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ABSTRACT 

 

In this paper, we investigate the security of microcommerce digital cash protocols that 

can facilitate the selling of content over the Internet. Examples of such content are web pages, 

newspaper articles, and even individual plays of computer games. We focus on two particular 

digital cash protocols, namely Compaq’s Millicent and IBM’s Micropayments. For each of these 

two protocols, we present a formal specification using the Abstract Protocol notation, and then 

discuss how an adversary can attack the protocol using message forgery, modification, and 

replay. We then use three concepts of convergence theory, namely closure, convergence, and 

protection, to show that each protocol is secure against these attacks. Finally, we formally specify 

and verify the Secure Sockets Layer protocol, which can be used to provide privacy for these 

digital cash protocols. 
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1 Introduction 

As commerce on the Internet grows, there is an increasing need for protocols to facilitate 

online transactions. Many such protocols have been introduced to address this need. For instance, 

the Secure Electronic Transactions protocol, widely known as SET, enables online transactions 

by securing purchases made with credit cards [13]. 

Other protocols, called digital cash protocols, are tailored to small purchases in 

microcommerce applications. Thus, they are useful in facilitating the selling of content, such as 

web pages, over the Internet. Examples of digital cash protocols are PayWord and MicroMint 

[12], Compaq’s Millicent [2][9] and IBM’s Micropayments [5]. These protocols need to be 

regarded as “secure” before they can win the approval of customers and vendors alike. In spite of 

this, none of these protocols have been formally specified and verified. In this paper, we address 

this issue by formally specifying Compaq’s Millicent and IBM’s Micropayments, and then use 

concepts from convergence theory (originally presented in [4]) to verify the correctness and 

security of these protocols. We chose these two protocols for two reasons. First, they are both 

prominent and supported by large corporations. Second, the techniques that we use in specifying 

and verifying these protocols can be used in specifying and verifying other digital cash protocols. 

The rest of this paper is organized as follows. In section 2, we present a brief introduction 

to the Abstract Protocol notation. In section 3, we outline a method used to verify the security of 

protocols presented in this notation. In section 4, we formally specify the Millicent protocol, 

while in section 5, we present a proof of its correctness (the formal details of which are in 

Appendix A). Similarly, in section 6, we formally specify the Micropayments protocol, while in 

section 7, we present a proof of its correctness (the formal details of which are in Appendix B). In 

section 8, we specify the Secure Sockets Layer protocol, which can be used to provide privacy in 

a digital cash protocol; in section 9, we present a proof of this protocol’s correctness (the formal 

details of which are in Appendix C). Finally, in section 10, we present concluding remarks. 
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2 Abstract Protocol Notation 

We specify digital cash protocols using a version of the Abstract Protocol notation 

presented in [3]. In this notation, each process in a protocol is defined by sets of constants, 

variables, parameters, and actions. For instance, in a protocol consisting of two processes p and q 

and two opposite-direction channels, one from p to q and one from q to p, process p can be 

defined as follows: 
process p 
const <name of constant> : <type of constant>, 
 ... 
 <name of constant> : <type of constant> 
inp <name of input> : <type of input>, 
 ... 
 <name of input> : <type of input> 
var <name of variable> : <type of variable>, 
 ... 
 <name of variable> : <type of variable> 
par <name of parameter> : <type of parameter>, 
 ... 
 <name of parameter> : <type of parameter> 
begin 
 <action> 
| <action> 
 ... 
| <action> 
end  

The constants of process p have fixed values. Inputs of process p can be read, but not 

updated, by the actions of process p. Variables of process p, on the other hand, can be read and 

updated by the actions of process p. Comments can be added anywhere in a process definition; 

every comment is placed between the two brackets { and }. 

Each <action> of process p is of the form: 
<guard> -> <statement> 
The guard of an action of p is of one of the following three forms: a boolean expression 

over the constants and variables of p, a receive guard of the form rcv <message> from q, or a 

timeout guard that contains a boolean expression over the constants and variables of every 

process and the contents of all channels in the protocol. 

A parameter declared in a process is used to write a finite set of actions as one action, 

with one action for each possible value of the parameter. For example, if process p has the 

following variable x and parameter i: 
var x : integer 
par i : 0 .. n-1 

then the following parameterized action in process p: 
x = i  -> x := x + i 
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is shorthand notation for the following n actions: 
x = 0  -> x := x + 0 

| ... 
| x = n-1 -> x := x + n-1 

Executing an action consists of executing the statement of this action. Executing the 

actions of different processes in a protocol proceeds according to the following three rules. First, 

an action is executed only when its guard is true. Second, the actions in a protocol are executed 

one at a time. Third, an action whose guard is continuously true is eventually executed. 

The <statement> of an action of process p is a sequence of <skip>, <send>, 

<assignment>, <selection>, or <iteration> statements of the following forms: 
<skip>  : skip 
<send>  : send <message> to q 
<assignment> : <variable in p>  := <expression> 
<selection> : if <boolean expression> -> <statement> 
   ... 
   |  <boolean expression> -> <statement> 
   fi 
<iteration> : do <boolean expression> -> <statement> 
   od 
Executing an action of process p can cause a message to be sent to process q. There are 

two channels between the two processes: one is from p to q, and the other is from q to p. Each 

sent message from p to q remains in the channel from p to q until it is eventually received by 

process q. Messages that reside simultaneously in a channel form a sequence and are received, 

one at a time, in the same order in which they were sent. 

Finally, our protocol specifications include process arrays. A process array is a finite set 

of processes; each process has the same set of constants, variables, inputs, parameters, and 

actions. Therefore, all processes in a process array can be defined by a single representative 

process in the array. For instance, the following declaration: 
process c[i: 0..m-1] 

declares a process array c that consists of the m processes c[0], c[1], ..., c[m-1]. 
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3 Closure, Convergence, and Protection 

In this section, we outline a method for verifying the security of protocols that are 

specified using the Abstract Protocol notation. Later in this paper, we use this method to verify 

the security of Millicent and Micropayments. This verification method is based on the following 

definitions. 

A state of a protocol is a function that assigns to each variable in each process in the 

protocol a value from its domain of values, and assigns to each channel in the protocol a sequence 

of messages. For simplicity, we assume that at each protocol state p, the guard of at least one 

action in some process in the protocol is true at p. 

Some states of a protocol are called the initial states of that protocol. 

A transition of a protocol is a pair (p, q) of states of the protocol such that some process 

in the protocol has an action whose guard is true at state p and execution of this action when the 

protocol is at state p yields the protocol at state q. 

A computation of a protocol is an infinite sequence (p.0, p.1, p.2, ...) of protocol states 

such that each pair (p.i, p.(i+1)) of successive states in the sequence is a protocol transition. 

A state of a protocol is called a safe state if it occurs in any protocol computation (p.0, 

p.1, p.2, …) where p.0 is an initial state of the protocol. 

A state of a protocol is called an error state if the protocol can reach this state by the 

adversary executing one of its actions starting from a safe state of the protocol. 

A state of a protocol that is not safe is called an unsafe state if it is an error state of the 

protocol or if it occurs in any protocol computation (p.0, p.1, p.2) where p.0 is an error state of 

the protocol. 

A protocol is called secure if it satisfies the following three conditions: 

i. Closure: 

In each protocol computation whose first state is safe, every state is safe. 

ii. Convergence: 

In each protocol computation whose first state is unsafe, there is a safe state. 

iii. Protection: 

In each protocol transition, whose first state is unsafe, the critical variables  

of the protocol do not change their values. 

According to the above definitions, every protocol satisfies the closure condition. Thus, 

to prove that a protocol is secure, it is sufficient to show that the protocol satisfies both the 

convergence and protection conditions. (See sections 5, 7, and 9 below.) 
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4 Specification of Millicent 

In Millicent [2][9], there are two types of parties, customers and vendors. Each customer 

has a scrip from each vendor and can use this scrip over a period of time to purchase content from 

that vendor. Thus, each scrip is both customer-specific and vendor-specific, and has the following 

fields: 

• identity of the customer for which the scrip was minted. 

• identity of the vendor that minted the scrip. 

• value (possibly in dollars) of the scrip. 

The value of a scrip decreases when the customer makes a buy request to the vendor and 

increases in value when the customer makes a scrip request to the vendor. In each request 

(whether a buy  or scrip request) the customer includes the current scrip value and the value the 

customer expects in a new scrip to be created by the vendor when the vendor handles the request. 

When the customer sends a buy request to the vendor, the vendor usually returns a scrip with a 

smaller value, which is the original value of the scrip minus the purchase price of the requested 

item. When the customer sends a scrip request, the vendor usually returns a scrip whose value is 

greater than the original value of the scrip. Figure 1 is a simple diagram that shows the flow of 

messages in Millicent: 

 
Figure 1. Message flow in Millicent 

Because each scrip needs to be protected against adversarial attacks, the scrip contains 

three additional fields: 

• sequence number, used (by the customer and vendor) to detect scrip replay. 

• stamp, used (only by the vendor) to detect scrip forgery. 

• signature, used (by the customer and vendor) to detect scrip modification. 

The customer process c[i] is specified in the Abstract Protocol notation as follows. 

customer 
  

c[i] 
vendor 

  
 v[j] 

wants   
to buy   

  

wants 
more 
scrip 

  
  

rqst (requested value < current value)
 

 

 

 

scrp (smaller scrip)
 

 

 

 

rqst (requested value > current value)

scrp (larger scrip)



6 

process c[i: 0..m-1] 
 
inp sc   : array [0..n-1] of integer { shared secrets } 
       { sc[j] in c[i] = sc[i] in v[j] } 
var val, seq, stamp : array [0..n-1] of integer, 
 sig   : integer, 
 newval   : integer, 
 val’, seq’, stamp’ : integer, 
 sig’   : integer, 
 ready   : array [0..n-1] of boolean 
 
par j   : 0..n-1 
 
begin 
  ready[j] -> 
 ready[j] := false 
 newval := any; 
 sig := MD(i | j | val[j] | seq[j] | stamp[j] | newval | sc[j]); 
 send rqst(i, j, val[j], seq[j], stamp[j], sig, newval) to v[j]; 
 
| rcv scrp(i, j, val’, seq’, stamp’, sig’) from v[j] -> 
 if seq[j]+1 ≠ seq’ -> skip 
 |  seq[j]+1 = seq’ -> 
  sig := MD(i | j | val’ | seq’ | stamp’ | sc[j]); 
  if sig ≠ sig’  -> skip 
  |  sig = sig’  -> 
   val[j]   := val’; 
   seq[j]   := seq’; 
   stamp[j] := stamp’; 
   ready[j] := false; 
  fi 
 fi 
 
| timeout ~ready[j] ^ #ch.c[i].v[j] = 0 ^ #ch.v[j].c[i] = 0 -> 
 ready[j] := true 
end 

Customer c[i] has three actions. In the first, c[i] sends a rqst message to a vendor v[j]. 

