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Abstract 
Combining validation by testing with verification by formal 

methods offers great potential for development of robust and 
reliable object-oriented software systems. However, formal 
verification cannot be readily applied to software developed with 
conventional object-oriented development methods. This paper 
presents the first phase of a two-phase approach for development 
of object-oriented software systems which combines validation of 
OOA models formulated in xUML (an executable subset of 
UML[18],[24]) with formal verification through model checking. 
The second phase, application of model checking to the validated 
OOA model has been presented separately [22]. Model checking 
is accomplished by translating the validated OOA model to the 
COSPAN, automaton-based model checking system [5].  
 This paper defines, describes and illustrates an OOA model 
construction process leading to OOA models which can be both 
validated and verified. This process leads to efficient designs, 
which minimizes complexity of the resulting computer-controlled 
systems. Since OOA models in xUML are executable they can be 
validated by testing using simulation. Finally, since the OOA 
model complexity level is much less than the procedural 
programs to which they are translated, model-checking can be 
applied to the validated OOA model.  
 We demonstrate the approach by applying it to 
reengineering of a NASA robotic system where testing and 
maintenance had been obstructed by complexity. A comparative 
analysis between the original robotic system, that was 
constructed following the Booch methodology [1], and the 
redesigned system is given. A number of inefficiencies and flaws 
in the original design which would have precluded model 
checking were found.  An OOA model to which model checking 
has been successfully applied resulted from the redesign. 

Keywords: Object-Oriented Design and Analysis of 
Complex Software Systems, Formal Verification, Design for 
Verification, Integration of Model Checking with Object-
Oriented Techniques. 
  
1 Introduction  
 

Formal methods, in particular model checking, are 
increasingly being used to automatically establish the 
correctness of (and to find flaws in) finite-state systems, 
such as descriptions of hardware and protocols. Most 

software systems however are not directly amenable to 
finite-state verification methods. The state spaces of 
procedural programs are typically dynamic and 
unbounded.  Abstract models of the programs to which 
model checking can be applied are not validated so that 
model checking is impeded by an explosion of errors.   In 
this paper we present and apply the first phase of a two-
phase OOA-based methodology (Figure 1) for software 
development based on representation of the software 
system as an executable OOA model, validation by 
simulation, application of model checking to the OOA 
model and translation of the validated and verified OOA 
model to a procedural language.  The integrated 
environment is built on the xUML (xUML [18] is a subset 
of UML [19] with an executable semantics) version of the 
Shlaer-Mellor OOA (SM OOA) methodology [24] and 
the COSPAN, automaton-based model checking system 
[5]. 

The integrated methodology is based on the following 
premises: 
• the validated and verified software system must be fully 

functional (must be developed in an executable form) 
and efficient; 

• verification must be executed on an abstract model 
since a program which is fully functional and efficient 
will be far too complex for application of formal 
verification; 

• verification is practical only when the design model has 
been validated by conventional testing and is largely 
correct; 

• verification can therefore only  be applied to a 
validatable (executable) specification; 

• the abstract model must therefore be validated before 
verification can be applied; 

• therefore, code development must be based on an 
executable model specification; 

• xUML is an executable specification language; 
• if verification is to be meaningful, the executable 

specification must be compilable to an efficient final 
program. 

• xUML is compilable. 



This paper reports results of a project that has been 
conducted at Bell Laboratories and The University of 
Texas at Austin  (where the ideology and support tools 
were developed) and The Robotics Research Group (where 
the methodology was applied). The project has been split  
into two phases: 
Phase 1: OOA-based modeling leading to a validated and 

verifiable OOA model; 
Phase 2: Verification based on the validated OOA model 

leading to the system with proven properties. 
This paper covers Phase 1 of 

the project. Phase 2, the OOA-based 
verification approach and its  
application are presented in [22]. 

The rest of the paper is organized 
as follows. Section 2 presents the 
integrated OOA and model checking 
environment. Section 3 defines the 
problem of executable OO-
modeling that leads to construction 
of verifiable models. Section 4 
demonstrates results of application 
of the OOA modeling as a part of 
application of the integrated 
methodology to redesign of a 
complex robotic system. 
Conclusions and related work end 
the paper. 

