A Secure Address Resolution Protocol

Mohamed G. Gouda Chin-Tser Huang

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 787121188
{gouda, chuang} @s. ut exas. edu

Jure 10, 2002

Abstract

We propose an architedure for seaurely resolving IP addresses into
hardware aldresses over an Ethernet. The proposed architedure
consists of a secure server conneded to the Ethernet and two protocols:
an invite-accept protocol and a request-reply protocol. Each computer
conneded to the Ethernet can use the invite-accet protocol to
periodicdly record its IP address and its hardware aldress in the
database of the secure server. Each computer can later use the request-
reply protocol to oltain the hardware aldress of any other computer
conneded to the Ethernet from the database of the seaure server. These
two protocols are designed to avercome the adions of any adversary
that can lose sent messages, arbitrarily modify the fields of sent

messages, and replay old messages.
Keywords: authentication, Ethernet, Internet, network protocol,

seaurity, subnetwork.

1. Introduction

The Address Resolution Protocol [10], or ARP for short, is a protocol for mapping an 1P
addressto a hardware aldress that is recognized in the local network, in particular an Ethernet.
Unfortunately, as we point out below, there ae some insecurities in ARP which an adversary can
exploit to disrupt the normal communications among computers conrected to the Ethernet. In this
paper we propose a seadre aldress resolution protocol that can overcome the adions of any
adversary which may attempt to lose sent messages, arbitrarily modify the fields of sent
messages, or replay old messages. The new protocol consists of a seaure server connected to the
Ethernet, and consists of two (sub)protocols: an invite-accept protocol and a request-reply

protocol.

The rest of this paper is organized as follows. In Sedion 2, we describe the inseaurities
aswciated with the Address Resolution Protocol, and discuss why current proposed solutions
cannot fully overcome these insecurities. In Sedion 3, we propose an architecture for a secure

address resolution protocol. In Sedions 4 and 5, we describe in detail the design o the invite-

accet protocol and the request-reply protocol respectively, and give formal verification of the
correctness of these two pratocols. In Sedion 6, we show some extensions and applications of our

architedure. We mnclude our presentation in Section 7.

In verifying the two protocols presented in this paper, we based our reasoning on the state
transition dagrams of the protocols, rather than on the well-known BAN logic [2]. This is
becaise we wanted to verify the protocols with timeout actions, and BAN logic can be only used
in verifying idealized versions of the protocols without timeout adions. Anyway, for the benefit

of curious readers, we use BAN logic to verify idealized versions of our protocolsin the paper’s

Appendix.

2. Insecurities in Address Resolution Protocol

Consider a network that consists of n computers h[0], h[1], ... , h[n-1] conrected to the same
Ethernet. Before aty computer h[i] can send a message m to any other computer h[j] in this
network, Hi] neads to oltain the hardware address of h[j]. This can be accomplished using ARP
as follows. Firgt, the ARP process in h[i] broadcasts a rgst(ipa) message over the Ethernet to
every other computer in the network, where ipais the IP address of the destination computer h[j].
Seaond, when the ARP process in any computer other than h[j] receives the rgst(ipa) message, it
detects that ipais not its own IP address and discards the message. Third, when the ARP process
in computer h[j] receives the rgst(ipa) message, it deteds that ipaisits own IP address and sends
arply(ipa, hda) message over the Ethernet to computer h[i], where hda is the required hardware
addressof computer h[j]. When computer h[i] receives the rply(ipa, hda) message, it attaches hda
to message m before sending m(hda) over the Ethernet to computer h[j].

This scenario demonstrates that there ae three functions for ARP:

®* Resolving IP Addresses:
Using ARP, eah computer can dbtain the hardware aldress of any other computer
(using the IP address of that other computer) on the same Ethernet.

* Supporting Dynamic Assignment of Addresses:
ARP can be used to resolve the IP addresses of computers on the same Ethernet even
if the IP addresses assigned to these computers change over time. For example,
consider the case where amobile mwmputer visits an Ethernet. In this case, the mobile

computer can be assigned atemporary |P addressthrough some @nfiguration protocol

like DHCP [4]. Then, the other computers on the Ethernet can use ARP to resolve this
temporary |P addressto the hardware aldressof the mobile computer, and so can send

messages to that computer.

¢ Detecting Destination Failures:
Consider the case where a @mputer h[i] needs to resolve the IP address ipa of another
computer h[j] on the same Ethernet. Computer h[i] broadcasts a rgst(ipa) message
over the Ethernet. If h[j] happens to be down at this time, then no rply(ipa, hd)
message will be returned to h[i] and Hi] will not send an m(hda) message over the
Ethernet. Thus, ARP ensures that no m(hda) message is sent over the Ethernet unless
the destination computer of this message has been up shortly before m(hda) is sent.

The simplicity of ARP has made it widely used in the Internet. Unfortunately, this smplicity
makes ARP vulnerable to two types of attadks. To describe these two types of attacks, consider a
scenario where acomputer h[i] needs to resolve the IP addressipa of another computer h[j] over
the same Ethernet. Thus, h[i] broadcasts a rgst(ipa) message over the Ethernet. If h[j] happens to
be down at this time, then an adversary computer h[k] on the same Ethernet can return arply(ipa,

hda) to h[i]. There are two casesto consider.

1. Message Redirection:
In this case, hdain the returned message is the hardware address of h[k]. If h[i] caches
this hda and uses it for sending future messages intended for h[j], then these messages
will end up at h[k] and never reach Hj], even if h[j] becomes up shortly after.

