
On the Comparison-Addition Complexityof All-Pairs Shortest Paths�Seth PettieDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712seth�s.utexas.eduTR-02-21May 28, 2002AbstratWe present an all-pairs shortest path algorithm for arbitrary graphs that performs O(mn log �(m;n))omparison and addition operations, where m and n are the number of edges and verties, resp., and� is Tarjan's inverse-Akermann funtion. Our algorithm eliminates the sorting bottlenek inherent inapproahes based on Dijkstra's algorithm, and for graphs with O(n) edges our algorithm is within a tinyO(log �(n; n)) fator of optimal. Our algorithm an be implemented to run in polynomial time (granted,a large polynomial). We leave open the problem of providing an eÆient implementation.1 IntrodutionIn 1975 Fredman [F76℄ presented a simple and elegant algorithm for the all-pairs shortest paths problem thatperforms only O(n2:5) omparison and addition operations, rather than the O(n3) bound of Floyd's algorithmor Dijkstra's algorithm (see [CLRS01℄). However, Fredman gave no polynomial-time implementation of thisalgorithm,1 illustrating that the notion of omparison-addition omplexity in shortest paths problems an bestudied apart from the usual notion of algorithmi omplexity, that is, the atual running times of shortestpath programs. We present, in the same vein, an APSP algorithm that makesO(mn log�(m;n)) omparisonsand additions, where m and n are the number of edges and verties, resp., and � is the mind-bogglinglyslow-growing inverse-Akermann funtion. For sparse graphs, the best omparison-addition-based algorithmto date was established very reently [Pet02℄; it runs in O(mn + n2 log logn) time, improving on the long-standing bound of O(mn + n2 logn) [Dij59, FT87, J77℄. A trivial lower bound on the APSP problem is
(n2), implying that our algorithm is tantalizingly lose to optimal for edge-density m=n = O(1). For densegraphs, the best implementable algorithm to date is due to Takaoka [Tak92℄, running in time O(n3q log log nlogn ).It is still an open question whether there are O(n2) + o(mn) algorithms for APSP when m = O(n1:5).Karger et al. [KKP93℄ have shown that 
(mn) is a lower bound among algorithms that only omparepath-lengths. Fredman's algorithm obviously does not �t into this lass, and neither does our algorithm.�This work was supported by Texas Advaned Researh Program Grant 003658-0029-1999, NSF Grant CCR-9988160, andan MCD Graduate Fellowship.1A slightly worse algorithm making O(n2:5plog n) omparisons/additions an be implemented in O(n3) time.1



This raises the interesting possibility that our tehniques ould be used to obtain O(n2) + o(mn) APSPalgorithms for sparse graphs.Our APSP algorithm is based on the divide-and-onquer approah to single soure shortest paths inventedby Thorup [Tho99℄ for the speial ase of undireted graphs, and generalized by Hagerup [Hag00℄ to diretedgraphs. The [Tho99, Hag00℄ algorithms were designed for integer-weighted graphs in the RAM model ofomputation. Their improved running times (over say, Dijkstra's algorithm) depended ruially on the abilityof RAMs to sort n numbers in o(n logn) time. It was, therefore, not obvious whether these algorithms ouldbe translated into good algorithms for real-weighted graphs in the omparison-addition model. Pettie &Ramahandran [PR02b℄ gave an adaptation of Thorup's algorithm to real-weighted undireted graphs; itsolved the s-soures shortest paths problem in O(sm�(m;n) +minfn logn; n log log rg) time, where r is theratio of the maximum-to-minimumedge length. In partiular, for s � logn the running time isO(sm�(m;n))and for s = 1 and r = poly(n) the running time is O(m + n log logn).2 The tehniques used in [PR02b℄are spei� to undireted graphs and simply have no analogues in direted graphs. Pettie [Pet02℄, using adi�erent set of tehniques, gave a version of Hagerup's algorithm for real-weighted direted graphs. It solvesthe s-soures shortest paths problem in O(mn+sn log logn) time; it is only an improvement over approahesbased on Dijkstra's algorithm if s = !(m= logn).In this paper we attempt to generalize and re�ne the tehniques introdued in [Pet02℄, in partiular theuse of relative distanes and the tehnique of disretely approximating reals by small integers.The next Setion gives a tehnial introdution to the ommonalities present in the \omponent hierarhy"based shortest path algorithms [Tho99, Hag00, PR02b, Pet02℄, and an outline of the approah of this paper.1.1 Tehnial IntrodutionOne way to haraterize Dijkstra's SSSP algorithm [Dij59℄ | without atually speifying it | is to say thatit �nds a permutation �s of the verties suh that�s(u) < �s(v) ) d(s; u) � d(s; v)where d(�; �) is the distane funtion and s is the soure. We give a similar haraterization of the shortestpath algorithms based on omponent hierarhies [Tho99, Hag00, PR02b, Pet02℄.Suppose for this disussion that the graph is strongly onneted. Let