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Abstract

We present the design and specification of a scalable and reliable protocol for group rekeying together
with performance evaluation results. The protocol is based upon the use of key trees for secure groups and
periodic batch rekeying. At the beginning of each rekey interval, the key server sends a rekey message to all
users consisting of encrypted new keys (encryptions, in short) carried in a sequence of packets. We present
a scheme for identifying keys, encryptions, and users, and a key assignment algorithm that ensures that the
encryptions needed by a user are in the same packet. Our protocol provides reliable delivery of new keys to
all users eventually. It also attempts to deliver new keys to all users with a high probability by the end of the
rekey interval. For each rekey message, the protocol runs in two steps: a multicast step followed by a unicast
step. Proactive FEC multicast is used to reduce delivery latency. Our experiments show that a small FEC
block size can be used to reduce encoding time at the server without increasing server bandwidth overhead.
Early transition to unicast, after at most two multicast rounds, further reduces the worst-case delivery latency
as well as user bandwidth requirement. The key server adaptively adjusts the proactivity factor based upon
past feedback information; our experiments show that the number of NACKs after a multicast round can
be effectively controlled around a target number. Throughout the protocol design, we strive to minimize
processing and bandwidth requirements for both the key server and users.

keywords: group key management, reliable multicast, secure multicast, proactive FEC

1 Introduction

Many emerging Internet applications, such as pay-per-view distribution of digital media, restricted teleconfer-
ences, multi-party games, and virtual private networks will benefit from using a secure group communications
model [10]. In this model, members of a group share a symmetric key, calledgroup key, which is known only to
group users and the key server. The group key can be used for encrypting data traffic between group members
or restricting access to resources intended for group members only. The group key is distributed by a group key
management system, which changes the group key from time to time (called group rekeying). It is desirable that
the group key changes after a new user has joined (so that the new user will not be able to decrypt past group
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communications) or an existing user has departed (so that the departed user will not be able to access future
group communications).

A group key management system has three functional components: registration, key management, and
rekey transport [25]. All three components can be implemented in a key server. However, to improve regis-
tration scalability, it is preferable to use one or more trusted registrars to offload user registration from the key
server [25].

When a user wants to join a group, the user and registration component mutually authenticate each other
using a protocol such as SSL [6]. If authenticated and accepted into the group, the new user receives its ID
and a symmetric key, called the user’sindividual key, which it shares only with the key server. Authenticated
users send join and leave requests to the key management component, which validates the requests by checking
whether they are encrypted by individual keys. The key management component also generates rekey messages,
which are sent to the rekey transport component for delivery to all users in the group. To build a scalable group
key management system, it is important to improve the efficiency of the key management and rekey transport
components.

We first consider the key management component, which has been the primary focus of prior work [23, 24,
8, 4, 1, 26]. In this paper, we follow thekey treeapproach [23, 24], which uses a hierarchy of keys to facilitate
group rekeying, reducing the processing time complexity of each leave request fromO(N) to O(logd (N)),
whereN is group size andd the key tree degree. Rekeying after every join or leave request, however, can still
incur a large server processing overhead. Thus we proposed to further reduce processing overhead by using
periodic rekeying [21, 14, 26], such that the key server processes the join and leave requests during a rekey
interval as a batch, and sends out just one rekey message per rekey interval to users. Batch rekeying reduces the
number of computationally expensive signing operations. It also reduces substantially bandwidth requirements
of the key server and users.

We next consider the rekey transport component. Reliable delivery of rekey messages has not had much
attention in prior work. In our prototype system, Keystone [25], we designed and implemented a basic protocol
that uses proactive forward error correction (FEC) to improve the reliability of multicast rekey transport. We also
investigated the performance issues of rekey transport [26] and observed that although many reliable multicast
protocols have been proposed and studied in recent years [9, 18, 5, 22, 13, 16, 11, 17], rekey transport differs
from conventional reliable multicast problems in a number of ways. In particular, rekey transport has the
following requirements:

• Reliability requirement. It is required that every user will receive all of its (encrypted) new keys, no
matter how large the group size. This requirement arises because the key server uses some keys for one
rekey interval to encrypt new keys for the next rekey interval. Each user however does not have to receive
the entire rekey message because it needs only a very small subset of all the new keys.

• Soft real-time requirement. It is required that the delivery of new keys to all users be finished with a high
probability before the start of the next rekey interval. This requirement arises because a user needs to
buffer encrypted data and keys before the arrival of encrypting keys, and we would like to limit the buffer
size.

• Scalability requirement. The processing and bandwidth requirements of the key server and each user
should increase as a function of group size at a low rate such that a single server is able to support a large
group.1

The objective of this paper is to present in detail our rekey transport protocol as well as its performance. In
particular, we have the following contributions. First, a new marking algorithm for batch rekeying is presented.

1To further increase system reliability as well as group size, we might consider the use of multiple servers, which is a topic beyond
the scope of this paper.
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Second, a key identification scheme, key assignment algorithm, and block ID estimation algorithm are presented
and evaluated. Third, we show that a fairly small FEC block size can be used to reduce encoding time at the
server without increasing server bandwidth overhead. Lastly, an adaptive algorithm to adjust the proactivity
factor is proposed and evaluated. The algorithm is found to be effective in controlling the number of NACKs
and reducing delivery latency. (Another adaptive algorithm with further refinements is presented in a recent
technical report [28].)

Our server protocol for each rekey message consists of four phases: (i) generating a sequence of packets
containing encrypted keys (calledENC packets), (ii) generating packets containing FEC redundant information
(calledPARITY packets), (iii) multicast ofENC andPARITY packets, and (iv) transition from multicast
to unicast.

To achieve reliability, our protocol runs in two steps: a multicast step followed by a unicast step. During the
multicast step, which typically lasts for just one or two rounds, almost all of the users will receive their new keys
because each user only needs one specific packet (guaranteed by our key assignment algorithm) and proactive
FEC is also used. Subsequently, for each user who cannot recover its new keys in the multicast step, the keys
are sent to the user via unicast. Since each user only needs a small number of new keys, and there are few users
remaining in the unicast step, our protocol achieves reliability with a small bandwidth overhead.

To meet the soft real-time requirement, proactive FEC in the multicast step is used to reduce delivery
latency [12, 20]. When needed, early transition from multicast to unicast reduces worst-case delivery latency
because the server does not need to wait for the maximum round-trip time (RTT ) for all users before sending
in the unicast step. By adaptively adjusting the time to switch to unicast, our protocol allows explicit tradeoff
between key server bandwidth overhead and worst-cast delivery latency.

Towards a scalable design, we observe that the key factors are processing and bandwidth requirements at
the key server and each user. To improve scalability, we use the following ideas: 1) To reduce the key server
processing requirement, we partition a rekey message into blocks to reduce the size of each block and therefore
reduce the key server’s FEC encoding time; 2) To reduce each user’s processing requirement, our key assignment
algorithm assigns encrypted new keys such that each user needs only one packet. Thus, the vast majority of
users do not need to recover their specific packets through FEC decoding; 3) To reduce key server bandwidth
requirement, our protocol uses multicast to send new keys to users initially; 4) To reduce a user’s bandwidth
requirement, we use unicast for each user who cannot recover its new keys during the multicast step. This way,
a small number of users in high-loss environments will not cause our protocol to perform multicast to all users.