 
2 Development Methodology 
 

We present an OOA-based 
methodology that provides a formal 
basis for developing reliable 
programs. It integrates formal 
verification with software 
development, and institutes mechanisms for checking 
design completeness and consistency. Formal verification 
by model checking is applied to OOA models that have 
executable semantics specified as state/event machines 
rather than to programs in conventional programming 
languages.  

The program development and maintenance based on 
our approach involves the following steps: 
1. System modeling.  A system is constructed in the xUML 
representation following the design rules defined in 
Section 3. 
2. The OOA model validation. Execution behavior of the 
designed model is validated by simulation with a discrete 
event simulator in terms of state consistency, concurrency 
among state model instances, proper event generation and 
consumption, and values of attributes determining the path 
through the state model. 
3. Manual source to source transformation of the model 
to verifiable form. Design rules (reported in [22] that lead 

to the construction of the models with tractable state 
spaces are applied to the xUML model.  
4. Specification of the system predicates. The desired 
properties to be verified are specified by the developer. 
5. Formal Verification. The OOA-models are 
transformed into the syntax accepted by a model checker 
and formally verified against the specified properties. If 
errors exist, changes are made manually modifying the 
OB graphical model.  Steps 2-5 are repeated until all 
desired properties hold. 

6. Target system development. Requirements of a target 
system are specified. Automatic translation of the xUML 
model into executable code of the target application is 
performed. 

The automation of our approach is provided though 
implementation of the OOA method, SES/Objectbench 
system [21] (OB), automatic code generator, 
SES/CodeGenesis [20], automata-based model checking 
tool, COSPAN [5], and the translator [25] that performs 
automatic translation of the OOA models into automaton 
models. 
 
2.1 OOA Modeling with Executable Semantics 
 

 We focuse on a subset of the SM-OOA notation that 
defines an executable subset of UML (xUML). Use of 
OOA models with executable semantics is moving into 
the mainstream of OO software development. The Object 
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Management Group [18] has adopted a standard action 
language for the Unified Modeling Language (UML) [2]. 
This action language and  SM-OOA semantics represented 
in UML notation define executable an executable subset of 
UML (xUML).  

xUML notation is suitable for modeling of objects, 
subsystems, their static structure, and their dynamic 
behavior. Object models are class diagrams, showing the 
classes and relationships between classes. A class diagram 
gives the fields and methods of a class.  The execution 
behavior of a class is described by a state machine. 
Transitions between states are driven by events. 

 The concepts used during the domain engineering are 
class, state, and event. Classes used in the design are C++ 
classes. A state of an object is defined as having one action 
and one state transition table. Since the action is considered 
to be associated with the receiving of an event by the 
object, this is most like a Moore state machine. The 
execution of the action occurs after receiving the event. A 
transition table is a list of any number of events, and “the 
next” states that are their result. Events have an arbitrary 
identifier, a target object, and associated data elements.  
The event class supports the event’s enqueing and 
dispatching. 
   The communication between state models of the system 
supported by the SM methodology is asynchronous 
interleaved.  
 
2.2 Automata-based Model Checking 
 

In the methodology presented in Figure 1 the OOA 
modeling provides the construction of validated executable 
specifications and model checking assures that the 
executable specifications meet the desirable requirements. 
Model checking [3] is a procedure that checks that a given 
system satisfies desired behavioral property through 
exhaustive enumeration of all states reachable by the 
system. When the design fails to satisfy a desired property, 
a counterexample is generated, which is used to identify 
the cause of the error. 

