
Data Abstration for Cyle Intensive ProgramsNatasha Sharygina and James C. BrowneThe University of Texas at Austin,Austin, TX, USA 78712natali,browne�s.utexas.eduAbstrat. This paper reports on the design, implementation and evaluationof a data abstration algorithm whih is e�etive in reduing the omplex-ity of model-heking for ontrol properties of yle intensive programs. Theredution tehnique performs a transformation of a "onrete", possibly in-�nite state, program by means of a syntati program transformation thatresults in an "abstrat" program that when model-heked provides om-plete but minimal overage of yli exeution paths. We demonstrate thatthe algorithm is orret in that the "abstrat" program is a onservativeapproximation of the "onrete" program with respet to the ontrol spe-i�ations of the program. The yle abstration has been implemented inthe integrated xUML design, testing and formal veri�ation software devel-opment environment. We use as a ase study a NASA robot ontrol systemand report on substantial redution in both time and spae for the abstratmodel ompared to the onrete model.Keywords: Model Cheking Software, Data Abstration, Integrated Soft-ware Design, Testing and Veri�ation1 IntrodutionIt is widely believed that e�etive model-heking of software systems ould produemajor enhanement in software reliability and robustness. But the e�etiveness ofmodel-heking of software systems is severely onstrained by the state spae ex-plosion problem. One prinipal method in state spae redution of software systemsis abstration. Abstration tehniques redue the program state spae by mappingthe set of data states of the atual system to an abstrat set of states that preservethe behaviors of the atual system. Abstration is widely used and it has been ex-plored by a number of researhers [4, 6, 13, 14, 16℄. Abstrations introdue unrealistibehaviors into the spei�ation of the programs. Intelligent re�nements of the ab-strated programs are required to avoid false negative results from model-heking.This paper reports on the design, implementation and evaluation of a data ab-stration algorithm that automates an abstration proess of yle intensive systems.The algorithm given here performs a transformation of a "onrete", possibly in�-nite state, program by means of a syntati program transformation that results inan "abstrat" program whih when model-heked provides omplete but minimaloverage of program exeution paths. Given a ontrol struture for a program, theyle abstration algorithm iteratively omputes the number of possible outputs of



2 Natasha Sharygina and James C. Browneeah ontrol ow statement of the program that e�ets the yle ontrol ow. Theonditional expressions of eah yle ontrol ow statement are replaed with an ex-pression over a single variable with a value non-deterministially hosen in the range(1,number of ontrol outputs of yle ontrol ow statement). This is ahieved bya syntati analysis that does not onstrut the expliit transition graph either ofthe original or of the abstrat program, eah of whih may be too large to ompute.Generation of all original ontrol ows is assured by fairness onstraints spei�edas assumptions on the values of the yle ow statement variables of the abstratprogram.We demonstrate that the algorithm is orret in that the "abstrat" program isa onservative approximation of the "onrete" program with respet to the ontrolspei�ations of the program. The orretness result implies that a ontrol spei�-ation holds for the original program if it holds for the abstrat program.The yle abstration algorithm has several advantages:- it is a seletive and targeted abstration whih introdues few unrealisti be-haviors requiring re�nement.- it applies at the design level for software systems.- it is based on syntati manipulation of expressions, and produes a reduedprogram and therefore, it an be applied without hange to the veri�ation tool orthe veri�ation algorithm. This enables integration with existing tools at a low ost.- it produes a syntati representation of the abstrat program and thus othermodel-heking state spae redution tehniques, suh as symboli model-hekingand partial order redution, an be applied to the abstrat program.The yle abstration algorithmhas been evaluated during veri�ation of a NASArobot ontroller. It has been found to give order of magnitude redution in theomplexity and omputational resoure requirements for model-heking of ontrolproperties of a robot ontrol system. Moreover, it enabled model-heking of ontrolproperties for 5 and 6 joint robot arms whih had previously been intratable withavailable omputational resoures.Contents of Paper. Setion 2 de�nes the problem of model-heking of yliprograms. Setions 3 - 5 de�ne syntax and semantis of the ontrol software systems.Setion 6 de�nes the yle abstration and demonstrates its soundness. Setion 7desribes an implementation of the yle abstration algorithm in the framework ofintegrated software design and model-heking. The e�etiveness of yle abstrationis demonstrated in Setion 8 that shows the veri�ation results of the NASA robotontroller system. Setion 9 onludes the paper and positions the yle abstrationwith respet to the existing abstration tehniques.2 Model Cheking of Cyli ProgramsThe ontrol ow graphs and the exeution behaviors of ontrol software systemsare typially dominated by yles implementing feedbak loops. The struture ofthe ontrol ow graph is usually determined by a small set of variables (ontrolow variables). The yli paths in the ontrol ow graph are usually determinedby onditional statements (guards) whih depend on a subset of the ontrol ow



