
An Inverse-A
kermann Style Lower Boundfor MST Veri�
ation Queries�Seth PettieDepartment of Computer S
ien
esThe University of Texas at AustinAustin, TX 78712seth�
s.utexas.eduTR-02-22April 23, 2002Abstra
tWe
onsider the problem of prepro
essing an edge-weighted tree T in order to qui
kly answerqueries of the following type: does a given edge e belong in the minimum spanning tree of T[feg?It is well-known that o�ine minimum spanning tree veri�
ation is solvable in linear time. Wedemonstrate that this online variant of the problem is intrinsi
ally harder. In parti
ular, aprepro
essing
ost of
(n log�t(n)) is ne
essary to answer queries with at most t
omparisons,where �t is the tth-row inverse of A
kermann's fun
tion. For the
ase of linear prepro
essingthis implies a query lower bound of
(�(n))
omparisons. Our lower bound also holds forrandomized prepro
essing algorithms.1 Introdu
tionThe theoreti
ally best minimum spanning tree algorithms [KKT95, Cha00a, PR02
℄ were madepossible by even more foundational algorithms and data stru
tures, namely the minimum spanningtree veri�
ation algorithm of Koml�os [Kom85, DRT92, Kin97, BKRW98℄ and Chazelle's Soft Heap[Cha00b℄. It has been spe
ulated by some (see, e.g., [Cha00a, p. 1029℄) that the key to a fasterMST algorithm is some interesting new data stru
ture. In this paper we show that there are nolinear solutions to the online minimum spanning tree veri�
ation problem, ruling out this type ofdata stru
ture in a faster MST algorithm. In parti
ular, we show that a prepro
essing time of
(n log �t(n)) is ne
essary in order to answer queries with t
omparisons, where n is the size of thetree and �t is the tth-row inverse of A
kermann's fun
tion.Inverse-A
kermann type lower bounds are not too
ommon (see [Tar79b, HS86, CR91℄ for somefundamental ones) and in the domain of purely
omparison-based problems they were, to ourknowledge, previously non-existent. The
losest related result is Klawe's [Kla90℄
(n�(n)) lowerbound on the time to �nd row-maxima in a totally monotone 2n� n matrix, where the non-blank�This work was supported by Texas Advan
ed Resear
h Program Grant 003658-0029-1999, NSF Grant CCR-9988160, and an MCD Graduate Fellowship. 1

elements are
ontiguous in ea
h
olumn. However, in [Kla90℄ the relevant operation is not the
omparison but the matrix query.The MST veri�
ation problem is a
tually part of a well-studied family of problems
on
ernedwith
omputing partial sums. In these problems there is an underlying set of n weighted elements,where the weights are drawn from some (
ommutative) semigroup (S; Æ). The problem is to answera set of queries, where a query asks for the
umulative weight of some subset of the underlyingelements. The
ase where elements are points in Rd has been studied under various types ofqueries | see [Fre81, Yao85, Cha89, Cha90, BCP93, CR96, Cha97℄ for lower bounds and referen
es.Chazelle & Rosenberg [CR89, CR91℄ studied the
ase where the elements are pa
ked into a d-dimensional array and queries take the form of d-re
tangles (see also [Yao82, AS87℄ for d = 1.)In [CR91℄ a (tight) lower bound of
(n + m�(m;n)) semigroup operations is proved for the 1-dimensional o�ine version of the problem, where n is the size of the array and m the number ofqueries. This lower bound obviously extends to the online problem, and it relates to the MSTveri�
ation problem be
ause a 1-dimensional array is just a kind of tree. For general trees, Tarjan[Tar79a, Tar82℄ studied
ertain partial-sums algorithms based on path-
ompression.The lower bounds
ited above assume that semigroup elements are only a