First, c[i] decides upon a new scrip value, newval, to be included in the message. To purchase an 

item (from v[j]), c[i] chooses newval to be smaller than the scrip’s current value. To grow the 

value of its scrip, c[i] chooses newval to be larger than the scrip’s current value. Second, c[i] 

computes the signature, sig, to be included in the message. The signature is computing by the 

following statement: 
sig := MD(i | j | val[j] | seq[j] | stamp[j] | newval | sc[j]); 

Note that the “|” symbol denotes the integer concatenation operator, and MD denotes the message 

digest function [11]. Thus, the signature is computed by applying the message digest function to 

the concatenation of the fields of the scrip, newval, and the shared secret, sc[j], between customer 

c[i] and vendor v[j].  

In the second action, c[i] receives a new scrip from v[j]. The value of the scrip usually 

equals the value that c[i] had requested in its last rqst message to v[j] earlier. Customer c[i] first 

checks the sequence number of the new scrip. If it is not the one c[i] is expecting, c[i] discards the 

message. Otherwise, c[i] continues to process the scrip by verifying its digital signature. It does 
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this by computing its own version of the signature and then comparing it to the one received with 

the message. If they do not match, c[i] discards the message. Otherwise, c[i] replaces its current 

scrip with the one in the received message. 

In the third action, c[i] detects that ready[j] is false and that the two channels between c[i] 

and v[j] are empty. This indicates that either the last rqst message from c[i] to v[j] or the last scrp 

message from v[j] to c[i] was discarded. In this case, c[i] times out and resets ready[j]. This in 

turn causes c[i] to send a new rqst message. 

The vendor process v[j] is specified as follows. 
process v[j: 0..n-1] 
 
inp sc   : array [0..m-1] of integer, { shared secrets } 
 scv   : integer    { stamp secret } 
  
var val, seq, stamp : array [0..m-1] of integer, 
 sig   : integer, 
 newval   : integer, 
 val’, seq’, stamp’ : integer, 
 sig’   : integer, 
 st   : integer 
 
par i   : 0..m-1 
 
begin 
  rcv rqst(i, j, val’, seq’, stamp’, sig’, newval) from c[i] -> 

if seq[i]–1 ≠ seq’ ^ seq[i] ≠ seq’ -> skip 
|  seq[i]–1 = seq’ ->  

  sig := MD(i | j | val[i] | seq[i] | stamp[i] | sc[i]); 
  send scrp(i, j, val[i], seq[i], stamp[i], sig) to c[i] 
 |  seq[i] = seq’ -> 
  st  := MD(i | j | val’ | seq’ | scv); 
  sig := MD(i | j | val’ | seq’ | st | newval | sc[i]); 
  if st ≠ stamp’ v sig ≠ sig’ -> skip 
  |  st = stamp’ ^ sig = sig’ -> 
   val[i] := any; 
   seq[i] := seq[i]+1; 
   stamp[i] := MD(i | j | val[i] | seq[i] | scv); 
   sig := MD(i | j | val[i] | seq[i] | stamp[i] | sc[i]); 
   send scrp(i, j, val[i], seq[i], stamp[i], sig) to c[i] 
  fi 
 fi 
end 
 

The vendor v[j] has only one action. In this action, v[j] receives a rqst message from a 

customer c[i], and compares the sequence number in the message with the expected sequence 

number. Let s be the sequence number in the last scrip that v[j] minted for c[i]. Hence, v[j] 

expects to see s or s-1 in the received message. There are three cases to consider. In the first, the 

sequence number in the received message is neither equal to s nor s-1. In this case the received 

rqst message is an old message being replayed by the adversary, and v[j] discards the message. In 

the second case, the sequence number in the received message equals n-1. In this case v[j] knows 

that this request is valid but resent. In other words, the scrp message that v[j] sent earlier 
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(containing the sequence number s) was not received by c[i], which caused c[i] to time-out and 

send a new rqst message. In this case, v[j] simply resends the last scrip it minted for c[i]. 

In the third case, the sequence number in the received message equals s. This means that 

the request is a new one. In this case, v[j] checks the validity of both the stamp and signature in 

the received message, and then replies to the message by sending a scrp message to c[i]. Note that 

although field val[i] in the sent scrp message usually has the same value as field newval in the 

received rqst message, v[j] has the option of keeping the value of val[i] unchanged to indicate that 

it has rejected c[i]’s request.  
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5 Verification of Millicent 

In this section, we present a sketch of a correctness proof of the Millicent protocol. 

Formal details of this proof can be found in Appendix A. 

Figure 2 shows the state transition diagram of the Millicent protocol between a customer 

c[i] and a vendor v[j]. The states in this diagram, namely S.0, S.1, and S.2, are all safe states. The 

protocol starts in state S.0, the initial state. When c[i] sends a rqst message to v[j] by executing its 

first action, c.0, the protocol moves to S.1. When v[j] receives the rqst message and sends back 

the scrp message by executing its only action, v, the protocol moves to S.2. Finally, when c[i] 

receives the scrp message by executing its second action, c.1, the protocol returns to state S.0. 

 
Figure 2. State transition diagram for Millicent 

The protocol can be attacked by an adversary capable of executing three attack actions: 

message forgery, modification, and replay.  

Figure 3 shows the state transition diagram of the protocol when the adversary actions are 

executed. In this diagram, the safe states of the protocol, namely S.0, S.1, and S.2, and the 

protocol actions, namely c.0, c.1, and v, are as in figure 2. The adversary actions are labeled F 

(for message forgery), M (for message modification), and R (for message replay). The additional 

states that result from the adversary actions, labeled U.0 through U.6 are all unsafe states. 

v

S.0 

c.0

c.1

S.1 

S.2 
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Figure 3. State transition diagram for Millicent (with adversary) 

 
 In the message forgery action, the adversary, in collusion with the customer c[i], forges a 

false scrip and sends it in a rqst message to v[j]. This moves the protocol from safe state S.0 to 

error state U.0. This attack will fail because when vendor v[j] receives the message, it detects that 

the message has an invalid stamp (since neither the adversary nor c[i] can forge a valid stamp), 

and discards it, causing the protocol to return to S.0. Note, however, that if c.0 sends its own rqst 

message while the protocol is in state U.0, the protocol moves to unsafe state U.1. Then, v[j] 

receives the forged rqst message and discards it, moving the protocol to state S.1. 

In the message modification action, the adversary randomly modifies a message in 

transit. This can occur in two cases. If c[i]’s rqst message is modified in transit, the protocol 

moves from safe state S.1 to error state U.2. Likewise, if v[j]’s scrp message is modified in 

transit, the protocol moves from safe state S.2 to error state U.4. In both cases, the attack will fail 

since both messages include a digital signature that the receiver can verify. The receiver of a 

message recalculates its own version of the signature. If the result and the signature sent with the 

message do not match, the receiver throws the message away, moving the protocol from error 

state U.2 or U.4 to unsafe state U.6. This causes c[i] to time-out, bringing the protocol back to 

safe state S.0. Customer c[i] is then free to resend the rqst message. 

In the message replay action, the adversary replaces a valid message with a similar 

message that was sent earlier. As with modification, this can occur in two cases. In the first case, 
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the current rqst message is replaced with an earlier rqst message, and the protocol moves from 

safe state S.1 to error state U.3. In the second case, the current scrp message is replaced with an 

earlier scrp message, and the protocol moves from safe state S.2 to error state U.5. In both cases, 

the attack will fail. Both c[i] and v[j] remember the sequence number of their the current scrips. 

When a process receives a message, it checks to see whether the sequence number in the message 

is what it expects. If this is not the case, the receiving process discards the message, moving the 

protocol from error state U.3 or U.5 to unsafe state U.6. From U.6, c[i] times-out, bringing the 

protocol back to safe state S.0. 

To show that this Millicent specification is secure against the adversary, we show that it 

satisfies the two conditions of convergence and protection discussed in section 3. 

The convergence condition is satisfied because any computation whose first state is U.0, 

U.1, U.2, U.3, U.4, U.5, or U.6, has safe state S.0 or S.1 as shown in figure 3. 

To show that the protection condition is satisfied, we show that no critical variable is 

updated when the protocol starts in an unsafe state. Millicent has six critical variables. The first 

three variables belong to c[i]: 
var seq, val, stamp : array [0..n-1] of integer 

These three variables are used to store scrip information for each vendor, and are always updated 

simultaneously. The action that updates the values in these arrays is c.1. In this action, c[i] 

receives a scrp message from v[j]. Assume that the protocol starts in an unsafe state where the 

scrp message at the head of the channel between v[j] and c[i] is either modified or replayed. In 

this case, when c[i] receives the message, it detects that the message is invalid and discards it, 

without updating any of its three critical variables. 

The other three critical variables belong to v[j] and are analogous to the ones described 

above: 
var seq, val, stamp : array [0..m-1] of integer 

These three variables can be updated by action v. In this action, v[j] receives and processes a rqst 

message from c[i]. Again, assume that the protocol starts in an unsafe state where the rqst 

message in the channel between c[i] and v[j] is either modified or replayed. In this case, when 

v[j] receives the message, it detects that the message is invalid and discards it, without updating 

any of its three critical variables. This completes our proof of the security of Millicent against its 

adversary. 



12 

6 Specification of Micropayments 

The Micropayments protocol (also known as the MiniPay [5] or NewGenPay protocol) 

differs greatly from the Millicent protocol. In Millicent, scrip is vendor-specific whereas 

Micropayments is based on the idea of “universal acceptance by all vendors.” Unlike Millicent, 

Micropayments uses public/private-key operations implemented with RSA [7]. Also, 

Micropayments does not have a “digital representation” of money. Instead, it uses certificates. 

There are three types of parties in the Micropayments protocol: customers, vendors, and the 

broker. Each customer can purchase items from any vendor provided it has a valid certificate 

from the broker. Each certificate has five fields: 

• identity of the customer.  

• public key of the customer, used by the vendor to decrypt the customer’s order 

information. 

• vendor limit, the amount of money a customer can spend with each vendor in a day. 

• timestamp, used by the vendor to check whether the certificate has expired. 

• signature, used to ensure integrity of the certificate. 

Note that the original specification of the Micropayments protocol calls for the 

implementation of two distinct spending limits: the vendor limit that specifies the maximum 

amount of money a customer can spend per vendor per day, and the total limit that specifies the 

total amount of money a customer can spend per day. In our specification of the protocol, we only 

implement the vendor limit since the total limit is effectively unenforceable by the vendors or the 

broker.  

