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s.utexas.eduTR-02-21May 28, 2002Abstra
tWe present an all-pairs shortest path algorithm for arbitrary graphs that performs O(mn log �(m;n))
omparison and addition operations, where m and n are the number of edges and verti
es, resp., and� is Tarjan's inverse-A
kermann fun
tion. Our algorithm eliminates the sorting bottlene
k inherent inapproa
hes based on Dijkstra's algorithm, and for graphs with O(n) edges our algorithm is within a tinyO(log �(n; n)) fa
tor of optimal. Our algorithm 
an be implemented to run in polynomial time (granted,a large polynomial). We leave open the problem of providing an eÆ
ient implementation.1 Introdu
tionIn 1975 Fredman [F76℄ presented a simple and elegant algorithm for the all-pairs shortest paths problem thatperforms only O(n2:5) 
omparison and addition operations, rather than the O(n3) bound of Floyd's algorithmor Dijkstra's algorithm (see [CLRS01℄). However, Fredman gave no polynomial-time implementation of thisalgorithm,1 illustrating that the notion of 
omparison-addition 
omplexity in shortest paths problems 
an bestudied apart from the usual notion of algorithmi
 
omplexity, that is, the a
tual running times of shortestpath programs. We present, in the same vein, an APSP algorithm that makesO(mn log�(m;n)) 
omparisonsand additions, where m and n are the number of edges and verti
es, resp., and � is the mind-bogglinglyslow-growing inverse-A
kermann fun
tion. For sparse graphs, the best 
omparison-addition-based algorithmto date was established very re
ently [Pet02℄; it runs in O(mn + n2 log logn) time, improving on the long-standing bound of O(mn + n2 logn) [Dij59, FT87, J77℄. A trivial lower bound on the APSP problem is
(n2), implying that our algorithm is tantalizingly 
lose to optimal for edge-density m=n = O(1). For densegraphs, the best implementable algorithm to date is due to Takaoka [Tak92℄, running in time O(n3q log log nlogn ).It is still an open question whether there are O(n2) + o(mn) algorithms for APSP when m = O(n1:5).Karger et al. [KKP93℄ have shown that 
(mn) is a lower bound among algorithms that only 
omparepath-lengths. Fredman's algorithm obviously does not �t into this 
lass, and neither does our algorithm.�This work was supported by Texas Advan
ed Resear
h Program Grant 003658-0029-1999, NSF Grant CCR-9988160, andan MCD Graduate Fellowship.1A slightly worse algorithm making O(n2:5plog n) 
omparisons/additions 
an be implemented in O(n3) time.1



This raises the interesting possibility that our te
hniques 
ould be used to obtain O(n2) + o(mn) APSPalgorithms for sparse graphs.Our APSP algorithm is based on the divide-and-
onquer approa
h to single sour
e shortest paths inventedby Thorup [Tho99℄ for the spe
ial 
ase of undire
ted graphs, and generalized by Hagerup [Hag00℄ to dire
tedgraphs. The [Tho99, Hag00℄ algorithms were designed for integer-weighted graphs in the RAM model of
omputation. Their improved running times (over say, Dijkstra's algorithm) depended 
ru
ially on the abilityof RAMs to sort n numbers in o(n logn) time. It was, therefore, not obvious whether these algorithms 
ouldbe translated into good algorithms for real-weighted graphs in the 
omparison-addition model. Pettie &Rama
handran [PR02b℄ gave an adaptation of Thorup's algorithm to real-weighted undire
ted graphs; itsolved the s-sour
es shortest paths problem in O(sm�(m;n) +minfn logn; n log log rg) time, where r is theratio of the maximum-to-minimumedge length. In parti
ular, for s � logn the running time isO(sm�(m;n))and for s = 1 and r = poly(n) the running time is O(m + n log logn).2 The te
hniques used in [PR02b℄are spe
i�
 to undire
ted graphs and simply have no analogues in dire
