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Abstract 
We focus on the problem of semi-automated query discovery for XML views without 

requiring the intervention of an expert to guarantee a correct final result.  Given multiple 
independent sources of heterogeneous XML data structures, our tool, SPHINX, lets a non-
technical user define views using example -based, graphical, interaction. SPHINX embodies a 
syntactically derived meta-model of federating view definitions. The meta-model of 
federating view definitions enables, first, an active-learning method which removes the 
burden of generating the examples from the user. Second, SPHINX can identify when the 
learned view definition converges to a vetted, semantically accurate result. Thus, the users do 
not need to verify the correctness of the transformation. 

 
1. Introduction 

 
Almost any kind of data has become available online using a proliferation of domain-

specific XML standards. Yet, cooperation across organizations and their respective databases is 
still the exception rather than the rule. Widespread adoption of any schema description, (DTD or 
XML schema), is rare.  Proprietary and legacy interests will continue to ensure this into the 
foreseeable future.  The burden of data integration will continue to be on the user of the data 
rather than the publisher. The task of tapping a set of online data sources usually falls upon a 
specialist and requires a large effort.  

The Query-by-Example (QBE) system established a framework where non-technical 
users could define SQL queries against relational databases [36]. We seek a similarly facile 
method to enable non-technical users (such as a market research or financial analyst) to perform 
local integration of data sources for their own needs. Since it is for their own need, it follows that 
they understand the semantics of their domain.  

It has been established that higher-order query languages provide a powerful and concise 
means for specifying integrating views (albeit in a complex syntax) [14,33].  A challenge we 
address is; whereas in a QBE system a single example uniquely determines a first-order query, in 
a higher-order context a single example usually entails a large number of queries.   

Consider a simple problem, drawing data from two sources (shown in Figure 1), where 
we have two distinct schemas, Product Review and Supplier Catalog, being mapped to a third, 
target schema. With a QBE-like graphic tool, it is easy to come up with a simple schema match. 
Several issues remain in order to complete this job. For instance, how identical products between 
the Product Review database and the Supplier Catalog should be matched in order to populate the 
target schema (join operation). Another issue is the tag‘5-star’ in the target schema might indicate 
only products with ‘5-star’ ratings should populate the target schema, or it might simply be an 
object name with no particular semantic denotation. These and others kinds of schematic 
discrepancies cannot always be dealt with in the framework of QBE (or of SQL), or by drawing 
lines on a diagram. 

                                                 
1 This work was supported by grants from Telcordia Technology inc. and the Texas Higher Education 
Coordinating board. 
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However, we assume that the user, while non-technical, is the owner and/or end 
consumer of the data, and as such has intuitive knowledge about semantic elements such as 
composite keys, foreign keys and other integrity constraints. But that same user will have no 
formal or syntactic knowledge of how to express those semantic elements. Thus our system’s 
goal will not be to deduce or learn those elements by mining available information, but rather to 
extract them from the user by a simple yet formally powerful active learning interaction.  

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Schema Integration Example  

Consider if our system were to show a user the data example shown in Figure 2. The 
example comprises a data instance from each schema, and proposes a mapping of this data to 
populate an instance of the target schema. This example constitutes what could be termed a data 
mapping instance. By accepting this mapping the user would indicate a number of facts. Chiefly, 
that a match between <Number> field and <SKU#> field is not necessary to produce a valid 
output instance. This suggests that the composite foreign key between Source 1 and Source 2, is 
limited to (<Manufacturer>, <Name>). Conversely by rejecting this mapping the user would 
provide partial evidence that the field <SKU#> may be a necessary part of the composite foreign 
key between the two sources.  

Central to our solution is a meta-model of all possible federating transformations. We 
syntactically decompose all possible federating view definitions and represent this universe using 
the Version Spaces model. The model is embodied in a tool, SPHINX, which interacts with users 
in an example driven format. SPHINX presents to the user sample data drawn from a data source 
as well as the record structure of the federated schema. (The user may also define a target schema 
on the fly.) In drag-and-drop fashion a user specifies a single record in the format of the federated 
schema.  By virtue of having a meta-model of possible view definitions, the SPHINX system can 
detect if more than one federating view definition may materialize the example.  If so, SPHINX 
generates and presents to the user an additional example. Rather than the user specifying 
additional semantic information or generating further examples, a user simply has to label the 

Target Schema 
 

<Description> 

<5-star Product> 

<Manufacturer> <Description> <Ed. Review> 

<Comment> <Rating> 

<Price> <Reviews> 

<Name> <Manufacturer> <Ed. Review> <Number> <Reviews> 

<Comment> <Rating> 

<Product Review> 

<Product> 

<Manufacturer> <Price> <SKU#> <Name> <Order info.> 

<Order info.> 

Schema 1 
Product Reviews 

Schema 2 
Supplier Catalog 

<Name> 
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proposed example as correct or incorrect. SPHINX exploits this feedback to prune its search 
space, and will keep submitting additional examples until the search converges towards a single, 
unambiguous federating view definition. SPHINX drives this active learning process using 
heuristics designed to minimize the number of examples a user is asked to inspect, and to 
maximize the information-gain value of each example. We further show how these heuristics may 
be refined using the same statistics used to parameterize query-cost models.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Data Mapping Example 
 

In Section 2, we review related work, and how our approach differs in nature from those 
of other existing works. In Section 3, we describe the learning problem and introduce a method to 
initialize for each particular integration problem, an appropriate Version Spaces model. We 
examine the expressive power of the class of queries defined by this meta-model. In Section 4 we 
define the SPHINX learning algorithm, which accepts data mapping examples and navigates the 
Version Spaces to converge to a solution. We prove in Section 5 that the algorithm is correct. 

<Product Review> 
 <Manufacturer>ACME</Manufacturer> 
 <Name>Fast PC 3000 X533</Name> 
 <Number>101-304</Number> 
 <Ed. Review> 

A very fast computer and a good 
 value for under $1000 
 </Ed. Review> 
 <Review> 
  <Comment> 

Good product 
-Andy 

  </Comment> 
  <Rating>5-star</Rating> 
 </Review> 
 <Review> 
  <Comment> 

Too Pricey 
 -John 

  </Comment> 
  <Rating>5-star</Rating> 
 </Review> 
</Product Review> 
 

<Product> 
<Manufacturer>ACME</Manufacturer> 
<SKU#>6000345</SKU#> 
<Name>Fast PC 3000 X533</Name> 
<Desc.>Multimedia computer</Desc.> 
<Price>$699.99</Price> 
<Order info.>Out of Stock</Order info.> 

</Product> 

<5-star Product> 
      <Manufacturer>ACME</Manufacturer>  
      <Name>Fast PC 3000 X533</Name> 
      <Desc.>Multimedia computer</Desc.> 
      <Ed. Review> 
      A very fast computer and a good 
      value for under $1000 
      </Ed. Review> 
      <Review> 
 <Comment> 

Good product 
 -Andy 
 </Comment> 
 <Rating>5-star</Rating> 
      </Review> 
      <Price>$699.99</Price> 
      <Order info.>Out of Stock</Order info.> 
<5-star Product> 
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Namely it will converge towards the correct view definition, provided that the view definition 
was inside the scope of the initialized Version Spaces. Section 6 deals with the active learning 
portion of the SPHINX system, which generates and selects data examples to submit to the user. 
We describe one possible strategy to get Version Spaces to converge as quickly as possible 
towards the correct view definition. Accordingly, we introduce in Section 7 several heuristics, 
integrated in SPHINX, and motivated for the specific problem of integrating data from 
heterogeneous sources. We show with some experiments on various domains, that the number of 
examples required to drive the user interaction towards the correct view definition is linked to 
that view definition’s size, and not to the size of the search space containing all potential view 
definitions. Finally in Section 8, we conclude and review future work and open problems. 
 
2. Related Work 
 

Mediator-based architectures to federate heterogeneous databases have drawn a lot of 
interest: see [1,6,10,11,16,27,30,31,32,34] to cite a few. In these systems, the basic assumption is 
that some highly qualified engineers may become domain experts and in one form or another 
write the specifications that will drive the data integration. In that line of work, several general-
purpose languages for specifying heterogeneous data integration include SchemaSQL and 
SchemaLog [15], graph-based ontology [23] and XQuery [33]. As shown by Krishnamurthy, 
Litwin and Kent [14], such languages must possess higher order features to bridge schematic 
heterogeneities across data sources [10,13,34]. 

With the maturation of those systems, the problem of generating semantic specifications 
to federate data sources garnered more attention. Automated schema matching tools 
[4,5,17,18,21,23,24] were developed with the goal of helping an engineer cope with the plethora 
of domain information, which must be reconciled to produce a mapping between heterogeneous 
databases. Milo and Zohar [21] theorize that the vast majority of mappings between schema 
elements in heterogeneous databases are trivial. Those can be derived automatically, and user 
expertise can be saved for the truly complex mappings. Rahm and Bernstein [26] propose a 
taxonomy as part of a survey of automated schema matching tools. While often having high 
accuracy, these tools cannot guarantee that a correct mapping has been derived. A database 
specialist with domain expertise must examine the systems final output to verify the correctness. 
The average user cannot be expected to use the advanced query or semantic modeling languages 
commonly used to express those mappings.  

 Clio [20,35], and SPHINX are a little bit different from these systems. Both focus 
on the problem of query discovery for federated view definitions, and seek to combine both user 
interface and machine learning considerations. Clio contains a machine learning component 
which examines possible join paths in the query graph, and ranks possible view definitions, by 
estimating their likelihood. Clio then uses data examples to help the user decide between 
alternative mappings. In Clio, a user examines a set of illustrative examples as well as the output 
of the system for the top-ranked view definition, and renders judgment, whether it has converged 
on a correct transformation or whether additional examples must be included: “Clio helps the user 
understand the results of the mappings being formed and allows the user to verify that the 
transformations that result are what she intended” [35]. Clio does not embody a formal meta-
model and does not generate the set of data examples which can uniquely fingerprint the correct 
federated view definition. With SPHINX, we now formalize the space of potential view 
definitions in such a way that it can interface with an active learning algorithm: this removes 
much of the burden of semantic verification and data browsing from the user. This model is based 
on the Version Spaces algorithm [12,22], which has been used in machine learning applications. 
To our knowledge, we are the first to exploit it in the context of databases.   
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3. Query Discovery 
 

For the purpose of this exposition we will adopt a structured, hierarchical XML data 
model, where all XML documents conform to a DTD. Without loss of generality, we simplify this 
model by allowing only two types of nodes: element nodes and text nodes. There will be no 
optional elements. Only element nodes may have children and may be repeated. These 
restrictions do not affect the generality of our approach, since for any given XML DTD, an 
equivalent simplified DTD, can always be constructed by inserting additional element nodes to 
handle repetitions or optional nodes. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Document descriptions 

 
Figure 3 illustrates a DTD for the example in Figure 1, which will serve as the running 

example. Looking at the problem of query discovery to define views over heterogeneous data, we 
adopt the terms target query and target view as the goal concepts.  
 
Definition: Target View, Target Query 

The target view is the materialized view that the learning system (SPHINX) is trying to 
learn from the user. The target view is defined by the execution of the target query over the 
source databases. 
 

The query discovery process is analogous to a guessing and elimination game between 
SPHINX and the user. The goal is for SPHINX to come up with a correct view definition, given a 
set of question/answer interactions with the user. It will naturally occur to the reader that over a 
given data source, there may be several queries, which yield the same materialized view as the 
target query. As such SPHINX cannot always converge on the correct target query. However, 
SPHINX will identify the entire class of queries, which correctly materialize the target view over 
the source data and picks the appropriate one (see Section 5- Lemma 5, Theorem1). 

