
Enhaned Word Clustering for Hierarhial Text Classi�ationInderjit S. Dhilloninderjit�s.utexas.edu Subramanyam Mallelamanyam�s.utexas.eduRahul Kumarrahul�s.utexas.eduDepartment of Computer Sienes,University of Texas, Austin, TX 78712.Marh 1, 2002AbstratIn this paper we propose a new information-theoreti divisive algorithm for word lustering appliedto text lassi�ation. In previous work, suh \distributional lustering" of features has been found toahieve signi�ant improvements over feature seletion in terms of lassi�ation auray, espeially atlower number of features [2, 29℄. However the existing lustering tehniques are agglomerative in natureresulting in (i) sub-optimal word lusters and (ii) high omputational ost. In order to expliitly apturethe optimality of word lusters in an information theoreti framework, we �rst derive a global rite-rion for feature lustering. We then present a fast, divisive algorithm that monotonially dereases thisobjetive funtion value, thus onverging to a loal minimum. We show that our algorithm minimizesthe \within-luster Jensen-Shannon divergene" while simultaneously maximizing the \between-lusterJensen-Shannon divergene". In omparison to the previously proposed agglomerative strategies ourdivisive algorithm ahieves higher lassi�ation auray espeially at lower number of features. We fur-ther show that feature lustering is an e�etive tehnique for building smaller lass models in hierarhiallassi�ation. We present detailed experimental results on the 20 News groups data set and a 3-levelhierarhy of HTML douments olleted from Dmoz Open Diretory.1 IntrodutionGiven a set of doument vetors fd1; d2; : : : ; dng and their assoiated lass labels (di) 2 f1; 2; : : : ; lg, textlassi�ation is the problem of estimating the true lass label of a new doument d. There exist a widevariety of algorithms for text lassi�ation, ranging from the simple but e�etive Naive Bayes algorithm tothe more omputationally demanding Support Vetor Mahines [24, 30, 31℄.A ommon, and often overwhelming, harateristi of text data is its extremely high dimensionality. Typ-ially the doument vetors are formed using a vetor-spae or bag-of-words model [26℄. Even a moderatelysized doument olletion an lead to a dimensionality in thousands, for example, one of our test data setsontains 5,000 web pages from www.dmoz.org and has a dimensionality (voabulary size) of 14,538. Thishigh dimensionality an be a severe obstale for lassi�ation algorithms based on Support Vetor Mahines,Linear Disriminant Analysis, k-nearest neighbor et. The problem is ompounded when the doumentsare arranged in a hierarhy of lasses sine a full-feature lassi�er needs to be applied at eah node of thehierarhy.A way to redue dimensionality is by the distributional lustering of words/features [25, 2, 29℄. Eahword luster an be treated as a single feature and thus, dimensionality an be drastially redued. As shownby [2, 29℄, suh feature lustering is more e�etive than feature seletion [32℄, espeially at lower number offeatures. Also, feature lustering appears to preserve lassi�ation auray as ompared to a full-featurelassi�er. Indeed in some ases of small training sets and noisy features, word lustering an atually inrease1



auray in lassi�ation. However, the algorithms given in both [2℄ and [29℄ are agglomerative in naturethus yielding sub-optimal word lusters at a high omputational ost.In this paper, we �rst derive a global riterion that aptures the optimality of word lustering in aninformation-theoreti framework. This leads to an objetive funtion for lustering that is based on thegeneralized Jensen-Shannon divergene [20℄ among an arbitrary number of probability distributions. Inorder to �nd the best word lustering, i.e., the lustering that minimizes this objetive funtion, we presenta new divisive algorithm for lustering words. This algorithm is reminisent of the k-means algorithm butuses Kullbak Leibler divergenes [18℄ instead of squared Eulidean distanes. We prove that our divisivealgorithm