2. Transmission Inducement:
In this case, hdain the returned message is the hardware address of h[j]. The returned
message anvinces h[i] that h[j] is up and so Hi] proceeds to transmit several m(hda)
message, intended for h[j], over the Ethernet. Computer h[j] will not receve these
messages, becaise it is down, but the aversary computer h[K] in a promiscuous mode

can receive these messages from the Ethernet.

In order to courter these potential attadks two solutions have been proposed recently. In ore
solution, a tool caled ARPWATCH [9] is proposed to monitor the adivities over the Ethernet
(such as the transmission of rgst(ipa) and rply(ipa, hda) messages over the Ethernet) and chedk
these activities against a database of (1P address hardware aldress) pairings. In ancther solution,
permanent entries for trusted hosts [1, 12] are stored in the ARP caches in al computers in the

Ethernet, so that rgst(ipa) and rply(ipa, hda) messages are not sent over the Ethernet and ARP
spoding is prevented. Both of these solutions suffer from some problems. ARPWATCH supports
two functions of ARP, namely resolving IP addresses and deteding destination failures, bu it
does not suppart the dynamic assignment of IP addresses. In the case of permanent entries for
trusted hosts, deteding destination failures and dynamicdly asdgning addresses are not

suppated. Moreover, neither of the two solutions can overcome transmisson inducement.

3. Architectureof Secure Address Resolution

To perform seaure addressresolution in an Ethernet, a secure server sis added to the Ethernet.
Then, every communication concerning address resolution in this Ethernet is either from s to

some computer in the Ethernet, or from some computer in the Ethernet to s.

The secure address resolution protocol between s and a wmputer h[i] in the Ethernet is
partitioned into two protocols: the invite-accet protocol and the request-reply protocol. The
function of the invite-accet protocol is to allow the different computers in the Ethernet to
communicate, periodicaly and seaurely, their 1P addresses and hardware aldresses to the seaure
server s. The function d the request-reply protocal is to allow each computer in the Ethernet to
resolve an IP address of some other computer in the same Ethernet to its hardware aldress As
shown in Figure 1, the invite-accept protocol is between process sn in server s and processhn[i]
in computer h[i], and the request-reply protocol is between processsr in server s and processhr(i]

in computer h[i].

Both the invite-accept protocol and the request-reply protocol are designed to tolerate the
adions of any adversary that happens to be on the Ethernet. We a&dume that an adversary can
perform the following threetypes of actions to disrupt the mmmunications between server s and

any computer h[i] on the Ethernet.

® Message Loss:
After a message is sent (by a processin s or h[i]), the message is discarded by the

adversary, and is never recaved (by the intended processin h[i] or s, respectively).

* Message Modification:
After a message is sent and before it is recelved, the message fidds are abitrarily
modified by the alversary.

hli] S

Applications Applications
Transport oo Transport
Network Network
Subnetwork Subnetwork
- invite-accept protocol
L U By I o write arays
) request-reply protocol) y ipg, hda, valid
hr[i] F---1-----f---------—=----———-f----1 ----| s
¢ Y Y ¢
Interface Interface

Ethernet

Figure 1. Architecture of secure addressresolution.

* Message Replay:
After amessage is sent and before it is received, the message is replaced by a cpy of

an earlier message of the same type by the alversary.

Note that by exeauting a sequence of these alversary actions, the alversary can launch the
message redirection attacks or the transmisson inducement attads, described in Sedion 2.

To tolerate these alversary actions, the invite-accet protocol and the request-reply protocol

use the following threemechanisms:

¢ Timeoutsto Counter Message Loss:;
If aprocess (in sor h[i]) sends amessage and bes not receive areply for this message
for arelatively long time, the processtimes out and sends another copy of the same

message or sends another message.

* Shared Secretsto Counter Message Modification:
Server s dhares a unique secret scrli] with ead computer h[i] on the Ethernet. This
seaet is used to compute an integrity check to be added to each message that is sent
between s and Hi]. For example, assume that a message a@t(c, ip, hd), with three
fidlds c, ip, and hd,isto be sent between s and Hi]. Then an integrity chedk d for this
message can be computed asfollows:
d:=MD(c; ip; hd; scr[i])

where MD is a message digest function, such as MD5 [11], SHA [8], or HMAC [7],
and “c; ip; hd; scr[i]” is a cncatenation of the three message fields and the shared
seaet. This integrity chedk d is added to the message, to become agt(c, ip, hd, d),
before sending it so that if the message fields are abitrarily modified (by the
adversary) to become a@t(c, ip', hd, d'), then d is nologer equal to MD(c'; ip’; hd;
scr[i]). Thus, arbitrarily modifying the fields of a message an be deteded by the
message recaver.

* Noncesto Counter Message Replay:

Before aprocess(in sor h[i]) sends a message that requires a reply to another process
(in h[i] or s, respectively), the sending process attadhes to the message a unique
integer nc, cdled the message nonce When the receiving process receives the
message and prepares a reply, it attadhes the message norce nc to the reply. Findly,
when the sending process receaves the reply and chedks that the message nonceis the
same & that in the original message, it concludes correctly that neither the origina
message nor the reply were replaced by ealier messages (by the adversary).

In the next two sections, we describe in some detail the two protocols and dscuss their
correctness proofs. The invite-accet protocol is discussed in Section 4, and the request-reply
protocol is discussed in Section 5.

We describe these two protocols using a variation d the Abstract Protocol Notation presented
in [6]. In this notation, eadh processin a protocol is defined by a set of inputs, a set of variables,
and a set of actions. For example, in a protocol consisting of processes p and g, processp can be
defined as follows.

process p
inp <nameof input> : <typeof input>
<nameof input> : <typeof input>

var <nameof variable> : <type of variable>

<name of variable> : <type of variable>
begin
<adion>

1] <adion>

1] <adion>

end

Comments can be alded anywhere in a process definition; each comment is placed between the
two brackets{ and}.

