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Abstract

Many speculative microarchitectural techniques such ageeaxecution, value prediction, pipeline gating,
and others rely on a confidence estimator to predict whethgpeculative action will be beneficial. Since they
cannot achieve perfect accuracy, confidence estimators balsnce the cost of inhibiting a potentially useful
speculation with the cost of a mis-speculation. The perémece of confidence estimators with respect to these
competing costs is quantified by two values: $rec, i.e., the probability that an incorrect prediction is idéred
as low-confidence, and thHevN, i.e. the probability that a prediction identified as havilogv confidence will be
incorrect. We propose a way to allow more effective use afitdpgon control techniques by combining multiple
confidence estimators into @mposite confidence estimatofhis new class of confidence estimators provides
increased performance and finer control over the trade-efiMeenSPEc and PvN.

The main contributions of this paper are twofold. First, vesdribe techniques for building efficient composite
confidence estimators, and evaluate them with a previousigoged statistical methodology, emphasizing the
relationship of SPEC and PvN. Second, we use a detailed microarchitectural simulatoevaluate the ability
of our estimator to support an energy reduction techniquiedapipeline gating. Using previous confidence
estimators, pipeline gating reduces the amount of extrakvdore to mis-speculated instructions by 22%, with a
reduction in IPC of 5%. With the same impact on IPC, our comitgeestimators reduce extra work by 31%.

1 Introduction

As high-performance microprocessors rely more and morgoeautation to break control and data dependen-
cies, confidence estimators will play a greater role in naochitecture designs to control this speculation. Many
microarchitectural techniques proposed recently dependoafidence estimation to control speculation. Some
techniques use a confidence estimator to label a conditimaakh prediction as having low or high confidence.
For example, throttling instruction fetch when low-confide branches are in the pipeline can save the energy
wasted on mis-speculated instructions. Another exampdag®r execution, where instructions are fetched and
executed down both paths when a low-confidence branch isiatered. A third example is a technique for boost-
ing SMT performance by giving lower priority to threads exteg several low-confidence unresolved branches.

For these techniques to be effective, the accuracy of thédemte estimator must be balanced between two
measures. The first measure is predictive value of a negative estimgfvN), giving the probability that an
estimate of low confidence indicates a misprediction. Tlw®sg measure is thgpecificity(SPEQ), giving the
probability that a misprediction is estimated to have lowfaence.

Unfortunately, RN and SPEcC are inversely proportional to one another, so we must reltherflexibility and
accuracy of the confidence estimator to find the right traffleFogure 1 shows the trade-off betweere and
PvN for the gsharepredictor using a confidence estimator we introduce. As thadiillustrates, we can have
almost arbitrarily high BN if we are willing to accept a very low E=C, and vice-versa. The right trade-off
for most applications is somewhere between these extref@sinstance, with the instruction fetch throttling
example, when the W is too low, too few instructions are fetched and performasudéers. When the &=cis
too low, too many instructions are fetched and too much gnisrgzasted. In the eager execution example, if the
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Figure 1. SPEcand R/N for gshareand Composite Estimator

SPEC is too low, then not enough opportunities for eager exenudiee found. If the PN is too low, then the
optimization is invoked on the wrong branches too freqyemtasting execution bandwidth that could have been
devoted to single-threaded execution or other low-con@iddiranches.

The confidence estimation techniques proposed in existigggrch are too inflexible. They provide only coarse
control over the balance betweerNPand S EC, and they have limited accuracy.

This paper shows thatomposite confidence estimatovghich combine two or more confidence estimators,
provide a finer degree of speculation control as well as aszd levels of accuracy. We give experimental results
showing the improvements of our estimators over previoukwand illustrate the improvements with a detailed
cycle-level simulation of an energy reduction technique.

This paper makes the following contributions:

1. We describe techniques for building composite confidestienators. These new confidence estimators are
more accurate and flexible than previously proposed estisiawith little added complexity.

2. We show that the flexibility of a confidence estimator ismapartant aspect of its ability to control spec-
ulation because there is often a trade-off between competinalties of overly optimistic and overly pes-
simistic confidence estimates. A confidence estimator withde range of RN and $PEC values can be
tuned to fit a particular application or set of applications.

