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Abstract

We present the design and specification of a scalable and reliable protocol for group rekeying together
with performance evaluation results. The protocol is based upon the use of key trees for secure groups and
periodic batch rekeying. At the beginning of each rekey interval, the key server sends a rekey message to all
users consisting of encrypted new keys (encryptions, in short) carried in a sequence of packets. We present
a scheme for identifying keys, encryptions, and users, and a key assignment algorithm that ensures that the
encryptions needed by a user are in the same packet. Our protocol provides reliable delivery of new keys to
all users eventually. It also attempts to deliver new keys to all users with a high probability by the end of the
rekey interval. For each rekey message, the protocol runs in two steps: a multicast step followed by a unicast
step. Proactive FEC multicast is used to reduce delivery latency. Our experiments show that a small FEC
block size can be used to reduce encoding time at the server without increasing server bandwidth overhead.
Early transition to unicast, after at most two multicast rounds, further reduces the worst-case delivery latency
as well as user bandwidth requirement. The key server adaptively adjusts the proactivity factor based upon
past feedback information; our experiments show that the number of NACKs after a multicast round can
be effectively controlled around a target number. Throughout the protocol design, we strive to minimize
processing and bandwidth requirements for both the key server and users.
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1 Introduction

Many emerging Internet applications, such as pay-per-view distribution of digital media, restricted teleconfer-
ences, multi-party games, and virtual private networks will benefit from using a secure group communications
model [10]. In this model, members of a group share a symmetric key, cathegh key which is known only to

group users and the key server. The group key can be used for encrypting data traffic between group members
or restricting access to resources intended for group members only. The group key is distributed by a group key
management system, which changes the group key from time to time (called group rekeying). Itis desirable that
the group key changes after a new user has joined (so that the new user will not be able to decrypt past group
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communications) or an existing user has departed (so that the departed user will not be able to access future
group communications).

A group key management system has three functional components: registration, key management, and
rekey transport [25]. All three components can be implemented in a key server. However, to improve regis-
tration scalability, it is preferable to use one or more trusted registrars to offload user registration from the key
server [25].

When a user wants to join a group, the user and registration component mutually authenticate each other
using a protocol such as SSL [6]. If authenticated and accepted into the group, the new user receives its ID
and a symmetric key, called the usaniglividual key which it shares only with the key server. Authenticated
users send join and leave requests to the key management component, which validates the requests by checking
whether they are encrypted by individual keys. The key management component also generates rekey messages,
which are sent to the rekey transport component for delivery to all users in the group. To build a scalable group
key management system, it is important to improve the efficiency of the key management and rekey transport
components.

We first consider the key management component, which has been the primary focus of prior work [23, 24,

8, 4, 1, 26]. In this paper, we follow tHeey treeapproach [23, 24], which uses a hierarchy of keys to facilitate

group rekeying, reducing the processing time complexity of each leave requesOffdinto O(log, (N)),

whereN is group size and the key tree degree. Rekeying after every join or leave request, however, can still
incur a large server processing overhead. Thus we proposed to further reduce processing overhead by using
periodic rekeying [21, 14, 26], such that the key server processes the join and leave requests during a rekey
interval as a batch, and sends out just one rekey message per rekey interval to users. Batch rekeying reduces the
number of computationally expensive signing operations. It also reduces substantially bandwidth requirements
of the key server and users.

We next consider the rekey transport component. Reliable delivery of rekey messages has not had much
attention in prior work. In our prototype system, Keystone [25], we designed and implemented a basic protocol
that uses proactive forward error correction (FEC) to improve the reliability of multicast rekey transport. We also
investigated the performance issues of rekey transport [26] and observed that although many reliable multicast
protocols have been proposed and studied in recent years [9, 18, 5, 22, 13, 16, 11, 17], rekey transport differs
from conventional reliable multicast problems in a number of ways. In particular, rekey transport has the
following requirements:

¢ Reliability requirement. It is required that every user will receive all of its (encrypted) new keys, no
matter how large the group size. This requirement arises because the key server uses some keys for one
rekey interval to encrypt new keys for the next rekey interval. Each user however does not have to receive
the entire rekey message because it needs only a very small subset of all the new keys.

e Soft real-time requirement. It is required that the delivery of new keys to all users be finished with a high
probability before the start of the next rekey interval. This requirement arises because a user needs to
buffer encrypted data and keys before the arrival of encrypting keys, and we would like to limit the buffer
size.

e Scalability requirement. The processing and bandwidth requirements of the key server and each user
should increase as a function of group size at a low rate such that a single server is able to support a large
1
group.

The objective of this paper is to present in detail our rekey transport protocol as well as its performance. In
particular, we have the following contributions. First, a new marking algorithm for batch rekeying is presented.

To further increase system reliability as well as group size, we might consider the use of multiple servers, which is a topic beyond
the scope of this paper.



Second, a key identification scheme, key assignment algorithm, and block ID estimation algorithm are presented
and evaluated. Third, we show that a fairly small FEC block size can be used to reduce encoding time at the
server without increasing server bandwidth overhead. Lastly, an adaptive algorithm to adjust the proactivity
factor is proposed and evaluated. The algorithm is found to be effective in controlling the number of NACKs
and reducing delivery latency. (Another adaptive algorithm with further refinements is presented in a recent
technical report [28].)

Our server protocol for each rekey message consists of four phases: (i) generating a sequence of packets
containing encrypted keys (callétlV C' packets), (ii) generating packets containing FEC redundant information
(called PARITY packets), (iii) multicast oE NC and PARITY packets, and (iv) transition from multicast
to unicast.

To achieve reliability, our protocol runs in two steps: a multicast step followed by a unicast step. During the
multicast step, which typically lasts for just one or two rounds, almost all of the users will receive their new keys
because each user only needs one specific packet (guaranteed by our key assignment algorithm) and proactive
FEC is also used. Subsequently, for each user who cannot recover its new keys in the multicast step, the keys
are sent to the user via unicast. Since each user only needs a small number of new keys, and there are few users
remaining in the unicast step, our protocol achieves reliability with a small bandwidth overhead.

To meet the soft real-time requirement, proactive FEC in the multicast step is used to reduce delivery
latency [12, 20]. When needed, early transition from multicast to unicast reduces worst-case delivery latency
because the server does not need to wait for the maximum round-trip #€)(for all users before sending
in the unicast step. By adaptively adjusting the time to switch to unicast, our protocol allows explicit tradeoff
between key server bandwidth overhead and worst-cast delivery latency.

Towards a scalable design, we observe that the key factors are processing and bandwidth requirements at
the key server and each user. To improve scalability, we use the following ideas: 1) To reduce the key server
processing requirement, we partition a rekey message into blocks to reduce the size of each block and therefore
reduce the key server’'s FEC encoding time; 2) To reduce each user’s processing requirement, our key assignment
algorithm assigns encrypted new keys such that each user needs only one packet. Thus, the vast majority of
users do not need to recover their specific packets through FEC decoding; 3) To reduce key server bandwidth
requirement, our protocol uses multicast to send new keys to users initially; 4) To reduce a user’s bandwidth
requirement, we use unicast for each user who cannot recover its new keys during the multicast step. This way,
a small number of users in high-loss environments will not cause our protocol to perform multicast to all users.