The semantics model of the COSPAN mode checker, 
used in this project, is based on ω-automata [12]. The 
automaton is defined in terms of a directed graph with a 
finite set of vertices called states, some of which are 
designated initial; a transition condition for each directed 
edge or state transition in the graph; and an acceptance 
condition defined in terms of sets of states and state 
transitions. Each transition condition is a nonempty set of 
elements called letters drawn from a fixed set called the 
alphabet of the automaton. There are several different 
equivalent definitions of acceptance in use. The acceptance 
condition of ω-automaton can capture the concept of 
something happening “eventually” or “repeatedly”, 
“forever” or “finally” (forever after). The set of subsets of 
the alphabet forms a Boolean algebra L (Language) in 

which the singleton sets  (words) are atoms. COSPAN 
programs are written in S/R, which is a declarative, data-
flow language. The S/R language supports both 
synchronous and asynchronous coordination of 
components (including interleaving and non-interleaving 
semantics). The semantic model underlying S/R consists 
of coordinating components defined as interconnected 
Mealy- or Moore-like finite state machines each of whose 
respective outputs is a (non-deterministic) relation of its 
input and state. Moreover, the semantic model supports 
automaton acceptance conditions, giving S/R the 
expressive power of ω-regular languages.  

A straightforward approach to automata-based 
verification is to follow Kurshan’s methodology [12]. We 
represent the system’s model, its components and 
properties to be verified as respective L-processes, as 
explained in [12].  Coordination in a system of 
independent L-processes P1, ... Pk is modeled by behavior 
of the product L-process P 

 
  P = P1⊗P2⊗...⊗Pk              (1) 

 
Each component Pi imposes certain restrictions on the 
behavior of the product P, and the behavior of P is the 
“simultaneous solution” for behavior of the respective 
components. This is equivalent to the intersection of the 
respective language, 
 
               L(P) = L(P1) ∩...∩L(Pk)                (2) 

 
The formal definition of verification of property T for a 
program P is the automaton language containment check 
 
      L(P) ⊂ L(T).                          (3) 
 
In words, this says that all behaviors of the program, P are 
behaviors “consistent with” (i.e., “of”) the property, T.  
 
3 The OOA-based Modeling Constraints 
 

This paper defines and describes the problem of 
model construction and validation during the OOA design 
and analysis step. We identified three types of the OOA 
design constraints, which reduce complexity of the 
application domain during the design step and enable 
practical application of model-checking to verification of 
programs. These are design efficiency, dependability and 
verifiability. The OOA structural design principles and 
rules that support implementation of these constraints 
were developed and integrated within the proposed 
development methodology. 
 
1. Design Efficiency. In the modeling system 
requirements, the first step is to capture the static and 



dynamic structures of the system by abstracting objects, 
and their relationships in collaborating to perform a task. 
The object models are “data intensive” while “state 
transition diagrams” which present objects lifecycles are 
control intensive. Both the data and control parts of the 
system have to capture the system’s functionality in a 
manner that ensures efficient coordination of functional 
elements of the system.  
 
Design principle: A component is the appropriate design 
unit to capture the system’s functionality (not a class). 
 
This principle defines how the functionality of the system 
has to be captured. The following rules enforce efficient 
designs: 
 
Efficiency Design Rules: 

1. No functional operations are defined outside of 
the component. 

 Functionality is to be fully captured by the component. 
2.      No redundant operations within a component. 
3. If an algorithm requires evaluation of multiple 

instances of an object, construct the design, which 
creates and executes the instances concurrently, 
assuring that all operations on these instances 
belong to the same functional component. 

Assuming a sequential type of evaluation of multiple 
choices can erroneously lead to distribution of 
functionality between the system’s components, or lead to 
the construction of unnecessarily complex components. 

4. Allow minimal cyclic dependencies between 
objects of the component. 

Functionality of the system should be captured in a way 
that assures that dependencies between objects of a 
component are minimized. 

5. No cyclic dependencies between the components. 
Full independence of the components of the system should 
be provided. 
 
2. Design Dependability. After the system design is 
constructed, the next step is to assure that the design is 
consistent. “Internal” and “External” consistency is 
checked. All design fragments are “internally” consistent if 
they contain no syntax action-language errors, action 
language compilation errors or link errors. “External” 
consistency is defined by execution behavior of the system 
components and it is evaluated in terms of state 
consistency, concurrency among state model instances, 
proper event generation and consumption, and values of 
attributes determining the path through the state model.  