The balance of this paper is organized as follows. In Section 2, we briefly review the ideas of key tree and
periodic batch rekeying. In Section 3 we present our server and user protocols. In Section 4 we show how to
construct a rekey message. The key identification scheme and key assignment algorithm are presented. Block
partitioning and block ID estimation are presented and evaluated in Section 5. In section 6 we discuss how to
adaptively adjust the proactivity factor to achieve low delivery latency with a small bandwidth overhead. In
Section 7 we discuss when and how to unicast. Our conclusions are in Section 8.

2 Background

We review in this section the ideas of key tree [23, 24] and periodic batch rekeying [21, 14, 26] and present a
new marking algorithm. The algorithm is used to update the key tree and generate workload for rekey transport.

2.1 Key tree

A key tree is a rooted tree with the group key as root. A key tree contains two types of nodes:u-nodescontaining
users’ individual keys, andk-nodescontaining the group key and auxiliary keys. A user is given the individual
key contained in its u-node as well as the keys contained in the k-nodes on the path from its u-node to the root.

3



Consider a group with nine users. An example key tree is shown in Figure 1. In this group, useru9 is given the
three keys on its path to the root:k9, k789, andk1−9. Key k9 is theindividual keyof u9, keyk1−9 is thegroup
keythat is shared by all users, andk789 is an auxiliary key shared byu7, u8, andu9.

k123

k2 k5 k8k1 k3 k4 k6 k7 k9

k456

k1−9

k789

(changed to k1−8)

(changed to k78)

u3 u4 u5 u6 u7 u8 u9

leave

u1 u2

group key

auxiliary

keys
individual

keys

u−nodes

k−nodes

k−node

Figure 1: An example key tree

Supposeu9 leaves the group. The key server will then need to change the keys thatu9 knows: changek1−9

to k1−8, and changek789 to k78. To distribute the new keys to the remaining users using the group-oriented
rekeying strategy [24], the key server constructs the followingrekey messageby traversing the key tree bottom-
up: ({k78}k7 , {k78}k8 , {k1−8}k123 , {k1−8}k456 , {k1−8}k78 ). Here{k′}k denotes keyk′ encrypted by keyk, and
is referred to as anencryption. Upon receiving a rekey message, a user extracts the encryptions that it needs.
For example,u7 only needs{k1−8}k78 and{k78}k7 . In other words, a user does not need to receive all of the
encryptions in a rekey message.

2.2 Periodic batch rekeying

Rekeying after every join or leave request, however, can be expensive. In periodic batch rekeying, the key
server first collectsJ join andL leave requests during a rekey interval. At the end of the rekey interval, the key
server runs a marking algorithm to update the key tree and construct a rekey subtree. The marking algorithm,
presented in Appendix B. is different from the one presented in our previous papers [26, 14].

In the marking algorithm, the key server first modifies the key tree to satisfy the leave and join requests.
The u-nodes for departed users are removed or replaced by u-nodes for newly joined users. IfJ > L, the key
server will split nodes after the rightmost k-node at the highest level (with the root at level 0, the lowest) to
accommodate the extra joins. After modifying the key tree, the key server changes the key in a k-node if the
k-node is on the path from a changed u-node (either removed or newly joined node) to the root.

Next, the key server constructs a rekey subtree. Arekey subtreeconsists of all of the k-nodes whose keys
have been updated in the key tree, the direct children of the updated k-nodes, and the edges connecting updated
k-nodes with their direct children. Given a rekey subtree, the key server can then generate encryptions. In
particular, for each edge in the rekey subtree, the key server uses the key in the child node to encrypt the key in
the parent node.

3 Protocol Overview

In this section, we give an overview of the rekey transport protocol. An informal specification of the key server
protocol is shown in Figure 2. Notation used in this paper is defined in Table 1.

First the key server constructs a rekey message as follows. At the beginning of a rekey interval, after the
marking algorithm has generated encryptions, the key server runs the key assignment algorithm to assign the
encryptions intoENC packets.2 Our key assignment algorithm guarantees that each user needs only oneENC
packet.

2An ENC packet is a protocol message generated in the application layer. But we will refer to it as apacketto conform to
terminology in the literature.
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symbol description
d degree of a key tree
J number of join requests in a rekey interval
L number of leave requests in a rekey interval
m node ID in an expanded key tree
N number of existing users
nk largest k-node ID

a number ofPARITY packets requested by a user in its NACK
amax[i] largest number ofPARITY packets requested by users for blocki

numNACK target number of NACKs for the first multicast round

h number of proactivePARITY packets for each block
k block size; also denotes a key when it appears in{k′}k
ρ proactivity factor, defined as(h + k)/k

α percentage of high loss rate receivers
p loss rate
ph high loss rate
pl low loss rate
ps loss rate at the source link

Table 1: Notation

Next, the key server uses a Reed-Solomon Erasure (RSE) coder to generate FEC redundant information,
calledPARITY packets. In particular, the key server partitionsENC packets into multiple blocks. Each
block containsk ENC packets. We callk the block size. The key server generatesh PARITY packets for
each block. We define the ratio of(h + k)/k asproactivity factor, denoted byρ.

Then the key server multicasts theENC andPARITY packets to all users. A user can recover its required
encryptions in any one of the following three cases: 1) The user receives the specificENC packet that contains
all of the encryptions for the user. 2) The user receives at leastk packets from the block that contains its specific
ENC packet, and thus the user can recover thek original ENC packets. 3) The user receives aUSR packet
during a subsequent unicast phase. TheUSR packet contains all of the encryptions needed by the user.

After multicastingENC andPARITY packets to users, the server waits for the duration of a round, which
is typically larger than the maximum round-trip time over all users, and collects NACKs from the users. Based
on the NACKs, the key server adaptively adjusts the proactivity factor to control the number of NACKs for the
next rekey message. Each NACK specifies the number ofPARITY packets that a user needs in order to have
k packets to recover its block. In particular, the key server collects the largest number ofPARITY packets
needed (denoted asamax[i]) for each blocki. At the beginning of the next round, the key server generates
amax[i] newPARITY packets for each blocki, and multicasts the newPARITY packets to the users. This
process repeats until the conditions for switching to unicast are satisfied (see Section 7). Typically, unicast will
start after one or two multicast rounds. During unicast, the key server sendsUSR packets to those users who
have not recovered their required encryptions.

An informal specification of the user protocol is shown in Figure 3. In our protocol, a NACK-based feedback
mechanism is used because the vast majority of users can receive or recover their required encryptions within a
single round. In particular, during each round, a user checks whether it has received its specificENC packet
or can recover its block. If not, the user will reporta, the number ofPARITY packets needed to recover
its block, to the key server. By the property of Reed-Solomon encoding,a is equal tok minus the number of
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1. use key assignment algorithm to constructENC packets
2. partition the sequence ofENC packets into blocks
3. multicastk ENC packets andh PARITY packets for each block
4. when timeout
5. do adaptively adjust proactivity factor
6. if conditions for switching to unicast hold
7. then unicastUSR packets to users who did not receive their required encryptions
8. else collectamax[i] as the largest number ofPARITY packets needed for each blocki
9. generateamax[i] newPARITY packets for each blocki
10. multicast thesePARITY packets to all users at the beginning of next round

Figure 2: Basic protocol for key server

1. when timeout
2. do if received its specificENC packet, or at leastk packets in the required block, or aUSR packet
3. then retrieve required encryptions
4. else a← number ofPARITY packets needed for recovery
5. senda by NACK to the key server

Figure 3: Basic protocol for a user

packets received in the block containing its specificENC packet.
In summary, our protocol uses four types of packets: 1)ENC packet, which contains encryptions for a set

of users; 2)PARITY packet, which contains FEC redundant information produced by a RSE coder; 3)USR
packet, which contains all of the encryptions for a specific user; 4)NACK packet, which is feedback from a
user to the key server. This type of packets reports the number ofPARITY packets needed for specific blocks.

