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Abstract

ACL2(r), authored by Dr. Ruben A. Gamboa, is an extention
of ACL2, to allow reasoning about the real and complex irrational
numbers. The modifications are based on nonstandard analysis. Jun
Sawada, of IBM Research Labs, required the support of ACL2(r) in his
proof efforts to verify that the approximation used in the square root
function of the IBM Power4 processor had the accuracy required. To
verify the accuracy of the square root function, Taylor’s Theorem was
chosen. Taylor’s Theorem with Remainder is an approximation tool
commonly used in mathematics that provides a means for estimating
f(z) for an arbitrary z in the interval [a, b] from the values of f and
its derivitives at a. This thesis serves as an introduction to the work
completed in the proof of Taylor’s Theorem with Remainder, as well
as a general, concise introduction of nonstandard analysis in ACL2(r).
The introduction is presented as a guide through the foundational
lemmas needed in the proof of Taylor’s Theorem with Remainder.
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1 Introduction

More often than not, hardware products are produced and released without
verification of correctness. “Intel Corp. last week took a $475 dollar million
write-off to cover costs associated with the divide bug in the Pentium mi-
croprocessor’s floating-point unit.”[7]. Even with extensive testing, errors in
these products often do not surface until after the product is in use. With
hardware verification, these errors can be reduced, if not eliminated. The
product is more robust, easier to maintain, and as a result, yields a higher
lever of customer satisfaction. “The dream is that we should be able to
write down mathematically precise conjectures about special-purpose hard-
ware designs, microprocessors, microcode programs, compilers, algorithms,
etc., and then to prove them with a mechanized reasoning system.” [2, p. 9].
ACL2 is a prominent reasoning tool used in industry to realize this dream.
Components of the following devices have been verified with ACL2: AMD
K5, AMD Athlon, Motorola CAP digital signal processor, Rockwell Collins
JEM1, Rockwell Collins CAPS family of avionic microprocessors, and IBM
4758 cryptographic co-processor. These particular proofs were done before
chip fabrication.

At times, verification of correctness in industry requires the reasoning
about the real number system. ACL2(r), an extension of ACL2, authored by
Dr. Ruben A. Gamboa, provides a tool for reasoning about the real numbers.
Jun Sawada, of IBM Research Labs, needed to verify that the square root
function of the IBM Power4 processor had the accuracy required, requiring
the use of ACL2(r). In particular, Taylor’s Theorem with Remainder was
used to estimate the value of the square root function and place a bound on
the error in the approximation. Therefore, Taylor’s Theorem with Remain-
der was formalized in ACL2(r), as well as the various foundational lemmas
required by the formalization. Jun Sawada then used this work by instantiat-
ing Taylor’s Theorem with Remainder with the square root function yielding
the desired results.

In the beginning of these efforts, a brief, concise introduction to ACL2(r)
was lacking. The goal of this paper is to provide such an introduction, while
referencing a concrete example of ACL2(r) used in industry. The paper is
organized as follows. An introduction to the notions of nonstandard analysis
is given, followed by a description of one approach used to define irrational
functions in ACL2(r). Two basic lemmas in ACL2 (r) needed in the proofs of
the various foundational lemmas that support the proof of Taylor’s Theorem



with Remainder are presented. The foundational lemmas are then presented
with their corresponding proofs in ACL2(r). New user information regarding
various tools and lemmas needed in nonstandard analysis is interspersed
within this section. A brief outline of Taylor’s Theorem with Remainder is
presented. Finally, there are brief comments provided in regards to beginning
the use of the ACL2(r) system.

2 A Brief Introduction
to Nonstandard Analysis

What #s nonstandard analysis? In short, nonstandard analysis, a construc-
tion of analysis, constructs a new notion of numbers, including the notions of
infinitesimal and infinitely large. In regards to this construction, do not con-
fuse the phrase ‘new notion of numbers’ with ‘new numbers.” Nonstandard
analysis simply uses different notions of numbers to reason about concepts in
analysis. Keisler offers an intuitive introduction to a freshman level calculus
course using nonstandard analysis. The Keisler text will serve as a basis
for this brief introduction to nonstandard analysis [1]. “The calculus was
originally developed using the intuitive concept of an infinitesimal, or an in-
finitely small number. But for the past one hundred years infinitesimals have
been banished from the calculus course for reasons of mathematical rigor.”
The approach of nonstandard analysis and the concept of the infinitesimal,
however, has its advantages. The most important advantage is that it is
closer to the intuition which initially led to the development of calculus. As
a result, the concepts of the derivative and integral are quite intuitive. The
purpose of this information is not to defend this position, but rather to offer
this alternative information in regards to standard analysis. For a history of
nonstandard analysis, refer to [5, Ch. 1].

Why was nonstandard analysis chosen as the basis for reasoning about
the real numbers in ACL2(r)? A typical proof in standard analysis uses
quantifiers extensively, whereas nonstandard analysis does not rely as heavily
on quantifiers. For example, consider the following definition of a limit in

standard analysis. Let p;,po,ps,..., be a sequence of points in the metric
space E. A point p in metric space E is called a limit of the sequence
P1, P2, P3, ---, if, given any real number € > 0, there exists a positive integer

N, such that distance between p,p, < € whenever n > N [3, p. 92]. This



definition relies on the use of the quantifiers for all and there exists. Although
ACL2 supports first-order quantifiers for all and there exists, with use of the
defun-sk event, ACL2 currently does not reason about quantifiers well. Proof
support for quantification is therefore limited in ACL2.

There are other reasons for the choice of nonstandard analysis, noted in
[4, p. 3]. For example, if we consider the axiom of a least upper bound,
namely, that every bounded set of real numbers has a least upper bound,
one must reason about the an infinite set. ACL2 does not have a first-class
notion of the concept infinite set. It is these reasons, among others, that led
to the choice of nonstandard analysis as the framework on which to build
ACL2(r).

2.1 The Number Line in Nonstandard Analysis:
The Inclusion of Infinitesimals
and Infinitely Large Numbers

This paper assumes the reader has knowledge of the construction of the
real number line, familiar from previous courses in elementary algebra. The
number line in nonstandard analysis is commonly referred to as the hyperreal
line, denoted commonly as *x. The hyperreal number line is constructed such
that it includes all the previously known real numbers, with also numbers
that are infintesimal and numbers that are infinitely large. The hyperreal
numbers infinitely close to zero are called infinitesimal numbers, or simply
infinitesimals. Intuitively, imagine that the previously known real number
line is stretched and new numbers fill the gaps. Infinitesimals are the new
numbers between zero and the rest of the real numbers. For technical reasons,
we consider zero to be infinitesimal as well. Infinitely large numbers are the
reciprocals of nonzero infinitesimals. Zero is the only previously known real
number that is an infinitesimal.