ted graphs. Pettie [Pet02℄, using adi�erent set of te
hniques, gave a version of Hagerup's algorithm for real-weighted dire
ted graphs. It solvesthe s-sour
es shortest paths problem in O(mn+sn log logn) time; it is only an improvement over approa
hesbased on Dijkstra's algorithm if s = !(m= logn).In this paper we attempt to generalize and re�ne the te
hniques introdu
ed in [Pet02℄, in parti
ular theuse of relative distan
es and the te
hnique of dis
retely approximating reals by small integers.The next Se
tion gives a te
hni
al introdu
tion to the 
ommonalities present in the \
omponent hierar
hy"based shortest path algorithms [Tho99, Hag00, PR02b, Pet02℄, and an outline of the approa
h of this paper.1.1 Te
hni
al Introdu
tionOne way to 
hara
terize Dijkstra's SSSP algorithm [Dij59℄ | without a
tually spe
ifying it | is to say thatit �nds a permutation �s of the verti
es su
h that�s(u) < �s(v) ) d(s; u) � d(s; v)where d(�; �) is the distan
e fun
tion and s is the sour
e. We give a similar 
hara
terization of the shortestpath algorithms based on 
omponent hierar
hies [Tho99, Hag00, PR02b, Pet02℄.Suppose for this dis
ussion that the graph is strongly 
onne
ted. Let 
ir
(u; v) be the set of all 
y
les
ontaining verti
es u and v and let sep(u; v) be de�ned assep(u; v) = minC 2
ir
(u;v) maxe2C length(e)Noti
e that if the graph is undire
ted, sep(u; v) 
orresponds to the longest edge in the minimum spanningtree path 
onne
ting u and v. Regardless of whether the graph is undire
ted or dire
ted, all 
omponenthierar
hy-based algorithms [Tho99, Hag00, PR02b, Pet02℄ generate a permutation �s satisfying Property 1.Property 1 Let s be the sour
e. For verti
es u; v, �s satis�esd(s; v) � d(s; u) + sep(u; v) ) �s(u) < �s(v)When 
hara
terized in this way we 
an lower-bound the 
omplexity of spe
i�
 algorithms in the 
omparison-addition model via 
ounting arguments. Assume that the graph topology and sour
e are �xed. We will saya set of permutations satis�es Property 1 if for any length fun
tion, some permutation in the set satis�esProperty 1. The �rst thing to noti
e is that sep(u; v) does not depend on the sour
e, whereas d(s; u) andd(s; v) obviously do. From the perspe
tive of a multi-sour
e shortest path algorithm, 
omputing sep is aone-time 
harge and 
omputing �s, given sep, relates to the marginal 
ost of 
omputing SSSP from s. Lowerbounding both the �rst SSSP 
ost and the marginal SSSP 
ost are of great interest. Let �sep and �nosepbe the smallest sets of permutations satisfying Property 1, when the sep fun
tion is known and unknown,respe
tively. (Computing a 
omponent hierar
hy gives an impli
it approximation to the sep fun
tion | see2Pettie et al. implemented a simpli�ed version of [PR02b℄; in their experiments with real-weighted graphs it 
onsistentlyoutperformed Dijkstra's algorithm. 2



Se
tion 4.) It is not diÆ
ult to show that 
(m + log j�sepj) and 
(m + log j�nosepj) are lower bounds onthe number of 
omparisons/additions performed by any algorithm 
hara
terized by Property 1, when sep isgiven a priori, and when no information is provided, respe
tively.It 
an be shown that even for undire
ted graphs, j�nosepj = n�(n) in the worst 
ase, and j�nosepj =2
(n log log r) if the ratio of any two edge lengths is bounded by r < 2n { see [PR02b, Pet02℄. If sep is knownthe situation is a little di�erent. The shortest path algorithm from [PR02b℄ demonstrates impli
itly that forundire
ted graphs j�sepj = 2O(m). It is shown in [Pet02℄ that for dire
ted graphs, even in the spe
ial 
asewhen r < n and sep(u; v) = sep(w; z) for all u; v; w; z, j�sepj 
an be as large as n
(n).What 
on
lusions 
an be drawn from these bounds? First, any undire
ted SSSP algorithm satisfyingProperty 1 must make 