The balance of this paper is organized as follows. In Section 2, we briefly review the ideas of key tree and
periodic batch rekeying. In Section 3 we present our server and user protocols. In Section 4 we show how to
construct a rekey message. The key identification scheme and key assignment algorithm are presented. Block
partitioning and block ID estimation are presented and evaluated in Section 5. In section 6 we discuss how to
adaptively adjust the proactivity factor to achieve low delivery latency with a small bandwidth overhead. In
Section 7 we discuss when and how to unicast. Our conclusions are in Section 8.

2 Background

We review in this section the ideas of key tree [23, 24] and periodic batch rekeying [21, 14, 26] and present a
new marking algorithm. The algorithm is used to update the key tree and generate workload for rekey transport.

2.1 Keytree

Akey tree is a rooted tree with the group key as root. A key tree contains two types of negedescontaining
users’ individual keys, ank-nodescontaining the group key and auxiliary keys. A user is given the individual
key contained in its u-node as well as the keys contained in the k-nodes on the path from its u-node to the root.



Consider a group with nine users. An example key tree is shown in Figure 1. In this groupy isgiven the
three keys on its path to the rodty, kg9, andk;_g. Key kq is theindividual keyof ug, key k1_g is thegroup
keythat is shared by all users, akekg is an auxiliary key shared hy;, ug, andug.

k-node
k-nodes

;
" K9 | u-nodes
L

u9
leave

Figure 1: An example key tree

Supposeug leaves the group. The key server will then need to change the keysthabws: change:_q
to k1_g, and changéirgg to k7g. To distribute the new keys to the remaining users using the group-oriented
rekeying strategy [24], the key server constructs the followakgy messaday traversing the key tree bottom-
up: (k78 b irs {78 ss {K1-8 thross {K1-8 Hhuser {K1-8 }irs )- Here{k'}, denotes key:” encrypted by key, and
is referred to as aencryption Upon receiving a rekey message, a user extracts the encryptions that it needs.
For exampleur only needs{k;_g}«., and{krs}x.. In other words, a user does not need to receive all of the
encryptions in a rekey message.

2.2 Periodic batch rekeying

Rekeying after every join or leave request, however, can be expensive. In periodic batch rekeying, the key
server first collects’ join and L leave requests during a rekey interval. At the end of the rekey interval, the key
server runs a marking algorithm to update the key tree and construct a rekey subtree. The marking algorithm,
presented in Appendix B. is different from the one presented in our previous papers [26, 14].

In the marking algorithm, the key server first modifies the key tree to satisfy the leave and join requests.
The u-nodes for departed users are removed or replaced by u-nodes for newly joined usessL Jthe key
server will split nodes after the rightmost k-node at the highest level (with the root at level 0, the lowest) to
accommodate the extra joins. After modifying the key tree, the key server changes the key in a k-node if the
k-node is on the path from a changed u-node (either removed or newly joined node) to the root.

Next, the key server constructs a rekey subtregekiey subtreeonsists of all of the k-nodes whose keys
have been updated in the key tree, the direct children of the updated k-nodes, and the edges connecting updated
k-nodes with their direct children. Given a rekey subtree, the key server can then generate encryptions. In
particular, for each edge in the rekey subtree, the key server uses the key in the child node to encrypt the key in
the parent node.

3 Protocol Overview

In this section, we give an overview of the rekey transport protocol. An informal specification of the key server
protocol is shown in Figure 2. Notation used in this paper is defined in Table 1.

First the key server constructs a rekey message as follows. At the beginning of a rekey interval, after the
marking algorithm has generated encryptions, the key server runs the key assignment algorithm to assign the
encryptions intad? N C packets’: Our key assignment algorithm guarantees that each user needs oy\afie
packet.

2An ENC packet is a protocol message generated in the application layer. But we will refer to jpaketto conform to
terminology in the literature.



symbol description

d degree of a key tree

J number of join requests in a rekey interval

L number of leave requests in a rekey interval

m node ID in an expanded key tree

N number of existing users

ng largest k-node 1D

a number of PARITY packets requested by a user in its NACK
amaz|i] largest number oPARITY packets requested by users for black

numNACK | target number of NACKSs for the first multicast round

h number of proactive® ARITY packets for each block
k block size; also denotes a key when it appearskin
proactivity factor, defined ag + k)/k

o percentage of high loss rate receivers
P loss rate

Dh high loss rate

D low loss rate

Ds loss rate at the source link

Table 1: Notation

Next, the key server uses a Reed-Solomon Erasure (RSE) coder to generate FEC redundant information,
called PARITY packets. In particular, the key server partitiofi$V C' packets into multiple blocks. Each
block containsk ENC packets. We calk the block size. The key server generate® ARITY packets for
each block. We define the ratio 0f + k)/k asproactivity factor denoted by.

Then the key server multicasts theVC and PARITY packets to all users. A user can recover its required
encryptions in any one of the following three cases: 1) The user receives the spé¢fipacket that contains
all of the encryptions for the user. 2) The user receives at kepatkets from the block that contains its specific
ENC packet, and thus the user can recoveritwiginal ENC' packets. 3) The user received/& R packet
during a subsequent unicast phase. TR packet contains all of the encryptions needed by the user.

After multicastingE NC andPARITY packets to users, the server waits for the duration of a round, which
is typically larger than the maximum round-trip time over all users, and collects NACKs from the users. Based
on the NACKSs, the key server adaptively adjusts the proactivity factor to control the number of NACKs for the
next rekey message. Each NACK specifies the numbérARITY packets that a user needs in order to have
k packets to recover its block. In particular, the key server collects the largest numBeYRfT'Y packets
needed (denoted asnax|i]) for each blocki. At the beginning of the next round, the key server generates
amazx[i] new PARITY packets for each block and multicasts the neWARITY packets to the users. This
process repeats until the conditions for switching to unicast are satisfied (see Section 7). Typically, unicast will
start after one or two multicast rounds. During unicast, the key server gésieispackets to those users who
have not recovered their required encryptions.

An informal specification of the user protocol is shown in Figure 3. In our protocol, a NACK-based feedback
mechanism is used because the vast majority of users can receive or recover their required encryptions within a
single round. In particular, during each round, a user checks whether it has received its $p¥cifipacket
or can recover its block. If not, the user will repattthe number ofPARITY packets needed to recover
its block, to the key server. By the property of Reed-Solomon encodimgequal tok minus the number of
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1. use key assignment algorithm to constréy C' packets

2. partition the sequence &fNC' packets into blocks

3. multicastk ENC packets and PARITY packets for each block
4. whentimeout

5. doadaptively adjust proactivity factor

6. if conditions for switching to unicast hold

7 then unicastU S R packets to users who did not receive their required encryptions

8. else collectamaz[i] as the largest number 8fARITY packets needed for each block
9. generatemax[il new PARITY packets for each block

10. multicast thes@ ARITY packets to all users at the beginning of next round

Figure 2: Basic protocol for key server

1. whentimeout
2. doif received its specifié&z N C packet, or at least packets in the required block, oflaS R packet

3. then retrieve required encryptions
4. else a «— number of PARITY packets needed for recovery
5 sendz by NACK to the key server

Figure 3: Basic protocol for a user

packets received in the block containing its spedifi¥ C' packet.
In summary, our protocol uses four types of packetsE& N)C' packet, which contains encryptions for a set
of users; 2PARITY packet, which contains FEC redundant information produced by a RSE codéf 13)
packet, which contains all of the encryptions for a specific usely 4° K packet, which is feedback from a
user to the key server. This type of packets reports the numbeA&tI TY packets needed for specific blocks.
Note that protocols given in Figure 2 and 3 only outline the behaviors of the key server and users. More
detailed specifications of these protocols and packet formats are shown in Appendix A.