Data Abstration for Cyle Intensive Programs 3variables (yle ow variables). Model heking of suh systems generates a traversalof the yles in the ontrol ow graph for eah possible value of eah yle owvariable in the onditional statements whih determine the yles. Eah traversalof the yle with di�erent values of the yle ow variables is distint in the stategraph of the ontrol system. Additionally eah traversal of a yle will typially havedi�erent values for many variables whih do not determine paths in the ontrol owgraph. Let us all suh variables, "don't are" variables. Eah exeution of a ylewith di�erent values for "don't are" variables is also distint in the state graph ofthe exeuting system and therefore enlarges the state spae for model heking theprogram.Many ontrol ow properties are dependent only on the stati ontrol ow graphof the system and are independent of the number of traversals of the yles of theontrol ow graph. Suh ontrol ow properties of a system an be veri�ed by modelheking of an abstrated program whih has the same stati ontrol ow graph asthe original (onrete) program.3 Programming Model for Control Software SystemsControl software systems are often onstruted as ompositions of sequential pro-grams whih interat through sending of messages or events. We an, without lossof generality, assume that eah program is omprised of single entry bloks [9℄.De�nition 1 [Single Entry Blok℄: A single entry (or basi) blok is asequene of statements whih an be entered only at the statement whih is at thehead of the blok and whih, when initiated always runs to ompletion. For simpliityfrom now on we refer to a single entry blok as an atom.Eah program has a FIFO queue for reeiving messages (events). Eah atomof a sequential program is enabled for exeution by arrival of a spei� message(event). Exeution of an atom may result in sending a message(s) to the programontaining the exeuting atom or some other sequential program. All ontrol ow,both ontrol ow among the atoms internal to a program and among programs, ismessage (event) driven. Eah "send message" statement is oneptually the ationof a guarded ommand over some (ontrol ow) variables.De�nition 2 [Program℄: A sequential program is de�ned as follows:SeqPro ! Pro; terminate,where Pro is de�ned by ommands1:simple ommands: x := exp j x := f exp1,...,expn g jompound ommands:Pro1,Pro2 j if B then Pro1 else pro2 � j while B do Pro1 od jommuniation ommands:1 For the omplete list of the ommands see [19℄



4 Natasha Sharygina and James C. Browne'Generate(ID,exp)' j 'Reeive(ID,x)' .In the above de�nitions x is a program variable, expi are expressions over pro-gram variables, and B is a boolean ondition, and ID is the name of the eventdestination program. The statement x = f exp1,...,expn g is a non-deterministiassignment, after whih x will ontain the value of one of the expressions exp1,...,expn.Events generated during the exeution of an atom are the outputs. In the ase ifseveral output events are guarded by the same guard the orresponding outputs arede�ned as sets of events, one output per branh of the guard.De�nition 3 [Output℄: An output of an atom is an event or a sequene ofevents for non-guarded or guarded generation of multiple events respetively.Eah output guard an be omposed of nested onditional statements whihde�ne di�erent outputs.The exeution model for a sequential program is: a) A message arrives in theinput queue of a sequential program and some atom of the program is enabledfor exeution in "run to ompletion" mode. b) The enabled atom is exeuted. )Exeution of an atom may result in messages being sent to the proess ontainingthe exeuting atom or to other programs. d) At the end of the exeution of a singleentry blok the program halts and awaits arrival of its next message.De�nition 4 [System℄: A system is a parallel omposition of sequentail pro-grams. Eah program has its own read-shared loal variables and events. In generalterms a programming system, P, is de�ned as a set of variables, X, and a set ofevents, E, an initial ondition, I, a set of atoms, A, that ontain ommands thatmodify the program variables, and send and reeive events, P = (X,E,I,A).The exeution model for the system is asynhronous interleaved exeution ofthe atoms of the sequential programs. a) One program from among those whih areenabled for exeution (those programs with events in their input queues) is randomlyseleted for exeution. b) The atom in the seleted program whih onsumes theevent at the head of the event queue is exeuted and step a is repeated.De�nition 5 [Control Flow Graph of the System℄: The nodes of the ontrolow graph of the system are statements of the sequential programs from whih thesystem is omposed. The ars of the ontrol ow graph of the system onnet eahstatement with its predeessor and suessor in the exeution of the system.Most ontrol properties an be and are stated in terms of ontrol at the singleentry blok (atom) level.De�nition 6 [Atom Control Flow Graph℄: The nodes of the atom ontrolow graph of the system are atoms of the omposing sequential programs. The arsof the ontrol ow graph of the system onnet atoms whih are the soures andtargets for events. Therefore a ontrol ow graph an also be spei�ed as generationand onsumption of a sequene of events.De�nition 7 [Cyle in an Atom Control Flow Graph℄: A yle in an atomontrol ow graph of a system is repeated exeution of a path whih begins with thegeneration of a unique event by an atom and ends at that same atom (yli atom).We refer to the sequenes of events that are repetitively exeuted, as redundantwith respet to the veri�ation of ontrol properties.



