
Parallel Cholesky Factorization of
a Block Tridiagonal Matrix

Thuan D. Cao
John F. Hall

Department of Civil Engineering
California Institute of Technology

Pasadena, CA 91125
tdcao@its.caltech.edu

Robert A. van de Geijn

Department of Computer Sciences
The University of Texas

Austin, TX 78712
rvdg@cs.utexas.edu

April 17, 2002

Abstract

In this paper we discuss the parallel implementation of the Cholesky factorization of a positive def-
inite symmetric matrix when that matrix is block tridiagonal. While parallel implementations for this
problem, and closely related problems like the factorization of banded matrices, have been previously
reported in the literature, those implementations dealt with the special cases where the block size (band-
width) was either very large (wide) or very small (narrow). We present a solution that can be used for
the entire spectrum of cases, ranging from extremely large (wide) to very small (narrow). Preliminary
performance results collected on a Cray T3E-600 distributed memory supercomputer show that our im-
plementation attains respectable performance. Indeed, factorization of a matrix with block sizeb = 1000
and a total dimension of more than500; 000 takes about 3.6 minutes on 128 processors.

1 Introduction

Dense banded and block tridiagonal matrices are frequently encountered in engineering applications. For
example, when modeling structures in civil engineering, the stiffness matrices of two- or three-dimensional
structures that are long in one dimension relative to the other dimension(s) have this special structure. Of-
ten, these matrices have the additional properties that they are symmetric positive definite (SPD) and ill-
conditioned. For large structures, the combination of the size of the block and the total size of the matrix,
the number of degrees of freedom (DOF), is such that the memory and/or computational requirements ex-
ceed those of a sequential computer. As a result, substructuring methods combined with a solution of the
resulting linear system based on a parallel implementation of a block tridiagonal matrix are a viable option
for solving these types of problems [4, 13, 16].

Bridge structures, when the span of the bridge is much greater than the height and width, are examples
of a problem that fits the above description When this structure is discretized, the DOF will be distributed
most densely near the end of each span in the bridge, where the piers, piles, and foundation are. The

2 http://www.cs.utexas.edu/users/plapack/pubs.html

resulting matrix problem is quite complex: The nonzero blocks that make up the block tridiagonal matrix
in the matrix come from relatively dense coupling within a “slice” of the bridge and between neighboring
slices, where these slices consist of degrees of freedom in cross-sections that are orthogonal to the direction
of the span. Depending on the density of the discretization points and whether the slice includes part of a
pier, pile, and/or foundation, a slice may have a varying number of discretization points, which translates to
varying sized blocks on and off the diagonal. The requirement for a solver for this problem go beyond those
available in existing sequential and parallel block tridiagonal and banded solvers.

While the parallel implementation of the solution of block tridiagonal matrices, as well that of banded
matrices, has been extensively studied [1, 14, 12, 8, 6, 7, 2, 15, 18] we make a number of contributions in
this paper: (1) We give a thorough yet simple explanation of the basic techniques for extracting parallelism;
(2) We clearly describe the traditional approaches for the extreme cases where the sizes of the blocks are
relatively large and relatively small; (3) We present a new hybrid approach for the case where the sizes of the
blocks are in an intermediate range; (4) We demonstrate that implementation of these algorithms is relatively
straight forward with the Parallel Linear Algebra Package (PLAPACK) [17] infrastructure for implementing
dense linear algebra operations; and (5) Performance data collected on a Cray T3E supercomputer demon-
strates that respectable performance can be attained on distributed memory architectures. In this paper we
only discuss the factorization of the matrix when the matrix has uniform sized blocks. The techniques can
be easily extended to the forward and backward substitution processes, which then combined with the fac-
torization yield the solution of the linear system. It can also be extended to the case where the blocks are
highly non-uniform, although in that case the problem of load-balancing will need to be addressed.