3. We evaluate our new confidence estimation using a statistiethodology from previous work. We then
improve on this methodology, showing that, for estimatingfadence in branch predictions, thei&t and
PvN are the most important measures of confidence estimatarpehce.

4. We use a detailed microarchitecture simulator to evaltta ability of our estimator to support an energy
reduction technique callgupeline gating Using previous confidence estimators [8] pipeline gatadyces
the amount of extra work due to mis-speculated instructmn22%, with a reduction in IPC of 5%. With
the same impact on IPC, our confidence estimators reduce gtk by 31%.

2 Background and Related Work
In this section, we review several confidence estimatiohrtegies that have been proposed previously, as well

as several applications of confidence estimators. We alsewen statistical framework, inspired by medical
diagnostic tests, in which confidence estimators are etadua



2.1 Confidence Estimation

Confidence estimators provide a level of confidence in a ptiedi In this paper, we focus on branch prediction,
so our confidence estimators provide a level of confidencevFmther or not a branch prediction is correct. We
also focus ordynamic confidence estimatpthat use run-time information to provide confidence esima

Confidence estimators are used to decide whether or notéatpkrticular action based on the confidence of a
branch prediction. The confidence estimator produces d srtegjer value we call theaw outputof the estimator.

If this value is greater than a certain threshold, then tlaadin prediction is estimated to have high confidence.
Figure 2 shows a block diagram of a dynamic confidence estitmahe structure is similar to a two-level adaptive
branch predictor [20]. The branch history and branch PC ashdd to select an entry in a table of counters,
whose exact behavior is a function of the particular confidesstimation scheme. The counter is taken as the
raw output of the estimator and compared to a staticallyradeted threshold, yielding an estimate of either high
or low confidence. As branches are predicted, the branchgwedeeds information about its success or failure
in predicting branches back to the confidence estimatorekample, a miss distance counter counts the number
of branches correctly predicted since the last mispremici®]. We choose a threshold value against which to
compare the raw output. If the counter is higher than thesttolel, then we estimate high confidence; otherwise
we estimate low confidence. Dynamic confidence estimatus ib@en suggested in recent research [9, 7, 12]. We
describe several confidence estimators in Section 3.
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Figure 2. Dynamic Confidence Estimator Block Diagram

2.2 Evaluating Confidence Estimators

Manneet al. propose a statistical methodology for studying the peréoroe of confidence estimators. We
briefly review this methodology. In this framework, a confide estimator returns one of two classifications:
High Confidence HC) or Low Confidence LC). The branch prediction itself is labeled either Correcy 6r
Incorrect (), depending on the outcome of the branch. Four importatistita are associated with confidence
estimators:

SENS. The sensitivity of a confidence estimator is defined asiS= P[HC|C], i.e., the probability that the
confidence estimator reports a correctly predicted braadtaging high confidence.



SPEC. The specificity is defined asP&@c = P[LC|I], i.e., the probability that the confidence estimator repart
incorrectly predicted branch as having low confidence.

Pvp. The predictive value of a positive estimate is defined as P- P[C|H(C], i.e., the probability that a
prediction estimated to have high confidence is correct.

PVN. The predictive value of a negative estimate is definecdvas 2 P[I|LC], i.e., the probability that a predic-
tion estimated to have low confidence is incorrect.

Dynamic confidence estimators based on comparing a raw toatputhreshold can be tuned to yield different
SENS, SPEC, PvP, or PvN values. For the applications mentioned above, having a &iglt and R/N is impor-
tant. For instance, for branch inversion, theNPmust be abov% or it would not make sense to invert predictions
with low confidence since we would not be able to say that theyreore likely wrong than not. For applications
such as branch inversion and eager execution, there is ginevalue for the threshold: that which yields the
highest performance.

For an application such as energy reduction, where soms phthe pipeline are throttled depending on the
confidence values of branches in the pipeline, the issuawnare subtle. In this case, we would like a confidence
estimator capable of providing a wide range ofNPand SPEC values, since we want to find the right balance
between saving energy and decreasing performance. Whepatmm dynamic confidence estimators as the
threshold is varied, Mannet al. emphasize the relationship ovP and R/N. However, since a high\® is
relatively easy to achieve and unimportant to several dpton techniques, we believe that emphasizing the
relationship of RN and S EcCis a better approach. Our results in Section 4 reflect thisongnl methodology.

