP result, though improvements an still be had for s = !(m= logn).2 PreliminariesThe input is a weighted, direted graph G = (V;E; `) where jV j = n; jEj = m, and ` : E ! R assigns a reallength to every edge. The length of a path is de�ned to be the sum of its onstituent edge lengths. We letd(u; v) denote the length of the shortest path from u to v, or 1 if none exists. The single-soure shortestpaths problem is to ompute d(s; v) for some soure vertex s and every vertex v while the all-pairs shortestpath problem is to ompute d(u; v) for all u; v. Generalizing the d notation, let d(u;H) (resp. d(H;u)) bethe shortest distane from u to any vertex in the subgraph H (from any vertex in H to u). H may also bean objet that is assoiated with a subgraph, not neessarily the subgraph itself. It was mentioned in theintrodution that the APSP problem is reduible in O(mn) time to one of the same size but having onlypositive edge lengths. We therefore assume that ` : E ! R+ assigns only positive lengths.2.1 The Comparison-Addition ModelIn the omparison-addition model real numbers are only subjet to omparisons and additions. Comparisonsdetermine the larger of two given reals, and addition of existing reals is the only means for generating newreals. A omparison-addition based algorithm, whih is modeled as a deision tree with additions, hooseswhih operations to make based on the outomes of previous omparisons.This model annot distinguish between integers and arbitrary reals, and annot produe a spei� integerin a real variable. Therefore, when we say some variable or quantity is an integer, we mean that it is kept in2



an integer variable. The only additional property assumed of integers is that they may be used to index anarray. We will only produe polynomially-bounded integers, whereas reals are assumed to take on arbitraryvalues.This model is elegant and suÆiently powerful to solve shortest path problems (the standard textbookalgorithms of Dijkstra, Bellman-Ford, Floyd-Warshall, and min-plus matrix multipliation assume nothingmore). The pratiality of this model stems from its universality: omparison-addition based algorithmsinherently work with a variety of numerial data types and an be ported to di�erent platforms with littleor no modi�ation | see [PRS02℄.3 Dijkstra's AlgorithmDijkstra's SSSP algorithm visits verties in order of inreasing distane from the soure s. It maintains aset S of visited verties, initially empty, and a tentative distane D(v) for all v 2 V satisfying the followinginvariant.Invariant 0 For v 2 S D(v) = d(s; v) and for v 62 S D(v) is the shortest distane from s to v using onlyintermediate verties from S.Dijkstra's method for growing the set S while maintaining Invariant 0 is to visit verties greedily. Ineah step, Dijkstra's algorithm identi�es the vertex v 62 S with minimum tentative distane, sets S :=S [ fvg, and updates tentative distanes. This involves relaxing eah outgoing edge (v; w), setting D(w) :=minfD(w); D(v) + `(v; w)g. The algorithm halts when S = V , and therefore D(v) = d(s; v) | the tentativedistanes equal the shortest distanes.Component hierarhy-based algorithms alsomaintain Invariant 0, though in a non-greedy fashion. Through-out the paper D;S; s mean the same thing as in Dijkstra's algorithm, and the terms \visit" and \relax" areessentially the same.4 The Component HierarhyWe assume a familiarity with the omponent hierarhy approah [Tho99, Hag00, PR02℄. See Appendix Afor an overview.Hagerup [Hag00℄ onstruted a CH for direted graphs and positive integer edge lengths in O(m log logC)time, where C is the largest edge weight. For real edge lengths his method an be adapted, using tehniquesakin to those in [PR02℄, to run in O(m log log r+log r) time, where r is the ratio of the maximum-to-minimumedge length. Below we de�ne a omponent hierarhy for real-weighted direted graphs; it an be onstrutedin O(m logn) time using a ombination of the tehniques from [Hag00, PR02℄. We omit the proof.4.1 The CH for Real-weighted Direted GraphsAssume w.l.o.g. that G is strongly onneted. This an be enfored without altering the �nite distanesby