Data Abstration for Cyle Intensive Programs 5Eah yle is ontrolled by a set of output guards that onsists of the outputguards of the yli atom and their dependene set. Let us all the variables of theoutput guards that de�ne the yle, yle ow variables.An algorithm whih onstruts an abstrat system with the same atom ontrolow graph as the original system is given in Setion 6. The algorithm is a soure tosoure transformation of the atoms whih preserves all of the outputs of exeutionof the atoms.4 xUML - An Instane of the Programming SystemxUML [23℄ is an instantiation of the programming model desribed above. xUMLis a dialet of UML with exeutable semantis. Programs written in xUML aredesign level representations whih an be exeuted diretly through disrete eventsimulation or interpretation and/or ompiled to proedural soure ode. xUML isfairly widely used for development of ontrol systems [11, 17, 19℄.An xUML program is a set of interating objets. The behavior of eah objetis implemented as a Moore state mahine with a bounded FIFO input queue forevents. The objets interat by sending and reeiving events. Eah state of the statemahine whih an reeive an event is given a unique label. A sequential ationis assoiated with eah labeled state. Eah ation assigns values to state variablesand generates events to be posted to its own input queue or the input queues ofother state mahines. The ations exeute in run to ompletion mode. The ationlanguage for the implementation of xUML that we are using is a C-based languageextended by the event generation and state mahines manipulation ommands. Itsupports standard C types for delaration of the system variables, nondeteministi(iuniform) and onditional (if-then-else/while) variable assignments, and arrays andenumerated types. Eah state mahine has a state labeling variable whih updatesimidiately follow the states whih reeive events. The presene of the labeling vari-able allows reasoning about the ontrol ow in terms of loations in the programexeution rather than in terms of events.Eah state mahine orresponds to a sequential program of the programmingmodel de�ned and desribed in Setion 3. Eah ation orresponds to an atom ofa sequential program. The exeution model for an xUML system is asynhronousinterleaved exeution of the ation language programs assoiated with the labeledstates of the state mahines. The exeution model for xUML is idential to theexeution model for the programming model de�ned and desribed in Setion 4.A sample, CONSUMER-PRODUCER-type, xUML program is shown in Fig-ure 1. An xUML system is represented by two xUML state mahines, a CON-SUMER and a PRODUCER. Eah state mahine is represented by atoms om-muniating via events. For example, an Atom D of the CONSUMER state ma-hine represents an atom that an be ativated by an input event e4 or e2 andlabeled by the update of a variable status := IDLE. (In the example, the labelvariables update ommands are impliitely implemented by the xUML graphialdevelopment environment.) The ativation of the atom is followed by the exeutionof loal ommands and generation of output events Generate e3(CONSUMER),



6 Natasha Sharygina and James C. BrowneGenerate e5(PRODUCER,i,j), Generate e5(PRODUCER,i:=0,j) and Generate e5(PRODUCER,i,j:=0). Note, the distintion between �elds of the event e5: di�erentdata is passed by the event depending on the satisfation of the spei�ed onditions.For example, if at some point during the program exeution a variable i is larger orequal to some prede�ned value, limit i, than the event e5 will pass a zero value to thePRODUCER proess, using the �rst supplemental data �eld of the event ommand.
IDLE

SERVING CONSUMER

e5(PRODUCER,i,j)

e6(PRODUCER)

ATOM B

produced_x++;

produced_y++;

ATOM C

STORING

IDLE

SELLING

if(request==item1)

i:=−request_volume;

if(request==item2)

j:=−request_volume;

ATOM D

}

e3(CONSUMER)

e1(CONSUMER,x,y,z)

e2(CONSUMER)

e4(CONSUMER)   Generate e4(CONSUMER); 

CONSUMER State Machine PRODUCER State Machine

ATOM A

 }

{else

{if(j==0) y:=0;

else { y:=in_stock_j;

x:=in_stock_i;

   Generate e6(PRODUCER); 

}

}y:=in_stock_j;
x:=in_stock_i;

{if(i==0) x:=0; }

in_stock_j:=produced_y;

else {

in_stock_j:=−y;
in_stock_i:=−x;

   Generate e1(CONSUMER);

{if((in_stock_i!=0)&&(in_stock_j!=0))

}

in_stock_i:=produced_x;

}  

{

   Generate e5(PRODUCER,i,j); 

   Generate e3(CONSUMER); 

else {

if((i<limit_i) && (j<limit_j))

{if((i>=limit_i)&&((j>=limit_j))

}   Generate e3(CONSUMER); 
else {

if(i>=limit_i) {

   Generate e5(PRODUCER,i:=0,j); }

if(j>=limit_j) {

   Generate e5(PRODUCER,i,j:=0); }

}}

i:=+x;

j:=+y;

   Generate e2(CONSUMER); 

ATOM E

Fig. 1. The CONSUMER-PRODUCER xUML ProgramDe�nition 8 [Control Flow Graph of an xUML System℄: The nodes of theontrol ow graph for an xUML system are the labeled states whih reeive events.The ars of the ontrol ow graph of an xUML system onnet labeled states whihreeive events. The ontrol ow graph for an xUML system an therefore also bespei�ed as a sequene of unique events.De�nition 9 [The xUML Cyle Marker℄: Eah yle in the ontrol owgraph of an xUML system is identi�ed by plaing a "Cyle Marker" on the initialatom of the yle.



Data Abstration for Cyle Intensive Programs 75 Computational ModelThe programming model of Setion 3 (and thus also xUML) an be given an exeu-tion semantis as an asynhronous transition system (ATS) [10℄ omposed of �nitestate mahine interating through �nite, non-bloking FIFO queues.De�nition 10 [Event Queue℄:(f. [10℄) An event queue, Qi = (V,N,E,L) isde�ned by the the queue voabulary, V, by the size of the queue, N, by the vetorof events stored in the queue, E, and the ontent of the stored events, L, de�nedas a �nite set of the values. The values are expressions on the system variables, oronstants. For a set of queues, Q, the queues voabularies are disjoint.De�nition 11 [Finite State Mahine℄:(f. [10℄) A state mahine,M, is de�nedas a tuple, M = (X,S,s0,I,O,Q,T), where- X is the �nite set of variables;- S is the �nite set of possible binding of values to X;- s0 is an element of S, the initial state;- I is the set of input events;- O is the set of output events;- Q is a set of event queues;- T is the transition relation speifying the allowed transitions among S.The exeution model of a state mahine of an ATS is: a) An input event arrivesin the input queue of a state mahine. b) State transitions, inluding possibly gen-eration of events, are exeuted until a state requiring input of an event is reahed.) The state mahine halts and awaits arrival of its next event.De�nition 12 [Trae of a State Mahine℄: An in�nite sequene of states tr= s0s1...sn, is a trae of FSM if (1) s0 is an initial state and (2) for all 0 � i < n,the state si+1 is a suessor of si.De�nition 13 [Asynhronous Transition System℄:(f. [10℄) An ATS is aomposition of �nite state mahines whih interat by sending and reeiving events.The global state spae is the produt of the loal state spaes of the omposed statemahines, the system event queue is the union of the sets of the queues of the sepa-rate mahines, and the global transition relation is the union of the loal transitionrelations.The exeution model for the ATS is: a) One state mahine from among thosewhih are enabled for exeution (those state mahines with events in their inputqueues) is randomly seleted for exeution. d) The seleted state mahine is exeuteduntil it halts awaiting an input event and step a is repeated.De�nition 14 [Trae of an ATS℄:The trae of an ATS is an interleaving of states from the traes of the statemahines whih ompose the system. The ATS may be onstrained by fairnessonditions that determines whih traes are fair, and only those traes are on-fronted with the spei�ation during model-heking. A fairness ondition is de�nedas a boolean ombination of basi fairness onditions "in�nitely often p" where pis a set of state pairs. The ontrol trae is fair if the fairness ondition is true inin�nitely many states along the trae.



