
Data Abstra
tion for Cy
le Intensive ProgramsNatasha Sharygina and James C. BrowneThe University of Texas at Austin,Austin, TX, USA 78712natali,browne�
s.utexas.eduAbstra
t. This paper reports on the design, implementation and evaluationof a data abstra
tion algorithm whi
h is e�e
tive in redu
ing the
omplex-ity of model-
he
king for
ontrol properties of
y
le intensive programs. Theredu
tion te
hnique performs a transformation of a "
on
rete", possibly in-�nite state, program by means of a synta
ti
 program transformation thatresults in an "abstra
t" program that when model-
he
ked provides
om-plete but minimal
overage of
y
li
 exe
ution paths. We demonstrate thatthe algorithm is
orre
t in that the "abstra
t" program is a
onservativeapproximation of the "
on
rete" program with respe
t to the
ontrol spe
-i�
ations of the program. The
y
le abstra
tion has been implemented inthe integrated xUML design, testing and formal veri�
ation software devel-opment environment. We use as a
ase study a NASA robot
ontrol systemand report on substantial redu
tion in both time and spa
e for the abstra
tmodel
ompared to the
on
rete model.Keywords: Model Che
king Software, Data Abstra
tion, Integrated Soft-ware Design, Testing and Veri�
ation1 Introdu
tionIt is widely believed that e�e
tive model-
he
king of software systems
ould produ
emajor enhan
ement in software reliability and robustness. But the e�e
tiveness ofmodel-
he
king of software systems is severely
onstrained by the state spa
e ex-plosion problem. One prin
ipal method in state spa
e redu
tion of software systemsis abstra
tion. Abstra
tion te
hniques redu
e the program state spa
e by mappingthe set of data states of the a
tual system to an abstra
t set of states that preservethe behaviors of the a
tual system. Abstra
tion is widely used and it has been ex-plored by a number of resear
hers [4, 6, 13, 14, 16℄. Abstra
tions introdu
e unrealisti
behaviors into the spe
i�
ation of the programs. Intelligent re�nements of the ab-stra
ted programs are required to avoid false negative results from model-
he
king.This paper reports on the design, implementation and evaluation of a data ab-stra
tion algorithm that automates an abstra
tion pro
ess of
y
le intensive systems.The algorithm given here performs a transformation of a "
on
rete", possibly in�-nite state, program by means of a synta
ti
 program transformation that results inan "abstra
t" program whi
h when model-
he
ked provides
omplete but minimal
overage of program exe
ution paths. Given a
ontrol stru
ture for a program, the
y
le abstra
tion algorithm iteratively
omputes the number of possible outputs of

2 Natasha Sharygina and James C. Browneea
h
ontrol
ow statement of the program that e�e
ts the
y
le
ontrol
ow. The
onditional expressions of ea
h
y
le
ontrol
ow statement are repla
ed with an ex-pression over a single variable with a value non-deterministi
ally
hosen in the range(1,number of
ontrol outputs of
y
le
ontrol
ow statement). This is a
hieved bya synta
ti
 analysis that does not
onstru
t the expli
it transition graph either ofthe original or of the abstra
t program, ea
h of whi
h may be too large to
ompute.Generation of all original
ontrol
ows is assured by fairness
onstraints spe
i�edas assumptions on the values of the
y
le
ow statement variables of the abstra
tprogram.We demonstrate that the algorithm is
orre
t in that the "abstra
t" program isa
onservative approximation of the "
on
rete" program with respe
t to the
ontrolspe
i�
ations of the program. The
orre
tness result implies that a
ontrol spe
i�-
ation holds for the original program if it holds for the abstra
t program.The
y
le abstra
tion algorithm has several advantages:- it is a sele
tive and targeted abstra
tion whi
h introdu
es few unrealisti
 be-haviors requiring re�nement.- it applies at the design level for software systems.- it is based on synta
ti
 manipulation of expressions, and produ
es a redu
edprogram and therefore, it
an be applied without
hange to the veri�
ation tool orthe veri�
ation algorithm. This enables integration with existing tools at a low
ost.- it produ
es a synta
ti
 representation of the abstra
t program and thus othermodel-
he
king state spa
e redu
tion te
hniques, su
h as symboli
 model-
he
kingand partial order redu
tion,
an be applied to the abstra
t program.The
y
le abstra
tion algorithmhas been evaluated during veri�
ation of a NASArobot
ontroller. It has been found to give order of magnitude redu
tion in the
omplexity and
omputational resour
e requirements for model-
he
king of
ontrolproperties of a robot
ontrol system. Moreover, it enabled model-
he
king of
ontrolproperties for 5 and 6 joint robot arms whi
h had previously been intra
table withavailable
omputational resour
es.Contents of Paper. Se
tion 2 de�nes the problem of model-
he
king of
y
li
programs. Se
tions 3 - 5 de�ne syntax and semanti
s of the
ontrol software systems.Se
tion 6 de�nes the
y
le abstra
tion and demonstrates its soundness. Se
tion 7des
ribes an implementation of the
y
le abstra
tion algorithm in the framework ofintegrated software design and model-
he
king. The e�e
tiveness of
y
le abstra
tionis demonstrated in Se
tion 8 that shows the veri�
ation results of the NASA robot
ontroller system. Se
tion 9
on
ludes the paper and positions the
y
le abstra
tionwith respe
t to the existing abstra
tion te
hniques.2 Model Che
king of Cy
li
 ProgramsThe
ontrol
ow graphs and the exe
ution behaviors of
ontrol software systemsare typi
ally dominated by
y
les implementing feedba
k loops. The stru
ture ofthe
ontrol
ow graph is usually determined by a small set of variables (
ontrol
ow variables). The
y
li
 paths in the
ontrol
ow graph are usually determinedby
onditional statements (guards) whi
h depend on a subset of the
ontrol
ow

Data Abstra
tion for Cy
le Intensive Programs 3variables (
y
le
ow variables). Model
he
king of su
h systems generates a traversalof the
y
les in the
ontrol
ow graph for ea
h possible value of ea
h
y
le
owvariable in the
onditional statements whi
h determine the
y
les. Ea
h traversalof the
y
le with di�erent values of the
y
le
ow variables is distin
t in the stategraph of the
ontrol system. Additionally ea
h traversal of a
y
le will typi
ally havedi�erent values for many variables whi
h do not determine paths in the
ontrol
owgraph. Let us
all su
h variables, "don't
are" variables. Ea
h exe
ution of a
y
lewith di�erent values for "don't
are" variables is also distin
t in the state graph ofthe exe
uting system and therefore enlarges the state spa
e for model
he
king theprogram.Many
ontrol
ow properties are dependent only on the stati

ontrol
ow graphof the system and are independent of the number of traversals of the
y
les of the
ontrol
ow graph. Su
h
ontrol
ow properties of a system
an be veri�ed by model
he
king of an abstra
ted program whi
h has the same stati