What properties hold for the hyperreal numbers? Naturally, we would
like to see the same properties hold for the hyperreal numbers that hold for
the previously known real number numbers. In fact, the previous properties
that hold for the known real numbers also hold for the hyperreals as well.
For example, the same algebraic properties hold. An example of such an
algebraic property is as follows. If a,b are hyperreal numbers, so are a + b,
ab, a — b. If a is a hyperreal number and a is not equal to zero, 1/a is a
hyperreal number. Furthermore, the following properties also hold for the



hyperreal numbers, a, b, c, z, e.

DEFINITION. Commutativity.
a+b=>b+ a and ab = ba

DEFINITION. Associativity.
(a+b)+c=a+ (b+c) and (ab)c = a(be)

DEFINITION. Distributivity.
a(b+ ¢) = (ab) + (ac)

DEFINITION. Closure.
a + b and ab are both in Rx

DEFINITION. Existence of Identity Element.
There exist elements z and e in ¥* such that ¢ + z = a and ae = a

DEFINITION. Existence of Inverse Elements.
There exist elements —a and ™!, with a # 0, for every a such that a+(—a) =
zand a(a™!) =e

This concept of transferring properties of the previously known real num-
bers to the hyperreal numbers is known as the Transfer Principle. Intuitively,
it states that if a property is held by the previously known real number line,
then this property extends to the hyperreal number line as well. The trans-
fer priciple is beyond the scope of this thesis, a principle that requires an
extensive digression into mathematical logic.

One relationship between the hyperreals and the previously known real
numbers is denoted by the notion of the standard part.

DEFINITION. The standard part of a, where a is a hyperreal number, is
the real number infinitely close to a. The standard part of a is denoted by

st(a).

This definition is only true when a is not infinitely large. Following from
this definition, we have that if b is a hyperreal number,

(i) st(b) is a real number.



(ii) b = st(b) + ¢, where € is an infinitesimal.
(iii) If b is real, then b = st(b).

In computing standard parts, a helpful tool is used. Before introducing
this tool, we must first define the terms finite, positive infinite, and negative
infinite. Let b be a hyperreal number. Then b is classified as

(i) Finite if b is between two real numbers.
(ii) Positively infinite if b is greater than every real number.
(iii) Negatively infinite if b is less than every real number.

The computation tool for the hyperreals can now be stated below.

DEFINITION. If a,b are finite hyperreals and n is a standard number, then

(i) st(—a) = —st(a).

(ii) st(a + b) = st(a) + st(b).

(iii) st(a — b) = st(a) — st(b).

(iv) st(ab) = st(a)st(b).

(v) If st(b) # 0, then st(a/b) = st(a)/st(b).
(vi) st(a") = (st(a))".

(vii) If a > 0, then st(/a) = {/(st(a)).
(viii) If a < b,then st(a) < st(b).

In conclusion, the set of standard numbers is simply the previously known
set of real numbers. That is, the set of standard numbers is denoted

{z|zeR}

The set of nonstandard numbers is the previously known set of real numbers,
with the infinitesimals and infinitely large numbers included. That is, the
set of nonstandard number is denoted

{z|ze R+ —R)}

One relationship between hyperreal numbers, infinitely close, is defined
below.

DEFINITION. Two hyperreal numbers b and ¢ are said to be infinitely close
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to each other, if their difference b — ¢ is an infinitesimal.

The theorem below states reflexivity, symmetry, and transitivity in re-
gards to the infinitely close notion.

THEOREM.

(i) a is infinitely close to a.

(ii) If @ is infinitely close to b, then b is infinitely close to a.

(iii) If @ is infinitely close to b and b is infinitely close to ¢, then a is infinitely
close to c.

2.2 The Derivative

Before moving to the definition of the derivative, the definition of the slope in
nonstandard analysis must be discussed. The definition of slope is as follows.

DEFINITION. S is said to be the slope of f at a if

. (f(a+AAx;— f(a))

Intuitively, the slope, when it exists, is infinitely close to the ratio of the
change in f(z) to an infinitely small change in z. We can now define the
derivative in nonstandard analysis.

DEFINITION. Let f be a real function of one variable. The derivative of
f, denoted f' is the new function f’ whose values at x is the slope of f at z.

e [t 89 = st
F(z) = st [ 22 Axx_ ?

whenever the slope exists. Intuitively, for any point a, the slope of f at a is
the same as the derivative of f at a.

There are several foundational lemmas in regards to differentiation. These
lemmas are known commonly as the Sum Rule, Product Rule, Constant
Rule, Chain Rule, and Power Rule, which will be stated in section 4. The
reason behind presenting the foundational lemmas in this paper is that the
differences between nonstandard analysis and standard analysis lie mostly at
the foundational level.
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2.3 Continuity

“Intuitively, a curve y = f(x) is continuous if it forms an unbroken line, that
is , whenever x is close to za, f(x1) is close to f(z2). To make this intuitive
idea into a mathematical definition, we substitute infinitely close for close.”
1, p. 145].

DEFINITION. f is said to be continuous at a point ¢ if
(i) f is defined at c.
(ii) whenever x is infinitely close to ¢, f(z) is infinitely close to f(c).

There are several foundational lemmas in regards to continuity.

THEOREM. Suppose functions f and g are continuous at c.

(i) For any constant k, the function k  f(z) is continuous at c.
(ii) f(z) + g(x) is continuous at c.

(iii) f(z) * g(x) is continuous at c.

(iv) (f(z))", where n is a natural number, is continuous at c.

