
An Inverse-Akermann Style Lower Boundfor MST Veri�ation Queries�Seth PettieDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712seth�s.utexas.eduTR-02-22April 23, 2002AbstratWe onsider the problem of preproessing an edge-weighted tree T in order to quikly answerqueries of the following type: does a given edge e belong in the minimum spanning tree of T[feg?It is well-known that o�ine minimum spanning tree veri�ation is solvable in linear time. Wedemonstrate that this online variant of the problem is intrinsially harder. In partiular, apreproessing ost of 
(n log�t(n)) is neessary to answer queries with at most t omparisons,where �t is the tth-row inverse of Akermann's funtion. For the ase of linear preproessingthis implies a query lower bound of 
(�(n)) omparisons. Our lower bound also holds forrandomized preproessing algorithms.1 IntrodutionThe theoretially best minimum spanning tree algorithms [KKT95, Cha00a, PR02℄ were madepossible by even more foundational algorithms and data strutures, namely the minimum spanningtree veri�ation algorithm of Koml�os [Kom85, DRT92, Kin97, BKRW98℄ and Chazelle's Soft Heap[Cha00b℄. It has been speulated by some (see, e.g., [Cha00a, p. 1029℄) that the key to a fasterMST algorithm is some interesting new data struture. In this paper we show that there are nolinear solutions to the online minimum spanning tree veri�ation problem, ruling out this type ofdata struture in a faster MST algorithm. In partiular, we show that a preproessing time of
(n log �t(n)) is neessary in order to answer queries with t omparisons, where n is the size of thetree and �t is the tth-row inverse of Akermann's funtion.Inverse-Akermann type lower bounds are not too ommon (see [Tar79b, HS86, CR91℄ for somefundamental ones) and in the domain of purely omparison-based problems they were, to ourknowledge, previously non-existent. The losest related result is Klawe's [Kla90℄ 
(n�(n)) lowerbound on the time to �nd row-maxima in a totally monotone 2n� n matrix, where the non-blank�This work was supported by Texas Advaned Researh Program Grant 003658-0029-1999, NSF Grant CCR-9988160, and an MCD Graduate Fellowship. 1



elements are ontiguous in eah olumn. However, in [Kla90℄ the relevant operation is not theomparison but the matrix query.The MST veri�ation problem is atually part of a well-studied family of problems onernedwith omputing partial sums. In these problems there is an underlying set of n weighted elements,where the weights are drawn from some (ommutative) semigroup (S; Æ). The problem is to answera set of queries, where a query asks for the umulative weight of some subset of the underlyingelements. The ase where elements are points in Rd has been studied under various types ofqueries | see [Fre81, Yao85, Cha89, Cha90, BCP93, CR96, Cha97℄ for lower bounds and referenes.Chazelle & Rosenberg [CR89, CR91℄ studied the ase where the elements are paked into a d-dimensional array and queries take the form of d-retangles (see also [Yao82, AS87℄ for d = 1.)In [CR91℄ a (tight) lower bound of 
(n + m�(m;n)) semigroup operations is proved for the 1-dimensional o�ine version of the problem, where n is the size of the array and m the number ofqueries. This lower bound obviously extends to the online problem, and it relates to the MSTveri�ation problem beause a 1-dimensional array is just a kind of tree. For general trees, Tarjan[Tar79a, Tar82℄ studied ertain partial-sums algorithms based on path-ompression.The lower bounds ited above assume that semigroup elements are only aessible via thesemigroup operator Æ. A onsequene of this | whih is key to previous lower bounds | is thatany algorithm solving suh a problem an be written as a straight-line program. However, for thesemigroups (R;max) and (R;min) it is most natural to assume the deision-tree model,1 wherethe algorithm hooses whih omparisons to make based on the outomes of previous omparisons.Naturally, many bounds whih hold for arbitrary semigroups do not hold for (R;max). For instane,the problem of answering interval-maximum queries in a 1-D array an be done in onstant timewith linear preproessing [Kom85℄ (ontrast this with the superlinear lower bound in [CR91℄ forarbitrary semigroups). Solving MST veri�ation o�ine on arbitrary trees an be done in linear time[Kom85, DRT92, Kin97, BKRW98℄, and the dual to this problem, MST sensitivity analysis, an besolved in randomized linear time [GKKS93, DRT92℄ or deterministi O(m log�(m;n)) time.2 Allthese problems have 