Note that protocols given in Figure 2 and 3 only outline the behaviors of the key server and users. More
detailed specifications of these protocols and packet formats are shown in Appendix A.

4 Construction of ENC Packets

After running the marking algorithm to generate the encryptions of a rekey message, the key server next runs
a key assignment algorithm to assign the encryptions intoENC packets. To increase the probability for each
user to receive its required encryptions within one round, our key assignment algorithm guarantees that all of
the encryptions for a given user are assigned into a singleENC packet. For each user to identify its specific
ENC packet and extract its encryptions from theENC packet, the key server assigns a unique ID for each key,
user, and encryption; such ID information is included inENC packets.

Below, we first discuss how to assign an ID for each key, user, and encryption; then we define the format of
anENC packet. Lastly we present and evaluate our key assignment algorithm.

4.1 Key identification

To uniquely identify each key, the key server assigns an integer as the ID of each node on a key tree. In particular,
the key server first expands the key tree to make it full and balanced by adding null nodes, which we refer to as
n-nodes. As a result of the expansion, the key tree contains three types of nodes: u-nodes containing individual
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keys, k-nodes containing the group key and auxiliary keys, and n-nodes. Then the key server traverses the
expanded key tree in a top-down and left-right order, and sequentially assigns an integer as a node’s ID. The ID
starts from 0 and increments by 1. For example, the root node has an ID of0, and its leftmost child has an ID
of 1. Figure 4 (left) illustrates the IDs of nodes in an expanded key tree with a tree degree of three.

1 2

4 5 6 7 8 9 10 11 12

0

3 m

m−1

... ...

n−nodes

d*m+1 d*m+d

d

... ...

Figure 4: Illustration of key identification

Given the key identification strategy, we observe that the IDs of a node and its parent node have the following
simple relationship: If a node has an ID ofm, its parent node will have an ID ofbm−1

d c, whered is the key tree
degree. Figure 4 (right) illustrates the relationship.

To uniquely identify an encryption{k′}k, we assign the ID of the encrypting keyk as the ID of this encryp-
tion because the key in each node will be used at most once to encrypt another key. Sincek′ is the parent node
of k, its ID can be easily derived given the ID of the encryption.

The ID of a user is, by definition, the ID of its individual key. Given the ID of an encryption and the ID of
a user, by the simple relationship between a node and its parent node, a user can easily determine whether the
encryption is encrypted by a key that is on the path from the user’s u-node to the tree root.

When users join and leave, our marking algorithm may modify the structure of a key tree, and thus the IDs of
some nodes will be changed. For a user to determine the up-to-date ID of its u-node, a straightforward approach
is for the server to inform each user its new ID by sending a packet to the user. This approach, however, is
obviously not scalable. By Lemma 1 and Theorem 1, we show that by knowing the maximum ID of the current
k-nodes, each user can derive its new ID independently.

Lemma 1 If the key server uses the marking algorithm in Appendix B for tree update, then in the updated key
tree, the ID of any k-node is always less than the ID of any u-node.

Theorem 1 For any user, letm denote the user’s ID before the key server runs the marking algorithm, andm′

denote its ID after the key server finishes the marking algorithm. Letnk denote the maximum k-node ID after
the key server finishes the marking algorithm. Define functionf(x) = dxm + 1−dx

1−d for integerx ≥ 0, whered
is the key tree degree. Then there exists one and only one integerx′ ≥ 0 such thatnk < f(x′) ≤ d · nk + d.
Andm′ is equal tof(x′).

A proof is shown in Appendix C. By Theorem 1, we know that a user can derive its current ID by knowing
its old ID and the maximum ID of the current k-nodes.

4.2 Format of ENC packets

Given the results in subsection 4.1, we can now define the format of anENC packet. As shown in the Figure 5,
anENC packet has eight fields, and contains both ID information and encryptions.

The ID information in anENC packet allows a user to identify the packet, extract its required encryptions,
and update its user ID (if changed). In particular, Fields1 to 5 uniquely identify a packet. A flag bit in
Field 2 specifies whether this packet is a duplicate; this field will be further explained in Section 5. Field6
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1. Type:ENC (3 bits) 2. Flag bit (1 bit)
3. Rekey message ID (12 bits) 4. Block ID (8 bits)
5. Sequence number within a block (8 bits) 6.maxKID (16 bits)
7. <frmID, toID> (32 bits) 8. A list of<encryption, ID> (variable length)
9. Padding (variable length)

Figure 5: Format of anENC packet

is the maximum ID of the current k-nodes. As we discussed in the previous subsection, each user can derive
its current ID based upon this field and its old ID. Field7 specifies that thisENC packet contains only the
encryptions for users whose IDs are in the range of<frmID, toID> inclusively.

Field 8 of anENC packet contains a list of encryption and its ID pairs. After the encryption payload, an
ENC packet may be padded by zero to have fixed length because FEC encoding requires fixed length packets.
We observe that padding by zero will not cause any ambiguity because no encryption has an ID of zero.

4.3 User-oriented Key Assignment algorithm

Given the format of anENC packet, we next discuss the details of our key assignment algorithm, which we
refer to as the User-oriented Key Assignment (UKA) algorithm. UKA guarantees that all of the encryptions
for a user are assigned into a singleENC packet.

Figure 6 (left) illustrates a particular run of theUKA algorithm in which sevenENC packets are generated.
UKA first puts all of the user IDs into a list in increasing order. Then, a longest prefix of the list is extracted
such that all of the encryptions needed by the users in this prefix will fill up anENC packet. Repeatedly,UKA
generates a sequence ofENC packets whose<frmID, toID> intervals do not overlap. In particular, the
algorithm guarantees thattoID of a previousENC packet is less than thefrmID of the next packet. This
property is useful for block ID estimation to be performed by a user.

4.4 Performance ofUKA

UKA assigns all of the encryptions for a user into a singleENC packet, and thus significantly increases the
probability for a user to receive its encryptions in a single round. Consequently, the number of NACKs sent to
the key server is reduced.

This benefit, however, is achieved at an expense of sending duplicate encryptions. In a rekey subtree, users
may share encryptions. For two users whose encryptions are assigned into two differentENC packets, their
shared encryptions are duplicated in these twoENC packets; therefore, we expect thatUKA would increase
the bandwidth overhead at the key server.

We evaluate the performance ofUKA in this subsection using simulations. In the simulations, we assume
that at the beginning of a rekey interval the key tree is full and balanced withN u-nodes. During the rekey
interval, J join andL leave requests are processed. We further assume that the leave requests are uniformly
distributed over the u-nodes. We set the key tree degreed as4 and the length of anENC packet as1028 bytes.
In all of our experiments in this paper, each average value is computed based on at least100 simulation runs.

We first investigate the size of a rekey message as a function ofJ andL for N = 4096, as shown in Figure 6
(middle). For a fixedL, we observe that the average number ofENC packets increases linearly withJ . For a
fixedJ , we observe that asL increases, the number ofENC packets first increases (because more leaves imply
more keys to be changed), and then decreases (because now some keys can be pruned from the rekey subtree).