3 Nonstandard Analysis Terminology
Represented in ACL2(r)

In section 2, a brief, general introduction to nonstandard analysis was given.
In this section, some of those notions will be discussed as they appear in
ACL2(r). The notion of a number as an infinitesimal is formalized with
the ACL2(r) function i-small, that is, (i-small x) is the ACL2(r) way to
assert that x is infinitesimal. A number z is i-small if and only if z is an
infinitesimal. The notion of infinitely large is formalized with the ACL2(r)
function i-large, that is, (i-large x) is the ACL2(r) way to assert that x
is infinitely large. A number z is i-large if and only if z is not zero and 1/z is
an infinitesimal. A number z is i-limited if and only if = is not i-large. That
is, a number z is i-limited if and only if it is not infinitely large, denoted
by (i-limited x). Standard numbers are not infinitely large, as discussed
earlier. Therefore, standard numbers are i-limited. The notion of infinitely
close is formalized with the ACL2(r) function i-close, denoted by (i-close
x y) is the ACL2(r) way to assert that x and y are i-close. Numbers z,y are
i-close if and only if z — y is an infinitesimal.
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A relationship between the reals and hyperreals is denoted in ACL2(r) as
follows. There exists an ACL2(r) function that maps i-limited numbers to
standard numbers in the following way. For a given i-limited number z, the
standard part of this number is defined to be the unique real number i-close
to z. The function is denoted (standard-part x).

The theorem in the above section about the reflexivity, symmetry, and
transitiviy of infinitely close numbers is represented in ACL2(r) as follows.

REFLEXIVITY.

(defthm i-close-reflexive
(implies (acl2-numberp x)
(i-close x x)))

SYMMETRY.

(defthm i-close-symmetric
(implies (i-close x y)
(i-close y x))
thints (("Goal’’"
:use ((:theorem
(equal (+ (- x) y) (- (+ x (-y)))))
:in-theory
(disable DISTRIBUTIVITY-OF-MINUS-OVER-+))))

TRANSITIVITY.

(defthm i-close-transitive
(implies (and (i-close x y)
(i-close y z))
(i-close x z))
thints (("Goal"
:use ((:instance standard-part-of-plus
x (- xvy))
(y (- y2))))
:in-theory (disable standard-part-of-plus
i-close-reflexive
i-close-symmetric))))
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3.1 Defining Generic Functions in ACL2(r):
One Approach

In beginning the proof of the foundational lemmas, generic hyperreal func-
tions must be defined. In order to define generic functions in ACL2(r), we
used encapsulation of local functions. Encapsulation can be used to con-
strain some functions or to hide events. The functions dc-fn1 and dc-fn2
are hyperreal functions defined in ACL2(r), which take one argument and
return one value. dc-fn-domain-p is used to define the domain over which
the function is both defined and differentiable.

(encapsulate

;; Generic functions, dc-fn1 and dc-£fn2.

((dc-fn1 (x) t)

(de-fn2 (x) t)
(dc-fnil-deriv (x) t)
(dc-fn2-deriv (x) t)
(dc-fn-domain-p (x) t))

;; The function dc-fn-domain-p recognizes a standard interval of reals.

(local (defun dc-fn-domain-p (x) (realp x))))

(defthm dc-fn-domain-standard
(implies (dc-fn-domain-p x)
(dc-fn-domain-p (standard-part x))))

(defthm dc-fn-domain-real
(implies (dc-fn-domain-p x)
(realp x)))

(defthm dc-fn-domain-is-interval
(implies (and (dc-fn-domain-p 1)
(dc-fn-domain-p h)

(realp x)
(<=1 x)
(<= x h))

(dc-fn-domain-p x)))
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;; fnl and fn-1-deriv are standard real-valued functions,
:; and fnil-deriv is the derivative of fn1

(local (defun dc-fnl (x) x))
(local (defun dc-fnl-deriv (x) (declare (ignore x)) 1))

For the purposes of ACL2(r), we must know that the function returns
real values for real arguments and standard values for standard arguments.
This basically was a result of bridging the gap between ACL2 and ACL2(r).
The reason for this is beyond the scope of this thesis. The theorem dc-fn-
domain-standard states that if z is a member of the domain upon which f;
is defined and differentiable, then the standard part of z is in the domain
as well. The theorem dc-fn-domain-real states that if z is a member of
the domain upon which f; is defined and differentiable, then z is a hyperreal
number.

(defthm dc-fnl-standard
(implies (and (dc-fn-domain-p x)
(standard-numberp x))
(standard-numberp (dc-fnl x))))

(defthm dc-fni-deriv-standard
(implies (and (dc-fn-domain-p x)
(standard-numberp x))
(standard-numberp (dc-fnl-deriv x))))

(defthm dc-fnil-real
(implies (dc-fn-domain-p x)
(realp (dc-fnl x))))

(defthm dc-fnil-deriv-real
(implies (dc-fn-domain-p x)
(realp (dc-fni-deriv x))))

;; similar definitions and constraints for fn2...

3.2 The Derivative in ACL2(r)

We can now define the derivative in ACL2(r), which states that if x is a
standard number, and z,y are in the interval upon which the function and
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its derivative are defined, that is, dc-fn-domain, and if z is infinitely close to
y, with z, ¥ not equal, then the slope of the function at that point is infinitely
close to the derivative of f; at z.

(defthm dc-fnil-derivative
(implies (and (standard-numberp x)
(dc-fn-domain-p x)
(dc-fn-domain-p y)
(i-close x y)
(not (= x y)))
(i-close (/ (- (dc-fnl x) (dc-fnl y)) (- x y))
(dc-fnl-deriv x))))

3.3 Continuity in ACL2(r)

We can now define the concept of continuity in ACL2(r) as follows, stating
that if z is a standard number, x,y are members of the domain upon which
f1 is defined and continuous, z, y are i-close, then f;(z) is i-close to fi(y)-

(defthm cc-fnl-continuous
(implies (and (standard-numberp x)
(cc-fn-domain-p x)
(i-close x y)
(cc-fn-domain-p y))
(i-close (cc-fnl x) (cc-fnl y))))

3.4 Two Basic Example Theorems in ACL2(r)

The following two important theorems are used in later proofs regarding
continuity and differentiation. If xz;, zo are i-close, and y;, yo are i-close,
then the sum of z; and y; is i-close to the sum of x5 and y,. That is,

(defthm close-plus
(implies (and (i-close x1 x2)
(i-close y1 y2))
(i-close (+ x1 y1) (+ x2 y2)))
thints (...))
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If 1, x5 are i-close, and ¥4, o are i-close, and both z1, y; are i-limited,
then the product of z; and y; is i-close to the product of x5 and y,. That is,

(defthm close-times
(implies (and (i-close x1 x2)
(i-close yi y2)
(i-limited x1)
(i-limited y1))
(i-close (* x1 y1) (* x2 y2)))
thints (...))

