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tIn this paper we propose a new information-theoreti
 divisive algorithm for word 
lustering appliedto text 
lassi�
ation. In previous work, su
h \distributional 
lustering" of features has been found toa
hieve signi�
ant improvements over feature sele
tion in terms of 
lassi�
ation a

ura
y, espe
ially atlower number of features [2, 29℄. However the existing 
lustering te
hniques are agglomerative in natureresulting in (i) sub-optimal word 
lusters and (ii) high 
omputational 
ost. In order to expli
itly 
apturethe optimality of word 
lusters in an information theoreti
 framework, we �rst derive a global 
rite-rion for feature 
lustering. We then present a fast, divisive algorithm that monotoni
ally de
reases thisobje
tive fun
tion value, thus 
onverging to a lo
al minimum. We show that our algorithm minimizesthe \within-
luster Jensen-Shannon divergen
e" while simultaneously maximizing the \between-
lusterJensen-Shannon divergen
e". In 
omparison to the previously proposed agglomerative strategies ourdivisive algorithm a
hieves higher 
lassi�
ation a

ura
y espe
ially at lower number of features. We fur-ther show that feature 
lustering is an e�e
tive te
hnique for building smaller 
lass models in hierar
hi
al
lassi�
ation. We present detailed experimental results on the 20 News groups data set and a 3-levelhierar
hy of HTML do
uments 
olle
ted from Dmoz Open Dire
tory.1 Introdu
tionGiven a set of do
ument ve
tors fd1; d2; : : : ; dng and their asso
iated 
lass labels 
(di) 2 f
1; 
2; : : : ; 
lg, text
lassi�
ation is the problem of estimating the true 
lass label of a new do
ument d. There exist a widevariety of algorithms for text 
lassi�
ation, ranging from the simple but e�e
tive Naive Bayes algorithm tothe more 
omputationally demanding Support Ve
tor Ma
hines [24, 30, 31℄.A 
ommon, and often overwhelming, 
hara
teristi
 of text data is its extremely high dimensionality. Typ-i
ally the do
ument ve
tors are formed using a ve
tor-spa
e or bag-of-words model [26℄. Even a moderatelysized do
ument 
olle
tion 
an lead to a dimensionality in thousands, for example, one of our test data sets
ontains 5,000 web pages from www.dmoz.org and has a dimensionality (vo
abulary size) of 14,538. Thishigh dimensionality 
an be a severe obsta
le for 
lassi�
ation algorithms based on Support Ve
tor Ma
hines,Linear Dis
riminant Analysis, k-nearest neighbor et
. The problem is 
ompounded when the do
umentsare arranged in a hierar
hy of 
lasses sin
e a full-feature 
lassi�er needs to be applied at ea
h node of thehierar
hy.A way to redu
e dimensionality is by the distributional 
lustering of words/features [25, 2, 29℄. Ea
hword 
luster 
an be treated as a single feature and thus, dimensionality 
an be drasti
ally redu
ed. As shownby [2, 29℄, su
h feature 
lustering is more e�e
tive than feature sele
tion [32℄, espe
ially at lower number offeatures. Also, feature 
lustering appears to preserve 
lassi�
ation a

ura
y as 
ompared to a full-feature
lassi�er. Indeed in some 
ases of small training sets and noisy features, word 
lustering 
an a
tually in
rease1



a

ura
y in 
lassi�
ation. However, the algorithms given in both [2℄ and [29℄ are agglomerative in naturethus yielding sub-optimal word 
lusters at a high 
omputational 
ost.In this paper, we �rst derive a global 
riterion that 
aptures the optimality of word 
lustering in aninformation-theoreti
 framework. This leads to an obje
tive fun
tion for 
lustering that is based on thegeneralized Jensen-Shannon divergen
e [20℄ among an arbitrary number of probability distributions. Inorder to �nd the best word 
lustering, i.e., the 
lustering that minimizes this obje
tive fun
tion, we presenta new divisive algorithm for 
lustering words. This algorithm is reminis
ent of the k-means algorithm butuses Kullba
k Leibler divergen
es [18℄ instead of squared Eu
lidean distan
es. We prove that our divisivealgorithm monotoni
ally de
reases the obje
tive fun
tion value, thus 
onverging to a lo
al minimum. Wealso show that our algorithmminimizes \within-
luster divergen
e" and simultaneouslymaximizes \between-
luster divergen
e". Thus we �nd word 
lusters that are markedly better than the agglomerative algorithmsof [2, 29℄. The in
reased quality of our word 
lusters translates to higher 
lassi�
ation a