ir(u; v) be the set of all ylesontaining verties u and v and let sep(u; v) be de�ned assep(u; v) = minC 2ir(u;v) maxe2C length(e)Notie that if the graph is undireted, sep(u; v) orresponds to the longest edge in the minimum spanningtree path onneting u and v. Regardless of whether the graph is undireted or direted, all omponenthierarhy-based algorithms [Tho99, Hag00, PR02b, Pet02℄ generate a permutation �s satisfying Property 1.Property 1 Let s be the soure. For verties u; v, �s satis�esd(s; v) � d(s; u) + sep(u; v) ) �s(u) < �s(v)When haraterized in this way we an lower-bound the omplexity of spei� algorithms in the omparison-addition model via ounting arguments. Assume that the graph topology and soure are �xed. We will saya set of permutations satis�es Property 1 if for any length funtion, some permutation in the set satis�esProperty 1. The �rst thing to notie is that sep(u; v) does not depend on the soure, whereas d(s; u) andd(s; v) obviously do. From the perspetive of a multi-soure shortest path algorithm, omputing sep is aone-time harge and omputing �s, given sep, relates to the marginal ost of omputing SSSP from s. Lowerbounding both the �rst SSSP ost and the marginal SSSP ost are of great interest. Let �sep and �nosepbe the smallest sets of permutations satisfying Property 1, when the sep funtion is known and unknown,respetively. (Computing a omponent hierarhy gives an impliit approximation to the sep funtion | see2Pettie et al. implemented a simpli�ed version of [PR02b℄; in their experiments with real-weighted graphs it onsistentlyoutperformed Dijkstra's algorithm. 2



Setion 4.) It is not diÆult to show that 
(m + log j�sepj) and 
(m + log j�nosepj) are lower bounds onthe number of omparisons/additions performed by any algorithm haraterized by Property 1, when sep isgiven a priori, and when no information is provided, respetively.It an be shown that even for undireted graphs, j�nosepj = n�(n) in the worst ase, and j�nosepj =2
(n log log r) if the ratio of any two edge lengths is bounded by r < 2n { see [PR02b, Pet02℄. If sep is knownthe situation is a little di�erent. The shortest path algorithm from [PR02b℄ demonstrates impliitly that forundireted graphs j�sepj = 2O(m). It is shown in [Pet02℄ that for direted graphs, even in the speial asewhen r < n and sep(u; v) = sep(w; z) for all u; v; w; z, j�sepj an be as large as n
(n).What onlusions an be drawn from these bounds? First, any undireted SSSP algorithm satisfyingProperty 1 must make 
(m+minfn log log r; n logng) omparisons, making the [PR02b℄ algorithm essentiallyoptimal. For direted graphs, even if the sep funtion is known and the omponent hierarhy given expliitly,any SSSP algorithm satisfying Property 1 makes 
(m+minfn log r; n logng) omparisons. Clearly, at leastone more idea is required to improve the O(m+ n logn) upper bound [Dij59, FT87℄ on SSSP.For the all-pairs shortest path problem on direted graphs, the above bounds beome weaker. Any APSPalgorithm that �rst omputes a omponent hierarhy (read: omputes the sep funtion), then performs nindependent SSSP omputations must make 
(mn+n2 logn) omparisons. The key tehnique to improvingthis bound, whih was used to a lesser extent in [Pet02℄, is to make the SSSP omputations dependent. Inthe algorithm presented here, we perform a sequene of n SSSP omputations in suh a way that later SSSPomputations an learn from the time-onsuming mistakes of earlier ones.1.2 OrganizationIn Setion 2 we de�ne the SSSP and APSP problems and the omparison-additionmodel. In Setions 3 and 4we review Dijkstra's algorithm and a generi form of the omponent hierarhy algorithm, whih enompasses[Tho99, Hag00, PR02b, Pet02℄. In Setion 5 we give a method to simulate the generi algorithm in theomparison-addition model. A little familiarity with omponent hierarhy-based algorithms [Tho99, Hag00,PR02b, Pet02℄ will be invaluable, though it is not assumed. A brief introdution to the CH approah isgiven in Appendix B.2 PreliminariesThe input is a weighted, direted graph G = (V;E; `) where jV j = n; jEj = m, and ` : E ! R assigns areal length to every edge. It is well-known [J77℄ that the shortest path problem is reduible in O(mn) timeto one of the same size but having only non-negative edge lengths. We therefore assume that ` : E ! R+assigns only non-negative lengths. We let d(u; v) denote the length of the shortest path from u to v, or 1if none exists. The all-pairs shortest path problem is to ompute d(�; �) and the single-soure shortest pathsproblem is to ompute d(s; �) where the �rst argument, the soure, is �xed. Generalizing the d notation, letd(u;H) be the shortest distane from u to any vertex in the subgraph H . H may also be an objet that isassoiated with a subgraph, not neessarily the subgraph itself.2.1 The Comparison-Addition ModelIn the pure omparison-addition model the only operations whih ontribute toward the \running time" areomparisons