monotonially dereases the objetive funtion value, thus onverging to a loal minimum. Wealso show that our algorithmminimizes \within-luster divergene" and simultaneouslymaximizes \between-luster divergene". Thus we �nd word lusters that are markedly better than the agglomerative algorithmsof [2, 29℄. The inreased quality of our word lusters translates to higher lassi�ation auraies, espeiallyat small feature sizes and small training sets. We provide empirial evidene of all the above laims using aNaive Bayes lassi�er on the (a) CMU 20 newsgroup data set, and (b) an HTML data set omprising 5,000web pages arranged in a 3-level hierarhy from the Open diretory projet (www.dmoz.org).We now give a brief outline of the paper. In Setion 2, we disuss related work and ontrast it withour work. In Setion 3 we briey review some useful onepts from information theory suh as Kullbak-Leibler(KL) divergene and Jensen-Shannon(JS) divergene, while in Setion 4 we review Naive Bayes andshow how to interpret it in terms of KL-divergene. Setion 5 poses the question of �nding optimal wordlusters in terms of preserving mutual information between two random variables. Setion 5.1 gives thealgorithm that diretly minimizes the resulting objetive funtion whih is based on KL-divergenes, andpresents some pleasing results about the algorithm, suh as onvergene and simultaneous maximization of\between-luster JS-divergene". In Setion 6 we present experimental results that show the superiority ofour word lustering, and the resulting inrease in lassi�ation auray. Finally, we present our onlusionsin Setion 7.A word about notation: upper-ase letters suh as X , Y , C, W will denote random variables, whilesript upper-ase letters suh as X , Y , C, W denote sets. Individual set elements will often be denoted bylower-ase letters suh as x, w or xi, wt. Probability distributions will be denoted by p, q, p1, p2, et. whenthe random variable is obvious or by p(X), p(Cjwt) to make the random variable expliit.2 Related WorkText lassi�ation has been extensively studied, espeially sine the emergene of the internet. Most algo-rithms are based on the bag-of-words model for text [26℄. A simple but e�etive algorithm is the NaiveBayes method [24℄. For text lassi�ation, di�erent variants of Naive Bayes have been used, but MCal-lum and Nigam [21℄ showed that the variant based on the multinomial model leads to better results. Forhierarhial text data, suh as the topi hierarhies of Yahoo! (www.yahoo.om) and the Open DiretoryProjet (www.dmoz.org), hierarhial lassi�ation has been studied in [17, 4, 10℄. For some more details,see Setion 4.1.To ounter high-dimensionality, various methods of feature seletion have been proposed in [32, 17, 4℄.Distributional lustering of words was �rst proposed by Pereira, Tishby and Lee in [25℄ where they used\soft" distributional lustering to luster nouns aording to their onditional verb distributions. Notethat sine our main goal is to redue the number of features and the model size, we are only interested in\hard lustering" where eah word an be represented by its (unique) word luster. For text lassi�ation,Baker and MCallum used suh hard lustering in [2℄, while more reently, Slonim and Tishby have usedthe so-alled Information Bottlenek method for lustering words in [29℄. Both these works use an identialagglomerative lustering strategy that makes a greedy move at every agglomeration. Both [2, 29℄ showed thatthe feature size an be aggressively redued by suh lustering without any notieable loss in lassi�ationauray using Naive Bayes. Similar results have been reported for Support Vetor Mahines [3℄.Two other dimensionality/feature redution shemes are used in latent semanti indexing (LSI) [6℄ andits probabilisti version [16℄. Typially these methods have been applied in the unsupervised setting and asshown in [2℄, LSI results in lower lassi�ation auraies than feature lustering.We now list the main ontributions of this paper and ontrast them with earlier work. As our �rst2



ontribution, we derive a global riterion that expliitly aptures the optimality of word lusters in aninformation theoreti framework. This leads to an objetive funtion in terms of the generalized Jensen-Shannon divergene among an arbitrary number of probability distributions. As our seond ontribution,we present a divisive algorithm that uses Kullbak-Leibler divergene as the distane measure, and expliitlyminimizes the global objetive funtion. This is in ontrast to [29℄ who onsidered the merging of justtwo word lusters at every step and derived a loal riterion based on the Jensen-Shannon divergene oftwo probability distributions. Their agglomerative algorithm, whih is similar to Baker and MCallum'salgorithm [2℄, greedily optimizes this merging riterion. Thus, their resulting algorithm an yield sub-optimal lusters and is omputationally expensive (the algorithm in [29℄ is O(m3l) in omplexity where m isthe total number of words and l is the number of lasses). In ontrast our divisive algorithm is O(mkl) wherek is the number of word lusters required (typially k � m). Note that our hard lustering leads to a modelsize of O(k), whereas soft lustering methods suh as probabilisti LSI [16℄ lead to a model size of O(wk).Finally, we show that our enhaned word lustering leads to higher lassi�ation auray, espeially whenthe training set is small and in hierarhial lassi�ation of HTML data.3 Some Information Theory ConeptsIn this setion, we quikly review some onepts from information theory whih will be used heavily in thispaper. For more details see the authoritative treatment in the book by Cover & Thomas [5℄.Let X be a disrete random variable that takes on values from the set X with probability distributionp(x). The (Shannon) entropy of X [28℄ is de�ned asH(X) = � Xx2X p(x) log p(x):The relative entropy or Kullbak-Leibler(KL) divergene [18℄ between two probability distributions p1(x)and p2(x) is de�ned as KL(p1; p2) = Xx2X p1(x) log p1(x)p2(x) :KL-divergene is a measure of the \distane" between two probability distributions; however it is not a truemetri sine it is not symmetri and does not obey the triangle inequality [5, p.18℄. KL-divergene is alwaysnon-negative but an be unbounded; in partiular when p1(x) 6= 0 and p2(x) = 0, KL(p1; p2) = 1. Inontrast, the Jensen-Shannon divergene between p1 and p2 de�ned byJS�(p1; p2) = �1KL(p1; �1p1+�2p2) + �2KL(p2; �1p1 + �2p2)= H(�1p1 + �2p2)� �1H(p1)� �2H(p2);where �1 + �2 = 1, �i � 0, is learly a symmetri measure and is bounded [20℄. The Jensen-Shannondivergene an be generalized to measure the distane between any �nite number of probability distributionsas: JS�(fpi : 1 � i � ng) = H  nXi=1 �ipi!� nXi=1 �iH(pi); (1)whih is symmetri in the pi's (Pi �i = 1; �i � 0).Let Y be another random variable with probability distribution p(y). The mutual information betweenX and Y, I(X ;Y ), is de�ned as the KL-divergene between the joint probability distribution p(x; y) and theprodut distribution p(x)p(y): I(X ;Y ) = Xx Xy p(x; y) log p(x; y)p(x)p(y) (2)= KL(p(x; y); p(x)p(y)):3



Intuitively, mutual information is a measure of the amount of information that one random variable ontainsabout the other. The higher its value the less is the unertainty of one random variable due to knowledgeabout the other. Formally, it an be shown that I(X ;Y ) is the redution in entropy of one variable knowingthe other: I(X ;Y ) = H(X)�H(X jY ) = H(Y )�H(Y jX) [5℄.4 Naive Bayes Classi�erLet C = f1; 2; : : : ; lg be the set of l lasses, and let W = fw1; : : : ; wmg be the set of words/featuresontained in these lasses. Given a new doument d, the probability that d belongs to lass i is given byBayes rule, p(ijd) = p(dji)p(i)p(d) :Assuming a generative multinomial model [21℄ and further assuming lass-onditional independene of wordsyields the Naive Bayes lassi�er, whih omputes the most probable lass for d as�(d) = argmaxip(ijd) = p(i) mYt=1 p(wtji)n(wt;d); (3)where n(wt; d) is the number of ourrenes of word wt in doument d, and the quantities p(wtji) are usuallymaximum likelihood estimates with a Laplae prior:p(wtji) = 1 +Pdj2i n(wt; dj)m+Pmt=1Pdj2i n(wt; dj) : (4)The lass priors p(i) are estimated by the maximum likelihood estimatep(i) = jijPj jj j :We now manipulate the Naive Bayes rule in order to interpret it in an information theoreti framework.Rewrite formula (3) by taking logarithms and dividing by the length of the doument jdj to get�(d) = argmaxi log p(i) + mXt=1 p(wtjd) log p(wtji); (5)where the doument d may be viewed as a probability distribution over words: p(wtjd) = n(wt; d)=jdj.Adding the entropy of p(W jd), i.e., �Pmt=1 p(wtjd) log p(wtjd) to (5), and negating, we get�(d) = argmini mXt=1 p(wtjd) log p(wtjd)p(wtji) � log p(i) (6)= argminiKL(p(W jd); p(W ji))� log p(i);where KL(p; q) denotes the KL-divergene between p and q as de�ned in Setion 3. Note that here we haveused W to denote the random variable that ranges over the set of all words W . Thus, assuming equal lasspriors, we see that Naive Bayes may be interpreted as �nding the lass whih has minimum KL-divergenefrom the given doument. As we shall see again later, KL-divergene seems to appear \naturally" in oursetting.By (5), we an learly see that Naive Bayes is a linear lassi�er. Despite its rude assumption about thelass-onditional independene of words, Naive Bayes has been found to yield surprisingly good lassi�ationperformane, espeially on text data. Plausible reasons for the suess of Naive Bayes have been exploredin [8, 12℄. 4



4.1 Hierarhial Naive BayesHierarhial lassi�ation utilizes the hierarhial topi struture suh as Yahoo! to deompose the lassi-�ation task into a set of simpler problems, one at eah node in the hierarhy. We an simply extend theNaive Bayes lassi�er to ahieve hierarhial lassi�ation by onstruting a lassi�er at eah internal nodeof the tree with training data as the douments in its hildren. The tree is assumed to be \is-a" hierarhy,i.e., the training instanes are inherited by the parents. Then lassi�ation is just a greedy desent down thetree until the leaf node is reahed. This way of lassi�ation has been shown to be equivalent to the standardnon-hierarhial lassi�ation over a at set of leaf lasses if maximum likelihood estimates of all featuresare used [23℄. However, hierarhial lassi�ation along with feature seletion has been shown to ahievebetter lassi�ation results than a at lassi�er [17℄. This is beause eah lassi�er an now utilize a di�erentsubset of features that are most relevant to the lassi�ation sub-task at hand. Furthermore the lassi�ernow requires only a small number of features to lassify sine it needs to distinguish between a fewer numberof lasses. In this paper we propose a new divisive sheme for feature lustering to aggressively redue thenumber of features assoiated with eah node lassi�er in the hierarhy. We present detailed experimentswith Dmoz Siene hierarhy in Setion 6.5 Distributional Word ClusteringLet C be a disrete random variable that takes on values from the set of lasses C = f1; : : : ; lg, and let Wbe the random variable that ranges over the set of wordsW = fw1; : : : ; wmg. The joint distribution p(C;W )an be estimated from the training set. Now suppose we luster words into the k lusters W1; : : : ;Wk.Sine our appliation is to redue the number of features, we only look at \hard" lustering where eah wordbelongs to exatly one word luster, i.e,W = [ki=1W i; and W i \Wj = �; i 6= j:Let the random variable WC range over the word lusters. In order to judge the quality of the wordlusters we now introdue an information-theoreti measure.The information about C aptured by W an be measured by the mutual information I(C;W ). Ideally,we would like word lusters that exatly preserve the mutual information; however lustering always lowersthe mutual information. Thus we would like to �nd a lustering that minimizes the derease in the mutualinformation I(C;W )� I(C;WC). The following theorem states that this hange in mutual information anbe expressed in terms of the generalized Jensen-Shannon divergene of eah word luster.Theorem 1 The hange in mutual information due to word lustering is given byI(C;W )� I(C;WC) = kXj=1 �(Wj)JS�0(fp(Cjwt) : wt 2 Wjg) (7)where �t = p(wt), �(Wj) = Pwt2Wj �t, �0t = �t=�(Wj) and JS denotes the generalized Jensen-Shannondivergene as de�ned in (1).Proof. By the de�nition of mutual information (see (2)), and using p(i; wt) = �tp(ijwt) we getI(C;W ) = Xi Xt �tp(ijwt) log p(ijwt)p(i)and I(C;WC) = Xi Xj �(Wj)p(ijWj) log p(ijWj)p(i) :Sine we are interested in hard lustering,�(Wj) = Xwt2Wj �tand p(ijWj) = Xwt2Wj �t�(Wj)p(ijwt);5



thus implying that for all lusters Wj ,�(Wj)p(ijWj) = Xwt2Wj �tp(ijwt); (8)p(CjWj) = Xwt2Wj �t�(Wj)p(Cjwt): (9)Note that the probability distribution p(CjWj) is the (weighted) mean distribution of the onstituent dis-tributions p(Cjwt). Thus,I(C;W )� I(C;WC) =Xi Xt �tp(ijwt) log p(ijwt)�Xi Xj �(Wj)p(ijWj) log p(ijWj); (10)with the extra log(p(i)) terms anelling due to (8). The �rst term in (10), after rearranging the summation,may be written as Xj Xwt2Wj �t Xi p(ijwt) log p(ijwt)!= �Xj Xwt2Wj �tH(p(Cjwt))= �Xj �(Wj) Xwt2Wj �t�(Wj)H(p(Cjwt)): (11)Similarly, the seond term in (10) may be written asXj �(Wj) Xi p(ijWj) log p(ijWj)!= �Xj �(Wj)H(p(CjWj))= �Xj �(Wj)H0� Xwt2Wj �t�(Wj)p(Cjwt)1A (12)where (12) is obtained by substituting the value of p(CjWj) from (9). Substituting (11) and (12) in (10)and using the de�nition of Jensen-Shannon divergene from (1) gives us the desired result. tuThe above theorem gives us a globalmeasure of the goodness of wood lusters. The informal interpretationof Theorem 1 is as follows:1. The quality of word lusterWj is measured by the Jensen-Shannon divergene between the individualword distributions p(Cjwt) (weighted by the word priors, �t = p(wt)). The smaller the Jensen-Shannondivergene the more \ompat" is the word luster, i.e., smaller is the inrease in entropy due tolustering (see (1)).2. The overall goodness of the word lustering is measured by the sum of the qualities of individual wordlusters (weighted by the luster priors �(Wj) = p(Wj)).Given the global riterion of Theorem 1, we would now like to �nd an algorithm that searhes for theoptimal word lustering that minimizes this riterion. We now rewrite this riterion in a way that willsuggest a \natural" algorithm. 6



Lemma 1 The generalized Jensen-Shannon divergene of a �nite set of probability distributions an beexpressed as the (weighted) sum of Kullbak-Leibler divergenes to the (weighted) mean, i.e.,JS�(fpi : 1 � i � ng) = nXi=1 �iKL(pi;m) (13)where �i � 0;Pi �i = 1 and m is the (weighted) mean probability distribution, m =Pi �ipi.Proof. Use the de�nition of entropy to expand the expression for JS-divergene given in (1). The resultfollows by appropriately grouping terms and using the de�nition of KL-divergene. tu5.1 The AlgorithmBy Theorem 1 and Lemma 1, the derease in mutual information due to word lustering may be written askXj=1 �(Wj) Xwt2Wj �t�(Wj)KL(p(Cjwt); p(CjWj)):As a result the quality of word lustering an be measured by the objetive funtionQ(fWjgkj=1) = I(C;W )� I(C;WC)= kXj=1 Xwt2Wj �tKL(p(Cjwt); p(CjWj)): (14)Note that it is natural that the KL-divergene emerges as the distane measure in the above objetivefuntion, sine mutual information is just the KL-divergene between the joint distribution and the produtdistribution (see Setion 3). Writing the objetive funtion in the above manner suggests an iterativealgorithm that repeatedly (i) re-partitions the distributions p(Cjwt) by their loseness in KL-divergene tothe luster distributions p(CjWj), and (ii) subsequently given the new word lusters, re-omputes theseluster distributions using (9). Figure 1 desribes the algorithm in detail. Note that this divisive algorithmbears some resemblane to the k-means or Lloyd-Max algorithm, whih usually uses squared Eulideandistanes [11, 9, 15℄.Note that our initialization strategy is ruial to our algorithm, see step 1 in Figure 1 (also see [7,Setion 