8 Natasha Sharygina and James C. BrowneDe�nition 15 [Re�nement℄: Let A and C be two instanes of the ATS de�nedpreeding. Let L(A) and L(C) be the language of all traes from exeution of A andC. If XC � XA, and L(C) � L(A) then C weakly re�nes A, C � A.De�nition 16 [Control Re�nement℄: Let us de�ne an operator R whihprojets from L(C) and L(A) all states whih do not reeive events. Call R.L(C) andR.L(A) ontrol traes of an ATS.If XC � XA and R.L(C) � R.L(A) then C weakly re�nes ontrol of A.The ations of xUML state mahines exeute in run to ompletion mode. There-fore R.L(C) and R.L(A) orrespond to the ontrol ow graphs of xUML systems Cand A and L(C) and L(A) orrespond to the traes of xUML systems C and A.6 Cyle AbstrationWe de�ne a yle abstration tehnique that maps all of the traversals of a yle inthe ontrol ow graph with di�erent values for the yle ow variables to traversalswith values of a single variable whose range is the number of the yli atom outputsand whose values are non-deterministially hosen subjet to fairness onstraints.The yle abstration is the syntati program transformation that results in aredued ATS that provides omplete but minimal overage of the program exeutionsand, that, therefore, an be pratially model-heked.We present the abstration informally by speifying the yle abstration algo-rithm. We demonstrate the soundness of the abstration formally by presenting aproof of orretness of the yle abstration.6.1 Cyle Abstration Algorithm2We �rst present omponents of the yle abstration algorithm: an algorithm foromputation of a number of outputs ontrolled by an output guard and an outputguard transformation proedure. We onlude by presenting an algorithm for theyle abstration.Output Range Computation. Figure 2 presents a sketh of the algorithm,whih determines the number of outputs guarded by an atom. The algorithm om-pute range performs syntati analysis of the guard struture by parsing the text of2 We present the yle abstration algorithm and its omponents using the syntax forxUML programs. The yle abstration method is, however, a general tehnique andan be applied to other programming languages. Implementation may then requireonduting a trivial stati analysis for identi�ation of the output guards that determinethe yle ontrol ow. We assume that an atom that de�nes a yle is labeled by theyle marker. The algorithm is implemented in C using string interpretation funtionsand refers to the xUML-spei� syntax strutures ('f g', ;) for the onditional statementsbloks and ommands separation respetively.



Data Abstration for Cyle Intensive Programs 9the guard and searhing for the Generate and if, while keywords that orrespond tothe event generation ommands and the nested onditional statements, respetively.The onditional statements that guard the event generation ommands are ountedand the ount is stored in the range variable. The ompute range algorithm main-tains two variables whih are used to store information required during the analysisof the programs of the guards, branh and found, delared as integer and booleanrespetively. Initially (step 1) both variables are set to zero. The output range om-putation for an Atom D is illustrated in Figure 3. The ontrol ow graph (at theommand level) illustrates the ontrol ow paths that determine four outputs ofAtom D.int ompute range() fStep 1. If (branh==0) fGoto Step 2 and parse ommands of a positive test programElse Goto Step 2 and parse ommands of a negative test program gStep 2. While (the end of the body of the onditional statement reahed) fIf (Generate keyword found AND found !=1) frange++; found:=1;gIf (if or while keyword found )fGoto Step 1; found := 0; g gStep 3. branh++;If (branh == 2)Goto Step 4Else Goto Step 1Step 4. return range; gFig. 2. A Sketh of the Output Range Computation AlgorithmGuard Transformation. In the abstrat program, the output guards of atomswhih determine the nodes of the yli ontrol ow paths are substituted withmulti-way seletor expressions, Choie Seletors, eah of whih non-deterministiallyselets the outputs to be generated during an exeution of the atoms. Eah ChoieSeletor is de�ned over a single variable, a seletion variable, with a range de�nedby the number of the outputs ontrolled by the orresponding guard. Eah outputontrolled by the Choie Seletor seleted by a single value of the seletion variable.Subjet to the fairness onstraints spei�ed for all values for eah seletion variable,the global state transition graph of the abstrat program will have all of the eventsequenes and thus interleavings of atom exeutions as the global state transitiongraph of the onrete program. The atom ode is opied ommand by ommandwith the onditions of the yle ontrol ow guards replaed by equality omparisonof the seletion variable to one value in its range.An example of an output guard transformation taken from the PRODUCER-CONSUMER example is given below. The right side represents the original text ofAtom D and the left side demonstrates the result of the syntati transformation.seletion := iuniform(1,2,3,4); if((i<limit_i) && (j<limit_j)) {if(seletion == 1) { Generate e5(PRODUCER,i,j);Generate e5(PRODUCER,i,j); Generate e3(CONSUMER); }
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input e2(CONSUMER1) || e4(CONSUMER1)

output: e5(PRODUCER,i,j);output: e5(PRODUCER,i,0)output: e5(PRODUCER,0,j)

truefalse

true

falsetrue

ATOM D

 Generate e5(PRODUCER,i,j)

 if ((0<i<limit_i) && (0<j<limit_j))

 if ((i>=limit_i) && (j>=limit_j))

if (i>=limit_i)

