Data Abstraction for Cycle Intensive Programs

Natasha Sharygina and James C. Browne

The University of Texas at Austin,
Austin, TX, USA 78712

natali,browne@cs.utexas.edu

Abstract. This paper reports on the design, implementation and evaluation
of a data abstraction algorithm which is effective in reducing the complex-
ity of model-checking for control properties of cycle intensive programs. The
reduction technique performs a transformation of a ”concrete”, possibly in-
finite state, program by means of a syntactic program transformation that
results in an ”abstract” program that when model-checked provides com-
plete but minimal coverage of cyclic execution paths. We demonstrate that
the algorithm is correct in that the ”abstract” program is a conservative
approximation of the ”concrete” program with respect to the control spec-
ifications of the program. The cycle abstraction has been implemented in
the integrated xUML design, testing and formal verification software devel-
opment environment. We use as a case study a NASA robot control system
and report on substantial reduction in both time and space for the abstract
model compared to the concrete model.

Keywords: Model Checking Software, Data Abstraction, Integrated Soft-
ware Design, Testing and Verification

1 Introduction

It is widely believed that effective model-checking of software systems could produce
major enhancement in software reliability and robustness. But the effectiveness of
model-checking of software systems is severely constrained by the state space ex-
plosion problem. One principal method in state space reduction of software systems
is abstraction. Abstraction techniques reduce the program state space by mapping
the set of data states of the actual system to an abstract set of states that preserve
the behaviors of the actual system. Abstraction is widely used and it has been ex-
plored by a number of researchers [4, 6,13, 14, 16]. Abstractions introduce unrealistic
behaviors into the specification of the programs. Intelligent refinements of the ab-
stracted programs are required to avoid false negative results from model-checking.

This paper reports on the design, implementation and evaluation of a data ab-
straction algorithm that automates an abstraction process of cycle intensive systems.
The algorithm given here performs a transformation of a ”concrete”, possibly infi-
nite state, program by means of a syntactic program transformation that results in
an "abstract” program which when model-checked provides complete but minimal
coverage of program execution paths. Given a control structure for a program, the
cycle abstraction algorithm iteratively computes the number of possible outputs of

2 Natasha Sharygina and James C. Browne

each control flow statement of the program that effects the cycle control flow. The
conditional expressions of each cycle control flow statement are replaced with an ex-
pression over a single variable with a value non-deterministically chosen in the range
(1,number of control outputs of cycle control flow statement). This is achieved by
a syntactic analysis that does not construct the explicit transition graph either of
the original or of the abstract program, each of which may be too large to compute.
Generation of all original control flows is assured by fairness constraints specified
as assumptions on the values of the cycle flow statement variables of the abstract
program.

We demonstrate that the algorithm is correct in that the ”abstract” program is
a conservative approximation of the ”concrete” program with respect to the control
specifications of the program. The correctness result implies that a control specifi-
cation holds for the original program if it holds for the abstract program.

The cycle abstraction algorithm has several advantages:

- it is a selective and targeted abstraction which introduces few unrealistic be-
haviors requiring refinement.

- it applies at the design level for software systems.

- it is based on syntactic manipulation of expressions, and produces a reduced
program and therefore, it can be applied without change to the verification tool or
the verification algorithm. This enables integration with existing tools at a low cost.

- it produces a syntactic representation of the abstract program and thus other
model-checking state space reduction techniques, such as symbolic model-checking
and partial order reduction, can be applied to the abstract program.

The cycle abstraction algorithm has been evaluated during verification of a NASA
robot controller. It has been found to give order of magnitude reduction in the
complexity and computational resource requirements for model-checking of control
properties of a robot control system. Moreover, it enabled model-checking of control
properties for 5 and 6 joint robot arms which had previously been intractable with
available computational resources.

Contents of Paper. Section 2 defines the problem of model-checking of cyclic
programs. Sections 3 - 5 define syntax and semantics of the control software systems.
Section 6 defines the cycle abstraction and demonstrates its soundness. Section 7
describes an implementation of the cycle abstraction algorithm in the framework of
integrated software design and model-checking. The effectiveness of cycle abstraction
is demonstrated in Section 8 that shows the verification results of the NASA robot
controller system. Section 9 concludes the paper and positions the cycle abstraction
with respect to the existing abstraction techniques.

2 Model Checking of Cyclic Programs

The control flow graphs and the execution behaviors of control software systems
are typically dominated by cycles implementing feedback loops. The structure of
the control flow graph is usually determined by a small set of variables (control
flow variables). The cyclic paths in the control flow graph are usually determined
by conditional statements (guards) which depend on a subset of the control flow

Data Abstraction for Cycle Intensive Programs 3

variables (cycle flow variables). Model checking of such systems generates a traversal
of the cycles in the control flow graph for each possible value of each cycle flow
variable in the conditional statements which determine the cycles. Each traversal
of the cycle with different values of the cycle flow variables is distinct in the state
graph of the control system. Additionally each traversal of a cycle will typically have
different values for many variables which do not determine paths in the control flow
graph. Let us call such variables, "don’t care” variables. Each execution of a cycle
with different values for "don’t care” variables is also distinct in the state graph of
the executing system and therefore enlarges the state space for model checking the
program.

Many control flow properties are dependent only on the static control flow graph
of the system and are independent of the number of traversals of the cycles of the
control flow graph. Such control flow properties of a system can be verified by model
checking of an abstracted program which has the same static control flow graph as
the original (concrete) program.

3 Programming Model for Control Software Systems

Control software systems are often constructed as compositions of sequential pro-
grams which interact through sending of messages or events. We can, without loss
of generality, assume that each program is comprised of single entry blocks [9].

Definition 1 [Single Entry Block]|: A single entry (or basic) block is a
sequence of statements which can be entered only at the statement which is at the
head of the block and which, when initiated always runs to completion. For simplicity
from now on we refer to a single entry block as an atom.

Each program has a FIFO queue for receiving messages (events). Each atom
of a sequential program is enabled for execution by arrival of a specific message
(event). Execution of an atom may result in sending a message(s) to the program
containing the executing atom or some other sequential program. All control flow,
both control flow among the atoms internal to a program and among programs, is
message (event) driven. Each ”send message” statement is conceptually the action
of a guarded command over some (control flow) variables.