The system is dependable if: 
- it is “internally” and “externally” validated; 
- its design manages complex concurrent activities and 
support error resolution among multiple interacting 
objects. 

The first statement is assured by simulating the 
model behavior with a comprehensive set of test 
scenarios. Testing of the analysis model is performed by 
specifying pre- and post-conditions for the actions of the 
system state machines. Pre- and post-conditions give us 
the ability to stop the simulation when unexpected 
conditions occur. The event tables with complete 
specification of allowable events are specified and allow 
generation of the code for catching incorrect event 
sequences. 

The second statement is assured by implementation 
of the following principle: 
 
Design Principle: Hierarchical ownership of lower-level 
objects is the appropriate style of the design. 
 
This principle defines how the structure of the system has 
to be organized. The following rules enforce this 
principle: 
 
Dependability Design Rule: 
 

6. Create a process that controls the execution of 
other running processes.   

A process that controls the processes execution is called a 
controller. It controls cooperative concurrency and 
implements coordinated and disciplined error recovery, 
and maintains the consistency of shared resources. The 
controller has a set of states that are activated by the 
participating processes which cooperate within the 
component. Logically, the lifecycle of the controller starts 
when all processes have been activated and finishes when 
all of them reached the end of their lifecycles. The 
controller actions coordinate the processes following the 
specified control algorithm of the system, implement an 
error recovery if the coordination is not possible or 
propagate a failure exception to the participating 
processes.  
  
3. Verifiable Design. The xUML models naturally 
complement to the application of the model checking 
techniques due to the fact that their complexity level is far 
less than the procedural language programs to which they 
are translated. They provide finite state representation of 
the systems design, abstraction of implementation detail 
prior to the actual code generation and support 
hierarchical system representation. For example, data 
representation of the xUML objects is expressed in terms 
of fundamental types (integer, double, char, boolean) and 
simple data structures (arrays). No complex data 
structures such as stacks, binary trees, etc., are used.  
Instead, if some entities require complex data structures to 
capture their functionality, relationships among objects, 
which include associations, composition aggregations, 



generalizations and specializations, maybe used to 
represent such data structures. Control operations between 
objects, on other hand, are expressed as signals without 
reference to the internal states of the objects (function calls 
as used in C, C++ are substituted by events between 
processes).  

If model checking applied to the OOA models 
encounters the state-space explosion problem (which is the 
case for complex computer-controlled systems), a higher 
level of decomposition, along with abstractions and 
restrictions at the design level are required. Our approach 
initiates the use of design rules and recommendations 
(which are reported in [22]) for construction of the OOA 
models with tractable state spaces. These so called 
verifiability design rules are aimed at the development of 
the systems that support divide-and-conquer methods of 
model checking though implementing event mechanisms 
that allows to avoid coupling of internal states of classes 
and to develop fully self-contained units. 
 
4  The Case Study 
  
 We applied the integrated OOA and model-checking 
methodology to reengineering of a robotic decision-support 
software system [10] which testing and maintenance were 
obstructed by its complexity.  
 
4.1 Robot Redundancy Resolution Problem1 
 
 A software system used for robot redundancy 
resolution was examined. A robot is considered redundant 

if it has more independent 
joints than a number of 
independent variables 
specifying position and 
orientation of the robot’s 
end-effector (which equals 
to 6). For a redundant robot 
an infinite number of the 
robot’s joint displacements 
can lead to a definite end-
effector position. Figure 2 
shows a redundant robot 
demonstrating this 
phenomenon. Failure 
recovery is one of the 
examples of redundancy 
resolution application: if an 
actuator fails, the controller 
locks the faulty joint and the 

redundant robot continues operation.  Multiple 
performance criteria [11] are used to solve a decision-

                                                        
1 Refer to http://robotics.utexas.edu/rrg/glossary for robotic terms 

making problem of choosing among all possible joint 
configurations.  