essible via thesemigroup operator Æ. A
onsequen
e of this | whi
h is key to previous lower bounds | is thatany algorithm solving su
h a problem
an be written as a straight-line program. However, for thesemigroups (R;max) and (R;min) it is most natural to assume the de
ision-tree model,1 wherethe algorithm
hooses whi
h
omparisons to make based on the out
omes of previous
omparisons.Naturally, many bounds whi
h hold for arbitrary semigroups do not hold for (R;max). For instan
e,the problem of answering interval-maximum queries in a 1-D array
an be done in
onstant timewith linear prepro
essing [Kom85℄ (
ontrast this with the superlinear lower bound in [CR91℄ forarbitrary semigroups). Solving MST veri�
ation o�ine on arbitrary trees
an be done in linear time[Kom85, DRT92, Kin97, BKRW98℄, and the dual to this problem, MST sensitivity analysis,
an besolved in randomized linear time [GKKS93, DRT92℄ or deterministi
 O(m log�(m;n)) time.2 Allthese problems have
(m�(m;n)) lower bounds when generalized to arbitrary semigroups. Giventhis history it is somewhat startling that the problem we
onsider, online MST veri�
ation, doesnot admit a linear solution in the de
ision-tree model.Nearly all inverse-A
kermann type lower bounds are proved by appealing purely to the stru
tureof
ertain (�xed)
ombinatorial obje
ts. Contrast this with most lower bounds on de
ision-tree
omplexity, whi
h are information-theoreti
 in nature: One de�nes a spa
e � of problem solutionsand argues that at least log j�j
omparisons are required in the worst
ase. The
hallenge in lowerbounding the online MST veri�
ation problem is in
ombining these two very di�erent approa
hes.We suspe
t that our te
hniques
ould be used to lower bound other
omparison-based problems;two
andidates are given in Se
tion 5.1.1 OrganizationSe
tion 2 de�nes our notation and a
lass of \hard" problem instan
es. The lower bound properappears in Se
tion 3. In Se
tion 4 we give almost mat
hing upper bounds for online MST veri-�
ation, and show that the problem be
omes signi�
antly easier when the input edge-weights arepermuted randomly. We dis
uss some open problems in Se
tion 5.1The de
ision-tree model is equivalent to allowing the semigroup operations (max or min) and tests for equality.2The split-�ndmin data stru
ture [Gab85, PR02a℄ was known to be useful in
ertain weighted mat
hing andshortest path algorithms. One appli
ation of split-�ndmin not mentioned in [Gab85, PR02a℄ is that it
an solveMST sensitivity analysis in O(m log �(m;n)) time, an
(�= log �) fa
tor faster than Tarjan's path-
ompression-basedalgorithm [Tar82℄. 2

2 PreliminariesThe problem is to prepro
ess an edge-weighted tree T so that given any query edge e, we
andetermine if e 2MST (T [feg). This is tantamount to de
iding whether e is not the heaviest edgeon the only
y
le in T [feg. For the sake of simpler notation we
onsider input trees whi
h arevertex-weighted rather than edge weighted. (A query then de
ides if e is heavier than all verti
es inthe unique
y
le of T [feg.) To further simplify matters we restri
t the types of inputs and queries,as des
ribed below. Assertions 2.2 and 2.3, given in Se
tion 2.3, provide further restri
tions on theinput.1. The input tree T is a full, rooted binary tree.2. The query edge will
onne
t a leaf to one of its an
estors.3. The answer to the query e will be no, e 62 MST (T [feg). Therefore, the query algorithmneed only verify this fa
t.In a query it is
lear that the query edge must parti
ipate in at least one
omparison; theparameter t � 0 used throughout the paper represents the desired number of additional
omparisonsper query. The terms \query
omplexity" and \prepro
essing
omplexity" refer to the number of
omparisons performed by the query and prepro
essing algorithms, respe
tively.2.1 A Basi
 LemmaWe
hara
terize the limits of the prepro
essing algorithm later. It is important to �rst
hara
terizethe behavior of the optimal query algorithm. Regardless of what the prepro
essing algorithm did,for any query some subset S of the verti
es on the query path are
andidate maxima. The naturalquery algorithm determines the a
tual maximum with jSj � 1
omparisons in the obvious manner,then
ompares this maximum with the weight of the query edge.Lemma 2.1 The natural query algorithm is optimal.Proof: Comparing two
andidates, or a
andidate with the query edge,
an eliminate only one
andidate from
onsideration. Now
onsider a
omparison wa : wb involving two weights, one ofwhi
h, say wa, is not a
andidate. If wa is known to be larger (smaller) than a
andidate maximum,then the
ase wa > wb (wa < wb) eliminates no
andidates. In all other
ases the
omparison
ango either way without eliminating
andidates. 2It is
on
eivable that the natural query algorithm
ould be improved under some measurebesides worst-
ase performan
e.2.2 A
kermann's Fun
tionIn the �eld of algorithms &
omplexity, A
kermann's fun
tion [A
k28℄ is rarely de�ned the sameway twi
e (see e.g., [A
k28, Tar79b, CR91, CLR90, CLRS01℄). We would not presume to bu
k su
ha well-established pre
edent. Here is a slight variant:A(0; j) = 2jA(i+ 1; 0) = A(i; 1)A(i+ 1; j + 1) = A(i; 22A(i+1;j))3