2.3 Applications of Confidence Estimation

Researchers are increasingly relying on confidence estim@tboost performance and save energy in proposed
future micro architectures. We review some of these apphics.

Energy reduction. Grunwald and Manne introduced the technique of pipelinengahat uses a confidence
estimator to reduce the energy wasted processing wrotgimsttuctions [8]. When there are more than a certain
number of low-confidence branches in the pipeline, certgpelipe stages are “gated” or stalled, rather than
wasting energy processing instructions that will be sgedsithen a misprediction is revealed. Baniasadi and
Moshovos extend this work to consider other instruction flofermation when deciding whether and how much
to throttle instruction fetch [2]. For energy reduction, meed a confidence estimator with a highnPto avoid

an adverse impact on performance when too many branchekas#ied as low confidence. We also need a high
SPEC so that enough opportunities for energy reduction can betifiked.

Load value prediction. As with branch outcomes, load values have a great deal ofamdiyuthat can be ex-
ploited to improve performance [14]. Load value predictoas hide the latency of loads from memory. The
decision of whether to predict a value or wait for the load emplete is made by a confidence estimator. Li-
pastiet al. suggest a simple confidence estimator that classifies Iaa@sedictable, unpredictable, or almost
predictable [14]. Burtscher and Zorn use profile based centid estimators for load value prediction [5]. A
mispredicted value has much the same effect as a mispredictech. Once the mis-speculated value can be
compared with the actual value, all of the instructions ttggiended on the prediction have to be squashed and
re-executed with the correct value. A highPand SENS makes sure that value prediction is applied when it is
likely to be profitable. A high PN suppresses value prediction when it suspects a misp@dictihile a high
SPEC makes sure that the decision to suppress value predictisrtheaight thing to do.



Eager execution. Branch mispredictions impose a steep penalty on perforenadoe way to avoid this penalty

is to fetch and execute instructions from both directions difranch until the branch is resolved. The proces-
sor executes several threads in parallel, spawning thi@aoisanches and killing threads when the branches are
resolved. This idea, in various forms, is known as eagerwi@t[19, 13] and dual-path execution [6]. Since
execution resources are limited, eager execution is cesdrio branches with low confidence. If a low-confidence
branch is fetched while the processor is already executinigpte threads, spawning yet another thread may not
be feasible. Thus, a confidence estimator must be consultddcide when to execute both paths leading from
a branch. A high 8ec would enable eager execution for most of the mispredicteddires, while a high\w
would ensure that eager execution is exercised only whemieded.

Boosting SMT Performance. Confidence estimators can be used to control the trade-tffdem speculation
and simultaneous multithreading (SMT). Leb al. propose a scheme for selecting instructions from various
running threads based on the number of low-confidence umessbranches they each have in the pipeline [15].
A thread with many low-confidence branches is given a lowmrity, since instructions issued from that thread
may be mis-speculations and will not contribute to the fadygrogress of the program. Once the low-confidence
branches have resolved, the priority of the thread is irsg@a This scheme requires a highe® so that many
opportunities for this optimization are exposed, and a gk to ensure that threads are only given a lower
priority when they really are more likely to be mis-specingt

Increasing Branch Predictor Accuracy. Under certain circumstances, a confidence estimator magaiteda
high probability that a branch prediction is incorrect. Hist probability is over 50%, it makes sense to invert the
branch prediction. This technique is knownkaanch inversion12] or branch prediction reversdll]. For this
technique to work, it is essential that theNPbe greater than 0.5. We also need tireSto be high so that enough
incorrect predictions can be inverted to have a significiiateon performance.

3 Composite Confidence Estimators

In this section, we describe our technique for combinindgiidemce estimators. We discuss our technique in an
abstract sense, then describe several composite confidsticators and branch predictors.