Generate e5(PRODUCER,i,j:=0) Generate e5(PRODUCER,i:=0,j)

false

e3(CONSUMER)

Generate e3(CONSUMER)Generate e3(CONSUMER)

output: e3(CONSUMER)Fig. 3. A Control Flow Graph of Atom D of the Consumer-Produer ProgramGenerate e3(CONSUMER); } else {else { if((i>=limit_i) && (j>=limit_j))if(seletion == 2) { Generate e3(CONSUMER); }Generate e3(CONSUMER); } else {else { if(i>=limit_i)if(seletion == 3) { Generate e5(PRODUCER,i:=0,j);Generate e5(PRODUCER,i:=0,j);} if(j>=limit_j)if(seletion == 4) { Generate e5(PRODUCER,i,j:=0);Generate e5(PRODUCER,i,j:=0);} } }} }The Cyle Abstration Algorithm. The yle abstration algorithm per-forms syntati transformation of the program text by transformation of atoms,whih exeution de�nes the yle ontrol ow. The abstration algorithm startsfrom the transformation of a yli atom by substituting its output guards with theChoie Seletor expressions. The abstration of a onrete set of output guards mayintrodue some loss of information aused by the non-deterministi hoie over theset of the seletion variables. To overome this impreision, abstration with respetto yli ontrol ow is propagated to the ontrol ow statements whih depend onthe yli ontrol ow variables. A sketh of the algorithm is presented in Figure 4.The yle abstration algorithm maintains four variables whih are used tostore information required during the analysis and transformation of the program,range size, abstrat guards, urrent ommand, and ow var storage delared as in-tegers, har and an array of har type respetively. It also reates a �le, fairness.txtthat is used to store the fairness assumptions spei�ed as one of the results of theprogram transformation.



Data Abstration for Cyle Intensive Programs 11The algorithm proeeds as follows:Step 1: The yle markers are identi�ed (the program looks for a keyword 'CyleLabel').Step 2: The algorithm iteratively analyzes and transforms atoms that de�ne yleontrol ow3.At eah iteration the algorithm parses the text of the atom ommand afterommand while performing the following series of ations:a) Plaement of the �rst ommand found in the text of the atom into ur-rent ommand;b) Testing if the urrent ommand is a guard (i.e test against the if, while key-words). For the negative test the program proeeds to step 2, otherwise the followingations are performed:If the guard is the output guard (i.e. if the body of the guard inludes the eventsgeneration ommands (denoted by the 'Generate' keyword)) then- The abstrat guard variable that is used to store a number of transformed guardsis updated.- The names of the yle ow variables of the output guards are passed to theow var storage variable.- The ompute range program is invoked to ount the number of outputs on-trolled by the guard. The result is stored in the range size variable.- The transformation program uses the urrent values of the abstrat guard andrange size variables to transform the guard following the proedure disussed in theguard transformation setion.- The fairness.txt �le is updated with new fairness onstraints. The fairnessonstraints are de�ned following the sheme:For (int i := 0, int j := abstrat guard - 1; i � range size; i++) fCreate a line: AssumeEventually4 seletion[j℄ := i g5.The �le ontaining the fairness onstraints is later used to speify assumptions thatassure that all outputs de�ned in the onrete system are explored during the model-heking of the abstrat program.) If the end of the atom is not reahed then the next ommand of an atom isanalysed. (If the previous ommand was a guard that was transformed, then theprogram starts from the ommand that follows the new struture.)Step 3: Dependeny analysis between the program variables and the variablesstored in the ow var storage is performed. The names of the dependent variablesare passed to the ow var storage variable.3 The atomi struture of the xUML programs is expliitely preserved by speial words'state' and 'endstate' for the beginning and the end of the atom respetively. This allowssyntati identi�ation of the ode that orresponds to eah xUML atom.4 The assumptions are enoded in the query language of the COSPAN model-heker, apart of the yle abstration implementation environment.5 For example, if the �rst output guard found during the program analysis (abstrat guard== 1) ontrolls four outputs (range size == 4), then the following set of the fairness on-straints is reated: (Assume Eventually seletion[0℄ := 1; Assume Eventually seletion[0℄:= 2; Assume Eventually seletion[0℄ := 3; Assume Eventually seletion[0℄ := 4).