Definition 2 [Program]|: A sequential program is defined as follows:

SeqProc — Proc; terminate,

where Proc is defined by commands!:
simple commands:

z:=exp | z:={expy,...,.exp, } |
compound commands:
Proc1,Proc2 | if B then Procl else proc2 fi | while B do Procl od |

communication commands:

! For the complete list of the commands see [19]

4 Natasha Sharygina and James C. Browne

"Generate(ID,exp)’ | ’Receive(ID,z)’ .

In the above definitions z is a program variable, exp; are expressions over pro-
gram variables, and B is a boolean condition, and ID is the name of the event
destination program. The statement z = { ezp,,...,exp,, } is a non-deterministic
assignment, after which z will contain the value of one of the expressions ezxp,,...,
exp,,.

Events generated during the execution of an atom are the outputs. In the case if
several output events are guarded by the same guard the corresponding outputs are
defined as sets of events, one output per branch of the guard.

Definition 3 [Output]: An output of an atom is an event or a sequence of
events for non-guarded or guarded generation of multiple events respectively.

Each output guard can be composed of nested conditional statements which
define different outputs.

The execution model for a sequential program is: a) A message arrives in the
input queue of a sequential program and some atom of the program is enabled
for execution in ”run to completion” mode. b) The enabled atom is executed. c)
Execution of an atom may result in messages being sent to the process containing
the executing atom or to other programs. d) At the end of the execution of a single
entry block the program halts and awaits arrival of its next message.

Definition 4 [System]: A system is a parallel composition of sequentail pro-
grams. Each program has its own read-shared local variables and events. In general
terms a programming system, P, is defined as a set of variables, X, and a set of
events, E, an initial condition, I, a set of atoms, A, that contain commands that
modify the program variables, and send and receive events, P = (X,E,[,A).

The execution model for the system is asynchronous interleaved execution of
the atoms of the sequential programs. a) One program from among those which are
enabled for execution (those programs with events in their input queues) is randomly
selected for execution. b) The atom in the selected program which consumes the
event at the head of the event queue is executed and step a is repeated.

Definition 5 [Control Flow Graph of the System]: The nodes of the control
flow graph of the system are statements of the sequential programs from which the
system is composed. The arcs of the control flow graph of the system connect each
statement with its predecessor and successor in the execution of the system.

Most control properties can be and are stated in terms of control at the single
entry block (atom) level.

Definition 6 [Atom Control Flow Graph]: The nodes of the atom control
flow graph of the system are atoms of the composing sequential programs. The arcs
of the control flow graph of the system connect atoms which are the sources and
targets for events. Therefore a control flow graph can also be specified as generation
and consumption of a sequence of events.

Definition 7 [Cycle in an Atom Control Flow Graph]: A cycle in an atom
control flow graph of a system is repeated execution of a path which begins with the
generation of a unique event by an atom and ends at that same atom (cyclic atom).

We refer to the sequences of events that are repetitively executed, as redundant
with respect to the verification of control properties.

Data Abstraction for Cycle Intensive Programs 5

Each cycle is controlled by a set of output guards that consists of the output
guards of the cyclic atom and their dependence set. Let us call the variables of the
output guards that define the cycle, cycle flow variables.

An algorithm which constructs an abstract system with the same atom control
flow graph as the original system is given in Section 6. The algorithm is a source to
source transformation of the atoms which preserves all of the outputs of execution
of the atoms.

4 xUML - An Instance of the Programming System

xUML [23] is an instantiation of the programming model described above. xXUML
is a dialect of UML with executable semantics. Programs written in xUML are
design level representations which can be executed directly through discrete event
simulation or interpretation and/or compiled to procedural source code. xUML is
fairly widely used for development of control systems [11,17,19].

An xUML program is a set of interacting objects. The behavior of each object
is implemented as a Moore state machine with a bounded FIFO input queue for
events. The objects interact by sending and receiving events. Each state of the state
machine which can receive an event is given a unique label. A sequential action
is associated with each labeled state. Each action assigns values to state variables
and generates events to be posted to its own input queue or the input queues of
other state machines. The actions execute in run to completion mode. The action
language for the implementation of xUML that we are using is a C-based language
extended by the event generation and state machines manipulation commands. It
supports standard C types for declaration of the system variables, nondeteministic
(funiform) and conditional (if-then-else/while) variable assignments, and arrays and
enumerated types. Each state machine has a state labeling variable which updates
imidiately follow the states which receive events. The presence of the labeling vari-
able allows reasoning about the control flow in terms of locations in the program
execution rather than in terms of events.

Each state machine corresponds to a sequential program of the programming
model defined and described in Section 3. Each action corresponds to an atom of
a sequential program. The execution model for an xXUML system is asynchronous
interleaved execution of the action language programs associated with the labeled
states of the state machines. The execution model for xXUML is ¢dentical to the
execution model for the programming model defined and described in Section 4.

A sample, CONSUMER-PRODUCER-type, xUML program is shown in Fig-
ure 1. An xUML system is represented by two xUML state machines, a CON-
SUMER and a PRODUCER. Each state machine is represented by atoms com-
municating via events. For example, an Atom D of the CONSUMER state ma-
chine represents an atom that can be activated by an input event e4 or e2 and
labeled by the update of a variable status := IDLE. (In the example, the label
variables update commands are implicitely implemented by the xUML graphical
development environment.) The activation of the atom is followed by the execution
of local commands and generation of output events Generate e3(CONSUMER),

6 Natasha Sharygina and James C. Browne

Generate e5(PRODUCER,i,j), Generate e5(PRODUCER,i:=0,j) and Generate €5
(PRODUCER,i,j:=0). Note, the distinction between fields of the event e5: different
data is passed by the event depending on the satisfaction of the specified conditions.
For example, if at some point during the program execution a variable i is larger or
equal to some predefined value, limit_i, than the event e5 will pass a zero value to the
PRODUCER process, using the first supplemental data field of the event command.