This paper is organized as follows: In Section 2 we discuss basic techniques for factoring a block
tridiagonal SPD matrix. In Section 3 we discuss how these basic techniques yield parallel implementations
for distributed memory architectures. The resulting methods apply to the extreme cases where the block
size is large or small. In Section 3.3 we show that by combining the techniques for large and small block
sizes, we obtain a hybrid approach that encompasses the spectrum of block sizes from very large to very
small. Next, in Section 4 we briefly outline the implementation of the hybrid approach using PLAPACK.
Performance results are given in Section 5, followed by concluding remarks in the final section.

2 Basic Techniques

2.1 Factorization of A
Consider the block tridiagonal SPD matrix,A,

A = 0BBBBBBB� D1 ?E1 D2 ?E2
. . . DN�1 ?EN�1 DN

1CCCCCCCA ;

PLAPACK Working Note #13 3

where the?s indicate the nonzero symmetric parts of the tridiagonal matrix, and its Cholesky factor,L,L = 0BBBBBBBB� D̂1Ê1 D̂2Ê2 . . .
. . . D̂N�1ÊN�1 D̂N

1CCCCCCCCA :
HereD̂i, i = 1; : : : ; N , are all lower triangular andD1 = D̂1D̂T1Êi = EiD̂�Ti ; i = 1; : : : ; N � 1Di � ÊiÊTi = D̂iD̂Ti ; i = 2; : : : ; N:
Thus an algorithm for overwriting the block tridiagonal matrix with its Cholesky factor is given by

Algorithm 1 Block tridiagonal Cholesky factorization

do i = 1; : : : ; N � 1Di D̂i = Chol(Di) b33Ei Êi = EiD̂�Ti b3Di+1 Di+1 � ÊiÊTi b3
enddoDN D̂N = Chol(DN) b33

Here the cost, in floating point operations (flops), of each step is given to the right of each operation where
it is assumed that all nonzero blocks in the matrix areb� b. The total cost of this algorithm in flops is thus
given by 13Nb3 + 2(N � 1)b3 � 73nb2
wheren = Nb equals the overall dimension of the matrix.

2.2 Factorization of PAP T
What should be immediately obvious to the reader is that there appears to be an inherent order in the
computations given in Section 2.1. We now show how this dependency can be broken to expose parallelism.

2.2.1 Factorization of PAPT
Consider the partitioned block tridiagonal matrix in Fig. 1. Let us permute this matrix as in Fig. 2. Then the
Cholesky factor of this permuted matrix,L wherePAPT = LLT , is given in Fig. 3. The operations to be
performed are

4 http://www.cs.utexas.edu/users/plapack/pubs.html

A =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

D11 ?E11 . . .
. . .

. . .DN11 ?F1 A2?B2D12 ?E12 . . .
. . .

. . .DN22 ?F2 A3 . . .
. . .

. . . ?Fp�1 Ap?BpD1p ?E1p . . .
. . .

. . .DNpp

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
:

Figure 1: Partitioned matrixA.

PAP T =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

D11 ?E11 . . .
. . .

. . .DN11 ?D12 ?E12 . . .
. . .

. . .DN22 ? ?
. . .

?
. . . ?D1p ?E1p . . .

. . .
. . .DNpp ?F1 BT2 A2F2 BT3 A3

. . .
. . .Fp�1 BTp Ap

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
Figure 2: Permuted matrixA.

PLAPACK Working Note #13 5� Factor the interior problems (the block tridiagonal matrices in the upper-left quadrant demarked by
the triple lines) at a cost of

Ppi=1 �13Ni + 2(Ni � 1)� b3 flops.� ComputeF̂i, i = 1; : : : ; p� 1 at a cost of(p� 1)b3 flops.� ComputeB̂i, i = 2; : : : ; p at a cost of
Ppi=2(Ni + 2(Ni � 1))b3 flops.� Compute the “interface matrix”0BBBBBBBBB�

A2 � F̂1F̂ T1�B̂T2 B̂2 ?F̂2B̂N22 A3 � F̂2F̂ T2�B̂T3 B̂3 . . .