The inputs of processp can be read bu not updated by the actions of processp. Thus, the
value of ead input of p is either fixed or is updated by ancther process outside the protocol
consisting of p and g. The variables of process p can be read and updited by the actions of
processp. Each <action> of processpis of the form:

<guard> - <statement>

The guard of an action of pis either a<bodean expresson> or a<receive> statement of the form:

rcv <message> from q

The <statement> of an adion of p is a sequence of <skip>, <assignment>, <send>, <seledion>,

or <iteration> statements of the following forms:

<skip> : skip

<assignment> : <variable of p>:= <expression>

<send> : send <messge> to q

<selection> : if <bodean expression> - <statement>

[] <bodean expression> - <statement>
fi

<iteration> : do <boolean expression> -, <statement>
od

Exeauting an action consists of executing the statement of this action. Executing the actions
(of different processes) in a protocol proceeds according to the following threerules. First, an
adionis exeauted orly when its guard is true. Second, the actionsin a protocol are exeauted ore

at atime. Third, an action whose guard is continuowsly true is eventually exeauted.

4. Thelnvite-Accept Protocol

The invite-accept protocol consists of process sn in server s and every process hnfi] in
computer h[i]. Process sn shares a unique secret scrfi] with every process hn[i], and it stores the
shared secrets in an input array scr[0 .. n-1]. This array is defined as an input in process sn
becaise the actions of sn can read this array but cannot update it. (The initial shared seaet of a
host can be asigned to this host along with its IP addresswhen the host is added to the Ethernet.

The shared secret can be renewed orcein along period, for example amonth.)

Processsn also maintains threevariable arays ipa0 .. n-1], hda[0 .. n-1], and valid[O .. n-1].
Array ipa[0 .. n1] and array hda[0 .. n-1] are used to record the IP addresses and hardware
addresses of al computers on the Ethernet. Array valid[O .. n-1] is the validity count for the
entries in arrays ipa[0 .. 1] and hda[0 .. n1]. When sn writes ipa[i] and hdd[i], valid[i] is
assgned its highest possible value vmax. Periodically, sn decrements valid[i] by one. If the value

of valid[i] ever becomes zero, then the aurrent values of ipa[i] and hdi[i] are no longer valid.

There aetwo types of messages in the invite-accept protocol: invite and accept messages. The
invite messages are sent from process sn to every process hn[i], whereas the accept messages are
sent from every processhn[i] to process sn. Every T seconds, process sn sends an invite message

to every processhn[i]. Then every hn[i] replies by sending an accept messageto s.

Each invite message is of the form invt(nc, md), where nc is the unique nonce of the message
and md is alist md[0], ... , md[n-1] of message digests. Before sending an invt(nc, md) msg,
processsn computes a unique value for nc, and computes every md[i] as follows:

nc := NONCE;
forevery i, 0<i <n, md[i] := MD(nc; scr[i])

where NONCE is afunction that when invoked returns afresh nance

When a process hn[i] receives an invt(nc, md) message, it computes the value MD(nc; sc) and
compares the computed value with the received value md[i] in the message. If they are equal,
then hn[i] concludes correctly that this message was indeed sent by sn, and sends an accept

message to sn. Otherwise, hn[i] discards the received invite message.

Each accept message, sent by a process hn[i], is of the form agt(c, X, y, d), where c is the
message norcethat hn[i] foundin the last received invite message, x is the IP address of hn[i], y
isthe hardware addressof hn[i], and disthe message digest computed by hn[i] asfollows:

d:=MD(c; x; y; sC)

where scisthe seaet that h[i] shareswith server s.

When process sn receives an acpt(c, X, y, d) message from a process hn[i], it cheds that ¢
equals the nonce nc in the last invite message sent by sn and that d is a rrect digest for the
accet message. If so, sn concludes correctly that the acept message was indeed sent by hn[i]
and stores x inipd[i] and storesy in hdd[i]. Otherwise, sn discards the acept message. Processsn

can be defined as follows.

process sn
inp scr : array [0 .. n1] of integer { shared secrets}
T : integer {T = roundtrip delay between}
{snandead hn[i]}
vmax integer
var ipa : array [0 .. n1] of integer
hda array [0 .. n1] of integer
valid array [0 .. n1] of 0..vmax
md : array [0 .. n1] of integer
nc,c, d: integer
Xy integer
begin
timeout (T seands passed since this action executed last) -
nc := NONCE;
i:=0;
doi<n -
md[i] := MD(nc; scr[i]);
=i+l
od;
send invt(nc, md) to hn;
i:=0;
doi<n -
valid[i] := max(0, vaid[i] — 1);
=i+l
od

1 rev acpt(c, x,v, d) from hni] -
if c=nc O d=MD(c; x;y; scr[i]) -
ipafi] = x;
hddqi] :=y;
valid[i] := vmax
[c#nc O d#MD(c; x;y; scrfi]) -
{ discard message} skip

fi
end
Processsn has two actions. In the first action, sn broadcasts an invite message to every process
hn[i] on the Ethernet every T seconds. In the second action, process sn receives an accept
message from hn[i], chedks that the message is correct, and if so, it stores the IP address and
hardware addresscontained in the accept messagein ipa[i] and hdai].

Note that when sn broadcasts an invite messge, it decrements the value of every valid[i] by
one, and when sn receives an accept message from hn[i] and chedks that the message is corred, it
resets the value of valid[i] to vmax. Thus, if sn dces not receive any accet messge from hn[i]

for vmax * T seconds, then valid[i] becomes 0 in sn.