4 Construction of ENC Packets

After running the marking algorithm to generate the encryptions of a rekey message, the key server next runs
a key assignment algorithm to assign the encryptions #W0C' packets. To increase the probability for each
user to receive its required encryptions within one round, our key assignment algorithm guarantees that all of
the encryptions for a given user are assigned into a siBgi&’ packet. For each user to identify its specific
ENC packet and extract its encryptions from thé&V C packet, the key server assigns a unique ID for each key,
user, and encryption; such ID information is includedV C' packets.

Below, we first discuss how to assign an ID for each key, user, and encryption; then we define the format of
an ENC packet. Lastly we present and evaluate our key assignment algorithm.

4.1 Key identification

To uniguely identify each key, the key server assigns an integer as the ID of each node on a key tree. In particular,
the key server first expands the key tree to make it full and balanced by adding null nodes, which we refer to as
n-nodes As a result of the expansion, the key tree contains three types of nodes: u-nodes containing individual



keys, k-nodes containing the group key and auxiliary keys, and n-nodes. Then the key server traverses the
expanded key tree in a top-down and left-right order, and sequentially assigns an integer as a node’s ID. The ID
starts from 0 and increments by 1. For example, the root node has anOlland its leftmost child has an ID

of 1. Figure 4 (left) illustrates the IDs of nodes in an expanded key tree with a tree degree of three.

d*m+1 d*m+d

Figure 4: lllustration of key identification

Given the key identification strategy, we observe that the IDs of a node and its parent node have the following
simple relationship: If a node has an ID+f, its parent node will have an ID dg%lj, whered is the key tree
degree. Figure 4 (right) illustrates the relationship.

To uniquely identify an encryptiofik’ } ., we assign the ID of the encrypting kéyas the ID of this encryp-
tion because the key in each node will be used at most once to encrypt another key’ &rihe parent node
of &, its ID can be easily derived given the ID of the encryption.

The ID of a user is, by definition, the ID of its individual key. Given the ID of an encryption and the ID of
a user, by the simple relationship between a node and its parent node, a user can easily determine whether the
encryption is encrypted by a key that is on the path from the user’s u-node to the tree root.

When users join and leave, our marking algorithm may modify the structure of a key tree, and thus the IDs of
some nodes will be changed. For a user to determine the up-to-date ID of its u-node, a straightforward approach
is for the server to inform each user its new ID by sending a packet to the user. This approach, however, is
obviously not scalable. By Lemma 1 and Theorem 1, we show that by knowing the maximum ID of the current
k-nodes, each user can derive its new ID independently.

Lemma 1 If the key server uses the marking algorithm in Appendix B for tree update, then in the updated key
tree, the ID of any k-node is always less than the ID of any u-node.

Theorem 1 For any user, letn denote the user’s ID before the key server runs the marking algorithmyand
denote its ID after the key server finishes the marking algorithmn}.etenote the maximum k-node ID after
the key server finishes the marking algorithm. Define funcfian = d*m + % for integerx > 0, whered

is the key tree degree. Then there exists one and only one intege such thatn, < f(z') < d - ng + d.
Andm’ is equal tof (z').

A proof is shown in Appendix C. By Theorem 1, we know that a user can derive its current ID by knowing
its old ID and the maximum ID of the current k-nodes.

4.2 Format of ENC packets

Given the results in subsection 4.1, we can now define the format BMNaA' packet. As shown in the Figure 5,
an ENC packet has eight fields, and contains both ID information and encryptions.

The ID information in anE N C packet allows a user to identify the packet, extract its required encryptions,
and update its user ID (if changed). In particular, Field® 5 uniquely identify a packet. A flag bit in
Field 2 specifies whether this packet is a duplicate; this field will be further explained in Section 5.6Field



1. Type: ENC (3 bits) 2. Flag bit { bit)

3. Rekey message |07 bits) 4. Block ID @ bits)
5. Sequence number within a blogklgits) 6. max K 1D (16 bits)
7. <frmlID,tol D> (32 bits) 8. A list of <encryption, ID> (variable length)

9. Padding (variable length)

Figure 5: Format of ai* NC' packet

is the maximum ID of the current k-nodes. As we discussed in the previous subsection, each user can derive
its current ID based upon this field and its old ID. Figldpecifies that thi¥#NC packet contains only the
encryptions for users whose IDs are in the range §fm 1D, tol D> inclusively.

Field 8 of an FNC' packet contains a list of encryption and its ID pairs. After the encryption payload, an
ENC packet may be padded by zero to have fixed length because FEC encoding requires fixed length packets.
We observe that padding by zero will not cause any ambiguity because no encryption has an ID of zero.

4.3 User-oriented Key Assignment algorithm

Given the format of anl? NC' packet, we next discuss the details of our key assignment algorithm, which we
refer to as the User-oriented Key Assignmelitf{ A) algorithm. U K A guarantees that all of the encryptions
for a user are assigned into a singlé&VC' packet.

Figure 6 (left) illustrates a particular run of thei{ A algorithm in which sevetiy N C' packets are generated.
U K A first puts all of the user IDs into a list in increasing order. Then, a longest prefix of the list is extracted
such that all of the encryptions needed by the users in this prefix will fill up &it” packet. Repeatedly] K A
generates a sequence BIVC packets whosec frmID, tol D> intervals do not overlap. In particular, the
algorithm guarantees th&t/ D of a previousENC packet is less than thgrmID of the next packet. This
property is useful for block ID estimation to be performed by a user.

4.4 Performance ofUK A

UK A assigns all of the encryptions for a user into a singi¥C' packet, and thus significantly increases the
probability for a user to receive its encryptions in a single round. Consequently, the number of NACKs sent to
the key server is reduced.

This benefit, however, is achieved at an expense of sending duplicate encryptions. In a rekey subtree, users
may share encryptions. For two users whose encryptions are assigned into two diiféféhpackets, their
shared encryptions are duplicated in these BM§C packets; therefore, we expect thiak A would increase
the bandwidth overhead at the key server.

We evaluate the performance GfK A in this subsection using simulations. In the simulations, we assume
that at the beginning of a rekey interval the key tree is full and balanced Mithnodes. During the rekey
interval, J join and L leave requests are processed. We further assume that the leave requests are uniformly
distributed over the u-nodes. We set the key tree defgieeel and the length of aiv N C packet ad028 bytes.

In all of our experiments in this paper, each average value is computed based on Hileasiulation runs.

We first investigate the size of a rekey message as a functidran@i . for N = 4096, as shown in Figure 6
(middle). For a fixed, we observe that the average numbeFd¥ C' packets increases linearly with For a
fixed J, we observe that ak increases, the number 6fN C packets first increases (because more leaves imply
more keys to be changed), and then decreases (because now some keys can be pruned from the rekey subtree).