ontrol
ow graph asthe original (
on
rete) program.3 Programming Model for Control Software SystemsControl software systems are often
onstru
ted as
ompositions of sequential pro-grams whi
h intera
t through sending of messages or events. We
an, without lossof generality, assume that ea
h program is
omprised of single entry blo
ks [9℄.De�nition 1 [Single Entry Blo
k℄: A single entry (or basi
) blo
k is asequen
e of statements whi
h
an be entered only at the statement whi
h is at thehead of the blo
k and whi
h, when initiated always runs to
ompletion. For simpli
ityfrom now on we refer to a single entry blo
k as an atom.Ea
h program has a FIFO queue for re
eiving messages (events). Ea
h atomof a sequential program is enabled for exe
ution by arrival of a spe
i�
 message(event). Exe
ution of an atom may result in sending a message(s) to the program
ontaining the exe
uting atom or some other sequential program. All
ontrol
ow,both
ontrol
ow among the atoms internal to a program and among programs, ismessage (event) driven. Ea
h "send message" statement is
on
eptually the a
tionof a guarded
ommand over some (
ontrol
ow) variables.De�nition 2 [Program℄: A sequential program is de�ned as follows:SeqPro
 ! Pro
; terminate,where Pro
 is de�ned by
ommands1:simple
ommands: x := exp j x := f exp1,...,expn g j
ompound
ommands:Pro
1,Pro
2 j if B then Pro
1 else pro
2 � j while B do Pro
1 od j
ommuni
ation
ommands:1 For the
omplete list of the
ommands see [19℄

4 Natasha Sharygina and James C. Browne'Generate(ID,exp)' j 'Re
eive(ID,x)' .In the above de�nitions x is a program variable, expi are expressions over pro-gram variables, and B is a boolean
ondition, and ID is the name of the eventdestination program. The statement x = f exp1,...,expn g is a non-deterministi
assignment, after whi
h x will
ontain the value of one of the expressions exp1,...,expn.Events generated during the exe
ution of an atom are the outputs. In the
ase ifseveral output events are guarded by the same guard the
orresponding outputs arede�ned as sets of events, one output per bran
h of the guard.De�nition 3 [Output℄: An output of an atom is an event or a sequen
e ofevents for non-guarded or guarded generation of multiple events respe
tively.Ea
h output guard
an be
omposed of nested
onditional statements whi
hde�ne di�erent outputs.The exe
ution model for a sequential program is: a) A message arrives in theinput queue of a sequential program and some atom of the program is enabledfor exe
ution in "run to
ompletion" mode. b) The enabled atom is exe
uted.
)Exe
ution of an atom may result in messages being sent to the pro
ess
ontainingthe exe
uting atom or to other programs. d) At the end of the exe
ution of a singleentry blo
k the program halts and awaits arrival of its next message.De�nition 4 [System℄: A system is a parallel
omposition of sequentail pro-grams. Ea
h program has its own read-shared lo
al variables and events. In generalterms a programming system, P, is de�ned as a set of variables, X, and a set ofevents, E, an initial
ondition, I, a set of atoms, A, that
ontain
ommands thatmodify the program variables, and send and re
eive events, P = (X,E,I,A).The exe
ution model for the system is asyn
hronous interleaved exe
ution ofthe atoms of the sequential programs. a) One program from among those whi
h areenabled for exe
ution (those programs with events in their input queues) is randomlysele
ted for exe
ution. b) The atom in the sele
ted program whi
h
onsumes theevent at the head of the event queue is exe
uted and step a is repeated.De�nition 5 [Control Flow Graph of the System℄: The nodes of the
ontrol
ow graph of the system are statements of the sequential programs from whi
h thesystem is
omposed. The ar
s of the
ontrol
ow graph of the system
onne
t ea
hstatement with its prede
essor and su

essor in the exe
ution of the system.Most
ontrol properties
an be and are stated in terms of
ontrol at the singleentry blo
k (atom) level.De�nition 6 [Atom Control Flow Graph℄: The nodes of the atom
ontrol
ow graph of the system are atoms of the
omposing sequential programs. The ar
sof the
ontrol
ow graph of the system
onne
t atoms whi
h are the sour
es andtargets for events. Therefore a
ontrol
ow graph
an also be spe
i�ed as generationand
onsumption of a sequen
e of events.De�nition 7 [Cy
le in an Atom Control Flow Graph℄: A
y
le in an atom
ontrol
ow graph of a system is repeated exe
ution of a path whi
h begins with thegeneration of a unique event by an atom and ends at that same atom (
y
li
 atom).We refer to the sequen
es of events that are repetitively exe
uted, as redundantwith respe
t to the veri�
ation of
ontrol properties.

Data Abstra
tion for Cy
le Intensive Programs 5Ea
h
y
le is
ontrolled by a set of output guards that
onsists of the outputguards of the
y
li
 atom and their dependen
e set. Let us
all the variables of theoutput guards that de�ne the
y
le,
y
le
ow variables.An algorithm whi
h
onstru
ts an abstra
t system with the same atom
ontrol
ow graph as the original system is given in Se
tion 6. The algorithm is a sour
e tosour
e transformation of the atoms whi
h preserves all of the outputs of exe
utionof the atoms.4 xUML - An Instan
e of the Programming SystemxUML [23℄ is an instantiation of the programming model des
ribed above. xUMLis a diale
t of UML with exe
utable semanti
s. Programs written in xUML aredesign level representations whi
h
an be exe
uted dire
tly through dis
rete eventsimulation or interpretation and/or
ompiled to pro
edural sour
e
ode. xUML isfairly widely used for development of
ontrol systems [11, 17, 19℄.An xUML program is a set of intera
ting obje
ts. The behavior of ea
h obje
tis implemented as a Moore state ma
hine with a bounded FIFO input queue forevents. The obje
ts intera
t by sending and re
eiving events. Ea
h state of the statema
hine whi
h
an re
eive an event is given a unique label. A sequential a
tionis asso
iated with ea
h labeled state. Ea
h a
tion assigns values to state variablesand generates events to be posted to its own input queue or the input queues ofother state ma
hines. The a
tions exe
ute in run to
ompletion mode. The a
tionlanguage for the implementation of xUML that we are using is a C-based languageextended by the event generation and state ma
hines manipulation
ommands. Itsupports standard C types for de
laration of the system variables, nondeteministi
(iuniform) and
onditional (if-then-else/while) variable assignments, and arrays andenumerated types. Ea
h state ma
hine has a state labeling variable whi
h updatesimidiately follow the states whi
h re
eive events. The presen
e of the labeling vari-able allows reasoning about the
ontrol
ow in terms of lo
ations in the programexe
ution rather than in terms of events.Ea
h state ma
hine
orresponds to a sequential program of the programmingmodel de�ned and des
ribed in Se
tion 3. Ea
h a
tion
orresponds to an atom ofa sequential program. The exe
ution model for an xUML system is asyn
hronousinterleaved exe
ution of the a
tion language programs asso
iated with the labeledstates of the state ma
hines. The exe
ution model for xUML is identi
al to theexe
ution model for the programming model de�ned and des
ribed in Se
tion 4.A sample, CONSUMER-PRODUCER-type, xUML program is shown in Fig-ure 1. An xUML system is represented by two xUML state ma
hines, a CON-SUMER and a PRODUCER. Ea
h state ma
hine is represented by atoms
om-muni
ating via events. For example, an Atom D of the CONSUMER state ma-
hine represents an atom that
an be a
tivated by an input event e4 or e2 andlabeled by the update of a variable status := IDLE. (In the example, the labelvariables update
ommands are impli
itely implemented by the xUML graphi
aldevelopment environment.) The a
tivation of the atom is followed by the exe
utionof lo
al
ommands and generation of output events Generate e3(CONSUMER),