Figure 4 illustrates the overall question/answer approach to solving the query discovery 
problem. Note that this whole mechanism is hidden from the user, whose interaction is limited to 
answering yes or no. 

 
 
 
 
 
 
 

 

Source 1 document {Product Review+} 
Product Review  {Manufacturer, Name, Number, Ed. Review, Review+} 
Review   {Comment, Rating} 
 
Source 2 document {Product+} 
Product  {Manufacturer, SKU#, Name, Description, Price, Order info.} 
 
Target Schema  {5-star Product+} 
5-star Product  {Manufacturer, Name, Description, Ed. Review, Review+, Price, Order Info.} 
Review   {Comment, Rating} 
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Figure 4 – Question/Answer Interaction 

 
3.1 Query Discovery Framework  
 

In this exposition we use XQuery as the language for view definition. However, the same 
query discovery process can take place in higher-order relational languages as well [2,15]. 

The first task is to delimit the search space. We ask the user to supply the first data-
mapping example, such as the one shown in Figure 2. The user, with a point-and-click browsing 
tool, select values and drags them to an existing target schema or one of  his own definition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – XML View Definition 

 
Consider the XQuery view definition in Figure 5. It illustrates a possible view definition 

for Figure 2. Most of that view definition can be derived syntactically from the source schema 
and the data mapping shown in Figure 2. For each internal node in the source schemas: <product 

For  $a in document(‘source1’)/product review, 
 $b in document(‘source 1’)/product review/review, 
 $c in document(‘source2’)/product 
Where  value-equals($a/reviews, $b) and 
 $a/manufacturer = $c/manufacturer and 
 $a/name = $c/name and 
 $b/rating = ‘5-star’ 
Return <5-star Product> <manufacturer>$a/manufacturer</manufacturer> 
    <description>$b/description</description> 
    <ed. review>$a/ed. review</ed. review> 
    <reviews><comment>$b/comment</comment>   
     <rating>$b/rating</rating></reviews>  
    <price>$b/price</price> 
    <order info.>$b/order info.</order info.> 
 </5-star Product> 
 

Submit Question to the User 

User answers  
yes (positive example) 
no (negative example) 
 

Reduce Search Space 

Pick a Question to test the 
Target View 

Search Converged ? 

Found a solution 

No 

Yes
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review>, <reviews> and <product>, a variable is introduced in the For clause: respectively $a, $b 
and $c. The Let clause is empty. The Where clause contains a list of predicates. Those predicates 
verify: that $a and $b are properly nested, that (<manufacturer>,<name>) forms a composite 
foreign key between $a and $c, and that only products rated ‘5-star’ will appear in the defined 
view. Note that that the query shown in Figure 5 outputs an un-nested structure. Nesting the 
structure according to the specifications of the target schema is not hard and does not need to be 
addressed here. 

Consider the following relational formula encapsulating the kind of query, which can be 
expressed with the syntactic techniques illustrated in Figure 5:  
 
 
 

Formula 1 – Standard View Definition Formula. 

 
Formula 1 fully defines a query once the following parameters are defined: O1, O2, ...On 

are object sets, and implicitly, $r1, $r2, ... , $rn are the variables ranging over those sets. P1, P2, 
...Pm are Boolean predicates formed using variables $r1, … , $rn,. Expressions E1, E2, ..., Ek are 
projection expressions also formed using variables $r1, … , $rn . Together O1, O2,...,On, P1, ...Pm, 
E1,...Ek define the query Q (E1, ..., Ek,P1, ..., Pm, O1, ..., On). 

The query shown in Figure 5 can be expressed within the framework of Formula 1. A 
large class of queries Project-Select-Join can be expressed in this framework. Section 3.4 will 
examine the impact of Formula 1 on the generality of our query discovery. 
 
3.2 Building the Version Spaces model. 
 
We build a Version Spaces model, which we will use to describe and keep track of all queries in a 
delimited search space within the framework of Formula 1. To that end, we will execute the 
following tasks:  

- The first task is to identify a number of Cartesian sets O1, …, On. These represent the 
object sets which will appear in the For clause of the target query (Algorithm-1). 

- The second task is to construct the projection expressions E1,...,Ek which will be used in 
the Return clause (Algorithm-2). 

- The third task is to assemble the potential set of predicates P1, …, Ppf which can be built 
over O1, …, On and could be used in the Where clause of the target query (Algorithm-3) 

 
These three steps identify what we can learn about the target query by exploiting the 

initial data-mapping example. After performing these steps, the For clause and Return clause for 
the target query will be determined by Algorithm-1 and Algorithm-2. The only remaining work 
will be to identify the proper subset of filter predicates {P1, …, Pm} of {P1, …, Ppf} which appear 
in the Where clause. Thus the search space for the target query is exactly the powerset of the set  
{P1, …, Ppf}. The Version Spaces model feasibly embodies the search space as a collection of 
Boolean vectors of size pf over the possible predicates. Where unsupervised learning approaches 
are initially faced with a seemingly infinite space of target views, a single insightful example 
provided by the user both structures the search, and, as supported by our empirical results 
immediately reduces the search space to a manageable size (2pf). 
 
3.2.1 User Supplied Data Mapping Example  
 

A data-mapping example supplied by the user is initially encoded in a sequence of the 
type: (Node1, Node2, …, Noder). Node i represents a node in the source documents, which is 

Q(E1, ..., Ek,P1, ..., Pm, O1, ..., On) = ÐE1, ..., Ek ( ó P1 ∧ P2 ∧ ... ∧ Pm ( O1 × O2 × ... × On  ) ) 
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mapped to the ith position of the output. Let us illustrate this construction with an example. 
Consider the mapping shown in Figure 2. There are 8 source nodes mapped to the output: 
 
Node1 = document(‘source1’)/product review1*/manufacturer 
Node2 = document(‘source1’)/product review1/name 
Node3 = document(‘source1’)/product review1/ed. review 
Node4 = document(‘source1’)/product review1/review1/comment 
Node5 = document(‘source1’)/product review1/review1/rating 
Node6 = document(‘source2’)/product1/desc. 
Node7 = document(‘source2’)/product1/price 
Node8 = document(‘source2’)/product1/order info. 

 
We look at all the nodes and identify the set of ancestor nodes {A1, A2, … An} with the 

following properties: 
- Ai is an internal node in a source document 
- Ai is either the ancestor or equal to some mapped source node Node j , 1�j�r  
 
In our example, this construction yields the following set of nodes: 
 

A1: document(‘source1’)/product review1 
A2: document(‘source1’)/product review1/review1 
A3: document(‘source2’)/product1 

 
This set of ancestor nodes is used to rewrite nodes Node1, Node2, … , Noder in the data-

mapping example. As in our example: 
Node1 = A1/manufacturer 
Node2 = A1/name 
Node3 = A1/ed. review 
Node4 = A2/comment 
Node5 = A2/rating 
Node6 = A3/desc. 
Node7 = A3/price 
Node8 = A3/order info. 

 
 
 
 
 
 
 
 
3.2.2 Cartesian Object Sets  
 
 Every variable defined in the For clause ranges over an object set of internal nodes in the 
source documents. Before application of join predicates, these object sets participate in a 
Cartesian product, as shown in Formula 1. We introduce such an object set for each node in the 
set {A1, …, An}, and assign to each a new variable symbol $ri. Each object set is uniquely 
identified by a path expression over the source documents.  

                                                 
* Since node elements can be repeated, our numbering system will distinguish an individual node from its 
siblings. 

1: (Node1) 
2: (Node2) 
… 
r: (Noder) 
 

1: (Ad(1)/path1) 
2: (Ad(2)/path2) 
… 
r: (Ad(r)/pathr) 
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 Algorithm-1 applied to the Figure 2 example yields the following For clause: 
“For $r1 in document(‘source1’)/product review, 
 $r2 in document(‘source1’)/product review/review, 
 $r3 in document(‘source2’)/product “ 
 
 
3.2.3 Projection Expressions  
 

For our purposes, we model the Return clause as a template, which exclusively uses the 
projection expressions E1, …, Ek from Formula 1 as fillers. 

 

 
Algorithm-2 applied to the Figure 2 example creates the following projection 

expressions: 
 

E1 = $r1/manufacturer 
E2 = $r1/name 
E3 = $r1/ed.review 
E4 = $r2/comment 
E5 = $r2/rating 
E6 = $r3/desc. 
E7 = $r3/price 
E8 = $r3/order info. 
 
 
3.2.4 Potential Features 
 

A potential feature is a filtering predicate in the Where clause, which is defined on the 
object variables introduced in the For clause. Figure 5, shows a query with two kinds of potential 
features actually appearing in its Where clause: a foreign key constraint, and a match between an 
element and a specific value. Both kinds are equality predicates: they are formed using only 
variables defined in the For clause, arbitrary constants and an equality operator (‘=’ for simple 
types, ‘value-equals’ for objects)The number of potential features involving equality predicates is 
finite and can be derived automatically from the instantiated values of the initial data-mapping 
example. In other words, we can reconstitute the exact set of equality predicates, which may 
legally appear in the target query. That set is guaranteed to be complete because we observe that 

Algorithm-1. Generate For clause 
• for every node Ai, in {A1, …, An}  

such that its source path is ‘x1/x2/../xp’ in source s 
insert “$ri in document(‘source s’)/x1/x2/../xp” in the For clause. 

Algorithm-2. Generate Projection Expression 
• for every mapped source node (Ad(i)/pathi) 
 create projection expression Ei = “$rd(i)/pathi) 
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any equality predicate not within that set could not appear in the Where clause target query, since 
it would be negated by, and hence incompatible with the user supplied example.   
 Algorithm-3 proposes the generation of almost all those equality predicates. However, 
because variables are introduced in the For clause only for those object sets which appear in the 
mapping or for their ancestors, Algorithm-3 does not generate all legal equality predicates. 
 Algorithm-3 applied to the Figure 2 example yields the following set of potential 
features: 
P1: $r1 = “<Manufacturer>ACME…      …” 
P2: $r2 = “<Comment>Good Product…    …” 
P3: $r3 = “<Manufacturer>ACME…    …” 
P4: $r1/manufacturer = “ACME” 
P5: $r1/name = “Fast PC 3000 X533” 
P6: $r1/ed. review = “101-304” 
P7: $r2/comment = “Good Product…    …” 
P8: $r2/rating = “5-star” 
P9: $r3/manufacturer = “ACME” 
P10: $r3/SKU# = 6000345 
P11: $r3/name = “Fast PC 3000 X533” 
P12: $r3/desc. = “Multimedia computer” 
P13: $r3/price = “$699.99” 
P14: $r3/order info.=”Out of Stock” 
P15: value-equals($r1/review, $r2) 
P16: $r1/manufacturer = $r3/manufacturer 
P17: $r1/name = $r3/name 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm-3. Generate Potential Features 
 
Apply all the steps below for the nodes in {A1, …, An}, and remove duplicate predicates. 
 

• for every Ai with value vali, associated with variable $r i, create the potential feature: 
“$ri = vali”  

• for every Ai associated with variable $r i, for every child of Ai, create the potential 
i/namei = vali”, where namei and vali are respectively the schema name and 

value of the child node. 
• for every pair Ai , Aj, associated respectively with values vali and valj and with 

variables $r i and $rj, such that vali=valj, create the potential feature: “$r i = $rj” 
• for every pair Ai , Aj, associated respectively with variables $r i and $rj, such that Ai is 

the direct parent of A j, create the potential feature: “value-equals ($ri/namej, $rj)”, 
where namej is the schema name of A j 

• for every pair Ai , Aj, associated respectively with variables $r i and $rj, such that Ai 
has a non-leaf child (namei, vali), and such that Aj has value valj, and such that vali = 
valj, create the potential feature “$r i/namei = $rj”  

• for every pair Ai , Aj, associated respectively with variables $r i and $rj, such that they 
each respectively have leaf-node children (namei, vali) and (name j, valj) and such that 
vali=valj, create the potential feature: “$r i/namei = $rj/name j” 
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3.3 Boolean Feature Vector 
 

In the rest of this discussion we will assume that the set of potential filter predicates, or 
features: {P1, P2, …, Ppf} has been assembled, either by applying Algorithm-3, or by other means. 
We introduce the notion of feature vector as a Boolean vector of size pf. A query feature vector is 
the practical and unambiguous specification of a query in our model. 
 
