
Minimal Byzantine StorageJean-Philippe Martin, Lorenzo Alvisi, Mihael DahlinUniversity of Texas at Austin - Dept. of Computer SieneEmail: fjpmartin, lorenzo, dahling�s.utexas.eduDepartment of Computer SieneUniversity of Texas at AustinAustin, Texas 78712Abstrat. Byzantine fault-tolerant storage systems an provide high availability in hazardous environments,but the redundant servers they require inrease software development and hardware osts. In order to minimizethe number of servers required to implement fault-tolerant storage servies, we develop a new algorithm thatuses a \Listeners" pattern of network ommuniation to detet and resolve ordering ambiguities reated byonurrent aesses to the system. Our protool requires 3f+1 servers to tolerate up to f Byzantine faults|ffewer than the 4f + 1 required by existing protools for non-self-verifying data. In addition, SBQ-L providesatomi onsisteny semantis, whih is stronger than the regular or pseudo-atomi semantis provided by theseexisting protools. We show that this protool is optimal in the number of servers|any protool that providessafe semantis or stronger requires at least 3f + 1 servers to tolerate f Byzantine faults in an asynhronoussystem. We also examine protools that store self-verifying data (i.e. data that annot be undetetablyaltered). Existing protools an use self-verifying data to redue the number of servers required to toleratefaults but beause SBQ-L already uses the minimum possible number of servers for its semantis, self-verifyingdata provides no advantage. Finally, we examine a non-on�rmable writes variation of the SBQ-L protoolwhere a lient annot determine when its writes omplete. We show that SBQ-L with non{on�rmable writesprovides regular semantis with 2f + 1 servers and that this number of servers is minimal.1 IntrodutionByzantine storage servies are useful for systems that need to provide high availability. These servies guaranteedata integrity and availability in the presene of arbitrary (Byzantine) failures. A ommon way to design suh asystem is to build a quorum system. A quorum system stores a shared variable at a set of servers and performsread and write operations at some subset of servers (a quorum). Quorum protools de�ne an intersetion propertyfor the quorums whih, in addition to the rest of the protool desription, ensures that eah read has aess tothe urrent value of the variable. Byzantine quorum systems enfore the intersetion property neessary for theironsisteny semantis in the presene of Byzantine failures.The number of servers in a Byzantine storage system is a ruial metri sine server failures must be in-dependent. Therefore, to redue the orrelation of software failures, eah server should use a di�erent softwareimplementation [17℄. The �rst advantage of reduing the number of servers neessary for a servie is the redutionin hardware osts. However, as hardware osts get heaper in omparison to software and maintenane osts, themost important bene�t of reduing the number of di�erent servers is the orresponding redution in developmentand maintenane osts. Furthermore, for large software systems (e.g. NFS, DNS, JVM) a �xed number of imple-mentations may be available, but it is expensive or otherwise infeasible to reate additional implementations. Insuh a situation, a new protool requiring fewer servers may enable repliation tehniques where they were notpreviously appliable.To minimize the number of servers, we present a new protool alled Small Byzantine Quorums with Listeners(SBQ-L). The protool uses a \Listeners" pattern of ommuniation to detet and resolve ordering ambiguitieswhen reads and writes simultaneously aess a shared variable.1 Whereas existing algorithms use a �xed number ofommuniation rounds, servers and readers using SBQ-L exhange additional messages when writes are onurrentwith reads. This ommuniation pattern allows the reader to monitor the evolution of the global state instead of1 We all this ommuniation model \Listeners" beause of its similarity with the Listeners objet-oriented pattern intro-dued by Gamma et. al. [8℄.



relying on a snapshot. As a result, SBQ-L provides strong onsisteny semantis using fewer servers. In partiular,Table 1 shows that SBQ-L provides atomi semantis [9℄ for generi data using as few as 3f +1 servers to toleratef faults, instead of the 4f + 1 servers that were previously required to provide even the weaker regular [11℄ orpartial-atomi [16℄ semantis.We show that SBQ-L is optimal with respet to the number of servers required to provide a safe shared variablein the ommon model of asynhronous reliable authentiated hannels [1, 3, 11{13℄. In partiular, we show that anyprotool that tolerates f Byzantine failures and that provides safe or stronger semantis must use at least 3f + 1servers. Sine SBQ-L an provide atomi semantis with 3f + 1 servers, it is optimal with respet to this ritialmetri.We apply the SBQ-L protool and our lower bound analysis to ompare protools for generi data to thosefor self-verifying data (data that annot be undetetably altered, e.g. that are digitally signed). We �nd that,surprisingly, SBQ-L performs equally well with generi or self-verifying data. Existing protools require moreservers for generi data (seond olumn of Table 1). Our lower bound of 3f + 1 servers applies regardless ofwhether data is generi or self-verifying. Therefore our SBQ-L protool, already optimal for generi data, annotbe improved by using self-verifying data. This analysis suggests that the distintion between these two lasses ofprotools is not as fundamental as previous results imply.We also examine the distintion between protools with on�rmable writes and those with non-on�rmablewrites. Consisteny semantis are de�ned in terms of onditions that must hold when reads and writes omplete;however the spei�ation for when a write ompletes is left out of the de�nition. The traditional approah de�nes theompletion of the write as the instant when the writer ompletes its protool. We all these protools on�rmable.If instead write ompletion is de�ned in a way that annot be loally determined by the writer, but writes are stillguaranteed to eventually omplete, we say that the resulting protool is non-on�rmable.The bottom two lines of Table 1 indiate that the SBQ-L protool an be modi�ed to be non-on�rmable.In that on�guration, it an provide regular semantis for generi data using only 2f + 1 servers instead of the3f + 1 required in prior work [14℄. We again show that our protool is optimal by proving that 2f + 1 servers arerequired to provide even safe semantis for non-on�rmable writes. The existene of the SBQ-L protool showsthat this bound is tight. This result shows that the distintion between on�rmable and non-on�rmable protoolsis fundamental. Existing Protools SBQ-L Bound on server ount4f+1, safe [11, 12℄2,[14℄1on�rmable, generi 4f+1, partial-atomi [16℄2 3f+1, atomi2 � 3f+1 for safe3f+1, regular [11℄,[14℄1 ; or stronger semantison�rmable, self-verifying 3f+1, atomi [12℄,[5℄1;2 3f+1, atomi2non-on�rmable, generi 3f+1, safe [14℄ 2f+1, regular2 � 2f+1 for safenon-on�rmable, self-verifying 2f+1, regular [14℄ 2f+1, regular2 or stronger semantis(1) Does not require reliable hannels. (2) Tolerates faulty lients.Table 1. Required number of servers and semantis for various protools for Byzantine distributed shared memory. Newresults and improvements over previous protools are shown in boldThe SBQ-L protool uses additional ommuniation ompared to previous protools to redue the numberof servers and improve onsisteny semantis. These messages are not a performane bottlenek however: theyare limited to one message per server for eah read when no write is onurrent with the read; otherwise thenumber of additional messages per server is proportional to the number of onurrent writes. Setion 7.3 presentsmeasurements of the lateny inrease due to onurrent writes.Like other quorum protools, SBQ-L guarantees orretness by ensuring that reads and writes interset in asuÆient number of servers. But SBQ-L di�ers from many traditional quorum protools in that in a minimal-serverthreshold on�guration, lients send messages to all servers on read and write operations.2 Most existing quorum2 As desribed in Setion 3, it is possible to use more servers than the minimum and in this ase only a subset of the serversis touhed for every read.