A decision-making algorithm called direct search [10] 
has been redesigned in this project. It is based on the 
concept of a joint-level perturbation (or joint 
explorations). Perturbation at the joint level means 

temporarily changing one or more of the joint 
displacements in either the positive or negative direction. 
This project focuses on two different exploration 
strategies: “simple” and “combinational”.  “Simple” 
exploration describes a strategy of perturbing only one 
joint displacement at a time. This exploration pattern 
finds the individual influence of each joint displacement 
on the arm configuration at any fixed end-effector 
position. “Combinational” perturbation pattern explores 
the effect of both individual and simultaneous 
displacements of redundant joints.  Figure 2 demonstrates 
a “simple” exploration for one of the robot arm joints with 
θ - being a joint angle and δ - being a displacement.  

 Direct search is a method of solving problems 
numerically using sets of trial solutions to guide a search. 
The search begins with an estimate of the solution which  

θ  - δ

θ+δ

Initial Configuration
θ

Trial Configuration

x
y

z

 
Figure 2. Plane Geometry 
of a Redundant Robot, 
Representing a Simple 
Exploration Pattern of the 
Direct Search Technique 
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represents an initial arm configuration and serves as an 
initial base point for the search. Explorations about the 
base point are generated to produce a set of trial 
configurations. The second phase of the search is 
application of performance criteria to the set of candidate 
solutions. Criteria fusion is used to assure a balance among 
the criteria. A decision-making process selects one trial 
configuration as the next base point. Explorations are then 
performed about this new base point. This process of 
explorations and decision-making continues until the 
search finds an acceptable solution.  

 
Figure 5. Collaboration Diagram of the Decision Making 

Component 

 
4.2 Rigorous Specifications 
 

The robotic decision support system was rigorously 
specified using the xUML notation. We present the static 
and dynamic structures of the robotic system, which 
development followed the efficiency and dependability 
rules defined in Section 3. 
 

4.2.1 Static Structure. The robot system was designed as 
a collection of four major functional components: OSCAR 
Libraries, Kinematics, Performance Monitoring and 
Decision Making. Each component consists of a number 
of tightly coupled, cohesive objects. OSCAR Libraries 
unit defines interfaces to the computational libraries of the 
existing robotic software, OSCAR [10].  The Kinematics 
unit captures the robot motion control algorithms. The 
Performance Monitoring unit specifies the mathematical 
description of the robot performance criteria, and criteria 
scaling and fusing algorithms. The Decision Making 
component formalizes the decision-making algorithms. 
The conformance to Rule 5 is illustrated in Figure 3. You 
can see that there are no cyclic dependencies among the 
system components.  

The architectural design of the Decision Making 
component is presented in Figure 4. Conceptual entities 
of this unit are defined by the following objects: 
DecisionTree (DT), SearchSpace (SS), 
SimpleSearchSpace (SSS), CombinationalSearchSpace 
(CSS), JointConfiguration (JC) and TrialConfiguration 
(TC). The Decision Making component interfaces the 
PerformanceCriterion (PC) object of the 
PerformanceMonitoring unit and the TrajectoryPoint 
(TP) object of the Kinematics unit (the interfacing 
relationships are depicted by dashed lines in Figure 4). 

 Semantics of the objects is defined by attributes and 
relationships. Attributes of the JC object are illustrated 
below.  Each instance of the JC object represents 
orientation of a joint displaced from its base position. 
JC_ID is a key attribute whose value uniquely 
distinguishes each instance of a JC object. Joint_ID is a 
referential attribute, which represents formalization of the 
relationship R7 and is used to tie an instance of the JC 
object to an instance of the Joint object  which belongs to 
the Kinematics unit (if we change the value of Joint_ID 
from 1 to 2 it means that we are evaluating configuration 
of the second joint instead of the first one).  Trial_angle, 
NoinSet and TS_counter are descriptive attributes and 
they provide facts intrinsic to the JC object. For example, 
trial_angle is used to keep the value of the joint angle that 
changes during exploration about the base point. Status, 
type and direction attributes are so called naming 
attributes which provide facts about the arbitrary labels 
carried by each instance of an object.  The domain of the 
naming attributes is specified by enumeration of all 
possible values that the attribute can take on. Status 
represents status of the object instance, in other words the 
names of all states of the object’s state machine. Attribute 
direction domain is {“+delta”,”-
delta”,”comb+delta”,”comb-delta”}.  Attribute Type 
domain is {“simple”,”combinational”}. 