Processhn[i] stores the secret it shares with process sn in an input named sc. (Thus, the value
of scin hn[i] equals the value of scrfi] in sn.) Process hn[i] has two other inpus, namely ip and
hd, that stores the IP address and the hardware aldress of computer h[i], respectively. Process
hn[i] can be defined as follows.

process hn[i: 0 ..n-1]

inp sc : integer {scinhni] = scr[i] in sn}
ip, hd : integer
var e : array [0 .. n1] of integer
c,d integer
begin
rcv invt(c, €) from sn —
d := MD(c; sc);
if d=€i] -

d :=MD(c; ip; hd; sc);
send acpt(c, ip, hd, d to sn

[dz€i] -
{discard message} skip
fi
end

To verify the correctnessof the invite-accept protocol, refer to the state transition dagram of
this protocol in Figure 2. This diagram has sven nodes that represent all possible reachable states
of the protocol. Every transitionin the diagram stands for either a legitimate action (of process $1
or process hn[i]), or an illegitimate action of the adversary. For convenience, each transition is
labeled by the message event that is executed during the transition. In particular, ead transition
has alabel of the form

10

<event type> : <message type>
where <event type> is one of the following:
S stands for sending a message of the spedfied type
R stands for receiving and accepting a message of the specified type
D stands for receiving and dscarding a message of the specified type
L stands for losing a message of the spedfied type
M stands for modifying a message of the specified type
P stands for replaying a message of the spedfied type

Initially, the network starts at a state S.0 where the two channels between processes 1 and
hni] are empty. This gate can be defined by the foll owing predicate
S0= chsn.m[i] =<> 0 ch.hfi].sn=<>

At state S.0, exactly one action, namey the timeout action in process sn, is enabled for
exeaution. Executing this action at state S.0 |eads the network to state S.1 defined as follows:
S1l= ch.sn.n[i] = <invt(c, &> O c=nc O €i] =md[i] O €i] =MD(c; scr[i]) O

ch.hfil.sn=<>

Note that in state S.1, the dhannel from process & to process hn[i] has only one messge:
invt(c, €), where the following three onditions hold. First, the value of field c in the message
equals the value of variable nc in sn. Second, the i"™ element in array e in the message aquals the
i" element in array md in sn. Third, the i™ element in array e equals the message digest of the

concatenation of the value of field ¢ andthe " element in array scr in sn.

At state S.1, exactly ore legitimate ation, namely the reaive ation in process hn[i], is
enabled for exeaution. Exeauting this action at state S.1 leads the network to state S.2 defined as
follows:

S2= chsn.hn[il=<> 0O

ch.hr{i].sn = <aqot(c, x,y, d> O c=nc O d=MD(c; X; y; sc)

11

D:aqt

. S.0 .
D:invt o - L:aqt
L:invt i <1 R:aqt
%timeout& Siinvt
Riinvt & S:amt
M Meinvt S1 > so
s P:invt s P:a
Riinvt & S:amt
=4
S0= chsn.hi]=<> U ch.hril.sn=<>
S1= chsn.hi] = <invt(c, &> U c=nc U il =md[i] U di] = MD(c; scrfi]) U
ch.hfil.sn=<>
S2= chsn.hij=<> U))
ch.hri].sn = <agt(c, x,y, d> U c=nc U d=MD(c; X; y; sC)
M= chsn.h[i] = <invt(c, &> U €[i] * MD(c; scrfi]) U
ch.hrfil.sn=<>
M¢= chsn.hfi]=<> U \
ch.hri].sn = <amt(c, x,y, d> U d* MD(c; x; y; sc)
P= chsn.m[i] = <invt(c, > U c* nc U di]* md[i] U €i] = MD(c; scrfi]) U
ch.hrfil.sn=<>
P¢= chsn.m[ij=<> U

ch.hr{i].sn = <agqt(c, x,y, d> U c? nc

Figure 2. Statetransition diagram of the invite-accept protocol.

12

Note that in state S.2, the channdl from process hn[i] to process $1 has only one message:
at(c, x, y, d), where the following two condtions hold. First, the value of field c in the message
equals the value of variable nc in sn. Second, the value of field d in the message ejuals the
message digest of the cncatenation d the values of fields ¢, x, y, and the value of input sc in
hn[i].

At state S.2, exactly one legitimate action, namely the receive ation in process sn, is enabled
for exeaution. Executing this action at S.2 leads the network badk to S.0 defined above.

States S.0, S.1 and S.2 are @lled good states because the transitions between these states only
involve the legitimate actions of processes $1and h[i]. The sequence of the transitions from state
S.0to gate S.1, from state S.1 to state S.2, and from state S.2 to state S.0, constitutes the good
cyclein which the network performs progress If only legitimate actions of processes s1and m[i]
are exeauted, the network will stay in this good cycle indefinitely. Next, we discuss the bad
effeds caused by the actions of an adversary, and how the network can recover from bad states to

good states.

First, the adversary can execute amessage loss adion at state S.1 o S.2. If the alversary
exeautes amessage loss action at S.1, the only message in the channel from process s to process
hn[i] is removed. If the alversary exeautes a message lossaction at S.2, the only message in the
channel from hn[i] to sn is removed. In either case, the network returns to state S.0 where both

channels are empty.

Seomnd, the alversary can execute amessage modification action at state S.1 or S.2. If the
adversary exeautes a message modification action at S.1, the network moves to state M where the
i" element of array ein message invt(c, €) is nat equal to the message digest of the concatenation
of ¢ and scr[i]. This message invt(c, €) will be receved and dscarded by hn[i] because it cannot
pass the integrity ched in the reaive ation of hn[i]. If the alversary exeaites a message
modification action at S.2, the network moves to state M' where the value of field d in message
at(c, x, y, d) isnot equal to the message digest of the concatenation d the values of fiddsc, x,
y in the message and input sc in hrii]. This message agt(c, X, y, d) will be received and
discarded by sn because it cannot pass the integrity ched in the receive adion of sn. In either

case, the network returns to state S.0.