Next we investigate the size of a rekey message as a functidin a§ shown in Figure 6 (right). We observe
that the average number 6N C packets in a rekey message increases linearly Witlor three combinations
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Figure 6: lllustration of/ K’ A algorithm (left), average number &N C packets as a function of and L for
N = 4096 (middle), and as a function d¥ (right)

of J and L values.
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Figure 7: Average duplication overhead as a function/and L for N = 4096 (left) and as a function of
N (right)

With the U K A algorithm, some encryptions are duplicatedtitV C packets. We definduplication over-
headas the ratio of duplicated encryptions to the total number of encryptions in a rekey subtree. Figure 7 (left)
shows the average duplication overhead as a functioharid L for N = 4096. First consider the case of a
fixed L. We observe that the duplication overhead decreases from @Hdoid 0.05 as we increasd. Next
consider the case of a fixel We observe that the duplication overhead first increases and then decreases as
we increasd..

Last, we plot in Figure 7 (right) the average duplication overhead as a functitin &¥e observe that for
J=0,L =N/4orJ = L = N/4, the average duplication overhead increases approximately linearly with
log(N) for N > 32. This is because the rekey subtree is almost full and balanced for0, L = N/4 or
J = L = N/4, and thus the duplication overhead is directly related to the tree Heig}itV). We also observe
that the duplication overhead is generally less tﬁéﬁg)—_l, where46 is the number of encryptions that can
be carried in artE NC' packet with a packet size @028 bytes. ForJ = N/4, L = 0, the rekey subtree is very
sparse, and thus the graph of duplication overhead fluctuates around the gaghloft= N /4.

5 Block Partitioning

After running U K A assignment algorithm to generate théVC packets of a rekey message, the key server
next generate® ARITY packets for thew NC' packets using a Reed-Solomon Erasure (RSE) coder.

Although grouping all of théZ N C packets into a single RSE block may reduce server bandwidth overhead,
a large block size can significantly increase encoding and decoding time [19, 3, 16]. For example, using the RSE



coder of Rizzo [19], the encoding time for ofARITY packet is approximately a linear function of block
size. Our evaluation shows that for a large group, the numb@r€' packets generated in a rekey interval
can be large. For example, for a group withp6 users, wher/ = L = N/4, the key server can generate up
to 128 ENC packets with a packet size ®028 bytes. Given such a large numberofV C packets in a rekey
interval, it is necessary to partition tHeNC' packets into multiple blocks in order to reduce the key server's
encoding time.

Consider thel NC' packets of a rekey message sequenced in order of generatiéibyalgorithm. The
packet sequence is partitioned into blockg: gfackets, with the first packets forming the first block, the next
k packets forming the second block, and so on. Each block formed is assigned sequentially an integer-valued
block ID. Each packet within a block is assigned a sequence number frori0.to

To form the last block, the key server may need to dupliéa®C' packets in the last block until there ate
packets. (Alternatively, the key server may distribute the required number of duplicates over several blocks.) We
use a flag bitin eack N C' packet to specify whether the packet is a duplicate, as shown in Figure 5. A duplicate
ENC packet has the same contents in all fields as the original packet except for the sequence number field and
the flag bit field. A new sequence number is assigned to each duphidéte packet because Reed-Solomon
encoding needs to uniquely identify every packet in a block, duplicate or not. At a user, duplicate packets are
used in Reed-Solomon decoding; however, they are not used for block ID estimation (see Appendix D).

5.1 Block ID estimation

One issue that arises from partitionidgVC' packets into blocks is that if a user loses its spedifié C' packet,

the user will not be able to determine directly the block to whictEIf§C' packet belongs. As a result, the user

needs to estimate the block ID to which its specHi®/C' packet belongs. We present an algorithm for users

to estimate its block ID in Appendix D. With this algorithm, the probability that a user cannot determine the
precise value of its block ID is no more thahin the worst case, whereis the loss rate observed by the user

under the assumption of independent packet loss. When this happens, the user can still estimate a possible range
of its block ID. It will then requesP ARITY packets for every block within this range when it sends a NACK.

5.2 Packets sent in interleaving pattern

After forming the blocks of a rekey message, the key server genePatddl 'Y packets, and multicasts all

ENC and PARITY packets to users. One remaining issue is to determine an order in which the key server
sends these packets. In our protocol, the key server sends packets of different blocks in an interleaving pattern.
By interleaving packets from different blocks, two packets from the same block will be separated by a larger time
interval, and thus are less likely to experience the same burst loss on a link. With interleaving, our evaluation
shows that the bandwidth overhead at the key server can be reduced.

5.3 Choosing block size

Block partitioning is carried out for a given block size To determine the block size, we need to evaluate the
impact of block size on two performance metrics.

The first performance metric is the key server’s multicast bandwidth overhead, which is defined to be the
ratio of v’ to v, wherev is the number ofE NC' packets in a rekey message, arids the total number of
packets that the key server multicasts to enable recovery of spEGHiC packets by all users. To evaluate the
bandwidth overhead, we consider the impact of block Bifmr p = 1 only (that is,h = 0) in this section. The
extra bandwidth overhead due to an adapgivior p > 1, will be evaluated in Section 6. Such extra bandwidth
was found to be small (see Figure 18).
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The second performance metric is overall FEC encoding time, which is the time that the key server spends
to generate all of th& ARITY packets for a rekey message. Although block &izéso has a direct impact on
each user's FEC decoding time, the impact is small because in our protocol, the vast majority of users receive
their specificE N C packets and thus do not perform any decoding.

We use simulations to evaluate the impact of block size. To support a large group size, we developed our
own simulator for a model proposed and used by J. Nonnenmacher, et al. [17]. In this model, the key server
connects to a backbone network via a source link, and each user connects to the backbone network via a receiver
link. The backbone network is assumed to be loss-free. The source link has a fixed losg rate fodction o
of the NV users have a high loss ratepgf, and the others have a low loss ratepfFor each given loss ratg, we
use a two-state continuous-time Markov chain [16] to simulate burst loss as follows: the average duration of a
burst loss |sl— msec, and the average duration of loss-free time between consecutive loss bi#stngec?

The default values in our simulations are as folloWws= 4096, d = 4, J = L = N/4, a = 20%, pp, = 20%,

p = 2%, ps = 1%, and the key server's sending ratd ispackets/second, and the length offaiV C packet is

1028 bytes. The same simulation topology and parameter values will also be used in experiments described in
the following sections unless otherwise stated.
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Figure 8: Average server bandwidth overhead (left) and relative overall FEC encoding time (right) as a function
of block size

The impact of block size on the key server’s bandwidth overhead is shown in Figure 8 (left). Observe that
the key server’s average bandwidth overhead is not sensitive to the blodkfsize > 5.

We next consider the impact of block sizeon the key server's overall FEC encoding time. If we use
Rizzo’s RSE coder [19], the encoding time for oRARITY packet is approximately a linear function fof
Therefore, the encoding time of dHARITY packets for a rekey message is approximately the product of the
total number ofPARITY packets and the encoding time for oRel RITY packet. By the definition of the
key server’'s bandwidth overhead, we know that the total numbétARITY packets is proportional to the
server bandwidth overhead that is almost flat as a functionfof k£ > 5. The relative overall encoding time
(assumingt time units to generate oneARITY packet for block siz&) is shown in Figure 8 (right).

In summary, we found that, fgr = 1, a small block sizé can be chosen to enable fast FEC encoding at
the server without incurring a large server bandwidth overhead. For experiments in the following sections, we
choosek = 10 as the default value unless otherwise specified.