Definition: Query Feature Vector 

The query feature vector associated with a query q, abbreviated FV(q) is a Boolean 
vector of size pf. Given the initial data-mapping example, if FV(q) = (q1, …, qpf), q is the query 
with a For clause generated by Algorithm-1, an empty Let clause, a Return clause generated by 
Algorithm-2, and such that qi=1 if and only if filter predicate Pi appears in the Where clause of q. 

 
There are exactly 2p f queries in the Search space, 2pf distinct feature vectors, and we have 

defined a one-to-one mapping between queries and their query feature vectors. 
 
Definition: more specific than, more general than 
Let a and b be two feature vectors such that a = (a1, …, apf) and b = (b1, …, bpf):  

- a is more specific than b (noted a ≥ b) if and only if (∀i: ai ≥ bi) 
- b is more general than a if and only if a is more specific than b. 

 
 
3.4 Expressive Power of our Approach  
 
 To place this work into a larger context we review first what is currently within the scope 
of our Version Spaces model, and second of our feasibility prototype, SPHINX. We speak to the 
scope of features and predicates that can be addressed in this model and those that must be 
addressed in other ways. 
 

Our data model is relevant for structured XML documents and object relational 
databases. This is equivalent to stating SPHINX handles mappings of  XML data structured in 
conformity with a DTD. The SPHINX approach is not appropriate for defining arbitrary tree 
mappings, or handling semi-structured data. Skolem functions to generate new object identifiers 
are absent, which prohibits the construction of DAGs with SPHINX [9,19,28]. Instead SPHINX 
focuses on generating higher order SchemaSQL or XQuery view definitions, which are based on 
the Project-Select-Join model of Formula-1.  

The Version Spaces model can handle any query, formed with a conjunction of arbitrary 
predicates of any kind. As such predicates may contain any arithmetic such as ‘x.a+3>y.a’, or 
more complex features such as negation ‘x.a≠y.a’, outer joins ‘(x.a=y.a or x.a=null or y.a=null)’, 
disjunction, etc..  Such queries are expressible with Formula -1 and fall within the expressive 
power of Version Spaces and of the active learning algorithm for which we elaborated formal 
correctness and termination guarantees.  
 

In our feasibility prototype, we incorporated Algorithm-1, 2 and 3, as a fully automated 
way of building a search space with a limited class of queries (equality predicates) and with no 
user intervention. With this initial GUI prototype, we explore how far a fully automated system 
with almost no user interaction can go, in an area that has traditionally challenged our ability to 
propose GUIs suited for non-technical users. Later, a more advanced GUI prototype will give 
knowledgeable users the opportunity to enter additional input in simple pull-down menus.  

Further, as our goals were to push the envelope on a fully automated system, we do not 
handle unit conversions, or aggregation. However conversions such as ounces to grams, months 
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to quarters, and other sorts of data misrepresentations can readily be identified by a user and 
handled by a simple and limited GUI. However, the construction of whole synonym dictionaries 
(e.g. ‘Pentium 3’ vs. ‘Pentium III’) or thesauri is characterized by a radically different set of 
technical challenges [25,29] and is well outside the scope of our study. 
 In choosing Algorithm-1, 2 and 3 for our prototype implementation of SPHINX, we 
explicitly curtailed the completeness of the search space to a limited class of queries with equality 
predicates. Without additional input from the user, currently generated potential predicates 
include all legal equality selection predicates on objects involved in the initial data mapping. 
They also include all legal equality join predicates on those same objects with the exception of 
self-joins and of a peculiar kind of join, characterized by join paths in the query graph that 
traverse children of data mapping elements. As shown in [20], a more exhaustive generation of all 
equality selection and join predicates is possible, and would require building a query graph and 
introducing in the For clause, every possible join path from the data mapping instance.  
 
 
4. Example -Based Learning with the Version Spaces Model 
 

The Versions Spaces algorithm was first presented by Mitchell [22]. For our application 
we’ve extended that algorithm to include the concept of active-learning: the system suggests 
additional examples rather than seeking them directly from the user, whose role is limited to 
deciding if the examples presented to him form a valid row in the target view. 

The SPHINX learning algorithm performs an iterative loop, whose termination condition 
is the convergence of the Version Spaces. At each step a feature vector is chosen, and labeled 
with one of three labels: positive, negative or missing. As a result of these repeated steps the 
target query can be narrowed down to a dwindling subset of the search space by the application of 
three rules. This narrowing subset is commonly called the space of remaining hypothesis. The 
Version Spaces model inside the learning algorithm tracks the space of remaining hypothesis, and 
converges when that space is reduced to a single query. 
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Figure 6 – Chain of Events in the SPHINX active learning algorithm 

 
4.1 Version Spaces State 
 

We introduce the concept of Version Spaces state for the purpose of tracking the space of 
remaining hypothesis.  
 
Definition: Version Spaces state 
A Version Spaces state is a pair of items (s, G) such that: 

- s is a query feature vector called the most specific feature vector 
- G is a set of query feature vectors called the most general set. 

 

User builds initial data-mapping example 

Initialize Search Space 

Choose a Boolean feature vector fv 

Find data mapping dm s.t. FV(dm) = fv ? 

New label: (fv, mis) 

User validates dm 

New label: (fv, pos) New label: (fv, neg) 

User does not validate dm 

Apply positive rule Apply negative rule 

Apply additional rule if possible 

Initialize Version Space 

Test if Version Space has converged Done YES 

NO YES 

User looks at example dm 
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As illustrated in Figure 7, the Version Spaces is initialized with the initial state (s0, G0), 
with s0 = (1, 1, …, 1) and G0 = { (0, 0, …, 0) }.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Initial Version Spaces state 

 
We define the notion of query set for a given Version Spaces state as the space of 

remaining hypothesis. The initial query set QS(s0, G0) is equivalent to the entire search space. 
 
Definition: Query set 

Let (s , G) be a pair of items such that the first item s , is a query feature vector and the 
second item G is a set of feature vectors: G = {g0, g1, …, gmg}.  

Query set QS(s , G) = {q | q is more general than s and ∃gj ∈ G such that gj is more 
general than q}. 
 
4.2 Data Mapping 
 

We defined the notion of data mapping instance to formalize the concept of source data 
coming together to form an object in the target schema (as previously illustrated in Figure 2). A 
data mapping is a positive example if the given source data correctly forms a member of the 
target view. 
 
Definition: Data Mapping 
 A data mapping instance dm is an assignment (o1, o2 , …, on) of variables $r1, $r2, …, $rn 
in their respective object sets O1, O2, …, On:     

dm = (o1, o2,  .. , on) ∈ O1×O2×  .. ×On 
 
Definition: positive, negative data mapping example  
A data mapping instance dm = (o1, o2, …, on) is said to form a positive example if and only if the 
target schema object formed by ÐE1, ..., Ek (o1, o2, … , on) is a member of the target view. 

If not, dm is said to form a negative example . 
 

Figures 2, 8 ,10, 14 show the graphical representation for a data mapping. A data 
mapping can always be represented by showing a set of the data values in the source databases, 
combining to form an element in the target schema. If the element produced is a member of the 
target view, the data mapping represents a positive example (Figures 2, 8, 14), if not it represents 
a negative example (Figure 10). 
 

Just as we did for queries, we can associate a Boolean feature vector with each data 
mapping instance dm. 

Most Specific Feature Vector 

Most General Feature Vector Set 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

{ } F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Definition: Example Feature Vector 
For a given data mapping dm, the example feature vector FV(dm) is defined as 
FV(dm) = (P1($r1 = o1, …, $rn = on), P2 ($r1 = o1, …, $rn = on), …, Ppf($r1 = o1, … , $rn = on)). 
 
4.3 Rule Definition 
 

We introduce the concept of rules, and the three kinds of rules used in the SPHINX 
learning algorithm. Formally we define a rule as one of three operators acting on a Version 
Spaces state. In turn, we will formally define three rules. 
 
Definition: rule 

A rule is an operator, which takes a Version Spaces state (s, G) and a feature vector fv as 
input and returns a new Version Spaces state (s’, G’). Applying a rule r moves a Version Spaces 
in state S with vector, to a new state S’ with vector  
 
4.3.1 Pos itive rule  
 

The positive rule operator Rp modifies the Version Spaces state by eliminating from the 
query set those queries that are inconsistent with a given positive data mapping. 

  
Definition: Positive rule operator 

Let dm be a data mapping such that FV(dm) = (e1, …, epf). The positive rule operator 
Rp((e1, …, epf)) operates on a Version Spaces state (s, G), s = (s1,…, spf), G = {g1, .., gn} , and gi = 
(gi,1 , gi,2 , …, gi,pf). 
Rp((e 1, …, e pf)): (s,G) → (s’,G’) 

• s’ = (s1’, …, spf’) such that  
o ei = 1 ⇒ si’ = si 
o ei = 0 ⇒ si’= 0 

• G’ = G 
 

Consider the positive data mapping instance dm1 shown in Figure 8. The mapped values 
are circled. Because the data in dm1 is substantially different from the initial data-mapping 
example in Figure 2, a large number of the potential features predicates do not hold on dm1 : P1, 
P2, P3, P4, P5, P6, P7, P9, P10, P11, P12, P13, P14. Conversely the following predicates do hold on dm1: 
P8, P15, P16, P17. Thus the example feature vector for dm1 is: FV(dm1) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 
0, 0, 0, 0, 1, 1, 1). The result of the subsequent application of Rp(FV(dm1)) to the initial Version 
Spaces state (Figure 7) is shown in Figure 9. Only the most specific vector is modified: all 
potential features which are negated in dm1 see their vector value lowered from 1 to 0. Potential 
features whose predicates are still fulfilled (P8, P15, P16, P17) suffer no change. 

The changes shown in Figure 9 eliminate from the query set, all the queries with any of 
the negated predicates (P 1, P2, P3, P4, P5, P6, P7, P9, P10, P11, P12, P13, P14) in their Where clause: 
since those queries would not produce a target view where dm1 could be a positive example. This 
property is formally stated in Lemma 1. 
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Figure 8 – Positive Data Mapping Example dm1 
 
 
 
 
 
 
 
 
 
Figure 9 – Applying the positive rule operator Rp(FV(dm1)) to the initial Version Spaces state. 
 
4.3.2 Negative rule  
 

The negative rule operator Rn is the more complex of the three and modifies the Version 
Spaces state in order to eliminates from the query set those queries that are inconsistent with a 
given negative data mapping. 
 
