
Minimal Byzantine StorageJean-Philippe Martin, Lorenzo Alvisi, Mi
hael DahlinUniversity of Texas at Austin - Dept. of Computer S
ien
eEmail: fjpmartin, lorenzo, dahling�
s.utexas.eduDepartment of Computer S
ien
eUniversity of Texas at AustinAustin, Texas 78712Abstra
t. Byzantine fault-tolerant storage systems
an provide high availability in hazardous environments,but the redundant servers they require in
rease software development and hardware
osts. In order to minimizethe number of servers required to implement fault-tolerant storage servi
es, we develop a new algorithm thatuses a \Listeners" pattern of network
ommuni
ation to dete
t and resolve ordering ambiguities
reated by
on
urrent a

esses to the system. Our proto
ol requires 3f+1 servers to tolerate up to f Byzantine faults|ffewer than the 4f + 1 required by existing proto
ols for non-self-verifying data. In addition, SBQ-L providesatomi

onsisten
y semanti
s, whi
h is stronger than the regular or pseudo-atomi
 semanti
s provided by theseexisting proto
ols. We show that this proto
ol is optimal in the number of servers|any proto
ol that providessafe semanti
s or stronger requires at least 3f + 1 servers to tolerate f Byzantine faults in an asyn
hronoussystem. We also examine proto
ols that store self-verifying data (i.e. data that
annot be undete
tablyaltered). Existing proto
ols
an use self-verifying data to redu
e the number of servers required to toleratefaults but be
ause SBQ-L already uses the minimum possible number of servers for its semanti
s, self-verifyingdata provides no advantage. Finally, we examine a non-
on�rmable writes variation of the SBQ-L proto
olwhere a
lient
annot determine when its writes
omplete. We show that SBQ-L with non{
on�rmable writesprovides regular semanti
s with 2f + 1 servers and that this number of servers is minimal.1 Introdu
tionByzantine storage servi
es are useful for systems that need to provide high availability. These servi
es guaranteedata integrity and availability in the presen
e of arbitrary (Byzantine) failures. A
ommon way to design su
h asystem is to build a quorum system. A quorum system stores a shared variable at a set of servers and performsread and write operations at some subset of servers (a quorum). Quorum proto
ols de�ne an interse
tion propertyfor the quorums whi
h, in addition to the rest of the proto
ol des
ription, ensures that ea
h read has a

ess tothe
urrent value of the variable. Byzantine quorum systems enfor
e the interse
tion property ne
essary for their
onsisten
y semanti
s in the presen
e of Byzantine failures.The number of servers in a Byzantine storage system is a
ru
ial metri
 sin
e server failures must be in-dependent. Therefore, to redu
e the
orrelation of software failures, ea
h server should use a di�erent softwareimplementation [17℄. The �rst advantage of redu
ing the number of servers ne
essary for a servi
e is the redu
tionin hardware
osts. However, as hardware
osts get
heaper in
omparison to software and maintenan
e
osts, themost important bene�t of redu
ing the number of di�erent servers is the
orresponding redu
tion in developmentand maintenan
e
osts. Furthermore, for large software systems (e.g. NFS, DNS, JVM) a �xed number of imple-mentations may be available, but it is expensive or otherwise infeasible to
reate additional implementations. Insu
h a situation, a new proto
ol requiring fewer servers may enable repli
ation te
hniques where they were notpreviously appli
able.To minimize the number of servers, we present a new proto
ol
alled Small Byzantine Quorums with Listeners(SBQ-L). The proto
ol uses a \Listeners" pattern of
ommuni
ation to dete
t and resolve ordering ambiguitieswhen reads and writes simultaneously a

ess a shared variable.1 Whereas existing algorithms use a �xed number of
ommuni
ation rounds, servers and readers using SBQ-L ex
hange additional messages when writes are
on
urrentwith reads. This
ommuni
ation pattern allows the reader to monitor the evolution of the global state instead of1 We
all this
ommuni
ation model \Listeners" be
ause of its similarity with the Listeners obje
t-oriented pattern intro-du
ed by Gamma et. al. [8℄.