. . .
. . . ?F̂pB̂NppAp � F̂p�1F̂ Tp�1�B̂Tp B̂p

1CCCCCCCCCA (1)

at a cost of(Ppi=2(Ni + 1) + 2(p� 2)) b3 flops.� Factor the interface matrix at a cost of13(p� 1)b3 + 2(p� 2)b3 flops.

the total cost is approximately(73+4)nb2flops, since
Ppi=1Ni+(p�1) = N , the total number of blocks on

the diagonal, andbN = n, the total matrix dimension. Thus, due to fill-in, the cost of factoring the permuted
matrix is almost three times the cost of factoring the block tridiagonal matrix. However, as we will see later,
there is now the potential to effectively usep processors for the factorization.

3 Parallel Algorithms

3.1 Factorization of A
When each of the blocks is relatively large, parallelism can be obtained by distributing the matrix using
a relatively small distribution block size and using parallel implementations for each of the operations in
Alg. 1.

3.2 Factorization of PAP T
Let us assume that all nonzero blocks on or below the diagonal between the double lines in Fig. 1 are
assigned to the same processor. Then theith processor will hold0BBBBBBBB� D1i ?E1i

. .. DNii ? ?BTi AiFi
1CCCCCCCCA

6 http://www.cs.utexas.edu/users/plapack/pubs.html

L = Chol(PAPT) =
0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

D̂11Ê11 . . .
. . .D̂N11 D̂12Ê12 . . .

. . .D̂N22
. . . D̂1pÊ1p . . .

. . .D̂NppF̂1 B̂T12� � �B̂TN22 Â2F̂2 B̂T13� � �B̂TN33 Ĥ2 Â3
. . .

. . .
. . .F̂p�1 B̂T1p� � �B̂TNpp Ĥp�1 Âp

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA
Here0BB� D̂1iÊ1i . . .

. . . D̂Nii 1CCA = Chol

0BB� D1i ?E1i . . .
. . .

. . . DNii 1CCA ; F̂i = FiD̂�TNii;0BB� D̂1iÊ1i . . .
. . . D̂Nii 1CCA0BBB� B̂1iB̂2i

...B̂Nii 1CCCA =0BB� Bi0
...0 1CCA ;

and0BBB� Â2Ĥ2 Â3
. . .

. . .Ĥp�1 Âp 1CCCA = Chol

0BBBB� A2 � F̂1F̂ T1 � B̂T2 B̂2 ?F̂2B̂N22 A3 � F̂2F̂ T2 � B̂T3 B̂3 . . .

. . .
. . . ?F̂pB̂NppAp � F̂p�1F̂ Tp�1 � B̂Tp B̂p 1CCCCA

whereB̂Ti = � B̂T1i B̂T2i � � � B̂TNii �.

Figure 3: Cholesky factor of permuted matrix.

PLAPACK Working Note #13 7

Notice that all of the following results can be computed in parallel on all processorsi = 1; : : : ; p without
requiring any communication:0BBBBBBBBB�

D̂1iÊ1i . . .
. . . D̂Nii ? ?B̂T1i � � � B̂TNii Ai � B̂Ti B̂iF̂i F̂iB̂Nii �F̂iF̂ Ti

1CCCCCCCCCA
To complete the factorization, communication between processors must occur in order to form the entire
interface matrix given in (1). after which this smaller block tridiagonal matrix must itself be factored.

We discuss four different approaches to handling the interface matrix.

3.2.1 Approach 1: Redundant sequential

If the size of the blocks and the number of processors are sufficiently small, the amount of computation
and data associated with the interface may be sufficiently small that the interface can be duplicated to all
processors and redundantly factored. For this we suggest the following approach:� On each processor create a block tridiagonal matrix to hold the interface, which is initialized to zero.� On each processor fill in the contributions to the interface matrix. For example, processor2 contributes0BBBBBB� A2 � B̂T2 B̂2 ?F̂2B̂N22 �F̂2F̂ T2 00 0 � � �

. 00 0
1CCCCCCA� Sum the contributions from all processors together to assemble the interface matrix, leaving the result

duplicated on all processors.� Redundantly factor the interface matrix on each processor.