3The network topology and loss model are simplistic compared to the Internet. They are however needed for simulating a large
group size (up td6384). For simulation results from the usewf and GT-ITM for a smaller group size, we refer the interested reader
to our recent work [28].
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6 Adaptive Proactive FEC Multicast

In the previous section, we discussed how to partitionAléC packets of a rekey message into blocks and
generateP ARITY packets for each block. The discussion, however, assumes a given proactivitypfalctor
this section, we investigate how to determpme

Proactive FEC has been widely used to improve reliability and reduce delivery latency [20, 7, 16, 12, 2, 27,
15]. However, if the proactivity factor is too large, the key server may incur high bandwidth overhead. On the
other hand, if the proactivity factor is too small, the users may have to depend on retransmissions to achieve
reliability; thus, the benefit of reduced delivery latency diminishes. Furthermore, if we depend on proactive
FEC to avoid feedback implosion and the proactivity factor is too small, many users may experience packet
losses and the key server would be overwhelmed by NACKs.

The appropriate proactivity factor will depend on network status, in particular, factors such as network
topology, loss rates of network links, number of users in a session, and number of sessions using proactive FEC.
Such factors are unknown to the key server and may be changing during a session’s life time. The objective of
our next investigation, therefore, is to study how to adaptively adjust proactivity factor by observing its impact
on the number of NACKs from users. With adaptive adjustment, we aim to achieve low delivery latency with
small bandwidth overhead.

6.1 Impact of proactivity factor

To design an algorithm to adjugt we need to first evaluate the impact®bn the number of NACKSs, the
delivery latency at users, and the bandwidth overhead at the key server.

We first evaluate the impact gf on the number of NACKs. Figure 9 (left) plots the average number of
NACKSs received at the key server at the end of the first round. Note that y-axis is in log scale. We observe that
the average number of NACKs decreases exponentially as a functipr{Afsimilar observation was made in
a previous study [20].)
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Figure 9: Average number of NACKs in the first round (left) and average number of rounds for all users to
receive their encryptions (right) as a functiongof

p Percentage of users who need
1round | 2rounds| 3 rounds| > 4 rounds
94.414% | 5.134% | 0.389% | 0.063%
1.2 | 97.256% | 2.502% | 0.196% | 0.046%
1.6 | 99.888% | 0.090% | 0.018% | 0.004%
99.992% | 0.006% | 0.001% | 0.001%

Table 2: Percentage of users on average who need a given number of rounds to receive their encryptions
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We next evaluate the impact pfon delivery latency. Figure 10 plots the average number of rounds for all
users to receive their encryptions. We observe that the average number of rounds decreases almost linearly as
we increase, until p is large enough and the curve levels off. Table 2 shows the percentage of users on average
who need a given number of rounds to receive their encryptionse Eot, we observe that on averagé.41%
of the users can receive their encryptions within a single roundp fer1.6, the percentage value is increased
t0 99.89%; for p = 2.0, the percentage value is increase®1®9%.

We next evaluate the impact pfon the average server bandwidth overhead, as shown in Figure 10. For
p close to 1, the key server sends a small amount of proaBtW&I7TY packets during the first round, but it
needs to send more reactvARITY packets in subsequent rounds to allow users to recover their packets.
As aresult, a small increase phas little impact on the average server bandwidth overhead. \Whenomes
large, the bandwidth overhead during the first round dominates the overall bandwidth overhead, and the overall
bandwidth overhead increases linearly with

In summary, we observe that an increase atin have the following three effects: 1) It will significantly
reduce the average number of NACKSs. 2) It will reduce the worst-case delivery latency. 3) It will increase the
key server’s bandwidth overhead wheis larger than needed.

6.2 Adjustment of proactivity factor

We present in Figure 11 an algorithm to adaptively adjusthe basic idea of the algorithm is to adjudbased
on NACK information received for the current rekey message so that the key server will receive a target number
of NACKSs for the next rekey message. The key server runs this algorithm at the end of the first multicast round.

Algorithm Adjust Rho(A)
> A = {a;}: each item; is the number oP ARITY packets requested by a user.
1.if (size(A) > numNACK)

2. thensortA such thatig > a1 > as, ...

3. h — h+ anumNack

4.if (size(A) < numNACK)

5. then doh « max{0,h — 1} with probability max {0, “NACK=2 size(A)y
6.p— (h+k)/k

Figure 11: Algorithm to adaptively adjust proactivity factor

The input to algorithmAdjust Rho is a listA. Each item inA is the number oP ARITY packets requested
by a user. If a user requests packets for a range of blocks, the key server recorithemtmumber oPARITY
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packets requested for the block that contains the user’'s speoWic' packet.

The algorithm works as follows. For each rekey message, at the end of the first round, the key server
compares the number of NACKs it has received, which is equaldeof(A), and the number of NACKSs it
targets (denoted byum N AC K). The comparison results in two cases.

In the first case, the key server receives more NACKs than its target. For this case, the server selects
the (numNACK + 1) largest item (denoted by,..,nacx) from A, and increaseg so thata,.mnack
additional proactive® ARITY packets will be generated for each block of the next rekey message. To illustrate,
supposel0 users,u;, i = 0,...,9, have sent NACKSs for the current rekey message, and wserquestsy;
PARITY packets. For illustration purposes, we assume a; > ... > ag, and the target number of NACKs
is 2, that is,num N ACK = 2. Then according to our algorithm, for the next rekey message, the key server
will send ao additional PARITY packets so that usefsis, us, ..., ug } have a higher probability to recover
their ENC packets within a single round. This is because according to the current rekey message, if users
{uga,us, ...,ug} were to receivers more PARITY packets, they could have recovered thBiNC' packets
within a single round.

In the second case, the key server receives less NACKs than its target. Although receiving less NACKs is
better in terms of reducing delivery latency, the small number of NACKSs received may mean that the current
proactivity factor is too high, and thus may cause high bandwidth overhead. Therefore, the algorithm geduces

. iy umNACK —2-size(A
by onePARITY packet with probability equal t8-=——-~—== ),

6.3 Performance evaluation

We use simulations to evaluate algoritidjust Rho. In Section 6.3.1, we evaluate the performance of our
algorithm in terms of controlling the number of NACKSs. In Section 6.3.2, we investigate how to choose block
size k for the adaptivep scenario. In Section 6.3.3, we evaluate the server bandwidth overhead for adaptive
proactive FEC.

6.3.1 Controlling the number of NACKs

Before evaluating whether algorithrhdjust Rho can control the number of NACKs, we first investigate the
stability of the algorithm. For the simulations in this section, we set the target number of NAGK&Y AC K)
at 20.

Figure 12 shows how is adaptively adjusted when the key server sends a sequence of rekey messages. For
initial p = 1 as shown in the left figure, we observe that it takes only two or three rekey messagés $ettle
down to stable values. For initial = 2 as shown in the right figure, we observe thdteeps decreasing until
it reaches stable values. Comparing both figures, we note that the stable values of these two figures match each
other very well.
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Figure 12: Traces of proactivity factor with initial= 1 (left) and initial p = 2 (right)
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Figure 13: Traces of the number of NACKSs received with initiak 1 (left) and initial p = 2 (right)

Next we consider the number of NACKSs received by the key server at the end of the first round for each
rekey message, as shown in Figure 13. In the left figure where the ini@ue is1, the number of NACKs
received stabilizes very quickly, and the stable values are generally less.thames ofnum N ACK. The
right figure shows the case for initial= 2. We observe that the stable values of these two figures match very
well.
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Figure 14: Traces of the number of NACKSs for variousm N AC K values with initialp = 1 (left) and initial
p = 2 (right)

Next we evaluate whether algorithAjust Rho can control the number of NACKSs for various values of
numNACK. As shown in the left figure (initially is 1) and right figure (initiallyp is 2) of Figure 14, the
number of NACKs received at the key server fluctuates around-eaehV AC' K target value specified. How-
ever, we do observe that the fluctuations become more significant for larger vatuesdf AC K. Therefore,
in choosingnum N AC K, we need to consider the potential impact of large fluctuations whenN AC K
is large. In the experiments to be presented, we ch@0de be a fixed default value ofum N AC K unless
otherwise specified.