Definition: Negative rule operator 

Let dm be a data mapping, such that FV(dm) = (e1, …, epf).  
The negative rule operator Rn((e1, …, epf)) operates on a Version Spaces state (s, G), with 

s = (s1,…, spf), G = {g1, .., gn} , and gi = (gi,1 , gi,2 , …, gi,pf). 
Rn((e 1, …, e pf)): (s,G) → (s’’,G’’) 

• s’’ = s 
• G’ = { (gi,1’ , …, gi,pf’) | [(∃p: (gp,1 ,…, gp,pf) ∈ G) ∧ (∀j: ej=0 ⇒ gp,j = 0)) ∧   

(∃f: (∀j ≠ f: gi,j’ = gp,j ) ∧ ef=0 ∧ gi,f’ = 1)]  
∨∨  [(∃p: (gp,1 ,…, gp,pf) ∈ G) ∧ (∃f: ef=0 ∧ gp,f = 1) ∧ (∀ j: gp,j = gi,j’)] } 

• G’’ = { (gi,1’ , …, gi,pf’) | (gi,1’ , …, gi,pf’) ∈ G’ ∧ (gi,1’ , …, gi,pf’) ≤ s’} 

<Product Review> 
 <Manufacturer>GE</Manufacturer> 
 <Name>Handheld S1100C</Name> 
 <Number>173-411</Number> 
 <Ed. Review>A reliable phone with impeccable sound quality</Ed. Review> 
 <Review> 
  <Comment>Good Product  -Jim</Comment> 
  <Rating>5-star</Rating> 
 </Review> 
</Product Review> 

<Product> 
<Manufacturer>GE</Manufacturer> 
<SKU#>6002092</SKU#> 
<Name>Handheld S1100C</Name> 
<Desc.>Cordless phone</Desc.> 
<Price>$39.99</Price> 
<Order info.>Available</Order info.> 

</Product> 

Most Specific Feature Vector 

Most General Feature Vector Set 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 

 

{ } F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 10 – Negative Data Mapping Example dm2 

 
Consider the data mapping dm2 shown in Figure 10. It differs slightly from dm1, in that 

the data for source 1 is the same (the product is a GE handheld S1100C), but it is matched with a 
totally different product from source 2. The feature vector for dm2 is FV(dm2) = (0, 0, 1, 0, 0, 0, 
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0). There are 7 potential features whose predicates are negated in dm2 : 
(F1, F2, F4, F5, F6, F16, F17).  

The application of the Rn(FV(dm2)) operator leaves s, the most specific vector unchanged 
and applies only to G, which has only one member at this stage: G = {g0}. The application of 
Rn(FV(dm2)) happens in two phases:  

- In the first phase a new vector gi’ is created from g0 by changing the bit of exactly 
one of the 7 features to 1. Since there are 7 features there will be 7 new vectors: g1’ = 
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g2’ = (0, 1, 0, 0…., 0)   up to g7’ =  (0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).  

- In the second phase only those vectors which are still more general than s will be 
kept. This eliminates all but g6’ and g7’, thus g1’’ = g6’ and g2’’ = g7’. Thus the final 
result is shown in Figure 11. 

 
 
 
 
 
 
 
 
 
 

<Product> 
<Manufacturer>ACME</Manufacturer> 
<SKU#>6000345</SKU#> 
<Name>Fast PC 3000 X533</Name> 
<Desc.>Multimedia computer</Desc.> 
<Price>$699.99</Price> 
<Order info.>Out of Stock</Order info.> 

</Product> 

<Product Review> 
 <Manufacturer>GE</Manufacturer> 
 <Name>Handheld S1100C</Name> 
 <Number>173-411</Number> 
 <Ed. Review>A reliable phone with impeccable sound quality</Ed. Review> 
 <Review> 
  <Comment>Good Product  -Jim</Comment> 
  <Rating>5-star</Rating> 
 </Review> 
</Product Review> 
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Figure 11 – Applying the negative rule operator Rn(FV(dm2)) to the Version Spaces state 

 
4.3.3 Additional rule  
 

The additional convergence rule operator Ra(p) is applied in the negative and missing 
label branches every time its precondition is met for some potential feature p, 1�p�pf. If the 
precondition is not met for any p, the Version Spaces state is unchanged and nothing further 
happens. If it is met for some p, then the operator Ra(p) is applied and the Version Spaces state is 
modified to reflect the information derived from the precondition being fulfilled. 
 
Definition: Set 0p 
The set 0p is the set of feature vectors containing a zero at the pth position. 
0p = { (e1, e2, …, epf) |  ep = 0} 
 
Precondition Ra(p):  
Precondition(p) is met, if for any data mapping dm, FV(dm) ∈ 0p implies that dm is a negative 
example. If there is no data mapping dm, such that FV(dm) ∈ 0p, then Precondition(p) is true. 

(∀dm : FV(dm) ∈ 0p⇒ dm is a negative example) ⇒ Precondition(p) is true 
 
Definition: Additional rule operator (Applied when Precondition(p) is true) 
Ra(p): (s, G) → (s’, G’)   

• G’ = G 
• s’ = (s1’, …, spf’), sp’ = 1∧ (∀i ≠ p : si’ = si) 

 
 

The original Version Spaces algorithm did not require such a rule. The necessity for the 
additional rule is dictated by the demands of a sample selection system. There will be cases when 
no data mapping instance for a given feature vector can be found from the existing data sources. 
Consider predicate P8: $r2/rating = “5-star”. Assume all objects in the source have the rating “5-
star”. Thus all positive data mapping instances validated by the user must contain the rating “5-
star”. This is insufficient to prove that predicate P8 is part of the target view since all negative 
data mappings must also contain the “5-star” rating. This makes disproving P8 impossible. Thus, 
since no examples can be found with a different rating, the system will never be able to determine 
if the predicate P8 should appear or not in the Where clause of the target concept. 

It should be noted that since all data instances in the source fulfill predicate P8, its 
presence in the target query does affect the content of the target view. Every query q containing 

Most Specific Feature Vector 

Most General Feature Vector Set 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 

 

{ 
} 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
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P8 in the Where clause, has an identical counterpart q’ which is similar to q except q’ is missing 
P8 in the Where clause. It is always the case that q and q’ materialize the same target view. In that 
case, applying the additional rule operator Ra(8) will reduce the query set by removing for every 
query q, its counterpart q’.  
 
4.3.4 Impact on Updates  

 
Consider the scenario where the Additional rule operator Ra(8) is applied because no data 

mapping can be found with a rating other than “5-star”. Assume that as the result of an update or 
a modification of the source data, a rating of “4-star” appears at some point in the future. It will 
be necessary for SPHINX to re-evaluate the target concept against this new information. 

Thus every application of the additional rule operator should be logged, and a trigger 
should be introduced as an integrity constraint on the source data. 

For each application of an additional rule operator Ra(p), Precondition(p) must become an 
integrity constraint on the source data. Such an integrity constraint is violated when a data 
mapping dm appears in the source such that: 

- FV(dm) ∈ 0p  
- dm has not been labeled a negative data mapping.  
Violation of this integrity constraint, and of Precondition(p) must trigger a restart of the 

learning algorithm at the point where the additional rule operator Ra(p) was applied. 
 

 
5. Correctness 
 
 Per Section 3.4 we discussed the relative completeness of the search space with respect to 
a limited class of view defining queries. In this section we look at correctness and prove that the 
SPHINX learning algorithm, if it converges, correctly converges to the correct target concept in 
the search space. To do so, we prove that each rule operator application removes from the space 
of remaining hypothesis only those queries, which are inconsistent with the data mapping labels. 
We also prove that the learning algorithm terminates after a finite number of steps. 
 
5.1 Data Mapping and View Mapping Set 
 

The Data Mapping set corresponds to the Cartesian product of the Cartesian sets O1, O2, 
…, On identified by Algorithm-3. We also define the positive data mapping set as a subset. 
 
Definition: Data Mapping Set DM 
The set DM of data mapping instances is formally defined as the Cartesian product of the object 
sets O1, O2, … On. 

Formula 2 – Data Mapping set 

 
Definition: Positive Data Mapping Set DM+ 
Given a query q, such that FV(q) = (q1,…, qpf), the positive data mapping set DM+(q) is the subset 
of DM which does not negate any of the predicates included in the query q.  

Formula 3 – Positive Data Mapping set defined by a query 

DM+(q) = { (o1, …, on) ∈ DM | ∀i : qi ⇒ Pi($r1=o1, …, $rn=on)  } 
 

DM = O1×O2×…×On 
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Note that if q0 is the query with feature vector FV(q0) = (0, 0, …,0), then DM+(q0) = DM  
Note that if a and b are two queries such that a is more specific than b then DM+(a) ⊆ DM+(b). 
 
5.2 View Defined by a Query 
 

Any query q in the search space defines a view over the set of source databases. Two 
different queries q1 and q2 may define the same view. A trivial illustration of this is when the 
source databases are empty.  
 

Definition: View Defined by a Query q 
Given a query q, such that FV(q) = (q1, …, qpf), we note View(q) the view defined by q. 
 

Formula 4 – View defined by a query 
 
Formula 5 briefly illustrates for a query q the relationship between DM, DM+(q) and View(q). 

Formula 5 – Relationship between View, DM+ and DM. 

 
In a machine learning view of the query discovery problem for target query qt, elements 

of DM serve as labeled examples: positive examples belong to DM+(qt), and negative examples 
do not belong to DM+(qt).  

Lemma 1 states that a data mapping dm is a positive example for query q if and only if 
feature vector FV(dm) is more specific than feature vector FV(q).  
 
Lemma 1:  

Let dm be a data mapping such that FV(dm) = (e1, …, epf), 
Let q be a query such that FV(q) = (q1, …, qpf), 
  dm ∈ DM+(q)  ⇔ FV(dm) ≥ FV(q)  ⇔ ∀i: (ei ≥ qi) 

     
 

Lemma 1 is merely a restatement in terms of feature vectors of properties expressed in 
the definition of DM+(q). Its proof is left to the reader. Lemma 1 allows us to consider labels for 
positive or negative examples as a property of feature vectors, by stating that the label of a data 
mapping depends entirely on its feature vector. This observation is stated formally in Lemma 2. 
 
Lemma 2: 
 Let dm and dm’ be two data mappings such that FV(dm) = FV(dm’). 
 For any query q, dm ∈ DM+(q) ⇔ dm’ ∈ DM+(q) 
 
Lemma 2 is a direct corollary of Lemma 1. 
 
 
 

View(q) = Ð (E1, … , Ek) ( DM+(q) ) = Ð (E1, … , Ek) ( σP1, … Pm (DM)) 
 

View(q) = { ∏(E1($r1=o1, …, $rn=on),…, Ek($r1=o1, …, $rn=on))  | (o1, …, on) ∈ DM+(q)  
} 
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5.3 Feature Vector Label 
 

Each feature vector can always be assigned exactly one of three labels: pos (positive), 
neg (negative), or mis (missing).  
 
Definition: Correctly labeled pair 

A labeled pair is a pair (fv, lbl), where fv is a feature vector and lbl is one of the three labels 
{neg, pos, mis}. Let q be a query, (fv, lbl) is a correctly labeled pair with respect to q if and only 
if the following conditions are met:  

• If for all data mapping dm in DM, FV(dm) ≠ fv, then lbl = mis  
• If there exists a data mapping dm such that FV(dm) = fv and dm∈DM+(q) then lbl = pos 
• If there exists a data mapping dm such that FV(dm) = fv and dm∉DM+ (q) then lbl = neg 

 
Lemma 1 and Lemma 2 guarantee that the three cases in the above definition are mutually 

exclusive, and that their disjunction is always true.  
 
5.4 Learning Algorithm Sequences 
 

Interaction between the user and the system, described in Section 5, results in the user 
constructing a label sequence, one labeled pair at a time. 
 
Definition: Label Sequence 

A label sequence is a sequence of labeled pairs.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 – SPHINX learning algorithm State Transitions  

 
Two quantities characterize the state of the SPHINX learning algorithm itself: the 

Version Spaces state, and a Label Sequence. Figure 8 illustrates the state transition, when a 
labeled pair (fv, label) is added to the label sequence. The initial state is characterized by vector 
(sk, Gk), and label sequence LSk. The algorithm branches on the label value, and applies some 

LSk Statek : (sk,Gk) 

Statek+1: (sk+1,Gk+1) =  Rp(fv)• (sk,Gk) 

LSk+1 = LSk + (fv, pos) 
Rn(fv) • (sk,Gk) 

Ra(p) • (s’,G’) 

k,Gk) 

(s’’,G’’) =  (s’,G’) 

Statek+1: (sk+1,Gk+1) =  (s’’,G’’) 

LSk+1 = LSk + (fv, neg) LSk+1 = LSk + (fv, mis) 

Apply additional rule for some p Do not apply additional rule 

LSk+1 
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rules, which reduce the space of remaining hypothesis by operating on the Version Spaces state. 
As shown in Figure 6, three different rules exist and therefore three different kinds of operators 
exist which operate on the Version Spaces state: the positive rule with operator Rp(fv) which is 
applied in the positive branch, the negative rule with Rn(fv) which is applied in the negative 
branch, and the additional rule  with Ra(p) which can be applied in both the negative and the 
missing branch. 
 