adding an n-yle with very long edges. As in [PR02℄ we �rst produe the edge lengths in sortedorder: `1; : : : ; `m. We then �nd a set of \normalizing" edge lengths f`j : `j > n � `j�1g [ f`1g. Let rkbe the kth smallest normalizing edge. For eah edge j between rk and rk+1 � 1 we determine the i s.t.2i`rk � `j < 2i+1`rk . In other words, we �nd a fator 2 approximation of every edge length divided by itsassoiated normalizing edge length. The CH is omposed of layered strata, where stratum k, level i nodesorrespond to the strongly onneted omponents (SCCs) of the graph restrited to edges with length lessthan `rk �2i. If x is a stratum k, level i node we let norm(x) = `rk �2i�1; Most quantities relating to x will bemeasured in units of norm(x). Let Cx denote the SCC assoiated with a CH node x, and let diam(Cx) (thediameter) be the longest shortest path between two distint verties in Cx. The hildren of x, fx1; : : : ; x�gare those stratum k, level i� 1 CH nodes whose SCCs fCx1 ; : : : ; Cx�g are subgraphs of Cx. (If i = 0, i.e. xis at the \bottom" of its stratum, then its hildren are the stratum k� 1 nodes of maximum level, fxjg, s.t.the fCxjg are subgraphs of Cx.) Let Cx be derived from Cx by ontrating the SCCs fCxjg, and CDAGx bederived from Cx by removing edges with length at least norm(x). That is, there is a orrespondene between3



verties in Cx and the hildren of x in the omponent hierarhy; we will frequently use the same notation torefer to both. It is onvenient to think of single-hild nodes in the CH being splied out, hene the hildrenof a node are not neessarily all on the same stratum/level, but the CH is linear in size.The following lemma, variants of whih were used in [Tho99, Hag00, PR02℄, is useful for assoiating therunning time of our algorithm with ertain CH statistis. Its proof is straightforward; it appears in AppendixB.Lemma 4.1 (i) Xx2CH jV (Cx)j � 2n(ii) Xx2CH diam(Cx)norm(x) � 8n(iii) �����x 2 CH : diam(Cx)norm(x) > k����� � 8nk4.2 Computing SSSPComponent hierarhy-based algorithms also maintain Dijkstra's Invariant 0. However, they do not neessarilyvisit verties in inreasing distane from the soure. Reall that the D-value of a vertex was its tentativedistane from the soure s. We extend the D notation to CH nodes by letting D(x) = minv2CxfD(v)g (i.e.minimum over leaf desendants of x.) The Visit proedure, given below, takes a CH node x and some interval[a; b) and visits all verties v 2 Cx whose d(s; v)-values lie in [a; b). If Cx is a single vertex and D(x) 2 [a; b),we mark Cx as visited and relax all its outgoing edges. Otherwise we delegate the responsibility of visitingverties in [a; b) to the hildren of x. SSSP are omputed from s by setting S = ;, D(s) = 0, D(v) = 1for v 6= s and alling Visit(root(CH); [0;1)). One may refer to [Tho99, Hag00, PR02℄ for more detaileddesriptions of the basi omponent hierarhy algorithm or proofs of its orretness. We will all a nodeative if it has been visited at least one, and inative otherwise.Visit(x; [a; b))If Cx is a single vertex and D(x) 2 [a; b) thenVisit Cx:Let S := S [ fCxg(1) Relax Cx's outgoing edgesReturn.If Visit(x; � ) is being alled for the �rst time, then(2) Initialize x's buket array:Create ddiam(Cx)=norm(x)e + 1 buketsLet the �rst buket start at t0, a real number s.t. a � t0 � D(x).Label buket j with its assoiated interval:[t0 + j � norm(x); t0 + (j + 1) � norm(x)).(3) Buket x's hildren by their D-values.t refers to the start of the urrent buket's interval (Initially t = t0.)While S \ Cx 6= Cx and t < bWhile buket [t; t+ norm(x)) is not empty(4) Choose a suitable node y from buket [t; t+ norm(x))Visit(y; [t; t+ norm(x)))If S \ Cy 6= Cy, put y in buket [t+ norm(x); t + 2 � norm(x))t := t+ norm(x)Some lines whih need elaboration are marked by a number.4