3.1 Combining Confidence Estimators

Confidence estimation is the task of classifying a branchaain either high or low confidence. Such a
classifier produces araw output that is roughly proportiamtne probability that the branch is correct. A threshold
is applied to this value to make the final classification. €reme several techniques in the statistical and machine
learning literature for combining classifiers for improwacturacy [18]. One of the simplest is to find the sum of
the outputs of each classifier, then apply a threshold tostinaitto make the classification. We use this technique
for combining the outputs values of several confidence estim. The resulting combination, along with an
appropriately chosen threshold value, is@nposite confidence estimatoFigure 3 shows the structure of a
composite confidence estimator. Several confidence estimate assembled into a single estimator by adding
their respective raw outputs, which is then compared wittatically selected threshold.

3.2 Branch Predictors
Before describing the various confidence estimators, mgoirtant to discuss the branch predictors for which

we are assigning confidence. We choose three branch pnediacion the literature for our evaluation of composite
confidence estimators. Confidence estimation becomesrhasdée branch predictor’'s accuracy improves [7].
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Figure 3. Composite Confidence Estimator Block Diagram

Thus, we choose a use a generous but realistic hardwaretliodggesure that our results are conservative. Each of
the predictors is allocated approximately four kilobytéstate, which is equivalent in size to the branch predictor

in the Alpha 21264 [11], which, as of this writing, is the lagj documented branch predictor in an existing

microarchitecture.

Gshare. Based on the idea of two-level adaptive branch predicti@j, [@shareindexes a pattern history table
(PHT) of two-bit saturating counter with the exclusive-ORaglobal history shift register and the branch program
counter [16]. The high bit of the corresponding counter ketaas the prediction. A value of 1 megmedict
taken while 0 meangredict not takenWhen a branch is executed, the history register and bra@Gchr® again
combined and used to index the PHT. The corresponding coisiiacremented if the branch was taken, or
decremented otherwise. The outcome of the branch is shiftedhe history register, which records a 1 faken
and 0 fornot taken We model agsharepredictor with 16K entries.

Hybrid Predictor. Hybrid predictors combine two or more branch predictorsncrease accuracy. We use a
McFarling-style hybrid predictor [16] of the type implemnied for the Alpha 21264 [11]. This predictor uses two
branch prediction components: a 4K-entry GAg [21] predicgtdexed by a global history shift register, and a 1K-
entry PAg predictor, indexed by one of 1024 per-branch i®uktory shift registers, combined with a 4K-entry
chooser table. The PHT for the GAg predictor consists of bitgaturating counters, while the PHT for the PAg
component contains three-bit saturating counters.

Perceptron Predictor. As an alternative to branch predictors based on saturabogters, we evaluate com-
posite confidence estimators with therceptron predictgra branch predictor based on neural learning [10]. The
predictor uses the branch PC to index a table of perceptwhigh are vectors of small integer weights. The
predictor computes the dot-product of the weights vectar aglobal branch history shift register, producing a
signed integer value. If the value is at least 0, the branphedicted to be taken, otherwise it is predicted not to be
taken. Perceptron learning is used to update the weightervebien the magnitude of the dot-product value does
not exceed a certain threshold, or when the prediction wasriact. To update the perceptron, the elements of the
weights vector are incremented or decremented dependimghether there was positive or negative correlation,
respectively, between the corresponding bit in the histegjster and the branch outcome. One interesting aspect
of this predictor is that the dot-product output is highlyretated with the probability that the branch is taken.
Thus, this value has the potential to be used as the basisooiffidence estimator [10].

As branch predictors become more accurate, confidenceat&tims harder because there are fewer mispre-
dictions. Figure 4 shows the misprediction rates of the dhigoredictors simulated on the SPEC 2000 integer
benchmarks, as well as the harmonic mean misprediction rate
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Figure 4. Misprediction Rates of Branch Predictors Simulated

3.3 Confidence Estimators

In this section, we describe several predictors from tieediure that we use as the elements of our composite
confidence estimators.

Enhanced JRS Estimator. Jacobseret al. describe a confidence estimator based on counting the nushber
branch predictions made since a misprediction [9]. A talbieiss distance counters (MDCSs) is indexed by some
combination of branch history and branch PC, much as in aléwel-branch predictor. The raw output of the
estimator is the MDC value from the table. The branch is kdbels high confidence if the raw output is above
a statically determined threshold. Grunwaldal. call this confidence estimator a JRS estimator after thialsit

of the authors of the original paper describing its use arstrifte an enhanced version that updates the history
register with the branch prediction in question before irgithe MDC. This enhanced JRS estimator is shown to
strictly outperform the earlier version [7], so we use itlestely. We use four-bit counters for the MDC registers.
We find no additional benefit from increasing this width.