protools aess a subset of servers on eah operation for two reasons: to tolerate server faults and to redue load.Note that SBQ-L's fault tolerane and load properties are similar to those of existing protools. In partiular,SBQ-L an tolerate f faults, inluding f non-responsive servers. Although in its minimal-server on�guration itsends read and write requests to all 3f +1 servers, this number is no higher than the 3f +1 (out of 4f +1) serversontated by most existing protools. SBQ-L ontats a large fration of servers beause it uses the minimal numberof servers.The rest of this paper is organized as follows. Setion 2 presents our model and assumptions and reviews thedi�erent semantis that distributed shared memory an provide, Setion 3 presents the SBQ-L protool, and Setion4 proves bounds on the number of servers required to implement these semantis. We disuss self-verifying datain Setion 5 and then examine non-on�rmable semantis. In Setion 6, we present a minimal protool for thesesemantis and prove it orret. In Setion 7, we show how to tolerate faulty lients, disuss the trade-o�s betweenbandwidth and onurreny and show how to avoid live-lok or memory problems during onurrent exeution.Setion 8 disusses related work and we onlude in Setion 9.2 Preliminaries2.1 ModelWe assume a system model ommonly adopted by previous work in whih quorum systems are used to tolerateByzantine faults [1, 3, 11{13℄. In partiular, our model onsists of an arbitrary number of lients and a set U ofdata servers suh that the number n = jU j of servers is �xed. A quorum system Q � 2U is a non-empty set ofsubsets of U , eah of whih is alled a quorum.Servers an be either orret or faulty. A orret server follows its spei�ation; a faulty server an arbitrarilydeviate from its spei�ation. Following Malkhi and Reiter [11℄, we de�ne a fail-prone system B � 2U as a non-empty set of subsets of U , none of whih is ontained in another, suh that some B 2 B ontains all faulty servers.Fail-prone systems an be used to desribe the ommon f-threshold assumption that up to a threshold f of serversfail (in whih ase B ontains all sets of f servers), but they an also desribe more general situations, suh aswhen some omputers are known to be more likely to fail than others.The set of lients of the servie is disjoint from U and lients ommuniate with servers over point-to-pointhannels that are authentiated, reliable, and asynhronous. We disuss the impliations of assuming reliableommuniation under a Byzantine failure model in detail in our previous work [14℄. Initially, we restrit ourattention to server failures and assume that lients are orret. We relax this assumption in Setion 7.1.2.2 Consisteny SemantisConsisteny semantis de�ne system behavior in the presene of onurreny. We �rst review Lamport's de�nitionsof safe, regular, and atomi semantis. Lamport [9℄ de�nes the three semantis for distributed shared memory listedbelow. His original de�nitions exlude onurrent writes, so we present extended de�nitions that inlude these [16℄.Using a global lok, we assign a time to the start and end (or ompletion) of eah operation. We say that anoperation A happens before another operation B if A ends before B starts. We then require that all operations betotally ordered using a relation! (serialized order) that is onsistent with the partial order of the happens beforerelation. In this total order, we all write w the latest ompleted write relative to some read r if w ! r and thereis no other write w0 suh that w ! w0 ^ w0 ! r. We say that two operations A and B are onurrent if neither Ahappens before B nor B happens before A. The semantis below hold if there exists some relation! that satis�esthe requirements.{ safe semantis guarantee that a read r that is not onurrent with any write returns the value of the latestompleted write relative to r. A read onurrent with a write an return any value.{ regular semantis provide safe semantis and guarantee that if a read r is onurrent with one or more writes,then it returns either the latest ompleted write relative to r or one of the values being written onurrentlywith r.{ atomi semantis provide regular semantis and guarantee that the sequene of values read by any given lientis onsistent with the global serialization order (!).



The above de�nitions do not speify when the write ompletes. The hoie is left to the spei� protool. Inall ases, the ompletion of a write is a well-de�ned event. We will begin by onsidering only protools in whihthe writer an determine when its write has ompleted (on�rmable protools). We later relax this requirement inSetion 6 and show that the resulting protools with non-on�rmable writes require fewer servers.W1 Write(D) fW2 send (QUERY TS) to all serversW3 loop fW4 reeive answer (TS, ts) from server sW5 urrent[s℄ := tsW6 g until the urrent[ ℄ array ontains qw answers.W7 max ts := maxfurrent[ ℄gW8 my ts := minft 2 Cts : max ts < t ^ last ts < tg// my ts 2 Cts is larger than all answers and previous timestampW9 last ts := my tsW10 send (STORE, D;my ts) to all servers.W11 loop fW12 reeive answer (ACK,my ts) from server sW13 S := S [ fsgW14 g until jSj � qw // qw servers answeredW15 gR1 (D,ts) = Read() fR2 send (READ) to qr servers.R3 loop fR4 reeive answer (VALUE,D; ts) from server s // (possibly more than one answer per server)R5 if ts > largest[s℄:ts then largest[s℄ := (D; ts)R6 if s 62 S then // we all this event an \entrane"R7 S := S [ fsgR8 T := the f + 1 largest timestamps in largest[ ℄R9 for all isvr, for all jtime 62 T , delete answer[isvr; jtime℄R10 for all isvr,R11 if largest[isvr℄:ts 2 T then answer[isvr; largest[isvr℄:ts℄ := largest[isvr℄R12 if ts 2 T then answer[s; ts℄ := (D; ts)R13 g until 9D0; ts0;W :: jW j � qw ^ (8i : i 2 W : answer[i; ts0℄ = (D0; ts0))// i.e., loop until qw servers agree on a (D,ts) valueR14 send (READ COMPLETE) to all serversR15 return (D0; ts0)R16 g Fig. 1. Con�rmable SBQ-L lient protool for the f-threshold error model
3 The SBQ-L ProtoolFigure 1 presents the f -threshold 3 SBQ-L on�rmable lient protool for generi data. The initial values of theprotool's variables are shown in Figure 2.In lines W1 through W8, the Write() funtion queries a quorum of servers in order to determine the newtimestamp. The writer then sends its timestamped data to all servers at line W10 and waits for aknowledgmentsat lines W11 to W14. The Read() funtion queries a read quorum of servers in line R2 and waits for messagesin lines R3 to R13. An unusual feature of this protool is that servers send more than one reply if writes are inprogress. For eah read in progress, a reader maintains a matrix of the di�erent answers and timestamps from theservers (answers[℄[℄). The read deides on a value at line R13 one the reader an determine that a quorum3 We desribe the more general quorum SBQ-L protools in the Appendix.