ura
ies, espe
iallyat small feature sizes and small training sets. We provide empiri
al eviden
e of all the above 
laims using aNaive Bayes 
lassi�er on the (a) CMU 20 newsgroup data set, and (b) an HTML data set 
omprising 5,000web pages arranged in a 3-level hierar
hy from the Open dire
tory proje
t (www.dmoz.org).We now give a brief outline of the paper. In Se
tion 2, we dis
uss related work and 
ontrast it withour work. In Se
tion 3 we brie
y review some useful 
on
epts from information theory su
h as Kullba
k-Leibler(KL) divergen
e and Jensen-Shannon(JS) divergen
e, while in Se
tion 4 we review Naive Bayes andshow how to interpret it in terms of KL-divergen
e. Se
tion 5 poses the question of �nding optimal word
lusters in terms of preserving mutual information between two random variables. Se
tion 5.1 gives thealgorithm that dire
tly minimizes the resulting obje
tive fun
tion whi
h is based on KL-divergen
es, andpresents some pleasing results about the algorithm, su
h as 
onvergen
e and simultaneous maximization of\between-
luster JS-divergen
e". In Se
tion 6 we present experimental results that show the superiority ofour word 
lustering, and the resulting in
rease in 
lassi�
ation a

ura
y. Finally, we present our 
on
lusionsin Se
tion 7.A word about notation: upper-
ase letters su
h as X , Y , C, W will denote random variables, whiles
ript upper-
ase letters su
h as X , Y , C, W denote sets. Individual set elements will often be denoted bylower-
ase letters su
h as x, w or xi, wt. Probability distributions will be denoted by p, q, p1, p2, et
. whenthe random variable is obvious or by p(X), p(Cjwt) to make the random variable expli
it.2 Related WorkText 
lassi�
ation has been extensively studied, espe
ially sin
e the emergen
e of the internet. Most algo-rithms are based on the bag-of-words model for text [26℄. A simple but e�e
tive algorithm is the NaiveBayes method [24℄. For text 
lassi�
ation, di�erent variants of Naive Bayes have been used, but M
Cal-lum and Nigam [21℄ showed that the variant based on the multinomial model leads to better results. Forhierar
hi
al text data, su
h as the topi
 hierar
hies of Yahoo! (www.yahoo.
om) and the Open Dire
toryProje
t (www.dmoz.org), hierar
hi
al 
lassi�
ation has been studied in [17, 4, 10℄. For some more details,see Se
tion 4.1.To 
ounter high-dimensionality, various methods of feature sele
tion have been proposed in [32, 17, 4℄.Distributional 
lustering of words was �rst proposed by Pereira, Tishby and Lee in [25℄ where they used\soft" distributional 
lustering to 
luster nouns a

ording to their 
onditional verb distributions. Notethat sin
e our main goal is to redu
e the number of features and the model size, we are only interested in\hard 
lustering" where ea
h word 
an be represented by its (unique) word 
luster. For text 
lassi�
ation,Baker and M
Callum used su
h hard 
lustering in [2℄, while more re
ently, Slonim and Tishby have usedthe so-
alled Information Bottlene
k method for 
lustering words in [29℄. Both these works use an identi
alagglomerative 
lustering strategy that makes a greedy move at every agglomeration. Both [2, 29℄ showed thatthe feature size 
an be aggressively redu
ed by su
h 
lustering without any noti
eable loss in 
lassi�
ationa

ura
y using Naive Bayes. Similar results have been reported for Support Ve
tor Ma
hines [3℄.Two other dimensionality/feature redu
tion s
hemes are used in latent semanti
 indexing (LSI) [6℄ andits probabilisti
 version [16℄. Typi
ally these methods have been applied in the unsupervised setting and asshown in [2℄, LSI results in lower 
lassi�
ation a