Definition: Rule Sequence  

A rule sequence is a sequence of rule operators, which are of three kinds: Rp(fv), Rn(fv), 
Ra(p). 
 
Definition: Rule sequence triggered by a label sequence. 

A rule sequence RS is triggered by a label sequence LS, if the rule sequence is the set of 
actions taken by the Version Spaces algorithm in response to the label sequence LS.  
 
Definition: Version Set 

Let RS be a rule sequence. The version set VS(RS) is defined inductively as: 
• VS(∅) = QS(s0, G0) : the empty rule sequence gives a version set equal to the whole 

search space. 
• VS(RS) = QS(sk, Gk) ⇒ VS(RS + Rx(y)) = QS(Rx(y)(sk, Gk)) : adding a new rule to the 

rule sequence is equivalent to applying the rule operator to reduce the space of remaining 
hypothesis. 

 
5.5 Correctness for Positive rule operator 

 
Lemma 3 states that the positive rule operator Rp(fv) removes q from the space of 

remaining hypothesis (QS) if and only if no data mapping with feature vector fv can be a positive 
example for q. Thus operator Rp(fv) only removes from the space of remaining hypothesis those 
queries which are incompatible with the correctly labeled pair (fv,pos). 
 
Lemma 3:  

Let (fv,pos) be a labeled pair, q a query in QS(s, G) and QS’ = Rp(fv)(QS): 
q ∉ QS’ ⇔ ∀dm : FV(dm) = fv ⇒ dm ∉ DM+ (q) 

 
A proof for Lemma 3 can be found in the Appendix. 
 
5.6 Correctness for Negative rule operator 
 
 Lemma 4 states that the operator Rn(FV(dm)) removes q from the space of remaining 
hypothesis (QS) if and only if dm is not a negative example for DPM(q). 
 
Lemma 4:  

Let (fv,pos) be a labeled pair, q a query in QS(s, G) and QS’ = Rn(fv)(QS): 
q ∉ QS’ ⇔ ( ∀dm : FV(dm) = fv ⇒ dm ∈ DM+ (q) ) 

 
A proof for Lemma 4 can be found in the Appendix. 
 
5.7 Correctness for Additional rule operator 
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 Lemma 5 makes explicit the conditions under which two target queries may define the 
same target view. In doing so Lemma 5 proves that the Additional rule operators only remove 
from the Version Spaces state redundant target query definition. Lemma 5 guarantees that each 
view, which could still be the correct target view, preserves at least one representative query in 
the Query Set. 
 
Definition: Compatible with 
 A query q is compatible with a label sequence LS if and only if the following properties 
are true: 

• (fv, pos) ∈ LS ⇒ (fv, pos) is a correctly labeled pair with respect to q 
• (fv, neg) ∈ LS ⇒ (fv, neg) is a correctly labeled pair with respect to q 

 
Lemma 5(k): 
If:  
   LSk = ((dm1, l1), …, (dmk, lk)) is a label sequence,  
   and RSk is a rule sequence triggered by LSk such that (Ra(p1), Ra(p2), …, Ra(pa)) is the exact 
subsequence of applications of the additional rule  in RSk,  
   and VS(RSk) = QS(sk, Gk), 
   and q is compatible with LSk,  
   and q’ a query such that (∀j≤a: qpj’ = 1) ∧ (∀i: (∀j ≤ a: i ≠ pj) ⇒ (qi’ = qi))  
Then:  
   q’ ∈ VS(RSk)   
 
A proof of Lemma 5 can be found in the Appendix. 
 
5.8 Correctness and Termination of the SPHINX learning algorithm. 
 

Theorem 1 guarantees that a query defining the correct target view can always be found 
in the space of remaining hypothesis maintained by the SPHINX learning algorithm. In particular, 
if SPHINX has converged to a single query, then that query correctly defines the target view. 
Theorem 1 is a direct consequence of Lemma 5, and we will leave that proof to the reader. 
 
Theorem 1: 

Let vt = View(qt) be the target view defined by the target query qt, LS a label sequence 
such that qt is compatible with LS, and RS the rule sequence triggered by LS: ∃q ∈ VS(RS) such 
that View(q) = vt. 
 

Theorem 2 states that SPHINX will eventually converge to a single query. To discuss the 
issue of convergence, and prove Theorem 2, it is necessary to introduce the notion of partial 
convergence on a potential feature. 
 
Definition: Partial Convergence on a Potential Feature 

Assume the Version Spaces state is (s , G), with s = (s1, s2, …, spf), G = {(g1,1 , g1,2, …, 
g1,pf)…(gk,1, gk,2 , …, gk,pf)}. The SPHINX learning algorithm has partially converged for potential 
feature Fi, if and only if: si = g1,i = g2,i =… =gk,i. 
 

The reader can verify that if SPHINX has partially converged for all potential features, 
then it has converged (in the usual sense) and the target query is known.  

Theorem 2 states that if each of the 2pf distinct feature vectors is assigned a label, the 
algorithm is guaranteed to have converged to a solution. The proof figures in the Appendix. 
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Theorem 2: 
 Let LS be a label sequence such that LS contains 2pf distinct, correctly labeled pairs, one 
for every possible feature vector instance. Let RS be the rule sequence triggered by LS, then 
VS(RS) = QS(s, G) has converged to a single query. 
 
 

Theorem 1 and Theorem 2 together guarantee eventual convergence of the SPHINX 
learning algorithm towards a single, correct view definition. 
 
 
 
6. Active Learning and Sample Selection 
 
 In machine learning, Active Learning refers to a process where the system selects 
examples for the user to label, in order to reduce the cost of labeling unnecessary examples. In 
this section we look at the problem of selecting the examples that must be submitted to the user.  

The number of examples necessary to converge to an answer is an important measure of 
success for SPHINX, and the goal is to bring the learning algorithm to converge with a minimum 
number of examples. However, it should be noted that in an adversarial worst-case scenario, the 
system would be forced to test 2pf-(pf choose 2) negative or missing examples, before the 
additional learning rule could be used to converge. In that far-fetched scenario, the size of the 
target view, equal to 1, precludes identifying positive examples beyond the initial graphic 
example. Only negative and missing labels can be added to the label sequence, and only the 
additional rule operator will make progress towards convergence. In practice, when federating 
data sources we hope that such target queries will be rare, and that the learning algorithm can 
converge at a more acceptable  rate.    

 
6.1 Active Learning as a Search Problem 

 
To explore its search space, SPHINX proceeds incrementally by trying to accomplish a series of 
intermediate sub-goals. The active learning portion of SPHINX chooses the examples it presents 
to the user with the purpose of achieving its current sub-goal. Consider the feature vector 
illustrated in Figure 13. All its feature bits are set to 1 except for F1. A data mapping instance 
with this example feature vector would negate only predicate P1.  
 
 
 
 

Figure 13 – Example Feature Vector 

 
 
 
 
 
 
 
 
 
 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Figure 14 – Data Mapping Instance with the Example Feature Vector shown in Figure 13  

 
Consider the data mapping shown in Figure 14. Its example feature vector is equal to the 

one shown in Figure 13. This data mapping is similar in all points to the data mapping shown in 
Figure 2, except for a minor difference in one of the reviews. This minor difference results in the 
negation of predicate P1.   

If the user assigns this data mapping a positive label then SPHINX will know P1 cannot 
be a filter predicate in the target query. Conversely if the user assigns it a negative label then the 
target query must contain filter predicate P1. Thus, regardless of the actual label value, SPHINX 
can ascertain whether or not P1 belongs to the target query. Provided the same mechanism can be 
repeated for the other 16 potential features, SPHINX could, in 17 steps, learn the target query. 
   
6.2 Sub-goals for Partial Convergence  
 

We examine one strategy, which proceeds by setting sub-goals for partial convergence, 
and incrementally leads to full convergence. This strategy seeks to find data mapping instances 
for each of the 17 sub-goals shown in Figure 15, and then to submit them to the user. To reach 
these sub-goals, a data mapping instance with example feature vector equal to the sub-goal must 
be submitted to the user (a query on the source can easily be written to retrieve data mapping 
instances corresponding to a given feature vector representation). This strategy is particularly 
attractive, because if the necessary 17 data mappings can be found, regardless of how the user 
labels them, the algorithm fully converges. However in a practical scenario, using real data 
sources, none of the data mappings necessary for any of the sub-goals in Figure 15, are likely to 

<Product Review> 
 <Manufacturer>ACME</Manufacturer> 
 <Name>Fast PC 3000 X533</Name> 
 <Number>101-304</Number> 
 <Ed. Review>A very fast computer and a good value for under $1000</Ed. Review> 
 <Review> 
  <Comment>Good product  -Andy</Comment> 
  <Rating>5-star</Rating> 
 </Review> 
 <Review> 
  <Comment>Average Performance   -Danny</Comment> 
  <Rating>4-star</Rating> 
 </Review> 
</Product Review> 
 

<Product> 
<Manufacturer>ACME</Manufacturer> 
<SKU#>6000345</SKU#> 
<Name>Fast PC 3000 X533</Name> 
<Desc.>Multimedia computer</Desc.> 
<Price>$699.99</Price> 
<Order info.>Out of Stock</Order info.> 

</Product> 
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exist. These sub-goals are too specific: they require data mappings with very restrictive integrity 
constraints. 
 
 
 
 
 
 
 
 
 

Figure 15 – Sequence of sub-goals leading to convergence 

 
More generally, because of functional or accidental dependencies in the data and because 

many predicates will not be independent (e.g. P1 and P4) most sub-goals are unreachable and 
looking for the corresponding data mappings will result in the production of missing labels. Since 
missing labels do not directly lead to convergence, sub-goals must be chosen carefully. 
 
6.3 Value of Positive Examples vs. Negative Examples 
 

Since a naïve strategy of proving or disproving each individual feature separately (as in 
Figure 17) cannot be seriously considered, it is important to understand that the value of a 
positive example is much higher than the value of a negative example. Consider a sub-goal, 
which seeks (to prove or disprove) a group of k filter predicates. Finding a positive data mapping 
example for that sub-goal, will bring the algorithm closer to convergence: by generalizing the 
most specific feature vector on all k features, the algorithm automatically reaches partial 
convergence on those k features. On the other hand a negative data mapping example for the 
same sub-goal does not bring the algorithm much closer to converging, because when all k 
features are negated at the same time, it is not the case that partial convergence is achieved on any 
feature; unless the additional learning rule can be applied. Unfortunately the additional learning 
rule often requires a large amount of labeled pairs in order to be applied.  
 
7. Sample Selection Heuristics 
 

In this Section we look at heuristics to implement sample selection for the SPHINX 
system. When looking at establishing facts about the target query using sub-goals, we need to 
consider two factors: 

- missing labels are of little value, 
- negative labels are also of little value.  
  