12 Natasha Sharygina and James C. BrowneStep 1. Detet yle markersStep 2. Analyze and Transform an Atom, Ayle=depend:While end of atom is not reahed f(a) urrent ommand  ommand(b) If urrent ommand is a guard fIf guard is an output guard f- abstrat guard++- ow var storage  names of the ow variables- range size  ompute range- transform guard(range size,abstrat guard)- fairness.txt  assumptions(range size,abstrat guard) g g g() Move to the next ommand g// A new program is formed by substitution of Ayle=dependwith the tranformed atomStep 3. Detet depend variables:While depend variables found fow var storage  names of the depend variables gStep 4. Detet depend guard:(a) While guard found f(b) If guard is an output guard f() If guard is the depend guard fbreak; Goto Step 2 g g gStep 5. An abstrat program is formed as: P a = (Xa,Ea,Ia,Aa),where Ea,Ia are de�ned as for the onrete program,Xa = X [ Xnew , X is the set of the onrete variables andXnew is the set of the seletion variables.Aa = A n Ayle=depend [ Anew, whereA, Ayle=depend are the sets of onrete atoms,and Anew is the set of transformed atoms.Fig. 4. A Sketh of the Cyle Abstration AlgorithmStep 4: The new program is searhed for depend guards (i.e. onditional state-ments 'if-then-else/while', whih operate on the variables that are inluded in theow var storage array). If a depend guard is found then program proeeds to step2, otherwise it proeeds to Step 4.Step 5: Program transformation �nishes by inserting into the delaration part ofthe program text a line that delares an array of variables seletion[abstrat guard℄of integer type.6.2 Corretness of the Cyle AbstrationThe proof of the yle abstration uses a witness program.De�nition 16 [The Witness Program℄: Let P  = (X,E,I,A) be the on-rete program. The witness program, Pw = (Xw,Ew,Iw,Aw), is derived from theonrete program by substituting ALL output guards with non-deterministi ChoieSeletor expressions following the proedure presented in Setion 6.1 for the guardtransformation. Ew,Iw are de�ned as for the onrete program.Xw =X SXseletion,whereX is a set of variables of the onrete program andXseletion is a set of seletion



Data Abstration for Cyle Intensive Programs 13variables orresponding to the number of output guards in the onrete program.Aw is a set of the witness program atoms that are the transformed atoms of theonrete program. The transition system orresponding to the witness program isonstrained by fairness onditions spei�ed for all values of eah seletion variable.The witness program is a ontrol approximation of a onrete program. The ATSof the witness program has all the interleavings of atom exeutions as the globaltransition graph of the onrete program.Theorem 1:A transition system of the yli onrete program (C) weakly re�nes ontrol ofthe transition system of the abstrat yli (A) program.Proof Sketh:The laim is proved by onstruting and omparing ontrol traes of transitionsystems orresponding to onrete (C), abstrat (A) and witness (W) programs.1. We onstrut a witness program from a onrete program following De�nition16. 2. We onstrut an abstrat program by applying a yle abstration tehniqueto the onrete program.3. We apply the redution operator, R, (see de�nition 15) to generate the on-trol struture of transition systems orresponding to onrete, abstrat and witnessprograms.4. The ontrol struture of the witness program is ompared with both the ontrolstrutures of the onrete and abstrat programs. The following onlusions an bederived from the omparison:4.1. XC � XW and R.L(C) � R.L(W) by de�nition of the witness program.4.2 XA � XW and R.L(A) � R.L(W) beause the yle abstration is the sele-tive (with respet to yles) abstration and the witness abstration is the ompleteabstration of the same program.5. As C weakly re�nes ontrol of W (from 4.1) and A weakly re�nes ontrol ofW (from 4.2), we onlude that C weakly re�nes ontrol of A.Therefore, we demonstrated that the yle abstration is sound with respet tothe ontrol ow representations of the programs. The soundness result implies thata ontrol spei�ation (a property spei�ed in terms of states that reeive events)holds for the original program if it holds for the abstrat program. Some loss ofpreision of data omputations is introdued by the yle abstration. It is tradedfor the ability to ondut pratial veri�ation of the ontrol properties of omplexontrol algorithms.7 Implementation of the Cyle AbstrationThe yle abstration has been implemented in the integrated xUML design and for-mal veri�ation software development environment. This setion presents the om-ponents of the environment and the yle abstration proedure developed for it.The Integrated Design and Model-Cheking Software DevelopmentEnvironment. This researh uses a software development framework that inte-



14 Natasha Sharygina and James C. Brownegrates xUML modeling, testing and automata-based model-heking. We refer thereader to [22℄, [25℄ for the detailed desription of the integrated environment.The Abstration Proedure. The steps of the yle abstration proedureas they are implemented in the integrated design and veri�ation environment areaptured in Figure 5. The abstration proedure operations are supported by thefollowing tools (eah tool is represented with respet to the ations it performs inthe yle abstration proedure):
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Fig. 5. The Cylel Abstration Proedure For the Integrated Design and Model-ChekingSoftware Development Environment1. The xUML graphial spei�ation and validation environment as it is imple-mented in the ommerial tool, SES/ObjetBenh (OB) [19℄:- yles in the exeution behavior of the xUML programs are deteted using thedisrete event simulator by traversing possible event sequenes whih an arise fromthe exeution of interating xUML state mahines;- the atoms that are identi�ed to be repeatedly ativated are marked manuallyin the xUML spei�ation environment.