ura
ies than feature 
lustering.We now list the main 
ontributions of this paper and 
ontrast them with earlier work. As our �rst2




ontribution, we derive a global 
riterion that expli
itly 
aptures the optimality of word 
lusters in aninformation theoreti
 framework. This leads to an obje
tive fun
tion in terms of the generalized Jensen-Shannon divergen
e among an arbitrary number of probability distributions. As our se
ond 
ontribution,we present a divisive algorithm that uses Kullba
k-Leibler divergen
e as the distan
e measure, and expli
itlyminimizes the global obje
tive fun
tion. This is in 
ontrast to [29℄ who 
onsidered the merging of justtwo word 
lusters at every step and derived a lo
al 
riterion based on the Jensen-Shannon divergen
e oftwo probability distributions. Their agglomerative algorithm, whi
h is similar to Baker and M
Callum'salgorithm [2℄, greedily optimizes this merging 
riterion. Thus, their resulting algorithm 
an yield sub-optimal 
lusters and is 
omputationally expensive (the algorithm in [29℄ is O(m3l) in 
omplexity where m isthe total number of words and l is the number of 
lasses). In 
ontrast our divisive algorithm is O(mkl) wherek is the number of word 
lusters required (typi
ally k � m). Note that our hard 
lustering leads to a modelsize of O(k), whereas soft 
lustering methods su
h as probabilisti
 LSI [16℄ lead to a model size of O(wk).Finally, we show that our enhan
ed word 
lustering leads to higher 
lassi�
ation a

ura
y, espe
ially whenthe training set is small and in hierar
hi
al 
lassi�
ation of HTML data.3 Some Information Theory Con
eptsIn this se
tion, we qui
kly review some 
on
epts from information theory whi
h will be used heavily in thispaper. For more details see the authoritative treatment in the book by Cover & Thomas [5℄.Let X be a dis
rete random variable that takes on values from the set X with probability distributionp(x). The (Shannon) entropy of X [28℄ is de�ned asH(X) = � Xx2X p(x) log p(x):The relative entropy or Kullba
k-Leibler(KL) divergen
e [18℄ between two probability distributions p1(x)and p2(x) is de�ned as KL(p1; p2) = Xx2X p1(x) log p1(x)p2(x) :KL-divergen
e is a measure of the \distan
e" between two probability distributions; however it is not a truemetri
 sin
e it is not symmetri
 and does not obey the triangle inequality [5, p.18℄. KL-divergen
e is alwaysnon-negative but 
an be unbounded; in parti
ular when p1(x) 6= 0 and p2(x) = 0, KL(p1; p2) = 1. In
ontrast, the Jensen-Shannon divergen
e between p1 and p2 de�ned byJS�(p1; p2) = �1KL(p1; �1p1+�2p2) + �2KL(p2; �1p1 + �2p2)= H(�1p1 + �2p2)� �1H(p1)� �2H(p2);where �1 + �2 = 1, �i � 0, is 
learly a symmetri
 measure and is bounded [20℄. The Jensen-Shannondivergen
e 
an be generalized to measure the distan
e between any �nite number of probability distributionsas: JS�(fpi : 1 � i � ng) = H  nXi=1 �ipi!� nXi=1 �iH(pi); (1)whi
h is symmetri
 in the pi's (Pi �i = 1; �i � 0).Let Y be another random variable with probability distribution p(y). The mutual information betweenX and Y, I(X ;Y ), is de�ned as the KL-divergen
e between the joint probability distribution p(x; y) and theprodu
t distribution p(x)p(y): I(X ;Y ) = Xx Xy p(x; y) log p(x; y)p(x)p(y) (2)= KL(p(x; y); p(x)p(y)):3