3.2.2 Approach 2: Distributed sequential

Notice that in order to computêAi andĤi on processori, that processor must receiveF̂i�1F̂ Ti�1+Ĥi�1ĤTi�1
from processori� 1 to be subtracted fromAi �BTi Bi. Thus, the factorization of the interface can happen
distributed among the processors, passingF̂i�1F̂ Ti�1 + Ĥi�1ĤTi�1 from processori� 1 to processori once
this update has been computed. Notice that the computational cost of factoring the interface is as if it were
performed on one processor, due to the inherent dependencies. One benefit of this approach is that the
interface matrix needs not be duplicated, which reduces memory requirements.

8 http://www.cs.utexas.edu/users/plapack/pubs.html

3.2.3 Approach 3: Distributed parallel

A third way is to assemble the interface matrix into a distributed matrix after which the approach presented
in Section 3.1 can be applied. By using a sufficiently small distribution block size, some parallelism can be
attained during the factorization of the interface. The approach also has the benefit that a full copy of the
interface needs not be duplicated on any or all nodes.

Unfortunately, the communication used to assemble the matrix as well as the cost of the parallel factor-
ization of the interface matrix is difficult to model. We will present empirical data in Section 5.

3.2.4 Approach 4: Cyclic reduction

A standard approach for solving the interface problem is to use cyclic reduction. We will not consider this
since it is messy to implement and our alternative, simpler, approaches yield high performance.

3.3 Hybrid

When the blocks are of intermediate size, only a few blocks will fit in the local memory of an individual
processor. As a result, most of the computation is in the interface which is the part that does not parallelize
well. The solution is to use any of the approaches in Sections 3.2 except that a group is assigned to the task
previously performed by a single processor. Within each group the local computation is then parallelized by
cooperating as described in Section 3.1

3.3.1 Approach 1: Redundant by groups

If the size of the blocks and the number of groups are still sufficiently small, the amount of computation
and data associated with the interface may be sufficiently small that the interface can be duplicated to each
group of processors and redundantly factored by each group. For this we suggest to modify the approach in
Section 3.2.1 as follows:� Within each group create a distributed block tridiagonal matrix to hold the interface, which is initial-

ized to zero.� Within each group fill in the contributions to the interface matrix.� By making the contributions to the interface distributed identically, the part of the distributed matrix
can be added by reducing it among corresponding processors from each group.� Redundantly factor the interface matrix within each group.

3.3.2 Approach 2: Distributed sequential (between groups)

A similar modification can be made to Approach 2 in Section 3.2.2.

3.3.3 Approach 3: Distributed parallel

If the interface matrix is very large, Approach 3 in Section 3.2.3 can be modified by assembling the interface
matrix distributed among all processors.

PLAPACK Working Note #13 9

3.3.4 Approach 4: Cyclic reduction

An approach that uses cyclic reduction to solve the interface problem using groups can be similarly derived
from the approach in Section 3.2.4.

4 Implementation

An astute reader will have already noticed that implementations of the hybrid approaches in Section 3.3 triv-
ially encompass all the implementations discussed in Sections 3.1 and 3.2. After all, by letting all processors
be part of the same group, any of the approaches in Section 3.3 becomes the one given in Section 3.1 while
assigning only one processor to each group yields the methods in Section 3.2. Thus we implemented the
hybrid algorithms.

Notice that the factorization of a block tridiagonal matrix requires three operations:A L = Chol(A),B BL�T , andA A � LL�T . The first is a Cholesky factorization, the second is a triangular
solve with multiple right-hand-sides, while the last is a symmetric rank-k update. These last two operations
are part of the level-3 Basic Linear Algebra Subprograms (BLAS) interface [10]. The factorization of
the permuted matrix requires, in addition, a matrix-matrix multiplication, which is also part of the level-3
BLAS. Thus, given parallel implementations for these operations it is straight-forward to implement the
block tridiagonal factorization in Section 3.1. Given the observations in Section 3.3, except for assembling
the block tridiagonal interface matrix to a group or all processors and we have all components for a hybrid
block tridiagonal factorization.