Data Abstration for Cyle Intensive Programs 152. The yle abstration program:6- the labeled xUML state mahines are syntatially analyzed and transformedinto the abstrat xUML state mahines using the yle abstration algorithm de�nedin the previous setion.- a set of the fairness onstraints is generated. The list of the generated fairnessonstraints is passed as an input to the model-heker.3. The automata-based model-heking tool, COSPAN[13℄:- a onsisteny hek is performed over the abstrat SR model (SR is an inputlanguage of COSPAN) automatially derived from the abstrat xUML model withrespet to the the spei�ed ontrol property, the fairness onstraints and the ap-proximation restritions. Additionally, the following features provided by COSPANare used:- the loalization redution algorithm, automatially invoked byCOSPAN duringmodel-heking, is used to eliminate from onsideration the variables that do note�et the veri�ation property.- the assume/guarantee mehanism of COSPAN is used to add fairness on-straints and the re�nement assumptions to the model-heking proess.A detailed desription of the xUML notation and the automata-based model-heking, as it is supported by COSPAN, an be found in [13, 22℄.8 Evaluation of the Cyle Abstration TehniqueTest-Bed Software. This setion presents the NASA robot ontroller system (RCS)formulated as xUML models. The RCS is a omplex legay software system usedfor instantiation of numerous robotis appliations that size is roughly 300K LOC.In fat, a part of the RCS has been reently inluded in the ontrol software systemof the robot arm, deployed in the spae station [12℄. The RCS has been thoroughlyanalyzed by testing. A number of e�orts have been made to ondut formal veri�a-tion by model-heking. Some suess was reported in the ompositional veri�ationof a simpli�ed RCS omponents [22℄. The omplexity (partially aused by the yliexeution of the roboti algorithms) of the RCS omponents, however, preventedpratial model-heking of realisti systems. Due to spae limitations and the om-plexity of the test ase software, we refer the reader to our previous papers where theappliation software and its properties are presented in detail [22, 21℄. In this paperwe refer to a subset of the RCS, namely the Kinematis unit, whih implements thefollowing algorithms:- Robot Control Algorithm. Given a target position of the last joint of the robotarm (end-e�etor), every joint alulates its target angle position. If eah target angleposition satis�es the physial onstraint imposed on the joint, the arm proeeds tothe target position; otherwise, fault reovery is alled. For a set of target positions of6 The abstration proedure uses a translator that automatially transforms the xUMLprograms from the Graphial OB representation into SR, an input language of the model-heker, COSPAN [25℄. Spei�ally, the yle abstration program is applied to theintermediate representation of the translation result, the textual representation of thexUML models.
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Fig. 6. xUML state mahine of the End E�etor program of the Robot System.the robot arm, the same set of ations leading to the alulation of the joint anglesand to the hek of the physial onstraints satisfation is required.- Fault Reovery Algorithm. The position of the joint that violates the physialonstraints is set to the spei�ed limit while the other joints realulate their targetangle positions.- Obstale Avoidane Algorithm. If the robot arm enounters an undesired po-sition (an obstale in the robot workspae), a new position around an obstale issearhed by the robot arm. If a new position of the arm is found and joint targetangles are identi�ed, the robot arm proeeds to the next target position, otherwiserobot ontrol terminates.The Kinematis module of the RCS is modeled by the state mahines, represent-ing behavioral spei�ations of the Arm, Joint, End E�etor, Cheker, Reovery,Trial Con�guration, Global Representation xUML objets. Figure 6 shows thestate mahine of the End E�etor proess as an example of an xUML behavioralspei�ation.Experimental Results. We onsidered several variants of the test-bed systemwith a di�erent number of joints i instantiated for a single robot arm. We hekeda number of the ontrol properties for various on�gurations of the robot arm. Dueto the spae limitations in this paper we present veri�ation results of one propertythat representively demonstrates the omplexity redutions ahieved by appliationof the yle abstration. In English the property is state as follows: is it possible



Data Abstration for Cyle Intensive Programs 17for the end-e�etor to proeed to a new target position when an obstale has beenreahed by the robot arm or a joint(s) have enounted a faulty on�guration? Sineit is easier to reason about the program ontrol ow in terms of the loations in theprogram exeution rather than in terms of events, we speify the ontrol propertiesin terms of the states de�ned by the labeling variables in the xUML system.7 Theformal spei�ation of the above property is (the property is enoded in the querylanguage of COSPAN):Always(End E�etor.status = 'FollowingTrajetory' ! Arm.status = 'Valid').8We used two models to hek the above property. The �rst model is the omplete(onrete) struture of the robot arm. The seond model is the abstrat version ofthe onrete model to whih the yle abstration method has been applied. Therobot ontroller system abstration was instantiated by the detetion of two yliatoms of the Joint and End E�etor state mahines. One of the yli atoms isthe Atom A of the End E�etor state mahine as shown in Figure 6. The yleabstration was enfored by substitution of the output guards of the yli atomsby Choie Seletor expressions. For example, an output guard of the Atom A,Table 1. Comparison of Veri�ation of the Conrete and Abstrat Robot Controller Sys-tems Value of i Conrete Model(states/ses/Mbytes) Abstrat Model(states/ses/Mbytes)2 11,933/1,452/1.81 97/25.39/0.33 26,119/7,966/5.03 229/69.9/0.314 102,067/56,414/18.7 1,105/817.8/1.25 memory exhaustion 10,389/1,211/2.56 memory exhaustion 32,518/5,132/7.25(if(Current Position != Global(1).�nal point)), that determines three outputs of theatom has been substituted with the Choie Seletor expression de�ned over a sele-tion variable that ranges between 1 and 3. The orretness of the ontrol paths ofthe abstrat robot ontroller system with respet to the modi�ed output guard, waspreserved by transformation of the output guards that depend on the variable Cur-rent Position diretly and indiretly through a hain of dependenies. For example,an output guard of Atom B has been transformed as well.The dependeny analysis and the abstration mapping along with the genera-tion of fairness onstraints for eah yli output guard was onduted automatiallyby the Cyle Abstration tool. For example, the following set of fairness on-straints was generated for the seletion variable of the Choie Seletor used in Atom7 The labeling variables values are preserved by the yle abstration sine they do notdepend on any program variables but the fat that an event arrives to an atom.8 The har type of the status variables is intepreted into the integer type by the OB-SRtranslator to on�rm to the model-heker.