6 Natasha Sharygina and James C. BrowneGenerate e5(PRODUCER,i,j), Generate e5(PRODUCER,i:=0,j) and Generate e5(PRODUCER,i,j:=0). Note, the distin
tion between �elds of the event e5: di�erentdata is passed by the event depending on the satisfa
tion of the spe
i�ed
onditions.For example, if at some point during the program exe
ution a variable i is larger orequal to some prede�ned value, limit i, than the event e5 will pass a zero value to thePRODUCER pro
ess, using the �rst supplemental data �eld of the event
ommand.
IDLE

SERVING CONSUMER

e5(PRODUCER,i,j)

e6(PRODUCER)

ATOM B

produced_x++;

produced_y++;

ATOM C

STORING

IDLE

SELLING

if(request==item1)

i:=−request_volume;

if(request==item2)

j:=−request_volume;

ATOM D

}

e3(CONSUMER)

e1(CONSUMER,x,y,z)

e2(CONSUMER)

e4(CONSUMER) Generate e4(CONSUMER);

CONSUMER State Machine PRODUCER State Machine

ATOM A

 }

{else

{if(j==0) y:=0;

else { y:=in_stock_j;

x:=in_stock_i;

 Generate e6(PRODUCER);

}

}y:=in_stock_j;
x:=in_stock_i;

{if(i==0) x:=0; }

in_stock_j:=produced_y;

else {

in_stock_j:=−y;
in_stock_i:=−x;

 Generate e1(CONSUMER);

{if((in_stock_i!=0)&&(in_stock_j!=0))

}

in_stock_i:=produced_x;

}

{

 Generate e5(PRODUCER,i,j);

 Generate e3(CONSUMER);

else {

if((i<limit_i) && (j<limit_j))

{if((i>=limit_i)&&((j>=limit_j))

} Generate e3(CONSUMER);
else {

if(i>=limit_i) {

 Generate e5(PRODUCER,i:=0,j); }

if(j>=limit_j) {

 Generate e5(PRODUCER,i,j:=0); }

}}

i:=+x;

j:=+y;

 Generate e2(CONSUMER);

ATOM E

Fig. 1. The CONSUMER-PRODUCER xUML ProgramDe�nition 8 [Control Flow Graph of an xUML System℄: The nodes of the
ontrol
ow graph for an xUML system are the labeled states whi
h re
eive events.The ar
s of the
ontrol
ow graph of an xUML system
onne
t labeled states whi
hre
eive events. The
ontrol
ow graph for an xUML system
an therefore also bespe
i�ed as a sequen
e of unique events.De�nition 9 [The xUML Cy
le Marker℄: Ea
h
y
le in the
ontrol
owgraph of an xUML system is identi�ed by pla
ing a "Cy
le Marker" on the initialatom of the
y
le.

Data Abstra
tion for Cy
le Intensive Programs 75 Computational ModelThe programming model of Se
tion 3 (and thus also xUML)
an be given an exe
u-tion semanti
s as an asyn
hronous transition system (ATS) [10℄
omposed of �nitestate ma
hine intera
ting through �nite, non-blo
king FIFO queues.De�nition 10 [Event Queue℄:(
f. [10℄) An event queue, Qi = (V,N,E,L) isde�ned by the the queue vo
abulary, V, by the size of the queue, N, by the ve
torof events stored in the queue, E, and the
ontent of the stored events, L, de�nedas a �nite set of the values. The values are expressions on the system variables, or
onstants. For a set of queues, Q, the queues vo
abularies are disjoint.De�nition 11 [Finite State Ma
hine℄:(
f. [10℄) A state ma
hine,M, is de�nedas a tuple, M = (X,S,s0,I,O,Q,T), where- X is the �nite set of variables;- S is the �nite set of possible binding of values to X;- s0 is an element of S, the initial state;- I is the set of input events;- O is the set of output events;- Q is a set of event queues;- T is the transition relation spe
ifying the allowed transitions among S.The exe
ution model of a state ma
hine of an ATS is: a) An input event arrivesin the input queue of a state ma
hine. b) State transitions, in
luding possibly gen-eration of events, are exe
uted until a state requiring input of an event is rea
hed.
) The state ma
hine halts and awaits arrival of its next event.De�nition 12 [Tra
e of a State Ma
hine℄: An in�nite sequen
e of states tr= s0s1...sn, is a tra
e of FSM if (1) s0 is an initial state and (2) for all 0 � i < n,the state si+1 is a su

essor of si.De�nition 13 [Asyn
hronous Transition System℄:(
f. [10℄) An ATS is a
omposition of �nite state ma
hines whi
h intera
t by sending and re
eiving events.The global state spa
e is the produ
t of the lo
al state spa
es of the
omposed statema
hines, the system event queue is the union of the sets of the queues of the sepa-rate ma
hines, and the global transition relation is the union of the lo
al transitionrelations.The exe
ution model for the ATS is: a) One state ma
hine from among thosewhi
h are enabled for exe
ution (those state ma
hines with events in their inputqueues) is randomly sele
ted for exe
ution. d) The sele
ted state ma
hine is exe
uteduntil it halts awaiting an input event and step a is repeated.De�nition 14 [Tra
e of an ATS℄:The tra
e of an ATS is an interleaving of states from the tra
es of the statema
hines whi
h
ompose the system. The ATS may be
onstrained by fairness
onditions that determines whi
h tra
es are fair, and only those tra
es are
on-fronted with the spe
i�
ation during model-
he
king. A fairness
ondition is de�nedas a boolean
ombination of basi
 fairness
onditions "in�nitely often p" where pis a set of state pairs. The
ontrol tra
e is fair if the fairness
ondition is true inin�nitely many states along the tra
e.