6.3.2 Choosing block size

In Section 5.3, we have discussed how to choose blockisipe p = 1. In this section, we reconsider this
problem for a new scenario wheyeis adaptively adjusted. To determine the block size, we consider the
following factors:

e Fluctuations in the number of NACKSs received—From Figure 15, we observe that a very small block
size may cause large fluctuations in the number of NACKs. For exampl&,$oil or 5, the number of
NACKSs received by the key server can reach as high as two timesafN ACK .
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e Server bandwidth overhead—First consider Figure 16 (left), which shows the average bandwidth over-
head at the key server as a functionkoivhen p is adaptively adjusted. We observe that the average
server bandwidth overhead is very high foe= 1; then it decreases and becomes flat as we increase
This observation is almost the same as what we see foil in Figure 8 (left), except that the bandwidth

overhead fok = 1 is much higher in the adaptiyescenario.

Next consider Figure 16 (right), which shows the average server bandwidth overhead as a funiction of
for different group sizes whemis adaptively adjusted. The figure shows the same trend as the left figure.
Note that the average server bandwidth overhead fluctuates a l§tfoi024. This is because the rekey
message contains ond2 ENC packets forNV = 1024 and.J = L = N/4. For a largek, the number of

“In the case of adaptive FEC, we measure average values based on sile@iey messages after the key server has seritut

rekey messages with initial = 1.
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duplicated packets in the last block can significantly affect the server bandwidth overhead.

e Overall FEC encoding time to generate BIMRITY packets in a rekey message—According to our
observations in Figure 16, we know that fer> 5, the server bandwidth overhead is not sensitive to
block size. As a result, the overall FEC encoding time at the key server will increase approximately at a

linear rate as block sizeincreases.

e Delivery latency—From Figure 17 (left), we observe that the average number of rounds for all users to
receive their encryptions stays flat as we vary block &iztherefore, block sizé& does not have much
impact on the delivery latency at users. To further validate this result, Figure 17 (right) plots the fraction

of users on average who send NACKs in the first round. &~or 10, the curves for different values of
stay flat as block sizg increases.

In summary, wherp is adaptively adjusted, block siZzeshould not be too small in order to avoid large
fluctuations in the number of NACKs and a large key server bandwidth overhead. On the other hand, block size
k should be small enough to reduce the key server's FEC encoding time. This confirms our previous conclusion

for the case op = 1.

6.3.3 Overhead of adaptive proactive FEC

From the previous section, we know that algoritiidjust Rho can effectively control the number of NACKs

and reduce delivery latency. However, compared with an approach that does not send any pPobRtEY
packets at all during the first round (i.e» = 1) and only generates reactiveARITY packets during the

subsequent rounds, the adaptive proactive FEC scheme may incur extra bandwidth overhead at the key server.

We investigate this issue in this subsection.
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We first evaluate the extra bandwidth overhead at the key server caused by proactive FEC. Figure 18 shows
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the results for three loss environments. We observe that compared with the approach whd &Y pack-

ets are generated reactively, our adaptive proactive scheme causes very little extra server bandwidth overhead in
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a homogeneous low loss environment (he= 0 ). Fora = 1, shown on the right of Figure 18, our scheme can
even save a little bandwidth. This is becausedet 1, the key server takes more rounds for all users to recover
their encryptions in the reactive scheme than in the adaptive proactive scheme. Therefore, it is possible that the
total number of PARITY packets generated during the rounds goe= 1 is larger than that of the adaptive
proactive scheme. In a heterogeneous environment, sueh=a20% shown in the middle of Figure 18, the
extra bandwidth overhead generated by adaptiigeless thard.3 for & > 5.

We next consider the server bandwidth overhead for various group sizes. From Figure 19, we observe that
the extra bandwidth overhead incurred by adaptiirecreases withlV. The extra bandwidth overhead, however,
is still less thar).42 even forN = 16384 whenk > 5.

7 Speedup with unicast

Rekeying transport has a soft real-time requirement, that is, it is desired that all users receive their new keys
before the end of the rekey interval. To meet this requirement, we have proposed in the previous section to
adaptively adjustum N AC K andp during the multicast phase to reduce the number of users missing deadline.
However, these approaches may not guarantee that all users can meet deadlinerhgedige’ K does not
directly affect delivery latency at users. In fact, from Table 2 we have observed that there may exist a few
NACKSs after two rounds whenum N ACK is 20.

To further increase the number of users meeting deadline, the key server will switch to unicast after one
or two multicast rounds. Unicast can reduce delivery latency compared to multicast because the duration of a
multicast round is typically larger than the maximum round-trip time over all users.

To use unicast, we need to solve two problems. First, we need to determine when to switch to unicast so that
unicast will not cause a large bandwidth overhead at the key server. Second, we need to determine how to send
the unicast packets so that each user who still needs recovery can recBiggrifgsacket with high probability.

7.1 When to switch to unicast

One issue of early unicast is its possible high bandwidth overhead at the key server. However, in our protocol,
unicast will not cause large bandwidth overhead at the key server for the following two reasons. First, the
size of alU'SR packet sent during unicast is much smaller than the size df/dd’ or PARITY packet. In

our protocol, al/’SR packet contains only the encryptions for a specific user, and its packet size is at most
(3 4+ 20 - 1) bytes, wheré is the height of the key tree. On the other hand, the size df &' or PARITY

packet is typically more than one kilobyte long. Second, our protocol guarantees that only a few users need
unicast ifnumN AC K is small enough. In fact, our evaluations show thatfarmn N AC K = 20, N = 4096,

and initial p = 1, roughly 5 or less users need recovery after two multicast rounds when the system becomes
stable.

Our conditions for switching to unicast are as follows. Our protocol switches to unicast after one or two
multicast rounds. We suggest two multicast rounds for a large rekey interval and one multicast round for a small
rekey interval. Even for a large interval, the time to switch to unicast can be earlier if the total length of the
U SR packets is no more than that BIARITY packets needed for the next multicast round.

7.2 Unicast protocol

Let R denote the set of users who cannot recover their new keys in the multicast step. For eadh sseR,
the key server can estimate the loss rate of usdrile it receives the current rekey message. j;atenote the
current loss rate of usérand we have:

o (k—l—h)—(k—ai) 7h—|—ai
pi = k+h “kth
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whereh is the number of proactive® ARITY packets multicasted for each block, amdis the number of
PARITY packets requested by usen the latestV AC K. We observe that; reflects the current loss rate of
useri based on the fact thatreceived onlyk — a; packets out ok + h packets.