variable initial value notesqw ln+ f + 12 m Size of the write quorumqr ln+ 3f + 12 m Size of the read quorumCts Set of timestamps for lient  The sets used by di�erent lients are disjointlast ts 0 Largest timestamp written by a partiular server. This is the only variablethat is maintained between funtion alls (\stati" in C).largest[ ℄ ; A vetor storing the largest timestamp reeived from eah server and theassoiated dataanswer[ ℄[ ℄ ; Sparse matrix storing at most f + 1 data and timestamps reeived fromeah serverS ; The set of servers from whih the lient has reeived an answerFig. 2. Client variablesof servers vouh for the same data item and timestamp, and a noti�ation is sent to the servers at line R14 toindiate the ompletion of the read. A na��ve implementation of this tehnique ould result in the lient's memoryusage being unbounded; instead, the protool only retains at most f + 2 answers from eah server. We show inSetion 3.1 that the protool is orret.This protool di�ers from previous Byzantine quorum system (BQS) protools beause of the ommuniationpattern it uses to ensure that a reader reeives a suÆient number of sound and timely values. A reader reeivesdi�erent values from di�erent servers for two reasons. First, a server may be faulty and supply inorret or oldvalues to a lient. Seond, orret servers may reeive onurrent read and write requests and proess them indi�erent orders.Traditional quorum systems use a �xed number of rounds of messages but ommuniate with quorums that arelarge enough to guarantee that intersetions of read and write quorums ontain enough sound, timely answersfor the reader to identify a value that meets the onsisteny guarantee of the system (e.g., using a majority rule).Rather than using extra servers to disambiguate onurreny, SBQ-L uses extra rounds of messages when serversand lients detet writes onurrent with reads. Intuitively, other protools take a \snapshot" of the situation. TheSBQ-L protool looks at the evolution of the situation in time: it views a \movie".SBQ-L's approah uses more messages than some other protools. Other than the single additionalREAD COMPLETE message sent to eah server at line R14, however, additional messages are only sent whenwrites are onurrent with a read.Figure 1 shows the protool for lients. Servers follow simpler rules: they only store a single timestamped dataversion, replaing it whenever they reeive a STORE message with a newer timestamp. When reeiving a readrequest, they send the ontents of this storage. Servers in SBQ-L di�er from previous protools in what we allthe Listeners ommuniation pattern: after sending the �rst message, the server keeps a list of lients who havea read in progress. Later, if they reeive a STORE message, then in addition to the normal proessing they ehothe ontents of the store message to the \listening" readers { inluding messages with a timestamp that is not asreent as the data's urrent one but more reent than the data's timestamp at the start of the read. This listeningproess ontinues until the server reeives a READ COMPLETE message from the lient indiating that the readhas ompleted. Note that in pratie these messages would only be sent if the writer is authorized to modify thatvariable. Also, they need only be sent to readers aessing the variable being written.This protool requires a minimum of 3f + 1 servers and provides atomi semantis with on�rmable writes.We prove its orretness in the next setion. Theorem 2 of Setion 4 shows that 3f + 1 is the minimal number ofservers for on�rmable protools. In Setion 7.1 we show how to adapt this protool for faulty lients.3.1 CorretnessTo better understand the intuition behind the orretness proofs, it helps to think about the onstraints on theread protool. The read protool deides on a value that is proposed by a vouher set of qw servers, so the �rstonstraint is that after a write has ompleted all vouher sets muh ontain at least one orret server. The seondonstraint pertains to liveness: the protool must ensure that the reader eventually reeives replies from qw orretservers so it an omplete.Traditional quorum protools abstrat away the notion of group ommuniation and only onern themselveswith ontating groups of responsive servers. Instead, our protool spei�es to whih group of servers the messages



should be sent and waits for aknowledgments from some quorum of servers within this aess group. The readprotool relies on the aknowledged messages for safety, but it also potentially relies on the messages that are stillin transit for liveness. Beause the hannels are reliable, we know that these messages will eventually reah theirdestination.Theorem 1. The on�rmable f-threshold SBQ-L protool provides atomi semantis.Lemma 1 (Atomiity). The on�rmable threshold SBQ-L satis�es atomi semantis, assuming it is live.The SBQ-L protool guarantees atomi semantis, in whih the writes are ordered aording to their timestamps.To prove this, we show that (1) after a write for a given timestamp ts1 ompletes, no read an return a value withan earlier timestamp and (2) after a lient  reads a timestamp ts1, no later read an return a value with an earliertimestamp.(1) Suppose a write for timestamp ts1 has ompleted; then dn+f+12 e servers have aknowledged the write. Atleast dn�f+12 e of these are orret. In the worst ase, all the remaining servers an return the same stale or wrongreply to later reads. However there are only dn+f�12 e of them so they annot form a quorum. Hene no later readan return an earlier timestamp.(2) Suppose that at some global time t1, some lient  reads timestamp ts1. That means that dn+f+12 e serversreturned a value indiating that this timestamp has been written, and again at least dn�f+12 e of these are orret:the remaining servers are too few to form a quorum. It follows that any read that starts after t1 has to return atimestamp of at least ts1. �Lemma 2 (Liveness). All funtions of the on�rmable threshold SBQ-L eventually terminate.Write. The Write() funtion is trivially live beause its waits (in steps W6 and W14) expet qw = d(n+ f +1)=2eanswers and qw � n� f so these answers are guaranteed to eventually arrive.Read. Even though it only traks f + 2 di�erent timestamps simultaneously (lines R11 and R12), the Read()funtion is live. Note that there are at most n entranes. Consider the last one, i.e., the last time line R7 ofRead() is exeuted. Consider the largest largest[℄.ts assoiated with a orret server, tsmax. The lient has notdisarded any data item with timestamp tsmax oming from a orret server (beause these data items are keptin largest[℄). tsmax is in T beause T ontains the f + 1 largest timestamps in largest[℄. Sine all lients areorret, they send the same value to all servers and therefore all orret servers will eventually see the write withtimestamp tsmax and will eho it to the reader.The reader will reeive replies from qr = dn+3f+12 e servers. Beause qw � qr � f , there are enough orretservers to guarantee that the read for that timestamp will eventually omplete.STORE, QUERY TS. The server's STORE and QUERY TS funtions terminate beause they have no loops.READ. The server's READ funtion terminates beause the lient's Read() terminates and lients are orret. �The liveness subproof for read also illustrates the bene�ts of the Listeners ommuniation: if several writes arein progress, then eah server ould initially hold a di�erent timestamp. The ongoing ommuniation allows thereader to follow the writes and identify the orret value.This lemma onludes the orretness proof. We have shown that the protool always returns a orret valueand that it terminates. Note that it ould terminate before the events we desribe in the proof; we merely showthat the protool eventually terminates.4 BoundsIn this setion, we prove lower bounds on the number of servers required to implement minimal onsistenysemantis (safe semantis) in on�rmable protools. The bound is 3f +1 and applies to any fault-tolerant storageprotool beause the proof makes no assumption about how the protool behaves. This lower bound not onlyapplies to quorum protools suh as SBQ-L, but also to any other fault-tolerant storage protool, even randomizedones (i.e. protools that use random oin ips in order to guarantee safe semantis). Also, the bounds hold whetheror not data are self-verifying. Sine the SBQ-L protool of the previous setion meets this bound, we know it istight. Sine SBQ-L does not use ryptography, we know that self-verifying data is not neessary for protools thatuse the minimal number of servers.