8 Natasha Sharygina and James C. BrowneDe�nition 15 [Re�nement℄: Let A and C be two instan
es of the ATS de�nedpre
eding. Let L(A) and L(C) be the language of all tra
es from exe
ution of A andC. If XC � XA, and L(C) � L(A) then C weakly re�nes A, C � A.De�nition 16 [Control Re�nement℄: Let us de�ne an operator R whi
hproje
ts from L(C) and L(A) all states whi
h do not re
eive events. Call R.L(C) andR.L(A)
ontrol tra
es of an ATS.If XC � XA and R.L(C) � R.L(A) then C weakly re�nes
ontrol of A.The a
tions of xUML state ma
hines exe
ute in run to
ompletion mode. There-fore R.L(C) and R.L(A)
orrespond to the
ontrol
ow graphs of xUML systems Cand A and L(C) and L(A)
orrespond to the tra
es of xUML systems C and A.6 Cy
le Abstra
tionWe de�ne a
y
le abstra
tion te
hnique that maps all of the traversals of a
y
le inthe
ontrol
ow graph with di�erent values for the
y
le
ow variables to traversalswith values of a single variable whose range is the number of the
y
li
 atom outputsand whose values are non-deterministi
ally
hosen subje
t to fairness
onstraints.The
y
le abstra
tion is the synta
ti
 program transformation that results in aredu
ed ATS that provides
omplete but minimal
overage of the program exe
utionsand, that, therefore,
an be pra
ti
ally model-
he
ked.We present the abstra
tion informally by spe
ifying the
y
le abstra
tion algo-rithm. We demonstrate the soundness of the abstra
tion formally by presenting aproof of
orre
tness of the
y
le abstra
tion.6.1 Cy
le Abstra
tion Algorithm2We �rst present
omponents of the
y
le abstra
tion algorithm: an algorithm for
omputation of a number of outputs
ontrolled by an output guard and an outputguard transformation pro
edure. We
on
lude by presenting an algorithm for the
y
le abstra
tion.Output Range Computation. Figure 2 presents a sket
h of the algorithm,whi
h determines the number of outputs guarded by an atom. The algorithm
om-pute range performs synta
ti
 analysis of the guard stru
ture by parsing the text of2 We present the
y
le abstra
tion algorithm and its
omponents using the syntax forxUML programs. The
y
le abstra
tion method is, however, a general te
hnique and
an be applied to other programming languages. Implementation may then require
ondu
ting a trivial stati
 analysis for identi�
ation of the output guards that determinethe
y
le
ontrol
ow. We assume that an atom that de�nes a
y
le is labeled by the
y
le marker. The algorithm is implemented in C using string interpretation fun
tionsand refers to the xUML-spe
i�
 syntax stru
tures ('f g', ;) for the
onditional statementsblo
ks and
ommands separation respe
tively.

Data Abstra
tion for Cy
le Intensive Programs 9the guard and sear
hing for the Generate and if, while keywords that
orrespond tothe event generation
ommands and the nested
onditional statements, respe
tively.The
onditional statements that guard the event generation
ommands are
ountedand the
ount is stored in the range variable. The
ompute range algorithm main-tains two variables whi
h are used to store information required during the analysisof the programs of the guards, bran
h and found, de
lared as integer and booleanrespe
tively. Initially (step 1) both variables are set to zero. The output range
om-putation for an Atom D is illustrated in Figure 3. The
ontrol
ow graph (at the
ommand level) illustrates the
ontrol
ow paths that determine four outputs ofAtom D.int
ompute range() fStep 1. If (bran
h==0) fGoto Step 2 and parse
ommands of a positive test programElse Goto Step 2 and parse
ommands of a negative test program gStep 2. While (the end of the body of the
onditional statement rea
hed) fIf (Generate keyword found AND found !=1) frange++; found:=1;gIf (if or while keyword found)fGoto Step 1; found := 0; g gStep 3. bran
h++;If (bran
h == 2)Goto Step 4Else Goto Step 1Step 4. return range; gFig. 2. A Sket
h of the Output Range Computation AlgorithmGuard Transformation. In the abstra
t program, the output guards of atomswhi
h determine the nodes of the
y
li

ontrol
ow paths are substituted withmulti-way sele
tor expressions, Choi
e Sele
tors, ea
h of whi
h non-deterministi
allysele
ts the outputs to be generated during an exe
ution of the atoms. Ea
h Choi
eSele
tor is de�ned over a single variable, a sele
tion variable, with a range de�nedby the number of the outputs
ontrolled by the
orresponding guard. Ea
h output
ontrolled by the Choi
e Sele
tor sele
ted by a single value of the sele
tion variable.Subje
t to the fairness
onstraints spe
i�ed for all values for ea
h sele
tion variable,the global state transition graph of the abstra
t program will have all of the eventsequen
es and thus interleavings of atom exe
utions as the global state transitiongraph of the
on
rete program. The atom
ode is
opied
ommand by
ommandwith the
onditions of the
y
le
ontrol
ow guards repla
ed by equality
omparisonof the sele
tion variable to one value in its range.An example of an output guard transformation taken from the PRODUCER-CONSUMER example is given below. The right side represents the original text ofAtom D and the left side demonstrates the result of the synta
ti
 transformation.sele
tion := iuniform(1,2,3,4); if((i<limit_i) && (j<limit_j)) {if(sele
tion == 1) { Generate e5(PRODUCER,i,j);Generate e5(PRODUCER,i,j); Generate e3(CONSUMER); }

10 Natasha Sharygina and James C. Browne
input e2(CONSUMER1) || e4(CONSUMER1)

output: e5(PRODUCER,i,j);output: e5(PRODUCER,i,0)output: e5(PRODUCER,0,j)

truefalse

true

falsetrue

ATOM D

 Generate e5(PRODUCER,i,j)

 if ((0<i<limit_i) && (0<j<limit_j))

 if ((i>=limit_i) && (j>=limit_j))

if (i>=limit_i)

Generate e5(PRODUCER,i,j:=0) Generate e5(PRODUCER,i:=0,j)

false

e3(CONSUMER)

Generate e3(CONSUMER)Generate e3(CONSUMER)

output: e3(CONSUMER)Fig. 3. A Control Flow Graph of Atom D of the Consumer-Produ
er ProgramGenerate e3(CONSUMER); } else {else { if((i>=limit_i) && (j>=limit_j))if(sele
tion == 2) { Generate e3(CONSUMER); }Generate e3(CONSUMER); } else {else { if(i>=limit_i)if(sele
tion == 3) { Generate e5(PRODUCER,i:=0,j);Generate e5(PRODUCER,i:=0,j);} if(j>=limit_j)if(sele
tion == 4) { Generate e5(PRODUCER,i,j:=0);Generate e5(PRODUCER,i,j:=0);} } }} }The Cy
le Abstra
tion Algorithm. The
y
le abstra
tion algorithm per-forms synta
ti
 transformation of the program text by transformation of atoms,whi
h exe
ution de�nes the
y
le
ontrol
ow. The abstra
tion algorithm startsfrom the transformation of a
y
li
 atom by substituting its output guards with theChoi
e Sele
tor expressions. The abstra
tion of a
on
rete set of output guards mayintrodu
e some loss of information
aused by the non-deterministi

hoi
e over theset of the sele
tion variables. To over
ome this impre
ision, abstra
tion with respe
tto
y
li

ontrol
ow is propagated to the
ontrol
ow statements whi
h depend onthe
y
li

ontrol
ow variables. A sket
h of the algorithm is presented in Figure 4.The
y
le abstra
tion algorithm maintains four variables whi
h are used tostore information required during the analysis and transformation of the program,range size, abstra
t guards,
urrent
ommand, and
ow var storage de
lared as in-tegers,
har and an array of
har type respe
tively. It also
reates a �le, fairness.txtthat is used to store the fairness assumptions spe
i�ed as one of the results of theprogram transformation.