13

Third, the adversary can execute amessage replay adion at state S.1 a S.2. If the adversary
exeautes amessage replay action at S.1, the network moves to state P where the value of field cin
message invt(c,e) is not equal to the value of variable nc in sn, the i™ element of array e in the
message is not equal to the i™ element of array md in sn, but the i"™ element of array e is equal to
the message digest of the concatenation of the values of field ¢ in the message and the i" element
of input array scr in sn. This message invt(c, €) will be received by hn[i] and it will passthe
integrity check in the receive adion of hn[i]. Then, m[i] sends a message acpt(c, X, y, d) to sn,
and the network enters state P where the value of field ¢ in message agt(c, X, Y, d) isnot equal to
the value of variable nc in sn. This message apt(c, X, y, d) will be received and discarded by sn
becaise it cannot passthe integrity check in the receive adion d sn, and the network returns to
state S.0 where bath channels are ampty. If the adversary exeautes a message replay action at S.2,
the network moves to state P as described above. Then, the messge a@t(c, X, y, d) will be
recived and dscarded by sn, and the network returnsto S.0.

From the state transition dagram, it is clear that each imposed ill egitimate action by the
adversary will eventually lead the network bad to S.0, which is a good state. Once the network
enters a good state, the network can make progressin the good cycle. Hence the arrectness of

the invite-accept protocol is established.

5. TheRequest-Reply Protocol

The request-reply protocol consists of process $ in server s and every process hrfi] in
computer h[i]. Process g in server s dhares the same unique secret with process hr[i] in computer

h[i] as shared between processes $1and M[i] in theinvite-accept protocol.

There ae two types of messages in the request-reply protocol: request and reply messages.
The request messages are sent from process hr[i] to process sr, whereas the reply messages are
sent from process st to processhr|i]. When process hr[i] neeals to resolve an IP address into its
corresponding hardware address, and hr[i] is not waiting for a reply message for a previous
request message, hrfi] sends a request message to process g. Then sr replies by sending a reply

message to processhr|i].

14

Each request message is of the form rgst(nc, dst, d), where nc is the unique nonce of the
message, dst is the IP addressof the destination computer processhr[i] needs to resolve, and d is
amessage digest computed by hr[i]. Before sending argst(nc, dst, d) msg, processhr[i] computes
aunique value for nc, and computes d as follows:

nc := NONCE;
d:=MD(nc; d<t; sc)

When processsr receives a rgst(nc, dst, d) message, it computes the value MD(nc; dst; scr[i])
and compares the mmputed value with the received value d in the message. If they are equd,
then sr concludes correctly that this message was indeed sent by hr[i], seaches its database for
the corresponding hardware aldress of dst, and sends a reply message to hr[i]. Otherwise, sr
discards the received request message.

Each reply message, sent by processsr, is of the form rply(c, X, y, d), where cis the message
norce that sr found in the last recaved request message, X is the IP address of the destination
computer requested by hr[i], y isthe wrresponding hardware address of x, and d is the message
digest computed by sr asfollows:

d:=MD(c; x; y; scrfi])

where scrfi] is the secret that server s hares with computer h[i].

When processhrfi] recaves arply(c, X, y, d message from processsr, it chedks that ¢ equals
the noncenc in the last request message sent by hrfi], that x equals dst in the last request message
sent by hr[i], and that d is a correct digest for the reply message. If so, hr[i] concludes correctly
that the reply message was indeal sent by sr and takes y as the hardware aldress of the
destination computer. Otherwise, hr[i] discards the reply message. Processhr[i] can be defined as

follows.

process hr[i : 0.. n-1]

inp sc : integer {scin hri] = scri] insr}
t : integer
var nc,c, d: integer
dst, x, y: integer
wait boolean
begin
~wait -
wait :=true;
nc := NONCE;
dst := any;

15

d := MD(nc; dst; sc);
send rgst(nc, dst, d) to s

1 revrply(c, x,y, d fromsr —
ifnc=c Odst=x O d=MD(c; X; y; s¢) —
{y isreguested information about x} wait := false
[[nc£c O dst#x O d# MD(c; X; y; sC) —
{discard message} skip
fi

1 timeout wait [(t seconds passed sincefirst action executed last) —
d :=MD(nc; d<t; so);
send rgst(nc, dst, d) to s

end

Process hr[i] has three actions. In the first action, process hr[i] sends a request message to
process sr while nat waiting. In the seand action, hr[i] receives a reply message from sr, and
derives the hardware address of the destination computer. In the third action, hr[i] times out after

waiting for t seconds, and resends the same request message to <.

Note that in the second action, processhr|i] chedks both field ¢ and field x in message rply(c,
X, Yy, d) to seeif they are equal to the values of nc and dst respedively. The purpose of this
doule-chedking is to make sure that the reply message rresponds to the request message for
which hr[i] is waiting for a reply, and that the hardware address contained in the reply message
corresponds to the IP address hr[i] needs to resolve, and aso to make it harder for the alversary
to modify the message.

Processsr can read (but not write) the three arrays ipa[0 .. n-1], hda[0 .. n-1], and valid[O .. n-
1] that are updated regularly by processsn o the invite-accent protocol. Process sr can be defined

asfollows.

process s

inp scr : array [0 .. n1] of integer
ipa : array [0 .. n1] of integer
hda : array [0 .. n1] of integer
vaid array [0 .. n1] of integer

var cd : integer
X, ,j integer

begin

rev rgst(c, x, d) from hrfi] -
if d=MD(c; x; scrli]) -
j =0,

16

doipaj]Zx O j<n >
ji=i+l
od;
ifj<n Ovaid[j]>0 -
d := MD(c; x; hda[j]; scr[i]);
send rply(c, x, hda[j], d) to hr[i]
j=n0Ovdidj]=0 -
d:=MD(c; x; 0; scrfi]);
send rply(c, X, 0, d) to hrJi]
fi
[] d#MD(c; x; scr[i]) —
{discard message} skip
fi
end

Processsr has only one action, in which sr recaves a request message from processhr|i] and

sends areply message to hr[i].

Note that when process s receives a request message from process hr[i], it first chedks the
integrity of the message. Then, s searches array ipa for the IP address that hr[i] requests to
resolve. If the requested IP addressexistsin array ipa and the validity court for it is larger than O,
then sr sends a reply message, containing the arrespording hardware address to hrfi]. If the
requested |P address does nat exist in array ipa or the validity court is equal to 0,then sr sends a
reply message, containing an empty hardware aldress to hri].

To verify the correctnessof the request-reply protocol, refer to the state transition dagram as
shown in Figure 3. This diagram has eight states that represent al possible reachable states of the

protocol.

Initialy, the network starts at a state S.0 where the value of variable wait in processhr[i] is
false and the two channels between processes hr[i] and sr are empty. At S.0, exactly one action,
namely the first action in hr[i], is enabled for exeaution. Executing this action at S.0 leads the
network to state S.1, where the channel from hr[i] to sr has only one message rgst(c, X, d). In this
message, the value of field ¢ equalsthe value of variable ncin hr[i], the value of field x equals the
value of variable dst in hr[i], and the value of field d equals the message digest of the

concatenation of the values of fields ¢, x, andthe value of input sc in hr]i].

17

At state S.1, exactly one legitimate action, namely the receive action in process s, is enabled
for exeaution. Executing this action at S.1 leads the network to state S.2, where the channel from
sr to hrfi] has only one message rply(c, X, y, d). In this message, the value of fidld ¢ equals the
value of variable nc in hr[i], the value of field x equals the value of variable dst in hr[i], and the
value of field d equals the message digest of the mncatenation of the values of fields ¢, x, y, and

thei™ element of input array scrin sr.

At state S.2, exactly one legitimate ation, namely the receive ation in hr[i], is enabled for
exeaution. Executing this action at S.2 leads the network badk to S.0.

States S.0, S.1 and S.2 are the good states of the request-reply protocol, and the sequence of
the transitionsfrom S.0to S.1, from S.1to S.2, and from S.2 to S.0, constitutes the good cycle in
which the network performs progress Next, we discuss the bad effects caused by the ations of

the adversary, and hav the network can recover from bad states to good states.

First, the adversary can execute amessage loss adion at state S.1 o S.2. If the alversary
exeautes a message loss action at S.1 or S.2, the network moves to state L where the value of
variable wait in hr[i] is true and the two channels between hr[i] and sr are ampty. After the

timeout action, the network returnsto S.1.

Sewnd, the alversary can exeaite amessage modification action at state S.1 or S.2. If the
adversary exeautes a message modification action at S.1, the network moves to state M where the
value of field din message rgst(c, x, d) is not equal to the message digest of the concatenation of
the values of fields ¢, x in the message and input sc in hr[i]. This message rgst(c, x, d) will be
recived and dscarded by sr because it cannat pass the integrity ched. If the adversary executes
amessage modification action at S.2, the network moves to state M' where the value of field din
message rply(c, X, y, d) is not equal to the message digest of the concatenation of the values of
fiddsc, X, y in the message and the i" element of input array scr in sr. This message rply(c, X, Y,
d) will be received and discarded by hr[i] because it cannot pass the integrity ched. In either

case, the network moves to state L next and eventually returnsto S.1.

18

R:rply

R:rgst & S:rply

P:rply

M:rpl
S2 f=—t

R:rgst & S:rply

L:rply

D:rply

S1=

S2=

~wait [0 ch.hr[i].sr=<> 0O chs.hri] =<>

wait [
ch.hi].sr = <rgst(c, x,d)> 00 c=nc 0 x=dst 0 d=MD(c; x; sc) [
chsr.hrfi] =<>

wait [
ch.hfilsr=<> 0O
chsr.hrfi] = <rply(c, x,y, d)> O c=nc O x=dst O d=MD(c; x; y; scr[i])

wait O
ch.hr[i].sr = <rgst(c, x,d)> O d# MD(c; x; sc) O
chsr.hrfi] = <>

wait [
ch.hfilsr=<> 0O
ch.sr.hr[i] = <rply(c, x, y, d> O d#MD(c; Xx; y; scrli])

wait [
ch.hr[i].sr =<rgst(c, x,d)> O c#nc O d=MD(c; x; sc) O
chsr.hrfi] = <>

wait [
ch.hfilsr=<> 0O
ch.sr.hrfi] =<rply(c, x,y, d> O c#nc O d=MD(c; x; y; scr[i])

wait O ch.hr[i].sr =<> 0O chsr.hri] = <>

Figure 3. Statetransition dagram of the request-reply protocol.