(m+minfn log log r; n logng) 
omparisons, making the [PR02b℄ algorithm essentiallyoptimal. For dire
ted graphs, even if the sep fun
tion is known and the 
omponent hierar
hy given expli
itly,any SSSP algorithm satisfying Property 1 makes 
(m+minfn log r; n logng) 
omparisons. Clearly, at leastone more idea is required to improve the O(m+ n logn) upper bound [Dij59, FT87℄ on SSSP.For the all-pairs shortest path problem on dire
ted graphs, the above bounds be
ome weaker. Any APSPalgorithm that �rst 
omputes a 
omponent hierar
hy (read: 
omputes the sep fun
tion), then performs nindependent SSSP 
omputations must make 
(mn+n2 logn) 
omparisons. The key te
hnique to improvingthis bound, whi
h was used to a lesser extent in [Pet02℄, is to make the SSSP 
omputations dependent. Inthe algorithm presented here, we perform a sequen
e of n SSSP 
omputations in su
h a way that later SSSP
omputations 
an learn from the time-
onsuming mistakes of earlier ones.1.2 OrganizationIn Se
tion 2 we de�ne the SSSP and APSP problems and the 
omparison-additionmodel. In Se
tions 3 and 4we review Dijkstra's algorithm and a generi
 form of the 
omponent hierar
hy algorithm, whi
h en
ompasses[Tho99, Hag00, PR02b, Pet02℄. In Se
tion 5 we give a method to simulate the generi
 algorithm in the
omparison-addition model. A little familiarity with 
omponent hierar
hy-based algorithms [Tho99, Hag00,PR02b, Pet02℄ will be invaluable, though it is not assumed. A brief introdu
tion to the CH approa
h isgiven in Appendix B.2 PreliminariesThe input is a weighted, dire
ted graph G = (V;E; `) where jV j = n; jEj = m, and ` : E ! R assigns areal length to every edge. It is well-known [J77℄ that the shortest path problem is redu
ible in O(mn) timeto one of the same size but having only non-negative edge lengths. We therefore assume that ` : E ! R+assigns only non-negative lengths. We let d(u; v) denote the length of the shortest path from u to v, or 1if none exists. The all-pairs shortest path problem is to 
ompute d(�; �) and the single-sour
e shortest pathsproblem is to 
ompute d(s; �) where the �rst argument, the sour
e, is �xed. Generalizing the d notation, letd(u;H) be the shortest distan
e from u to any vertex in the subgraph H . H may also be an obje
t that isasso
iated with a subgraph, not ne
essarily the subgraph itself.2.1 The Comparison-Addition ModelIn the pure 
omparison-addition model the only operations whi
h 
ontribute toward the \running time" are
omparisons between two real numbers and addition of two real numbers. The input 
an be neatly dividedinto stru
tural information, in our 
ase the unweighted graph, and numeri
al information, in our 
ase them edge-weights. An algorithm 
an be modeled as a kind of de
ision tree (whi
h depends on the stru
turalinformation): ea
h node is asso
iated with a sequen
e of additions followed by a 
omparison. Depending onthe out
ome of the 
omparison, the next operation 
omes from either the left or right 
hild. We frequentlyuse subtra
tion in our algorithms; refer to [PR02b℄ for a simulation of subtra
tion.This model is elegant and suÆ
iently powerful to solve the standard shortest path problems (see, e.g.,the textbook algorithms of Dijkstra, Bellman-Ford, Floyd-Warshall, and min-plus matrix multipli
ation.)There are several lower bounds in the 
omparison-additionmodel though they are generally very weak. Spiraand Pan [SP73℄ showed that regardless of additions, 
(n2) 
omparisons are ne
essary to solve SSSP on the
omplete graph. Karger et al. [KKP93℄ proved that all-pairs shortest paths requires 
(mn) 
omparisons if3



all summations 
orrespond to paths in the graph. Kerr [K70℄ showed that any oblivious APSP algorithmperforms 
(n3) 