Data Abstra
tion for Cy
le Intensive Programs 11The algorithm pro
eeds as follows:Step 1: The
y
le markers are identi�ed (the program looks for a keyword 'Cy
leLabel').Step 2: The algorithm iteratively analyzes and transforms atoms that de�ne
y
le
ontrol
ow3.At ea
h iteration the algorithm parses the text of the atom
ommand after
ommand while performing the following series of a
tions:a) Pla
ement of the �rst
ommand found in the text of the atom into
ur-rent
ommand;b) Testing if the
urrent
ommand is a guard (i.e test against the if, while key-words). For the negative test the program pro
eeds to step 2
, otherwise the followinga
tions are performed:If the guard is the output guard (i.e. if the body of the guard in
ludes the eventsgeneration
ommands (denoted by the 'Generate' keyword)) then- The abstra
t guard variable that is used to store a number of transformed guardsis updated.- The names of the
y
le
ow variables of the output guards are passed to the
ow var storage variable.- The
ompute range program is invoked to
ount the number of outputs
on-trolled by the guard. The result is stored in the range size variable.- The transformation program uses the
urrent values of the abstra
t guard andrange size variables to transform the guard following the pro
edure dis
ussed in theguard transformation se
tion.- The fairness.txt �le is updated with new fairness
onstraints. The fairness
onstraints are de�ned following the s
heme:For (int i := 0, int j := abstra
t guard - 1; i � range size; i++) fCreate a line: AssumeEventually4 sele
tion[j℄ := i g5.The �le
ontaining the fairness
onstraints is later used to spe
ify assumptions thatassure that all outputs de�ned in the
on
rete system are explored during the model-
he
king of the abstra
t program.
) If the end of the atom is not rea
hed then the next
ommand of an atom isanalysed. (If the previous
ommand was a guard that was transformed, then theprogram starts from the
ommand that follows the new stru
ture.)Step 3: Dependen
y analysis between the program variables and the variablesstored in the
ow var storage is performed. The names of the dependent variablesare passed to the
ow var storage variable.3 The atomi
 stru
ture of the xUML programs is expli
itely preserved by spe
ial words'state' and 'endstate' for the beginning and the end of the atom respe
tively. This allowssynta
ti
 identi�
ation of the
ode that
orresponds to ea
h xUML atom.4 The assumptions are en
oded in the query language of the COSPAN model-
he
ker, apart of the
y
le abstra
tion implementation environment.5 For example, if the �rst output guard found during the program analysis (abstra
t guard== 1)
ontrolls four outputs (range size == 4), then the following set of the fairness
on-straints is
reated: (Assume Eventually sele
tion[0℄ := 1; Assume Eventually sele
tion[0℄:= 2; Assume Eventually sele
tion[0℄ := 3; Assume Eventually sele
tion[0℄ := 4).

12 Natasha Sharygina and James C. BrowneStep 1. Dete
t
y
le markersStep 2. Analyze and Transform an Atom, A
y
le=depend:While end of atom is not rea
hed f(a)
urrent
ommand
ommand(b) If
urrent
ommand is a guard fIf guard is an output guard f- abstra
t guard++-
ow var storage names of the
ow variables- range size
ompute range- transform guard(range size,abstra
t guard)- fairness.txt assumptions(range size,abstra
t guard) g g g(
) Move to the next
ommand g// A new program is formed by substitution of A
y
le=dependwith the tranformed atomStep 3. Dete
t depend variables:While depend variables found f
ow var storage names of the depend variables gStep 4. Dete
t depend guard:(a) While guard found f(b) If guard is an output guard f(
) If guard is the depend guard fbreak; Goto Step 2 g g gStep 5. An abstra
t program is formed as: P a = (Xa,Ea,Ia,Aa),where Ea,Ia are de�ned as for the
on
rete program,Xa = X [Xnew , X is the set of the
on
rete variables andXnew is the set of the sele
tion variables.Aa = A n A
y
le=depend [Anew, whereA, A
y
le=depend are the sets of
on
rete atoms,and Anew is the set of transformed atoms.Fig. 4. A Sket
h of the Cy
le Abstra
tion AlgorithmStep 4: The new program is sear
hed for depend guards (i.e.
onditional state-ments 'if-then-else/while', whi
h operate on the variables that are in
luded in the
ow var storage array). If a depend guard is found then program pro
eeds to step2, otherwise it pro
eeds to Step 4.Step 5: Program transformation �nishes by inserting into the de
laration part ofthe program text a line that de
lares an array of variables sele
tion[abstra
t guard℄of integer type.6.2 Corre
tness of the Cy
le Abstra
tionThe proof of the
y
le abstra
tion uses a witness program.De�nition 16 [The Witness Program℄: Let P
 = (X
,E
,I
,A
) be the
on-
rete program. The witness program, Pw = (Xw,Ew,Iw,Aw), is derived from the
on
rete program by substituting ALL output guards with non-deterministi
 Choi
eSele
tor expressions following the pro
edure presented in Se
tion 6.1 for the guardtransformation. Ew,Iw are de�ned as for the
on
rete program.Xw =X SXsele
tion,whereX is a set of variables of the
on
rete program andXsele
tion is a set of sele
tion

Data Abstra
tion for Cy
le Intensive Programs 13variables
orresponding to the number of output guards in the
on
rete program.Aw is a set of the witness program atoms that are the transformed atoms of the
on
rete program. The transition system
orresponding to the witness program is
onstrained by fairness
onditions spe
i�ed for all values of ea
h sele
tion variable.The witness program is a
ontrol approximation of a
on
rete program. The ATSof the witness program has all the interleavings of atom exe
utions as the globaltransition graph of the
on
rete program.Theorem 1:A transition system of the
y
li

on
rete program (C) weakly re�nes
ontrol ofthe transition system of the abstra
t
y
li
 (A) program.Proof Sket
h:The
laim is proved by
onstru
ting and
omparing
ontrol tra
es of transitionsystems
orresponding to
on
rete (C), abstra
t (A) and witness (W) programs.1. We
onstru
t a witness program from a
on
rete program following De�nition16. 2. We
onstru
t an abstra
t program by applying a
y
le abstra
tion te
hniqueto the
on
rete program.3. We apply the redu
tion operator, R, (see de�nition 15) to generate the
on-trol stru
ture of transition systems
orresponding to
on
rete, abstra
t and witnessprograms.4. The
ontrol stru
ture of the witness program is
ompared with both the
ontrolstru
tures of the
on
rete and abstra
t programs. The following
on
lusions
an bederived from the
omparison:4.1. XC � XW and R.L(C) � R.L(W) by de�nition of the witness program.4.2 XA � XW and R.L(A) � R.L(W) be
ause the
y
le abstra
tion is the sele
-tive (with respe
t to
y
les) abstra
tion and the witness abstra
tion is the
ompleteabstra
tion of the same program.5. As C weakly re�nes
ontrol of W (from 4.1) and A weakly re�nes
ontrol ofW (from 4.2), we
on
lude that C weakly re�nes
ontrol of A.Therefore, we demonstrated that the
y
le abstra
tion is sound with respe
t tothe
ontrol
ow representations of the programs. The soundness result implies thata
ontrol spe
i�
ation (a property spe
i�ed in terms of states that re
eive events)holds for the original program if it holds for the abstra
t program. Some loss ofpre
ision of data
omputations is introdu
ed by the
y
le abstra
tion. It is tradedfor the ability to
ondu
t pra
ti
al veri�
ation of the
ontrol properties of
omplex
ontrol algorithms.7 Implementation of the Cy
le Abstra
tionThe
y
le abstra
tion has been implemented in the integrated xUML design and for-mal veri�
ation software development environment. This se
tion presents the
om-ponents of the environment and the
y
le abstra
tion pro
edure developed for it.The Integrated Design and Model-Che
king Software DevelopmentEnvironment. This resear
h uses a software development framework that inte-