Given loss ratey;, if the key server unicastscopies ofU S R packets to uset, then the probability for user
i to receive at least on€ SR packet isl — p;¢. Therefore, if we want to guarantee that usean receive its
U SR packet with a probability larger than or equalg the key server should unicast at le@sig,, (1 — P)]|
copies ofU SR packets ta.

However, it is still possible that uséwill lose all of theU SR packets. In this case, usewill send another
NACK to the key server. The key server will first update the valug,pfind then unicast a new sequence of
U SR packets to uset. This process repeats until ugeeceives oné/.S R packet.

8 Conclusion

The objective of this paper is to present in detail our rekey transport protocol as well as its performance. Our
server protocol for each rekey message consists of four phases: (i) generating a sequehae packets
containing encrypted keys, (ii) generatiftd RITY packets, (iii) multicast o NC and PARITY packets,

and (iv) transition from multicast to unicast.

In the first phase, after running the marking algorithm to generate encryptions for a rekey message, the key
server construct&¥ NC packets. The major problem in this phase is to allow a user to identify its required
encryptions. To solve the problem, first we assign a unique integer ID to each key, user, and encryption.
Second, our key assignment algorithm guarantees that each user needs dily ©ngacket. By including a
small amount of ID information ilE N C packets, each user can easily identify its spedifi§¢ C' packet and
extract the encryptions it needs.

In the second phase, the key server uses a RSE coder to geRerRIE'Y packets forE NC packets. The
major problem in this phase is to determine the block size for FEC encoding. This is because a large block size
can significantly increase FEC encoding and decoding time. Our performance results show that a small block
size can be chosen to provide fast FEC encoding without increasing bandwidth overhead. We also present an
algorithm for a user to estimate its block ID if it has not received its speEifitC' packet.

In the third phase, the key server multicasts bBtNC and PARITY packets to all users. This proactive
FEC multicast can effectively reduce delivery latency of users; however, a large proactivity factor may increase
the server bandwidth overhead. Therefore, the major problem in this phase is how to achieve low delivery
latency with small bandwidth overhead. In our protocol, the key server adaptively adjusts the proactivity factor
based on past feedback. Our experiments show that the number of NACKs can be effectively controlled around
a target number, thus achieving low delivery latency, while the extra bandwidth overhead incurred is small.

In the fourth phase, the key server switches to unicast to reduce the worst-case delivery latency. The prob-
lems in this phase are (1) to determine when to switch to unicast such that unicast will not cause large server
bandwidth overhead, and (2) how to do unicast to provide small delivery latency. We let the key server switch
to unicast after one or two multicast rounds (depending upon deadline). To guarantee that each user who still
needs recovery can receive ifsS R packet with a high probability, the key server estimates the user’s loss rate,
and sends multiple copies of the usdr"s' R packet during unicast.

In summary, we have the following contributions. First, a new marking algorithm for batch rekeying is
presented. Second, a key identification scheme, key assignment algorithm, and block ID estimation algorithm
are presented and evaluated. Third, we show that a fairly small FEC block size can be used to reduce encoding
time at the server without increasing server bandwidth overhead. Lastly, an adaptive algorithm to adjust the
proactivity factor is proposed and evaluated. The algorithm is found to be effective in controlling the number
of NACKs and reducing delivery latency. Another adaptive algorithm with further refinements is presented in a
recent technical report [28].
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A Protocol Specification

A.1 Packet formats

Figures 5, 20, 21 and 22 define the formatdia¥C, PARITY, USR, and N AC K packets, respectively.
In aUSR packet, the encryption IDs are optional if we arrange the encryptions in increasing order of ID.
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1. Type: PARITY (3 bits) 2. Reservedil(bit)
3. Rekey message |07 bits) 4. Block ID @ bits)
5. Sequence number within a blocklgits) 6. FEC parity information for Fieldsto 9 of ENC packets

Figure 20: Format of # ARITY packet

1. Type:USR (3 bits) 2. Reservedi(bit)
3. Rekey message 10 % bits) 4. New user ID16 bits)
5. Alist of <encryption, ID> (variable length)

Figure 21: Format of & SR packet

A.2 Specification of server and user protocols

The protocol for the key server is shown in Figure 23. And the protocol for a user is shown in Figure 24. In
both protocols, we consider only one rekey message.

B Marking algorithm

In periodic batch rekeying, the key server collegtgin and L leave requests during a rekey interval. At the
end of the interval, the server runs the following marking algorithm to update the key tree and construct a rekey
subtree. The marking algorithm is different from the one presented in our previous papers [26, 14]. The n-node
and ID information are introduced in Section 4.

To update the key tree, the marking algorithm performs the following operations:

1. If J = L, replace all u-nodes who have left by the u-nodes of newly joined users.

2. If J < L, chooseJ u-nodes who have smallest IDs among thdeparted u-nodes, and replace thdse
u-nodes with joins . Change the remainihg- J u-nodes to n-nodes. If all of the children of a k-node
are n-nodes, change the k-node to n-node. Repeat this operation iteratively on all k-nodes.

3. If J > L, first replace the u-nodes who have left by joins, then replace the n-nodes with ID between
ng + 1 andd - ng + d (inclusive) in order of from low to high, wheney is the maximum ID of current
k-nodes. If there are still extra joins after this, keep splitting the node whose ID is equghtd, and
updatingn;. The split node becomes its leftmost child.

4. If any n-node has a descendant u-node, change the n-node to k-node.

1. Type:NACK (3 bits) 2. Reservedi(bit)
3. Rekey message 10 % bits) 4. User ID {6 bits)
5. Alist of <number of PARITY packets requested, block tD(variable length)

Figure 22: Format of & AC' K packet
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1. status— MULTICAST

2. for each blockdo multicastk ENC packets and PARITY packets
3. R—emptyset > Ris the set of users who send NACKs

4. A —emptylist > A contains NACK information

5. for each block ID ido amaz]i] < 0

6. starttimer

7. whenreceiving a NACK {n, alist of < a,1 >)

8. > m: the ID of the user who sends the NACK

9. > < a,i >: the user requests PARITY packets for block

10. doif (status = MULTICAST)

11. then

12. R+— R+ {m}

13. im < ID of the block to which the user. belongs to

14. am <— number of PARITY packets that the user requests for blagk
15. append,, to A

16. amazxliy,] < max{amaz|iy,], an}

17. elsesendU S R packets tan

18.whentimeout
19. doif (it is the first round)

20. then Update Rho(A)

21. if (conditions for switching to unicast hold)

22. then status— UNICAST

23. switch to unicast

24. else if(R is not empty)

25. then for each bloclki

26. do multicastamax[i]| new PARITY packets
27. amaz(i] < 0

28. start timer

Figure 23: Key server protocol for one rekey message

To construct the rekey subtree, the marking algorithm first copies the current key tree as the initial rekey
subtree. Then the marking algorithm labels the nodes in the rekey subtree. We have four label: “Unchanged”,
“Join”, “Leave”, and “Replace”:

1. First label all of the n-nodes as Leave.

2. Then label the u-nodes. Label a u-node who has departed and then joined (as another user) as Replace, a
newly joined u-node as Join, and other u-nodes as Unchanged.

3. Next label the k-nodes: 1) If all the children of a key node are labeled Leave, label it as Leave, and remove
all of its children from the rekey subtree. 2) Otherwise, if all of its children are Unchanged, label it as
Unchanged, and remove all of its children. 3) Otherwise, if all of its children are Unchanged or Join, label
it as Join. 4) Otherwise, if the node has at least one Leave or Replace child, label it as Replace.