Intuitively, mutual information is a measure of the amount of information that one random variable 
ontainsabout the other. The higher its value the less is the un
ertainty of one random variable due to knowledgeabout the other. Formally, it 
an be shown that I(X ;Y ) is the redu
tion in entropy of one variable knowingthe other: I(X ;Y ) = H(X)�H(X jY ) = H(Y )�H(Y jX) [5℄.4 Naive Bayes Classi�erLet C = f
1; 
2; : : : ; 
lg be the set of l 
lasses, and let W = fw1; : : : ; wmg be the set of words/features
ontained in these 
lasses. Given a new do
ument d, the probability that d belongs to 
lass 
i is given byBayes rule, p(
ijd) = p(dj
i)p(
i)p(d) :Assuming a generative multinomial model [21℄ and further assuming 
lass-
onditional independen
e of wordsyields the Naive Bayes 
lassi�er, whi
h 
omputes the most probable 
lass for d as
�(d) = argmax
ip(
ijd) = p(
i) mYt=1 p(wtj
i)n(wt;d); (3)where n(wt; d) is the number of o

urren
es of word wt in do
ument d, and the quantities p(wtj
i) are usuallymaximum likelihood estimates with a Lapla
e prior:p(wtj
i) = 1 +Pdj2
i n(wt; dj)m+Pmt=1Pdj2
i n(wt; dj) : (4)The 
lass priors p(
i) are estimated by the maximum likelihood estimatep(
i) = j
ijPj j
j j :We now manipulate the Naive Bayes rule in order to interpret it in an information theoreti
 framework.Rewrite formula (3) by taking logarithms and dividing by the length of the do
ument jdj to get
�(d) = argmax
i log p(
i) + mXt=1 p(wtjd) log p(wtj
i); (5)where the do
ument d may be viewed as a probability distribution over words: p(wtjd) = n(wt; d)=jdj.Adding the entropy of p(W jd), i.e., �Pmt=1 p(wtjd) log p(wtjd) to (5), and negating, we get
�(d) = argmin
i mXt=1 p(wtjd) log p(wtjd)p(wtj
i) � log p(
i) (6)= argmin
iKL(p(W jd); p(W j
i))� log p(
i);where KL(p; q) denotes the KL-divergen
e between p and q as de�ned in Se
tion 3. Note that here we haveused W to denote the random variable that ranges over the set of all words W . Thus, assuming equal 
lasspriors, we see that Naive Bayes may be interpreted as �nding the 
lass whi
h has minimum KL-divergen
efrom the given do
ument. As we shall see again later, KL-divergen
e seems to appear \naturally" in oursetting.By (5), we 
an 
learly see that Naive Bayes is a linear 
lassi�er. Despite its 
rude assumption about the
lass-
onditional independen
e of words, Naive Bayes has been found to yield surprisingly good 
lassi�
ationperforman
e, espe
ially on text data. Plausible reasons for the su

ess of Naive Bayes have been exploredin [8, 12℄. 4



4.1 Hierar
hi
al Naive BayesHierar
hi
al 
lassi�
ation utilizes the hierar
hi
al topi
 stru
ture su
h as Yahoo! to de
ompose the 
lassi-�
ation task into a set of simpler problems, one at ea
h node in the hierar
hy. We 
an simply extend theNaive Bayes 
lassi�er to a
hieve hierar
hi
al 
lassi�
ation by 
onstru
ting a 
lassi�er at ea
h internal nodeof the tree with training data as the do
uments in its 
hildren. The tree is assumed to be \is-a" hierar
hy,i.e., the training instan
es are inherited by the parents. Then 
lassi�
ation is just a greedy des
ent down thetree until the leaf node is rea
hed. This way of 
lassi�
ation has been shown to be equivalent to the standardnon-hierar
hi
al 
lassi�
ation over a 
at set of leaf 
lasses if maximum likelihood estimates of all featuresare used [23℄. However, hierar
hi
al 
lassi�
ation along with feature sele
tion has been shown to a
hievebetter 
lassi�
ation results than a 
at 
lassi�er [17℄. This is be
ause ea
h 
lassi�er 
an now utilize a di�erentsubset of features that are most relevant to the 
lassi�
ation sub-task at hand. Furthermore the 
lassi�ernow requires only a small number of features to 
lassify sin
e it needs to distinguish between a fewer numberof 
lasses. In this paper we propose a new divisive s
heme for feature 
lustering to aggressively redu
e thenumber of features asso
iated with ea
h node 
lassi�er in the hierar
hy. We present detailed experimentswith Dmoz S
ien
e hierar
hy in Se
tion 6.5 Distributional Word ClusteringLet C be a dis
rete random variable that takes on values from the set of 
lasses C = f
1; : : : ; 
lg, and let Wbe the random variable that ranges over the set of wordsW = fw1; : : : ; wmg. The joint distribution p(C;W )
an be estimated from the training set. Now suppose we 
luster words into the k 
lusters W1; : : : ;Wk.Sin
e our appli
ation is to redu
e the number of features, we only look at \hard" 
lustering where ea
h wordbelongs to exa
tly one word 
luster, i.e,W = [ki=1W i; and W i \Wj = �; i 6= j:Let the random variable WC range over the word 
lusters. In order to judge the quality of the word
lusters we now introdu
e an information-theoreti
 measure.The information about C 
aptured by W 
an be measured by the mutual information I(C;W ). Ideally,we would like word 
lusters that exa
tly preserve the mutual information; however 
lustering always lowersthe mutual information. Thus we would like to �nd a 
lustering that minimizes the de
rease in the mutualinformation I(C;W )� I(C;WC). The following theorem states that this 
hange in mutual information 
anbe expressed in terms of the generalized Jensen-Shannon divergen
e of ea
h word 
luster.Theorem 1 The 
hange in mutual information due to word 
lustering is given byI(C;W )� I(C;WC) = kXj=1 �(Wj)JS�0(fp(Cjwt) : wt 2 Wjg) (7)where �t = p(wt), �(Wj) = Pwt2Wj �t, �0t = �t=�(Wj) and JS denotes the generalized Jensen-Shannondivergen
e as de�ned in (1).Proof. By the de�nition of mutual information (see (2)), and using p(
i; wt) = �tp(
ijwt) we getI(C;W ) = Xi Xt �tp(
ijwt) log p(
ijwt)p(
i)and I(C;WC) = Xi Xj �(Wj)p(
ijWj) log p(
ijWj)p(
i) :Sin
e we are interested in hard 
lustering,�(Wj) = Xwt2Wj �tand p(
ijWj) = Xwt2Wj �t�(Wj)p(
ijwt);5



thus implying that for all 
lusters Wj ,�(Wj)p(
ijWj) = Xwt2Wj �tp(
ijwt); (8)p(CjWj) = Xwt2Wj �t�(Wj)p(Cjwt): (9)Note that the probability distribution p(CjWj) is the (weighted) mean distribution of the 
onstituent dis-tributions p(Cjwt). Thus,I(C;W )� I(C;WC) =Xi Xt �tp(
ijwt) log p(
ijwt)�Xi Xj �(Wj)p(
ijWj) log p(
ijWj); (10)with the extra log(p(
i)) terms 
an
elling due to (8). The �rst term in (10), after rearranging the summation,may be written as Xj Xwt2Wj �t Xi p(
ijwt) log p(
ijwt)!= �Xj Xwt2Wj �tH(p(Cjwt))= �Xj �(Wj) Xwt2Wj �t�(Wj)H(p(Cjwt)): (11)Similarly, the se
ond term in (10) may be written asXj �(Wj) Xi p(
ijWj) log p(
ijWj)!= �Xj �(Wj)H(p(CjWj))= �Xj �(Wj)H0� Xwt2Wj �t�(Wj)p(Cjwt)1A (12)where (12) is obtained by substituting the value of p(CjWj) from (9). Substituting (11) and (12) in (10)and using the de�nition of Jensen-Shannon divergen
e from (1) gives us the desired result. tuThe above theorem gives us a globalmeasure of the goodness of wood 
lusters. The informal interpretationof Theorem 1 is as follows:1. The quality of word 
lusterWj is measured by the Jensen-Shannon divergen
e between the individualword distributions p(Cjwt) (weighted by the word priors, �t = p(wt)). The smaller the Jensen-Shannondivergen
e the more \
ompa
t" is the word 
luster, i.e., smaller is the in
rease in entropy due to
lustering (see (1)).2. The overall goodness of the word 
lustering is measured by the sum of the qualities of individual word
lusters (weighted by the 
luster priors �(Wj) = p(Wj)).Given the global 
riterion of Theorem 1, we would now like to �nd an algorithm that sear
hes for theoptimal word 
lustering that minimizes this 
riterion. We now rewrite this 
riterion in a way that willsuggest a \natural" algorithm. 6



Lemma 1 The generalized Jensen-Shannon divergen
e of a �nite set of probability distributions 
an beexpressed as the (weighted) sum of Kullba
k-Leibler divergen
es to the (weighted) mean, i.e.,JS�(fpi : 1 � i � ng) = nXi=1 �iKL(pi;m) (13)where �i � 0;Pi �i = 1 and m is the (weighted) mean probability distribution, m =Pi �ipi.Proof. Use the de�nition of entropy to expand the expression for JS-divergen
e given in (1). The resultfollows by appropriately grouping terms and using the de�nition of KL-divergen
e. tu5.1 The AlgorithmBy Theorem 1 and Lemma 1, the de
rease in mutual information due to word 
lustering may be written askXj=1 �(Wj) Xwt2Wj �t�(Wj)KL(p(Cjwt); p(CjWj)):As a result the quality of word 
lustering 
an be measured by the obje
tive fun
tionQ(fWjgkj=1) = I(C;W )� I(C;WC)= kXj=1 Xwt2Wj �tKL(p(Cjwt); p(CjWj)): (14)Note that it is natural that the KL-divergen
e emerges as the distan
e measure in the above obje
tivefun
tion, sin
e mutual information is just the KL-divergen
e between the joint distribution and the produ
tdistribution (see Se
tion 3). Writing the obje
tive fun
tion in the above manner suggests an iterativealgorithm that repeatedly (i) re-partitions the distributions p(Cjwt) by their 
loseness in KL-divergen
e tothe 
luster distributions p(CjWj), and (ii) subsequently given the new word 
lusters, re-
omputes these
luster distributions using (9). Figure 1 des
ribes the algorithm in detail. Note that this divisive algorithmbears some resemblan
e to the k-means or Lloyd-Max algorithm, whi
h usually uses squared Eu
lideandistan
es [11, 9, 15℄.Note that our initialization strategy is 
ru
ial to our algorithm, see step 1 in Figure 1 (also see [7,Se
tion 5.1℄). This strategy guarantees absolute 
ontinuity of ea
h p(Cjwt) with at least one 
luster distri-bution p(CjWj), i.e., guarantees that at least one KL-divergen
e is �nite. This is be
ause our initializationstrategy ensures that every word wt is part of some 
lusterWj . Thus by the formula for p(CjWj) in step 2,it 
annot happen that p(
ijwt) 6= 0, and p(
ijWj) = 0. Note that we 
an still get some in�nite KL-divergen
evalues but these do not lead to any diÆ
ulty (indeed in an implementation we 
an handle su
h \in�nityproblems" without an extra \if" 
ondition due to the handling of \in�nity" in the IEEE 
oating pointstandard [14, 1℄).We now dis
uss the 
omputational 
omplexity of our algorithm. Step 3 of ea
h iteration requires the KL-divergen
e to be 
omputed for every pair, p(Cjwt) & p(CjWj). This is the most 
omputationally demandingtask and 
osts a total of O(mkl) operations. Generally, we have found that the algorithm 
onverges in 10�15iterations independent of the size of the data set. Thus the total 
omplexity is O(mkl), whi
h grows linearlywith m (note that k � m). In 
ontrast, the agglomerative algorithm of [29℄ 
osts O(m3l) operations.The algorithm in Figure 1 has 
ertain pleasing properties. As we will prove in Theorem 3, our algorithmde
reases the obje
tive fun
tion value at every step and thus is guaranteed to 
onverge to a lo
al minimum ina �nite number of steps (note that �nding the global minimum is NP-
omplete [13℄). Also, by the equivalen
eof (7) and (14) we see that our algorithmminimizes the \within-
luster" Jensen-Shannon divergen
e. It turnsout that (see Theorem 4) we 
an show that our algorithm simultaneously maximizes the \between-
luster"Jensen-Shannon divergen
e. Thus the di�erent word 
lusters produ
ed by our algorithm are \maximally"far apart.We now give formal statements of our results with proofs.7