19

Third, the adversary can exeaute amessage replay adion at state S.1 o S.2. If the alversary
exeautes amessage replay action at S.1, the network moves to state P where the value of field cin
message rgst(c, x, d) is not equal to the value of variable nc in hr[i], and the value of field d
equals the message digest of the mncatenation d the values of fields ¢ and xin the message ad
input scin hrli]. This message rgst(c, X, d) will be received and accepted by sr because it can pass
the integrity check. Thus sr sends to hr[i] a message rply(c, X, y, d), and the network moves to
state P where the value of field ¢ in message rply(c, X, Yy, d) is not equal to the value of variable
nc in hr[i], and the value of field d equals the message digest of the concatenation d the values of
fields ¢, x, y, and the i"™ element of input array scr in sr. If the alversary executes a message
replay adion at S.2, the network moves to state P as well. From state P, message rply(c, X, y, d)
will bereasived and dscarded by hr[i] because it canna pass the integrity check, and the network

moves to state L. Eventually, the network returnsto S.1.

From the state transition dagram, it is clear that each imposed ill egitimate action by the
adversary will eventualy lead the network badk to S.1, which is a good state. Once the network
enters a good state, the network can make progressin the good cycle. Hence the arrectness of

the request-reply protocol is verified.

6. Extensions

In this sction, we outline four extensions of the secure address resolution protocol. First, we
extend the protocol to support inseaure addressresolution for mobil e computers that may visit an
Ethernet but share no secrets with the secure server in that Ethernet. Sewmnd, we make the
protocol more reliable by adding a backup server to its architecture. Third, we make the protocol
perform some system diagnasis tasks. Fourth, we make the seaure server act as a server for

severa Ethernets to which the server is attached.

I nsecure Address Resolution

Consider an Ethernet that has several computers h[0 .. n-1] and a seaure server s. Asaume that
these cmputers and server use the secure aldress resolution protocol (discussed above) to
resolve IP addresses to hardware addresses. Assume dso that a mobile computer h[n] visits this
Ethernet but does nat share any seaet with the seaure servers. In order that computer h[n] can
exchange messages with the other computers on this Ethernet, h[n] needs to use an “insecure”

version of the addressresolution protocol. Thus, server s needs to support two versions of the

20

address resolution protocol: secure and inseaure. A binary fiddd b neals to be alded to each
message of type invite, accept, request, or reply to indicate whether the message belongs to the
seaure or inseaure version of the protocol. In particular, if the value of field bin a message is
zero, then the information in the message is inseaure. Otherwise, the value of b in the message is
one, and the information in the message is eaure. For example, an acoept message becomes of

the form aqot(nc, X, y, b, d, where

nc isthe nonceof the message,

x

isthe IP address of the message sender,
isthe hardware addressof the message sender,

isthe seaurity indicaor of the message,

o T <

isthe message digest computed as follows
d:=MD(nc; x; y; b; sc) ifb=1
d := arbitrary value ifb=0

sc isthe seaet shared between the message sender and server s.

Theinseaure version d the addressresolution protocol proceeds as foll ows. Whenever server s
sends ainvt(nc, b, md) to every computer in the Ethernet, computer h[n] replies by sending badk

an aqot(nc, X, y, b, dmessage, where b equals zero and d has an arbitrary value, to server s.

When server s reaives the acpt(nc, X, y, b, d) message and chedks that b equals zero, it
concludes that the message is inseaure and so it does not attempt to check the correctness of the
message digest d. Nevertheless, s storesin its database the IP address x and the hardware aldress
y of computer h[n] along with an indication that this information is unreliable. Later, s may
reacive argst(nc, X, b, d) message from a computer h[i], where x is the IP address of computer
h[n], bequalsone, and 0< i < n. Inthis case, sreplies by sending arply(nc, X, y, b, d messge to
computer h[i], where y is the hardware address of computer h[n], b equals zero (indicating that
the returned y isunrdiable), and d= MD(nc; x; y; b; scrli]).

A Backup Server

The main problem of the secure aldress resolution protocol discussed above is that its secure
server s represents a single point of failure. This problem can be resolved somewhat by adding a
badkup server bsto the Ethernet. Initially server bsis configured in a promiscuous mode so that it

reaives a mpy of every message sent over the Ethernet. Because server bs receves copies of all

21

accet messages ent over the Ethernet, bs keeps its database up-to-date in the same way server s
keeps its database up-to-date. (This neaessitates that server bsis provided with al the secrets that

server s shares with the computers onthe Ethernet.)

Server bs ®nds no message & long as erver s continues to send invite messages every T
seaonds over the Ethernet. If server bs observes that server s has not sent an invite message for
vmax * T seconds, it concludes that server s has failed. In this case, bs reports the failure, and
asaumes the duties of s: it starts to send invite messages every T seconds and to send a reply

message for every received request message.

System Diagnosis

In the aldressresolution protocol, the seaure server s may conclude that some computer h[i]
on the Ethernet has failed. This happens when s sends vmax consecutive invite messages and
does not receive an accept message for any of them from computer h[i]. Thus, server s can be
designed to report computer failures to the system administrator, whenever s detects such failures.

In this case, system diagnosis becomes a side task of the seaure addressresolution protocol.

Serving Multiple Ether nets

The architecture of the secure aldressresolution protocol can be extended to allow sto act asa
seaure server for several Ethernets (rather than a single Ethernet) to which sis attadhed [3]. With
this extension, the computers h[0 .. n-1] can be distributed over several Ethernets and n can
bewmme large. In the extended architedure, server s sends invite messages over the different
Ethernets at the same time, then waits to receive accept messages over the different Ethernets.
Also, each computer on an Ethernet can request (from server s) the hardware aldressof any other

computer onthe same Ethernet or on a different Ethernet.

7. Conclusions

In this paper, we have presented an architecture for seaurely resolving IP addresses into
hardware addresses over an Ethernet. The proposed architecture consists of a seaure server
conrected to the Ethernet and two protocols. an invite-acceot protocol and a request-reply

protocol. We have showed formally that these protocols are @rrect.

In the invite-accept protocol, the seaure server regularly sends an invite message to every host

on the Ethernet every T seconds. Obviously, T needs to be longer than the roundtrip time,

22

usually 50 msin anormal Ethernet. However, in choosing avalue for T, one needs to addresstwo
conflicting concerns. On ore hand, T shoud be large enowgh so that the overhead incurred by
sending invite messages is kept small. On the other hand, T should be small enough so that the

seaure server is sensitive to failure of any host onthis Ethernet.

In some caes, the adversary is stronger than discussed above in that it can insert messages
(arbitrarily modified messages or old messages). We beli eve that the proofs of the secure aldress
resolution protocol can be extended to the cae where the adversary can insert arbitrarily modified

messages or old messages.

Besides ARP, there is another widely used addressresolution protocol named Reverse Address
Resolution Protocol [5] (or RARP for short). RARP can help diskless computers get their 1P
addresses by resolving hardware addresses into IP addresses. Our protocol can be modified

dlightly to support secure RARP.

References
[1] Derek Atkins et al., Internet Security, 2 edition, New Riders, 1997.

2] Michad Burrows, Martin Abadi, and Roger Needham, “A Logic of Authentication”,
ACM Transactions on Computer Systems, Vol. 8, No. 1, pp.18-36, February 1990.

[3] Smoat Carl-Mitchell, John S. Quarterman, “Using ARP to Implement Transparent Subnet
Gateways’, RFC 1027, October 1987.

[4] Ralph Droms, “Dynamic Host Configuration Protocol”, RFC 2131, March 1997.

[5] Ross Finlayson, Timothy Mann, Jeffrey Mogul, Marvin Theimer, “A Reverse Address
Resolution Protocol”, RFC 903, June 1984.

[6] Mohamed G. Gouda, Elements of Network Protocol Design, JohnWiley & Sons, 1998.

[7] Hugo Krawczyk, Mihir Bellare, Ran Canetti, “HMAC: Keyed-Hashing for Message
Authentication”, RFC 2104, February 1997.

[8] NIST, FIPS RJB 180-1: Seaure Hash Standard, April 1995.

[9] Network Research Group, Lawrence Berkeley National Laboratory, ARPWATCH 2.0,
avail able d: ftp://ftp.eelbl.gov/arpwatch.tar.Z.

[10] David C. Plummer, “An Ethernet Address Resolution Protocol or Cornverting Network

Protocol Addresses to 48bit Ethernet Addressfor Transmisson on Ethernet Hardware”,
RFC 826, November 1982.

23

[1]] Ronald Rivest, “The MD5 Message Digest Algorithm”, RFC 1321, April 1992.

[12] Marco ce Vivo, Gabriela O. de Vivo, Germinal Isern, “Internet Security Attadks at the
Basic Levels’, Operating Systems Review, Vol. 32,No. 2,SIGOPS ACM, April 1998.

24

Appendix A. Proof of correctness of the invite-accept protocol using BAN logic

First, we idealize the messagesin the invite-accept protocol asfollows.

1. Messgel: sn - hn[i]: <NC>gy;

N

. Message 2: hn[i] - sn: <nc, X, Y>«qi)

/* sn sends hn[i] a nonce nc combined with
seaet scrfi] */

/* hn[i] sends sn nc, IP addressx, and herdware
addressy, combined with scr[i] */

For this protocol, we make the following assumptions:

scrli]

3. snigsn = hni]

scrfi

4. hii] |gsn i hn(i]
5. snf= (hnfi] O (x,))

6. sn|=#(nc)

/* sn believesthat sn and hrii] share scri] */

/* hn[i] believes that sn and hn[i] share scr[i] */
/* sn believes that hni] has jurisdiction over x
andy */

I* sn believesthat ncisfresh */

From the protocol and the assumptions, we can conclude

7. hidil Esn|~nc

8. sn|=hri] |~ (nc, x,y)
9. sn|=#(nc, X,Y)

10. sn = hr{i] [(nc, X, y)
11. sn = (nc, X,Y)

12. snl= (x,y)

from 1 and 4using message meaning rule
from 2 and 3using message meaning rule
from 6 using freshnessrule

from 8 and 9using norce verificationrule
from 5 and 10using jurisdictionrule

from 11 and property of |=

Appendix B. Proof of correctness of therequest-reply protocol using BAN logic

First, we idealize the messagesin the request-reply protocol as follows.

1. Messagel: hr[i] - Sr: <NC, X>giij

2. Message2: s — hrli]: <nc, X, Y>«i)

/* hr[i] sends sr a norce nc and destination 1P
addressx combined with seaet scri] */

[* sr sends hr[i] nc, x, and destination hardware
addressy, combined with scr[i] */

25

w

S

For this protocol, we make the following assumptions:

scrli]

sEs <= hrli] [* o believesthat sr and hr[i] share scr[i] */

scrli]
hli] Esr < hri] /* hr[i] believesthat sr and hr[i] share scr[i] */
h[i] = (sr |0) [* hr[i] believesthat sr hasjurisdiction over y */
h[i] |= #(nc) /* hr[i] believesthat ncisfresh */

From the protocol and the assumptions, we can conclude

7. s hr[i] |~ (nc, X) from 1 and 3using message meaning rule
8. h[i] Esr|~(nc, xy) from 2 and 4using message meaning rule
9. hJi] |E#(nc, x,y) from 6 using freshnessrule

10. hi] E s [E (nc, X, y) from 8 and 9using norce verificationrule
11. hii] E (nc, x, y) from 5 and 10using jurisdictionrule

12. h[i] gy from 11 and property of |=

26