 Any strategy wishing to minimize user interaction, must focus on finding at least one, 
possibly several, examples labeled positive by the user. Therefore the basis of our strategy is to 
separate active learning in two phases. In the first phase SPHINX will exclusively focus on 
proposing data mappings, which it judges are likely to be positive examples. The goal in the first 
phase is to converge quickly on as many features as possible. In the second phase SPHINX 
proposes those data mappings that have no particular reason to be positive or negative. Thus the 
expected convergence rate in the second phase will be minimal, but with the extent of the search 
space reduced by the first phase, the number of examples can be contained. 
 
 

Sub-goal 1: (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)  
determine if P1 must be included in the target query 
Sub-goal 2: (1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 
determine if P2 must be included in the target query 
… 
… 
Sub-goal 17: (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 
determine if P17 must be included in the target query 
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7.1 Join Feature Bias  
 

A simple analysis shows that the overwhelming majority of the potential features are 
selection predicates. A selection predicate is created for every attribute in the schema. A join 
feature is created only when supported by the initial data-mapping example: a relationship exists 
between two objects in the data mapping. 
 
  Potential 

Features 
Selection 
Features 

Join  
Features 

Query 1 14 14 0 Healthcare 
Query 2 15 15 0 
Query 3 25 24 1 Sports Statistics 

Query 4 25 24 1 

Query 5 30 28 2 5 Star Catalog 

Query 6 30 28 2 

Table 1 – Selection vs. Join Features 

 
 

An accidental match between a “9.99” as the price $9.99 and a “9.99” as September 99 is 
possible, but is an  unlikely event given any pair of objects chosen at random by the user. Thus 
almost all join features observed in the data-mapping example are not flukes and do represent 
existing semantic relationships. Thus two factors combine here to privilege join features: a pure 
Cartesian product without a join predicate is a very unlikely operation, and most observed join 
features between objects belonging to different sets are not accidental.  

We elaborate a baseline strategy Sb based on this observation. Sb privileges the search for 
positive examples in its initial phase by initially never choosing sub-goals negating join 
predicates. When searching for a sub-goal, strategy Sb looks to negate only a small set of 
selection predicates (never more than 10). That search is repeated by modifying the set until a 
positive example is found or the algorithm converges. The small set of negated selection features 
is chosen with an initial randomization and modified in an incremental search pattern. There is a 
possibility for backtracking to re-randomize the set, but in the course of running the experiments 
shown in Table 2, backtracking with Sb occurred only once. Once positive examples have been 
found, Sb enters its second phase, in which both join and selection predicates will be negated.  

It should be observed that in addition to its bias for join features vs. selection features, 
strategy Sb possesses another built-in bias: it consistently bets that of all the potential features (a 
large number), only a very small number is likely to actually appear in the Where clause of the 
target query. 
 
7.2 Information Gain Bias  
 

We make the observation that not all features are equally likely. Consider the following 
feature predicate: “Name = ‘Supervac 4000’”. It is unlikely to appear in a view defining query 
since few objects in the source, perhaps only one, will fulfill that predicate, making it useless for 
any view definition. On the other hand a feature such as “manufacturer/state = ‘TX’” is more 
likely. A significant proportion of the objects may well fall in the ‘TX’ category and building a 
view with those might be of use. 
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We can measure for each selection predicate their information gain. The basic 
assumption is that the information gain will serve to estimate the likelihood of a predicate.  
 

IG(P) = - (|S1|/(S1|+|S2|))ln(|S 1|/(|S1|+|S2|)) – (|S2|/(|S1|+|S2|))ln(|S 2|/(|S 1|+|S2|)) 
 

The information gain IG(P) is a function of the filter factor FF(P), and is maximal when 
FF(P) = 0.5. IG(P) will yield high scores for predicates on enumerated types, and low scores for 
predicates on infinite types.  
  We note the information gain metric IG(P), relies on the same catalog statistics used in 
those query cost models. It has been shown these statistic s can be derived even in distributed 
systems where catalog information is not directly accessible [11,30]. Thus, we are confident we 
can always rely on such statistics  to drive our heuristics. 

We introduce a new strategy Sc, a refinement of Sb based on this information gain bias. 
This strategy does not require likelihood estimations to be accurate. The likelihood function 
should, above all, cluster predicates into two major categories: the most unlikely predicates 
(extremely low information gain and infinite domain), and the other predicates (low to high 
information gain and enumerated domain). This clustering will replace the random process used 
in Sb.  

A comparable bias could be introduced to estimate the likelihood of individual join 
predicates, however as discussed earlier the small number of join predicates precludes the need.  
 
7.3 Experiments  
 

We implemented a prototype system complete with graphic -user interface.  This 
prototype handles data mapping instances presented here, as well as mappings from meta-data 
elements to data (in XML, tag-names can be extracted with the getTagName function). This small 
higher-order generalization allows from a broader range of restructuring queries across 
schematically disparate sources, without any substantial changes to the overall system.  

We chose three domains to experiment with data integration. All of these problems were 
actual internet database integration tasks conducted under contract, in an ad-hoc fashion by a web 
services consulting firm. Almost all source data was available only in HTML form, with the 
source sites wrapped [3,7] to produce structured results. These experiments with SPHINX 
recreate those schema integration tasks, and are ranked in Table 2, by increasing level of 
empirical complexity. In the first domain the target queries populate a Healthcare provider 
directory database. The second domain is based on sport statistics databases. The third domain is 
the ‘5 Star Catalog’ for electronics and comes from the area of online pricing catalogs for B2B 
merchandise distributors. A slightly simplified version is used as an illustrative example in this 
exposition.  

Table 2 gathers some results: each test set includes source databases (which can be found 
at [37]), a target schema, and two interesting target queries populating different tables of the 
target schema. The number of features (i.e. Selection and Join predicates) appearing in the Where 
clause of each query is shown (e.g. 1J, 0S: 1 Join and no Selection predicates). The number of 
examples SPHINX requires to reach the target query is averaged over ten runs for each query and 
shown in Table 2. The decimal averages are a product of random factors present in both 
heuristics. 

Strategy Sb is more successful than Sc for the target queries which do not have a selection 
predicate in their Where clause. The performance of strategy Sb degrades quickly when the target 
query contains even a single selection predicate. Strategy Sc, shows a more stable behavior, its 
performance only slowly decreasing when the complexity of the target query increases. This can 
be attributed to the inability of strategy Sb to differentiate among the selection features, and hence 
pick the ones, which can be excluded from the target query with high probability. 
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    Strategy Sc Strategy Sb 

Number of Examples Number of  
Examples 

  Query 
size 

Potential 
Features 

Total Pos. Neg. Total Pos. Neg. 
Query 1 0J, 0S 14 2.2 2.2 0.0 1.4 1.4 0.0 Healthcare 
Query 2 0J, 1S 15 4.7 2.0 2.7 5.5 2.5 3.0 
Query 3 1J, 0S 25 4.9 3.7 1.2 2.5 1.5 1.0 Sports  

Statistics Query 4 1J, 1S 25 4.8 1.8 3.0 11.4 1.6 9.8 
Query 5 2J, 0S 30 5.9 3.2 2.7 4.0 2.0 2.0 5 Star 

Catalog Query 6 2J, 1S 30 8.9 2.7 6.2 11.7 2.0 9.7 

Table 2 – Experiments with SPHINX 

 
 

Sc Sb oracle  random   
Total Total Total Pos. Neg. Total Pos. Neg. 

Query 1 2.2 1.4 1 1 0 26 13 13 Healthcare 
Query 2 4.7 5.5 2 1 1 26 13 13 
Query 3 4.9 2.5 2 1 1 7.5 3.5 3.0 Sports  

Statistics Query 4 4.8 11.4 3 1 2 22 11 11 
Query 5 5.9 4.0 4 1 3 12 5.5 6.0 5 Star 

Catalog Query 6 8.9 11.7 5 1 4 42 21 21 

Table 3 – Active learning vs. passive learning 

 
 

Table 3 compares the performance of both active learning strategies for SPHINX with 
two experiments in which SPHINX is hobbled to become  a passive learning system. These two 
experiments do not represent valid strategies but are designed to identify bounds, both lower 
(oracle) and upper (random) on the number of examples an active learning algorithm may require   

In these passive learning experiments, the user carries the burden of constructing data 
mapping examples as well as labeling them. SPHINX merely indicates when the system has 
converged to a target query.  To measure a lower-bound, an omniscient user, (us), constructed the 
optimal sequence of examples to converge SPHINX as quickly as possible. To measure an upper-
bound a naive user chooses examples at random from the set DM. At each step there is an equal 
probability of a pos itive or a negative example being chosen. Each example is picked randomly 
from its respective population of positive (DM+) or negative examples (DM-DM+) with equal 
probability. Unlike the oracle this user is not in a feedback loop with the learning system, and 
does not know which examples need to be picked next in order to finish converging the system.  

These experiments show that even with imperfect heuristics, the observed complexity is 
correlated with the size and complexity of the target query rather than with the number of 
potential features. We can observe both that the number of required examples spikes when 
predicates are added to the target query, and that the most simple target queries require a small 
number of examples, even when the number of potential features is large.  
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8. Conclusion 
  
 We built a Version Spaces model for query discovery by example and developed the 
SPHINX learning algorithm, by adding a new kind of label and a new learning rule to the two 
labels and the two rules in the original Version Spaces algorithm. This new algorithm allows full 
and accurate verification by a user of potential mappings of semantic relationships. This is 
accomplished entirely by example, where only the initial data-mapping example needs to be 
supplied by the user. The active learning and sample selection system incorporated in SPHINX 
generate additional examples, which are labeled positive or negative by the user. We present an 
effective search heuristic which minimizes the number of such examples submitted to the user by 
quickly eliminating potential features.  

We note that SPHINX, has no real intelligent understanding of the semantic properties of 
data. Rather it focuses on a purely syntactic understanding of the federating views and on a user 
interaction model. SPHINX relies entirely upon the user to provide semantic knowledge and does 
not seek to derive it from context and from existing information. This split between user and 
system responsibilities was motivated by our specific goals. However, future work could 
incorporate existing machine learning techniques, which exploit such information. Without 
abandoning the goal of accuracy, the system can make more educated guesses to improve current 
heuristics and converge quicker in complex situations. 

With SPHINX we grapple  with the issue of designing a GUI Interface for complex data 
transformations. There already are successful GUIs for XML tag matching, and with the typical 
size of a DTD, these represent the only realistic way for most people to interact with XML 
mappings. To integrate data from multiple XML types, and to perform more complex operations 
such as un-nesting and joins, it would be desirable to incorporate automated schema matching 
tools into those simple GUI paradigms. However, as those semantic tools currently require an 
expert to check correctness, with SPHINX we sought to identify a first set of more advanced 
semantic elements which could still be brought to the level of a GUI for a non-technical user.  

Future work should also address a wider range of practical issues in schema integration 
within the framework we established. In particular, we leave open the issue of adjusting and 
testing the current SPHINX strategy to handle different kinds of queries, such as aggregation 
operators and disjunction, of incorporating Skolem functions for objects, and of explicitly 
handling more complex XML such as DAGs. Broadening the generality of SPHINX in this 
fashion will mean expanding the current GUI principles to require several kinds of user input 
beyond our initial minimalist approach. 
 