Up/Down Counter Estimator. Klauseret al. introduce the use afip/downcounters for confidence estima-
tion [12]. This scheme is similar to the JRS estimator, btlieathan resetting the counter on a misprediction,
the counter is decremented. Thus, the counter recorddydatiort term, an approximation of the number of cor-
rect predictions for a particular combination of branch @ history. Klauseet al. explore using only two-bit
counters, but we have found additional benefit by using fasr b

Self-Estimator. Most branch prediction schemes already have a confidenogagst built-in for free: the values
of the saturating counter used to make the prediction. Ihuatsdn where two-bit counters are used, we would
expect a counter value of 3 to have higher confidence tharua @R, since a value of 2 indicates more variability
for the corresponding combination of branch PC and histdfrgr a PHT-based scheme withbit saturating
counters, if a branch is predicted based on the valofea counter, we compute a valdefor the raw output such
that:

A if the branch is predicted taken
©T) 2" —c—1 ifthe branchis predicted not taken

We then estimate high confidencedsis at least some threshold. For the McFarling hybrid predicive
compute the sum of the corresponditigalues for the component GAg and PAg predictors, and appiyeshold.

7



Parameter Configuration
L1 I-cache 64KB
L1 D-cache 64KB
L2 cache 1024KB
BTB | 512 entry, 2-way set-assoc.
Issue width 8
Pipeline Depth 7

Table 1. Parameters Used for the Simulations

For the perceptron predictor, we use the magnitude of the@ebatuct value, scaled by simple shifting so that it is
between 0 and 15, then apply a threshold. For PHT-basedcpres]i Grunwaldet al. call this sort of confidence
estimator ssaturating counters estimatoand also explore a confidence estimator based on whetheobetther
component predictors of a hybrid predictor have high confiéd7].

4 Experimental Results

In this section, we evaluate several composite confidentibmagsrs. We begin by reporting statistics on the
performance of our new composite confidence estimators amdpwith previous work. This comparison takes
place with respect to three branch predictors with increasevels of accuracy. When then give results on an
application of confidence estimation for an energy-savehhique, again showing results as we change the
underlying branch predictor.

4.1 Methodology

We use the 12 SPEC 2000 integer benchmarks running undeteSogtar/Alpha [4] to evaluate our confidence
estimators. To better capture the steady-state perforenagltavior of the programs, our evaluation runs skip the
first 500 million instructions, as several of the benchmdr&ge an initialization period (lasting fewer than 500
million instructions), during which branch prediction acacy is unusually high. Each benchmark executes at
least 300 million branches and over one billion instruction ther ef inputs before the simulation ends. Table 1
shows the microarchitectural parameters used for the aiiouok.

Branch history shift register length has been observedye haignificant impact on predictor accuracy [16],
so for gsharewe try all possible history lengths on the ai n inputs and keep the one with the lowest average
misprediction accuracy. For the perceptron and McFarliregligtors, we use configurations reported for the
corresponding hardware budget in the literature [11, 10].

4.2 Confidence Estimators Simulated

We simulate the enhanced JRS (hereafter, simply JRS) aridloyjo’ confidence estimators, each using tables
of 1024 4-bit counters and indexed using the method destiib8ection 3.3, consuming a small hardware budget
of 512 bytes. We simulate the self-estimators of each branetiictor. We also simulate the following composite
confidence estimators:

JRS + Up/Down. This estimator uses 512 4-bit miss distancateos and 512 4-bit Up/Down counters. Each
table is indexed using the method described in Section $i8.raw output of the estimator is the sum of the
indexed counters from each table.

JRS + Self. This estimator uses JRS estimator with 1024 eaunthe raw output is the sum of the raw outputs
of the JRS estimator and the self-estimator.



Up/Down + Self. This estimator uses an Up/Down estimatoh24 counters. The raw output is the sum of
the raw outputs of the Up/Down estimator and the self-egtima

JRS + Up/Down + Self. This estimator adds the raw output o8 + Up/Down estimator to the raw output of
the self-estimator.