14 Natasha Sharygina and James C. Brownegrates xUML modeling, testing and automata-based model-
he
king. We refer thereader to [22℄, [25℄ for the detailed des
ription of the integrated environment.The Abstra
tion Pro
edure. The steps of the
y
le abstra
tion pro
edureas they are implemented in the integrated design and veri�
ation environment are
aptured in Figure 5. The abstra
tion pro
edure operations are supported by thefollowing tools (ea
h tool is represented with respe
t to the a
tions it performs inthe
y
le abstra
tion pro
edure):

CONTROL

PROPERTY
Refinement
Constraints

Fairness
Constraints SR MODEL

xUML MODEL

)(textual file

Source Code

(C, C++)

Model−Checker
(COSPAN)

(Cycle_Abstraction)
Abstraction Tool

Testing Tool
(OB Simulator)xUML MODEL

(graphical designs)

Cycle Detection

Labeling

Translation

GOB_to_TOB

SES/Code Genesis

Formalization and

Translation

TOB_to_SR

Redesign

Consistency Check TRUE

FALSE NEGATIVE

REAL ERROR

Code Generation

Transformation

Syntactic

Analysis

Refinement

AUTOMATA

Fig. 5. The Cy
lel Abstra
tion Pro
edure For the Integrated Design and Model-Che
kingSoftware Development Environment1. The xUML graphi
al spe
i�
ation and validation environment as it is imple-mented in the
ommer
ial tool, SES/Obje
tBen
h (OB) [19℄:-
y
les in the exe
ution behavior of the xUML programs are dete
ted using thedis
rete event simulator by traversing possible event sequen
es whi
h
an arise fromthe exe
ution of intera
ting xUML state ma
hines;- the atoms that are identi�ed to be repeatedly a
tivated are marked manuallyin the xUML spe
i�
ation environment.

Data Abstra
tion for Cy
le Intensive Programs 152. The
y
le abstra
tion program:6- the labeled xUML state ma
hines are synta
ti
ally analyzed and transformedinto the abstra
t xUML state ma
hines using the
y
le abstra
tion algorithm de�nedin the previous se
tion.- a set of the fairness
onstraints is generated. The list of the generated fairness
onstraints is passed as an input to the model-
he
ker.3. The automata-based model-
he
king tool, COSPAN[13℄:- a
onsisten
y
he
k is performed over the abstra
t SR model (SR is an inputlanguage of COSPAN) automati
ally derived from the abstra
t xUML model withrespe
t to the the spe
i�ed
ontrol property, the fairness
onstraints and the ap-proximation restri
tions. Additionally, the following features provided by COSPANare used:- the lo
alization redu
tion algorithm, automati
ally invoked byCOSPAN duringmodel-
he
king, is used to eliminate from
onsideration the variables that do note�e
t the veri�
ation property.- the assume/guarantee me
hanism of COSPAN is used to add fairness
on-straints and the re�nement assumptions to the model-
he
king pro
ess.A detailed des
ription of the xUML notation and the automata-based model-
he
king, as it is supported by COSPAN,
an be found in [13, 22℄.8 Evaluation of the Cy
le Abstra
tion Te
hniqueTest-Bed Software. This se
tion presents the NASA robot
ontroller system (RCS)formulated as xUML models. The RCS is a
omplex lega
y software system usedfor instantiation of numerous roboti
s appli
ations that size is roughly 300K LOC.In fa
t, a part of the RCS has been re
ently in
luded in the
ontrol software systemof the robot arm, deployed in the spa
e station [12℄. The RCS has been thoroughlyanalyzed by testing. A number of e�orts have been made to
ondu
t formal veri�
a-tion by model-
he
king. Some su

ess was reported in the
ompositional veri�
ationof a simpli�ed RCS
omponents [22℄. The
omplexity (partially
aused by the
y
li
exe
ution of the roboti
 algorithms) of the RCS
omponents, however, preventedpra
ti
al model-
he
king of realisti
 systems. Due to spa
e limitations and the
om-plexity of the test
ase software, we refer the reader to our previous papers where theappli
ation software and its properties are presented in detail [22, 21℄. In this paperwe refer to a subset of the RCS, namely the Kinemati
s unit, whi
h implements thefollowing algorithms:- Robot Control Algorithm. Given a target position of the last joint of the robotarm (end-e�e
tor), every joint
al
ulates its target angle position. If ea
h target angleposition satis�es the physi
al
onstraint imposed on the joint, the arm pro
eeds tothe target position; otherwise, fault re
overy is
alled. For a set of target positions of6 The abstra
tion pro
edure uses a translator that automati
ally transforms the xUMLprograms from the Graphi
al OB representation into SR, an input language of the model-
he
ker, COSPAN [25℄. Spe
i�
ally, the
y
le abstra
tion program is applied to theintermediate representation of the translation result, the textual representation of thexUML models.

16 Natasha Sharygina and James C. Browne
ATOM CGenerate TS1:

CalculateTrailConfiguration(TS_ID,
"forward_kinematics",IdOfLockedJoint);

EE8:to_idle(EE_ID)

Idle

Valid Position

ATOM E

Generate JCH2: to_plus(1,Joint_ID);

Initial Positioning

Checking

Constraints

ATOM B

Not_Valid Position

EE7: To_Not_Valid(EE_ID)

EE1: PositionEndEffector(EE_ID);

EE2: CheckLimits(EE_ID,solution)

ATOM D
ee_reference=0;
end_position=0;

EE5: back(EE_ID)

ATOM A

EE4: MoveEndEffector(EE_ID)

EE3: To_Valid(EE_ID)

EE6: CheckConstraints(EE_ID)

EE9: idle(EE_ID)

FollowingTrajectory

Depend Guard

Generate JCH1: zero_the_counter(1,Joint_ID);
ATOM F

if(Current_Position<=Global(1).final_point)

{

{

if(Current_Position<=EE.obstracle)

Current_Position=next_target;

Generate EE4: Check_Constraints(EE_ID);

Generate EE5: back(EE_ID);}
else{ Cycle Guard

for (int i=0;i<6;i++){

"inverse_kinematics",IdOfLockedJoint);

 if (Current_Position[i]> Limit[i]){
//actions are omitted

// CYCLE MARKER

Generate TS1: CalculateTrailConfiguration(TS_ID,

Generate EE7: to Not_Valid_Position(EE_ID);}
else{

Generate EE3: Valid_Position(EE_ID);