The executable model of the Decision Making unit  is 
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defined using a binary type of relationship.  An example of 
one-to-many binary SearchSpace-TrialConfiguration 
relationship states that a single instance of the SearchSpace 
object consists of many instances of the TrailConfiguration 
object.  
 
4.2.2 Dynamic Structure. The Collaboration Diagram 

(CD) presented in Figure 5 displays the flow of events and 
external behavior of the Decision Making component in 
terms of a sequence of data or control signals exchanged 
among the objects in the system. A transition on the CD is 
represented as an arrow originating from a source object to 
a destination object. Transitions are labeled in the 
following form:   

Event[cond], 
where Event names the transition and cond is a predicate 
for actions.  

The following control algorithm of the direct search 
method has been designed. When request for explorations 
of joint displacements is scheduled, a SS is built. The SS 
initiated the construction of either SSS or CSS depending 
on the exploration strategy. During the design we revealed 
the fact that the algorithm for construction of the SSS can 
be reused during construction of CSS and combined these 
two exploration strategies into a single algorithm. In 
general there are n SSS where n is the number of joints of 
the robot arm and two CSS (one for positive and one for 
negative displacements of all redundant joints). The 
SSS/CSS object generates sets of JC around the provided 
base point. JC instances initiate calculation of TC instances 
(each TC basically is a vector presenting orientation of 
ALL joints of the robot arm) for any perturbed joint. DT 
selects the best TC given a set of PC and a number of 

physical constraints that are globally defined by the user. 
The found solution serves as the next base point for 
another trial of joint-level explorations. The search stops 
when no new solutions are found. The system returns 
control to the Kinematics unit, which continues moving 
the robot arm and determines a new base point for the 
search.  

The CD illustrates how Rule 6 was implemented.  DT 
process is the action scheduler, it controls the movement 
of the robot arm, checks the status of the concurrently 
running instances of JC and TC objects, performs the 
error recovery operations if no solution for the robot 
control exists, or there is a fault in the coordination of 
concurrently running processes.  

To demonstrate how Rule 3 was implemented during 
the design of the Decision Making component we present 
a sample example.  A robot arm consisting of eight joints 
is used in the example. We change joint angles of two 
redundant joints (we consider redundant joints to be 
counted from the base of the robot) and calculate the 
robot arm configuration given that an end-effector 
position has not changed.  We use the “combinational” 
exploration pattern of the direct search technique. 

 
Design Model of the Direct Search Method. The 
implementation of the algorithm for the SS construction is 
shown in Figure 6. A tree of all possible processes active 
during the construction of the search space is presented. 
Each node represents an instance of the system’s object. 
Arrows indicate events that lead to the creation of new 
instances of the system’s objects. Actions associated with 
each node represent post-conditions. Post-conditions are 
used to visualize the reasoning of each transaction for all 
objects except for the TC object. For the TC object pre-
conditions (in squares) are used.  

In our example the SS creates two SSS and two CSS 
(since there are two redundant joints) instances. Each of 
them generates sets of JC instances. For example, the 
SSS1 object, which is associated with the first redundant 
joint, generates two instances of the JC object (JC1, JC2): 
one for positive and one for negative displacements of the 
joint from its base angle. In our example overall eight JC 
instances are generated. Therefore, we can expect to have 
as much as six TC created (we will remind the reader that 
while SSS entities are used to investigate effects of 
perturbations of an individual joint on the robot arm 
configuration, the CSS components are used to do it for  

all redundant joints). In our example only four JC 
satisfy their joints constraints and only four TC are 
created. Note that our design enforces a concurrent type 
of creation and existence of the system processes (each 
branch of the tree in Figure 6 is designed to be executed 
concurrently) following Rule 3.  Even if actual 
implementation developed from this design is going to be 
sequential, the design assures that operations on all 

 
Figure 6. SearchSpace Construction for a Robot with Two 
Redundant Joints using Combinational Exploration of the 

Direct Search Decision-Making Technique 
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possible joint displacements (JC in our design) is going to 
be performed within the same functional component. This 
reduces the complexity of the robotic system and makes 
testing and maintenance of the Decision Making 
component possible. 