CONSUMER St_ate_M_ach_ine_ _ ATOMC_ PRODUCER State Machine
| if(request==item1) :
. i::—reque;t_vulume; \ SELLING IDLE ATOMB
| if(request==item2) | === |
I ji=-request_volume; : | produced_x++; |
:_ Generate e4(CONSUMER); | e4[{CONSUMER) :_PTO_dU_CEliJ’:‘H_ J

e5(PRODUCER,|)

e3(CONSUMER) e6(PRODUCER)

Generate e5(PRODUCER|ij); SERVING CONSUMER
Generate e3(CONSUMER); }
else {
if((i>=limit_i)&&((>=limit_j)) {

|
|
|
|
|
|
Generate e3(CONSUMER); } |
I
|
|
|
|
|
|

IDLE

if(i==0) { x:=0; }
else { x:=in_stock_i

e1(CONSUMER|x,y,z) y:=in_stock_j; }

else

if(i>=limit_i) { if(j==0){ y:=0; }
Generate e5(PRODUCER,i:=0,j); } else { y:=in_stock j;
ifG>=limit_j) ~ { e2(CONSUMER) x:=in_stock_i; }

Generate e5(PRODUCER;i,j:=0);

|
|
|
|
|
|
|
: Generate e1(CONSUMERY);
|
|
|
|
|
|
|

e e e e - - = = = in_stock_i:=—x;
STORING in_stock_j:=-y; }
ATOM E else {
F——— o — — | in_stock_i:=produced_x;
| i=4x; | in_stock_j:=produced_y; }
: ji=ty: | Generate e6(PRODUCER); !
| Generate e2(CONSUMER); :

Fig. 1. The CONSUMER-PRODUCER xUML Program

Definition 8 [Control Flow Graph of an xXUML System]|: The nodes of the
control flow graph for an xUML system are the labeled states which receive events.
The arcs of the control flow graph of an tUML system connect labeled states which
receive events. The control flow graph for an xUML system can therefore also be
specified as a sequence of unique events.

Definition 9 [The xUML Cycle Marker]: Each cycle in the control flow
graph of an xUML system is identified by placing a ”Cycle Marker” on the initial
atom of the cycle.

Data Abstraction for Cycle Intensive Programs 7

5 Computational Model

The programming model of Section 3 (and thus also xUML) can be given an execu-
tion semantics as an asynchronous transition system (ATS) [10] composed of finite
state machine interacting through finite, non-blocking FIFO queues.

Definition 10 [Event Queue]:(cf. [10]) An event queue, Q; = (V,N,E,L) is
defined by the the queue vocabulary, V, by the size of the queue, N, by the vector
of events stored in the queue, E, and the content of the stored events, L, defined
as a finite set of the values. The values are expressions on the system variables, or
constants. For a set of queues, Q, the queues vocabularies are disjoint.

Definition 11 [Finite State Machine]:(cf. [10]) A state machine, M, is defined
as a tuple, M = (X,S,s0,1,0,Q,T), where

- X is the finite set of variables;

- S is the finite set of possible binding of values to X;

- sp is an element of S, the initial state;

- I is the set of input events;

- O is the set of output events;

- Q is a set of event queues;

- T is the transition relation specifying the allowed transitions among S.

The execution model of a state machine of an ATS is: a) An input event arrives
in the input queue of a state machine. b) State transitions, including possibly gen-
eration of events, are executed until a state requiring input of an event is reached.
c) The state machine halts and awaits arrival of its next event.

Definition 12 [Trace of a State Machine]: An infinite sequence of states tr
= $081...8n, is a trace of FSM if (1) so is an initial state and (2) for all 0 <i < n,
the state s;+1 is a successor of s;.

Definition 13 [Asynchronous Transition System]:(cf. [10]) An ATS is a
composition of finite state machines which interact by sending and receiving events.
The global state space is the product of the local state spaces of the composed state
machines, the system event queue is the union of the sets of the queues of the sepa-
rate machines, and the global transition relation is the union of the local transition
relations.

The execution model for the ATS is: a) One state machine from among those
which are enabled for execution (those state machines with events in their input
queues) is randomly selected for execution. d) The selected state machine is executed
until it halts awaiting an input event and step a is repeated.

Definition 14 [Trace of an ATS]:

The trace of an ATS is an interleaving of states from the traces of the state
machines which compose the system. The ATS may be constrained by fairness
conditions that determines which traces are fair, and only those traces are con-
fronted with the specification during model-checking. A fairness condition is defined
as a boolean combination of basic fairness conditions ”infinitely often p” where p
is a set of state pairs. The control trace is fair if the fairness condition is true in
infinitely many states along the trace.

8 Natasha Sharygina and James C. Browne

Definition 15 [Refinement]: Let A and C be two instances of the ATS defined
preceding. Let L(A) and L(C) be the language of all traces from execution of A and
C.

If X¢ C X4, and L(C) C L(A) then C weakly refines A, C < A.

Definition 16 [Control Refinement]: Let us define an operator R which
projects from L(C) and L(A) all states which do not receive events. Call R.L(C) and
R.L(A) control traces of an ATS.

If X¢ C X4 and R.L(C) C R.L(A) then C weakly refines control of A.

The actions of xUML state machines execute in run to completion mode. There-
fore R.L(C) and R.L(A) correspond to the control flow graphs of xXUML systems C
and A and L(C) and L(A) correspond to the traces of xUML systems C and A.

6 Cycle Abstraction

We define a cycle abstraction technique that maps all of the traversals of a cycle in
the control flow graph with different values for the cycle flow variables to traversals
with values of a single variable whose range is the number of the cyclic atom outputs
and whose values are non-deterministically chosen subject to fairness constraints.
The cycle abstraction is the syntactic program transformation that results in a
reduced ATS that provides complete but minimal coverage of the program executions
and, that, therefore, can be practically model-checked.

We present the abstraction informally by specifying the cycle abstraction algo-
rithm. We demonstrate the soundness of the abstraction formally by presenting a
proof of correctness of the cycle abstraction.

6.1 Cycle Abstraction Algorithm?

We first present components of the cycle abstraction algorithm: an algorithm for
computation of a number of outputs controlled by an output guard and an output
guard transformation procedure. We conclude by presenting an algorithm for the
cycle abstraction.

Output Range Computation. Figure 2 presents a sketch of the algorithm,
which determines the number of outputs guarded by an atom. The algorithm com-
pute_range performs syntactic analysis of the guard structure by parsing the text of

2 We present the cycle abstraction algorithm and its components using the syntax for
xUML programs. The cycle abstraction method is, however, a general technique and
can be applied to other programming languages. Implementation may then require
conducting a trivial static analysis for identification of the output guards that determine
the cycle control flow. We assume that an atom that defines a cycle is labeled by the
cycle marker. The algorithm is implemented in C using string interpretation functions
and refers to the xUML-specific syntax structures (’{ }’, ;) for the conditional statements
blocks and commands separation respectively.

Data Abstraction for Cycle Intensive Programs 9

the guard and searching for the Generate and if, while keywords that correspond to
the event generation commands and the nested conditional statements, respectively.
The conditional statements that guard the event generation commands are counted
and the count is stored in the range variable. The compute_range algorithm main-
tains two variables which are used to store information required during the analysis
of the programs of the guards, branch and found, declared as integer and boolean
respectively. Initially (step 1) both variables are set to zero. The output range com-
putation for an Atom D is illustrated in Figure 3. The control flow graph (at the
command level) illustrates the control flow paths that determine four outputs of
Atom D.

int compute_range() {
Step 1. If (branch==0) {
Goto Step 2 and parse commands of a positive test program
Else Goto Step 2 and parse commands of a negative test program }
Step 2. While (the end of the body of the conditional statement reached) {
If (Generate keyword found AND found !=1) {
range++; found:=1;}
If (if or while keyword found){
Goto Step 1; found :=0; } }
Step 3. branch++;
If (branch == 2)
Goto Step 4
Else Goto Step 1
Step 4. return range; }

Fig. 2. A Sketch of the Output Range Computation Algorithm

Guard Transformation. In the abstract program, the output guards of atoms
which determine the nodes of the cyclic control flow paths are substituted with
multi-way selector expressions, Choice Selectors, each of which non-deterministically
selects the outputs to be generated during an execution of the atoms. Each Choice
Selector is defined over a single variable, a selection variable, with a range defined
by the number of the outputs controlled by the corresponding guard. Each output
controlled by the Choice Selector selected by a single value of the selection variable.
Subject to the fairness constraints specified for all values for each selection variable,
the global state transition graph of the abstract program will have all of the event
sequences and thus interleavings of atom executions as the global state transition
graph of the concrete program. The atom code is copied command by command
with the conditions of the cycle control flow guards replaced by equality comparison
of the selection variable to one value in its range.

An example of an output guard transformation taken from the PRODUCER-
CONSUMER example is given below. The right side represents the original text of
Atom D and the left side demonstrates the result of the syntactic transformation.

selection := iuniform(1,2,3,4); if ((i<limit_i) && (j<limit_j)) {
if(selection == 1) { Generate e5(PRODUCER,1i,j);
Generate e5(PRODUCER,1i,j); Generate e3(CONSUMER); 1}

10 Natasha Sharygina and James C. Browne

input 62(CONSUMER1) || é4(CONSUMER:

if (O<i<limit_i) && (O<j<limit j)) |
false true
—| if ((i>=limit_i) && (j>=limit_j)) | | Generate e5(PRODUCER,i,))
true
: false
Generate e3(CONSUMER) | [Generate e3(CONSUMER) |

if (i>=limit_i)

true false

Generate e5(PROII3UCER,i:=0,ji> | Generatcla e5(PRODUCER,i,j:=¢)

output: e3(CONSUMERutput: e5(PRODUCER,0,jputput: e5(PRODUCER,i,0) output: e5(PRODUCE
e3(CONSUMER

Fig. 3. A Control Flow Graph of Atom D of the Consumer-Producer Program

Generate e3(CONSUMER); 1} else {
else { if ((i>=limit_i) && (j>=limit_j))
if(selection == 2) { Generate e3(CONSUMER); 1}
Generate e3(CONSUMER); 1} else {
else { if(i>=limit_1i)
if (selection == 3) { Generate e5(PRODUCER,i:=0,j);
Generate e5(PRODUCER,1:=0,j);} if (j>=1limit_j)
if(selection == 4) { Generate e5(PRODUCER,i,j:=0);
Generate e5(PRODUCER,i,j:=0);} }r
}r

The Cycle Abstraction Algorithm. The cycle abstraction algorithm per-
forms syntactic transformation of the program text by transformation of atoms,
which execution defines the cycle control flow. The abstraction algorithm starts
from the transformation of a cyclic atom by substituting its output guards with the
Choice Selector expressions. The abstraction of a concrete set of output guards may
introduce some loss of information caused by the non-deterministic choice over the
set of the selection variables. To overcome this imprecision, abstraction with respect
to cyclic control flow is propagated to the control flow statements which depend on
the cyclic control flow variables. A sketch of the algorithm is presented in Figure 4.

The cycle abstraction algorithm maintains four variables which are used to
store information required during the analysis and transformation of the program,
range_size, abstract_guards, current_.command, and flow_var_storage declared as in-
tegers, char and an array of char type respectively. It also creates a file, fairness.tzt
that is used to store the fairness assumptions specified as one of the results of the
program transformation.

Data Abstraction for Cycle Intensive Programs 11

The algorithm proceeds as follows:

Step 1: The cycle markers are identified (the program looks for a keyword *Cycle
Label’).

Step 2: The algorithm iteratively analyzes and transforms atoms that define cycle
control flow3.

At each iteration the algorithm parses the text of the atom command after
command while performing the following series of actions:

a) Placement of the first command found in the text of the atom into cur-
rent_command,

b) Testing if the current_command is a guard (i.e test against the if, while key-
words). For the negative test the program proceeds to step 2c, otherwise the following
actions are performed:

If the guard is the output guard (i.e. if the body of the guard includes the events
generation commands (denoted by the 'Generate’ keyword)) then

- The abstract_guard variable that is used to store a number of transformed guards
is updated.

- The names of the cycle flow variables of the output guards are passed to the
flow_var_storage variable.

- The compute_range program is invoked to count the number of outputs con-
trolled by the guard. The result is stored in the range_size variable.

- The transformation program uses the current values of the abstract_guard and
range_size variables to transform the guard following the procedure discussed in the
guard transformation section.

- The fairness.tzt file is updated with new fairness constraints. The fairness
constraints are defined following the scheme:

For (int 7 := 0, int j := abstract_guard - 1; i < range_size; i++) {
Create a line: AssumeEventually® selection[j] := 1 }°.

The file containing the fairness constraints is later used to specify assumptions that
assure that all outputs defined in the concrete system are explored during the model-
checking of the abstract program.

c) If the end of the atom is not reached then the next command of an atom is
analysed. (If the previous command was a guard that was transformed, then the
program starts from the command that follows the new structure.)

Step 3: Dependency analysis between the program variables and the variables
stored in the flow_var_storage is performed. The names of the dependent variables
are passed to the flow_var_storage variable.

% The atomic structure of the xUML programs is explicitely preserved by special words
’state’ and ’endstate’ for the beginning and the end of the atom respectively. This allows
syntactic identification of the code that corresponds to each xUML atom.

The assumptions are encoded in the query language of the COSPAN model-checker, a
part of the cycle abstraction implementation environment.

For example, if the first output guard found during the program analysis (abstract_guard
== 1) controlls four outputs (range_size == 4), then the following set of the fairness con-
straints is created: (Assume Eventually selection[0] := 1; Assume Eventually selection[0]
:= 2; Assume Eventually selection|[0] := 3; Assume Eventually selection[0] := 4).

12 Natasha Sharygina and James C. Browne
Step 1. Detect cycle markers
Step 2. Analyze and Transform an Atom, Acvyele/depend,
While end of atom is not reached {
(a) current_command < command
(b) If current_command is a guard {
If guard is an output guard {
- abstract_guard++
- flow_var_storage < names of the flow variables
- range_size < compute_range
- transform_guard(range_size,abstract_guard)
- fairness.tet < assumptions(range_size,abstract_guard) } } }
(c) Move to the next command }
// A new program is formed by substitution of Acvele/depend
with the tranformed atom
Step 3. Detect depend variables:
While depend variables found {
flow_var_storage < names of the depend variables }
Step 4. Detect depend guard:
(a) While guard found {
(b) If guard is an output guard {
(c) If guard is the depend guard {
break; Goto Step 2 } } }
Step 5. An abstract program is formed as: P* = (X*,E*,I*,A%),
where E I* are defined as for the concrete program,
X=X U X" X is the set of the concrete variables and
X" is the set of the selection variables.
A = A \ Acycle/depend U Anew, where
A, Acvele/derend oo the sets of concrete atoms,
and A™°Y is the set of transformed atoms.

Fig. 4. A Sketch of the Cycle Abstraction Algorithm

Step 4: The new program is searched for depend guards (i.e. conditional state-
ments ’if-then-else/while’, which operate on the variables that are included in the
flow_var_storage array). If a depend guard is found then program proceeds to step
2, otherwise it proceeds to Step 4.

Step 5: Program transformation finishes by inserting into the declaration part of
the program text a line that declares an array of variables selection[abstract_guard)
of integer type.

6.2 Correctness of the Cycle Abstraction

The proof of the cycle abstraction uses a witness program.

Definition 16 [The Witness Program]: Let P¢ = (X¢,E¢,I°,A¢) be the con-
crete program. The witness program, PY = (XY ,EY 1Y, AY), is derived from the
concrete program by substituting ALL output guards with non-deterministic Choice
Selector expressions following the procedure presented in Section 6.1 for the guard
transformation. E*, I are defined as for the concrete program. X% = X |J X selection,
where X is a set of variables of the concrete program and X #¢/¢ctio” ig a set of selection

Data Abstraction for Cycle Intensive Programs 13

variables corresponding to the number of output guards in the concrete program.
A" is a set of the witness program atoms that are the transformed atoms of the
concrete program. The transition system corresponding to the witness program is
constrained by fairness conditions specified for all values of each selection variable.
The witness program is a control approximation of a concrete program. The ATS
of the witness program has all the interleavings of atom executions as the global
transition graph of the concrete program.

Theorem 1:

A transition system of the cyclic concrete program (C) weakly refines control of
the transition system of the abstract cyclic (A) program.

Proof Sketch:

The claim is proved by constructing and comparing control traces of transition
systems corresponding to concrete (C), abstract (A) and witness (W) programs.

1. We construct a witness program from a concrete program following Definition
16.

2. We construct an abstract program by applying a cycle abstraction technique
to the concrete program.

3. We apply the reduction operator, R, (see definition 15) to generate the con-
trol structure of transition systems corresponding to concrete, abstract and witness
programs.

4. The control structure of the witness program is compared with both the control
structures of the concrete and abstract programs. The following conclusions can be
derived from the comparison:

4.1. X¢ C X% and R.L(C) C R.L(W) by definition of the witness program.

4.2 X4 C XW and R.L(A) C R.L(W) because the cycle abstraction is the selec-
tive (with respect to cycles) abstraction and the witness abstraction is the complete
abstraction of the same program.

5. As C weakly refines control of W (from 4.1) and A weakly refines control of
W (from 4.2), we conclude that C weakly refines control of A.

Therefore, we demonstrated that the cycle abstraction is sound with respect to
the control flow representations of the programs. The soundness result implies that
a control specification (a property specified in terms of states that receive events)
holds for the original program if it holds for the abstract program. Some loss of
precision of data computations is introduced by the cycle abstraction. It is traded
for the ability to conduct practical verification of the control properties of complex
control algorithms.

7 Implementation of the Cycle Abstraction

The cycle abstraction has been implemented in the integrated tUML design and for-
mal verification software development environment. This section presents the com-
ponents of the environment and the cycle abstraction procedure developed for it.
The Integrated Design and Model-Checking Software Development
Environment. This research uses a software development framework that inte-

14 Natasha Sharygina and James C. Browne

grates xUML modeling, testing and automata-based model-checking. We refer the
reader to [22], [25] for the detailed description of the integrated environment.

The Abstraction Procedure. The steps of the cycle abstraction procedure
as they are implemented in the integrated design and verification environment are
captured in Figure 5. The abstraction procedure operations are supported by the
following tools (each tool is represented with respect to the actions it performs in
the cycle abstraction procedure):

Source Code
(C, C++)

Code Generation

SES/ Code Genesi § Cycle Detection

Testing Tool
xUML MODEL (OB Simulator)
Label i ng
(graphical designs)
. Transl ation
Transformati on GOB_to_TOB
Abstraction Tool Syntactic XUML MODEL
(Cycle_Abstraction) (textual file)

Redesi gn

Formal i zation and
Transl ation
TOB_t 0_SR

! |

! |

! |

I Fairness | REAL ERROR

: Constraints '
|

! |

|

|

|

|

|

Consi stency Chec Model-Checker TRUE
'ﬁ (COSPAN)

CONTROL Refinement FALSE NEGATIVE
PROPERTY Constraint;

Fig. 5. The Cyclel Abstraction Procedure For the Integrated Design and Model-Checking
Software Development Environment

1. The UML graphical specification and validation environment as it is imple-
mented in the commercial tool, SES/OBIJECTBENCH (OB) [19]:

- cycles in the execution behavior of the xUML programs are detected using the
discrete event simulator by traversing possible event sequences which can arise from
the execution of interacting xXUML state machines;

- the atoms that are identified to be repeatedly activated are marked manually
in the xXUML specification environment.

Data Abstraction for Cycle Intensive Programs 15

2. The CYCLE_ABSTRACTION program:5

- the labeled xUML state machines are syntactically analyzed and transformed
into the abstract xUML state machines using the cycle abstraction algorithm defined
in the previous section.

- a set of the fairness constraints is generated. The list of the generated fairness
constraints is passed as an input to the model-checker.

3. The automata-based model-checking tool, COSPANJ[13]:

- a consistency check is performed over the abstract SR model (SR is an input
language of COSPAN) automatically derived from the abstract xUML model with
respect to the the specified control property, the fairness constraints and the ap-
proximation restrictions. Additionally, the following features provided by COSPAN
are used:

- the localization reduction algorithm, automatically invoked by COSPAN during
model-checking, is used to eliminate from consideration the variables that do not
effect the verification property.

- the assume/quarantee mechanism of COSPAN is used to add fairness con-
straints and the refinement assumptions to the model-checking process.

A detailed description of the xUML notation and the automata-based model-
checking, as it is supported by COSPAN, can be found in [13,22].

8 Evaluation of the Cycle Abstraction Technique

Test-Bed Software. This section presents the NASA robot controller system (RCS)
formulated as XUML models. The RCS is a complex legacy software system used
for instantiation of numerous robotics applications that size is roughly 300K LOC.
In fact, a part of the RCS has been recently included in the control software system
of the robot arm, deployed in the space station [12]. The RCS has been thoroughly
analyzed by testing. A number of efforts have been made to conduct formal verifica-
tion by model-checking. Some success was reported in the compositional verification
of a simplified RCS components [22]. The complexity (partially caused by the cyclic
execution of the robotic algorithms) of the RCS components, however, prevented
practical model-checking of realistic systems. Due to space limitations and the com-
plexity of the test case software, we refer the reader to our previous papers where the
application software and its properties are presented in detail [22,21]. In this paper
we refer to a subset of the RCS, namely the Kinematics unit, which implements the
following algorithms:

- Robot Control Algorithm. Given a target position of the last joint of the robot
arm (end-effector), every joint calculates its target angle position. If each target angle
position satisfies the physical constraint imposed on the joint, the arm proceeds to
the target position; otherwise, fault recovery is called. For a set of target positions of

® The abstraction procedure uses a translator that automatically transforms the xUML
programs from the Graphical OB representation into SR, an input language of the model-
checker, COSPAN [25]. Specifically, the CYCLE_ABSTRACTION program is applied to the
intermediate representation of the translation result, the textual representation of the
xUML models.

16 Natasha Sharygina and James C. Browne

P ————
| ATOM D | y

| ee_reference=0; \ EEQ9: idle(EE_ID)
| end_position=0; \

EES8:to_idle(EE_ID)

EEL:
/l CYCLE MARKER ATOM A

|
|
) Generate TS1: ATOM C | | Current_Position=next_target; |
| CalculatgTrailConfiguration(TS_ID, | : if(Current_Position<=Global(1).final_ppint) |
| "forward| kinematics",|dOfLockedJoint); | | Generate EE4: Check_Constrai 1ts(EE_TD); |
I 7 T T T T ! | if(Current_Position<=EE.obstrdcte) |

X {

: els {Generate RECOVERY: Avold(R1)} } chle Guard

e
Initial Positioning o Generate EES5: back(EE_ID);} |

EE6: CheckConstfaints(EE_ID)

EE2: CheckLimits(EE_ID,solution) Checking

Depend Guard
\

| Congtraints EE3: To_Valid(EE[ID)

-
\g |
if (Current_Position[i}p Limit[i]){ EET: To' Nt_Valid(EE_ID) Valid Position
Ilactions are omitted rl- -

|

|

|

! Generate TS1: CalculateTrailConfiguration(TS_ID,
| “inverse_kinematics",|dOfLockedJoint);
|

|

|

|

|

|

Generate EE3: Valid_Position(EE_ID); |
€ |
|

S
Generate EE7: to Not_Valid_Position(EE_ID);}

[ATOMF |

Not_Valid Position i' Generate JCH1: zero_the_counter(1,Joint_I

0 | v

Fig. 6. xUML state machine of the End_Effector program of the Robot System.

the robot arm, the same set of actions leading to the calculation of the joint angles
and to the check of the physical constraints satisfaction is required.

- Fault Recovery Algorithm. The position of the joint that violates the physical
constraints is set to the specified limit while the other joints recalculate their target
angle positions.

- Obstacle Avoidance Algorithm. If the robot arm encounters an undesired po-
sition (an obstacle in the robot workspace), a new position around an obstacle is
searched by the robot arm. If a new position of the arm is found and joint target
angles are identified, the robot arm proceeds to the next target position, otherwise
robot control terminates.

The Kinematics module of the RCS is modeled by the state machines, represent-
ing behavioral specifications of the Arm, Joint, End_Effector, Checker, Recovery,
Trial_Configuration, Global- Representation xUML objects. Figure 6 shows the
state machine of the End_Effector process as an example of an xUML behavioral
specification.

Experimental Results. We considered several variants of the test-bed system
with a different number of joints 7 instantiated for a single robot arm. We checked
a number of the control properties for various configurations of the robot arm. Due
to the space limitations in this paper we present verification results of one property
that representively demonstrates the complexity reductions achieved by application
of the cycle abstraction. In English the property is state as follows: is it possible

Data Abstraction for Cycle Intensive Programs 17

for the end-effector to proceed to a new target position when an obstacle has been
reached by the robot arm or a joint(s) have encounted a faulty configuration? Since
it is easier to reason about the program control flow in terms of the locations in the
program execution rather than in terms of events, we specify the control properties
in terms of the states defined by the labeling variables in the xUML system.” The
formal specification of the above property is (the property is encoded in the query
language of COSPAN):

Always(End_Effector.status = ’Following Trajectory’ — Arm.status = ’Valid’).8

We used two models to check the above property. The first model is the complete
(concrete) structure of the robot arm. The second model is the abstract version of
the concrete model to which the cycle abstraction method has been applied. The
robot controller system abstraction was instantiated by the detection of two cyclic
atoms of the Joint and End_Effector state machines. One of the cyclic atoms is
the Atom A of the End_Effector state machine as shown in Figure 6. The cycle
abstraction was enforced by substitution of the output guards of the cyclic atoms
by Choice Selector expressions. For example, an output guard of the Atom A,

Table 1. Comparison of Verification of the Concrete and Abstract Robot Controller Sys-
tems

Value of i Concrete Model Abstract Model
(states/secs/Mbytes) (states/secs/Mbytes)
2 11,933/1,452/1.81 97/25.39/0.3
3 26,119/7,966/5.03 229/69.9/0.31
4 102,067/56,414/18.7 1,105/817.8/1.2
5 memory exhaustion 10,389/1,211/2.5
6 memory exhaustion 32,518/5,132/7.25

(if(Current_Position != Global(1).final_point)), that determines three outputs of the
atom has been substituted with the Choice Selector expression defined over a selec-
tion variable that ranges between 1 and 3. The correctness of the control paths of
the abstract robot controller system with respect to the modified output guard, was
preserved by transformation of the output guards that depend on the variable Cur-
rent_Position directly and indirectly through a chain of dependencies. For example,
an output guard of Atom B has been transformed as well.

The dependency analysis and the abstraction mapping along with the genera-
tion of fairness constraints for each cyclic output guard was conducted automatically
by the CYCLE_ABSTRACTION tool. For example, the following set of fairness con-
straints was generated for the selection variable of the Choice Selector used in Atom

" The labeling variables values are preserved by the cycle abstraction since they do not
depend on any program variables but the fact that an event arrives to an atom.

8 The char type of the status variables is intepreted into the integer type by the OB-SR
translator to confirm to the model-checker.

18 Natasha Sharygina and James C. Browne

A: AssumeEventually (selection[0] = 1); AssumeEventually (selection[0] = 2); As-
sumeFEventually (selection[0] = 3).

When false negative results were encounted as a result of model-checking, addi-
tional behavioral restrictions specified in terms of the selection variables were added
to the list of the assumptions. The assumptions were derived from the domain knowl-
edge of the RCS acquired during the simulated testing supported by simulation tool
[19].

Table 1 compares the run-time and memory usage for the concrete and the
abstract RCS with a total number of 7 processes excluding the i processes corre-
sponding to the number of instances of the Joint object. Each entry in the table has
the form z/y/z where x is the number of the states reached, y is the run-time in cpu
seconds and zis the memory usage in Mbytes. The results of the verification demon-
strate significant reduction in both time and space for the abstract model compared
to the concrete model. The reduction becomes more pronounced for larger values of
i. The verification for the robot configurations consisting more than 4 joints could
not be completed due to the memory exhaustion for the concrete model, COSPAN
succeeded for the abstracted model.

9 Summary and Related Work

Summary. This paper gives a data abstraction technique application of which re-
sults in efficient model-checking of cyclic control-intensive software systems. We
demonstrated that the cycle abstraction algorithm produces a conservative abstrac-
tion with respect to the control traces of the concrete program. The cycle abstraction
method applies for asynchronous interleaved sequential programs that are the com-
mon modeling representation for control software systems. The cycle abstraction
algorithm has been implemented for xUML software systems. The xUML notation
supports separation of data and control. This separation enables syntactic identi-
fication of the decision points that determine control for the cyclically executing
programs. The cycle abstraction method is, however, a general technique and can
be applied to other programming languages. Implementation may then require con-
ducting a trivial static analysis for identification of the output guards that determine
the cycle control flow.

The cycle abstraction method has been implemented in the integrated design,
testing and model-checking environment supported by the commercial tools, SES/
Objectbench [19] and automata-based model-checker, COSPAN [8] used in previous
studies [21, 22, 25].

We evaluated the cycle abstraction technique by verification of a NASA robot
controller system. Order of magnitude reductions in both time and space were found
for model checking the abstract program compared to the concrete program.