relying on a snapshot. As a result, SBQ-L provides strong
onsisten
y semanti
s using fewer servers. In parti
ular,Table 1 shows that SBQ-L provides atomi
 semanti
s [9℄ for generi
 data using as few as 3f +1 servers to toleratef faults, instead of the 4f + 1 servers that were previously required to provide even the weaker regular [11℄ orpartial-atomi
 [16℄ semanti
s.We show that SBQ-L is optimal with respe
t to the number of servers required to provide a safe shared variablein the
ommon model of asyn
hronous reliable authenti
ated
hannels [1, 3, 11{13℄. In parti
ular, we show that anyproto
ol that tolerates f Byzantine failures and that provides safe or stronger semanti
s must use at least 3f + 1servers. Sin
e SBQ-L
an provide atomi
 semanti
s with 3f + 1 servers, it is optimal with respe
t to this
riti
almetri
.We apply the SBQ-L proto
ol and our lower bound analysis to
ompare proto
ols for generi
 data to thosefor self-verifying data (data that
annot be undete
tably altered, e.g. that are digitally signed). We �nd that,surprisingly, SBQ-L performs equally well with generi
 or self-verifying data. Existing proto
ols require moreservers for generi
 data (se
ond
olumn of Table 1). Our lower bound of 3f + 1 servers applies regardless ofwhether data is generi
 or self-verifying. Therefore our SBQ-L proto
ol, already optimal for generi
 data,
annotbe improved by using self-verifying data. This analysis suggests that the distin
tion between these two
lasses ofproto
ols is not as fundamental as previous results imply.We also examine the distin
tion between proto
ols with
on�rmable writes and those with non-
on�rmablewrites. Consisten
y semanti
s are de�ned in terms of
onditions that must hold when reads and writes
omplete;however the spe
i�
ation for when a write
ompletes is left out of the de�nition. The traditional approa
h de�nes the
ompletion of the write as the instant when the writer
ompletes its proto
ol. We
all these proto
ols
on�rmable.If instead write
ompletion is de�ned in a way that
annot be lo
ally determined by the writer, but writes are stillguaranteed to eventually
omplete, we say that the resulting proto
ol is non-
on�rmable.The bottom two lines of Table 1 indi
ate that the SBQ-L proto
ol
an be modi�ed to be non-
on�rmable.In that
on�guration, it
an provide regular semanti
s for generi
 data using only 2f + 1 servers instead of the3f + 1 required in prior work [14℄. We again show that our proto
ol is optimal by proving that 2f + 1 servers arerequired to provide even safe semanti
s for non-
on�rmable writes. The existen
e of the SBQ-L proto
ol showsthat this bound is tight. This result shows that the distin
tion between
on�rmable and non-
on�rmable proto
olsis fundamental. Existing Proto
ols SBQ-L Bound on server
ount4f+1, safe [11, 12℄2,[14℄1
on�rmable, generi
 4f+1, partial-atomi
 [16℄2 3f+1, atomi
2 � 3f+1 for safe3f+1, regular [11℄,[14℄1 ; or stronger semanti
s
on�rmable, self-verifying 3f+1, atomi
 [12℄,[5℄1;2 3f+1, atomi
2non-
on�rmable, generi
 3f+1, safe [14℄ 2f+1, regular2 � 2f+1 for safenon-
on�rmable, self-verifying 2f+1, regular [14℄ 2f+1, regular2 or stronger semanti
s(1) Does not require reliable
hannels. (2) Tolerates faulty
lients.Table 1. Required number of servers and semanti
s for various proto
ols for Byzantine distributed shared memory. Newresults and improvements over previous proto
ols are shown in boldThe SBQ-L proto
ol uses additional
ommuni
ation
ompared to previous proto
ols to redu
e the numberof servers and improve
onsisten
y semanti
s. These messages are not a performan
e bottlene
k however: theyare limited to one message per server for ea
h read when no write is
on
urrent with the read; otherwise thenumber of additional messages per server is proportional to the number of
on
urrent writes. Se
tion 7.3 presentsmeasurements of the laten
y in
rease due to
on
urrent writes.Like other quorum proto
ols, SBQ-L guarantees
orre
tness by ensuring that reads and writes interse
t in asuÆ
ient number of servers. But SBQ-L di�ers from many traditional quorum proto
ols in that in a minimal-serverthreshold
on�guration,
lients send messages to all servers on read and write operations.2 Most existing quorum2 As des
ribed in Se
tion 3, it is possible to use more servers than the minimum and in this
ase only a subset of the serversis tou
hed for every read.