Next we investigate the size of a rekey message as a function ofN , as shown in Figure 6 (right). We observe
that the average number ofENC packets in a rekey message increases linearly withN for three combinations
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With theUKA algorithm, some encryptions are duplicated inENC packets. We defineduplication over-
headas the ratio of duplicated encryptions to the total number of encryptions in a rekey subtree. Figure 7 (left)
shows the average duplication overhead as a function ofJ andL for N = 4096. First consider the case of a
fixed L. We observe that the duplication overhead decreases from about0.1 to 0.05 as we increaseJ . Next
consider the case of a fixedJ . We observe that the duplication overhead first increases and then decreases as
we increaseL.

Last, we plot in Figure 7 (right) the average duplication overhead as a function ofN . We observe that for
J = 0, L = N/4 or J = L = N/4, the average duplication overhead increases approximately linearly with
log(N) for N ≥ 32. This is because the rekey subtree is almost full and balanced forJ = 0, L = N/4 or
J = L = N/4, and thus the duplication overhead is directly related to the tree heightlogd(N). We also observe
that the duplication overhead is generally less thanlogd(N)−1

46 , where46 is the number of encryptions that can
be carried in anENC packet with a packet size of1028 bytes. ForJ = N/4, L = 0, the rekey subtree is very
sparse, and thus the graph of duplication overhead fluctuates around the graph ofJ = L = N/4.

5 Block Partitioning

After runningUKA assignment algorithm to generate theENC packets of a rekey message, the key server
next generatesPARITY packets for theENC packets using a Reed-Solomon Erasure (RSE) coder.

Although grouping all of theENC packets into a single RSE block may reduce server bandwidth overhead,
a large block size can significantly increase encoding and decoding time [19, 3, 16]. For example, using the RSE
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coder of Rizzo [19], the encoding time for onePARITY packet is approximately a linear function of block
size. Our evaluation shows that for a large group, the number ofENC packets generated in a rekey interval
can be large. For example, for a group with4096 users, whenJ = L = N/4, the key server can generate up
to 128 ENC packets with a packet size of1028 bytes. Given such a large number ofENC packets in a rekey
interval, it is necessary to partition theENC packets into multiple blocks in order to reduce the key server’s
encoding time.

Consider theENC packets of a rekey message sequenced in order of generation byUKA algorithm. The
packet sequence is partitioned into blocks ofk packets, with the firstk packets forming the first block, the next
k packets forming the second block, and so on. Each block formed is assigned sequentially an integer-valued
block ID. Each packet within a block is assigned a sequence number from 0 tok-1.

To form the last block, the key server may need to duplicateENC packets in the last block until there arek
packets. (Alternatively, the key server may distribute the required number of duplicates over several blocks.) We
use a flag bit in eachENC packet to specify whether the packet is a duplicate, as shown in Figure 5. A duplicate
ENC packet has the same contents in all fields as the original packet except for the sequence number field and
the flag bit field. A new sequence number is assigned to each duplicateENC packet because Reed-Solomon
encoding needs to uniquely identify every packet in a block, duplicate or not. At a user, duplicate packets are
used in Reed-Solomon decoding; however, they are not used for block ID estimation (see Appendix D).

5.1 Block ID estimation

One issue that arises from partitioningENC packets into blocks is that if a user loses its specificENC packet,
the user will not be able to determine directly the block to which itsENC packet belongs. As a result, the user
needs to estimate the block ID to which its specificENC packet belongs. We present an algorithm for users
to estimate its block ID in Appendix D. With this algorithm, the probability that a user cannot determine the
precise value of its block ID is no more thanp2 in the worst case, wherep is the loss rate observed by the user
under the assumption of independent packet loss. When this happens, the user can still estimate a possible range
of its block ID. It will then requestPARITY packets for every block within this range when it sends a NACK.

5.2 Packets sent in interleaving pattern

After forming the blocks of a rekey message, the key server generatesPARITY packets, and multicasts all
ENC andPARITY packets to users. One remaining issue is to determine an order in which the key server
sends these packets. In our protocol, the key server sends packets of different blocks in an interleaving pattern.
By interleaving packets from different blocks, two packets from the same block will be separated by a larger time
interval, and thus are less likely to experience the same burst loss on a link. With interleaving, our evaluation
shows that the bandwidth overhead at the key server can be reduced.

5.3 Choosing block size

Block partitioning is carried out for a given block sizek. To determine the block size, we need to evaluate the
impact of block size on two performance metrics.

The first performance metric is the key server’s multicast bandwidth overhead, which is defined to be the
ratio of v′ to v, wherev is the number ofENC packets in a rekey message, andv′ is the total number of
packets that the key server multicasts to enable recovery of specificENC packets by all users. To evaluate the
bandwidth overhead, we consider the impact of block sizek for ρ = 1 only (that is,h = 0) in this section. The
extra bandwidth overhead due to an adaptiveρ, for ρ > 1, will be evaluated in Section 6. Such extra bandwidth
was found to be small (see Figure 18).
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The second performance metric is overall FEC encoding time, which is the time that the key server spends
to generate all of thePARITY packets for a rekey message. Although block sizek also has a direct impact on
each user’s FEC decoding time, the impact is small because in our protocol, the vast majority of users receive
their specificENC packets and thus do not perform any decoding.

We use simulations to evaluate the impact of block size. To support a large group size, we developed our
own simulator for a model proposed and used by J. Nonnenmacher, et al. [17]. In this model, the key server
connects to a backbone network via a source link, and each user connects to the backbone network via a receiver
link. The backbone network is assumed to be loss-free. The source link has a fixed loss rate ofps. A fractionα
of theN users have a high loss rate ofph, and the others have a low loss rate ofpl. For each given loss rate,p, we
use a two-state continuous-time Markov chain [16] to simulate burst loss as follows: the average duration of a
burst loss is100p msec, and the average duration of loss-free time between consecutive loss bursts is100

1−p msec.3

The default values in our simulations are as follows:N = 4096, d = 4, J = L = N/4, α = 20%, ph = 20%,
pl = 2%, ps = 1%, and the key server’s sending rate is10 packets/second, and the length of anENC packet is
1028 bytes. The same simulation topology and parameter values will also be used in experiments described in
the following sections unless otherwise stated.
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Figure 8: Average server bandwidth overhead (left) and relative overall FEC encoding time (right) as a function
of block size

The impact of block size on the key server’s bandwidth overhead is shown in Figure 8 (left). Observe that
the key server’s average bandwidth overhead is not sensitive to the block sizek for k ≥ 5.

We next consider the impact of block sizek on the key server’s overall FEC encoding time. If we use
Rizzo’s RSE coder [19], the encoding time for onePARITY packet is approximately a linear function ofk.
Therefore, the encoding time of allPARITY packets for a rekey message is approximately the product of the
total number ofPARITY packets and the encoding time for onePARITY packet. By the definition of the
key server’s bandwidth overhead, we know that the total number ofPARITY packets is proportional to the
server bandwidth overhead that is almost flat as a function ofk for k ≥ 5. The relative overall encoding time
(assumingk time units to generate onePARITY packet for block sizek) is shown in Figure 8 (right).

In summary, we found that, forρ = 1, a small block sizek can be chosen to enable fast FEC encoding at
the server without incurring a large server bandwidth overhead. For experiments in the following sections, we
choosek = 10 as the default value unless otherwise specified.

3The network topology and loss model are simplistic compared to the Internet. They are however needed for simulating a large
group size (up to16384). For simulation results from the use ofns and GT-ITM for a smaller group size, we refer the interested reader
to our recent work [28].
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6 Adaptive Proactive FEC Multicast

In the previous section, we discussed how to partition theENC packets of a rekey message into blocks and
generatePARITY packets for each block. The discussion, however, assumes a given proactivity factorρ. In
this section, we investigate how to determineρ.