A good, basic exercise in nonstandard analysis, as well as an exercise in
ACL2(r), is for the reader is to prove, by hand, the lemma close-times,
then complete the proof in ACL2(r). To begin the hand proof, one could
assume that z, y; are not limited, that is, that x;, y; are infinitely large,
and show that the product of x1, y; is not infinitely close to the product of
Zo, Y. The ACL2(r) proof of close-times is discussed in section 4.2.

4 Differentiation

At this point, the reader has been introduced to many concepts in nonstan-
dard analysis, as well as their formalization in ACL2(r), without discussion
of the hints and tools needed in ACL2(r) to complete the proof. It is now
that we introduce a subset of the hints, tools and lemmas needed to complete
these proofs. The generic functions defined in section 3.1 can now be used
here in the proof of the foundational lemmas.

There are several foundational lemmas in nonstandard analysis about
the differentiation of functions. These lemmas are known as the Sum Rule,
Product Rule, Constant Rule, Chain Rule, and Power Rule for differenti-
ation. Below is the statement of each foundational lemma, along with its
corresponding proof in ACL2(r).

4.1 The Sum Rule

[f(z) +g(2)] = f'(2) + ¢'(2)
The function dc-fni1+fn2 is introduced, the statement of the sum of

two generic functions dc-fnl1 and dc-fn2, followed by the statement of the
derivative of the sum of these functions. That is,
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(defun dc-fn1+fn2 (x)
(+ (dc-fnl x) (dc-fn2 x)))

(defun dc-fnl+fn2-deriv (i n a x)
(+ (dc-fnil-deriv x) (dc-fn2-deriv x)))

Suppose z is a standard number and y is i-close to z. From the theorem

dc-fni-derivative it follows that W is i-close to fi'(z). Similarly,

w is i-close to fy'(z). Adding these two and simplifying yields the
desired result. The key lemma is that when z; is i-close to x5 and y; is i-close

to Y9, 1 + Y1 is i-close to x5 + 2, shown again below.

(defthm close-plus
(implies (and (i-close x1 x2)
(i-close y1 y2))
(i-close (+ x1 y1) (+ x2 y2)))
:hints (("Goal" :in-theory (enable i-close))))

The in-theory hint allows the rules in the ACL2(r) database regarding
i-close to be enabled. Why would something be disabled? A rewrite rule
fires whenever an instance of the conclusion is encountered. A :use hint
adds, as a hypothesis, an instance of the lemma used. If the lemma is an
enabled rewrite rule, it will “see” the added hypothesis and rewrite it to T.
Intuitively, this results in the hypotheses being cancelled out, and ACL2(r)
is unable to use this information to prove the theorem. For non-recursive
functions such as i-close, it is necessary to disable definitions to prevent
ACL2(r) from opening them up, missing out on all the lemmas we may know
about that particular function. With the close-plus lemma now in the
ACL2(r) database, ACL2(r) can prove the main result, the Sum Rule.

(defthm dc-fnl+fn2-derivative
(implies (and (standard-numberp x)
(dc-fn-domain-p x)
(dc-fn-domain-p y)
(i-close x y)
(not (= x y)))

17



(i-close (/ (- (dc-fn1+fn2 x) (dc-fni+fn2 y))
- xy)
(dc-fni+fn2-deriv x)))
:hints (("Goal"
:in-theory (disable close-plus)
:use (dc-fnl-derivative
dc-fn2-derivative
(:instance close-plus
(x1 (/ (- (dc-fn1 x) (dc-fnl y))
(- xy))
(x2 (dc-fnil-deriv x))
(y1 (/ (- (dc-fn2 x) (dc-fn2 y))
-xy))
(y2 (dc-fn2-deriv x)))))))

4.2 The Product Rule

[f (@)g()] = f(z)g'(z) + f'(x)g(z)

First the function dc-fn1*fn2 is introduced, which is the statement of the
product of generic functions dc-fn1 and dc-fn2, followed by the statement
of the derivative of dc-fni1*fn2. That is,

(defun dc-fni*fn2 (x)
(* (de-fnl x) (dc-fn2 x)))

(defun dc-fnl*fn2-deriv (x)
(+ (* (dc-fnl x) (dc-fn2-deriv x))
(¥ (dc—-fnl-deriv x) (dc-fn2 x))))

There are several lemmas needed in this proof, most of which are shown
below. Presentation of these lemmas review more important concepts in
nonstandard analysis, as well as expose the new user to simple examples
of ACL2(r) tools used in the proofs. The lemma i-limited-plus-lemma
states that if z,y are standard numbers, and z-eps, y-eps are i-small, then
the sum of x, z-eps, y, y-eps is i-limited. This lemma uses the lemma
standard+small->i-limited, not shown, which states that the sum of a
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standard number and an i-small number are added, the result is i-limited.
In this lemma, a hint is given to ACL2(r) to complete the proof. That is,
ACL2(r) is told to use an instance of standard+small->i-limited, by in-
stantiating x, and eps in standard+small->i-limited, with (+ x y) and
(+ x-eps y-eps), respectively. The instance hint simply means that
ACL2(r) is told to use the lemma standard+small->i-limited with these
new values. The new rule after instantiation will be used in the proof of
i-limited-plus-lemma.

(defthm i-limited-plus-lemma
(implies
(and (standard-numberp x)
(i-small x-eps)
(standard-numberp y)
(i-small y-eps))
(i-limited (+ x

X-eps
y
y-eps)))
:hints
(("Goal"

:use
((:instance
standard+small->i-limited
(x (+ xy))
(eps (+ x-eps y-eps))))
:in-theory
(disable
standard+small->i-limited)))))

The lemma i-limited-plus states that if 2,y are i-limited, then their sum is
i-limited. This lemma uses i-limited-plus-lemma by instantiating the vari-
ables x, x-eps, y, y-eps, with (standard-part x), (non-standard -part
x), (standard-part y), and (nonstandard-part y), respectively.

(defthm i-limited-plus
(implies (and (i-limited x)
(i-limited y))
(i-limited (+ x y)))
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:hints (("Goal"
:use ((:instance
i-limited-plus—-lemma
(x (standard-part x))
(x-eps (non-standard-part x))
(y (standard-part y))
(y-eps (non-standard-part y))))
:in-theory (disable i-limited-plus-lemma))))

The lemma small*limited->small states that if = is i-small and y is i-
limited, then the product of z,y is i-small. Here, the necessary fact that
i-small numbers are also i-limited is given explicitly by the hint :in-theory
(enablesmall-are-limited).