 
Validation of the Direct Search Model.  The developed 

model was simulated with a scenario confirming to the 
specifications of our example. A snapshot of the animated 
analysis model execution is presented in Figure 7. The 
state model inspecting windows are presented for the Joint, 
TC and JC objects. Each window visualizes the current list 
of object instances for a lifecycle state model. The output 
includes the name of the object and its attribute names, and 
the attribute values for each instance. Eight instances of the 
JC object were created for two redundant joints with base 
angles θ1=30° and θ2=100° and the joint limits of 90° for 

both joints. Variable delta that specifies the displacement 
of the joints from their base configuration was defined to 
be equal to 10°. Trial angles of the 3rd and 6th JC instances 
did not satisfy the joint limit. Therefore, only 5 instances 
of TC object constitute the search space of the decision-
making problem. The first instance, TC(1), presents the 
initial (base) configuration of a robot arm, three instances 
(TC(2), TC(3), TC(5)) define “simple” and one instance,  
TC(7) defines “combinational” components of the 
SearchSpace as indicated by the values of TS_counter 
variable of the JC object. 

The lower panel of Figure 7 shows the results of testing 
of the robot analysis model. A specified pre-condition for 
one of the states of the eightth instance of the JC object 
was not satisfied and a run-time error was reported.  
 
4.3 Comparative Analysis of the OOA-based 

 

Figure 7.  Demonstration of the  Animated Simulation 



Model with the Conventionally Developed System 
 

The benefits of using Rules 1 and 2, which require to 
avoid redundant operations and functional declarations 
outside of the scope of a functional component, is 
demonstrated by a comparative analysis of the original and 
the redesigned robotic systems.   

 
Original Design. The developers of OSCAR used the 
conventional approach of manual translation of design 
requirements to implementation in C++ programming 
language generally following the Booch methodology [1]. 
A flow chart for the direct search decision-making strategy 

(Figure 8) represents the conventional implementation. Its 
main steps are delineated below: 
1. Search begins with an estimate of the solution that 
serves as an initial base point; 
2. A pattern of moves around the base point generates a set 
of trial solutions satisfying to the end-effector constraints; 
3. A number of performance criteria specified by the user 
are applied to the set of candidate solutions; 

4. Criteria fusion is used to assure no dominance of any 
criterion; 
5. The decision-making algorithm finds the best (optimal) 
choice of the trial solution; 
6. The optimal solution is compared against geometric 
constraints and singularity criteria; 
7. Depending on whether the solution is valid or not, the 
decision-making process either selects a new base point or 
performs a new set of exploratory moves; 
8. If the pattern move related to the new base point hits a 
local minima [11], the step size is reduced and the process 
continues; 
9. Search continues until either the number of iterations 
exceeds the iteration limit or the step size is reduced to 
the step size limit. 
 

The OOA model. A State Transition Diagram (STD) 
(Figure 9) demonstrates the lifecycle of the JC object 
instances. Consider the different states that a JC object 
assumes after each transaction. A sample object is created 
when an instance of SSS and/or CSS (depending on the 
type of the decision-making technique) initiates event 
“JC1: Create”. Each instance of the JC object receives 
supplemental data specifying the direction in which a 
trial_angle should be changed  (+delta, or –delta). Here 
delta is a global variable specified by the user through 
API.  After trial_angle is calculated its value is checked 
against the limit of a Joint instance (element of the 
Kinematics unit) associated with the instance of the JC. 
As a result, the system goes either into a Valid or 
Not_Valid state. So called “valid” JC instances, after 
performing some additional calculations, generate events 
which trigger creation of TC instances. You can see a key 
element in the actions of the states of considered objects. 
It is the Generate keyword, which indicates that an event 
is to be sent to a target object whose identity is listed as 
the first argument of the event’s parameter list.  