4.1 Con�rmable Safe SemantisTheorem 2. In the authentiated asynhronous model with Byzantine failures and reliable hannels, no live on-�rmable protool an satisfy the safe semantis for distributed shared memory using 3f servers.To prove this impossibility we show that under these assumptions any protool must violate either safety orliveness. If a protool always relies on 2f + 1 or more servers for all read operations, it is not live. But if a liveprotool ever relies on 2f or fewer servers to servie a read request, it is not safe beause it ould violate safesemantis. We use the de�nition below to formalize the intuition that any suh protool will have to rely on atleast one faulty server.De�nition 1. A message m is inuened by a server s i� the sending of m ausally depends [10℄ on some messagesent by s.De�nition 2. A reahable quiet system state is a state that an be reahed by running the protool with thespei�ed fault model and in whih no read or write is in progress.Lemma 3. For all live on�rmable write protools using 3f servers, for all sets S of 2f servers, for all reahablequiet system states, there exists at least one exeution in whih a write is only inuened by servers in a set S0suh that S0 � S.By ontradition: suppose that from some reahable quiet system state all possible exeutions for some writer areinuened by more than 2f servers. If the f faulty servers rash before the write then the writer an only reeivemessages that are inuened by the remaining 2f servers and the on�rmable write exeution will not omplete. �Note that this lemma an easily be extended to the read protool.Lemma 4. For all live read protools using 3f servers, for all sets S of 2f servers, for all reahable quiet systemstates, there exists at least one exeution in whih a read is only inuened by servers in a set S0 suh that S0 � S.Thus, if there are 3f servers, all read and write operations must at some point depend on 2f or fewer serversin order to be live. We now show that if we assume a protool to be live it annot be safe by showing that there isalways some ase where the read operation fails.Lemma 5. Consider a live read protool using 3f servers. There exist exeutions for whih this protool does notsatisfy safe semantis.Informally, this read protool sometimes deides on a value after onsulting only with 2f servers. We provethat this protool is not safe by onstruting a senario in whih safe semantis are violated.Beause the protool is live, for eah write operation there exists at least one exeution ew that is inuenedby 2f or fewer servers (by Lemma 3). Without loss of generality, we number the inuening servers 0 to 2f � 1.Immediately before the write ew, the servers have states a0 : : : a3f�1 (\state A") and immediately afterwards theyhave states b0 : : : b2f�1; a2f : : : a3f�1 (\state B"). Further suppose that the shared variable had value \A" beforethe write and has value \B" after the write. If the system is in state A then all reads should return the value A; inpartiular this holds for the reads that inuene fewer than 2f + 1 servers. Consider suh a read whose exeutionwe all e. Exeution e reeives messages that are inuened by servers f to 3f � 1 and returns a value for the readbased on messages that are inuened by 2f or fewer servers; in this ase, it returns A. Lemma 4 guarantees thatexeution e exists.Now onsider what happens if exeution e were to our when the system is in state B. Suppose also thatservers f to 2f � 1 are faulty and behave as if their states were af : : : a2f�1. This is possible beause they havebeen in these states before. In this situation, states A and B are indistinguishable for exeution e and thereforethe read will return A even though the orret answer is B. �The last two lemmas show that in the onditions given, no read protool an be live and safe. �



5 Self-Verifying DataIn previous work, protools using self-verifying data often required f fewer servers than otherwise [11, 14℄. It is easyto understand why protools using self-verifying data might be easier: the signatures make it possible to detetfaulty servers that lie|as long as they don't lie by replaying some older value.It was not known until now whether self-verifying data really made a fundamental di�erene or if protoolsusing only generi (i.e. non-self-verifying) data ould be made to perform as well. In this paper, we show thatself-verifying data has no e�et on the number of servers required to solve the problem. To do this we show aprotool, SBQ-L, that provides atomi semantis using 3f +1 servers. We then show that no fault-tolerant storageprotool an math these semantis using fewer servers|even if using self-verifying data.Although self-verifying data has no impat on the minimal number of servers, it may be useful for otherproperties of these protools suh as the number of messages exhanged or the ability to restrit aess to theshared variables.It is also interesting to note that this equality in power between generi and self-verifying data arries overto the non-on�rmable protools desribed in the next setion. Using that weaker guarantee, it is still the asethat no program using self-verifying data an satisfy safe semantis using fewer servers than the non-on�rmableversion of SBQ-L.6 Non-Con�rmable ProtoolsIn Setions 3 and 4 we have limited ourselves to protools in whih the writer an determine when its writesomplete. We now explore non-on�rmable writes in whih the writer annot loally determine when its writesomplete, even though write ompletion is still a well-de�ned event.6.1 De�nitionIf a protool de�nes the write ompletion prediate so that ompletion an be determined loally by a writer andall writes eventually omplete, we all the protool on�rmable. This de�nition is intuitive and therefore impliitlyassumed in most previous work. These protools typially implement their Write() funtion so that it only returnsafter the write operation has ompleted. Note that on�rmable protools may also hoose to implement a non-bloking write operation and provide a separate mehanism (e.g., a barrier) to let the lient determine when awrite ompletes.If instead a protool's write ompletion prediate depends on the global state in suh a way that ompletionannot be determined by a lient although all writes still eventually omplete, then we all the protool non-on�rmable. Non-on�rmable protools annot provide bloking writes. The SBQ protool [14℄, for example, is non-on�rmable: writes omplete when a quorum of orret servers have �nished proessing the write. This ompletionevent is well-de�ned but lients annot determine when it happens beause they lak the knowledge of whih serversare faulty.As an example of a system where a non-on�rmable protool is suÆient, onsider a network of sensors measur-ing some value and writing it to the distributed shared memory. The reader always wants the most reent availablevalue that orresponds to the physial situation and does not are if a partiular write has ompleted. Also, it isaeptable for some writes to be replaed with a newer value before they are ever read. Therefore no sensor shouldwait for the ompletion of its last write before writing a newer measured value, and non-on�rmable semantis areappropriate.6.2 ProtoolThe on�rmable SBQ-L protool of Setion 3 requires at least 3f+1 servers. This number an be redued to 2f+1if the protool is modi�ed to beome non-on�rmable.Sine in a non-on�rmable protool the writer is not required to know when the write ompletes, we an removelines W11 to W14 of the Write() funtion in whih the writer waits for aknowledgments. The STORE messagessent earlier (at line W10) are guaranteed to reah their destination beause we assume that the hannels are