(defthm small*limited->small
(implies (and (i-small x)
(i-limited y))
(i-small (* x y)))
thints (("Goal" :in-theory (enable small-are-limited))))

Next, the lemma i-close-limited is shown, which is needed later for the
proof of the lemma close-times. It states that if x is i-limited and x,y are
i-close, then y is i-limited. The lemma i-close-limited clearly relies on
i-limited-plus.

(defthm i-close-limited
(implies (and (i-limited x)
(i-close x y))
(i-limited y))
thints (("Goal"
:use ((:instance i-limited-plus
x (- xy))
(y (- x))))
:in-theory (disable i-large
i-small
i-limited-plus))))

The theorem close-times—-h states that if z{, x5 are i-close and y is i-limited,
then the product of z1, y is i-close to 5, y. The lemma close-times, discussed
above, plays a role in the proof of the product rule twice, as will be explained
below.
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(defthm close-times-h
(implies (and (i-close x1 x2)
(i-limited y))
(i-close (x x1 y) (*x x2 y)))
thints (("Goal" :in-theory (enable i-close))
("Goal’’" :use ((:instance small*limited->small
(x (- x1 x2))
(y v))
:in-theory (disable small*limited->small))))

ACL2(r) can now prove close-times, which states that if x1, xo are i-close
and y;, yo are i-close, and z;, y; are i-limited, then the product of zi,
Y1 is i-close to x3, o, using an instance of the theorems close-times-h,
i-close-transitive, and i-close-limited.

(defthm close-times
(implies (and (i-close x1 x2)
(i-close y1 y2)
(i-limited x1)
(i-limited y1))
(i-close (* x1 y1) (* x2 y2)))
:hints (("Goal"
:use ((:instance close-times-h
(x1 x1)
(x2 x2)
(y y1))
(:instance close-times-h
(x1 y1)
(x2 y2)
(y x2))
(:instance i-close-transitive
(x (x x1 y1))
(y (x x2 y1))
(z (x x2 y2)))
(:instance i-close-limited
(x x1)
(y x2)))
:in-theory (disable close-times-h
i-close-transitive
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i-close-limited))))

This next lemma begins the general proof of the product rule, as seen in
nonstandard analysis. The fact that standards are limited is used to signify
to ACL2(r) that x is limited. From the following set of hypotheses and the
definition of the derivative of f, that is, f, % is i-close to f5', the
first lemma can be proved. The set of hypotheses, used throughout the rest
of the proof of the product rule, are x is a standard number, z, y are members
of the domain upon which f; and f, are defined and differentiable, x is i-

close to y,  # y, and fa(x) is i-close to fa(y). Since % is i-close

to fo', fi (x)% is i-close to fi(z)fo'. Close- times is used, with the
instantiation listed below. This is possible because fi(z) is i-limited. Recall
that standards are i-limited and x is a standard number in the hypothesis.
fi(z) will return standard values for standard arguments.

At this time, it is important to point out that there is a very common
mistake made by new users. Assume that one has proven a theorem pre-
viously which is now applicable in a current proof effort and is currently
available in the ACL2(r) database. One cannot assume that ACL2(r) knows
to use the theorem in the current proof effort. One may, at times, need to
explicitly tell the theorem prover to use a certain theorem. This is evident in
the need for the :use hint for dc-fnl-derivative and dc-fn2-derivative
in dc-fn1*xfn2-derivative-lemma-1, below.

(defthm dc-fnlxfn2-derivative-lemma-1
(implies (and (standard-numberp x)
(dc-fn-domain-p x)
(dc-fn-domain-p y)
(i-close x y)
(not (= x y))
(i-close (dc-fn2 x) (dc-fn2 y)))
(i-close (* (dc-fnl x)
(/ (- (dc-fn2 x) (dc-fn2 y)) (- x y)))
(* (dc-fnl x)
(dc-fn2-deriv x))))
:hints (("Goal"
:in-theory (enable-disable
(standards-are-limited)
(close-times))
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:use (dc-fnl-derivative
dc—-fn2-derivative
(:instance close-times

(x1 (dc—fn1 x))

(x2 (dc—fn1 x))
(y1 (dc-fn2-deriv x))
(y2 (/ (- (dc-fn2 x)
(dc-fn2 y))
CxyYNIN))

Since iiﬂ%%ffiggl is i-close to f1/, jb(y)Lﬁl%%E£§QQl is i-close to fo(y)f1'. The
lemma close-times is used, with the instantiation listed below. This is

possible because fo(y) is i-limited.

(defthm dc-fnl*fn2-derivative-lemma-2
(implies
(and (standard-numberp x)
(dc-fn-domain-p x)
(dc-fn-domain-p y)
(i-close x y)
(not (= x y))
(i-close (dc-fn2 x)
(dc-fn2 y)))
(i-close (* (dc-fn2 y)
(/ (- (dc-fn1 x)
(dc-fn1 y))
(- x )
(* (dc-fn2 y)
(dc-fnil-deriv x))))
:hints (("Goal"
:in-theory
(enable-disable
(standards-are-limited)
(close-times))
:use (dc-fnil-derivative
dc-fn2-derivative
(:instance i-close-limited-lemma
(a (dc-fn2 x))
(b (dc-fn2 y)))
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(:instance close-times
(x1 (dc-fn2 y))
(x2 (dc-fn2 y))
(y1 (dc-fnil-deriv x))
(y2 (/ (- (dc-fnl x)
(dc-fnl y))
CxwNNN)

In the final lemma needed for the proof, the lemma close-plus is used, as
shown above, as well as dc-fn1*fn2-derivative-lemma-1 and dc-fnl*fn2-
derivative-lemma-2 above. It is known now from these two lemmas that
fi (x)% is i-close to fi(z)fo’ and that fﬂx)% is i-close to
f2(z) fi'. That

f1($)( = 5;(1/ +fo(z) fl(z Z{)(y))
is i-close to fi(z)fo' + fo(x)fi' follows from the lemma close-plus. Fur-
thermore, because z is i-close to ¥, it is known that

filz )(h( '+f ()(hiz g(x
is i-close to fi(z)fo' + fo(x)fi". The result is dc-fni*fn2-derivative-
lemma-3.

(defthm dc-fni*fn2-derivative-lemma-3
(implies (and (standard-numberp x)
(dc-fn-domain-p x)
(dc-fn-domain-p y)
(i-close x y)
(not (= x y))
(i-close (dc-fn2 x) (dc-fn2 y)))
(i-close (+ (x (dc-fnl x)
(/ (- (dc-fn2 x) (dc-fn2 y))
(- xy))
(* (dc-fn2 y)
(/ (- (dc-fn1 x) (dc-fni1 y))
(- xy))))
(+ (x (dc-fn1l x)
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(dc-fn2-deriv x))
(* (dc-fn2 x)
(dc-fnil-deriv x)))))
:hints (("Goal"
:in-theory (enable-disable
(standards-are-limited)
(close-plus))
:use (dc-fnil-derivative
dc-fn2-derivative
dc—-fnlxfn2-derivative-lemma-1
dc-fnilxfn2-derivative-lemma-2
(:instance close-plus
(x1 (¢ (dc-fn1l x)
(/ (- (dc-fn2 x) (dc-fn2 y))
(- xy)))
(x2 (x (dc-fn1l x)
(dc-fn2-deriv x)))
(y1 (x (dc-fn2 y)
(/ (- (dc-fn1l x) (dc-fnl y))
(- xy)))
(y2 (x (dc-fn2 x)
(dc-fnl-deriv x))))))))

With the above theorems in the ACL2(r) database, the main theorem is
proved. This is done with some algebraic manipulation by the theorem
prover, with the main result, the Product Rule, that is, dc—-fnil*fn2--
derivative.

(defthm dc-fnlxfn2-derivative
(implies (and (standard-numberp x)
(dc-fn-domain-p x)
(dc-fn-domain-p y)
(i-close x y)
(not (= x y)))
(i-close (/ (- (dc-fni1*fn2 x) (dc-fnl*fn2 y))
- xy)
(dc-fn1*fn2-deriv x)))
hints (("Goal"
:use (dc-fnlx*fn2-derivative-lemma-3))))
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4.3 The Constant Rule

[kf ()] = kf'(z)

First the function dc-k*fn1 is introduced, which is the statement of a
hyperreal constant multiplied by a generic function in ACL2(r), followed by
the statement of the derivative. That is,

(defun dc-k*fnl (x)
(* (dec-k) (dc-fnl x)))

(defun dc-kxfnl-deriv (x)
(¥ (dc-k) (dc-fnl-deriv x)))

At this point, functional instantiation failed, the reasoning explained in a
different paper, Taylor’s Theorem with Remainder. Therefore the lemma
close-times-k was proven which states if x1, xo are i-close, £ is i-limited,
and k is a hyperreal number, then the product of z;, k is i-close to the
product of x4, k.

(defthm close-times-k
(implies (and (i-close x1 x2)
(i-limited k)
(realp k))
(i-close (* x1 k) (* x2 k)))
thints (("Goal"
:in-theory (enable i-close))

("Goal’’"

:use ((:instance small*limited->small
(x (- x1 x2))
(y K)))

:in-theory (disable small*limited->small))))

The main result can now be proved, the Constant Rule, as shown below,
dc-k*fnl-derivative.

(defthm dc-kx*fnl-derivative
(implies (and (standard-numberp x)
(dc-fn-domain-p x)
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(dc-fn-domain-p y)
(i-close x y)
(not (= x y)))
(i-close (/ (- (dc-k*fnl x) (dc-k*fnl y))
- xy)
(dc-k*fnl-deriv x)))
:hints (("Goal"
:in-theory (disable close-times-k)
:use (dc-fnil-derivative
dc-fn2-derivative
(:instance close-times-k
(x1 (/ (- (dc-fnl x) (dc-fnl y))
(- xy)))
(x2 (dc-fnil-deriv x))
(k  (dc-k)))))))

4.4 The Chain Rule

[f o g(@)] = f'(9(=))g'(z)

The reader now has enough background to prove the Chain Rule at this
point. Where does one start? To be consistent with the ideas presented
earlier, one might begin by defining a function that states the composition of
functions as well as a function that states the derivative of the composition
of functions. As before, the function dc-fnl-o0-fn2 is introduced, which is
the statement of the composition of functions in ACL2(r), followed by the
statement of its derivative. That is,

(defun dc-fnl-o-fn2 (x)
(dc-fn1l (dc-fn2 x)))

(defun dc-fnl-o-fn2-deriv (x)
(x (dc-fnil-deriv (dc-fn2 x))
(dc-fn2-deriv x)))

Next, we need to consider the hand proof of the chain rule. There are
two cases. The first case is the case in which fy(z) = fo(y), the second case
is when fo(z) # fa(y). The proof of the first case is as follows. Using the
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lemma close-times, one can directly show that {2 (x) 22W) f1( f,()) is i-close
to fa(x)fi(f2(x)), which simplifies with algebraic mampulatlon to the result
of case one of the chain rule, namely dc-fnl-o-fn2-derivative-case-1.
ACL2(r) performs this algebraic manipulation without assistance from the
user.

(defthm dc-fnl-o-fn2-derivative-case-1
(implies (and (standard-numberp x)
(dc-fn-domain-p x)
(dc-fn-domain-p y)
(dc-fn-domain-p (dc-fn2 x))
(i-close x y)
(= (dc-fn2 x) (dc-fn2 y))
(not (= x y)))
(i-close (/ (- (dc-fnl-o-fn2 x) (dc-fnl-o-fn2 y))
- xy)
(dc-fnl-o-fn2-deriv x)))
:hints (("Goal"
:in-theory (enable-disable
(standards-are-limited)
(close-times))
:use (dc-fn2-derivative
(:instance close-times
(x1 (/ (- (dc-fn2 x) (dc-fn2 y))
(- xy)))
(x2 (dc-fn2-deriv x))
(y1 (dc-fni-deriv (dc-fn2 x)))
(y2 (dc-fnil-deriv (dc-fn2 x))))))))

The second case also uses the lemma close-times, with instantiations shown
below. However, to simplify algebraically to the result needed, ACL2(r)
needed some help with algebra, that is, alg-help and alg-helpl. The
lemma alg-help simply states that if a, b, ¢ are hyperreal numbers, with b, c
# 0, then ¢ = 2%, The lemma alg-helpl states that if z,y are hyperreal

cbh
numbers, then the term x # y is equivalent to the statement x — y = 0.

(defthm alg-help
(implies (and (realp a)

28



(realp b)
(realp c)
(not (= ¢ 0))
(not (= b 0)))
(equal (/ a b)
(x (/ ac) (/ cb))))

(defthm alg-helpl
(implies (and (realp x)
(realp y))
(equal (not (= x y))
(not (= (- xy) 0))))

With these two results in the ACL2(r) database, and the :use hint close-
times, case two can be proven, that is, dc-fnl-o-fn2-derivative-case-2.
Since we are using the composition of functions, x, y in dc-fnl-derivative
are instantiated with (dc-fn2 x) and (dc-fn2 y), respectively. The exer-
cise of the algebraic manipulations needed after instantiation of close-times
with the shown values is left for the reader. This exercise is helpful in under-
standing the manipulation of formulas while maintaining certain relationships
between values, such as the relationship i-close. The exercise is very similar
to the detailed example of the Product Rule above.

(defthm dc-fnil-o-fn2-derivative-case-2
(implies (and (standard-numberp x)
(dc-fn-domain-p x)
(dc-fn-domain-p y)
(dc-fn-domain-p (dc-fn2 x))
(dc-fn-domain-p (dc-fn2 y))
(i-close x y)
(not (= x y))
(not (= (dc-fn2 x) (dc-fn2 y))))
(i-close (/ (- (dc-fnl-o-fn2 x) (dc-fnl-o-fn2 y))
- xy))
(dc-fnl-o-fn2-deriv x)))
:hints (("Goal"
:in-theory (enable-disable
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(standards-are-limited)
(close-times
alg-help
dc-fnl-derivative))
:use (dc-fn2-derivative
alg-helpl
(:instance dc-fnl-derivative
(x (dec-fn2 x))
(y (dc-fn2 y)))
(:instance close-times
(x1 (dc-fnl-deriv (dc-fn2 x)))
(x2 (/ (- (dc-fnl-o0-fn2 x)
(dc-fnl-o0-fn2 y))
(- (dc-fn2 x)
(dc-fn2 y))))
(y1 (dc-fn2-deriv x))
(y2 (/ (- (dc-fn2 x)
(dc-fn2 y))
-xy))N)
(:instance alg-help
(a (- (dc-fn1l-o0-fn2 x)
(dc-fnl-o-fn2 y)))
M (- xy))
(¢ (- (dc-fn2 x)
(de-fn2 y))))))))

At this point, the main result can be proven, by combining both cases as
shown below. The result is the Chain Rule in ACL2(r), formalized in the
theorem dc-fnl-o-fn2-derivative.

(defthm dc-fnl-o-fn2-derivative
(implies (and (standard-numberp x)

(dc-fn-domain-p x)
(dc-fn-domain-p y)
(dc-fn-domain-p (dc-fn2 x))
(dc-fn-domain-p (dc-fn2 y))
(i-close x y)

(not (= x y)))
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(i-close (/ (- (dc-fnl-o-fn2 x) (dc-fnl-o-fn2 y))
- xy)
(dc-fnl-o-fn2-deriv x)))
:hints (("Goal"
:use ((:instance dc-fnl-o-fn2-derivative-case-1)
(:instance dc-fnl-o-fn2-derivative-case-2))
:in-theory nil)))

5 Continuity

The following work in regards to continuity presented here was not used
directly for Taylor’s Theorem. However, it presents important concepts in
nonstandard analysis, as well as the presentation of their corresponding proof
in ACL2(x).

Redundantly, generic, continuous functions are defined, as well as their
definition in regards to continuity in ACL2(r).

((encapsulate

((cc-fnl (x) t)
(cc-fn2 (x) t)
(cc-fn-domain-p (x) t))

;; Our witness continuous function is the identity function.

(local (defun cc-fnl (x) x))
(local (defun cc-fn2 (x) x))
(local (defun cc-fn-domain-p (x) (realp x)))

;3 The function returns standard values for
;; standard arguments.

(defthm cc-fnl-standard
(implies (and (cc-fn-domain-p x)
(standard-numberp x))
(standard-numberp (cc-fnl x)))
:rule-classes (:rewrite :type-prescription))
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(defthm cc-fn2-standard
(implies (and (cc-fn-domain-p x)
(standard-numberp x))
(standard-numberp (cc-fn2 x)))
:rule-classes (:rewrite :type-prescription))

(defthm cc-fn-domain-standard

(implies (cc-fn-domain-p x)
(cc-fn-domain-p (standard-part x)))
:rule-classes (:rewrite :type-prescription))

;5 For real arguments, the function returns real values.

(defthm cc-fn-domain-real
(implies (cc-fn-domain-p x)
(realp x)))

(defthm cc-fn-domain-is-interval
(implies (and (cc-fn-domain-p 1)
(cc-fn-domain-p h)

(realp x)
(k=1 x)
(<= x h))

(cc-fn-domain-p x)))

(defthm cc-fnl-real
(implies (cc-fn-domain-p x)
(realp (cc-fnil x)))
:rule-classes (:rewrite :type-prescription))

(defthm cc-fn2-real
(implies (cc-fn-domain-p x)
(realp (cc-fn2 x)))
:rule-classes (:rewrite :type-prescription))

;; If x is a standard real and y is a real close to x,
;; then fni1(x) is close to fni(y).
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(defthm cc-fnl-continuous
(implies (and (standard-numberp x)
(cc-fn-domain-p x)
(i-close x y)
(cc-fn-domain-p y))
(i-close (cc-fnl x) (cc-fnl y))))

(defthm cc-fn2-continuous
(implies (and (standard-numberp x)
(cc-fn-domain-p x)
(i-close x y)
(cc—-fn-domain-p y))
(i-close (cc-fn2 x) (cc-fn2 y))))

The definition of the sum of two generic, continuous functions in ACL2(r),
that is, the sum of two continuous function is also continuous. The sum of
continuous functions, cc-fn1 and cc-fn2 is defined by function cc-fni1+fn2,
that is,

(defun cc-fnil+fn2 (x)
(+ (cc-fnl x) (cc-fn2 x)))

With the assumptions z is a standard number, x, y are members of the
domain upon which f; and f5 are defined and continuous, and z is i-close to
y, then it follows that the sum of the functions applied to z is i-close to the
sum of the functions applied to y. The lemma close-plus is again needed
in this proof. Although it is not used explicitly with a hint, ACL2(r) does
use it in the proof of cc-fn1+fn2-continuous, shown below

(defthm cc-fnl+fn2-continuous
(implies (and (standard-numberp x)
(cc-fn-domain-p x)
(i-close x y)
(cc-fn-domain-p y))
(i-close (cc-fni1+fn2 x) (cc-fni+fn2 y)))
:hints (("Goal"
:in-theory
(enable standards-are-limited))))
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Analogously, the proof for the product of two functions is shown below.
The lemma close-times is used by ACL2(r), without the user providing the
hint that close-times is needed.

(defun cc-fni1*fn2 (x)
(* (cc-fnl x) (cc-fn2 x)))

(defthm fnixfn2-continuous
(implies (and (standard-numberp x)
(cc-fn-domain-p x)
(i-close x y)
(cc-fn-domain-p y))
(i-close (cc-fni1*fn2 x) (cc-fnlxfn2 y)))
:hints (("Goal"
:in-theory
(enable standards-are-limited))))

Intially, there was an attempt to functionally instantiate the above prod-
uct rule for continuity as follows. cc-fnl would be instantiated with con-
stant, hyperreal value, and cc-fn2 would again be a generic continuous func-
tion. However, an obstacle was encountered, the same of which was men-
tioned in the proof of the Constant Rule in regards to differentiation. Again,
this obstacle is discussed in a different paper, Taylor’s Theorem with Re-
mainder. Therefore, the lemma close-times-k was needed stating that if
T1, T9 are i-close, k is a hyperreal and i-limited, then the product of k, x; is
i-close to the product of k, x4.

(defun k*cc-fnl (k x)
(x k (cc-fnl x)))

(defthm close-times-k
(implies (and (i-close x1 x2)
(realp k)
(i-limited k))
(i-close (* k x1) (*x k x2)))
:hints (("Goal"
:in-theory (enable i-close))
(nGoalJ on
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:use ((:instance small*limited->small
(x (- x1 x2))
(y k)))
:in-theory
(disable small*limited->small)))))

The main result can be proved, the product of hyperreal number & and f;(z)
is i-close to the product of k£ and f,(y).

(defthm kxcc-fnl-continuous
(implies (and (standard-numberp x)
(cc-fn-domain-p x)
(i-close x y)
(cc-fn-domain-p y)
(realp k)
(i-limited k))
(i-close (kxcc-fnl k x) (kxcc-fnl k y)))
:hints (("Goal"
:in-theory (enable standards-are-limited)))))

6 Taylor’s Theorem with Remainder

The point of including this section of the paper is to provide the hand proof
of Taylor’s Theorem with Remainder, giving the reader insight as to why the
foundational lemmas are needed in the proof.

Given a function f with n continuous derivatives on the interval [a, ]
and its (n+ 1)st derivative defined on (a, b), Taylor’s formula with remainder
provides a means for estimating f(z) for an arbitrary « € [a,b] from the
values of f and its derivatives at a. Specifically,

n o f@(a) . (z—a) o)
@) = )+ 3 = P e o,

where (3 is some point in the interval (a, b).

The proof, presented in [6] among others, follows the proof of the mean
value theorem. First, a special function F' is constructed, and then Rolle’s
lemma is applied to F' to find a 8 for which F'(3) = 0. Rolle’s Lemma
states: If a function f is differentiable on interval [a,b], and if f(a) = f(b),
then there is some (3, a member of [a,b], such that f(5) = 0.
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Rolle’s Theorem had been formalized in ACL2(r) prior to this research.
Taylor’s formula follows from solving F'(5) = 0 for f(x).

The function F' is defined differently for each point z in [a,b]. In the
following discussion, let z be a specific, fixed point in [a,b]. Define F' over
the interval [a, 2| as follows:

z":f' (x—t) (—t)"

Ft) = fla — + (n+1)!

7

where A is a constant that does not depend on ¢. The specific value of A is
chosen to satisfy the criteria for Rolle’s lemma. Specifically, before Rolle’s
lemma can be applied to F on [a, x], we must show that F is differentiable,
and that F(a) = F(z) = 0. Clearly F(z) = 0, since all the (z — t)° terms
vanish, leaving only f(z) — f(t) with ¢ = z. To ensure F(a) = 0, it is only
necessary to set F'(a) = 0 in the expression above and solve for A. This gives

s e

=1

Moreover, F'is clearly differentiable since it is the sum of differentiable terms.
Using Rolle’s lemma, we can conclude that there is some § € (a, z) such that
F'(B) = 0. But observe that the terms in F'(¢) neatly cancel out. That

is, the derivative of ;" ; M sunphﬁes to —f'(t) + w This
means that F'(5) =0 = f(n+1)(f3)( A n’f) A. Since = # B, the terms

(x—n_?)n can be factored and ehmlnated, leaving

0 = —f"() - A
" f0(a) - (z —a)') (n !
— _f(n+1)(ﬁ)+{f(x) _f(a)_zf (a) - ( ) }(JE _2)12;.

Solving for f(z) in the formula above results in Taylor’s formula with re-
mainder:

n f@)(q) - (z — a)’ N SO (8)

)n+1
pat i! (n+1)!

(x—a

The reader now has a helpful background, a general introduction to the
paper, Taylor’s Theorem with Remainder.
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7 Further Information about
the ACL2(r) System

To begin using ACL2(r), one needs some basic notions in nonstandard anal-
ysis, some of which have been presented here. A more comprehensive guide
can be found in the Keisler text [1]. Another helpful guide written by
Joel Tropp, is Infinitesimals: History and Application [5]. A complete re-
source for ACL2(r) is Dr. Ruben Gamboa’s dissertation, Mechanically Ver-
ifying Real-Valued Algorithms in ACL2 and the article Nonstandard Anal-
ysis in ACL2(x) [4] both currently available at http://www.gamboas.org/-
ruben/research. An essential resource for any work with ACL2 is Computer-
Aided Reasoning: An Approach by Kaufmann, Manolios, and Moore, cur-
rently available at http://www. cs.utezas. edu/users/ moore/publications/acl2-
books/OrderingInformation.html.

The top-level book of theorems that should be included in ACL2(r) is
nsa.lisp. If it is not already included, realp.lisp must be included as
well. There are many theorems in nonstandard analysis proven is these books,
such theorems about continuity, derivatives, trigonometric functions, expt,
nsa, sqrt, binomial theorem, to indicate a few.

The home page of ACL2 is available at http://www.cs.utezas.edu/users,/-
moore/acl2, and current research involving ACL2 can be found at http://-
www.cs.utexas. edu/users/moore/acl2/admin/atp.

Further examples of ACL2 use can be found in Computer-Aided Reason-
ing: ACL2 Case Studies by Kaufmann, Manolios, and Moore (eds.), which
can also be found at hittp://www.cs.utexas.edu/ users/moore/ publications,/-
acl2-books/OrderingInfor mation. html.
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