4.3 Statistical Results

We report statistics for the entire range of threshold \&foe each confidence estimator and branch predictor.
We examine plots of these statistics using techniques fn@viquis work, then look at improved plots that yield
more information.

4.3.1 PvpPvs. PvN

We begin with the same statistical evaluation given in otherk [7]. Without having a particular application in
mind, we can consider one confidence estimator to be betarahother if it has highervi and R/p values.
Figure 5 shows a graph withvP plotted against N for several of the confidence estimators. From this graph, we
see that the individual JRS and Up/Down estimators havePvghand R/N values compared with the composite
Up/Down + JRS estimator, but the composite estimator haslarwange of PP and R/N values, making it more
flexible.

0.8
-»- Up/Down Estimator
X, -+-- JRS Estimator

—s=— Composite Up/Down + JRS
0.6

PVN

0.4+

PVP

Figure 5. Pvp vs. PN for gshare

4.3.2 Distribution of Confidence Estimates

The performance of a confidence estimator cannot be sumendasiith a single type of statistic. For instance, for
many optimizations it is important for the confidence estom#&o have a high #N. However, it is meaningless
to say that a confidence estimator has a higii Rnd high R’p without also discussing thePg&c value. The
predictive value of a negative (i.e. low-confidence) estanmtan be made almost arbitrarily high if we allow many
false positives, i.e., if the#Ecis low. Moreover, since branch predictors generally hagh laiccuracy, it is easy
to achieve a high ¥p. Note the small range of® values in Figure 5.

To illustrate the nature of this problem, Figure 6 shows #&himm of the cumulative percentagegshare
predicted branches estimated to have low confidence fomgtkiresholds. For the each estimator, as the thresh-
old is increased, more branches are estimated to have Idideooe. The JRS estimator overestimates the number
of mispredicted branches, consistently labeling many rosaches as having low confidence for each threshold



value. The Up/Down estimator underestimates mispredistitabeling many fewer branches as having low con-
fidence. The composite JRS + Up/Down estimator strikes anbalhetween the two. From this histogram we
cannot directly infer that the composite estimator is lvétian the other two, but we see the potential for a more
even-handed distribution of confidence estimates.
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Figure 6. Distribution of Confidence Estimates

4.3.3 PVN vs. SPEC

To get a more informative comparison of confidence estirsatee must comparev® with SPec. Both of these
values are important for many applications that use confielestimation when deciding whether to take an action,
such as pipeline gating or eager execution. We need a highsP that we do not needlessly take the action, and
we need a high Sec so that we have ample opportunity to take the action wherepBopriate.

Figure 7 shows a plot of ther&c values of several confidence estimatorsdehareagainst their respective
PvN values for the entire range of feasible thresholds. Higlaéwes in both the:- andy-axes are better. From
the graph, we can see that both the JRS and Up/Down estinaatobetter than the composite, but only in certain
narrow and mutually exclusive ranges. The composite JRS /Baipn estimator has slightly lowervR and
SPEC, but covers a much wider range of values. Thus, the compesiimator is likely to be more appropriate
for an application that requires flexibility in the confiderestimator. In Section 5, we give an example of such an
application.

0.8-]
-»-Up/Down Estimator
. -+ JRS Estimator

—=— Composite Up/Down + JRS
0.6

PVN

0.4+

SPEC

Figure 7. SPECvs. PvN for gshare
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4.3.4 Other Branch Predictors

Thus far, we have only applied composite confidence estimadothegsharebranch predictor. However, many
other branch predictors with better accuracies have bemoped and implemented. We evaluate our confidence
estimators with the McFarling hybrid predictor and the petoon predictor. As we observed in Section 4.2, both
of these predictors have robust self-estimators, i.e ptédictor’s internal state can produce a raw output capable
of generating a confidence estimate.

Figure 8 shows a graph oP&cvs. PvN for the perceptron predictor. As we observed previouslystrare the
JRS and Up/Down estimators separately have highecc@nd R/N than the composite JRS + Up/Down estimator
in specific areas. However, when we add the self-estimatorttire raw output, the composite JRS + Up/Down +
Self estimator has higherr&cand R/N than any of the other estimators at all threshold values.