(m�(m;n)) lower bounds when generalized to arbitrary semigroups. Giventhis history it is somewhat startling that the problem we onsider, online MST veri�ation, doesnot admit a linear solution in the deision-tree model.Nearly all inverse-Akermann type lower bounds are proved by appealing purely to the strutureof ertain (�xed) ombinatorial objets. Contrast this with most lower bounds on deision-treeomplexity, whih are information-theoreti in nature: One de�nes a spae � of problem solutionsand argues that at least log j�j omparisons are required in the worst ase. The hallenge in lowerbounding the online MST veri�ation problem is in ombining these two very di�erent approahes.We suspet that our tehniques ould be used to lower bound other omparison-based problems;two andidates are given in Setion 5.1.1 OrganizationSetion 2 de�nes our notation and a lass of \hard" problem instanes. The lower bound properappears in Setion 3. In Setion 4 we give almost mathing upper bounds for online MST veri-�ation, and show that the problem beomes signi�antly easier when the input edge-weights arepermuted randomly. We disuss some open problems in Setion 5.1The deision-tree model is equivalent to allowing the semigroup operations (max or min) and tests for equality.2The split-�ndmin data struture [Gab85, PR02a℄ was known to be useful in ertain weighted mathing andshortest path algorithms. One appliation of split-�ndmin not mentioned in [Gab85, PR02a℄ is that it an solveMST sensitivity analysis in O(m log �(m;n)) time, an 
(�= log �) fator faster than Tarjan's path-ompression-basedalgorithm [Tar82℄. 2



2 PreliminariesThe problem is to preproess an edge-weighted tree T so that given any query edge e, we andetermine if e 2MST (T [feg). This is tantamount to deiding whether e is not the heaviest edgeon the only yle in T [ feg. For the sake of simpler notation we onsider input trees whih arevertex-weighted rather than edge weighted. (A query then deides if e is heavier than all verties inthe unique yle of T [feg.) To further simplify matters we restrit the types of inputs and queries,as desribed below. Assertions 2.2 and 2.3, given in Setion 2.3, provide further restritions on theinput.1. The input tree T is a full, rooted binary tree.2. The query edge will onnet a leaf to one of its anestors.3. The answer to the query e will be no, e 62 MST (T [ feg). Therefore, the query algorithmneed only verify this fat.In a query it is lear that the query edge must partiipate in at least one omparison; theparameter t � 0 used throughout the paper represents the desired number of additional omparisonsper query. The terms \query omplexity" and \preproessing omplexity" refer to the number ofomparisons performed by the query and preproessing algorithms, respetively.2.1 A Basi LemmaWe haraterize the limits of the preproessing algorithm later. It is important to �rst haraterizethe behavior of the optimal query algorithm. Regardless of what the preproessing algorithm did,for any query some subset S of the verties on the query path are andidate maxima. The naturalquery algorithm determines the atual maximum with jSj � 1 omparisons in the obvious manner,then ompares this maximum with the weight of the query edge.Lemma 2.1 The natural query algorithm is optimal.Proof: Comparing two andidates, or a andidate with the query edge, an eliminate only oneandidate from onsideration. Now onsider a omparison wa : wb involving two weights, one ofwhih, say wa, is not a andidate. If wa is known to be larger (smaller) than a andidate maximum,then the ase wa > wb (wa < wb) eliminates no andidates. In all other ases the omparison ango either way without eliminating andidates. 2It is oneivable that the natural query algorithm ould be improved under some measurebesides worst-ase performane.2.2 Akermann's FuntionIn the �eld of algorithms & omplexity, Akermann's funtion [Ak28℄ is rarely de�ned the sameway twie (see e.g., [Ak28, Tar79b, CR91, CLR90, CLRS01℄). We would not presume to buk suha well-established preedent. Here is a slight variant:A(0; j) = 2jA(i+ 1; 0) = A(i; 1)A(i+ 1; j + 1) = A(i; 22A(i+1;j) )3