reliable. The reader an �nd a disussion of the impliations of assuming reliable links in Byzantine environmentsin our previous work [14℄.We then modify the size of qw (now used only in line R13) to dn+12 e instead of dn+f+12 e previously. We alsohange qr to dn+2f+12 e instead of dn+3f+12 e. These hanges are possible beause eliminating the aknowledgmentseliminates a onstraint on the overlap of read and write quorums [14℄.Reall that in non-on�rmable protools, the write funtion does not determine when the write has ompleted:instead, the ompletionmust be spei�ed by the protool. We therefore speify that the write ompletes when dn+12 eorret servers are done proessing the STORE message. Note that this de�nition ensures that write ompletionannot be unduly delayed by the ations of faulty servers in that they annot delay writes more than rashedservers would.This protool requires only 2f + 1 servers and provides regular semantis. As shown in Theorem 4, 2f + 1 isthe optimal number of servers for non-on�rmable protools.Piere [16℄ presents a general tehnique to transform any regular protool into one that satis�es atomi seman-tis. This tehnique, however, only works for on�rmable protools and therefore does not apply to this ase.Due to spae onstraints, we state the main theorems here. Proofs are inluded in the Appendix.6.3 CorretnessTheorem 3. The non-on�rmable threshold SBQ-L protool is live and provides regular semantis.6.4 Lower BoundsWe prove lower bounds for non-on�rmable protools. The minimum number of servers for safe semantis is 2f+1,as opposed to 3f + 1 for on�rmable protools.Theorem 4. In the reliable authentiated asynhronous model with Byzantine failures, no live protool an satisfythe safe semantis for distributed shared memory using 2f servers.Note that the proof is not limited to the f -threshold model and makes no assumption of deterministi behaviorfrom the protool. The proof also overs protools that use integrity heks in their messages sine faulty servershave all the neessary information to reate the messages they send.7 Pratial ConsiderationsOur basi Listener protool allows the SBQ-L protools to use the optimal number of servers but (1) it does nothandle faulty lients, (2) the ommuniation pattern it requires auses more messages to be exhanged than inother protools, (3) supporting a large number of lients is ostly and (4) the reader stores messages in memorybefore deiding. In the next subsetions we show how to handle faulty lients, quantify the number of additionalmessages, experimentally measure the e�et of additional messages, sale up to large numbers of lients, disussthe protool lateny, and show an upper bound on memory usage.7.1 Faulty ClientsThe protools in the previous two setions are suseptible to faulty lients in two ways: (1) faulty lients an hoosenot to follow the write protool and prevent future reads from terminating, violating liveness, or (2) faulty lientsan violate the read protool to waste server resoures.Liveness. Faulty writers an prevent future read attempts from terminating by preventing any quorum of serversfrom having the same value (a poisonous write), for example by sending a di�erent value to eah server. All readswill then fail beause they annot gather a quorum of idential answers.To avoid poisonous writes, we introdue a \writer" private key, shared by all the writers but not aessible tothe servers { servers only have the orresponding publi key. Clients sign their write requests with this key. The



modi�ed server protool is shown in Figure 3. The written values are stored at the servers in the variables D0 andts0. As before, these variables are updated whenever a server reeives a newer value and the servers implementtheir part of the listeners protool. To handle poisonous writes, we modify servers to forward all valid requeststo all other servers in addition to the normal proessing. If a server reeives two valid requests with an identialtimestamp, it onsiders the one whose data omes �rst lexiographially to have a lower timestamp (this allowsservers to agree even when the faulty writer is trying to poison the write). The variables D0 and ts0 represent theserver's storage. The variable start-listening[℄ stores the value that ts0 had when the server reeived a read requestfrom a partiular lient . We use the notation fxgwriter for \the message x, signed with the private key writer".The protool shown is appropriate for on�rmable writes; for non-on�rmable writes line S3 an be omitted.This new protool guarantees that the system reovers one poisonous writes end. Let (ts0; D0) be the highest-valued message sent in a write by a faulty lient. The system reovers when dn+12 e orret servers have �nishedproessing the (ts0; D0) message (either from the lient diretly or from an eho message). Note that in the aseof orret lients, reovery unsurprisingly oinides with the ompletion of the write. With this modi�ation, bothon�rmable and non-on�rmable SBQ-L provide atomi (respetively regular) semantis despite faulty lients.A related win is that slow writers{even writers that rash|will not delay nor prevent the ompletion of thewrite sine the servers themselves propagate the write information. With this modi�ation all operations fromorret lients will eventually omplete even if some servers are faulty and regardless of the speed of the otherlients, even if some or all other lients rash.S1 Store(fD; tsgwriter) fS2 if the signature is invalid then ignore this message.S3 send (ACK,ts) bak to the sender, unless it is a server.S4 for eah listening lient S5 if ( start-listening[℄� ts ) send (VALUE,D,ts) to S7 if ((ts; D) > (ts0;D0)) thenS8 (ts0;D0) := (ts;D) // store the new valueS9 send (STORE,fD; tsgwriter) to all servers.S10 g Fig. 3. Server protool for on�rmable SBQ-L, adapted to handle faulty lients
Resoure Exhaustion. A faulty reader an neglet to notify the servers that the read has ompleted and thereforefore the server to ontinue that read operation forever. One way to mitigate this problem is to restrit eah readerto a single read at a time. Similarly in a \real" implementation, a reader would only be allowed to aess a ertainnumber of variables at a time. A faulty reader an still ause signi�ant amounts of unneessary traÆ by sendingthe read request for some variable that is often written.The ause of the problem is that readers an ause a potentially unbounded amount of work at the servers (theproessing of a nonterminating read request) at the ost of only onstant work (a single faulty read request). Thisimbalane makes the denial of servie attak possible.A natural solution therefore is to allow the servers to unilaterally stop the read when they feel that they haveperformed \enough" work, foring the lients to send messages if they want to ontinue the read. The imbalanehas now disappeared, and instead we introdue a new parameter: the system designer an de�ne how muh serverwork is \enough" to make the system more or less resilient to resoure exhaustion attaks.In the new protool, when a server deides that some read has worked \enough", it sends a NAK message tothe reader and stops forwarding write noties. If the reader has not ompleted the read by the time it reeives theNAK, it sends a READ message to that server to ontinue the read (other servers are una�eted).The servers an deide they have worked \enough" after a �xed number of messages have been forwarded tothe reader, if no message was reeived from the reader in some time, or a ombination of the two. The servers mayalso aept READ messages from an already-reading server as a \heartbeat" message to keep the read onnetionopen.