The lower panel of Figure 9 shows the trace of 
execution for the developed model. An object instance at 
any state receives an event, makes an appropriate 
transition to another state, executes the actions associated 
with the new state and then waits for further events. An 
arrow in Figure 9 indicates the execution path of the JC 
object.  
 
Comparison Results. Development and validation of the 
executable specifications of the robotics decision-making 
domain led to discovery of design flaws and glitches in 
the original code. Next we discuss some representative er 
rors and show how implementation of the design rules 
helped to identify them: 
• (Rule 1) - Non-optimal design of the direct search 
algorithm was discovered as a result of OOA-based 
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Figure 8. Flow Chart for the Direct Search Technique 

Implemented in the Conventional Approach 



formalization. In the existing code an optimal solution 
defined by the optimization algorithm is compared to the 
limits of each joint of the robot arm as a final step in the 
decision-making algorithm (step 6 in the original 
implementation). In the OOA design these limits are 
checked  prior to the generation of a solution.  In fact, in 
the OOA-based model this limit check is performed by JC 
objects (see Fig. 9) since this operation is a functionality of 
the JC object. 
• (Rule 2) - The executable architecture developed 
following the SM-OOA paradigm captured the design, 
which assures that the system is performing using only 
“valid” options of joint configurations (the state machine 
of the JC object explicitly defines “Valid” and 
“Not_Valid” states as shown in Fig. 9). In contrast, in the 
original software any trial configuration was considered for 
performance evaluation disregarding the constraints. This 
approach leads to situations when it is possible that none of 
the trial solutions represent a valid solution. In order to 
continue operation re-initilization of all parameters is 

required which is equivalent to the robot control 
termination. This is a faulty situation.  
 
5 Conclusions and Related Work 
 

This paper reports results of the model development 
and validation phase of a project combining validation by 
simulation with verification by model checking into an 
object-oriented software development process. The focus 
of this paper is OOA-based modeling leading to 
development of validated and verifiable models. Design 
rules for construction of efficient and dependable models 
were presented and implemented during the redesign of a 
robotic control system. Development and validation of the 
executable OOA model discovered serious logic flaws in 
the existing robotic software system.  Application of 
verification by model checking would have been seriously 
compromised until the design flaws in the original 
implementation were corrected.  The OOA model 
resulting from phase 1 of this project could, with some 

 
 

Figure 9. State Machine of the JointConfiguration Object 



further modifications, be model checked.  The OOA-based 
verification approach and its application to the robot 
control system are presented in [22]. 

There has been a great deal of research on 
formalization of object-oriented models and languages.  
This research has been largely concerned with integration 
and application of verification based on theorem proving 
rather than model checking [9],[14]. Previous work on 
application of model checking to software systems has 
mainly been either to software systems written in 
procedural languages or to abstract models extracted from 
the procedural programs. Feaver [7] targets software 
systems written in C. PathFinder [6] is used for model 
checking of Java programs.  

Application of model checking to verification of 
systems specified using OO modeling techniques has been 
mainly restricted to hardware systems and communication 
protocols. Lind-Nielsen, et. al [15] applied SMV [16] 
model checker for verification of hardware systems 
represented by VisualState machines. Dependency analysis 
was used to decompose large complex systems. Chan, et.al 
[4] verified control algorithms of a complex aircraft 
collision system modeled using the UML notation. They 
reported that their ad hoc solutions for the manual system 
partitioning frequently caused invalid results.  Sharygina, 
et.al [23] applied the SPIN model checker [8] for 
verification of the computer-controlled robot controller 
specified in the xUML notation. None approaches the 
issues of the system complexity management prior to 
model-checking.  

  Design guidelines for constructing testable and 
maintainable programs in object-oriented procedural 
languages have been proposed and discussed by a number 
of researchers. Lakos [13] presents a systematic approach 
for development of C++ programs. Moors [17] has 
proposed design rules similar to those presented in this 
paper for development of communication protocols. Lano 
[14] identified problems related to formalization of the OO 
techniques. There is no effort known to us, however, that 
would address a problem of the complexity reduction of 
the application domain and the state-space resolution at the 
design level. 
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