 
Bibliography 
 
[1] Abiteboul S., S. Cluet, T. Milo: Correspondence and Translation for Heterogeneous Data. 
ICDT 1997: 351-363 
[2] Barbançon F., D. Miranker: Implementing Federated Databases Systems by Compiling 
SchemaSQL. IDEAS 2002: 192-201. 
[3] Baumgartner R., S. Flesca, G. Gottlob: Visual Web Information Extraction with Lixto. VLDB 
2001: 119-128. 
[4] Bergamaschi S., S. Castano, M. Vincini: Semantic Integration of Semistructured and 
Structured Data Sources. SIGMOD Record 28(1), 1999, 54-59. 
[5] Castano S., De Antonelli V.: A schema analysis and reconciliation tool environment. IDEAS 
1999: 53-62. 
[6] Cluet S., C. Delobel, J. Siméon, K. Smaga: Your Mediators Need Data Conversion ! 
SIGMOD 1998: 177-188 



 31

[7] Crescenzi V., G. Mecca, P. Merialdo: RoadRunner: Towards Automatic Data Extraction from 
Large Web Sites. VLDB 2001: 109-118 
[8] Doan A., P. Domingos, A. Halevy: Reconciling Schemas of Disparate Data Sources: A 
Machine Learning Approach. SIGMOD Conference 2001. 
[9] Fernandez M., A. Morishima, D. Suciu: Efficient Evaluation of XML Middle -ware Queries. 
SIGMOD 2001 
[10] Garcia-Molina H., Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, V. 
Vassalos, J. Widom: The TSIMMIS Approach to Mediation: Data Models and Languages. JIIS 
8(2): 117-132 (1997) 
[11] Haas L., D. Kossman, E. Wimmers, J. Yang: Optimizing Queries Across Diverse Data 
Sources. VLDB 1997: 276-285  
[12] Hirsh H.: Theoretical Underpinnings of Version Spaces. IJCAI 1991, 665-670. 
[13] Kent W.: Solving Domain Mismatch and Schema Mismatch Problems with an Object-
Oriented Database Programming Language. VLDB 1991: 147-160 
[14] Krishnamurthy R., W. Litwin, W. Kent: Language Features for Interoperability of Databases 
with Schematic Discrepancies. SIGMOD Conference 1991: 40-49. 
[15] Lakshmanan L., F. Sadri, I. Subramanian: SchemaSQL - A Language for Interoperability in 
Relational Multi-Database Systems. VLDB 1996: 239-250 
[16] Levy A., A. Rajaraman, J. Ordille: Querying Heterogeneous Information Sources Using 
Source Descriptions. VLDB 1996: 251-262. 
[17] Li W., C. Clifton, S. Liu: SemInt: a tool for identifying attribute correspondences in 
heterogeneous databases using neural network. Data and Knowledge Engineering 33(1): 49-84 
(2000). 
[18] Madhavan J., P. Bernstein, E. Rahm: Generic Schema Matching with Cupid. VLDB 2001: 
49-58 
[19] Manolescu I., D. Florescu, D. Kossmann: Answering XML Queries on Heterogeneous Data 
Sources. VLDB 2001: 241-250 
[20] Miller R., L. Haas, M. Hernández: Schema Mapping as Query Discovery. VLDB 2000: 77-
88 
[21] Milo T., S. Zohar: Using Schema Matching to Simplify Heterogeneous Data Translation. 
VLDB 1998: 122-133. 
[22] Mitchell T.: Version Spaces: A Candidate Elimination Approach to Rule Learning. IJCAI 
1977: 305-310 
[23] Mitra P., G. Wiederhold, M. Kersten: A Graph-Oriented Model for Articulation of Ontology 
Interdependencies. EDBT 2000: 86-100 
[24] Palopoli L., G. Terracina, D. Ursino: The System DIKE: Towards the Semi-Automatic 
Synthesis of Cooperative Information Systems and Data Warehouses. ADBIS-DASFAA 2000: 
108-117. 
[25] Park Y., Han Y., Choi K.: Automatic Thesaurus Construction Using Bayesian Networks. 
CIKM 1995: 212-217. 
[26] Rahm E., P. Bernstein: A survey of approaches to automatic schema matching. VLDB 
Journal 10(4): 334-350 (2001). 
[27] Roth M., M. Arya, L. Haas, M. Carey, W. Cody, R. Fagin, P. Schwarz, J. Thomas II, E. 
Wimmers: “The Garlic Project”. SIGMOD 1996: 557. 
[28] Shanmugasundaram J., J. Kiernan, E. Shekita, C. Fan, J. Funderburk: Querying XML Views 
of Relational Data. VLDB 2001: 261-270 
[29] Takenobu T., Makoto I., Hozumi T.: Automatic Thesaurus Construction Based on 
Grammatical Relations. IJCAI 1995:1308-1313. 
[30] Tomasic A., L. Raschid, P. Valduriez: Scaling Heterogeneous Databases and the Design of 
Disco. ICDCS 1996: 449-457 



 32

[31] Vassalos V., Y. Papakonstantinou: Describing and Using Query Capabilities of 
Heterogeneous Sources. VLDB 1997: 256-265. 
[32] Vidal M., L. Raschid, J. Gruser: A Meta -Wrapper for Scaling up to Multiple Autonomous 
Distributed Information Sources. CoopIS 1998: 148-157 
[33] XML Query: http://www.w3.org/TR/XQuery 
[34] Yan L., M. Özsu, L. Liu: Accessing Heterogeneous Data Through Homogenization and 
Integration Mediators. CoopIS 1997: 130-139 
[35] Yan L., R. Miller, L. Haas, R. Fagin: Data Driven Understanding and Refinement of Schema 
Mappings. SIGMOD Conference 2001. 
[36] Zloof M.: Query-by-Example: A Data Base Language. IBM Systems Journal, 1977. 
[37] http://www.cs.utexas.edu/users/francois/databases.html 
 



 33

 

Appendix 
 
Formal proofs are included in this Appendix for the referees’ consideration. 
 
Lemma 3:  

Let (fv,pos) be a labeled pair, q a query in QS(s, G) and QS’ = Rp(fv)(QS): 
q ∉ QS’ ⇔ ( ∀dm : FV(dm) = fv ⇒ dm ∉ DM+(q) ) 

 
Proof:  
 
Assume fv = (e1, e2, …, epf), q = (q1, q2, …, qp f) 
QS = (s, G), QS’ = (s’, G’) 
G = {(g1,1, …, g1,pf), 

  (g2,1, …, g2,pf), 
  … 
  (gk,1, …, gk,pf)} 

 
• q ∉ QS’ ⇒ ( ∀dm : FV(dm) = fv ⇒ dm ∉  DM+ (q) ) 

 
Assume dm such that FV(dm) = (e1, e2, …, epf). 
q ∈ QS, q ∉ QS’ ⇔ (∀i: qi ≤ si) ∧ (∃i: gi ≤ q) ∧ ((∃i: qi > si’) ∨ (∀i: ¬(gi’ ≤ q))) 
and since ∀i: gi = gi’ : 
   ⇔ (∀i: qi ≤ si) ∧ (∃i: qi > si’) ∧ (∃i: gi ≤ q) 
   ⇔ (∃i: si ≥ qi > si’) ∧ (q ∈ QS) 
and since si > si’, we must have si = 1 and si’ = 0, which by definition of s’ and Rp implies ei=0 : 
   ⇒ (∃i: qi > ei) 
   ⇒ dm ∉  DM+ (q) 
 

• ( ∀dm : FV(dm) = fv ⇒ dm ∉  DM+ (q) ) ⇒ q ∉ QS’ 
 
Assume dm such that FV(dm) = (e1, e2, …, epf). 
dm ∉ DM+ (q)   ⇒ (∃i: qi > ei)  
   ⇔ (∃i: qi = 1 ∧ ei = 0) 
and since q ∈ QS, we have (∀i: qi ≤ si) ∧ (∃i: gi ≤ q) 
   ⇒ (∃i: qi = 1 ∧ ei = 0 ∧ qi ≤ si) 
   ⇒ (∃i: qi = 1 ∧ ei = 0 ∧ si = 0) 
and since by definition of s’ and Rp, si’ must be 0 in that case : 
   ⇒ (∃i: qi = 1 ∧ si = 1 ∧ si’ = 0)  
   ⇒ (∃i: qi > si’) 
   ⇒ q ∉ QS’ 

n 
 
Lemma 4:  

Let (fv,pos) be a labeled pair, q a query in QS(s, G) and QS’ = Rn(fv)(QS): 
q ∉ QS’ ⇔ ( ∀dm : FV(dm) = fv ⇒ dm ∈ DM+ (q) ) 

 
Proof:  
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Assume fv = (e1, e2, …, epf), q = (q1, q2, …, qp f) 
QS = (s, G), QS’ = (s’’, G’’) 
s’’ = s 
G = {(g1,1, …, g1,pf), 

  (g2,1, …, g2,pf), 
  … 
  (gk,1, …, gk,pf)} 

G’’ = { (gi,1’ , …, gi,pf’) | [  (gi,1’, …, gi,pf’) ≤ s’ ]  ∧∧    
[   [(∃p: (gp,1 ,…, gp,pf) ∈ G) ∧ (∀j: ej=0 ⇒ gp,j = 0)) ∧ (∃f: (∀j ≠ f: gi,j’ = gp,j ) ∧ ef=0 ∧ gi,f’ = 1)]  
 ∨ [(∃p: (gp,1 ,…, gp,pf) ∈ G) ∧ (∃f: ef=0 ∧ gp,f = 1) ∧ (∀j: gp,j = gi,j’)]   ] } 

 
• q ∉ QS’ ⇒ ( ∀dm : FV(dm) = fv ⇒ dm ∈ DM+ (q) ) 

 
Assume dm such that FV(dm) = (e1, e2, …, epf) 
since s’’ = s : q ∉ QS’ ⇒ (∃j ∀i: qi ≥ gj,i) ∧ (∀j ∃i: qi < gj,i’). 
Let z be such that ∀i: qi ≥ gz,i  
Assume A: (∃i: ei = 0 ∧ gz,i = 1) 
 in that case gz ∈ G’’ (by fulfilling the second part of the disjunction), 
 and because gz ≤ q ≤ s’’ = s, we find that q ∈ QS’ which is impossible. 
We therefore deduce ¬A: (∀i: (ei = 0) ⇒ (gz,i = 0)) 
 Let f be any f such that ef = 0, we define the vector ng = (ng1, ng2, …, ngp f) 
 with ngf = 1, and (∀i≠f: ngi = gz,i) 
  Assume B: sf = 0,  

then because q ≤ s, we have qf = 0 
  Assume ¬B: sf = 1,  

then by definition ng ∈ G’ 
   and since (∀i≠f: ngi = gz,i), we have: (∀i≠f: ngi ≤ qi)  
    Assume C: qf = 1, 
     then ngf ≤ qf, 
     and since (∀i: ngi ≤ qi), therefore ng ≤ q ≤ s’’ = s 
     this implies q ∈ QS’ which is impossible. 
    We can therefore deduce ¬C: qf = 0. 
    QED (we have just proved ∀f: ef = 0 ⇒ qf = 0) 
 

• ( ∀dm : FV(dm) = fv ⇒ dm ∈ DM+ (q) ) ⇒ q ∉ QS’ 
Assume dm such that FV(dm) = (e1, e2, …, epf). 