Beause of the asynhronous nature of the network, it is possible that orret readers, too, reeive NAKmessages. These messages do not a�et the safety of the protool, but the liveness is now only guaranteed if thereis a \good period" during whih messages ow fast enough for the read to omplete before the reader reeives aNAK. The designer's hoie of when servers should interrupt reads inuenes how long that period has to last.7.2 Additional MessagesThe read protool may wait for several messages before deiding on a value. The write protool su�ers from no suhwait: writes always require the same number of messages, regardless of the level of onurreny. SBQ-L's writeoperation requires 3n messages in the non-on�rmable ase and 4n messages in the on�rmable ase, where n isthe number of servers. This ommuniation is idential to previous results: the non-on�rmable SBQ protool [14℄uses 3n messages and the on�rmable MR protool [11℄ requires 4n messages.The behavior of the SBQ-L read operation depends on the number of onurrent writes. Other protools (bothSBQ and MR) exhange a maximum of 2n messages for eah read. SBQ-L requires up to 3n messages when thereis no onurreny. In partiular, step R14 adds a new round of messages. Additional messages are exhanged whenthere is onurreny beause the servers eho all onurrent write messages to the reader. If  writes are onurrentwith a partiular read then that read will use 3n+ n messages.For some systems, there is little or no onurreny in the ommon ase. Even with additional messages in thease of onurreny, the lateny inrease is not as severe as one may fear beause most of these message exhangesare asynhronous and unidiretional. The SBQ-L protool will not wait for 3n + n message roundtrips. This isapparent in the experimental results of the next setion.7.3 Experimental evaluation of overheadWe onstrut a simple prototype to study the overhead of the extra messages used to deal with onurreny inSBQ-L, desribed in the Appendix. We �nd, as expeted, that inreasing onurreny has a measurable butmodest e�et on the lateny of the reads.7.4 Maximum ThroughputA goal of a BQS arhiteture is to support a high throughput for a low system ost. The maximum throughput of aBQS arhiteture is proportional to the inverse of its load fator [15℄, whih is the minimal aess probability of thebusiest server, minimizing over the strategies. SBQ-L has a load fator of 12n (n+dn+2f+12 e) if only non-on�rmablewrites are supported and 12n (n + dn+3f+12 e) if on�rmable writes are also supported, assuming that reads andwrites our with equal frequeny.There are two ways for a given quorum system to inrease its throughput: the system an use more powerfulservers or it an add additional servers.First, the use of more powerful servers for a system with a given load fator an provide a linear improvement inthe system's maximum throughput. In systems that attempt to satisfy the assumption of failure independene byonstruting di�erent servers with di�erent implementations of software, this approah has the signi�ant advantageof minimizing the number of software implementations. Although inreasing server size linearly inreases maximumthroughput, server ost may inrease more than linearly with server size; furthermore, there is a �nite maximumpratial server size.Seond, the use of additional servers of a given power an redue the load fator of a BQS system. For example,a SBQ-L system that tolerates one fault and that supports on�rmable writes has a minimum size of 4 servers;this minimum-size system has a load fator of 1.0. If 16 server implementations are available, SBQ-L's load fatoran be redued to 0.8125, and in the limit, if a large number of servers an be onstruted, SBQ-L's load fatorapproahes 0.75. Compared to the f-masking protool, whih an also improve its load fator by adding servers,these load fators are 25%, 31%, 50% higher than the 0.8, 0.62, and 0.5 load fators for n = 5 (f-masking'sminimum on�guration), n = 16, and n =1. The Grid onstrution [11℄ provides a potentially better load fatorof (2f+2)pn�(2f+1)n . At its minimum on�guration size of n = 16, its load fator of 0.8125 mathes that of 16-node SBQ-L, but for very large n its load fator an approah 2f+2pn . Although inreasing n inreases maximumthroughput, this inrease is muh less than linear for all BQS algorithms. Thus, ost onsiderations may limit the



extent to whih this tehnique an be exploited in pratial systems. When omparing aross algorithms, omparingload fators at small to medium n may be more relevant than omparing asymptoti load fators.In evaluating a system's throughput versus ost trade-o�s, both its load fator and total number of mahinesn must be onsidered. If system A has a higher load fator but a smaller n than system B, it may requires moreexpensive servers but require fewer of them and may have a lower total system ost. These trade-o�s will tend tofavor system A when software osts are high relative to hardware osts. They will tend to favor system B whenhardware suÆient to support the needed throughput under system A's load fator is muh more expensive thanthe hardware needed for the target throughput under system B's load fator.7.5 Live LokIn a system suh as SBQ-L, it must be ensured that both reads and writes will omplete even if the system isunder a heavy load. In SBQ-L, writes annot starve beause their operation is independent of onurrent reads.Reads, however, an be starved if an in�nite number of writes are in progress and if the servers always hoose toserve the writes before sending the eho messages.There is an easy way to guarantee this does not happen. When serving a write request while a read is inprogress, servers queue an eho message. The liveness of both readers and writers is guaranteed if we requireservers to send these ehoes before proessing the next write request. A read will therefore eventually reeive theneessary ehoes to omplete even if an arbitrary number of writes are onurrent with the read.Another related onern is that of lateny: an reads beome arbitrarily slow? In the asynhronous model, thereis no bound on the duration of reads. However, if we assume that writes never last longer than w units of timeand that there are  onurrent writes, then in the worst ase (taking failures into aount) reads will be delayedby no more than min(w; nw). This result follows beause in the worst ase, f servers are faulty and return veryhigh timestamps so that only one row of answer[℄[ ℄ ontains answers from orret servers. Also, in the worstase eah entrane (line R6) ours just before the monitored write an be read. The seond term is due to thefat that there are at most n entranes.7.6 Bu�er MemoryIn SBQ-L, readers maintain a bu�er in memory during eah read operation (the answer[℄[ ℄ sparse matrix).While other protools only need to identify a majority and as suh require n units of memory, the SBQ-L protoolmaintains a short history of the values written at eah server. As a result, the read operation in SBQ-L requiresup to n(f +2) units of memory: the set T ontains at most f +1 elements (line R8) and the answer[℄[ ℄ matrixtherefore never ontains more than n olumns and f+1 rows (lines R9, R11 and R12). An additional n elements arestored in largest[℄. In a system storing more than one shared variable, if multiple variables are read in parallelthen eah individual read requires its own bu�er of size n(f + 2).8 Related WorkAlthough both Byzantine failures [7℄ and quorums systems [6℄ have been studied for a long time, interest in quorumsystems for Byzantine failures is relatively reent. The subjet was �rst explored by Malkhi and Reiter [11, 12℄.They redued the number of servers involved in ommuniation [13℄, but not the total number of servers; theirwork exlusively overs on�rmable systems.In previous work we introdued non-on�rmable protools that require 3f +1 servers (2f + 1 for self-verifyingdata) [14℄. In the present paper we expand on that work and redue the bound to 2f + 1 for generi data andprovide regular semantis instead of safe by using Listeners. We also prove lower bounds on the number of serversfor these semantis and meet them.Bazzi [3℄ explored Byzantine quorums in a synhronous environment with reliable hannels. In that ontextit is possible to require fewer servers (f + 1 for self-verifying data, 2f + 1 otherwise). This result is not diretlyomparable to ours sine it uses a di�erent model. We leave as future work the appliation of the Listeners idea ofSBQ-L to the synhronous network model.Bazzi [4℄ de�nes non-bloking quorum system as a quorum system in whih the writer does not need to identifya live quorum but instead sends a message to a quorum of servers without onerning himself with whether these