Proactive FEC has been widely used to improve reliability and reduce delivery latency [20, 7, 16, 12, 2, 27,
15]. However, if the proactivity factor is too large, the key server may incur high bandwidth overhead. On the
other hand, if the proactivity factor is too small, the users may have to depend on retransmissions to achieve
reliability; thus, the benefit of reduced delivery latency diminishes. Furthermore, if we depend on proactive
FEC to avoid feedback implosion and the proactivity factor is too small, many users may experience packet
losses and the key server would be overwhelmed by NACKs.

The appropriate proactivity factor will depend on network status, in particular, factors such as network
topology, loss rates of network links, number of users in a session, and number of sessions using proactive FEC.
Such factors are unknown to the key server and may be changing during a session’s life time. The objective of
our next investigation, therefore, is to study how to adaptively adjust proactivity factor by observing its impact
on the number of NACKs from users. With adaptive adjustment, we aim to achieve low delivery latency with
small bandwidth overhead.

6.1 Impact of proactivity factor

To design an algorithm to adjustρ, we need to first evaluate the impact ofρ on the number of NACKs, the
delivery latency at users, and the bandwidth overhead at the key server.

We first evaluate the impact ofρ on the number of NACKs. Figure 9 (left) plots the average number of
NACKs received at the key server at the end of the first round. Note that y-axis is in log scale. We observe that
the average number of NACKs decreases exponentially as a function ofρ. (A similar observation was made in
a previous study [20].)
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Figure 9: Average number of NACKs in the first round (left) and average number of rounds for all users to
receive their encryptions (right) as a function ofρ

ρ Percentage of users who need
1 round 2 rounds 3 rounds ≥ 4 rounds

1 94.414% 5.134% 0.389% 0.063%
1.2 97.256% 2.502% 0.196% 0.046%
1.6 99.888% 0.090% 0.018% 0.004%
2 99.992% 0.006% 0.001% 0.001%

Table 2: Percentage of users on average who need a given number of rounds to receive their encryptions
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Figure 10: Average server bandwidth overhead as a function ofρ

We next evaluate the impact ofρ on delivery latency. Figure 10 plots the average number of rounds for all
users to receive their encryptions. We observe that the average number of rounds decreases almost linearly as
we increaseρ, until ρ is large enough and the curve levels off. Table 2 shows the percentage of users on average
who need a given number of rounds to receive their encryptions. Forρ = 1, we observe that on average94.41%
of the users can receive their encryptions within a single round; forρ = 1.6, the percentage value is increased
to 99.89%; for ρ = 2.0, the percentage value is increased to99.99%.

We next evaluate the impact ofρ on the average server bandwidth overhead, as shown in Figure 10. For
ρ close to 1, the key server sends a small amount of proactivePARITY packets during the first round, but it
needs to send more reactivePARITY packets in subsequent rounds to allow users to recover their packets.
As a result, a small increase ofρ has little impact on the average server bandwidth overhead. Whenρ becomes
large, the bandwidth overhead during the first round dominates the overall bandwidth overhead, and the overall
bandwidth overhead increases linearly withρ.

In summary, we observe that an increase ofρ can have the following three effects: 1) It will significantly
reduce the average number of NACKs. 2) It will reduce the worst-case delivery latency. 3) It will increase the
key server’s bandwidth overhead whenρ is larger than needed.

6.2 Adjustment of proactivity factor

We present in Figure 11 an algorithm to adaptively adjustρ. The basic idea of the algorithm is to adjustρ based
on NACK information received for the current rekey message so that the key server will receive a target number
of NACKs for the next rekey message. The key server runs this algorithm at the end of the first multicast round.

Algorithm AdjustRho(A)
� A = {ai}: each itemai is the number ofPARITY packets requested by a user.
1. if (size(A) > numNACK)
2. then sortA such thata0 ≥ a1 ≥ a2, ...
3. h← h + anumNACK

4. if (size(A) < numNACK)
5. then doh← max{0, h − 1} with probabilitymax{0, numNACK−2·size(A)

numNACK }
6. ρ← (h + k)/k

Figure 11: Algorithm to adaptively adjust proactivity factor

The input to algorithmAdjustRho is a listA. Each item inA is the number ofPARITY packets requested
by a user. If a user requests packets for a range of blocks, the key server records intoA the number ofPARITY
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packets requested for the block that contains the user’s specificENC packet.
The algorithm works as follows. For each rekey message, at the end of the first round, the key server

compares the number of NACKs it has received, which is equal tosizeof(A), and the number of NACKs it
targets (denoted bynumNACK). The comparison results in two cases.

In the first case, the key server receives more NACKs than its target. For this case, the server selects
the (numNACK + 1)th largest item (denoted byanumNACK ) from A, and increasesρ so thatanumNACK

additional proactivePARITY packets will be generated for each block of the next rekey message. To illustrate,
suppose10 users,ui, i = 0, ..., 9, have sent NACKs for the current rekey message, and userui requestsai

PARITY packets. For illustration purposes, we assumea0 ≥ a1 ≥ ... ≥ a9, and the target number of NACKs
is 2, that is,numNACK = 2. Then according to our algorithm, for the next rekey message, the key server
will send a2 additionalPARITY packets so that users{u2, u3, ..., u9} have a higher probability to recover
their ENC packets within a single round. This is because according to the current rekey message, if users
{u2, u3, ..., u9} were to receivea2 morePARITY packets, they could have recovered theirENC packets
within a single round.

In the second case, the key server receives less NACKs than its target. Although receiving less NACKs is
better in terms of reducing delivery latency, the small number of NACKs received may mean that the current
proactivity factor is too high, and thus may cause high bandwidth overhead. Therefore, the algorithm reducesρ

by onePARITY packet with probability equal tonumNACK−2·size(A)
numNACK .

6.3 Performance evaluation

We use simulations to evaluate algorithmAdjustRho. In Section 6.3.1, we evaluate the performance of our
algorithm in terms of controlling the number of NACKs. In Section 6.3.2, we investigate how to choose block
sizek for the adaptiveρ scenario. In Section 6.3.3, we evaluate the server bandwidth overhead for adaptive
proactive FEC.

6.3.1 Controlling the number of NACKs

Before evaluating whether algorithmAdjustRho can control the number of NACKs, we first investigate the
stability of the algorithm. For the simulations in this section, we set the target number of NACKs (numNACK)
at20.

Figure 12 shows howρ is adaptively adjusted when the key server sends a sequence of rekey messages. For
initial ρ = 1 as shown in the left figure, we observe that it takes only two or three rekey messages forρ to settle
down to stable values. For initialρ = 2 as shown in the right figure, we observe thatρ keeps decreasing until
it reaches stable values. Comparing both figures, we note that the stable values of these two figures match each
other very well.
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Figure 12: Traces of proactivity factor with initialρ = 1 (left) and initialρ = 2 (right)
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Figure 13: Traces of the number of NACKs received with initialρ = 1 (left) and initialρ = 2 (right)

Next we consider the number of NACKs received by the key server at the end of the first round for each
rekey message, as shown in Figure 13. In the left figure where the initialρ value is1, the number of NACKs
received stabilizes very quickly, and the stable values are generally less than1.5 times ofnumNACK. The
right figure shows the case for initialρ = 2. We observe that the stable values of these two figures match very
well.
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Figure 14: Traces of the number of NACKs for variousnumNACK values with initialρ = 1 (left) and initial
ρ = 2 (right)

Next we evaluate whether algorithmAdjustRho can control the number of NACKs for various values of
numNACK. As shown in the left figure (initiallyρ is 1) and right figure (initiallyρ is 2) of Figure 14, the
number of NACKs received at the key server fluctuates around eachnumNACK target value specified. How-
ever, we do observe that the fluctuations become more significant for larger values ofnumNACK. Therefore,
in choosingnumNACK, we need to consider the potential impact of large fluctuations whennumNACK
is large. In the experiments to be presented, we choose20 to be a fixed default value ofnumNACK unless
otherwise specified.

6.3.2 Choosing block size

In Section 5.3, we have discussed how to choose block sizek for ρ = 1. In this section, we reconsider this
problem for a new scenario whereρ is adaptively adjusted. To determine the block size, we consider the
following factors:

• Fluctuations in the number of NACKs received—From Figure 15, we observe that a very small block
size may cause large fluctuations in the number of NACKs. For example, fork = 1 or 5, the number of
NACKs received by the key server can reach as high as two times ofnumNACK.
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Figure 15: Traces of the number of NACKs for variousk values with initialρ = 1 (left) and initialρ = 2 (right)
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Figure 16: Average bandwidth overhead as a function of block size for variousα values (left) and for various
N values (right)
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Figure 17: Average number of rounds for all users to receive their encryptions (left) and fraction of users on
average who send NACKs in first round (right) as a function ofk

• Server bandwidth overhead—First consider Figure 16 (left), which shows the average bandwidth over-
head at the key server as a function ofk whenρ is adaptively adjusted.4 We observe that the average
server bandwidth overhead is very high fork = 1; then it decreases and becomes flat as we increasek.
This observation is almost the same as what we see forρ = 1 in Figure 8 (left), except that the bandwidth
overhead fork = 1 is much higher in the adaptiveρ scenario.

Next consider Figure 16 (right), which shows the average server bandwidth overhead as a function ofk
for different group sizes whenρ is adaptively adjusted. The figure shows the same trend as the left figure.
Note that the average server bandwidth overhead fluctuates a lot forN = 1024. This is because the rekey
message contains only32 ENC packets forN = 1024 andJ = L = N/4. For a largek, the number of

4In the case of adaptive FEC, we measure average values based on at least100 rekey messages after the key server has sent out10
rekey messages with initialρ = 1.
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duplicated packets in the last block can significantly affect the server bandwidth overhead.

• Overall FEC encoding time to generate allPARITY packets in a rekey message—According to our
observations in Figure 16, we know that fork ≥ 5, the server bandwidth overhead is not sensitive to
block size. As a result, the overall FEC encoding time at the key server will increase approximately at a
linear rate as block sizek increases.

• Delivery latency—From Figure 17 (left), we observe that the average number of rounds for all users to
receive their encryptions stays flat as we vary block sizek; therefore, block sizek does not have much
impact on the delivery latency at users. To further validate this result, Figure 17 (right) plots the fraction
of users on average who send NACKs in the first round. Fork ≥ 10, the curves for different values ofα
stay flat as block sizek increases.

In summary, whenρ is adaptively adjusted, block sizek should not be too small in order to avoid large
fluctuations in the number of NACKs and a large key server bandwidth overhead. On the other hand, block size
k should be small enough to reduce the key server’s FEC encoding time. This confirms our previous conclusion
for the case ofρ = 1.

6.3.3 Overhead of adaptive proactive FEC

From the previous section, we know that algorithmAdjustRho can effectively control the number of NACKs
and reduce delivery latency. However, compared with an approach that does not send any proactivePARITY
packets at all during the first round (i.e.ρ = 1) and only generates reactivePARITY packets during the
subsequent rounds, the adaptive proactive FEC scheme may incur extra bandwidth overhead at the key server.
We investigate this issue in this subsection.
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Figure 18: Extra server bandwidth caused by adaptiveρ for differentα
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Figure 19: Extra server bandwidth caused by adaptiveρ for differentN

We first evaluate the extra bandwidth overhead at the key server caused by proactive FEC. Figure 18 shows
the results for three loss environments. We observe that compared with the approach where allPARITY pack-
ets are generated reactively, our adaptive proactive scheme causes very little extra server bandwidth overhead in
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a homogeneous low loss environment (i.e.α = 0 ). Forα = 1, shown on the right of Figure 18, our scheme can
even save a little bandwidth. This is because forρ = 1, the key server takes more rounds for all users to recover
their encryptions in the reactive scheme than in the adaptive proactive scheme. Therefore, it is possible that the
total number ofPARITY packets generated during the rounds forρ = 1 is larger than that of the adaptive
proactive scheme. In a heterogeneous environment, such asα = 20% shown in the middle of Figure 18, the
extra bandwidth overhead generated by adaptiveρ is less than0.3 for k > 5.

We next consider the server bandwidth overhead for various group sizes. From Figure 19, we observe that
the extra bandwidth overhead incurred by adaptiveρ increases withN . The extra bandwidth overhead, however,
is still less than0.42 even forN = 16384 whenk > 5.

7 Speedup with unicast

Rekeying transport has a soft real-time requirement, that is, it is desired that all users receive their new keys
before the end of the rekey interval. To meet this requirement, we have proposed in the previous section to
adaptively adjustnumNACK andρ during the multicast phase to reduce the number of users missing deadline.
However, these approaches may not guarantee that all users can meet deadline becausenumNACK does not
directly affect delivery latency at users. In fact, from Table 2 we have observed that there may exist a few
NACKs after two rounds whennumNACK is 20.

To further increase the number of users meeting deadline, the key server will switch to unicast after one
or two multicast rounds. Unicast can reduce delivery latency compared to multicast because the duration of a
multicast round is typically larger than the maximum round-trip time over all users.

To use unicast, we need to solve two problems. First, we need to determine when to switch to unicast so that
unicast will not cause a large bandwidth overhead at the key server. Second, we need to determine how to send
the unicast packets so that each user who still needs recovery can receive itsUSR packet with high probability.

7.1 When to switch to unicast

One issue of early unicast is its possible high bandwidth overhead at the key server. However, in our protocol,
unicast will not cause large bandwidth overhead at the key server for the following two reasons. First, the
size of aUSR packet sent during unicast is much smaller than the size of anENC or PARITY packet. In
our protocol, aUSR packet contains only the encryptions for a specific user, and its packet size is at most
(3 + 20 · l) bytes, wherel is the height of the key tree. On the other hand, the size of anENC or PARITY
packet is typically more than one kilobyte long. Second, our protocol guarantees that only a few users need
unicast ifnumNACK is small enough. In fact, our evaluations show that fornumNACK = 20, N = 4096,
and initial ρ = 1, roughly5 or less users need recovery after two multicast rounds when the system becomes
stable.

Our conditions for switching to unicast are as follows. Our protocol switches to unicast after one or two
multicast rounds. We suggest two multicast rounds for a large rekey interval and one multicast round for a small
rekey interval. Even for a large interval, the time to switch to unicast can be earlier if the total length of the
USR packets is no more than that ofPARITY packets needed for the next multicast round.

7.2 Unicast protocol

Let R denote the set of users who cannot recover their new keys in the multicast step. For each useri in setR,
the key server can estimate the loss rate of useri while it receives the current rekey message. Letpi denote the
current loss rate of useri, and we have:

pi =
(k + h)− (k − ai)

k + h
=

h + ai

k + h
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whereh is the number of proactivePARITY packets multicasted for each block, andai is the number of
PARITY packets requested by useri in the latestNACK. We observe thatpi reflects the current loss rate of
useri based on the fact thati received onlyk − ai packets out ofk + h packets.

Given loss ratepi, if the key server unicastsc copies ofUSR packets to useri, then the probability for user
i to receive at least oneUSR packet is1 − pi

c. Therefore, if we want to guarantee that useri can receive its
USR packet with a probability larger than or equal toP, the key server should unicast at leastdlogpi(1 − P)e
copies ofUSR packets toi.

However, it is still possible that useri will lose all of theUSR packets. In this case, useri will send another
NACK to the key server. The key server will first update the value ofpi, and then unicast a new sequence of
USR packets to useri. This process repeats until useri receives oneUSR packet.

8 Conclusion

The objective of this paper is to present in detail our rekey transport protocol as well as its performance. Our
server protocol for each rekey message consists of four phases: (i) generating a sequence ofENC packets
containing encrypted keys, (ii) generatingPARITY packets, (iii) multicast ofENC andPARITY packets,
and (iv) transition from multicast to unicast.

In the first phase, after running the marking algorithm to generate encryptions for a rekey message, the key
server constructsENC packets. The major problem in this phase is to allow a user to identify its required
encryptions. To solve the problem, first we assign a unique integer ID to each key, user, and encryption.
Second, our key assignment algorithm guarantees that each user needs only oneENC packet. By including a
small amount of ID information inENC packets, each user can easily identify its specificENC packet and
extract the encryptions it needs.

In the second phase, the key server uses a RSE coder to generatePARITY packets forENC packets. The
major problem in this phase is to determine the block size for FEC encoding. This is because a large block size
can significantly increase FEC encoding and decoding time. Our performance results show that a small block
size can be chosen to provide fast FEC encoding without increasing bandwidth overhead. We also present an
algorithm for a user to estimate its block ID if it has not received its specificENC packet.

In the third phase, the key server multicasts bothENC andPARITY packets to all users. This proactive
FEC multicast can effectively reduce delivery latency of users; however, a large proactivity factor may increase
the server bandwidth overhead. Therefore, the major problem in this phase is how to achieve low delivery
latency with small bandwidth overhead. In our protocol, the key server adaptively adjusts the proactivity factor
based on past feedback. Our experiments show that the number of NACKs can be effectively controlled around
a target number, thus achieving low delivery latency, while the extra bandwidth overhead incurred is small.

In the fourth phase, the key server switches to unicast to reduce the worst-case delivery latency. The prob-
lems in this phase are (1) to determine when to switch to unicast such that unicast will not cause large server
bandwidth overhead, and (2) how to do unicast to provide small delivery latency. We let the key server switch
to unicast after one or two multicast rounds (depending upon deadline). To guarantee that each user who still
needs recovery can receive itsUSR packet with a high probability, the key server estimates the user’s loss rate,
and sends multiple copies of the user’sUSR packet during unicast.

In summary, we have the following contributions. First, a new marking algorithm for batch rekeying is
presented. Second, a key identification scheme, key assignment algorithm, and block ID estimation algorithm
are presented and evaluated. Third, we show that a fairly small FEC block size can be used to reduce encoding
time at the server without increasing server bandwidth overhead. Lastly, an adaptive algorithm to adjust the
proactivity factor is proposed and evaluated. The algorithm is found to be effective in controlling the number
of NACKs and reducing delivery latency. Another adaptive algorithm with further refinements is presented in a
recent technical report [28].
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A Protocol Specification

A.1 Packet formats

Figures 5, 20, 21 and 22 define the formats ofENC, PARITY , USR, andNACK packets, respectively.
In aUSR packet, the encryption IDs are optional if we arrange the encryptions in increasing order of ID.
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1. Type:PARITY (3 bits) 2. Reserved (1 bit)
3. Rekey message ID (12 bits) 4. Block ID (8 bits)
5. Sequence number within a block (8 bits) 6. FEC parity information for Fields6 to 9 of ENC packets

Figure 20: Format of aPARITY packet

1. Type:USR (3 bits) 2. Reserved (1 bit)
3. Rekey message ID (12 bits) 4. New user ID (16 bits)
5. A list of <encryption, ID> (variable length)

Figure 21: Format of aUSR packet

A.2 Specification of server and user protocols

The protocol for the key server is shown in Figure 23. And the protocol for a user is shown in Figure 24. In
both protocols, we consider only one rekey message.

B Marking algorithm

In periodic batch rekeying, the key server collectsJ join andL leave requests during a rekey interval. At the
end of the interval, the server runs the following marking algorithm to update the key tree and construct a rekey
subtree. The marking algorithm is different from the one presented in our previous papers [26, 14]. The n-node
and ID information are introduced in Section 4.

To update the key tree, the marking algorithm performs the following operations:

1. If J = L, replace all u-nodes who have left by the u-nodes of newly joined users.

2. If J < L, chooseJ u-nodes who have smallest IDs among theL departed u-nodes, and replace thoseJ
u-nodes with joins . Change the remainingL − J u-nodes to n-nodes. If all of the children of a k-node
are n-nodes, change the k-node to n-node. Repeat this operation iteratively on all k-nodes.

3. If J > L, first replace the u-nodes who have left by joins, then replace the n-nodes with ID between
nk + 1 andd · nk + d (inclusive) in order of from low to high, wherenk is the maximum ID of current
k-nodes. If there are still extra joins after this, keep splitting the node whose ID is equal tonk + 1, and
updatingnk. The split node becomes its leftmost child.

4. If any n-node has a descendant u-node, change the n-node to k-node.

1. Type:NACK (3 bits) 2. Reserved (1 bit)
3. Rekey message ID (12 bits) 4. User ID (16 bits)
5. A list of <number ofPARITY packets requested, block ID> (variable length)

Figure 22: Format of aNACK packet
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1. status← MULTICAST
2. for each blockdo multicastk ENC packets andh PARITY packets
3. R← empty set � R is the set of users who send NACKs
4. A← empty list � A contains NACK information
5. for each block ID ido amax[i]← 0
6. start timer
7. when receiving a NACK (m, a list of< a, i >)
8. � m: the ID of the user who sends the NACK
9. � < a, i >: the user requestsa PARITY packets for blocki
10. do if (status = MULTICAST)
11. then
12. R← R + {m}
13. im ← ID of the block to which the userm belongs to
14. am ← number ofPARITY packets that the user requests for blockim
15. appendam to A
16. amax[im]← max{amax[im], am}
17. elsesendUSR packets tom
18.when timeout
19. do if (it is the first round)
20. then UpdateRho(A)
21. if (conditions for switching to unicast hold)
22. then status← UNICAST
23. switch to unicast
24. else if(R is not empty)
25. then for each blocki
26. do multicastamax[i] newPARITY packets
27. amax[i]← 0
28. start timer

Figure 23: Key server protocol for one rekey message

To construct the rekey subtree, the marking algorithm first copies the current key tree as the initial rekey
subtree. Then the marking algorithm labels the nodes in the rekey subtree. We have four label: “Unchanged”,
“Join”, “Leave”, and “Replace”:

1. First label all of the n-nodes as Leave.

2. Then label the u-nodes. Label a u-node who has departed and then joined (as another user) as Replace, a
newly joined u-node as Join, and other u-nodes as Unchanged.

3. Next label the k-nodes: 1) If all the children of a key node are labeled Leave, label it as Leave, and remove
all of its children from the rekey subtree. 2) Otherwise, if all of its children are Unchanged, label it as
Unchanged, and remove all of its children. 3) Otherwise, if all of its children are Unchanged or Join, label
it as Join. 4) Otherwise, if the node has at least one Leave or Replace child, label it as Replace.

We call the remaining subtreerekey subtree. Each edge in the rekey subtree corresponds to an encryption. The
key server traverses the rekey subtree and uses the key assignment algorithm to assign encryptions into packets.
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1. for each block IDi do counter[i]← 0
2. start timer
3. when receiving a packetpkt
4. do if (pkt is aUSR packet)
5. then m← the new ID contained inpkt
6. retrieve encryptions from the packet and cancel timer
7. else if(pkt is anENC packet)
8. then m← new ID computed
9. if (pkt.frmID ≤ m ≤ pkt.toID)
10. then retrieve required encryptions from the packet, and cancel timer
11. else if(pkt is not a duplicate)
12. then EstimateBlkID(m,high, low, pkt)
13. pkt.blkID ← block ID contained inpkt
14. increasecounter[pkt.blkID] by 1
15.when timeout
16. do if (high = low) and(counter[high] ≥ k)
17. then decode the block, and retrieve required encryptions
18. else foreach block IDi ∈ [low, high]
19. do if (counter[i] ≥ k)
20. then decode the block
21. if (requiredENC packet is in the block)
22. then retrieve required encryptions, and quit
23. else put<k − counter[i], i> into aNACK packet
24. send theNACK packet to the key server, and start timer

Figure 24: User protocol for one rekey message

C Proofs of Lemma and Theorem

C.1 Proof of Lemma 1

1. Initially the key tree is empty. After collecting some join requests, the key server will construct a key tree
that satisfies the property stated in this lemma at the end of the first rekey interval.

2. The property holds when the key server processesJ join andL leave requests during any rekey interval
because:

(a) The property holds forJ ≤ L because joined u-nodes replace departed u-nodes in our marking
algorithm. Note that the algorithm does not change the IDs of the remaining u-nodes.

(b) ForJ > L, newly joined u-nodes first replace departed u-nodes or the n-nodes whose IDs are larger
thannk, wherenk is the maximum ID of current k-nodes . These replacements make the property
hold. Then the marking algorithm splits the node with IDnk + 1. Therefore, the property holds
after splitting.

C.2 Proof of Theorem 1

1. There exists an integerx′ ≥ 0 such thatnk < f(x′) ≤ d · nk + d, because:

24



(a) From the marking algorithm, we know that the u-nodem needs to change its ID only when it splits.
If no splitting happens, thenm′ = m = f(0). Otherwise, after splitting, the u-node becomes its
leftmost descendant. Then there exists an integerx′ > 0 such thatm′ = f(x′). By Lemma 1,
nk < m′ sincem′ is a u-node.

(b) Since the maximum ID of current k-nodes isnk, the maximum ID of current u-nodes must be less
than or equal tod · nk + d. Thereforem′ ≤ d · nk + d.

2. Suppose besidesm′, there exists another leftmost descendant (denoted bym′′) of m that also satisfies the
conditionnk < m′′ ≤ d · nk + d. Then we get a contradiction because:

(a) By the assumptionnk < m′′, m′′ must be a u-node or n-node. Furthermore,m′′ must be a n-node
and be a descendant ofm′ sincem′ is a u-node.

(b) Sincem′ is the ancestor ofm′′, nk is the parent node ofd · nk + d, and by the assumptionm′′ ≤
d · nk + d, we havem′ ≤ nk. This contradicts Lemma 1 sincem′ is a u-node.

3. From the proof above, we havem′ = f(x′).

D Estimating Block ID

When we partition theENC packets into multiple blocks, and if a user loses its specificENC packet, the user
will not be able to know directly the block to which itsENC packet belongs. We address this issue in this
appendix.

The key observation is that a user can estimate the block ID to which itsENC packet belongs from the
ID information contained in the receivedENC packets. Assume a user has IDm, and itsENC packet is the
jth packet in blocki. Let <i, j> denote the<block ID, sequence number within a block> pair. Whenever a
user receives anENC packet, it can refine its estimation of the block IDi. For example, ifm is larger than
toID of a received packet, theni should be larger than or equal to the block ID of the received packet because
the received packet must be generated earlier than the user’s specificENC packet. In this way, if the user can
receive any oneENC packet inSl = {<i − 1, k − 1>, <i, 0>,...,<i, j − 1>}, and receive any oneENC
packet inSu = {<i, j + 1>, ...,<i, k − 1>, <i + 1, 0>}, then it can determine the precise value ofi even if
< i, j > is lost. Figure 25 illustrates the block ID estimation. The detailed algorithm to estimate block ID is
shown in Figure 26.

k−1 ... ...

block i−1 block i block i+1

... ...k−2... ... k−1j+1jj−1 ... ...

lS : lower bound S : upper boundu

0 1 0 1

Figure 25: Illustration of block ID estimation

A user can determine the precise value of its required block ID with high probability. Only if all of the
ENC packets in setSl + {<i, j>} are lost, or when all of the packets in setSu + {<i, j>} are lost, the user
cannot determine the precise value of its required block ID. The probability of such failure, however, is as low as
pj+2 +pk−j+1−pk+2, wherep is the loss rate observed by the user when we assume independent losses among
packets. In the worst case whenj = 0 or j = k − 1, the probability is aboutp2. In case of failure, the user first
estimates a possible range of the required block ID. Then during feedback, the user requestsPARITY packets
for each block within the estimated block ID range. When the key server receives the NACK, it only considers
the block to which the user’s specificENC packet belongs. (See the key server’s protocol in Figure 23.)
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Algorithm EstimateBlkID (m, low, high, pkt)
� m is the ID of the user executing this procedure.
� low is the current estimate of the lower bound of required block ID.
� high is the current estimate of the upper bound of required block ID.
� pkt is theENC packet received.
1. if (pkt.toID ≤ m ≤ pkt.frmID)
2. then high← pkt.blkID
3. low← pkt.blkID
4. if (m > pkt.toID) and(pkt.seqNo = k − 1)
5. then low← max{low, pkt.blkID + 1}
6. if (m > pkt.toID) and(pkt.seqNo < k − 1)
7. then low← max{low, pkt.blkID}
8. if (m < pkt.frmID) and(pkt.seqNo = 0)
9. then high← min{high, pkt.blkID − 1}
10.if (m < pkt.frmID) and(pkt.seqNo > 0)
11. then high← min{high, pkt.blkID}
12.if (m > pkt.toID)
13. then high← min{high, pkt.blkID + dd·(pkt.maxKID+1)−pkt.toID−(k−1−pkt.seqNo)

k e}

Figure 26: Estimating required block ID

EstimateBlkID algorithm works as follows. Initially, a user sets the lower boundlow as0, and upper
boundhigh as infinity. Theif statement of lines12-13 in Figure 26 guarantees that eventuallyhigh will not be
infinity if the user receives anyENC packet. The reasoning is as follows. When the user receives anENC
packetpkt, the maxKID field of the packet specifies the maximum ID of current k-nodes. Therefore, the
maximum ID of current users cannot be larger thand · (pkt.maxKID + 1). In the worst case, oneENC
packet contains encryptions for only one user, then there are at most(d · (pkt.maxKID + 1) − pkt.toID)
ENC packets whosefrmID sub-field is larger thanpkt.toID. Therefore, the maximum block ID cannot be
larger thanpkt.blkID + dd·(pkt.maxKID+1)−pkt.toID−(k−1−pkt.seqNo)

k e.
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