∈ G’’: g’’ = (gz,1’, gz,2’, …, gz,pf’) with all the properties listed above for a member of G’’, 
in particular (∃p: gp=(gp,1 ,…, gp,pf) ∈ G) such that: 

[(∀j: ej=0 ⇒ gp,j = 0)) ∧ (∃f: (∀j ≠ f: gi,j’ = gp,j ) ∧ ef=0 ∧ gi,f’ = 1)]  
       ∨  [(∃f: ef=0 ∧ gp,f = 1) ∧ (∀j: gp,j = gi,j’)] 
Take such a p: 
Assume A: (q ≥ gp)  

and since dm ∈ PDM(q), therefore we have (∀i: ei ≥ qi ≥ gp,i). 
 The property (∃f: ef = 0 ∧ gp,f = 1) is now impossible, 
 therefore by definition of G’’: (∃f: (ef = 0) ∧ (gz,f’ = 1) ∧ (∀i≠f: gz,i’ = gp,i)). 
 Take such an f: 

because (ef = 0) and (∀i: ei ≥ qi) 
the only possibility is in that case: qf = ef = 0 
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(qf = 0) and (gz,f’ = 1) imply ¬(g’’ ≤ q) 
Assume ¬A: (∃i: qi < gp,i) 
 Assume B: (∀j: gz,j’ = gp,i) 
  then (∃i: qi < gp,i = gz,j’) which implies ¬(g’’ ≤ q) 
 Assume ¬B: ¬(∀j: gz,j’ = gp,i) 
  Then by definition of G’’, the other part of the disjunction must be true: 
  [(∀j: ej=0 ⇒ gp,j = 0)) ∧ (∃f: (∀j ≠ f: gz,j’ = gp,j ) ∧ ef=0 ∧ gz,f’ = 1)] 
  in particular: (∃f: gz,f’ = 1 ∧ (∀j ≠ f: gz,j’ = gp,j )) 
  therefore: (∀j: gz,j’ ≥ gp,j). 
  Recall that (∃i: qi < gp,i) ⇒ (∃i: qi < gp,i ≤ gz,i’) ⇒ ¬(g’’ ≤ q) 

QED (we have just proved (∀g’’ ∈ G’’: ¬(g’’ ≤ q))) 
n 

 
Lemma 5(k): 
If:  
   LSk = ((fv1, l1), …, (fvk, lk)) is a label sequence,  
   and RSk is a rule sequence triggered by LSk such that (Ra(p1), Ra(p2), …, Ra(pa)) is the exact 
subsequence of applications of the additional rule  in RSk,  
   and VS(RSk) = QS(sk, Gk), 
   and q is compatible with LSk,  
   and q’ a query such that (∀j≤a: qpj’ = 1) ∧ (∀i: (∀j ≤ a: i ≠ pj) ⇒ (qi’ = qi))  
Then:  
   q’ ∈ VS(RSk)   
 
Proof: 
 
Lemma 5 is parameterized by k, the length of the label sequence. The proof is an induction on k. 

• k = 0 
LS0 = ∅, RS0 = ∅, a=0 
We simply verify that q = q’ and that both are in VS(∅) = QS(s0, G0) which is the whole search 
space. 

• Assume Lemma 5(k) is true: prove Lemma 5(k+1) 
Case 1:  
The subsequence of applications of additional rule operators is the same for RSk+1 and RSk. In 
other terms there is no application of the additional rule operator between step k and step k+1. 
Assume q and q’ are queries such that q is compatible with LSk+1 and q’ is such that (∀j ≤ a: qpj’ = 
1) ∧ (∀i: (∀j ≤ a: i ≠ pj) ⇒ (qi’ = qi)). 
We can apply the induction hypothesis, Lemma 5(k) on LSk , RSk, q and q’: therefore q’ ∈ 
VS(RSk). 
Assume that fv = (e1, e2, …, epf). 
There are three further cases on the value of the label lk+1: 

- If lk+1 = pos, then there exists dmk+1 ∈  DM+(q), such that FV(dmk+1) = fvk+1 because 
q is compatible with LSk+1. 
dmk+1 ∈ PDM(q) ⇒ (∀i: ei ≥ qi) 
There are two further cases: 

o Let i be such that (∀j ≤ a: i ≠ pj), then qi’ = qi and ei ≥ qi’ 
o Let i be such that (∃j ≤ a: i = pj), then  

let j be such that j ≤ a and i = pj 
 Assume A: (ei = 0), then fvk+1 ∈ 0i, 
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then Precondition for Ra(i=p j) in the rule sequence, dictates that the 
label lk+1 be negative or missing. This is impossible. 

 We can therefore deduce ¬A: (ei = 1), and ei ≥ qi’ is assured. 
 Thus we proved with both cases that (∀i: ei ≥ qi’), 
 and therefore that dmk+1 ∈ PDM(q’). 
 Using Lemma 3, we can deduce that q’ ∈ Rp(fvk+1)(sk, Gk), 
 therefore q’ ∈ VS(RSk+1). 

- If lk+1 = neg, then there exists dmk+1 ∉ PDM(q) such that FV(dmk+1) = fvk+1, because 
q is compatible with LSk+1 
dmk+1 ∉ DM+(q) ⇒ (∃i: ei < qi). 
Let i be such that e i < qi. There are two further cases: 

o (∀j ≤ a: i ≠ pj), then qi = qi’ and ei < qi’. Therefore dmk+1 ∉ PDM(q’) 
o (∃j ≤ a: i = pj), then let j be such that j ≤ a and i = pj. 

ei < qi ⇒ ei =0, and since qi’ = 1, ei < qi is assured. Therefore dmk+1 ∉ 
PDM(q’). 

 With both cases we established dmk+1 ∉ PDM(q’).  
 Using Lemma 4, we can deduce that q’ ∈ Rn(fvk+1)(sk, Gk), 

and since we are in the case where there is no application of the additional rule 
between step k and step k+1: q’ ∈ VS(RSk+1) 

- If lk+1 = mis, then since there is no application of the additional rule, RSk = RSk+1  
 and q’ ∈ VS(RSk+1) 
 

Case 2:  
The subsequence of applications of the additional rule operator is incremented from RSk to RSk+1 
by the application of Ra(pa+1). In other terms Ra(pa+1) is applied between step k and step k+1. 
Assume q and q’ are queries such that q is compatible with LSk+1 and q’ is such that (∀j ≤ a+1: 
qpj’ = 1) ∧ (∀i: (∀j ≤ a+1: i ≠ pj) ⇒ (qi’ = qi)). 
Let q’’ = (q1’’, q2’’, …, qpf’’) be such that (∀j ≤ a: qpj’’ = 1) ∧ (∀i: ((∀j ≤ a: i ≠ pj) ⇒ qi’’ = qi)). 
We can apply the inductive hypothesis, Lemma 5(k) to q’’: q’’ ∈ VS(RSk). 
Assume that fvk+1  = (e1, e2, …, epf). 
There are two further cases: 

- If lk+1 = neg, then there exists dmk+1 ∉ PDM(q) such that FV(dmk+1) = fvk+1, because 
q is compatible with LSk+1 
dmk+1 ∉ DM+(q) ⇒ (∃i: ei < qi) 
There are two further cases: 

o Let i be such that (∀j ≤ a: i ≠ pj), then qi’’ = qi and therefore e i < qi’’ 
o Let i be such that (∃j ≤ a: i = pj), then 

let j  ≤ a such that i = pj: in that case qi’’ = 1 
and since ei < qi . The only possibility is ei = 0 < qi’’ = 1. 

 Thus we proved with both cases that (∃i: ei < qi’’) 
 ⇒ dmk+1 ∉ PDM(q’’). 
 Using Lemma 4: q’’ ∈ Rn(fvk+1)(sk, Gk). 
 Note that (∀i ≠ pa+1: qi’’ = qi’) ∧ (qpa+1’ = 1). 
 There are two cases: 

o Case A: qpa+1 = 1 : in this case since qpa+1’’=qpa+1 , we have q’’ = q’, 
and since qpa+1’’ = 1, by definition of the action for Ra(pa+1):  
q’’ ∈ Ra(pa+1)(Rn(fvk+1)(sk, Gk)) 

∈ VS(RSk+1).  
o Case B: qpa+1 = 0 : qpa+1’’ = 0, qpa+1’ = 1 
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We will prove that q’ is compatible with LSk+1, then we will deduce that q’ ∈ 
VS(RSk+1). 

§ Let i ≤ k+1 be such that (fvi, li = pos) ∈ LSk. 
There exists dmi ∈ PDM(q’’) s.t. FV(dmi) = fvi = (f1, …, fpf) 
dmi ∈ VM(q’’) ⇒ (∀i: fi ≥ qi’’). 
If fpa+1 = 1 then (∀i: fi ≥ qi’) ⇒ dmi ∈ PDM(q’) 
If fpa+1 = 0 then by the precondition for Ra(pa+1), li is neg or mis, 
which is impossible. 
Therefore dmi ∈ PDM(q’). 

§ Let i ≤ k+1 be such that (fvi, li = neg) ∈ LSk 
There exists dmi ∉ DM+(q’’) s.t. FV(dmi) = fvi = (f1, …, fpf) 
In this case dmi ∉ PDM(q’’), which implies that ∃i: fi < qi’’. 
If i = pa+1 then since qpa+1’’ = 0, there is a contradiction. 
If i ≠ pa+1. In that case: qi’’ = qi’, which implies that fi < qi’’=qi’. 
Therefore ∃i: fi < qi’ and dmi ∉  DM+(q’). 

  We have just established that q’ is compatible with LSk+1. 
  By induction on the label sequence LSk, we now prove that q’ ∈ VS(RSk+1): 

§ q’ ∈ VS(∅). q’ is in the initial search space. 
§ assume q’ ∈ VS(RSi) = QS(si, Gi), RSi triggered by LSi, LSi+1 = LSi 

+(fvi, li) 
• If li = pos, since q’ is compatible with LS’,  

there exists dmi ∈ DM+(q’) s.t. FV(dmi) = fvi 
∈ VS(RSi+Rp(fvi)) 

• If li = neg, since q’ compatible with LS’,  
there exists dmi ∉ PDM(q’) s.t. FV(dmi) = fvi 
by Lemma 4, q’ ∈ Rn(fvi,)(si, Gi). 
∀j ≤ a+1: qpj’ = 1 and by definition of the Ra(pj): (∀j: q’ ∈ 
Ra(pj)(Rn(fvi)(si, Gi)). 
Since by definition of the algorithm, when li = neg, RSi+1 is 
equal to either RSi+Rn(fvi) or RSi+Rn(fvi)+Ra(pj) for some j: 

∈ VS(RSi+1). 
• If li=mis, then  

∀j ≤ a+1, qpj’ = 1, and by definition of the Ra(pj) operator, 
we have ∀j: q’ ∈ Ra(pj)(si, Gi). 
Since by definition of algorithm, RSi+1 is equal to either RSi 
or RSi+Ra(pj) for some j: 
q’ ∈ VS(RSi+1). 

- If lk+1 = mis, there are two cases: 
o If qpa+1 = 1, then q’ = q’’. 

q’ = q’’ ∈ VS(RSk),  
and since qpa+1’=1, by definition of Ra(pa+1): 
 q’ ∈ Ra(pa+1)(sk, Gk) = VS(RSk+1).  

o If qpa+1’ = 0. Same scenario and same proof as in Case B above. We first 
prove that q’ is compatible with LSk+1, then by a mini-induction that q’ ∈ 
VS(RSk+1).  QED 

n 
 
Theorem 2: 
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 Let LS be a label sequence such that LS contains 2pf distinct, correctly labeled pairs, one 
for every possible feature vector instance. Let RS be the rule sequence triggered by LS, then 
VS(RS) = QS(s, G) has converged to a single query. 
  
Proof: 
In order to prove that VS(RS) has converged to a single query, we will prove that partial 
convergence has been reached for each of the potential features.  
Let f ≤ pf, be a potential feature: 

- Assume A: [∀i: (((dmi = (e1, e2, …, epf), li) ∈ LS ) ∧ (ef = 0)) ⇒ li = neg or mis] 
Since LS contains all possible feature vectors, the precondition for Ra(f) is fulfilled. 
Therefore Ra(f) is guaranteed to be in the rule sequence RS and by definition of Ra(f): 
(∀i: sf = gi ,f = 1).  
The algorithm has partially converged on feature f.  

- Assume ¬A: [∃i: (((dmi = (e1, e2, …, epf), li) ∈ LS ) ∧ (ef = 0)) ⇒ li = pos] 
In that case there exists i such that Rp(FV(dmi)) is in the rule sequence RS. 
Since ef = 0, by definition of Rp(FV(dmi)): (∀i: sf = gi,f = 0). 
The algorithm has partially converged on feature f.  

Thus the algorithm has converged on all potential features, and (∀i: sf = gi ,f) 
 

n 
 