Algorithm Divisive Clustering(P,�,l,k,W)Input: P is the set of distributions, fp(Cjwt) : 1 � t � mg,� is the set of all word priors, f�t = p(wt) : 1 � t � mgl is the number of do
ument 
lasses,k is the number of desired 
lusters.Output: W is the set of word 
lusters fW1;W2; : : : ;Wkg.1. Initialization: for every word wt, assign wt to Wj su
h that p(
j jwt) = maxi p(
ijwt). This gives linitial word 
lusters; if k � l split ea
h 
luster into approximately k=l 
lusters, otherwise merge the l
lusters to get k word 
lusters.2. For ea
h 
luster Wj , 
ompute �(Wj) = Xwt2Wj �tp(CjWj) = Xwt2Wj �t�(Wj)p(Cjwt):3. Re-
ompute all 
lusters: For ea
h word wt, �nd its new 
luster index asargmini KL(p(Cjwt); p(CjW i));resolving ties arbitrarily. Thus 
ompute the new word 
lusters Wj , 1 � j � k, asWj = fwt : KL(p(Cjwt); p(CjWj)) �KL(p(Cjwt); p(CjW i)); 1 � i � kg:4. Stop if the 
hange in obje
tive fun
tion value given by (14) is \small" (say 10�3); Else go to step 2.Figure 1: Divisive Algorithm for word 
lustering based on KL-divergen
esLemma 2 Given probability distributions p1; : : : ; pn, the distribution that is 
losest (on average) in KL-divergen
e is the mean probability distribution m, i.e., given any probability distribution q,Xi �iKL(pi; q) �Xi �iKL(pi;m); (15)where �i � 0, Pi �i = 1 and m =Pi �ipi.Proof. Use the de�nition of KL-divergen
e to expand the left-hand side(LHS) of (15) to getXi �iXx pi(x) (log pi(x) � log q(x)) :Similarly the RHS of (15) equals Xi �iXx pi(x) (log pi(x)� logm(x)) :Subtra
ting the RHS from LHS leads toXi �iXx pi(x) (logm(x)� log q(x)) =Xx m(x) log m(x)q(x) = KL(m; q):8



The result follows sin
e the KL-divergen
e is always non-negative [5, Theorem 2.6.3℄. tuTheorem 2 The Algorithm in Figure 1 monotoni
ally de
reases the value of the obje
tive fun
tion givenin (14).Proof. Let W(i)1 ; : : : ;W(i)k be the word 
lusters at iteration i, and let p(CjW(i)1 ); : : : ; p(CjW (i)k ) be the
orresponding 
luster distributions. ThenQ(fW(i)j gkj=1) = kXj=1 Xwt2W(i)j �tKL(p(Cjwt); p(CjW (i)j ))� kXj=1 Xwt2W(i+1)j �tKL(p(Cjwt); p(CjW (i)j ))� kXj=1 Xwt2W(i+1)j �tKL(p(Cjwt); p(CjW (i+1)j ))= Q(fW(i+1)j gkj=1)where the �rst inequality is due to step 3 of the algorithm, and the se
ond inequality follows from step 2 andLemma 2. Note that if equality holds, i.e., if the obje
tive fun
tion value is equal at 
onse
utive iterations,then step 4 terminates the algorithm. tuTheorem 3 The Algorithm in Figure 1 always 
onverges to a lo
al minimum in a �nite number of iterations.Proof. The result follows sin
e the algorithm monotoni
ally de
reases the obje
tive fun
tion value, whi
his bounded from below (by zero). For more details, see [27℄. tuWe now show that the total Jensen-Shannon divergen
e (whi
h is 
onstant for a given set of probabilitydistributions) 
an be written as the sum of two terms, one of whi
h is the obje
tive fun
tion (14) that ouralgorithm minimizes.Theorem 4 Let p1; : : : ; pn be a set of probability distributions and let �1; : : : ; �n be 
orresponding s
alarssu
h that �i � 0, Pi �i = 1. Suppose p1; : : : ; pn are 
lustered into k 
lusters P1; : : : ;Pk, and let mj be the(weighted) mean distribution of Pj , i.e.,mj = Xwt2Pj �t�(Pj)pt; �(Pj) = Xpt2Pj �t: (16)Then the total JS-divergen
e between p1; : : : ; pn 
an be expressed as the sum of \within-
luster JS-divergen
e"and \between-
luster JS-divergen
e", i.e.,JS�(fpi : 1 � i � ng) = kXj=1 �(Pj)JS�0(pt : pt 2 Pj)+JS�00(fmi : 1 � i � kg);where �0t = �t=�(Pj) and we use �00 as the subs
ript in the last term to denote �00j = �(Pj).Proof. By Lemma 1, the total JS-divergen
e may be written asJS�(fpi : 1 � i � ng) = nXi=1 �iKL(pi;m)= nXi=1Xx �ipi(x) log pi(x)m(x) (17)9