18 Natasha Sharygina and James C. BrowneA: AssumeEventually (seletion[0℄ = 1); AssumeEventually (seletion[0℄ = 2); As-sumeEventually (seletion[0℄ = 3).When false negative results were enounted as a result of model-heking, addi-tional behavioral restritions spei�ed in terms of the seletion variables were addedto the list of the assumptions. The assumptions were derived from the domain knowl-edge of the RCS aquired during the simulated testing supported by simulation tool[19℄.Table 1 ompares the run-time and memory usage for the onrete and theabstrat RCS with a total number of 7 proesses exluding the i proesses orre-sponding to the number of instanes of the Joint objet. Eah entry in the table hasthe form x/y/z where x is the number of the states reahed, y is the run-time in puseonds and z is the memory usage in Mbytes. The results of the veri�ation demon-strate signi�ant redution in both time and spae for the abstrat model omparedto the onrete model. The redution beomes more pronouned for larger values ofi. The veri�ation for the robot on�gurations onsisting more than 4 joints ouldnot be ompleted due to the memory exhaustion for the onrete model, COSPANsueeded for the abstrated model.9 Summary and Related WorkSummary. This paper gives a data abstration tehnique appliation of whih re-sults in eÆient model-heking of yli ontrol-intensive software systems. Wedemonstrated that the yle abstration algorithm produes a onservative abstra-tion with respet to the ontrol traes of the onrete program. The yle abstrationmethod applies for asynhronous interleaved sequential programs that are the om-mon modeling representation for ontrol software systems. The yle abstrationalgorithm has been implemented for xUML software systems. The xUML notationsupports separation of data and ontrol. This separation enables syntati identi-�ation of the deision points that determine ontrol for the ylially exeutingprograms. The yle abstration method is, however, a general tehnique and anbe applied to other programming languages. Implementation may then require on-duting a trivial stati analysis for identi�ation of the output guards that determinethe yle ontrol ow.The yle abstration method has been implemented in the integrated design,testing and model-heking environment supported by the ommerial tools, SES/Objetbenh [19℄ and automata-based model-heker, COSPAN [8℄ used in previousstudies [21, 22, 25℄.We evaluated the yle abstration tehnique by veri�ation of a NASA robotontroller system. Order of magnitude redutions in both time and spae were foundfor model heking the abstrat program ompared to the onrete program.Related Work. Data abstration has long been a favored method for reduingthe state-spae of a software system to allow eÆient model-heking [4, 6, 16℄. Ab-stration tehniques are often based on abstrat interpretation [5℄ and require a userto give an abstration funtion relating onrete datatypes to abstrat datatypes.Prediate abstration was been introdued by S. Graf and H. Saidi [7℄ and has been



Data Abstration for Cyle Intensive Programs 19widely aepted as the basis for automated abstration tools [1, 15, 18℄. Cyle ab-stration is similar to prediate abstration in that it requires spei�ation of anabstration funtion as prediates over onrete data. Cyle abstration di�ers fromprediate abstration in that it does not require omputation of the abstration pred-iates. Instead it operates on the onditional prediates whih implement programontrol. The result of the yle abstration is the onstrution of a ontrol skeletonwhih makes our work similar to onstrution of boolean programs as de�ned in [1℄.However, our work is di�erent from [1℄ in that it is onerned with the abstrationof only the yles. Cyle abstration introdues a limited number of unrealisti be-haviors ompared to [1℄ and also preserves some original data valuations omparedto the omplete data abstration provided by the prediate abstration methods.Cyle abstration is a useful omplement to the prediate abstration tehniques.It abstrats ontrol while prediate abstration abstrats statements not e�eted bythe yle abstration. We are urrently engaged in a projet that develops a pro-totype automati abstration tool supporting the prediate abstration algorithmpresented in [15℄. We are planning to evaluate the yle abstration in ombinationwith the prediate abstration.The implementation of the yle abstration algorithm is similar to [15℄ in thatthe yle abstration algorithm does not onstrut the expliit state graph either ofthe original or of the abstrat programs. Instead a syntati analysis of the originalprogram is used to produe an abstrat program. However, our approah is di�erentfrom any other abstration algorithms dealing with the soure ode in that theabstration is applied to a design-level spei�ation. To our knowledge, there hasbeen no previous reports on data abstration algorithms spei�ally targeting designlevel spei�ations.The work presented in this paper is also related to path overage (also knownas prediate overage) testing [2, 3℄. Path overage reports whether eah of the pos-sible paths in eah funtion of the program has been followed. (A path in testingis a unique sequene of branhes from a funtion entry to exit). Cyle abstrationprovides omplete overage of all possible yli exeution paths. One of the majorobstales to suessful path overage is looping during program exeution. Sineloops may ontain an unbounded number of paths, path overage only onsiders alimited number of looping possibilities. Our method solves this problem. Path ov-erage has the problem is that many potential paths are impossible to reah beauseof data relationship onstraints. Cyle abstration tehnique solves this problem byadding fairness onstraints to fore exploration of all abstrated paths.Aknowledgments. We thank Bob Kurshan, Allen Emerson, Kedar Namjoshiand Nina Amla for their helpful omments. This researh was supported in part bythe TARP program 003658-0508-1999, by Bell Laboratories Luent Tehnologies,and by the University of Texas at Austin Robotis Researh Group.Referenes1. T. Ball, R. Majumdar, T. Millsteain and S. Rajamani, Automati Prediate Abstrationof C Programs, In Proeedings PLDI 2001, SIGPLAN Noties, Vol. 39 (2001)
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