proto
ols a

ess a subset of servers on ea
h operation for two reasons: to tolerate server faults and to redu
e load.Note that SBQ-L's fault toleran
e and load properties are similar to those of existing proto
ols. In parti
ular,SBQ-L
an tolerate f faults, in
luding f non-responsive servers. Although in its minimal-server
on�guration itsends read and write requests to all 3f +1 servers, this number is no higher than the 3f +1 (out of 4f +1) servers
onta
ted by most existing proto
ols. SBQ-L
onta
ts a large fra
tion of servers be
ause it uses the minimal numberof servers.The rest of this paper is organized as follows. Se
tion 2 presents our model and assumptions and reviews thedi�erent semanti
s that distributed shared memory
an provide, Se
tion 3 presents the SBQ-L proto
ol, and Se
tion4 proves bounds on the number of servers required to implement these semanti
s. We dis
uss self-verifying datain Se
tion 5 and then examine non-
on�rmable semanti
s. In Se
tion 6, we present a minimal proto
ol for thesesemanti
s and prove it
orre
t. In Se
tion 7, we show how to tolerate faulty
lients, dis
uss the trade-o�s betweenbandwidth and
on
urren
y and show how to avoid live-lo
k or memory problems during
on
urrent exe
ution.Se
tion 8 dis
usses related work and we
on
lude in Se
tion 9.2 Preliminaries2.1 ModelWe assume a system model
ommonly adopted by previous work in whi
h quorum systems are used to tolerateByzantine faults [1, 3, 11{13℄. In parti
ular, our model
onsists of an arbitrary number of
lients and a set U ofdata servers su
h that the number n = jU j of servers is �xed. A quorum system Q � 2U is a non-empty set ofsubsets of U , ea
h of whi
h is
alled a quorum.Servers
an be either
orre
t or faulty. A
orre
t server follows its spe
i�
ation; a faulty server
an arbitrarilydeviate from its spe
i�
ation. Following Malkhi and Reiter [11℄, we de�ne a fail-prone system B � 2U as a non-empty set of subsets of U , none of whi
h is
ontained in another, su
h that some B 2 B
ontains all faulty servers.Fail-prone systems
an be used to des
ribe the
ommon f-threshold assumption that up to a threshold f of serversfail (in whi
h
ase B
ontains all sets of f servers), but they
an also des
ribe more general situations, su
h aswhen some
omputers are known to be more likely to fail than others.The set of
lients of the servi
e is disjoint from U and
lients
ommuni
ate with servers over point-to-point
hannels that are authenti
ated, reliable, and asyn
hronous. We dis
uss the impli
ations of assuming reliable
ommuni
ation under a Byzantine failure model in detail in our previous work [14℄. Initially, we restri
t ourattention to server failures and assume that
lients are
orre
t. We relax this assumption in Se
tion 7.1.2.2 Consisten
y Semanti
sConsisten
y semanti
s de�ne system behavior in the presen
e of
on
urren
y. We �rst review Lamport's de�nitionsof safe, regular, and atomi
 semanti
s. Lamport [9℄ de�nes the three semanti
s for distributed shared memory listedbelow. His original de�nitions ex
lude
on
urrent writes, so we present extended de�nitions that in
lude these [16℄.Using a global
lo
k, we assign a time to the start and end (or
ompletion) of ea
h operation. We say that anoperation A happens before another operation B if A ends before B starts. We then require that all operations betotally ordered using a relation! (serialized order) that is
onsistent with the partial order of the happens beforerelation. In this total order, we
all write w the latest
ompleted write relative to some read r if w ! r and thereis no other write w0 su
h that w ! w0 ^ w0 ! r. We say that two operations A and B are
on
urrent if neither Ahappens before B nor B happens before A. The semanti
s below hold if there exists some relation! that satis�esthe requirements.{ safe semanti
s guarantee that a read r that is not
on
urrent with any write returns the value of the latest
ompleted write relative to r. A read
on
urrent with a write
an return any value.{ regular semanti
s provide safe semanti
s and guarantee that if a read r is
on
urrent with one or more writes,then it returns either the latest
ompleted write relative to r or one of the values being written
on
urrentlywith r.{ atomi
 semanti
s provide regular semanti
s and guarantee that the sequen
e of values read by any given
lientis
onsistent with the global serialization order (!).