We call the remaining subtraekey subtreeEach edge in the rekey subtree corresponds to an encryption. The
key server traverses the rekey subtree and uses the key assignment algorithm to assign encryptions into packets.
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1. for each block IDi do counter[i] < 0

2. start timer

3. whenreceiving a packepkt

4. doif (pktis aUSR packet)

5. then m « the new ID contained ipkt

6 retrieve encryptions from the packet and cancel timer
7 else if(pkt is an ENC packet)

8 then m <« new ID computed

9. if (pkt.frmID < m < pkt.tolD)

10. then retrieve required encryptions from the packet, and cancel timer

11. else if(pkt is not a duplicate)

12. then E'stimateBlkID(m, high, low, pkt)
13. pkt.blkID « block ID contained irpkt

14. increaseounter|pkt.blkID] by 1

15.whentimeout
16. doif (high = low) and(counter[high] > k)

17. then decode the block, and retrieve required encryptions

18. else foreach block IDi € [low, high]

19. doif (counter[i] > k)

20. then decode the block

21. if (requiredEENC packet is in the block)

22. then retrieve required encryptions, and quit
23. else put <k — counter|i], i> into aN AC K packet
24. send theV AC' K packet to the key server, and start timer

Figure 24: User protocol for one rekey message

C Proofs of Lemma and Theorem

C.1 Proof of Lemma 1

1. Initially the key tree is empty. After collecting some join requests, the key server will construct a key tree
that satisfies the property stated in this lemma at the end of the first rekey interval.

2. The property holds when the key server processgsn and L leave requests during any rekey interval
because:

(&) The property holds fod < L because joined u-nodes replace departed u-nodes in our marking
algorithm. Note that the algorithm does not change the IDs of the remaining u-nodes.

(b) ForJ > L, newly joined u-nodes first replace departed u-nodes or the n-nodes whose IDs are larger
thannyg, whereny, is the maximum ID of current k-nodes . These replacements make the property
hold. Then the marking algorithm splits the node with7#l + 1. Therefore, the property holds
after splitting.

C.2 Proof of Theorem 1

1. There exists an integef > 0 such that, < f(z') < d - ny + d, because:
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(a) From the marking algorithm, we know that the u-nad@eeds to change its ID only when it splits.
If no splitting happens, them’ = m = f(0). Otherwise, after splitting, the u-node becomes its
leftmost descendant. Then there exists an inteder 0 such thatn’ = f(2’). By Lemma 1,
ni < m' sincem’ is a u-node.

(b) Since the maximum ID of current k-nodesnig, the maximum ID of current u-nodes must be less
than or equal t@ - ny, + d. Thereforen’ < d - ny, + d.

2. Suppose besides’, there exists another leftmost descendant (denotedf)yf m that also satisfies the
conditionn, < m” < d - ny + d. Then we get a contradiction because:

(a) By the assumption, < m”, m” must be a u-node or n-node. Furthermoré, must be a n-node
and be a descendantef sincem’ is a u-node.

(b) Sincem’ is the ancestor ofi”, n;, is the parent node af - n;, + d, and by the assumptiom” <
d - ny, + d, we havem’ < ny. This contradicts Lemma 1 sinee’ is a u-node.

3. From the proof above, we hawe = f(z').

D Estimating Block ID

When we partition théZ N C packets into multiple blocks, and if a user loses its spe&ifNC' packet, the user
will not be able to know directly the block to which i8N C' packet belongs. We address this issue in this
appendix.

The key observation is that a user can estimate the block ID to whidii/M§’ packet belongs from the
ID information contained in the receivad N C packets. Assume a user has#i) and itsENC' packet is the
4t packet in blocki. Let <i, j> denote the<block ID, sequence number within a blagkpair. Whenever a
user receives alv NC' packet, it can refine its estimation of the block iDFor example, ifim is larger than
tol D of a received packet, tharshould be larger than or equal to the block ID of the received packet because
the received packet must be generated earlier than the user’s spa¥ificpacket. In this way, if the user can
receive any onéZNC packet inS; = {<i — 1, k — 1>, <i, 0>,...,,<i, j — 1>}, and receive any onENC
packet inS, = {<i,j + 1>, ...,<i, k — 1>, <i + 1, 0>}, then it can determine the precise value efen if
< 4,7 > is lost. Figure 25 illustrates the block ID estimation. The detailed algorithm to estimate block ID is
shown in Figure 26.

block i-1 block i block i+1

o o o O o O O O o o
k=2 k-1 o 1 1 1 e k-l 0 1
| N ——

S,: lower bound S,; upper bound

Figure 25: lllustration of block ID estimation

A user can determine the precise value of its required block ID with high probability. Only if all of the
ENC packets in seb; + {<i, j>} are lost, or when all of the packets in s&t+ {<i,j>} are lost, the user
cannot determine the precise value of its required block ID. The probability of such failure, however, is as low as
pIt2 4 ph=itl _ pk+2 ‘wherep is the loss rate observed by the user when we assume independent losses among
packets. In the worst case whgr= 0 or j = k — 1, the probability is about?®. In case of failure, the user first
estimates a possible range of the required block ID. Then during feedback, the user rBqUR$EY packets
for each block within the estimated block ID range. When the key server receives the NACK, it only considers
the block to which the user’s specifteN C packet belongs. (See the key server’s protocol in Figure 23.)
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Algorithm EstimateBlkID (m, low, high, pkt)
> m is the ID of the user executing this procedure.
> low is the current estimate of the lower bound of required block ID.
> high is the current estimate of the upper bound of required block ID.
> pkt is the ENC packet received.
1. if (pkt.toID < m < pkt.frmID)
2. then high « pkt.blkID
3. low «+— pkt.blkID
4. if (m > pkt.toI D) and(pkt.seqNo =k — 1)
5. thenlow <« max{low, pkt.blkID + 1}
6. if (m > pkt.toID) and(pkt.seqNo < k — 1)
7. thenlow <« max{low, pkt.blkID}
8. if (m < pkt.frmID) and(pkt.seqNo = 0)
9. then high < min{high, pkt.blkID — 1}
10.if (m < pkt.frmID) and(pkt.seqNo > 0)
11. then high <« min{high, pkt.blkID}
12.if (m > pkt.tolD)

13. then high < min{high, pkt.blkID + [L@rmerKIDT)-pkLtol D (k-1 pkt.scallo) 1}

Figure 26: Estimating required block ID

EstimateBlkID algorithm works as follows. Initially, a user sets the lower bolwmd as0, and upper
boundhigh as infinity. Theif statement of line$2-13 in Figure 26 guarantees that eventuallyh will not be
infinity if the user receives anfg NC packet. The reasoning is as follows. When the user receivésNafy
packetpkt, the max KID field of the packet specifies the maximum ID of current k-nodes. Therefore, the
maximum ID of current users cannot be larger thlan(pkt.maxKID + 1). In the worst case, onENC
packet contains encryptions for only one user, then there are at(chospit.maxKID + 1) — pkt.tol D)
ENC packets whosgrmlI D sub-field is larger thapkt.tol D. Therefore, the maximum block ID cannot be

Iarger tharpk:tblkID + [d-(pkt.mamKID+1)fpkt]%toID7(kflfpkt.seqNo)—I .
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