omparisons/additions, and Kolliopoulos and Stein [KS98℄ proved that any �xed sequen
e3of edge relaxations solving SSSP must have length 
(mn). Graham et al. [G+80℄ did not give a lower boundbut showed that the standard information-theoreti
 argument 
annot yield a non-trivial (!(n2)) lower boundin the APSP problem. Similarly, no information-theoreti
 argument 
an lower bound SSSP; however, Pettieand Rama
handran [PR02b℄ observed that the 
omparison-addition 
omplexity of SSSP is no less than thatof the minimum spanning tree problem. So it seems the manifestly simpler MST problem must be fullyresolved (see [KKT95, Chaz00, PR02a℄) before the 
omplexity of even undire
ted SSSP 
an be resolved.3 Dijkstra's AlgorithmDijkstra's SSSP algorithm visits verti
es in order of in
reasing distan
e from the sour
e s. It maintains aset S of visited verti
es, initially empty, and a tentative distan
e D(v) for all v 2 V satisfying the followinginvariant.Invariant 0 For v 2 S, D(v) = d(s; v) and for v 62 S, D(v) is the shortest distan
e from s to v using onlyintermediate verti
es from S.Dijkstra's method for growing the set S while maintaining Invariant 0 is to visit verti
es greedily. Inea
h step, Dijkstra's algorithm identi�es the vertex v 62 S with minimum tentative distan
e, sets S :=S [ fvg, and updates tentative distan
es. This involves relaxing ea
h outgoing edge (v; w), setting D(w) :=minfD(w); D(v) + `(v; w)g. The algorithm halts when S = V , and therefore D(v) = d(s; v) | the tentativedistan
es equal the shortest distan
es.Throughout the paper D;S; s mean the same thing as in Dijkstra's algorithm, and the terms \visit" and\relax" are essentially the same.4 The Component Hierar
hyDijkstra's algorithm 
an be thought of as simulating a physi
al pro
ess. Suppose the graph-edges representwater pipes and at time zero we begin releasing water from vertex s. Dijkstra's algorithm simulates the 
owof water at unit-speed through the graph. Component hierar
hy-based algorithms 
an also be thought ofas simulating this pro
ess, though in a mu
h 
oarser way. Instead of maintaining the same simulated timethroughout the whole graph, as Dijkstra's algorithm does, CH-based algorithms de
ompose the graph intoa hierar
hy of subgraphs (the 
omponent hierar
hy), where ea
h subgraph maintains its own lo
al simulatedtime. Progress is made by giving a well-sele
ted subgraph, say at simulated time a, permission to advan
e its
lo
k to simulated time b > a. This s
heme will satisfy Invariant 0 provided the subgraphs and intervals [a; b)are 
hosen properly. The 
orre
tness of this s
heme is addressed in [Tho99, Hag00, PR02b℄; see AppendixB for a sket
h of its derivation.4.1 The CH for Real-weighted Dire
ted GraphsThe following 
omponent hierar
hy, whi
h is similar to the one de�ned in [Pet02℄, 
an be 
onstru
ted veryeasily with O(m logn) 
omparisons and additions.First, to ensure that G is strongly 
onne
ted, we add an n-
y
le with in�nite-weight edges. As in [PR02b℄,we �rst produ
e the edge-lengths in sorted order: `1; : : : ; `m. We then �nd a set of normalizing edge lengthsf`1g [ f`j : `j > n � `j�1g. Let rk be the kth smallest normalizing edge. For ea
h edge j between rk andrk+1 � 1 we determine the i s.t. 2i�1`rk � `j < 2i`rk . In other words, we �nd a fa
tor 2 approximation ofevery edge length divided by its asso
iated normalizing edge length. For the purpose of �rst understandingthe 
omponent hierar
hy approa
h, one 
an assume there is only one normalizing edge length: `1.The CH is 
omposed of layered strata, where stratum k, level i nodes 
orrespond to the strongly 
onne
ted
omponents (SCCs) of the graph restri
ted to edges with length less than `rk � 2i. Most quantities relating3The sequen
e must only depend on m and n, not the graph.4