5.1℄). This strategy guarantees absolute ontinuity of eah p(Cjwt) with at least one luster distri-bution p(CjWj), i.e., guarantees that at least one KL-divergene is �nite. This is beause our initializationstrategy ensures that every word wt is part of some lusterWj . Thus by the formula for p(CjWj) in step 2,it annot happen that p(ijwt) 6= 0, and p(ijWj) = 0. Note that we an still get some in�nite KL-divergenevalues but these do not lead to any diÆulty (indeed in an implementation we an handle suh \in�nityproblems" without an extra \if" ondition due to the handling of \in�nity" in the IEEE oating pointstandard [14, 1℄).We now disuss the omputational omplexity of our algorithm. Step 3 of eah iteration requires the KL-divergene to be omputed for every pair, p(Cjwt) & p(CjWj). This is the most omputationally demandingtask and osts a total of O(mkl) operations. Generally, we have found that the algorithm onverges in 10�15iterations independent of the size of the data set. Thus the total omplexity is O(mkl), whih grows linearlywith m (note that k � m). In ontrast, the agglomerative algorithm of [29℄ osts O(m3l) operations.The algorithm in Figure 1 has ertain pleasing properties. As we will prove in Theorem 3, our algorithmdereases the objetive funtion value at every step and thus is guaranteed to onverge to a loal minimum ina �nite number of steps (note that �nding the global minimum is NP-omplete [13℄). Also, by the equivaleneof (7) and (14) we see that our algorithmminimizes the \within-luster" Jensen-Shannon divergene. It turnsout that (see Theorem 4) we an show that our algorithm simultaneously maximizes the \between-luster"Jensen-Shannon divergene. Thus the di�erent word lusters produed by our algorithm are \maximally"far apart.We now give formal statements of our results with proofs.7



Algorithm Divisive Clustering(P,�,l,k,W)Input: P is the set of distributions, fp(Cjwt) : 1 � t � mg,� is the set of all word priors, f�t = p(wt) : 1 � t � mgl is the number of doument lasses,k is the number of desired lusters.Output: W is the set of word lusters fW1;W2; : : : ;Wkg.1. Initialization: for every word wt, assign wt to Wj suh that p(j jwt) = maxi p(ijwt). This gives linitial word lusters; if k � l split eah luster into approximately k=l lusters, otherwise merge the llusters to get k word lusters.2. For eah luster Wj , ompute �(Wj) = Xwt2Wj �tp(CjWj) = Xwt2Wj �t�(Wj)p(Cjwt):3. Re-ompute all lusters: For eah word wt, �nd its new luster index asargmini KL(p(Cjwt); p(CjW i));resolving ties arbitrarily. Thus ompute the new word lusters Wj , 1 � j � k, asWj = fwt : KL(p(Cjwt); p(CjWj)) �KL(p(Cjwt); p(CjW i)); 1 � i � kg:4. Stop if the hange in objetive funtion value given by (14) is \small" (say 10�3); Else go to step 2.Figure 1: Divisive Algorithm for word lustering based on KL-divergenesLemma 2 Given probability distributions p1; : : : ; pn, the distribution that is losest (on average) in KL-divergene is the mean probability distribution m, i.e., given any probability distribution q,Xi �iKL(pi; q) �Xi �iKL(pi;m); (15)where �i � 0, Pi �i = 1 and m =Pi �ipi.Proof. Use the de�nition of KL-divergene to expand the left-hand side(LHS) of (15) to getXi �iXx pi(x) (log pi(x) � log q(x)) :Similarly the RHS of (15) equals Xi �iXx pi(x) (log pi(x)� logm(x)) :Subtrating the RHS from LHS leads toXi �iXx pi(x) (logm(x)� log q(x)) =Xx m(x) log m(x)q(x) = KL(m; q):8