Our implementations are based on PLAPACK, which is an infrastructure for coding parallel linear alge-
bra libraries. In addition to providing a facility for distributing matrices to processors, it also provides a set
of dense linear algebra operations, including a dense Cholesky factorization and the Basic Linear Algebra
Subprograms. The implementations of these individual operations are scalable and high-performing.

We thus concentrate on brief descriptions of how the interface matrices are assembled.

4.1 Approach 1: Redundant by groups

In this first approach, we limit ourselves to using groups with equal numbers of processors. Observe that
if we assign the complete interface matrix redundantly to each group and corresponding processors from
each group hold corresponding parts of the interface matrix, then each group can fill its copy of the interface
matrix with its contribution to the interface, after which a call to MPIAllreduce among corresponding
processors can be used to leave a copy of the assembled interface distributed among each group.

4.2 Approach 2: Distributed sequential (between groups)

We have not yet implemented this approach.

4.3 Approach 3: Distributed parallel

For this approach, the interface is distributed among all processors, as a tridiagonal blocked matrix would
as described in Section 3.1. PLAPACK provides an application interface (PLA/AI) that allows individual

10 http://www.cs.utexas.edu/users/plapack/pubs.html

processors to contribute to a globally distributed matrix. This interface takes a contribution, which is typi-
cally a submatrix of the global matrix, and performs all communication required to add this contribution to
the global matrix. More precisely, the interface uses MPI and a polling mechanism to simulate one-sided
communication. For details, see [17].

4.4 Approach 4: Cyclic reduction

We have not yet implemented this approach.

5 Preliminary Performance Results

In this section, we report performance attained on a Cray T3E-600 supercomputer. All results are for
the case where 64-bit arithmetic is performed as part of the computation. In most graphs, we report
MFLOPS/sec/proc. (millions of floating point operations per second per processor).

In Fig. 4 we demonstrate the benefits of the hybrid method relative to the traditional wide block (p = g)
and small block (g = 1) methods. In the graph we show the time required to factor a matrix with block
sizeb = 500, increasing the total matrix size so that the ratio of blocks to processors is kept approximately
constant. More precisely, for the hybrid algorithm, the number of interior blocks per group of four is equal
to sixteen. For this size of block, the small block method is simply not practical, since the interface matrix
quickly becomes very large. Thus we only report data for the hybrid and large block methods. Observe
that while the large block method exhibits limited parallelism, leading to the total time for the factorization
increasing as the problem size and number of processors increases, this is not the case for the hybrid method.

In Fig. 5 we report the performance of the PLAPACK routines that are called as part of our hybrid
factorization method. While we report performance for only four processors, in other papers we have
demonstrated that these PLAPACK implementations are scalable in the sense that if memory utilization
per processor is scaled, then performance per processor is roughly maintained [5, 11, 3, 9]. In our setting,
this means that if the block sizeb grows with

pg, whereg is the number of nodes in a group, then the
attained MFLOPS/sec/proc. for each of these operation is roughly maintained.

In Fig. 6 we report performance as a function of the block sizeb wheng andp are fixed. In that figure,
we show the difference in performance between Approaches 1 and 3 in Section 4, labeled by “PLA/Reduce”
and “PLA/AI”, respective. Notice that in that plot we use the operation count73nb2 to compute the rate
of computation since this represents theuseful flops being performed. The performance reported is that
attained once the number of interior blocks is reasonably large. Notice that the “PLA/Reduce” curve drops
off at b = 700. This is due to the fact that the interface matrix must be stored within each group and therefore
the number of interior points becomes limited due to memory constraints. Indeed, the problem doesn’t fit
after the block size increases beyondb = 700. When Approach 3 is used, distributing the interface matrix
to all processors, much large block sizes can be accomodated.

In Fig. 7 we show where time is spent during the factorization for Approach 3. In that figure, we show
the time for the local computation, the assembly of the interface using the PLAPACK application interface,
and the factorization of the interface, as well as the total time. As can be expected, as the number of