When a customer wants to make a purchase from a vendor, it forwards the certificate 

along with order information to the vendor. (Later, the vendor will deposit these orders with the 

broker. The broker in turn charges the customer’s account.). To make purchases, a customer 

needs a new certificate every day. This is how the protocol can protect itself against malicious 

customers; if a customer abuses the system or fails to pay the broker, the broker can refuse to 

issue new daily certificates to that customer. Figure 4 is a diagram of the flow of messages in 

Micropayments: 
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certrq: request for today's certificate 
certrp: c[i]'s new certificate, to be used only today 
buyrq: purchase request, including order information and certificate 
buyrp:  requested content (or rejection msg) 

 
Figure 4. Message flow in Micropayments 

The broker process b is specified in the Abstract Protocol notation as follows. 
process b 
 
inp rk  : integer,    { private key of broker } 

bkc  : array [0..m-1] of integer, { pub. keys of customers } 
date  : integer    { current date } 

 
var cert  : integer, 
 lim  : integer, 
 i’  : 0..m-1, 
 date’, bal’ : integer, 
 order’  : integer, 
 
par i  : 0..m-1, 
 
begin 
  rcv certrq(order’) from c[i] -> 

(i’, date’, bal’) := DCR(bkc[i], order’); 
 
if true   -> skip 
|  i = i’ ^ date = date’ -> 
 lim  := any; 
 cert := NCR(rk, (i | bkc[i] | date | lim)); 
 send certrp(cert) to c[i] 
fi 

end 
 

Broker b has a single action in which it receives a certificate request from any customer 

c[i]. The broker first decrypts the request information, order’, with the customer’s public key 

bkc[i] (which we assume the broker already knows). Then, the broker verifies that the certificate 

holder’s identity matches the identity of the process that sent the certrq message. Second, the 

b
broker 

c[i]   
customer   

v[j] 
vendor 
 

 

buyrp 

buyrq 

certrp   

certrq 
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broker checks to see whether the date stamp in the certificate matches the current date. If either of 

these conditions does not hold, b concludes that the message is invalid and discards it. Otherwise, 

broker b sends customer c[i] a new certificate to use for the next day. The certificate serves as a 

symbol of the broker’s backing of c[i]. The broker b creates a new certificate for customer c[i] by 

executing the following statement: 
cert := NCR(rk, (i | bkc[i] | date | lim)) 

Note that NCR denotes the encryption function. To create the certificate, the broker concatenates 

the values of the customer’s identity, the customer’s public key, the current date, and the vendor 

limit, and then encrypts the result with its private key rk. (Note that the broker still has the option 

to discard a valid certrq message. For instance, the broker may decide not to approve the 

customer’s request if, for instance, the customer abuses the system or does not pay on time.) 

The customer process c[i] is specified as follows. 
process c[i: 0..m-1] 
 
inp rk, bk   : integer,  { private and pub keys of c[i] } 

bkb   : integer,  { public key of broker } 
bkv   : array [0..n-1] of integer, { pub keys of ven } 
date   : integer  { current date } 

 
var cert, cdate  : integer, 
 bal, cost  : integer, 
 order   : integer, 
 i’   : 0..m-1, 
 bk’, date’, lim : integer, 
 j’   : 0..n-1, 
 cost’   : integer, 
 cert’, order’  : integer, 
 ready   : array [0..n] of boolean  

{ ready[n] used for broker } 
par j   : 0..n-1 
 
begin 
  ready[n] ^ (∀k: 0 <= k < n: ready[k]) ^ date > cdate ->  

ready[n] := false; 
order    := NCR(rk, (i | date | bal));  
send certrq(order) to b 

  
| rcv certrp(cert’) from b ->  
 (i’, bk’, date’, lim) := DCR(bkb, cert’); 
 if i ≠ i’ v bk ≠ bk’ v date ≠ date’ -> skip 
 |  i = i’ ^ bk = bk’ ^ date = date’ ->  

cert     := cert’; 
cdate    := date’; 
bal      := 0; 
ready[n] := true 

 fi 
 
| ready[j] ^ ready[n] ^ date <= cdate ->    

ready[j] := false; 
cost     := any; 
order    := NCR(rk, (j | date | cost)); 
send buyrq(cert, order) to v[j] 
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| rcv buyrp(order’) from v[j]  -> 
(i’, j’, date’, cost’) := DCR(bkv[j], order’); 

 
 if i ≠ i’ v j ≠ j’ v date ≠ date’  ->  skip 
 |  i = i’ ^ j = j’ ^ date = date’  -> bal      := bal + cost;  

ready[j] := true 
 fi 
 
|  timeout ~ready[n] ^ #ch.c[i].b = 0    ^ #ch.b.c[i] = 0  -> 
 ready[n] := true 
 
|  timeout ~ready[j] ^ #ch.c[i].v[j] = 0 ^ #ch.v[j].c[i] = 0 -> 
 ready[j] := true 
end 

In the first action, customer c[i] sends the broker b, a certificate request. Recall that c[i] 

needs a new certificate every day it makes a purchase. Hence, this action is executed only when 

c[i]’s current certificate is at least a day old. To create the request, c[i] encrypts the concatenation 

of its identity, the current date, and the balance of the previous day’s purchases, with its private 

key: 

In the second action, c[i] receives a reply to its certificate request. This certrp message 

contains a new certificate to be used for purchases today. (We assume that c[i] already knows the 

public key of the broker.) c[i] first decrypts the certificate with the broker’s public key and then 

checks that the values of i and bk included with the certificate are correct. It also makes sure that 

the date in the certificate matches the current date. If any of these conditions is false, c[i] discards 

the message. 

In the third action, c[i] sends a buy request to a vendor v[j]. This action is only eligible 

for execution when c[i]’s current certificate is less than a day old. In this request, c[i] forwards 

the certificate that it received from b. The customer c[i] also sends order information with this 

request, which it creates by encrypting the concatenation of the vendor’s identity, the current 

date, and the cost of the requested item, with its private key. 

In the fourth action, c[i] receives a buy reply from vendor v[j]; c[i] decrypts the 

information and then verifies its integrity. If the reply is valid and not replayed, c[i] updates its 

running balance with the value cost’ that vendor v[j] included in the message. 

In the fifth action, customer c[i] detects that either its certrq message to the broker b or 

the corresponding certrp message from b was discarded, so it resets the value of ready[n] to true. 

This in turn causes c[i] to resend a new certrq message. 

Similarly, in the sixth action, c[i] detects that either its buyrq message to the vendor v[j] 

or the corresponding buyrp message from v[j] was discarded, so it resets the value of ready[j] to 

true. This in turn causes c[i] to resend a new buyrq message. 

The vendor process v[j] is specified as follows. 
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process v[j: 0..n-1] 
 
inp rk   : integer,  { this vendor’s private key } 

bkb   : integer,  { public key of broker } 
 date   : integer  { current date } 
 
var bal   : array [0..m-1] of integer, 

cost   : integer, 
 order   : integer, 
 i’   : 0..m-1, 
 bkc’, cdate’, lim : integer, 
 j’   : 0..n-1, 
 date’, cost’  : integer, 
 cert’, order’  : integer, 
  
par i   : 0..m-1 
 
begin 
  rcv buyrq(cert’, order’) from c[i] -> 
 (i’, bkc’, cdate’, lim) := DCR(bkb, cert’); 
 (j’, date’, cost’)      := DCR(bkc’, order’); 
 
 if i ≠ i’ v date ≠ cdate’ v j ≠ j’ v date ≠ date’ -> skip 
 |  i = i’ ^ date = cdate’ ^ j = j’ ^ date = date’ -> 

if true   -> cost := 0 
|  bal[i]+cost <= lim -> cost := any 
fi 
bal[i] := bal[i] + cost; 
order  := NCR(rk, (i | j | date | cost)); 

  send buyrp(order) to c[i] 
 fi 
end 

The vendor v[j] has only one action. In this action, v[j] receives a buy request from a 

customer c[i] and checks the integrity of the received certificate by decrypting it with the broker’s 

public key (which we assume v[j] already knows) and verifying that the values of i and date 

included in the certificate are valid. Next, v[j] decrypts the customer’s order information using 

c[i]’s public key, included in the certificate, and verifies the order information in a similar manner 

to the way that it checked the integrity of the certificate. When v[j] concludes that both the 

certificate and order information are valid, it creates a buyrp message by encrypting the 

concatenation of the customer’s identity, its own identity, the current date, and the cost of the 

purchased item, with its private key rk. (Note, however, that the value of cost can be 0, indicating 

that v[j] has “rejected” the buy request. The two most probable reasons are that c[i] exceeds its 

vendor limit with this purchase, or that the vendor no longer sells the requested item.) 
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7 Verification of Micropayments 

In this section, we present a sketch of a correctness proof of the Micropayments protocol. 

Formal details of this proof can be found in Appendix B.  

Each customer c[i] can be involved in two types of transactions. In the first type of 

transactions, c[i] interacts with the broker b; in the second type of transactions, c[i] interacts with 

a vendor. Hence, we present two separate state transition diagrams that express both relationships. 

Figure 5 shows the state transition diagram of Micropayments between a customer c[i] 

and the broker b. The states in this diagram, namely S.0, S.1, and S.2, are all safe states. The 

protocol starts in S.0. When c[i] sends a certrq message to b by executing its first action c.0, the 

protocol moves to state S.1. When b receives the certrq message and sends back a certrp message 

by executing its only action b, the protocol moves to state S.2. Finally, when c[i] receives the 

certrp message by executing its second action c.1, the protocol moves back to state S.0. 

 
Figure 5. State transition diagram for Micropayments – customer/broker 

 
Figure 6 shows the state transition diagram of Micropayments between a customer c[i] 

and a vendor v[j]. As before, the protocol begins in state S.0. When c[i] sends a buyrq message to 

v[j] by executing its third action c.2, the protocol moves to state S.3. When v[j] receives the 

buyrq and sends back the buyrp message by executing its only action v, the protocol moves to 

S.4. Finally, when c[i] receives the buyrp by executing its fourth action c.3, the protocol returns 

to state S.0. 
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Figure 6. State transition diagram for Micropayments – customer/vendor 

 
As before, we consider an adversary capable of executing three attacks: message forgery, 

modification, and replay. Figure 7 shows the state transition diagram of the protocol between a 

customer c[i] and the broker b when these actions are executed. In this diagram, safe states S.0, 

S.1, and S.2, and protocol actions c.0, c.1, and b, are as in figure 5. The adversary actions are 

labeled M (for message modification) and R (for message replay). The additional states that result 

from these actions, namely U.2 through U.6, are all unsafe states. 

 
Figure 7. State transition diagram for Micropayments (customer/broker, with adversary) 
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Similarly, figure 8 shows the state transition diagram of Micropayments between a 

customer c[i] and a vendor v[j] when the adversary executes its attacks. In this diagram, safe 

states S.0, S.3, and S.4, and protocol actions c.2, c.3, and v, are as in figure 6. The adversary 

actions are labeled F (for message forgery), M (for message modification), and R (for message 

replay). The additional states that result from these actions, namely U.0, U.1, U.7, U.8, U.9, U.10, 

and U.11 are all unsafe states. 

 

 
Figure 8. State transition diagram for Micropayments (customer/vendor, with adversary) 

In the message forgery action, the adversary, in collusion with c[i], attempts to create its 

own certificate and sends it in a buyrq message. This moves the protocol from safe state S.0 to 

error state U.0. This attack will fail because when vendor v[j] receives the message, it detects that 

the message has an invalid certificate (since neither the adversary nor c[i] have access to the 

broker’s private key, which is necessary to create a valid certificate), and discards it, causing the 

protocol to return to S.0. Note, however, that if c.0 sends its own buyrq message while the 

protocol is in state U.0, the protocol moves to unsafe state U.1. Then, v[j] receives the forged rqst 

message and discards it, moving the protocol to state S.3. 

In the message modification action, the adversary randomly modifies a message in 

transit. This can occur in four cases. If c[i]’s certrq message or b’s certrp message is modified 

while in transit to the other process, the protocol moves from safe state S.1 or S.2 to error state 
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U.2 or U.4, respectively. Likewise, if c[i]’s buyrq message or v[j]’s buyrp message is modified in 

transit, the protocol moves from safe state S.3 or S.4 to error state U.7 or U.9, respectively. In all 

cases, the attack will fail since public/private key encryption is used to ensure message integrity. 

When a process receives a message, it decrypts it and checks to see if some fields of the message 

match their expected values. If this is not the case, the receiver throws the message away, moving 

the protocol from an error state to unsafe state U.6 or U.11. This causes c[i] to time-out, bringing 

the protocol back to safe state S.0. Afterwards, c[i] is free to resend its request. 

In the message replay action, the adversary replaces a valid message at the head of a 

channel with a similar message sent earlier (before the current day). As with modification, this 

can occur in four cases. If c[i]’s certrq message or b’s certrp message is replaced with an old 

message while in transit to the other process, the protocol moves from safe state S.1 or S.2 to 

error state U.3 or U.5, respectively. Likewise, if c[i]’s buyrq message or v[j]’s buyrp message is 

replaced, the protocol moves from safe state S.3 or S.4 to error state U.8 or U.10, respectively. In 

all cases, the attack will fail. Every request and reply in the protocol includes a date stamp. When 

a process receives a message, it inspects the message’s date and compares it to the current date. If 

the request was not originally sent today, the receiver discards the message, again moving the 

protocol from an error state to unsafe state U.6 or U.11. Finally, c[i] times out, bringing the 

protocol back to safe state S.0. 

To demonstrate that this Micropayments specification is secure against the adversary, we 

show that it satisfies the two conditions of convergence and protection discussed in section 3. 

The convergence condition is satisfied since any computation whose first state is U.0, 

U.1, U.2, U.3, U.4, U.5, U.6, U.7, U.8, U.9, U.10, or U.11 includes safe state S.0 or S.3. This is 

evident in figures 7 and 8. 

To show that the protection condition is satisfied, we examine our specification’s three 

critical variables. The first two belong to c[i]: 

• cert, ctime : integer, 
cert stores c[i]’s current certificate, and ctime is the timestamp of the certificate. Only 

action c.1, in which c[i] receives a brand new certificate, can update these two variables (and it 

does so simultaneously). Assume that the protocol starts in an unsafe state and the certrp message 

is modified or replayed. When c[i] receives the message, it detects that it is invalid and discards 

it, without updating either of its critical variables. 

The last critical variable belongs to v[j]: 

• bal  : array [0..m-1] of integer,  



21 

 bal[i] can only be updated by action v.0, in which v[j] receives and processes c[i]’s buy 

request (buyrq). Assume that the protocol starts in an unsafe state and the buyrq message is 

modified or replayed. When v[j] receives the message, it detects that it is invalid and throws it 

away, without updating bal[i]. 
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8 Specification of SSL 

 The Secure Sockets Layer protocol [1], also known as SSL, can be used by digital cash 

protocols to provide privacy. Since a system is only as secure as its weakest link, we now provide 

a formal specification and verification of SSL. 

 SSL provides three services: client authentication, server authentication, and encrypted 

connections. In fact, at its core, the protocol is a method of exchanging a shared key between 

authenticated parties. This key in turn is used to encrypt all messages between the parties. Since 

we are focused on the use of SSL in the context of digital cash protocols, we make a number of 

simplifying assumptions in our specification. 

1. Our specification implements server authentication but not client authentication. This 

is done for two reasons. First, in most online commerce applications, we are only 

concerned with authenticating one side of the transaction (usually the server side). 

Secondly, client authentication is almost an exact mirror of client authentication, so 

including both in our specification would yield a great deal of redundancy. 

2. The SSL protocol consists of two sub-protocols: the handshake protocol and the 

record layer protocol. The record layer is responsible for handling the secure 

transmission of messages after the handshake protocol establishes the secure 

connection. The specification presented here implements only the handshake 

protocol. 

3. Next, our specification does not include the feature of resumable sessions, since this 

feature is more of a convenience than a necessity. Thus, our specification does away 

with the session identifiers. 

4. Since certificate distribution is handled by a protocol outside of SSL, we consider it 

to be an implementation detail. Hence, for simplicity, we assume that all certificates 

are backed up by a single certificate authority. (SSL certificates are based on the 

X.509 standard [6].) 

5. We also standardize a number of variables in the protocol so that our specification 

does not need to transmit them in the hello messages. For instance, we assume that 

the cipher suite will always be RSA. The nonces have also been removed from the 

hello messages. 

6. Furthermore, where possible, we removed some redundancy from several of the 

cryptographic operations; for instance, some operations that may have used two 

cryptographic hashes now use one. 
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Figure 9 shows message flow in our SSL specification. 

 
helloc: client hello 
hellos: server hello 
finishc: client finish 
finishs: server finish 

 
Figure 9. Flow of messages between client and server in SSL 

 
 The client process c[i] is specified in the Abstract Protocol notation [3] as follows.  
 
process c[i: 0..m-1] 
 
inp bkca   : integer,  { public key of cert authority } 

date   : integer  { current date } 
 
var st   : array [0..n-1] of 0..3,  { current state } 
 certs   : array [0..n-1] of integer, 
 secret, key  : array [0..n-1] of integer, 
 esecret, emsg  : array [0..n-1] of integer,  
 

certs’   : integer, 
 j’   : 0..n-1, 
 bks’, date’  : integer, 
 

msg   : integer, 
msgs, msgs’, emsgs’ : integer 

 
par j   : 0..n-1 
 
begin 
  st[j] = 0  -> st[j] := 1 
   send helloc to s[j] 
 
| rcv hellos(certs’) from s[j]  ->  
 (j’, bks’, date’) := DCR(bkca, certs’);   
         

if st[j] ≠ 1 v j ≠ j’ v date >  date’ ->  skip   
|  st[j] = 1 ^ j = j’ ^ date <= date’ ->    

  st[j]  := 2; 
  certs[j] := certs’; 
 
  secret[j]  := random; 

esecret[j]  := NCR(bks’, secret[j]); 
 
  key[j]  := F(secret[j]); 
  msg  := G(i, j, certs[j], secret[j], esecret[j]); 
  emsg[j] := NCR(key[j], msg); 
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  send finishc(esecret[j], emsg[j]) to s[j] 
 fi 
 
| rcv finishs(emsgs’) from s[j] ->    
 msgs’  := DCR(key[j], emsgs’); 

msgs  := H(i, j, certs[j], secret[j], esecret[j], emsg[j]); 
 
 if st[j] ≠ 2 v msgs ≠ msgs’  -> skip 
 |  st[j] = 2 ^ msgs = msgs’  -> st[j] := 3  
 fi 
 
| st[j] = 3 -> st[j] := 0 
 
| timeout st[j] = 1 ^ #ch.c[i].s[j] = 0 ^ #ch.s[j].c[i] = 0  -> 
 st[j] := 0 
 
| timeout st[j] = 2 ^ #ch.c[i].s[j] = 0 ^ #ch.s[j].c[i] = 0  -> 
 send finishc(esecret[j], emsg[j]) to s[j] 
end 
 

In the first action, client c[i] checks its state variable st[j] to see whether it is ready to 

begin a new connection with server s[j]. If this is the case, c[i] updates the state variable and 

sends a helloc message to the server. 

In the second action, c[i] receives the server’s hellos message. This begins the server 

authentication process. The hellos message includes the server’s certificate. First, c[i] decrypts 

the certificate with the public key of the certificate authority (which we assume is already known 

to all processes); this yields the certificate owner’s identity (j’), the public key of the certificate 

owner (bks’), and the expiration date of the certificate (date’).  

Next, the client must verify that three conditions hold before proceeding. First, the state 

variable st[j] must indicate that c[i] was waiting for a hellos message. Second, j’ must match the 

identity of the process that sent the server hello message (j). Third, the current date must be less 

than or equal to the expiration date of the certificate. If any of these conditions does not hold, c[i] 

assumes the hellos message is invalid and discards it. Otherwise, server s[j] is authenticated and 

the client proceeds to generate its finishc message. The client starts by updating the state variable 

st[j] and then stores away the server’s certificate so that it can use it in later stages of the protocol. 

Client c[i] then generates a secret and stores it in secret[j]. (This is analogous to the 

“premaster secret” in the original SSL specifications [1].) It also encrypts this secret with s[j]’s 

public key bks’ and stores the result in esecret[j]. (Note that this step is critical to server 

authentication; it means that only the real server s[j] can access the secret.) Afterwards, c[i] 

creates the shared key, a function (F) of secret[j], that will be used during the secure session. 

Next, c[i] proceeds to generate a signature (msg), which is a function (G) of all the messages sent 

up to this point in the protocol’s execution. This signature is then encrypted with the shared key 

that was just generated. Finally, c[i] sends the finishc message, consisting of the encrypted secret 
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(esecret[j]) and the encrypted signature (emsg[j]). Note that the shared key is never transmitted 

directly to the server. Only the encrypted secret (from which the key can be generated) is sent. 

The client’s finish message also serves as a “secure acknowledgement” to the server. 

In the third action, c[i] receives the server’s finishs message. (Note that this message is 

not completely necessary in our specification since we do not implement client authentication. 

However, to stay true to the original spirit of the SSL protocol, we include it.) Client c[i] starts by 

decrypting the server’s encrypted finish message (emsgs’) with the shared key. The client also 

generates its own version of the finish message by applying function H to the data values it stored 

earlier. Finally, c[i] verifies that it is in the state where it is waiting for this finish message and 

verifies that the two versions of the signature match. If either condition does not hold, c[i] 

discards the message. Otherwise, it updates its state variable (st[j]) to indicate that the handshake 

is complete. 

In the fourth action, c[i] terminates its connection to server s[j] by resetting state variable 

st[j]. 

In the fifth action, client c[i] detects that either its helloc message to server s[j] or the 

corresponding hellos message from s[j] was discarded. As a result, c[i] resets its state variable, 

causing it to resend a new helloc message. 

Similarly, in the sixth action, c[i] detects that either its finishc message to server s[j] or 

the corresponding finishs message from s[j] was discarded. As a result, c[i] resends the finishc 

message that it has already generated. 

The server process s[j] is specified as follows. 
process s[j: 0..n-1] 
 
inp rk, bk   : integer,  { private and pub key of s[j] } 
 bkca   : integer,  { pub key of cert authority } 
 certs   : integer  { this server’s certificate } 
 
var st   : array [0..m-1] of 0..1,  { current state } 
 key   : array [0..m-1] of integer, 

emsgs   : array [0..m-1] of integer, 
 

esecret’, emsg’ : integer, 
 
 secret’  : integer, 

key’, msg’  : integer, 
msgs   : integer 

 
par i   : 0..m-1 
 
begin 
  rcv helloc from c[i]  ->    

st[i] := 1;  
send hellos(certs) to c[i] 

 
| rcv finishc(esecret’, emsg’) from c[i] -> 
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 secret’  := DCR(rk, esecret’); 
 key’  := F(secret’); 
 

{ verify finish message } 
msg  := G(i, j, certs, secret’, esecret’); 

 msg’  := DCR(key’, emsg’); 
 
if st[i] ≠ 1 v msg ≠ msg’ -> skip 
|  st[i] = 1 ^ msg = msg’ -> 
 st[i]  := 0;    
 key[i]  := key’; 
  

msgs  := H(i, j, certs, secret’, esecret’, emsg’); 
emsgs[i] := NCR(key[i], msgs); 
 
send finishs(emsgs[i]) to c[i] 

fi 
end 
 

In the first action, server s[j] receives a helloc message from client c[i]. The server 

updates its state variable and sends its certificate in a hellos message to c[i]. (Note that the 

protocol does not check that the value of its st[i] is 0 before proceeding. However, this is not a 

security vulnerability, as explained in section 9.)  

In the second action, the server receives a finishc message from c[i], which includes the 

encrypted secret and encrypted signature. The server starts by decrypting the secret with its 

private key. It then applies function F to the secret to generate the shared key (key’). Using the 

newly generated key, s[j] then decrypts the encrypted signature. At the same time, the server also 

generates its own version of the signature using function G. Server s[j] then compares the two 

versions of the signature to check if they match. It also verifies whether it is in the state in which 

it expects to receive the helloc message. If either of these conditions does not hold, s[j] discards 

the message. Otherwise, s[j] updates its state variable, stores the key, and proceeds to generate its 

own finishs message, consisting of a encrypted signature. This signature is a function (H) of all 

messages sent up to this point in the protocol. 
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9 Verification of SSL 

In this section, we present a sketch of a correctness proof of the SSL protocol. Formal 

details of this proof can be found in Appendix C. 

Figure 10 shows the state transition diagram between a client c[i] and server s[j]. The 

states in this diagram, namely S.0 through S.5, are all safe states. The protocol starts in the initial 

state, S.0. When c[i] sends a helloc message to s[j] by executing its first action c.0, the protocol 

moves to S.1. When s[j] receives the helloc message and sends back a hellos message by 

executing its first action s.0, the protocol moves to S.2. When client c[i] receives the hellos 

message and sends back a finishc message by executing its second action c.1, the protocol moves 

to S.3. When s[j] receives the finishc message and sends back a finishs message by executing its 

second action s.1, the protocol moves to S.4. Once c[i] receives the finishs message by executing 

its third action c.2, the protocol moves to S.5. Finally, when c[i] decides to terminate the secure 

session by executing its fourth action, c.3, the protocol returns to state S.0. 
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Figure 10. State transition diagram for SSL 

The protocol can be attacked by an adversary capable of executing two attack actions: 

message  modification and message replay. (The certificate forgery attack is not considered since 

it would yield no potential benefit to the adversary.) Figure 11 shows the state transition diagram 

of the protocol when the adversary actions are executed. Here, the safe states of the protocol, 

namely S.0 through S.5, and the protocol actions, namely c.0, c.1, c.2, c.3, s.0 and s.1, are as in 

figure 10. The adversary actions are labeled M (for message modification) and R (for message 

replay). The states that result from the adversary actions, labeled U.0 through U.6, are all unsafe 

states. 

S.2 

S.0 

c.0

S.1 

S.3 

v.0

c.1

S.4 

v.1

c.2

S.5 

c.3



29 

 
Figure 11. State transition diagram for SSL (with adversary) 

Note that no adversary attacks can be executed when the protocol is at safe state S.5. 

Recall that at S.5, the secure session has been established. There are no messages in the channel 

to modify or replace. Even if we assume that the adversary could insert a helloc message at this 

state, in the hopes of terminating the secure session between c[i] and s[j], the protocol would still 

be secure. This is because the adversary has no way to convince s[j] that it is indeed c[i]; its 

invalid helloc message would be received at a TCP port different from the one s[j] is using to 

communicate with c[i]. 
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In the message modification action, the adversary randomly modifies a message in 

transit. This can occur in three cases. In the first case, server s[j]’s hellos message is modified, 

moving the protocol from safe state S.2 to error state U.0. When client c[i] receives the message 

and checks the integrity of the certificate, it detects the modification and discards the message, 

moving the protocol to unsafe state U.5. This causes c[i] to time out and return to safe state S.0. 

In the second case, c[i]’s finishc message is modified in transit, moving the protocol from safe 

state S.3 to error state U.2. When server s[j] receives the modified message and checks the 

integrity of its signature, it detects the modification and discards the message, moving the 

protocol to unsafe state U.6. This causes c[i] to time out and resend its finishc message, returning 

the protocol to safe state S.3. In the third case, s[j]’s finishs message is modified, moving the 

protocol from safe state S.4 to unsafe state U.4. When c[i] receives the message and checks its 

signature, it detects that the message is invalid and discards it, again moving the protocol to state 

U.6. 

In the message replay action, the adversary replaces a message in transit with one it sent 

earlier. This can occur in three cases. In the first case, server s[j]’s hellos message is replaced 

with a replayed one that contains a certificate which has already expired. This causes the protocol 

to move from safe state S.2 to error state U.1. When client c[i] receives the message and checks 

the integrity of the certificate, it detects that the certificate has expired and discards the message, 

moving the protocol to unsafe state U.5. As before, this causes c[i] to time out and return to safe 

state S.0.  

In the second case, c[i]’s finishc message is replaced with a previous one, moving the 

protocol from safe state S.3 to error state U.3. This attack fails since the secret, which is randomly 

generated in every session, is used in calculating the message’s signature. When server s[j] 

receives the replayed message, it has no way to detect that the message has been replayed, so it 

responds with a finishs message by executing action s.1. This moves the protocol to U.4. When 

client c[i] receives the finishs message and checks the signature, it detects that the message was 

sent in response to a replayed helloc message and discards it, moving the protocol to U.6. Finally, 

c[i] times out and resends its finishc message, returning the protocol to safe state S.3.   

In the third case, s[j]’s finishs message is replaced with an earlier one, moving the 

protocol from safe state S.4 to unsafe state U.4. Again, the attack fails since the random secret is 

used in calculating the message’s signature. When c[i] receives the message and checks its 

signature, it detects that the message is invalid and discards it, again moving the protocol to state 

U.6. 
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To demonstrate that our SSL specification is secure against the adversary, we show that it 

satisfies the two conditions of convergence and protection discussed in section 3. 

The convergence condition is satisfied since any computation whose first state is U.0, 

U.1, U.2, U.3, U.4, U.5, or U.6 includes safe state S.0 or S.3, as shown in figure 10. 

To show that the protection condition is satisfied, we examine the protocol’s critical 

variables. First, we examine c[i]’s critical variables: 
• certs   : array [0..n-1] of integer, 
• secret, key  : array [0..n-1] of integer, 
• esecret, emsg  : array [0..n-1] of integer, 
Variables certs[j], secret[j], key[j], esecret[j], and emsg[j] can only be updated by action 

c.1, in which c[i] receives a hellos message from server s[j]. Assume the protocol starts in an 

unsafe state and the hellos message is modified or replayed. When c[i] receives the message, it 

first verifies the integrity of the certificate and verifies that the sender of the message matches the 

certificates owner. If the certificate is found to be invalid, c[i] discards the message, without 

updating any of its critical variables. 

Now we examine s[j]’s only critical variable: 

• key   : array [0..m-1] of integer, 

Variable key[i] can only be updated by action s.1, in which s[j] receives a finishc 

message from client c[i]. Again, assume the protocol starts in an unsafe state and the finishc 

message is modified or replayed. When s[j] receives the message, it verifies the integrity of the 

message by checking its signature. If the message is invalid, s[j] discards the message, without 

updating key[i]. 
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10 Concluding Remarks 

 Our contributions in this paper are three-fold. First, in our formal specifications of 

Millicent and Micropayments, we introduced changes and simplifications that improve the 

protocols. For instance, with Millicent, we recognized that a customer needs only to have a single 

scrip for each vendor. The result is that there is virtually no requirement for the customer’s 

computer to store large amounts of scrip, and the protocol never has to deal with combining scrip. 

We made similar simplifying assumptions in our specification of SSL. 

 Secondly, our specifications help expose the fundamental differences between the two 

digital cash protocols. While Millicent relies exclusively on hash functions to ensure message 

integrity, Micropayments uses public-key operations. Though this makes Micropayments slower 

and more resource-intensive, it is necessary for “universal acceptance,” so that customers can 

immediately start buying from any Micropayments vendor. Millicent, on the other hand, is 

probably the more efficient of the two; however, scrip is vendor-specific. 

 Most importantly, we formally verified each protocol’s security against an adversary 

capable of forgery, modification, and replay actions. In doing so, we outlined a method for 

verifying the security of protocols specified in the Abstract Protocol notation.  
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Appendix A: Details of Millicent Verification 

Figure 12 shows the formal details of the state transition diagram in figure 2. 

 
S.0 = I ^ (ready[j] = true  in c[i]) ^  
          (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {}) 
S.1 = I ^ (ready[j] = false in c[i]) ^ 
          (ch.c[i].v[j] = {rqst(i, j, b, c, d, e, f)} ^ ch.v[j].c[i] = {}) 
          where b = val[j]   in c[i] ^ 
                c = seq[j]   in c[i] ^ 
                d = stamp[j] in c[i] ^ 
                e = MD(i | j | b | c | d | f | sc[j] in c[i]) ^ 
                f = newval   in c[i] 
S.2 = I ^ (ready[j] = false in c[i]) ^ 
          (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {scrp(i, j, b, c, d, e)}) 
          where b = val[i]   in v[j] ^ 
                c = seq[i]   in v[j] ^ 
                d = stamp[i] in v[j] ^ 
                e = MD(i | j | b | c | d | sc[i] in v[j]) 
where 
I = (seq[j]   in c[i] = seq[i]   in v[j] v 
     seq[j]   in c[i] = seq[i]-1 in v[j]) 
  ^ (seq[j]   in c[i] = seq[i]   in v[j] => 
     val[j]   in c[i] = val[i]   in c[j]) 
  ^ (seq[j]   in c[i] = seq[i]   in v[j] => 
     stamp[j] in c[i] = stamp[i] in v[j]) 

 
Figure 12. Detailed state transition diagram for Millicent 

 
Figure 13 shows the formal details of the state transition diagram in figure 3. 
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U.0     = I ^ (ready[j] = true  in c[i]) ^ 
              (ch.c[i].v[j] = {rqst(i, j, b, c, d, e, f)} ^ ch.v[j].c[i] = {}) 
              where d ≠ MD(i | j | b | c | scv) ^ 
                    e = MD(i | j | b | c | d | f | sc[j] in c[i]) 
U.1     = I ^ (ready[j] = false in c[i]) ^ 
              (ch.c[i].v[j] = {rqst(i, j, b, c, d, e, f),  
                 rqst(i’, j’, b’, c’, d’, e’, f’} ^ ch.v[j].c[i] = {}) 
              where d ≠ MD(i | j | b | c | scv) ^ 
                    e = MD(i | j | b | c | d | f | sc[j] in c[i]) 
U.2     = I ^ (ready[j] = false in c[i]) ^ 
              (ch.c[i].v[j] = {rqst(i, j, b, c, d, e, f)} ^ ch.v[j].c[i] = {}) 
              where e ≠ MD(i | j | b | c | d | f | sc[j] in c[i]) 
U.3     = I ^ (ready[j] = false in c[i]) ^ 
              (ch.c[i].v[j] = {rqst(i, j, b, c, d, e, f)} ^ ch.v[j].c[i] = {}) 
              where c ≠ seq[j] in c[i] ^ 
                    c ≠ seq[i] in v[j] ^ 
                    e = MD(i | j | b | c | d | f | sc[j] in c[i]) 
U.4     = I ^ (ready[j] = false in c[i]) ^ 
              (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {scrp(i, j, b, c, d, e)}) 
              where e ≠ MD(i | j | b | c | d | sc[i] in v[j]) 
U.5     = I ^ (ready[j] = false in c[i]) ^ 
              (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {scrp(i, j, b, c, d, e)}) 
              where c ≠ seq[i] in v[j] ^ 
                    e = MD(i | j | b | c | d | sc[i] in v[j]) 
U.6     = I ^ (ready[j] = false in c[i]) ^ 
              (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {}) 
where 
 I is as defined in Figure 12. 

 
Figure 13. Detailed state transition diagram for Millicent 
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To complete the formal details of the proof, we formally define each of the adversary 

actions discussed in section 5.  

Scrip Forgery 

 In this attack, the adversary creates its own scrip and sends it with a rqst message to v[j]. 

A valid rqst message looks like this: 
         rqst(i, j, b, c, d, e, f) 
          where b = val[j]   in c[i] ^ 
                c = seq[j]   in c[i] ^ 
                d = stamp[j] in c[i] ^ 
                e = MD(i | j | b | c | d | f | sc[j] in c[i]) ^ 
                f = newval   in c[i] 
 The forged rqst message is of this format: 
         rqst(i, j, b’, c’, d’, e’, f’) 
          where d’ ≠ MD(i | j | b’ | c’ | scv) ^ 
                e’ = MD(i | j | b’ | c’ | d’ | f’ | sc[j] in c[i]) 
 When the adversary sends its forged rqst message, the protocol moves from safe state S.0 

to error state U.0. From here, two things can happen. In the first case, the vendor receives the rqst 

by executing action v and detects that the scrip has an invalid stamp. Hence, it throws the 

message away, and the protocol returns to safe state S.0. In the second case, the customer c[i] 

sends its own valid rqst message, moving the protocol to unsafe state U.1. When the vendor 

receives the adversary’s invalid message, it discards it, bringing the protocol to safe state S.1. 

Message Modification 

There are two cases to consider. In the first, assume that process c[i] sends a valid rqst 

message to v[j]. This moves the protocol from state S.0 to S.1. The rqst message is of the 

following format: 
         rqst(i, j, b, c, d, e, f) 
          where b = val[j]   in c[i] ^ 
                c = seq[j]   in c[i] ^ 
                d = stamp[j] in c[i] ^ 
                e = MD(i | j | b | c | d | f | sc[j] in c[i]) ^ 
                f = newval   in c[i] 

When the adversary modifies the message, the protocol moves to error state U.2. We 

define the modified rqst to be: 
         rqst(i, j, b’, c’, d’, e’, f’) 
          where e’ ≠ MD(i | j | b’ | c’ | d’ | f’ | sc[j] in c[i]) 

When v[j] receives the modified message, it detects that e’, the signature, is invalid, and 

it throws the rqst away. This moves the protocol to unsafe state U.6. c[i] then times out and 

resends the rqst, causing the protocol to move back to S.0.  
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Now we consider what happens when the scrp message is modified. This is analogous to 

the case described above. Assume that v[j] sends a valid scrp message to c[i]. This moves the 

protocol from state S.1 to S.2. The scrp message is of the following format: 
         scrp(i, j, b, c, d, e) 
          where b = val[i]   in v[j] ^ 
                c = seq[i]   in v[j] ^ 
                d = stamp[i] in v[j] ^ 
                e = MD(i | j | b | c | d | sc[i] in v[j]) 

When the adversary modifies the message, the protocol moves to error state U.4. The 

modified scrp message is defined as: 
         scrp(i, j, b’, c’, d’, e’) 
          where e’ ≠ MD(i | j | b’ | c’ | d’ | sc[i] in v[j]) 

When c[i] receives the modified message, it will detect the invalid signature and throw 

the scrp away, moving the protocol to unsafe state U.6 again. From here, c[i] times out, and the 

protocol returns to safe state S.0. 

Message Replay 

Again, there are two cases to consider. First, we examine how vendors deal with replay 

attacks. Assume that process c[i] sends a valid rqst message to v[j]. This moves the protocol from 

state S.0 to S.1. Recall that the rqst message is of the following format: 
         rqst(i, j, b, c, d, e, f) 
          where b = val[j]   in c[i] ^ 
                c = seq[j]   in c[i] ^ 
                d = stamp[j] in c[i] ^ 
                e = MD(i | j | b | c | d | f | sc[j] in c[i]) ^ 
                f = newval   in c[i] 

When the adversary replaces this valid rqst message with a replayed one, the protocol 

moves to error state U.3. The replayed rqst message is defined to be: 
         rqst(i, j, b’, c’, d’, e’, f’) 
          where c’ ≠ seq[j] in c[i] ^ 
                c’ ≠ seq[i] in v[j] ^ 
                e  = MD(i | j | b | c | d | f | sc[j] in c[i]) 

When v[j] receives the replayed message, it detects that the sequence number is invalid 

and throws the rqst away. This moves the protocol again to unsafe state U.6. c[i] then times out 

and resends the rqst, causing the protocol to move back to safe state S.0.  

The customer also remembers, for each vendor, the sequence number of its current scrip. 

For instance, imagine that c[i] sends a request with a scrip with serial number n. When c[i] 

receives the reply, it expects to see sequence number (n+1) in the new scrip. 

Assume that v[j] sends a valid scrp message to c[i]. This moves the protocol from state 

S.1 to S.2. The scrp message is of the following format: 
         scrp(i, j, b, c, d, e) 
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          where b = val[i]   in v[j] ^ 
                c = seq[i]   in v[j] ^ 
                d = stamp[i] in v[j] ^ 
                e = MD(i | j | b | c | d | sc[i] in v[j]) 

When the adversary replays an old scrp message, the protocol moves to error state U.5. 

The replayed scrp is of this format: 
         scrp(i, j, b’, c’, d’, e’) 
          where c ≠ seq[i] in v[j] ^ 
                e = MD(i | j | b | c | d | sc[i] in v[j]) 

When c[i] receives the replayed message, it detects the invalid sequence number and 

throws the scrp away, moving the protocol to unsafe state U.6.  
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Appendix B: Details of Micropayments Verification 

Figure 14 shows the formal details of the state transition diagram in figure 5. 

 
S.0 = (ready[n] = true  in c[i]) ^ (ready[j] = true  in c[i]) ^ 
      (ch.c[i].b = {} ^ ch.b.c[i] = {} ^ ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {}) 
S.1 = (ready[n] = false in c[i]) ^ 
      (ch.c[i].b = {certrq(order’)} ^ ch.b.c[i] = {}) 
      where (i’, date’, bal’) := DCR(bkc[i], order’) ^ 
             i’    = i ^ 
             date’ = date 
S.2 = (ready[n] = false in c[i]) ^ 
      (ch.c[i].b = {} ^ ch.b.c[i] = {certrp(cert’)}) 
      where (i’, bk’, date’, lim) := DCR(bkb, cert’) 
             i’    = i ^ 
             bk’   = bk in c[i] ^ 
             date’ = date 

 
Figure 14. Detailed state transition diagram for Micropayments – customer/broker 

 
Figure 15 shows the formal details of the state transition diagram in figure 6. 
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S.3 = (ready[j] = false in c[i]) ^ 
      (ch.c[i].v[j] = {buyrq(cert’, order’)} ^ ch.v[j].c[i] = {}) 
      where (i’, bkc’, cdate’, lim) := DCR(bkb, cert’) ^ 
            (j’, date’, cost’)      := DCR(bkc’, order’) ^ 
             i’     = i ^ 
             j’     = j ^ 
             cdate’ = date ^ 
             date’  = date 
S.4 = (ready[j] = false in c[i]) ^ 
      (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {buyrp(order’)}) 
      where (i’, j’, date’, cost’) := DCR(bkv[j], order’) ^ 
             i’    = i ^ 
             j’    = j ^ 
             date’ = date 

 
Figure 15. Detailed state transition diagram for Micropayments – customer/vendor 

 
Figure 16 shows the formal details of the state transition diagram in figure 7. 
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U.2     = (ready[n] = false in c[i]) ^ 
          (ch.c[i].b = {certrq(order’)} ^ ch.b.c[i] = {}) 
          where (i’, date’, bal’) := DCR(bkc[i], order’) ^ 
                (i’    ≠ i v 
                 date’ ≠ date) 
U.3     = (ready[n] = false in c[i]) ^ 
          (ch.c[i].b = {certrq(order’)} ^ ch.b.c[i] = {}) 
          where (i’, date’, bal’) := DCR(bkc[i], order’) ^ 
                 i’    = i ^ 
                 date’ ≠ date 
U.4     = (ready[n] = false in c[i]) ^ 
          (ch.c[i].b = {} ^ ch.b.c[i] = {certrp(cert’)}) 
          where (i’, bk’, date’, lim) := DCR(bkb, cert’) ^ 
                (i’    ≠ i v 
                 bk’   ≠ bk in c[i] v 
                 date’ ≠ date) 
U.5     = (ready[n] = false in c[i]) ^ 
          (ch.c[i].b = {} ^ ch.b.c[i] = {certrp(cert’)}) 
          where (i’, bk’, date’, lim) := DCR(bkb, cert’) ^ 
                 i’    = i ^ 
                 bk’   = bk in c[i] ^ 
                 date’ ≠ date 
U.6     = (ready[n] = false in c[i]) ^ 
          (ch.c[i].b = {} ^ ch.b.c[i] = {}) 

 
Figure 16. Detailed state transition diagram for Micropayments (customer/broker, with adversary) 

 
Figure 17 shows the formal details of the state transition diagram in figure 8. 
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U.0     = (ready[n] = true  in c[i]) ^ 
          (ch.c[i].v[j] = {buyrq(cert’, order’)} ^ ch.v[j].c[i] = {}) 
          where (i’, bkc’, cdate’, lim) := DCR(bkb, cert’) ^ 
                (i’     ≠ i v 
                 bkc’   ≠ bk in c[i] v 
                 cdate’ ≠ date) 
U.1     = (ready[n] = false in c[i]) ^ 
          (ch.c[i].v[j] = {buyrq(cert’, order’),  
                           buyrq(cert’’, order’’} ^ ch.v[j].c[i] = {}) 
          where (i’, bkc’, cdate’, lim) := DCR(bkb, cert’) ^ 
                (i’     ≠ i v 
                 bkc’   ≠ bk in c[i] v 
                 cdate’ ≠ date) 
U.7     = (ready[j] = false in c[i]) ^ 
          (ch.c[i].v[j] = {buyrq(cert’, order’)} ^ ch.v[j].c[i] = {}) 
          where (i’, bkc’, cdate’, lim) := DCR(bkb, cert’) ^ 
                (j’, date’, cost’)      := DCR(bkc’, order’) ^ 
                (i’     ≠ i v 
                 bkc’   ≠ bk in c[i] v 
                 cdate’ ≠ date v 
                 j’     ≠ j v 
                 date’  ≠ date) 
U.8     = (ready[j] = false in c[i]) ^ 
          (ch.c[i].v[j] = {buyrq(cert’, order’)} ^ ch.v[j].c[i] = {}) 
          where (i’, date’, bal’) := DCR(bkc[i], order’) ^ 
                 i’     = i ^ 
                 bkc’   = bk in c[i] ^ 
                 cdate’ ≠ date ^                  
                 j’     = j ^ 
                 date’  ≠ date ^ 
U.9     = (ready[j] = false in c[i]) ^ 
          (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {buyrp(order’)}) 
          where (i’, j’, date’, cost’) := DCR(bkv[j], order’) ^ 
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                (i’    ≠ i v 
                 j’    ≠ j v 
                 date’ ≠ date) 
U.10    = (ready[j] = false in c[i]) ^ 
          (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {buyrp(order’)}) 
          where (i’, j’, date’, cost’) := DCR(bkv[j], order’) ^ 
                 i’    = i ^ 
                 j’    = j ^ 
                 date’ ≠ date 
U.11    = (ready[j] = false in c[i]) ^ 
          (ch.c[i].v[j] = {} ^ ch.v[j].c[i] = {}) 

 
Figure 17. State transition diagram for Micropayments (customer/vendor, with adversary) 

To complete the formal details of the proof, we formally define each of the adversary 

actions discussed in section 7.  

Certificate Forgery 

In this attack, the adversary creates its own certificate and sends it in a buyrq message. 

(Recall that buyrq has two fields: cert, and order.) We assume that the adversary is colluding with 

the customer, c[i], so that it has access to c[i]’s private key. This enables the adversary to create a 

valid order. 

A valid buyrq message is of the following format: 
         buyrq(cert’, order’) 
          where (b, c, d, e) := DCR(bkb, cert’) ^ 
                (f, g, h)    := DCR(bkc’, order’) ^ 
                 b = i ^ 
                 c = bk in c[i] ^ 
                 d = date ^ 
                 e = lim in b ^ 
                 f = j ^ 
                 g = date ^ 
                 h = cost in c[i] 

Now assume that the adversary sends a buyrq message with a forged certificate (moving 

the protocol from safe state S.0 to error state U.0). The invalid message looks like this: 
         buyrq(cert’’, order’’) 
          where (b’, c’, d’, e’) := DCR(bkb, cert’’) ^ 
                (f’, g’, h’)     := DCR(bkc’, order’’) ^ 
                (b ≠ i v 
                 c ≠ bk in c[i] v 
                 d ≠ date) ^ 
                 f’ = f ^ 
                 g’ = g ^ 
                 h’ = h) 

From here, two things can happen. In the first case, v[j] receives the buyrq, and detects 

that the included certificate is invalid; thus, v[j] discards the message and brings the protocol back 

to S.0. In the second case, c[i] sends its own, valid, buyrq message, moving the protocol to unsafe 

state U.1. Once the vendor v[j] receives the adversary’s invalid buyrq message, the protocol goes 

to safe state S.3. 
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Message Modification 

Since the protocol has four messages, there are four cases to consider: 

1. c[i] sends a certrq message to b, moving the protocol from state S.0 to S.1. The 

original valid certrq message is of this format: 
certrq(order’) 
  where (b, c, d) := DCR(bkc[i], order’) ^ 
         b  = i ^ 
         c  = date ^ 
         d  = bal in c[i] 
After the adversary modifies the message (moving the protocol from S.1 to error state 

U.2), it looks like this: 
certrq(order’’) 
  where (b’, c’, d’) := DCR(bkc[i], order’’) ^ 
        (b’ ≠ b v 
         c’ ≠ c) 
When b receives the message, it detects that it was modified (when it checks the i’ and 

date’ fields) and throws the request away, moving the protocol to unsafe state U.6. This causes 

c[i] to timeout, moving the protocol back to safe state S.0. 

2. b sends a certrp message to c[i], moving the protocol from state S.1 to S.2. The 

original certrp message is of this format: 
certrp(cert’) 

          where (b, c, d, e) := DCR(bkb, cert’) ^ 
                 b = i ^ 
                 c = bk in c[i] ^ 
                 d = date ^ 
                 e = lim in b 

After the adversary modifies the message (moving the protocol to error state U.4), it 

looks like this: 
certrp(cert’’) 

          where (b’, c’, d’, e’) := DCR(bkb, cert’’) ^ 
                (b’ ≠ b v 
                 c’ ≠ c v 
                 d’ ≠ d) 

When c[i] receives and discards the message, the protocol again goes to state U.6. 

3. c[i] sends a buyrq message to v[j], moving the protocol from state S.0 to S.3. The 

original buyrq message looks like this: 
        buyrq(cert’, order’) 
          where (b, c, d, e) := DCR(bkb, cert’) ^ 
                (f, g, h)    := DCR(bkc’, order’) ^ 
                 b = i ^ 
                 c = bk in c[i] ^ 
                 d = date ^ 
                 e = lim in b ^ 
                 f = j ^ 
                 g = date ^ 
                 h = cost in c[i] 
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After the adversary modifies the message (moving the protocol from S.3 to error state 

U.7), it looks like this: 
        buyrq(cert’, order’) 
          where (b’, c’, d’, e’) := DCR(bkb, cert’) ^ 
                (f’, g’, h’)     := DCR(bkc’, order’) ^ 
                (b’ ≠ b v 
                 d’ ≠ d v 
                 f’ ≠ f v 
                 g’ ≠ g) 

When v[j] receives the message, it detects that it was modified and discards the message, 

moving the protocol to U.11. This causes c[i] to timeout, moving the protocol back to safe state 

S.0. 

4. v[j] sends a buyrp message to c[i], moving the protocol from state S.3 to S.4. The 

original buyrp message looks like this: 
        buyrp(order’) 
          where (b, c, d, e) := DCR(bkv[j], order’) ^ 
                b = i ^ 
                c = j ^ 
                d = date ^ 
                e = cost in v[j] 

After the adversary modifies the message (moving the protocol from S.4 to U.9), it looks 

like this: 
        buyrp(order’’) 
          where (b’, c’, d’, e’) := DCR(bkv[j], order’’) ^ 
                (b’ ≠ b v 
                 c’ ≠ c v 
                 d’ ≠ d) 

When c[i] receives the message, it discards it, moving the protocol to U.11 again. 

Message Replay 

In the message replay action, the adversary replaces a valid message at the head of a 

channel with a message sent in a previous session (before the current day). As with modification, 

there are four cases to consider. 

1. c[i] sends a certrq message to b, moving the protocol from state S.0 to S.1. Recall from 

above that the valid certrq message is of this format: 
certrq(order’) 
  where (b, c, d) := DCR(bkc[i], order’) ^ 
         b  = i ^ 
         c  = date ^ 
         d  = bal in c[i] 
After the adversary replays an old certrq (moving the protocol from S.1 to error state 

U.3), it looks like this: 
certrq(order’’) 
  where (b’, c’, d’) := DCR(bkc[i], order’’) ^ 
         b’ = b ^ 
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         c’ ≠ c 
When b receives the message, it detects that it was replayed (when it checks the date’ 

field) and discards the message, moving the protocol to U.6. This causes c[i] to timeout, moving 

the protocol back to safe state S.0. 

2. b sends a certrp message to c[i], moving the protocol from state S.1 to S.2. The 

original certrp message is of this format: 
certrp(cert’) 

          where (b, c, d, e) := DCR(bkb, cert’) ^ 
                 b = i ^ 
                 c = bk in c[i] ^ 
                 d = date ^ 
                 e = lim in b 

After the adversary replays an old certrp (moving the protocol from S.2 to error state 

U.5), it looks like this: 
certrp(cert’’) 

          where (b’, c’, d’, e’) := DCR(bkb, cert’’) ^ 
                 b’ = b ^ 
                 c’ = c ^ 
                 d’ ≠ d 

When c[i] receives the message, it throws it away, moving the protocol to U.6 again. 

3. c[i] sends a buyrq message to v[j], moving the protocol from state S.0 to S.3. Recall 

that the original buyrq message looks like this: 
        buyrq(cert’, order’) 
          where (b, c, d, e) := DCR(bkb, cert’) ^ 
                (f, g, h)    := DCR(bkc’, order’) ^ 
                 b = i ^ 
                 c = bk in c[i] ^ 
                 d = date ^ 
                 e = lim in b ^ 
                 f = j ^ 
                 g = date ^ 
                 h = cost in c[i] 

After the adversary replays an old buyrq (moving the protocol from S.3 to U.8), it looks 

like this: 
        buyrq(cert’, order’) 
          where (b’, c’, d’, e’) := DCR(bkb, cert’) ^ 
                (f’, g’, h’)     := DCR(bkc’, order’) ^ 
                 b’ = b ^ 
                 d’ ≠ d ^ 
                 f’ = f ^ 
                 g’ ≠ g 

When v[j] receives the message, it detects that it was modified and discards the message, 

moving the protocol to U.11. This causes c[i] to timeout, moving the protocol back to S.0. 

4. v[j] sends a buyrp message to c[i], moving the protocol from state S.3 to S.4. The 

original buyrp message looks like this: 
        buyrp(order’) 
          where (b, c, d, e) := DCR(bkv[j], order’) ^ 
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                b = i ^ 
                c = j ^ 
                d = date ^ 
                e = cost in v[j] 

After the adversary modifies the message (moving the protocol from S.4 to U.10), it 

looks like this: 
        buyrp(order’’) 
          where (b’, c’, d’, e’) := DCR(bkv[j], order’’) ^ 
                 b’ = b ^ 
                 c’ = c ^ 
                 d’ ≠ d 

When c[i] receives the message, it discards it, moving the protocol to S.0 again. 
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Appendix C: Details of SSL Verification 

Figure 18 shows the formal details of the state transition diagram in figure 10. 

 
S.0 = (st[j] = 0 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {}) 
S.1 = (st[j] = 1 in c[i]) ^ 
      (ch.c[i].s[j] = {helloc} ^ ch.s[j].c[i] = {}) 
S.2 = (st[j] = 1 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {hellos(certs’)}) 
      where (j’, bks’, date’) := DCR(bkca, certs’) ^ 
             j’    =  j ^ 
             bks’  =  bk in s[j] ^ 
             date’ >= date 
S.3 = (st[j] = 2 in c[i]) ^ 
      (ch.c[i].s[j] = {finishc(esecret’, emsg’)} ^ ch.s[j].c[i] = {}) 
      where (secret’) := DCR(rk, esecret’) ^ (msg’) := DCR(key’, emsg’) ^ 
             secret’  =  secret[j] in c[i] ^ 
             key’     =  F(secret’) ^ 
             msg’     =  G(i, j, certs[j], secret[j], esecret[j]) in c[i] 

S.2 

S.0 

c.0

S.1 

S.3 

v.0

c.1

S.4 

v.1

c.2

S.5 

c.3



49 

S.4 = (st[j] = 2 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {finishs(emsgs’)}) 
      where (msgs’) := DCR(key[j], emsgs’) ^ 
             msgs’ =  H(i, j, certs[j], secret[j], esecret[j], emsg[j]) in c[i] 
S.5 = (st[j] = 3 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {}) 

 
Figure 18. Detailed state transition diagram for SSL 

 
Figure 19 shows the formal details of the state transition diagram in figure 11. 

 
U.0 = (st[j] = 1 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {hellos(certs’)}) 
      where (j’, bks’, date’) := DCR(bkca, certs’) ^ 
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            (j’    ≠  j ^ 
             bks’  ≠  bk in s[j] ^ 
             date’ ≠  date in cert in s[j]) 
U.1 = (st[j] = 1 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {hellos(certs’)}) 
      where (j’, bks’, date’) := DCR(bkca, certs’) ^ 
            (j’    =  j ^ 
             bks’  =  bk in s[j] ^ 
             date’ <  date) 
U.2 = (st[j] = 2 in c[i]) ^ 
      (ch.c[i].s[j] = {finishc(esecret’, emsg’)} ^ ch.s[j].c[i] = {}) 
      where (secret’) := DCR(rk, esecret’) ^ (msg’) := DCR(key’, emsg’) ^ 
            (secret’ ≠  secret[j] in c[i] v 
             msg’    ≠  G(i, j, certs[j], secret[j], esecret[j]) in c[i])) 
U.3 = (st[j] = 2 in c[i]) ^ 
      (ch.c[i].s[j] = {finishc(esecret’, emsg’)} ^ ch.s[j].c[i] = {}) 
      where (secret’) := DCR(rk, esecret’) ^ (msg’) := DCR(key’, emsg’) ^ 
            (secret’ ≠  secret[j] in c[i] ^ 
             msg’    ≠  G(i, j, certs[j], secret[j], esecret[j]) in c[i])) 
U.4 = (st[j] = 2 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {finishs(emsgs’)}) 
      where (msgs’) := DCR(key[j], emsgs’) ^ 
             msgs’ ≠  H(i, j, certs[j], secret[j], esecret[j], emsg[j]) in c[i] 
U.5 = (st[j] = 1 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {}) 
U.6 = (st[j] = 2 in c[i]) ^ 
      (ch.c[i].s[j] = {} ^ ch.s[j].c[i] = {}) 
 

Figure 19. Detailed state transition diagram for SSL (with adversary) 

To complete the formal details of the proof, we formally define each of the adversary 

actions discussed in section 9.  

Message Modification 

There are three cases to consider: 

1. s[j] sends a hellos message to c[i], moving the protocol from state S.1 to S.2. The 

original valid hellos message is of this format: 
hellos(certs’) 

         where (b, c, d) := DCR(bkca, certs’) ^ 
                b  =  j ^ 
                c  =  bk in s[j] ^ 
                d  >= date 

After the adversary modifies the message (moving the protocol from S.2 to error state 

U.0), it looks like this: 
hellos(certs’’) 
  where (b’, c’, d’) := DCR(bkca, order’’) ^ 

               (b’ ≠  b ^ 
                c’ ≠  c ^ 
                d’ ≠  d) 

When c[i] receives the message, it detects that it was modified and discards it, moving 

the protocol to unsafe state U.5. This causes c[i] to timeout, moving the protocol back to safe 

state S.0. 
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2. c[i] sends a finishc message to s[j], moving the protocol from state S.2 to S.3. The 

original finishc message is of this format: 
finishc(esecret’, emsg’) 

          where (b) := DCR(rk, esecret’) ^ (d) := DCR(c, emsg’) ^ 
                 b = secret[j] in c[i] ^ 
                 c = F(b) ^ 
                 d = G(i, j, certs[j], secret[j], esecret[j]) in c[i] 

After the adversary modifies the message (moving the protocol to error state U.2), it 

looks like this: 
finishc(esecret’’, emsg’’) 

          where (b’) := DCR(rk, esecret’’) ^ (d’) := DCR(c’, emsg’’) ^ 
                (b’ ≠ b v 
                 d’ ≠ d) 

When s[j] receives and discards the message, the protocol goes to state U.6. This causes 

c[i] to timeout, moving the protocol back to safe state S.3. 

3. s[j] sends a finishs message to c[i], moving the protocol from state S.3 to S.4. The 

original finishs message looks like this: 
        finishs(emsgs’) 
          where (b) := DCR(key[j], emsgs’) ^ 
                 b  = H(i, j, certs[j], secret[j], esecret[j], emsg[j]) in c[i] 

After the adversary modifies the message (moving the protocol from S.4 to error state 

U.4), it looks like this: 
        finishs(emsgs’’) 
          where (b’) := DCR(key[j], emsgs’’) ^ 
                 b’ ≠ H(i, j, certs[j], secret[j], esecret[j], emsg[j]) in c[i] 

When c[i] receives the message, it detects that it was modified and discards the message, 

moving the protocol again to U.6.  

Message Replay 

As with modification, there are three cases to consider. 

1. s[j] sends a hellos message to c[i], moving the protocol from state S.1 to S.2. Recall 

the original valid hellos message is of this format: 
hellos(certs’) 

         where (b, c, d) := DCR(bkca, certs’) ^ 
                b  =  j ^ 
                c  =  bk in s[j] ^ 
                d  >= date 

When the adversary replaces this valid hellos message with a replayed one (which 

includes an expired certificate), the protocol moves to error state U.1. The replayed hellos 

message is defined to be: 
hellos(certs’’) 
  where (b’, c’, d’) := DCR(bkca, order’’) ^ 

               (b’ =  b ^ 
                c’ =  c ^ 
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                d’ <  date) 
When c[i] receives the message, it detects that it was replayed and discards it, moving the 

protocol to unsafe state U.5. This causes c[i] to timeout, moving the protocol back to safe state 

S.0. 

2. c[i] sends a finishc message to s[j], moving the protocol from state S.2 to S.3. Recall 

the original finishc message is of this format: 
finishc(esecret’, emsg’) 

          where (b) := DCR(rk, esecret’) ^ (d) := DCR(c, emsg’) ^ 
                 b = secret[j] in c[i] ^ 
                 c = F(b) ^ 
                 d = G(i, j, certs[j], secret[j], esecret[j]) in c[i] 

When the adversary replaces this valid finishc message with a replayed one, the protocol 

moves to error state U.3. The replayed finishc message is defined to be: 
finishc(esecret’’, emsg’’) 

          where (b’) := DCR(rk, esecret’’) ^ (d’) := DCR(c’, emsg’’) ^ 
                (b’ ≠ b ^ 
                 d’ ≠ d) 

When s[j] receives the message, it is unable to detect the attack, so it replies with a 

finishs message, moving the protocol to state U.4. Recall that a valid finishs message should be of 

this format: 
        finishs(emsgs’) 
          where (b) := DCR(key[j], emsgs’) ^ 
                 b = H(i, j, certs[j], secret[j], esecret[j], emsg[j]) in c[i] 

However, the finishs message the server sends is of this format: 
        finishs(emsgs’’) 
          where (b’) := DCR(key[j], emsgs’’) ^ 
                 b’ ≠ H(i, j, certs[j], secret[j], esecret[j], emsg[j]) in c[i] 

When c[i] receives the finishs message, it detects that the message is invalid and discards 

it, moving the protocol to state U.6. This causes c[i] to timeout, moving the protocol back to safe 

state S.3. 

3. s[j] sends a finishs message to c[i], moving the protocol from state S.3 to S.4. The 

original finishs message looks like this: 
        finishs(emsgs’) 
          where (b) := DCR(key[j], emsgs’) ^ 
                 b  = H(i, j, certs[j], secret[j], esecret[j], emsg[j]) in c[i] 

When the adversary replaces this valid finishs message with a replayed one, the protocol 

moves to error state U.4. The replayed finishs message is defined to be: 
        finishs(emsgs’’) 
          where (b’) := DCR(key[j], emsgs’’) ^ 
                 b’ ≠ H(i, j, certs[j], secret[j], esecret[j], emsg[j]) in c[i] 

When c[i] receives the message, it detects that it was modified and discards the message, 

moving the protocol again to U.6.  