where m =Pi �ipi. With mj as in (16), and rewriting (17) in order of the 
lusters Pj we getkXj=1 Xpt2PjXx �tpt(x)�log pt(x)mj(x) + log mj(x)m(x) �= kXj=1 �(Pj) Xpt2Pj �t�(Pj)KL(pt;mj) + kXj=1 �(Pj)KL(mj ;m)= kXj=1 �(Pj)JS�0(pt : pt 2 Pj) + JS�00(fmi : 1 � i � kg);where �00j = �(Pj), whi
h proves the result. tuThis 
on
ludes our formal treatment. We now see how to use the word 
lusters produ
ed by divisive
lustering in 
onjun
tion with the Naive Bayes 
lassi�er.5.2 Naive Bayes with Word ClustersThe Naive Bayes method 
an be simply translated into using word 
lusters instead of words. This is doneby estimating the new parameters p(Wsj
i) for word 
lusters similar to the word parameters p(wtj
i) in (4)as p(Wsj
i) = Pdj2
i n(Ws; dj)Pks=1Pdj2
i n(Ws; dj)where n(Ws; dj) =Pwt2Ws n(wt; dj)Note that when estimates of quantities p(wtj
i) are relatively poor, the 
orresponding word 
luster pa-rameters p(Wsj
i) 
an provide more robust estimates resulting in higher 
lassi�
ation s
ores.Now the Naive Bayes rule (5) for 
lassifying a test do
ument d 
an be rewritten as
�(d) = argmax
i log p(
i) + kXs=1 p(Wsjd) log p(Wsj
i);where p(Wsjd) = n(Wsjd)=jdj.6 Experimental ResultsThis se
tion provides empiri
al eviden
e that our Divisive Clustering of Figure 1 outperforms other fea-ture sele
tion algorithms and agglomerative approa
hes. We 
ompare our results with feature sele
tion byInformation Gain and Mutual Information [32℄, and feature 
lustering using the agglomerative algorithmsin [2, 29℄. We 
all the latter Agglomerative Clustering in this se
tion for the purpose of 
omparison. Wealso show that Divisive Clustering a
hieves higher 
lassi�
ation a

ura
y than the best performing featuresele
tion method when the training data is sparse and show improvements over similar results reportedin [29℄.6.1 The Data SetsThe 20 Newsgroups data set, 
olle
ted by Ken Lang, 
ontains about 20,000 arti
les evenly divided among 20UseNet Dis
ussion groups. This data set has been used for testing several text 
lassi�
ation tasks[2, 29, 21℄.Many of the news groups have similar topi
s (for example �ve groups talk about 
omputers), and are quite
onfusable. In addition 4.5% of the do
uments are repeated, possibly due to 
ross posting a
ross multiplenews groups. During indexing we skipped headers, pruned words o

urring in less than three do
uments,used a stop list, but did not use stemming. The resulting vo
abulary had 35077 words.We 
olle
ted the Dmoz data from the Open Sour
e Dire
tory www.dmoz.org. The dmoz hierar
hy 
ontainsabout 3 million do
uments and 300,0000 
lasses. We 
hose the S
ien
e 
ategory at the top and 
rawled some10