- Up/Down Estimator

-+-- JRS Estimator

—=— Composite Up/Down + JRS

-+- Composite Up/Down + JRS + Self

0.6+

PVN

0.4+

0.2+

02 04 0.6 0.8
SPEC

Figure 8. SPECvs. PN for a Perceptron Predictor

Figure 9 shows a graph oP&cvs. PvN for the McFarling-style hybrid predictor. At some pointsettcombined
JRS + Up/Down + Self estimator is more accurate than the @stmators. Again, both composite estimators
have wider ranges than the individual estimators.

-»--Up/Down Estimator

& -+-- JRS Estimator

—=— Composite Up/Down + JRS
--+--Composite Up/Down + JRS + Self

0.6+

PVN

0.4+

0.2

Figure 9. SPECvVs. PvN for a McFarling Hybrid Predictor

5 Application of Composite Confidence Estimators

Although we can use statistical measures suchrsc@nd P/N to evaluate new confidence estimators, the
best way to compare confidence estimators is to use them ip@ication. In this section, we give results of a

11



detailed cycle-level simulation of an energy reductionraation using composite confidence estimators.
5.1 Pipeline Gating for Energy Reduction

Manneet al. propose a technique called pipeline gating for reducingetiergy demands of high performance
processors without significantly reducing performance T8je idea is to control rampant speculation by using a
confidence estimator to throttle various stages of the ipipethen several unresolved branches with low confi-
dence are in-flight. When a branch misprediction seems immjiit does not make sense to waste energy by con-
tinuing to fetch and execute instructions whose resultdileey to be thrown away. Other research has proposed
similar energy reduction techniques [2], and a similar namitm is used in G3 and G4 PowerPC processors [17]
to trigger instruction fetch throttling when temperatureeeds a certain threshold.

We simulate a form of pipeline gating using our confidencaregbrs. We modify SimpleScalar/Alpha to
cease instruction fetch when there are three or more unezsdranches with low confidence. Instruction fetch
continues when enough branches have resolved so that tteefewaer than three unresolved branches with low
confidence. Mannet al. find that gating with three low-confidence branches yielashbst energy reduction.
Having tried other values, we reach the same conclusion.iMvidate pipeline gating with all threshold values for
each confidence estimator. Note that there is no “best” tlotdssalue. Since the threshold controls the trade-off
between energy and performance, the choice of thresholddsbe made to fit the particular application.

5.1.1 Reduction in Extra Work

The goal of pipeline gating is to eliminate as much needleskas possible. We measure this extra work as the
number of useless instructions per cycle, i.e., the avenageer of all executed instructions minus the number of
committed (i.e., useful) instructions per cycle. Figuresh@ws a graph of the decrease in performance incurred
by pipeline gating plotted against the decrease in the amofuharmonic mean extra work when the branch
predictor isgshare Each point on the curves in the graph represents a difféhesghold value for the confidence
estimator. Depending on the energy constraints, a midndant may choose to set the threshold low, for higher
performance, or high, for higher energy savings. The grapkws the performance of two confidence estimators:
the JRS estimator used in the original pipeline gating w8ikahd a composite estimator combining JRS and the
Up/Down estimator. With a decrease in IPC of 2.4%, the JRig&a#tr is able to eliminate 11.7% of the extra
instructions. With the same decrease in IPC, the compositma&tor eliminates 18.7% of the extra instructions.
At each point on the graph, the composite estimator provifeater energy savings for the same impact on
performance. Note that, although we tried every possibstiold value for each confidence estimator, the graphs
only show those for which the percentage decrease in IPC ésnarrow range that we believe is acceptable.
Notice also that the amount of extra work decreases almosbtanically with the decrease in IPC, although for
some threshold values there is a slight relative increaienover the previous threshold value. This is because
pipeline gating sometimes actually helps performance lgvieg contention for execution resources caused by
mis-speculated instructions.

Figure 11 compares the performance of the same two confidestireators whegshareis replaced by a Mc-
Farling hybrid branch predictor. This graph also shows #régpmance of a third composite confidence estimator
that uses the internal state of the branch predictor as walhaxternal confidence estimator. We learn two impor-
tant facts from this graph. First, both composite estinsmtmhieve greater energy savings for the same reduction
in IPC than baseline JRS estimator. Second, by adding thes@hator for the hybrid predictor, we increase the
range over which we can trade off changes between energyafapance. For instance, with a 0.5% decrease
in IPC, the JRS + Up/Down + Self estimator yields a 7.1% desgréa the amount of extra work performed. This
level of fine-tuning is simply not available with the othetiemtors. With the lowest possible thresholds, we must
still sacrifice 1% of IPC to achieve any energy savings.

12



40+

-+ JRS Estimator
304 —=— Composite Up/Down + JRS

20

10

Percentage Decrease in Extra Work

T T T 1

0 1 2 3 4 5
Percentage Decrease in IPC

Figure 10. Decrease in Performance vs. Decrease in Extra Worgdbare

404 -+ JRS Estimator
—=— Composite Up/Down + JRS
-+- Composite Up/Down + JRS + Self

30
204

104 S

Percentage Decrease in Extra Work

0 T T T 1
0 1 2 3 4

Percentage Decrease in IPC
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Figure 12 shows a plot of the decrease in IPC against the a®zia extra work for the perceptron predictor.
The perceptron predictor is the most accurate of the thraechrpredictors simulated, and thus presents the most
difficult situation from which to extract energy savingsrfr@avoiding useless work. Still, composite confidence
estimators are able to provide a wide range of IPC vs. enemgyngs. The lowest threshold JRS estimator
yields a decrease of 13.1% in extra work, at a cost of a 3.4%HdRC. The composite JRS + Up/Down + Self
estimator, now using the scaled perceptron output as a avempoachieves a greater savings of 16.5%, with a
smaller performance penalty of only 2.6%. Furthermore, JR8 + Up/Down + Self estimator provides a much
wider range of energy savings than either the JRS or JRS +di@stimators, allowing more fine-tuning of the
pipeline gating technigue. Note that the perceptron slfr@tor provides a modest savings in energy without the
extra hardware of a composite estimator.
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Figure 12. Decrease in Performance vs. Decrease in Extra Work for peocePredictor

The potential for energy reduction is due to the number ofspiculated instructions executed per cycle.
Figure 13 shows the number of mis-speculated instructi@nscycle for each benchmark using the perceptron
predictor. The base case of no pipeline gating is shown, #sawéhe results for three confidence estimators that
each reduce IPC by at most 5%. FA®7. par ser, 2.0 instructions are wasted on each cycle in the base case.
With the JRS estimator, only 1.19 extra instructions aret&hper cycle, a reduction of 40% over the base case.
The composite JRS + Up/Down estimator reduces the numberss§peculated instructions by 50% to 1.0 per
cycle.
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Figure 13. Extra Instructions per Cycle, Perceptron Predictor
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5.2 Implementation

One concern when considering a new hardware mechanism ¢®#tén terms of transistors and power. The
additional cost of our new confidence estimators is minifat.each confidence estimator that we have studied in
this paper, the hardware budget does not exceed 512 byt&AdSSince we suggest that our designs can be used
with an energy saving technique, it is important to note thatadditional hardware itself will contribute a small
amount to the energy requirements of the processor. Toge@arspective, we used the Wattch microarchitecture
simulator to gather statistics on power [3]. Using this tewé find that a hybrid branch direction predictor (i.e.,
not including the BTB) with twice the hardware budget of oanfidence estimators consumes a negligible 0.32%
of the total power of the simulated microprocessor. The roosiplex of our designs adds two 5-bit adders to this
budget.

6 Conclusions

Confidence estimation is a microarchitectural techniqa émhances speculation by predicting whether the
speculation will be useful. Composite confidence estinsat@ploit the best characteristics of multiple confidence
estimators to provide enhanced control over speculatioomdsite confidence estimators are able to achieve
high degrees of accuracy even when misprediction rate®araihlike previously proposed estimators. We have
shown that our new estimators are able to give a wider rangmmifol over the trade-off betweerrSc and
PvN as well as increased accuracy in both dimensions. Usingle-taxel microarchitectural simulator, we have
shown how our new estimators enable pipeline gating to eleiivore levels of energy savings with less sacrifice
in performance. The implications of this and other work imfidence estimation reach far beyond a single
application. For future work, we plan on more fully explayithe space of composite confidence estimators as
well as measuring the performance of confidence estimatiinsrespect to a wide variety of microarchitectural
applications.
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