The result follows sine the KL-divergene is always non-negative [5, Theorem 2.6.3℄. tuTheorem 2 The Algorithm in Figure 1 monotonially dereases the value of the objetive funtion givenin (14).Proof. Let W(i)1 ; : : : ;W(i)k be the word lusters at iteration i, and let p(CjW(i)1 ); : : : ; p(CjW (i)k ) be theorresponding luster distributions. ThenQ(fW(i)j gkj=1) = kXj=1 Xwt2W(i)j �tKL(p(Cjwt); p(CjW (i)j ))� kXj=1 Xwt2W(i+1)j �tKL(p(Cjwt); p(CjW (i)j ))� kXj=1 Xwt2W(i+1)j �tKL(p(Cjwt); p(CjW (i+1)j ))= Q(fW(i+1)j gkj=1)where the �rst inequality is due to step 3 of the algorithm, and the seond inequality follows from step 2 andLemma 2. Note that if equality holds, i.e., if the objetive funtion value is equal at onseutive iterations,then step 4 terminates the algorithm. tuTheorem 3 The Algorithm in Figure 1 always onverges to a loal minimum in a �nite number of iterations.Proof. The result follows sine the algorithm monotonially dereases the objetive funtion value, whihis bounded from below (by zero). For more details, see [27℄. tuWe now show that the total Jensen-Shannon divergene (whih is onstant for a given set of probabilitydistributions) an be written as the sum of two terms, one of whih is the objetive funtion (14) that ouralgorithm minimizes.Theorem 4 Let p1; : : : ; pn be a set of probability distributions and let �1; : : : ; �n be orresponding salarssuh that �i � 0, Pi �i = 1. Suppose p1; : : : ; pn are lustered into k lusters P1; : : : ;Pk, and let mj be the(weighted) mean distribution of Pj , i.e.,mj = Xwt2Pj �t�(Pj)pt; �(Pj) = Xpt2Pj �t: (16)Then the total JS-divergene between p1; : : : ; pn an be expressed as the sum of \within-luster JS-divergene"and \between-luster JS-divergene", i.e.,JS�(fpi : 1 � i � ng) = kXj=1 �(Pj)JS�0(pt : pt 2 Pj)+JS�00(fmi : 1 � i � kg);where �0t = �t=�(Pj) and we use �00 as the subsript in the last term to denote �00j = �(Pj).Proof. By Lemma 1, the total JS-divergene may be written asJS�(fpi : 1 � i � ng) = nXi=1 �iKL(pi;m)= nXi=1Xx �ipi(x) log pi(x)m(x) (17)9



where m =Pi �ipi. With mj as in (16), and rewriting (17) in order of the lusters Pj we getkXj=1 Xpt2PjXx �tpt(x)�log pt(x)mj(x) + log mj(x)m(x) �= kXj=1 �(Pj) Xpt2Pj �t�(Pj)KL(pt;mj) + kXj=1 �(Pj)KL(mj ;m)= kXj=1 �(Pj)JS�0(pt : pt 2 Pj) + JS�00(fmi : 1 � i � kg);where �00j = �(Pj), whih proves the result. tuThis onludes our formal treatment. We now see how to use the word lusters produed by divisivelustering in onjuntion with the Naive Bayes lassi�er.5.2 Naive Bayes with Word ClustersThe Naive Bayes method an be simply translated into using word lusters instead of words. This is doneby estimating the new parameters p(Wsji) for word lusters similar to the word parameters p(wtji) in (4)as p(Wsji) = Pdj2i n(Ws; dj)Pks=1Pdj2i n(Ws; dj)where n(Ws; dj) =Pwt2Ws n(wt; dj)Note that when estimates of quantities p(wtji) are relatively poor, the orresponding word luster pa-rameters p(Wsji) an provide more robust estimates resulting in higher lassi�ation sores.Now the Naive Bayes rule (5) for lassifying a test doument d an be rewritten as�(d) = argmaxi log p(i) + kXs=1 p(Wsjd) log p(Wsji);where p(Wsjd) = n(Wsjd)=jdj.6 Experimental ResultsThis setion provides empirial evidene that our Divisive Clustering of Figure 1 outperforms other fea-ture seletion algorithms and agglomerative approahes. We ompare our results with feature seletion byInformation Gain and Mutual Information [32℄, and feature lustering using the agglomerative algorithmsin [2, 29℄. We all the latter Agglomerative Clustering in this setion for the purpose of omparison. Wealso show that Divisive Clustering ahieves higher lassi�ation auray than the best performing featureseletion method when the training data is sparse and show improvements over similar results reportedin [29℄.6.1 The Data SetsThe 20 Newsgroups data set, olleted by Ken Lang, ontains about 20,000 artiles evenly divided among 20UseNet Disussion groups. This data set has been used for testing several text lassi�ation tasks[2, 29, 21℄.Many of the news groups have similar topis (for example �ve groups talk about omputers), and are quiteonfusable. In addition 4.5% of the douments are repeated, possibly due to ross posting aross multiplenews groups. During indexing we skipped headers, pruned words ourring in less than three douments,used a stop list, but did not use stemming. The resulting voabulary had 35077 words.We olleted the Dmoz data from the Open Soure Diretory www.dmoz.org. The dmoz hierarhy ontainsabout 3 million douments and 300,0000 lasses. We hose the Siene ategory at the top and rawled some10