Generate RECOVERY: Avoid(R1);} }

Fig. 6. xUML state ma
hine of the End E�e
tor program of the Robot System.the robot arm, the same set of a
tions leading to the
al
ulation of the joint anglesand to the
he
k of the physi
al
onstraints satisfa
tion is required.- Fault Re
overy Algorithm. The position of the joint that violates the physi
al
onstraints is set to the spe
i�ed limit while the other joints re
al
ulate their targetangle positions.- Obsta
le Avoidan
e Algorithm. If the robot arm en
ounters an undesired po-sition (an obsta
le in the robot workspa
e), a new position around an obsta
le issear
hed by the robot arm. If a new position of the arm is found and joint targetangles are identi�ed, the robot arm pro
eeds to the next target position, otherwiserobot
ontrol terminates.The Kinemati
s module of the RCS is modeled by the state ma
hines, represent-ing behavioral spe
i�
ations of the Arm, Joint, End E�e
tor, Che
ker, Re
overy,Trial Con�guration, Global Representation xUML obje
ts. Figure 6 shows thestate ma
hine of the End E�e
tor pro
ess as an example of an xUML behavioralspe
i�
ation.Experimental Results. We
onsidered several variants of the test-bed systemwith a di�erent number of joints i instantiated for a single robot arm. We
he
keda number of the
ontrol properties for various
on�gurations of the robot arm. Dueto the spa
e limitations in this paper we present veri�
ation results of one propertythat representively demonstrates the
omplexity redu
tions a
hieved by appli
ationof the
y
le abstra
tion. In English the property is state as follows: is it possible

Data Abstra
tion for Cy
le Intensive Programs 17for the end-e�e
tor to pro
eed to a new target position when an obsta
le has beenrea
hed by the robot arm or a joint(s) have en
ounted a faulty
on�guration? Sin
eit is easier to reason about the program
ontrol
ow in terms of the lo
ations in theprogram exe
ution rather than in terms of events, we spe
ify the
ontrol propertiesin terms of the states de�ned by the labeling variables in the xUML system.7 Theformal spe
i�
ation of the above property is (the property is en
oded in the querylanguage of COSPAN):Always(End E�e
tor.status = 'FollowingTraje
tory' ! Arm.status = 'Valid').8We used two models to
he
k the above property. The �rst model is the
omplete(
on
rete) stru
ture of the robot arm. The se
ond model is the abstra
t version ofthe
on
rete model to whi
h the
y
le abstra
tion method has been applied. Therobot
ontroller system abstra
tion was instantiated by the dete
tion of two
y
li
atoms of the Joint and End E�e
tor state ma
hines. One of the
y
li
 atoms isthe Atom A of the End E�e
tor state ma
hine as shown in Figure 6. The
y
leabstra
tion was enfor
ed by substitution of the output guards of the
y
li
 atomsby Choi
e Sele
tor expressions. For example, an output guard of the Atom A,Table 1. Comparison of Veri�
ation of the Con
rete and Abstra
t Robot Controller Sys-tems Value of i Con
rete Model(states/se
s/Mbytes) Abstra
t Model(states/se
s/Mbytes)2 11,933/1,452/1.81 97/25.39/0.33 26,119/7,966/5.03 229/69.9/0.314 102,067/56,414/18.7 1,105/817.8/1.25 memory exhaustion 10,389/1,211/2.56 memory exhaustion 32,518/5,132/7.25(if(Current Position != Global(1).�nal point)), that determines three outputs of theatom has been substituted with the Choi
e Sele
tor expression de�ned over a sele
-tion variable that ranges between 1 and 3. The
orre
tness of the
ontrol paths ofthe abstra
t robot
ontroller system with respe
t to the modi�ed output guard, waspreserved by transformation of the output guards that depend on the variable Cur-rent Position dire
tly and indire
tly through a
hain of dependen
ies. For example,an output guard of Atom B has been transformed as well.The dependen
y analysis and the abstra
tion mapping along with the genera-tion of fairness
onstraints for ea
h
y
li
 output guard was
ondu
ted automati
allyby the Cy
le Abstra
tion tool. For example, the following set of fairness
on-straints was generated for the sele
tion variable of the Choi
e Sele
tor used in Atom7 The labeling variables values are preserved by the
y
le abstra
tion sin
e they do notdepend on any program variables but the fa
t that an event arrives to an atom.8 The
har type of the status variables is intepreted into the integer type by the OB-SRtranslator to
on�rm to the model-
he
ker.

18 Natasha Sharygina and James C. BrowneA: AssumeEventually (sele
tion[0℄ = 1); AssumeEventually (sele
tion[0℄ = 2); As-sumeEventually (sele
tion[0℄ = 3).When false negative results were en
ounted as a result of model-
he
king, addi-tional behavioral restri
tions spe
i�ed in terms of the sele
tion variables were addedto the list of the assumptions. The assumptions were derived from the domain knowl-edge of the RCS a
quired during the simulated testing supported by simulation tool[19℄.Table 1
ompares the run-time and memory usage for the
on
rete and theabstra
t RCS with a total number of 7 pro
esses ex
luding the i pro
esses
orre-sponding to the number of instan
es of the Joint obje
t. Ea
h entry in the table hasthe form x/y/z where x is the number of the states rea
hed, y is the run-time in
puse
onds and z is the memory usage in Mbytes. The results of the veri�
ation demon-strate signi�
ant redu
tion in both time and spa
e for the abstra
t model
omparedto the
on
rete model. The redu
tion be
omes more pronoun
ed for larger values ofi. The veri�
ation for the robot
on�gurations
onsisting more than 4 joints
ouldnot be
ompleted due to the memory exhaustion for the
on
rete model, COSPANsu

eeded for the abstra
ted model.9 Summary and Related WorkSummary. This paper gives a data abstra
tion te
hnique appli
ation of whi
h re-sults in eÆ
ient model-
he
king of
y
li

ontrol-intensive software systems. Wedemonstrated that the
y
le abstra
tion algorithm produ
es a
onservative abstra
-tion with respe
t to the
ontrol tra
es of the
on
rete program. The
y
le abstra
tionmethod applies for asyn
hronous interleaved sequential programs that are the
om-mon modeling representation for
ontrol software systems. The
y
le abstra
tionalgorithm has been implemented for xUML software systems. The xUML notationsupports separation of data and
ontrol. This separation enables synta
ti
 identi-�
ation of the de
ision points that determine
ontrol for the
y
li
ally exe
utingprograms. The
y
le abstra
tion method is, however, a general te
hnique and
anbe applied to other programming languages. Implementation may then require
on-du
ting a trivial stati
 analysis for identi�
ation of the output guards that determinethe
y
le
ontrol
ow.The
y
le abstra
tion method has been implemented in the integrated design,testing and model-
he
king environment supported by the
ommer
ial tools, SES/Obje
tben
h [19℄ and automata-based model-
he
ker, COSPAN [8℄ used in previousstudies [21, 22, 25℄.We evaluated the
y
le abstra
tion te
hnique by veri�
ation of a NASA robot
ontroller system. Order of magnitude redu
tions in both time and spa
e were foundfor model
he
king the abstra
t program
ompared to the
on
rete program.Related Work. Data abstra
tion has long been a favored method for redu
ingthe state-spa
e of a software system to allow eÆ
ient model-
he
king [4, 6, 16℄. Ab-stra
tion te
hniques are often based on abstra
t interpretation [5℄ and require a userto give an abstra
tion fun
tion relating
on
rete datatypes to abstra
t datatypes.Predi
ate abstra
tion was been introdu
ed by S. Graf and H. Saidi [7℄ and has been