1. Visiting verties and relaxing edges is done just as in Dijkstra's algorithm. Relaxing an edge (u; v)may ause an inative anestor of v in the CH to be buketed or re-buketed if relaxing (u; v) ausedits D-value (tentative distane) to derease.2. Bukets in the buket array represent onseutive intervals of width norm(x), whih together form aninterval that ontains d(s; v) for all v 2 Cx. We will refer to bukets by their plae in the buket array(e.g. the �rst buket) or by the endpoints of the interval they represent (e.g. buket [t; t+ norm(x))).There is some subtlety to hoosing the starting point t0 of the �rst buket. The onern is that we mayhave a frational interval left over1 if b, the end of the given interval, is not aligned with t0+q �norm(x)for some q. As in [PR02℄, we hoose the initial t0 as follows: if D(x) + diam(Cx) < b then we will notreah b anyway and the alignment problem does not arise; set t0 = D(x). Otherwise, ount bak fromb in units of norm(x); �nd the minimum q s.t. t0 = b� q � norm(x) � D(x). One an also show that,beause of the wide separation in edge-lengths between strata, the frational interval problem does notarise when Visit makes inter-stratum reursive alls. Indeed, this motivated our de�nition of strata.3. The only time we ask for the D-value of a CH node is when its parent has been visited, but it has yetto be visited. Gabow's [G85℄ split-�ndmin data-struture handles updating and querying D-values.4. Hagerup noted that Invariant 0 is not maintained if nodes from the same buket are visited in anyorder; this is in ontrast to the [Tho99, PR02℄ algorithms for undireted graphs, where nodes may bevisited in arbitrary order. In [Hag00℄ it is shown that Invariant 0 an be maintained if nodes fromthe same buket are visited in an order onsistent with a topologial ordering of CDAGx . Hagerup �rstassigns numbers in f1; 2; : : : ; jV (Cx)jg to the verties in Cx onsistent with suh an ordering, thenuses a van Emde Boas heap [vEKZ77℄ to prioritize nodes within the same buket. The overhead formanaging the van Emde Boas struture is O(n log logn) in total.A CH node y is buketed on two oasions: when its parent node x is �rst visited (item 2) or when someedge (�; v), v 2 Cy is relaxed (item 1). We will atually think of the �rst kind of buketing operation as anedge relaxation too. When x is �rst visited, D(y) orresponds to a path Psy from s to y, hene buketingy aording to its D-value is tantamount to re-relaxing the last edge in Psy . We are onerned with bothkinds of edge relaxations, of whih there are no more than m+ 2n = O(m).4.3 A Lower Bound on Hagerup's AlgorithmIt is not diÆult to show that Dijkstra's algorithm is \just as hard as sorting", that is, produing the vertiesin order of their d-values is just as hard as sorting n numbers. This implies an 
(m+ n logn) lower boundon the omplexity of Dijkstra's algorithm in the omparison-addition model, and tells us that we must alterour approah or strengthen the model in order to obtain faster shortest path algorithms. In this setion wegive a similar lower bound on Hagerup's algorithm [Hag00℄ in the omparison-addition model: we show that,even given the graph's omponent hierarhy, it too requires 
(m+ n logn) operations.All CH-based algorithms satisfy the following Property:Property 1 If u; v 2 V (Cx) and d(s; v) � d(s; u) + norm(x), then u must be visited before v.A permutation of the verties is ompatible with a ertain edge-length funtion if visiting the verties inthat order does not violate Property 1. We show that there is a direted graph and a family of n
(n) distintedge-length funtions, no two of whih share a ompatible permutation. It is worth noting that this lowerbound does not extend to undireted graphs | see [PR02℄.Consider the graph depited in Figure 1. It onsists of the soure vertex s and a large strongly onnetedomponent Cx ontaining the remaining n�1 verties. The Cx subgraph is organized a little like a broom; ithas a \broom stik" of k�1 verties, whose head is w and whose tail onnets to n�k verties (the \bush"),eah of whih is onneted bak to w (in the Figure w is drawn twie to avoid rossing lines.) All theseedges have length norm(x). The soure s has one edge of length zero onneting it to w, and n � k edgesonneting it to the n�k verties in the broom's bush. Eah of these n�k edges takes on lengths of the form1Having frational intervals left over is not a problem in terms of orretness, but it does ompliate the analysis.5