between two real numbers and addition of two real numbers. The input an be neatly dividedinto strutural information, in our ase the unweighted graph, and numerial information, in our ase them edge-weights. An algorithm an be modeled as a kind of deision tree (whih depends on the struturalinformation): eah node is assoiated with a sequene of additions followed by a omparison. Depending onthe outome of the omparison, the next operation omes from either the left or right hild. We frequentlyuse subtration in our algorithms; refer to [PR02b℄ for a simulation of subtration.This model is elegant and suÆiently powerful to solve the standard shortest path problems (see, e.g.,the textbook algorithms of Dijkstra, Bellman-Ford, Floyd-Warshall, and min-plus matrix multipliation.)There are several lower bounds in the omparison-additionmodel though they are generally very weak. Spiraand Pan [SP73℄ showed that regardless of additions, 
(n2) omparisons are neessary to solve SSSP on theomplete graph. Karger et al. [KKP93℄ proved that all-pairs shortest paths requires 
(mn) omparisons if3



all summations orrespond to paths in the graph. Kerr [K70℄ showed that any oblivious APSP algorithmperforms 
(n3) omparisons/additions, and Kolliopoulos and Stein [KS98℄ proved that any �xed sequene3of edge relaxations solving SSSP must have length 
(mn). Graham et al. [G+80℄ did not give a lower boundbut showed that the standard information-theoreti argument annot yield a non-trivial (!(n2)) lower boundin the APSP problem. Similarly, no information-theoreti argument an lower bound SSSP; however, Pettieand Ramahandran [PR02b℄ observed that the omparison-addition omplexity of SSSP is no less than thatof the minimum spanning tree problem. So it seems the manifestly simpler MST problem must be fullyresolved (see [KKT95, Chaz00, PR02a℄) before the omplexity of even undireted SSSP an be resolved.3 Dijkstra's AlgorithmDijkstra's SSSP algorithm visits verties in order of inreasing distane from the soure s. It maintains aset S of visited verties, initially empty, and a tentative distane D(v) for all v 2 V satisfying the followinginvariant.Invariant 0 For v 2 S, D(v) = d(s; v) and for v 62 S, D(v) is the shortest distane from s to v using onlyintermediate verties from S.Dijkstra's method for growing the set S while maintaining Invariant 0 is to visit verties greedily. Ineah step, Dijkstra's algorithm identi�es the vertex v 62 S with minimum tentative distane, sets S :=S [ fvg, and updates tentative distanes. This involves relaxing eah outgoing edge (v; w), setting D(w) :=minfD(w); D(v) + `(v; w)g. The algorithm halts when S = V , and therefore D(v) = d(s; v) | the tentativedistanes equal the shortest distanes.Throughout the paper D;S; s mean the same thing as in Dijkstra's algorithm, and the terms \visit" and\relax" are essentially the same.4 The Component HierarhyDijkstra's algorithm an be thought of as simulating a physial proess. Suppose the graph-edges representwater pipes and at time zero we begin releasing water from vertex s. Dijkstra's algorithm simulates the owof water at unit-speed through the graph. Component hierarhy-based algorithms an also be thought ofas simulating this proess, though in a muh oarser way. Instead of maintaining the same simulated timethroughout the whole graph, as Dijkstra's algorithm does, CH-based algorithms deompose the graph intoa hierarhy of subgraphs (the omponent hierarhy), where eah subgraph maintains its own loal simulatedtime. Progress is made by giving a well-seleted subgraph, say at simulated time a, permission to advane itslok to simulated time b > a. This sheme will satisfy Invariant 0 provided the subgraphs and intervals [a; b)are hosen properly. The orretness of this sheme is addressed in [Tho99, Hag00, PR02b℄; see AppendixB for a sketh of its derivation.4.1 The CH for Real-weighted Direted GraphsThe following omponent hierarhy, whih is similar to the one de�ned in [Pet02℄, an be onstruted veryeasily with O(m logn) omparisons and additions.First, to ensure that G is strongly onneted, we add an n-yle with in�nite-weight edges. As in [PR02b℄,we �rst produe the edge-lengths in sorted order: `1; : : : ; `m. We then �nd a set of normalizing edge lengthsf`1g [ f`j : `j > n � `j�1g. Let rk be the kth smallest normalizing edge. For eah edge j between rk andrk+1 � 1 we determine the i s.t. 2i�1`rk � `j < 2i`rk . In other words, we �nd a fator 2 approximation ofevery edge length divided by its assoiated normalizing edge length. For the purpose of �rst understandingthe omponent hierarhy approah, one an assume there is only one normalizing edge length: `1.The CH is omposed of layered strata, where stratum k, level i nodes orrespond to the strongly onnetedomponents (SCCs) of the graph restrited to edges with length less than `rk � 2i. Most quantities relating3The sequene must only depend on m and n, not the graph.4