Related Work. Data abstraction has long been a favored method for reducing
the state-space of a software system to allow efficient model-checking [4, 6, 16]. Ab-
straction techniques are often based on abstract interpretation [5] and require a user
to give an abstraction function relating concrete datatypes to abstract datatypes.
Predicate abstraction was been introduced by S. Graf and H. Saidi [7] and has been

Data Abstraction for Cycle Intensive Programs 19

widely accepted as the basis for automated abstraction tools [1,15,18]. Cycle ab-
straction is similar to predicate abstraction in that it requires specification of an
abstraction function as predicates over concrete data. Cycle abstraction differs from
predicate abstraction in that it does not require computation of the abstraction pred-
icates. Instead it operates on the conditional predicates which implement program
control. The result of the cycle abstraction is the construction of a control skeleton
which makes our work similar to construction of boolean programs as defined in [1].
However, our work is different from [1] in that it is concerned with the abstraction
of only the cycles. Cycle abstraction introduces a limited number of unrealistic be-
haviors compared to [1] and also preserves some original data valuations compared
to the complete data abstraction provided by the predicate abstraction methods.
Cycle abstraction is a useful complement to the predicate abstraction techniques.
It abstracts control while predicate abstraction abstracts statements not effected by
the cycle abstraction. We are currently engaged in a project that develops a pro-
totype automatic abstraction tool supporting the predicate abstraction algorithm
presented in [15]. We are planning to evaluate the cycle abstraction in combination
with the predicate abstraction.

The implementation of the cycle abstraction algorithm is similar to [15] in that
the cycle abstraction algorithm does not construct the explicit state graph either of
the original or of the abstract programs. Instead a syntactic analysis of the original
program is used to produce an abstract program. However, our approach is different
from any other abstraction algorithms dealing with the source code in that the
abstraction is applied to a design-level specification. To our knowledge, there has
been no previous reports on data abstraction algorithms specifically targeting design
level specifications.

The work presented in this paper is also related to path coverage (also known
as predicate coverage) testing [2, 3]. Path coverage reports whether each of the pos-
sible paths in each function of the program has been followed. (A path in testing
is a unique sequence of branches from a function entry to exit). Cycle abstraction
provides complete coverage of all possible cyclic execution paths. One of the major
obstacles to successful path coverage is looping during program execution. Since
loops may contain an unbounded number of paths, path coverage only considers a
limited number of looping possibilities. Our method solves this problem. Path cov-
erage has the problem is that many potential paths are impossible to reach because
of data relationship constraints. Cycle abstraction technique solves this problem by
adding fairness constraints to force exploration of all abstracted paths.

Acknowledgments. We thank Bob Kurshan, Allen Emerson, Kedar Namjoshi
and Nina Amla for their helpful comments. This research was supported in part by
the TARP program 003658-0508-1999, by Bell Laboratories Lucent Technologies,
and by the University of Texas at Austin Robotics Research Group.

References

1. T. Ball, R. Majumdar, T. Millsteain and S. Rajamani, Automatic Predicate Abstraction
of C Programs, In Proceedings PLDI 2001, SIGPLAN Notices, Vol. 39 (2001)

20 Natasha Sharygina and James C. Browne

2. B. Beizer, Software Testing Techniques, New York: Van Nostrand Reinold, (1990)

3. J. J. Chilenski and S. P. Miller, Applicability of modified conditional coverage to software
testing, Software Engineering Journal, (1994) 193 - 200

4. E. M. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In Proceed-
ings POPL 92: Principles of Programming Languages, (1992) 343 - 354

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static
analysis of programs by construction of approximation of fixpoints. In Proceedings of
POPL 77: Principles of Programming Languages, (1977) 238 - 252

6. D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems:
abstractions preserving ACTL*, ECTL*, and CTL*. In Proceedings of PROCOMET 9/:
Programming Concepts, Methods, and Calculi, (1994) 561-581

7. S. Graf and H. Saidi, Construction of abstract state graphs with PVS. In Proceedings
of CAV 1997, LNCS 1254 (1997) 72 - 83

8. R. Hardin, Z. Har’'EL, and R. P. Kurshan, COSPAN, In Proceedings of CAV 1996, LNCS
1102, (1996) 423 - 427

9. M. S. Hecht, Flow Analysis of Computer Programs, NY: Elsevier-North Holland (1977)

10. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, NJ (1991)

11. Kennedy Carter Inc., www.kc.com

12. Kapoor, C., and Tesar, D.: A Reusable Operational Software Architecture for Advanced
Robotics (OSCAR), The University of Texas at Austin, Report to DOE, Grant No. DE-
FG01 94EW37966 and NASA Grant No. NAG 9-809 (1998)

13. Kurshan, R., Computer-Aided Verification of Coordinating Processes - The Automata-
Theoretic Approach, Princeton University Press, Princeton, NJ (1994)

14. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System Design,
Vol. 6(1), (1995) 11-44

15. K. S. Namjoshi and R. P. Kurshan, Syntactic Program Transformations for Automatic
Abstraction, In Proceedings of CAV 2000: Computer Aided Verification, LNCS 1855,
(2000), 435-449

16. Y. Kesten and A. Pnueli, Control and Data Abstraction: Cornerstones of the Practical
Formal Verification, Software Tools and Technology Transfer, Vol. 2(4) (2000) 328 - 342

17. ProjectTechnologies Inc., www.projtech.com

18. H. Saidi, Modular and Incremental Analysis of Concurrent Software Systems, In Pro-
ceedings of ASE 1999, ACM Press (2000) 92 - 101

19. SES Inc., ObjectBench Technical Reference, SES Inc. (1998)

20. SES Inc., CodeGenesis User Reference, SES Inc. (1998)

21. N. Sharygina, and D. Peled, A Combined Testing and Verification Approach for Soft-
ware Reliability, In Proc. of FME2001: Formal Methods Europe, LNCS 2021, (2001)
611-628

22. N. Sharygina, J. C. Browne and R. Kurshan, A Formal Object-Oriented Analysis
for Software Reliability: Design for Verification, In Proceedings of ETAPS2001(FASE):
Fundamental Approaches to Software Engineering, LNCS 2029, (2001), 318-332

23. Shlaer, S., and Mellor, S., Object Lifecycles: Modeling the World in States, Prentice-
Hall, NJ (1992)

24. L. Starr, Ezecutable UML: The Models that Are the Code, Model Integration, LLC
(2001)

25. F. Xie, V. Levin, and J. C. Browne, Model Checking of an Executable Subset of UML,
In Proceedings of ASE2001: Automated Software Engineering (2001)