servers are responsive or not. Aording to this de�nition, all the protools presented here use non-bloking quorumsystems.Several papers [4, 13, 15℄ study the load of Byzantine quorum systems, a measure of how inreasing the numberof servers inuenes the amount of work eah individual server has to perform. A key onlusion of this previouswork is that the lower bound for the load fator of quorum systems is O( 1pn ). Our work instead fouses on reduingthe number of servers neessary to tolerate a given fault threshold (or failure senarios).Phalanx [12℄ builds shared data abstrations and provides a loking servie, both of whih an tolerate Byzantinefailure of servers or lients. It requires on�rmable semantis in order to implement loks. Phalanx an handle faultylients while providing safe semantis using 4f + 1 servers.Castro and Liskov [5℄ present a repliation algorithm that requires 3f + 1 servers and, unlike most of thework presented above, an tolerate unreliable network links and faulty lients. Their protool uses ryptographyto produe self-verifying data and provides linearizability and on�rmable semantis. It is fast in the ommonase. Our work shows that on�rmable semantis annot be provided using fewer servers. Instead, we show anon-on�rmable protool with 2f +1 servers. In the ase of non-on�rmable semantis, however, it is neessary toassume reliable links.Attiya, Bar-Noy and Dolev [2℄ implement an atomi single-writer multi-reader register over asynhronous net-work, while restriting themselves to rash failures only. Their failure model and writer ount are di�erent fromours. When implementing �nite-size timestamp, their protool uses several rounds. The similarity stops there,however, beause they make no assumption of network reliability and therefore annot leverage unaknowledgedmessages the way the Listeners protool does.9 ConlusionWe present two protools for shared variables, one that provides regular semantis with non-on�rmable writesusing 2f + 1 servers and the other that provides atomi semantis with on�rmable writes using 3f + 1 servers.In the reliable asynhronous ommuniation model when not assuming self-verifying data, our protools reduethe number of servers needed by previous protools by f . Additionally, they improve the semantis for the non-on�rmable ase. Our protools are strongly inspired by quorum systems but use an original ommuniationpattern, the Listeners. The protools an be adapted to either the f -threshold or the fail-prone error model.The more theoretial ontribution of this paper is the proof of a tight bound on the number of servers. Weshow that 3f +1 servers are neessary to provide on�rmable semantis and 2f +1 servers are required otherwise.Several protools [5, 11, 12, 14, 17℄ use digital signatures (or MAC) to redue the number of servers. It is thereforesurprising that we were able to meet the minimum number of servers without using ryptography. Instead, ourprotools send one additional message to all servers and other additional messages that only our if onurrentwrites are in progress.Sine our protools for on�rmable and non-on�rmable semantis are nearly idential, it is possible to useboth systems simultaneously. The server side of the protools are the same, therefore the servers do not need to beaware of the model used. Instead, the lients an agree on whether to use on�rmable or non-on�rmable semantison a per-variable basis. The lients that hoose non-on�rmable semantis an tolerate more failures: this propertyis unique to the SBQ-L protool.AknowledgmentsThe authors thank Jian Yin and Mike Kistler for several interesting onversations and Alison Smith and MariaJump for helpful omments on the paper's presentation.Referenes1. L. Alvisi, D. Malkhi, E. Piere, M. Reiter, and R. Wright. Dynami Byzantine quorum systems. In Proeedings of theInternational Conferene on Dependable Systems and Networks, June 2000.2. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems. Journal of the ACM(JACM) Volume 42, pages 124{142, 1995.
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A Non-Con�rmable SemantisWe show the omplete proof of the non-on�rmable SBQ-L protool and the lower bound of 2f +1 servers for safeprotools with non-on�rmable writes. This proof is similar to that of Setion 3.1.A.1 CorretnessTheorem 5. The non-on�rmable threshold SBQ-L protool is live and provides regular semantis.Lemma 6 (Regularity). The non-on�rmable f-threshold SBQ-L satis�es regular semantis, assuming it is live.When a read r ompletes, the reader deides on a value that has been vouhed for by qw = dn+12 e servers (lineR13). By de�nition, qw orret servers have seen the latest ompleted write with respet to r. Sine 2qw > n, thesetwo quorums interset in at least one orret server C that has seen the latest ompleted write.Sine C is orret, it follows the protool and therefore sends the value of the ompleted write, the value ofa write with a higher timestamp, or both. As a result, subsequent reads will never return a value older than thelatest ompleted write. �Lemma 7 (Liveness). The non-on�rmable f-threshold SBQ-L is live.The beginning of the proof for liveness is idential to the proof for the on�rmable ase in Setion 3.1, showingthat all operations eventually terminate. The proof of the read operation needs to be adapted slightly. In the laststep, showing that the reader will eventually reeive suÆiently many ehos, the quorum size must be modi�edas follows. The write protool eventually reahes all n � f orret servers. The read operation ontats dn+2f+12 eservers and the intersetion of the two quorums ontains the dn+12 e orret answers required for ompletion beausedn+2f+12 e+ n� f � n+ dn+12 e. �A.2 BoundsWe prove lower bounds for non-on�rmable protools. The minimum number of servers for safe semantis is 2f+1,as opposed to 3f + 1 for on�rmable protools.Theorem 6. In the reliable authentiated asynhronous model with Byzantine failures, no live protool an satisfythe safe semantis for distributed shared memory using 2f servers.To prove this impossibility, we show that under these assumptions any protool must violate either safety orliveness.Lemma 8. For all live read protools using 2f servers, for all sets S of f servers and for all reahable quiet systemstates, there exists at least one exeution in whih a read is only inuened by all servers in a set S0 suh thatS0 � S.By ontradition: suppose there exists a live protool P using 2f servers, a set S of f servers and a reahablequiet system state in whih all exeutions of the read protool are not only inuened by the servers in any S0 :S0 � S, but instead are also inuened by some other server x 62 S. Sine jU � Sj = f , we an suppose that allservers in U � S are faulty. It follows that x is faulty and may rash, therefore the protool P is not live. �Lemma 9. Consider a live read protool using 2f servers. There exist exeutions for whih this protool does notsatisfy safe semantis.Intuitively, whenever the reader relies on only f servers it will be fooled if all these servers are faulty. We showthis through a more formal explanation below.Consider the initial state of the system in whih the individual servers have states a0 : : : a2f�1 and the sharedvariable has value A. We all this \state A". Consider now an exeution e of the read protool in state \A" that



is only inuened by a subset of the servers 0 : : : f � 1 (Lemma 8 proves that e exists). This exeution orretlyreturns the value A for the shared variable.Imagine a later snapshot of the same system, when no operation is in progress. The individual servers nowhave states b0 : : : b2f�1 and the shared variable has value B. We all this \state B". A orret read should returnthe value B. Suppose that servers 0 through f � 1 are faulty and behave as if they were in states a0 : : : af�1, andsuppose that a new read starts, only inuened by servers 0 : : : f �1 (again, Lemma 8 proves that this read exists).The reader will reeive the exat same answers in state B as the previous reader did in state A. Beause the twoexeutions are indistinguishable, the new read will return the inorret value A. �The last two lemmas show that in the onditions given, no read protool an be live and safe. �Note that the proof is not limited to the f -threshold model and makes no assumption of deterministi behaviorfrom the protool. The proof also overs protools that use integrity heks in their messages sine faulty servershave all the neessary information to reate the messages they send.B Experimental evaluation of overheadWe onstrut a simple prototype to study the overhead of the extra messages used to deal with onurreny in SBQ-L. The prototype is written in C++, stores data in main memory, and ommuniates via TCP. We implementedthe on�rmable f-threshold version of SBQ-L.Our testbed onsists of 3 servers and 6 lient mahines, 5 of whih at as writers and 1 as a reader. The readermahine is a SUN Ultra10 with a 440Mhz UltraSPARC-IIi proessor running SunOS 8.5. The other mahines areDell Dimension 4100 with a 800Mhz PentiumIII proessor running Debian Linux 2.2.19. The network onnetingthese mahines is a 100Mbits/s swithed Ethernet.In this experiment, we vary the number of writers and, therefore, the level of onurreny. The writers repeatedlyexeute the non-on�rmable write protool, writing 1000 bytes of data to all servers. The reader measures theaverage time for 20 onseutive reads, and the servers are instrumented to measure the number of additionalmessages sent during the Listeners phase.
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# of active writersThe above graph shows the read lateny as a funtion of the number of ative writers. Eah point representsthe average duration of 20 reads.We �nd, as expeted, that inreasing onurreny has a measurable but modest e�et on the lateny of thereads.C Generalized Con�rmable ProtoolThe on�rmable protool an be generalized to a fail-prone system instead of the simpler f -threshold ase presentedin Setion 3. For any given fail-prone system B (de�ned in Setion 2.1), our quorums Q 2 Q and aess sets A 2 Amust obey the following properties:



Consisteny: The intersetion of any pair of quorums ontains one orret server.8Q1; Q2 2 Q 8B 2 B : Q1 \Q2 6� BAvailability: One quorum is always available through an aess set.8A 2 A 8B 2 B 9Q 2 Q : Q � A�BThe Write() funtion is modi�ed to return one it reeives an aknowledgment from a quorum. The modi�edRead() is presented in Figure 4. It is similar to that of the f -threshold protool, exept for line R13 in whih itdeides on a value after reeiving the same answer from a quorum of servers.W1 Write(D) fW2 send (QUERY TS) to all serversW3 loop fW4 reeive answer (TS, ts) from server sW5 urrent[s℄ := tsW6 g until the ts[ ℄ array overs a quorum of servers.W7 max ts := maxfurrent[ ℄gW8 my ts := minft 2 Cts : max ts < t ^ last ts < tg// my ts is larger than all answers and previous timestampW9 last ts := my tsW10 send (STORE, D;my ts) to all servers.W11 loop fW12 reeive answer (ACK,my ts) from server sW13 S := S [ fsgW14 g until 9Qw 2 Q :: Qw � S // a quorum servers have sent an ACKW15 gR1 (D,ts) = Read() fR2 send (READ) to all servers in some A 2 A.R3 loop fR4 reeive answer (VALUE,D; ts) from server s // (possibly more than one answer per server)R5 if ts > largest[s℄:ts then largest[s℄ := (D; ts)R6 if s 62 S then // we all this event an \entrane"R7 S := S [ fsgR8 T := the f + 1 largest timestamps in largest[ ℄R9 for all isvr, for all jtime 62 T , delete answer[isvr; jtime℄R10 for all isvr,R11 if largest[isvr℄:ts 2 T then answer[isvr; largest[isvr℄:ts℄ := largest[isvr℄R12 if ts 2 T then answer[s; ts℄ := (D; ts)R13 g until 9D0; ts0; Qr :: Qr 2 Q ^ (8i : i 2 Qr : answer[i; ts0℄ = (D0; ts0))// i.e. loop until a quorum of servers agree on a (D,ts) valueR14 send (READ COMPLETE) to all serversR15 return (D0; ts0)R16 g Fig. 4. Generalized on�rmable SBQ-L protoolD Generalized Non-Con�rmable ProtoolThe generalized protool above an be adapted to non-on�rmable semantis, whih allows the number of serversto be redued.In the non-on�rmable ase, the quorums Q 2 Q must obey the following properties:Consisteny: All quorums interset 8Q1; Q2 2 Q : Q1 \Q2 6= ;



Availability: One quorum is always available through an aess set.8A 2 A 8B 2 B 9Q 2 Q : Q � A�BWitness Quality: No failure senario is a quorum8Q 2 Q 8B 2 B : Q 6� BLines W9 and W10 are removed from the Write() operation. We say that the write ompletes when a quorumonsisting entirely of orret servers has �nished proessing the write message. We all f the size of the largestfailure senario. The Read() operation is idential exept that it uses the quorums de�ned in this setion. Althoughthe protool works for any hoie of fail-prone system, its memory onsumption depends on the size of the largestfailure senario.E CorretnessE.1 Generalized Con�rmable SBQ-LTheorem 7. The on�rmable generalized SBQ-L protool provides atomi semantis.Lemma 10 (Regularity). The on�rmable generalized SBQ-L protool satis�es regular semantis, assuming itis live.We all Qw the quorum of servers (not neessarily all orret) that have seen the latest ompleted write. Theavailability property guarantees that the reader will eventually reeive an answer from some quorum and theonsisteny property guarantees that this answer will be orret. If a write is in progress and the reader deideson a value from some quorum Q then this value has been vouhed for by at least one orret server that has seenthe latest ompleted write sine the intersetion of Q and Qw ontains a orret server. �This on�rmable protool, similar to the threshold version, guarantees atomi semantis. The serialized orderof the writes is that of the timestamps. To prove this, we simply show that after a write for a given timestamp ts1ompletes, no read an deide on a value with an earlier timestamp.Lemma 11 (Atomiity). The on�rmable generalized SBQ-L protool satis�es atomi semantis, assuming it islive.Suppose a write with timestamp ts1 has ompleted: a quorum Q1 2 Q of servers agree on this timestamp.Even if the faulty and untimely servers send the same older reply ts0, they annot form a quorum. More formally:(U �Q1) [ B 62 Q, whih we prove by showing that O = (U �Q1) [ B does not obey onsisteny.O \Q1 = ((U �Q1) \Q1) [ (B \Q1) = B \Q1 � BThis violates Consisteny: 8Q1; Q2 2 Q 8B 2 B : Q1 \Q2 6� BSimilarly, suppose that at some global time t1, some lient  reads timestamp ts1. A quorum Q1 2 Q of serversagree on this timestamp. Sine the faulty and remaining mahines annot form a quorum, it follows that any readthat starts after t1 has to return a timestamp of at least ts1. �Lemma 12 (Liveness). All funtions of the on�rmable generalized SBQ-L eventually terminate.Write. All writes eventually omplete beause of the availability property.Read. Consider the last entrane. There is a value for largest[℄ assoiated with eah server. Consider the largestlargest[℄.ts assoiated with a orret server, tsmax. The lient has not disarded any data item with timestamptsmax oming from a orret server (otherwise that orret server would have a higher timestamp assoiated with



it). tsmax 2 T beause T ontains the f+1 largest timestamps in largest[℄. Sine all lients are orret, all orretservers will eventually see the tsmax write and eho it bak to the reader. The availability property guarantees thatthere are enough orret servers for the ehoes to eventually form a quorum.STORE, QUERY TS. The server's STORE and QUERY TS funtions terminate beause they have no loops.READ. The server's READ funtion terminates beause the lient's Read() terminates and lients are orret. �E.2 Generalized Non-on�rmable SBQ-LTheorem 8. The non-on�rmable generalized SBQ-L protool provides regular semantis.Lemma 13 (Regularity). The non-on�rmable generalized SBQ-L protool satis�es regular semantis, assumingit is live.This proof is similar to that of the previous setion, exept that it takes into aount the di�erent de�nition forwrite ompletion and the di�erent quorum onstraints. Sine writes omplete when a quorum of orret servers havereeived them, the weaker onsisteny requirement for non-on�rmable is suÆient. This holds beause witnessquality guarantees that no quorum an onsist entirely of faulty servers.We all Qw the quorum of orret servers that has seen the latest ompleted write.If the reader deides on a value from some quorum Q then this value has been vouhed for by at least oneorret server that has seen the latest ompleted write sine Q and Qw interset. �The proof for liveness is idential to that of the on�rmable ase. �


