
Development of Verifiable Programs - Application of an Approach based on
Executable Object-Oriented Specifications

Natasha Sharygina1,3, James C. Browne2, and Delbert Tesar3

1 Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ, USA 07974
natali@research.bell-labs.com

2 The University of Texas at Austin, Computer Science Department, Austin, TX, USA 78712-0050
browne@cs.utexas.edu

3 Robotics Research Group, The University of Texas at Austin, Austin, TX, USA 78712-1100
{natali,tesar}@mail.utexas.edu

Abstract
Combining validation by testing with verification by formal

methods offers great potential for development of robust and
reliable object-oriented software systems. However, formal
verification cannot be readily applied to software developed with
conventional object-oriented development methods. This paper
presents the first phase of a two-phase approach for development
of object-oriented software systems which combines validation of
OOA models formulated in xUML (an executable subset of
UML[18],[24]) with formal verification through model checking.
The second phase, application of model checking to the validated
OOA model has been presented separately [22]. Model checking
is accomplished by translating the validated OOA model to the
COSPAN, automaton-based model checking system [5].
 This paper defines, describes and illustrates an OOA model
construction process leading to OOA models which can be both
validated and verified. This process leads to efficient designs,
which minimizes complexity of the resulting computer-controlled
systems. Since OOA models in xUML are executable they can be
validated by testing using simulation. Finally, since the OOA
model complexity level is much less than the procedural
programs to which they are translated, model-checking can be
applied to the validated OOA model.
 We demonstrate the approach by applying it to
reengineering of a NASA robotic system where testing and
maintenance had been obstructed by complexity. A comparative
analysis between the original robotic system, that was
constructed following the Booch methodology [1], and the
redesigned system is given. A number of inefficiencies and flaws
in the original design which would have precluded model
checking were found. An OOA model to which model checking
has been successfully applied resulted from the redesign.

Keywords: Object-Oriented Design and Analysis of
Complex Software Systems, Formal Verification, Design for
Verification, Integration of Model Checking with Object-
Oriented Techniques.

1 Introduction

Formal methods, in particular model checking, are
increasingly being used to automatically establish the
correctness of (and to find flaws in) finite-state systems,
such as descriptions of hardware and protocols. Most

software systems however are not directly amenable to
finite-state verification methods. The state spaces of
procedural programs are typically dynamic and
unbounded. Abstract models of the programs to which
model checking can be applied are not validated so that
model checking is impeded by an explosion of errors. In
this paper we present and apply the first phase of a two-
phase OOA-based methodology (Figure 1) for software
development based on representation of the software
system as an executable OOA model, validation by
simulation, application of model checking to the OOA
model and translation of the validated and verified OOA
model to a procedural language. The integrated
environment is built on the xUML (xUML [18] is a subset
of UML [19] with an executable semantics) version of the
Shlaer-Mellor OOA (SM OOA) methodology [24] and
the COSPAN, automaton-based model checking system
[5].

The integrated methodology is based on the following
premises:
• the validated and verified software system must be fully

functional (must be developed in an executable form)
and efficient;

• verification must be executed on an abstract model
since a program which is fully functional and efficient
will be far too complex for application of formal
verification;

• verification is practical only when the design model has
been validated by conventional testing and is largely
correct;

• verification can therefore only be applied to a
validatable (executable) specification;

• the abstract model must therefore be validated before
verification can be applied;

• therefore, code development must be based on an
executable model specification;

• xUML is an executable specification language;
• if verification is to be meaningful, the executable

specification must be compilable to an efficient final
program.

• xUML is compilable.

This paper reports results of a project that has been
conducted at Bell Laboratories and The University of
Texas at Austin (where the ideology and support tools
were developed) and The Robotics Research Group (where
the methodology was applied). The project has been split
into two phases:
Phase 1: OOA-based modeling leading to a validated and

verifiable OOA model;
Phase 2: Verification based on the validated OOA model

leading to the system with proven properties.
This paper covers Phase 1 of

the project. Phase 2, the OOA-based
verification approach and its
application are presented in [22].

The rest of the paper is organized
as follows. Section 2 presents the
integrated OOA and model checking
environment. Section 3 defines the
problem of executable OO-
modeling that leads to construction
of verifiable models. Section 4
demonstrates results of application
of the OOA modeling as a part of
application of the integrated
methodology to redesign of a
complex robotic system.
Conclusions and related work end
the paper.

2 Development Methodology

We present an OOA-based
methodology that provides a formal
basis for developing reliable
programs. It integrates formal
verification with software
development, and institutes mechanisms for checking
design completeness and consistency. Formal verification
by model checking is applied to OOA models that have
executable semantics specified as state/event machines
rather than to programs in conventional programming
languages.

The program development and maintenance based on
our approach involves the following steps:
1. System modeling. A system is constructed in the xUML
representation following the design rules defined in
Section 3.
2. The OOA model validation. Execution behavior of the
designed model is validated by simulation with a discrete
event simulator in terms of state consistency, concurrency
among state model instances, proper event generation and
consumption, and values of attributes determining the path
through the state model.
3. Manual source to source transformation of the model
to verifiable form. Design rules (reported in [22] that lead

to the construction of the models with tractable state
spaces are applied to the xUML model.
4. Specification of the system predicates. The desired
properties to be verified are specified by the developer.
5. Formal Verification. The OOA-models are
transformed into the syntax accepted by a model checker
and formally verified against the specified properties. If
errors exist, changes are made manually modifying the
OB graphical model. Steps 2-5 are repeated until all
desired properties hold.

6. Target system development. Requirements of a target
system are specified. Automatic translation of the xUML
model into executable code of the target application is
performed.

The automation of our approach is provided though
implementation of the OOA method, SES/Objectbench
system [21] (OB), automatic code generator,
SES/CodeGenesis [20], automata-based model checking
tool, COSPAN [5], and the translator [25] that performs
automatic translation of the OOA models into automaton
models.

2.1 OOA Modeling with Executable Semantics

 We focuse on a subset of the SM-OOA notation that
defines an executable subset of UML (xUML). Use of
OOA models with executable semantics is moving into
the mainstream of OO software development. The Object

Tools

Work products

Modeling

Static
Structure
Diagrams

Collaboration
Diagrams

State
Transition
Diagrams

Static model

Subsystem
Diagrams

Dynamic model

System
Requirements

ω - automata
theories for
system properties

S/R Design
Model

Desired
Properties
Specification

Design
Verification

Design
Analysis

OOA
Model

Automata

OOA model Formalization
And Translation

System

Source
Code

Code
Generation

Design
Rules

Design
Recommendations

Redesign

Manual process

Automated process

Design
Enforcement

Divide and
Conquer

Techniques

Simulator

Model
Checker

Figure 1. The OOA and Automata-based Model Checking Software Development

Environment

Management Group [18] has adopted a standard action
language for the Unified Modeling Language (UML) [2].
This action language and SM-OOA semantics represented
in UML notation define executable an executable subset of
UML (xUML).

xUML notation is suitable for modeling of objects,
subsystems, their static structure, and their dynamic
behavior. Object models are class diagrams, showing the
classes and relationships between classes. A class diagram
gives the fields and methods of a class. The execution
behavior of a class is described by a state machine.
Transitions between states are driven by events.

 The concepts used during the domain engineering are
class, state, and event. Classes used in the design are C++
classes. A state of an object is defined as having one action
and one state transition table. Since the action is considered
to be associated with the receiving of an event by the
object, this is most like a Moore state machine. The
execution of the action occurs after receiving the event. A
transition table is a list of any number of events, and “the
next” states that are their result. Events have an arbitrary
identifier, a target object, and associated data elements.
The event class supports the event’s enqueing and
dispatching.
 The communication between state models of the system
supported by the SM methodology is asynchronous
interleaved.

2.2 Automata-based Model Checking

In the methodology presented in Figure 1 the OOA
modeling provides the construction of validated executable
specifications and model checking assures that the
executable specifications meet the desirable requirements.
Model checking [3] is a procedure that checks that a given
system satisfies desired behavioral property through
exhaustive enumeration of all states reachable by the
system. When the design fails to satisfy a desired property,
a counterexample is generated, which is used to identify
the cause of the error.

The semantics model of the COSPAN mode checker,
used in this project, is based on ω-automata [12]. The
automaton is defined in terms of a directed graph with a
finite set of vertices called states, some of which are
designated initial; a transition condition for each directed
edge or state transition in the graph; and an acceptance
condition defined in terms of sets of states and state
transitions. Each transition condition is a nonempty set of
elements called letters drawn from a fixed set called the
alphabet of the automaton. There are several different
equivalent definitions of acceptance in use. The acceptance
condition of ω-automaton can capture the concept of
something happening “eventually” or “repeatedly”,
“forever” or “finally” (forever after). The set of subsets of
the alphabet forms a Boolean algebra L (Language) in

which the singleton sets (words) are atoms. COSPAN
programs are written in S/R, which is a declarative, data-
flow language. The S/R language supports both
synchronous and asynchronous coordination of
components (including interleaving and non-interleaving
semantics). The semantic model underlying S/R consists
of coordinating components defined as interconnected
Mealy- or Moore-like finite state machines each of whose
respective outputs is a (non-deterministic) relation of its
input and state. Moreover, the semantic model supports
automaton acceptance conditions, giving S/R the
expressive power of ω-regular languages.

A straightforward approach to automata-based
verification is to follow Kurshan’s methodology [12]. We
represent the system’s model, its components and
properties to be verified as respective L-processes, as
explained in [12]. Coordination in a system of
independent L-processes P1, ... Pk is modeled by behavior
of the product L-process P

 P = P1⊗P2⊗...⊗Pk (1)

Each component Pi imposes certain restrictions on the
behavior of the product P, and the behavior of P is the
“simultaneous solution” for behavior of the respective
components. This is equivalent to the intersection of the
respective language,

 L(P) = L(P1) ∩...∩L(Pk) (2)

The formal definition of verification of property T for a
program P is the automaton language containment check

 L(P) ⊂ L(T). (3)

In words, this says that all behaviors of the program, P are
behaviors “consistent with” (i.e., “of”) the property, T.

3 The OOA-based Modeling Constraints

This paper defines and describes the problem of
model construction and validation during the OOA design
and analysis step. We identified three types of the OOA
design constraints, which reduce complexity of the
application domain during the design step and enable
practical application of model-checking to verification of
programs. These are design efficiency, dependability and
verifiability. The OOA structural design principles and
rules that support implementation of these constraints
were developed and integrated within the proposed
development methodology.

1. Design Efficiency. In the modeling system
requirements, the first step is to capture the static and

dynamic structures of the system by abstracting objects,
and their relationships in collaborating to perform a task.
The object models are “data intensive” while “state
transition diagrams” which present objects lifecycles are
control intensive. Both the data and control parts of the
system have to capture the system’s functionality in a
manner that ensures efficient coordination of functional
elements of the system.

Design principle: A component is the appropriate design
unit to capture the system’s functionality (not a class).

This principle defines how the functionality of the system
has to be captured. The following rules enforce efficient
designs:

Efficiency Design Rules:

1. No functional operations are defined outside of
the component.

 Functionality is to be fully captured by the component.
2. No redundant operations within a component.
3. If an algorithm requires evaluation of multiple

instances of an object, construct the design, which
creates and executes the instances concurrently,
assuring that all operations on these instances
belong to the same functional component.

Assuming a sequential type of evaluation of multiple
choices can erroneously lead to distribution of
functionality between the system’s components, or lead to
the construction of unnecessarily complex components.

4. Allow minimal cyclic dependencies between
objects of the component.

Functionality of the system should be captured in a way
that assures that dependencies between objects of a
component are minimized.

5. No cyclic dependencies between the components.
Full independence of the components of the system should
be provided.

2. Design Dependability. After the system design is
constructed, the next step is to assure that the design is
consistent. “Internal” and “External” consistency is
checked. All design fragments are “internally” consistent if
they contain no syntax action-language errors, action
language compilation errors or link errors. “External”
consistency is defined by execution behavior of the system
components and it is evaluated in terms of state
consistency, concurrency among state model instances,
proper event generation and consumption, and values of
attributes determining the path through the state model.

The system is dependable if:
- it is “internally” and “externally” validated;
- its design manages complex concurrent activities and
support error resolution among multiple interacting
objects.

The first statement is assured by simulating the
model behavior with a comprehensive set of test
scenarios. Testing of the analysis model is performed by
specifying pre- and post-conditions for the actions of the
system state machines. Pre- and post-conditions give us
the ability to stop the simulation when unexpected
conditions occur. The event tables with complete
specification of allowable events are specified and allow
generation of the code for catching incorrect event
sequences.

The second statement is assured by implementation
of the following principle:

Design Principle: Hierarchical ownership of lower-level
objects is the appropriate style of the design.

This principle defines how the structure of the system has
to be organized. The following rules enforce this
principle:

Dependability Design Rule:

6. Create a process that controls the execution of
other running processes.

A process that controls the processes execution is called a
controller. It controls cooperative concurrency and
implements coordinated and disciplined error recovery,
and maintains the consistency of shared resources. The
controller has a set of states that are activated by the
participating processes which cooperate within the
component. Logically, the lifecycle of the controller starts
when all processes have been activated and finishes when
all of them reached the end of their lifecycles. The
controller actions coordinate the processes following the
specified control algorithm of the system, implement an
error recovery if the coordination is not possible or
propagate a failure exception to the participating
processes.

3. Verifiable Design. The xUML models naturally
complement to the application of the model checking
techniques due to the fact that their complexity level is far
less than the procedural language programs to which they
are translated. They provide finite state representation of
the systems design, abstraction of implementation detail
prior to the actual code generation and support
hierarchical system representation. For example, data
representation of the xUML objects is expressed in terms
of fundamental types (integer, double, char, boolean) and
simple data structures (arrays). No complex data
structures such as stacks, binary trees, etc., are used.
Instead, if some entities require complex data structures to
capture their functionality, relationships among objects,
which include associations, composition aggregations,

generalizations and specializations, maybe used to
represent such data structures. Control operations between
objects, on other hand, are expressed as signals without
reference to the internal states of the objects (function calls
as used in C, C++ are substituted by events between
processes).

If model checking applied to the OOA models
encounters the state-space explosion problem (which is the
case for complex computer-controlled systems), a higher
level of decomposition, along with abstractions and
restrictions at the design level are required. Our approach
initiates the use of design rules and recommendations
(which are reported in [22]) for construction of the OOA
models with tractable state spaces. These so called
verifiability design rules are aimed at the development of
the systems that support divide-and-conquer methods of
model checking though implementing event mechanisms
that allows to avoid coupling of internal states of classes
and to develop fully self-contained units.

4 The Case Study

 We applied the integrated OOA and model-checking
methodology to reengineering of a robotic decision-support
software system [10] which testing and maintenance were
obstructed by its complexity.

4.1 Robot Redundancy Resolution Problem1

 A software system used for robot redundancy
resolution was examined. A robot is considered redundant

if it has more independent
joints than a number of
independent variables
specifying position and
orientation of the robot’s
end-effector (which equals
to 6). For a redundant robot
an infinite number of the
robot’s joint displacements
can lead to a definite end-
effector position. Figure 2
shows a redundant robot
demonstrating this
phenomenon. Failure
recovery is one of the
examples of redundancy
resolution application: if an
actuator fails, the controller
locks the faulty joint and the

redundant robot continues operation. Multiple
performance criteria [11] are used to solve a decision-

1 Refer to http://robotics.utexas.edu/rrg/glossary for robotic terms

making problem of choosing among all possible joint
configurations.

A decision-making algorithm called direct search [10]
has been redesigned in this project. It is based on the
concept of a joint-level perturbation (or joint
explorations). Perturbation at the joint level means

temporarily changing one or more of the joint
displacements in either the positive or negative direction.
This project focuses on two different exploration
strategies: “simple” and “combinational”. “Simple”
exploration describes a strategy of perturbing only one
joint displacement at a time. This exploration pattern
finds the individual influence of each joint displacement
on the arm configuration at any fixed end-effector
position. “Combinational” perturbation pattern explores
the effect of both individual and simultaneous
displacements of redundant joints. Figure 2 demonstrates
a “simple” exploration for one of the robot arm joints with
θ - being a joint angle and δ - being a displacement.

 Direct search is a method of solving problems
numerically using sets of trial solutions to guide a search.
The search begins with an estimate of the solution which

θ - δ

θ+δ

Initial Configuration
θ

Trial Configuration

x
y

z

Figure 2. Plane Geometry
of a Redundant Robot,
Representing a Simple
Exploration Pattern of the
Direct Search Technique

D e c is io n
M a k in g

K in e m a t ic s

O S C A R
In te r fa c e s

P e r fo r m a n c e
M o n i to r in g

Figure 3. Functional Layout of the Robotic

 Decision Support System

Specifies initial
base point

Is used for
evaluation of a trial
configuration

R15

R6

Performance
Criterion (PC)

* PC ID
. average value
. status
. FC_ID (R16)
. scale
. PC_name
.TC_ID (R15)

R17

Decision
Making

DecisionTree (DT)
*DT_ID
. optimal_solution
. status R12

R13

R18

has

has

creates
Search
Space (SS)
* SS_ID
. SS_size
. DT ID (R12)

Combinational
SearchSpace(CSS)
* FSS_ID
. SS_ID (R17)
. condition

SimpleSearchSpace(SSS)
* SSS_ID
. SS_ID (R18)
. condition

9

Consists of a number of
trial configurations

Evaluates a trial configuration

can have
different

JointConfiguration
(JC)
*JC_ID
. Joint_ID(R7)
. direction
. trial_angle
. type
. NoinSet
. TS_counter
. Status

TrialConfiguration
(TC)
*TC_ID
. configuration
. validSolutions
. SS_ID(R13)
. status
. LockConfiguraion
. TP_ID(R5)
. JC_ID(R6)

R7

R16

R5

TrajectoryPoint
(TP)
*TR_ID
. point

OSCAR
Interfaces
*OS_ID
. TC_ID(R10)
. status

R10

Figure 4. Object Information Diagram of the Decision

Making Component

represents an initial arm configuration and serves as an
initial base point for the search. Explorations about the
base point are generated to produce a set of trial
configurations. The second phase of the search is
application of performance criteria to the set of candidate
solutions. Criteria fusion is used to assure a balance among
the criteria. A decision-making process selects one trial
configuration as the next base point. Explorations are then
performed about this new base point. This process of
explorations and decision-making continues until the
search finds an acceptable solution.

Figure 5. Collaboration Diagram of the Decision Making

Component

4.2 Rigorous Specifications

The robotic decision support system was rigorously
specified using the xUML notation. We present the static
and dynamic structures of the robotic system, which
development followed the efficiency and dependability
rules defined in Section 3.

4.2.1 Static Structure. The robot system was designed as
a collection of four major functional components: OSCAR
Libraries, Kinematics, Performance Monitoring and
Decision Making. Each component consists of a number
of tightly coupled, cohesive objects. OSCAR Libraries
unit defines interfaces to the computational libraries of the
existing robotic software, OSCAR [10]. The Kinematics
unit captures the robot motion control algorithms. The
Performance Monitoring unit specifies the mathematical
description of the robot performance criteria, and criteria
scaling and fusing algorithms. The Decision Making
component formalizes the decision-making algorithms.
The conformance to Rule 5 is illustrated in Figure 3. You
can see that there are no cyclic dependencies among the
system components.

The architectural design of the Decision Making
component is presented in Figure 4. Conceptual entities
of this unit are defined by the following objects:
DecisionTree (DT), SearchSpace (SS),
SimpleSearchSpace (SSS), CombinationalSearchSpace
(CSS), JointConfiguration (JC) and TrialConfiguration
(TC). The Decision Making component interfaces the
PerformanceCriterion (PC) object of the
PerformanceMonitoring unit and the TrajectoryPoint
(TP) object of the Kinematics unit (the interfacing
relationships are depicted by dashed lines in Figure 4).

 Semantics of the objects is defined by attributes and
relationships. Attributes of the JC object are illustrated
below. Each instance of the JC object represents
orientation of a joint displaced from its base position.
JC_ID is a key attribute whose value uniquely
distinguishes each instance of a JC object. Joint_ID is a
referential attribute, which represents formalization of the
relationship R7 and is used to tie an instance of the JC
object to an instance of the Joint object which belongs to
the Kinematics unit (if we change the value of Joint_ID
from 1 to 2 it means that we are evaluating configuration
of the second joint instead of the first one). Trial_angle,
NoinSet and TS_counter are descriptive attributes and
they provide facts intrinsic to the JC object. For example,
trial_angle is used to keep the value of the joint angle that
changes during exploration about the base point. Status,
type and direction attributes are so called naming
attributes which provide facts about the arbitrary labels
carried by each instance of an object. The domain of the
naming attributes is specified by enumeration of all
possible values that the attribute can take on. Status
represents status of the object instance, in other words the
names of all states of the object’s state machine. Attribute
direction domain is {“+delta”,”-
delta”,”comb+delta”,”comb-delta”}. Attribute Type
domain is {“simple”,”combinational”}.

The executable model of the Decision Making unit is

Find optimal
solution

Error
Recovery

Search Space
(SS)

Simple
SearchSpace

(SSS)

Combinational
SearchSpace

(FSS)

Joint

Configuration (JC)

Trial
Configuration (TC)

Decision
Tree (DT)

OSCAR
Interfaces

Create SimpleSS Create CombinationalSS[SEARCH_
TYPE==”combinational”]

Define
JointSearchSpace

Performance
EvaluationRequest

[base point is defined]

Request Joint
Perturbation

Request Joint
Perturbation

Calculate Trail Configuration
[JC satisfies the joint angle limit]

Calculate
Kinematics

Adjust Joints
[optimal_solution is found]

SearchSpace is built [Number
of TC == SS size] Calculate Performance

Criteria

Delete JC
[optimal_solution is found]

Report
status

Error
Recovery

Report
status

Scheduling of concurrently
running processes

Controlling the direct search algorithm:

Internal events
External events

defined using a binary type of relationship. An example of
one-to-many binary SearchSpace-TrialConfiguration
relationship states that a single instance of the SearchSpace
object consists of many instances of the TrailConfiguration
object.

4.2.2 Dynamic Structure. The Collaboration Diagram

(CD) presented in Figure 5 displays the flow of events and
external behavior of the Decision Making component in
terms of a sequence of data or control signals exchanged
among the objects in the system. A transition on the CD is
represented as an arrow originating from a source object to
a destination object. Transitions are labeled in the
following form:

Event[cond],
where Event names the transition and cond is a predicate
for actions.

The following control algorithm of the direct search
method has been designed. When request for explorations
of joint displacements is scheduled, a SS is built. The SS
initiated the construction of either SSS or CSS depending
on the exploration strategy. During the design we revealed
the fact that the algorithm for construction of the SSS can
be reused during construction of CSS and combined these
two exploration strategies into a single algorithm. In
general there are n SSS where n is the number of joints of
the robot arm and two CSS (one for positive and one for
negative displacements of all redundant joints). The
SSS/CSS object generates sets of JC around the provided
base point. JC instances initiate calculation of TC instances
(each TC basically is a vector presenting orientation of
ALL joints of the robot arm) for any perturbed joint. DT
selects the best TC given a set of PC and a number of

physical constraints that are globally defined by the user.
The found solution serves as the next base point for
another trial of joint-level explorations. The search stops
when no new solutions are found. The system returns
control to the Kinematics unit, which continues moving
the robot arm and determines a new base point for the
search.

The CD illustrates how Rule 6 was implemented. DT
process is the action scheduler, it controls the movement
of the robot arm, checks the status of the concurrently
running instances of JC and TC objects, performs the
error recovery operations if no solution for the robot
control exists, or there is a fault in the coordination of
concurrently running processes.

To demonstrate how Rule 3 was implemented during
the design of the Decision Making component we present
a sample example. A robot arm consisting of eight joints
is used in the example. We change joint angles of two
redundant joints (we consider redundant joints to be
counted from the base of the robot) and calculate the
robot arm configuration given that an end-effector
position has not changed. We use the “combinational”
exploration pattern of the direct search technique.

Design Model of the Direct Search Method. The
implementation of the algorithm for the SS construction is
shown in Figure 6. A tree of all possible processes active
during the construction of the search space is presented.
Each node represents an instance of the system’s object.
Arrows indicate events that lead to the creation of new
instances of the system’s objects. Actions associated with
each node represent post-conditions. Post-conditions are
used to visualize the reasoning of each transaction for all
objects except for the TC object. For the TC object pre-
conditions (in squares) are used.

In our example the SS creates two SSS and two CSS
(since there are two redundant joints) instances. Each of
them generates sets of JC instances. For example, the
SSS1 object, which is associated with the first redundant
joint, generates two instances of the JC object (JC1, JC2):
one for positive and one for negative displacements of the
joint from its base angle. In our example overall eight JC
instances are generated. Therefore, we can expect to have
as much as six TC created (we will remind the reader that
while SSS entities are used to investigate effects of
perturbations of an individual joint on the robot arm
configuration, the CSS components are used to do it for

all redundant joints). In our example only four JC
satisfy their joints constraints and only four TC are
created. Note that our design enforces a concurrent type
of creation and existence of the system processes (each
branch of the tree in Figure 6 is designed to be executed
concurrently) following Rule 3. Even if actual
implementation developed from this design is going to be
sequential, the design assures that operations on all

Figure 6. SearchSpace Construction for a Robot with Two
Redundant Joints using Combinational Exploration of the

Direct Search Decision-Making Technique

TC1

SS

SSS1 SSS2 CSS2 CSS1

JC1 JC3 JC2 JC4 JC5 JC6 JC7 JC8

J.J_ID==1 J.J_ID==2 CS_counter==1 CS_counter==2

direction==”+delta”
direction==”-delta”

direction==”comb-delta” direction==”comb+delta”

J.J_ID==1 J.J_ID==1 J.J_ID==2 J.J_ID=2

TC2 TC5 TC3 TC4

JC(7).trail_angle<J(1).limit
&& JC(8). trail_angle<J(2).limit

Redundancy==2 && SEARCH_TYPE==”combinational”

JC(1).trial_angle
<J(1).limit

JC(3).trial_angle
>J(1).limit

JC(3).trial_angle
<J(2).limit

JC(4).trial_angle
<J(2).limit

JC(5).trail_angle<J(1).limit
&& JC(6). trail_angle>J(2).limit base configuration

possible joint displacements (JC in our design) is going to
be performed within the same functional component. This
reduces the complexity of the robotic system and makes
testing and maintenance of the Decision Making
component possible.

Validation of the Direct Search Model. The developed

model was simulated with a scenario confirming to the
specifications of our example. A snapshot of the animated
analysis model execution is presented in Figure 7. The
state model inspecting windows are presented for the Joint,
TC and JC objects. Each window visualizes the current list
of object instances for a lifecycle state model. The output
includes the name of the object and its attribute names, and
the attribute values for each instance. Eight instances of the
JC object were created for two redundant joints with base
angles θ1=30° and θ2=100° and the joint limits of 90° for

both joints. Variable delta that specifies the displacement
of the joints from their base configuration was defined to
be equal to 10°. Trial angles of the 3rd and 6th JC instances
did not satisfy the joint limit. Therefore, only 5 instances
of TC object constitute the search space of the decision-
making problem. The first instance, TC(1), presents the
initial (base) configuration of a robot arm, three instances
(TC(2), TC(3), TC(5)) define “simple” and one instance,
TC(7) defines “combinational” components of the
SearchSpace as indicated by the values of TS_counter
variable of the JC object.

The lower panel of Figure 7 shows the results of testing
of the robot analysis model. A specified pre-condition for
one of the states of the eightth instance of the JC object
was not satisfied and a run-time error was reported.

4.3 Comparative Analysis of the OOA-based

Figure 7. Demonstration of the Animated Simulation

Model with the Conventionally Developed System

The benefits of using Rules 1 and 2, which require to
avoid redundant operations and functional declarations
outside of the scope of a functional component, is
demonstrated by a comparative analysis of the original and
the redesigned robotic systems.

Original Design. The developers of OSCAR used the
conventional approach of manual translation of design
requirements to implementation in C++ programming
language generally following the Booch methodology [1].
A flow chart for the direct search decision-making strategy

(Figure 8) represents the conventional implementation. Its
main steps are delineated below:
1. Search begins with an estimate of the solution that
serves as an initial base point;
2. A pattern of moves around the base point generates a set
of trial solutions satisfying to the end-effector constraints;
3. A number of performance criteria specified by the user
are applied to the set of candidate solutions;

4. Criteria fusion is used to assure no dominance of any
criterion;
5. The decision-making algorithm finds the best (optimal)
choice of the trial solution;
6. The optimal solution is compared against geometric
constraints and singularity criteria;
7. Depending on whether the solution is valid or not, the
decision-making process either selects a new base point or
performs a new set of exploratory moves;
8. If the pattern move related to the new base point hits a
local minima [11], the step size is reduced and the process
continues;
9. Search continues until either the number of iterations
exceeds the iteration limit or the step size is reduced to
the step size limit.

The OOA model. A State Transition Diagram (STD)
(Figure 9) demonstrates the lifecycle of the JC object
instances. Consider the different states that a JC object
assumes after each transaction. A sample object is created
when an instance of SSS and/or CSS (depending on the
type of the decision-making technique) initiates event
“JC1: Create”. Each instance of the JC object receives
supplemental data specifying the direction in which a
trial_angle should be changed (+delta, or –delta). Here
delta is a global variable specified by the user through
API. After trial_angle is calculated its value is checked
against the limit of a Joint instance (element of the
Kinematics unit) associated with the instance of the JC.
As a result, the system goes either into a Valid or
Not_Valid state. So called “valid” JC instances, after
performing some additional calculations, generate events
which trigger creation of TC instances. You can see a key
element in the actions of the states of considered objects.
It is the Generate keyword, which indicates that an event
is to be sent to a target object whose identity is listed as
the first argument of the event’s parameter list.

The lower panel of Figure 9 shows the trace of
execution for the developed model. An object instance at
any state receives an event, makes an appropriate
transition to another state, executes the actions associated
with the new state and then waits for further events. An
arrow in Figure 9 indicates the execution path of the JC
object.

Comparison Results. Development and validation of the
executable specifications of the robotics decision-making
domain led to discovery of design flaws and glitches in
the original code. Next we discuss some representative er
rors and show how implementation of the design rules
helped to identify them:
• (Rule 1) - Non-optimal design of the direct search
algorithm was discovered as a result of OOA-based

Start at base point

Make exploratory moves on
redundant joints

Find a fused criterion
which represents an

optimal solution

Set new base
point

Is step size small
enough?

Decrease step
size

Make pattern
move

Is present objective
function below that of

base point?

Yes No

Yes

Stop

Evaluate work- related performance
criteria and perform their fusion for

each configuration

Fix the perturbed joints and find
configuration of all other joints
satisfying to the EE constraints

Does solution violate
geometric limits or
impact obstacles?

No

Is present objective
function below that of

base point?

Yes

No

Unacceptable
solution Yes

No

Figure 8. Flow Chart for the Direct Search Technique

Implemented in the Conventional Approach

formalization. In the existing code an optimal solution
defined by the optimization algorithm is compared to the
limits of each joint of the robot arm as a final step in the
decision-making algorithm (step 6 in the original
implementation). In the OOA design these limits are
checked prior to the generation of a solution. In fact, in
the OOA-based model this limit check is performed by JC
objects (see Fig. 9) since this operation is a functionality of
the JC object.
• (Rule 2) - The executable architecture developed
following the SM-OOA paradigm captured the design,
which assures that the system is performing using only
“valid” options of joint configurations (the state machine
of the JC object explicitly defines “Valid” and
“Not_Valid” states as shown in Fig. 9). In contrast, in the
original software any trial configuration was considered for
performance evaluation disregarding the constraints. This
approach leads to situations when it is possible that none of
the trial solutions represent a valid solution. In order to
continue operation re-initilization of all parameters is

required which is equivalent to the robot control
termination. This is a faulty situation.

5 Conclusions and Related Work

This paper reports results of the model development
and validation phase of a project combining validation by
simulation with verification by model checking into an
object-oriented software development process. The focus
of this paper is OOA-based modeling leading to
development of validated and verifiable models. Design
rules for construction of efficient and dependable models
were presented and implemented during the redesign of a
robotic control system. Development and validation of the
executable OOA model discovered serious logic flaws in
the existing robotic software system. Application of
verification by model checking would have been seriously
compromised until the design flaws in the original
implementation were corrected. The OOA model
resulting from phase 1 of this project could, with some

Figure 9. State Machine of the JointConfiguration Object

further modifications, be model checked. The OOA-based
verification approach and its application to the robot
control system are presented in [22].

There has been a great deal of research on
formalization of object-oriented models and languages.
This research has been largely concerned with integration
and application of verification based on theorem proving
rather than model checking [9],[14]. Previous work on
application of model checking to software systems has
mainly been either to software systems written in
procedural languages or to abstract models extracted from
the procedural programs. Feaver [7] targets software
systems written in C. PathFinder [6] is used for model
checking of Java programs.

Application of model checking to verification of
systems specified using OO modeling techniques has been
mainly restricted to hardware systems and communication
protocols. Lind-Nielsen, et. al [15] applied SMV [16]
model checker for verification of hardware systems
represented by VisualState machines. Dependency analysis
was used to decompose large complex systems. Chan, et.al
[4] verified control algorithms of a complex aircraft
collision system modeled using the UML notation. They
reported that their ad hoc solutions for the manual system
partitioning frequently caused invalid results. Sharygina,
et.al [23] applied the SPIN model checker [8] for
verification of the computer-controlled robot controller
specified in the xUML notation. None approaches the
issues of the system complexity management prior to
model-checking.

 Design guidelines for constructing testable and
maintainable programs in object-oriented procedural
languages have been proposed and discussed by a number
of researchers. Lakos [13] presents a systematic approach
for development of C++ programs. Moors [17] has
proposed design rules similar to those presented in this
paper for development of communication protocols. Lano
[14] identified problems related to formalization of the OO
techniques. There is no effort known to us, however, that
would address a problem of the complexity reduction of
the application domain and the state-space resolution at the
design level.

Acknowledgments

Support for this work was provided by the U.S.
Department of Energy (Grant DE-FG02-94EW37966).

References

[1] Booch, G., Object-Oriented Analysis and Design with

Applications, Benjamin/Cummings (1994)
[2] Booch, G., Rumbaugh, J., and Jacobson, I., Unified

Modeling Language User Guide, Add. Wesley (1997)

[3] Clarke, E.M., and Emerson, E.A.: Design and synthesis of
synchronization skeletons using branching time temporal
logic, Workshop on Logic of Programs, Yorktown
Heights, NY, LNCS, Vol. 131, (1981) 52-71

[4] Chan, W., Anderson, R., Beame, P., Burns, S., Modugno,
F., Notkin, D., Reese, J., Model Checking Large Software
Specification, In Proc. of IEEE SE Trans. (1998) 498-519

[5] Hardin R. H., Har’El, Z., and Kurshan, R.P., COSPAN, In
Proc. of CAV’96, LNCS, Vol. 1102, (1996) 423-427

[6] Havelund, K., and Pressburger, T., Model Checking Java
Programs Using Java PathFinder, In Proc. 4'th SPIN
workshop (1998)

[7] Holzmann, G., and Smith, M., Feaver: Automating software
feature verification, Bell Labs Technical Journal, V. 5,
(2000) 72-87

[8] Holzmann, G., The Model Checker SPIN, IEEE Trans. on
Software Engineering, Vol. 5(23), (1997) 279-295

[9] Hubman H., Formal Foundations for Pragmatic Software
Engineering Methods, In B. Wolfinger, ed., Innovationen
bei Rechen- und Kommunikationssystemen (1994) 1-50

[10] Kapoor, C., and Tesar, D., A Reusable Operational
Software Architecture for Advanced Robotics (OSCAR),
The University of Texas at Austin, Report to U.S. Dept. of
Energy, Grant No. DE-FG01 94EW37966 (1996)

[11] Kapoor, C., Cetin, M., and Tesar, D., Performance based
redundancy resolution with multiple criteria, Proc. ASME
Design Engin. Techn. Conf., Atlanta, Georgia (1998)

[12] Kurshan, R., Computer-Aided Verification of Coordinating
Processes - The Automata-Theoretic Approach, Princeton
University Press (1994)

[13] Lakos, J., Large Scale C++ Software Design, Addison-
Wesley (1996)

[14] Lano, K., Formal Object-Oriented Development, Springer
(1997)

[15] Lind-Nielsen, J, Andersen H., R., etc., Verification of
large State/Event Systems using Compositionality and
Depenedency Analysis, In Proc. of TACAS'98, Portugal
(1998) 201-216

[16] McMillan, K., Symbolic Model Checking, Kluwer (1993)
[17] Moors, T., Protocol Organs: Modularity should reflect

function, not timing, In Proc. OPENARCH98, (1998) 91-
100

[18] Object Management Group (OMG), Action Semantic for
the UML, OMG (2000)

[19] Rumbaugh, J., Jacobson, I. and Booch, G., The Unified
Modeling Language Reference Manual,
ObjectTechnology Series, Addison-Wesley (1999)

[20] SES Inc., CodeGenesis User Reference, SES Inc. (1998)
[21] SES Inc., ObjectBench Techn. Reference, SES Inc. (1998)
[22] Sharygina, N., Browne, J., and Kurshan, P., A Formal

Object-Oriented Analysis for Software Reliability: Design
for Verification, In Proc. of ETAPS2001 (to appear),
Genoa, Italy (2001)

[23] Sharygina, N., and Peled, D., A Combined Testing and
Verification Approach for Software Reliability, In Proc.
of FME2001 (to appear), Berlin, Germany (2001)

[24] Shlaer, S., and Mellor, S., Object Lifecycles: Modeling
the World in States, Prentice-Hall, NJ (1992)

[25] Xie, F., Levin, V., and Browne, J., Integrating Model
Checking into Object-Oriented Software Development
Process, Techn.Rep., University of Texas at Austin,
Comp. Science Dept. (2000)