Data Abstra
tion for Cy
le Intensive Programs 19widely a

epted as the basis for automated abstra
tion tools [1, 15, 18℄. Cy
le ab-stra
tion is similar to predi
ate abstra
tion in that it requires spe
i�
ation of anabstra
tion fun
tion as predi
ates over
on
rete data. Cy
le abstra
tion di�ers frompredi
ate abstra
tion in that it does not require
omputation of the abstra
tion pred-i
ates. Instead it operates on the
onditional predi
ates whi
h implement program
ontrol. The result of the
y
le abstra
tion is the
onstru
tion of a
ontrol skeletonwhi
h makes our work similar to
onstru
tion of boolean programs as de�ned in [1℄.However, our work is di�erent from [1℄ in that it is
on
erned with the abstra
tionof only the
y
les. Cy
le abstra
tion introdu
es a limited number of unrealisti
 be-haviors
ompared to [1℄ and also preserves some original data valuations
omparedto the
omplete data abstra
tion provided by the predi
ate abstra
tion methods.Cy
le abstra
tion is a useful
omplement to the predi
ate abstra
tion te
hniques.It abstra
ts
ontrol while predi
ate abstra
tion abstra
ts statements not e�e
ted bythe
y
le abstra
tion. We are
urrently engaged in a proje
t that develops a pro-totype automati
 abstra
tion tool supporting the predi
ate abstra
tion algorithmpresented in [15℄. We are planning to evaluate the
y
le abstra
tion in
ombinationwith the predi
ate abstra
tion.The implementation of the
y
le abstra
tion algorithm is similar to [15℄ in thatthe
y
le abstra
tion algorithm does not
onstru
t the expli
it state graph either ofthe original or of the abstra
t programs. Instead a synta
ti
 analysis of the originalprogram is used to produ
e an abstra
t program. However, our approa
h is di�erentfrom any other abstra
tion algorithms dealing with the sour
e
ode in that theabstra
tion is applied to a design-level spe
i�
ation. To our knowledge, there hasbeen no previous reports on data abstra
tion algorithms spe
i�
ally targeting designlevel spe
i�
ations.The work presented in this paper is also related to path
overage (also knownas predi
ate
overage) testing [2, 3℄. Path
overage reports whether ea
h of the pos-sible paths in ea
h fun
tion of the program has been followed. (A path in testingis a unique sequen
e of bran
hes from a fun
tion entry to exit). Cy
le abstra
tionprovides
omplete
overage of all possible
y
li
 exe
ution paths. One of the majorobsta
les to su

essful path
overage is looping during program exe
ution. Sin
eloops may
ontain an unbounded number of paths, path
overage only
onsiders alimited number of looping possibilities. Our method solves this problem. Path
ov-erage has the problem is that many potential paths are impossible to rea
h be
auseof data relationship
onstraints. Cy
le abstra
tion te
hnique solves this problem byadding fairness
onstraints to for
e exploration of all abstra
ted paths.A
knowledgments. We thank Bob Kurshan, Allen Emerson, Kedar Namjoshiand Nina Amla for their helpful
omments. This resear
h was supported in part bythe TARP program 003658-0508-1999, by Bell Laboratories Lu
ent Te
hnologies,and by the University of Texas at Austin Roboti
s Resear
h Group.Referen
es1. T. Ball, R. Majumdar, T. Millsteain and S. Rajamani, Automati
 Predi
ate Abstra
tionof C Programs, In Pro
eedings PLDI 2001, SIGPLAN Noti
es, Vol. 39 (2001)

20 Natasha Sharygina and James C. Browne2. B. Beizer, Software Testing Te
hniques, New York: Van Nostrand Reinold, (1990)3. J. J. Chilenski and S. P. Miller, Appli
ability of modi�ed
onditional
overage to softwaretesting, Software Engineering Journal, (1994) 193 - 2004. E. M. Clarke, O. Grumberg, and D. Long. Model
he
king and abstra
tion. In Pro
eed-ings POPL 92: Prin
iples of Programming Languages, (1992) 343 - 3545. P. Cousot and R. Cousot. Abstra
t interpretation: a uni�ed latti
e model for the stati
analysis of programs by
onstru
tion of approximation of �xpoints. In Pro
eedings ofPOPL 77: Prin
iples of Programming Languages, (1977) 238 - 2526. D. Dams, O. Grumberg, and R. Gerth. Abstra
t interpretation of rea
tive systems:abstra
tions preserving ACTL*, ECTL*, and CTL*. In Pro
eedings of PROCOMET 94:Programming Con
epts, Methods, and Cal
uli, (1994) 561-5817. S. Graf and H. Saidi, Constru
tion of abstra
t state graphs with PVS. In Pro
eedingsof CAV 1997, LNCS 1254 (1997) 72 - 838. R. Hardin, Z. Har'EL, and R. P. Kurshan, COSPAN, In Pro
eedings of CAV 1996, LNCS1102, (1996) 423 - 4279. M. S. He
ht, Flow Analysis of Computer Programs, NY: Elsevier-North Holland (1977)10. J. Holzmann, Design and Validation of Computer Proto
ols, Prenti
e Hall, NJ (1991)11. Kennedy Carter In
., www.k
.
om12. Kapoor, C., and Tesar, D.: A Reusable Operational Software Ar
hite
ture for Advan
edRoboti
s (OSCAR), The University of Texas at Austin, Report to DOE, Grant No. DE-FG01 94EW37966 and NASA Grant No. NAG 9-809 (1998)13. Kurshan, R., Computer-Aided Veri�
ation of Coordinating Pro
esses - The Automata-Theoreti
 Approa
h, Prin
eton University Press, Prin
eton, NJ (1994)14. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preservingabstra
tions for the veri�
ation of
on
urrent systems. Formal Methods in System Design,Vol. 6(1), (1995) 11-4415. K. S. Namjoshi and R. P. Kurshan, Synta
ti
 Program Transformations for Automati
Abstra
tion, In Pro
eedings of CAV 2000: Computer Aided Veri�
ation, LNCS 1855,(2000), 435-44916. Y. Kesten and A. Pnueli, Control and Data Abstra
tion: Cornerstones of the Pra
ti
alFormal Veri�
ation, Software Tools and Te
hnology Transfer, Vol. 2(4) (2000) 328 - 34217. Proje
tTe
hnologies In
., www.projte
h.
om18. H. Saidi, Modular and In
remental Analysis of Con
urrent Software Systems, In Pro-
eedings of ASE 1999, ACM Press (2000) 92 - 10119. SES In
., Obje
tBen
h Te
hni
al Referen
e, SES In
. (1998)20. SES In
., CodeGenesis User Referen
e, SES In
. (1998)21. N. Sharygina, and D. Peled, A Combined Testing and Veri�
ation Approa
h for Soft-ware Reliability, In Pro
. of FME2001: Formal Methods Europe, LNCS 2021, (2001)611-62822. N. Sharygina, J. C. Browne and R. Kurshan, A Formal Obje
t-Oriented Analysisfor Software Reliability: Design for Veri�
ation, In Pro
eedings of ETAPS2001(FASE):Fundamental Approa
hes to Software Engineering, LNCS 2029, (2001), 318-33223. Shlaer, S., and Mellor, S., Obje
t Life
y
les: Modeling the World in States, Prenti
e-Hall, NJ (1992)24. L. Starr, Exe
utable UML: The Models that Are the Code, Model Integration, LLC(2001)25. F. Xie, V. Levin, and J. C. Browne, Model Che
king of an Exe
utable Subset of UML,In Pro
eedings of ASE2001: Automated Software Engineering (2001)