The above de�nitions do not spe
ify when the write
ompletes. The
hoi
e is left to the spe
i�
 proto
ol. Inall
ases, the
ompletion of a write is a well-de�ned event. We will begin by
onsidering only proto
ols in whi
hthe writer
an determine when its write has
ompleted (
on�rmable proto
ols). We later relax this requirement inSe
tion 6 and show that the resulting proto
ols with non-
on�rmable writes require fewer servers.W1 Write(D) fW2 send (QUERY TS) to all serversW3 loop fW4 re
eive answer (TS, ts) from server sW5
urrent[s℄ := tsW6 g until the
urrent[℄ array
ontains qw answers.W7 max ts := maxf
urrent[℄gW8 my ts := minft 2 Cts : max ts < t ^ last ts < tg// my ts 2 Cts is larger than all answers and previous timestampW9 last ts := my tsW10 send (STORE, D;my ts) to all servers.W11 loop fW12 re
eive answer (ACK,my ts) from server sW13 S := S [fsgW14 g until jSj � qw // qw servers answeredW15 gR1 (D,ts) = Read() fR2 send (READ) to qr servers.R3 loop fR4 re
eive answer (VALUE,D; ts) from server s // (possibly more than one answer per server)R5 if ts > largest[s℄:ts then largest[s℄ := (D; ts)R6 if s 62 S then // we
all this event an \entran
e"R7 S := S [fsgR8 T := the f + 1 largest timestamps in largest[℄R9 for all isvr, for all jtime 62 T , delete answer[isvr; jtime℄R10 for all isvr,R11 if largest[isvr℄:ts 2 T then answer[isvr; largest[isvr℄:ts℄ := largest[isvr℄R12 if ts 2 T then answer[s; ts℄ := (D; ts)R13 g until 9D0; ts0;W :: jW j � qw ^ (8i : i 2 W : answer[i; ts0℄ = (D0; ts0))// i.e., loop until qw servers agree on a (D,ts) valueR14 send (READ COMPLETE) to all serversR15 return (D0; ts0)R16 g Fig. 1. Con�rmable SBQ-L
lient proto
ol for the f-threshold error model
3 The SBQ-L Proto
olFigure 1 presents the f -threshold 3 SBQ-L
on�rmable
lient proto
ol for generi
 data. The initial values of theproto
ol's variables are shown in Figure 2.In lines W1 through W8, the Write() fun
tion queries a quorum of servers in order to determine the newtimestamp. The writer then sends its timestamped data to all servers at line W10 and waits for a
knowledgmentsat lines W11 to W14. The Read() fun
tion queries a read quorum of servers in line R2 and waits for messagesin lines R3 to R13. An unusual feature of this proto
ol is that servers send more than one reply if writes are inprogress. For ea
h read in progress, a reader maintains a matrix of the di�erent answers and timestamps from theservers (answers[℄[℄). The read de
ides on a value at line R13 on
e the reader
an determine that a quorum3 We des
ribe the more general quorum SBQ-L proto
ols in the Appendix.

variable initial value notesqw ln+ f + 12 m Size of the write quorumqr ln+ 3f + 12 m Size of the read quorumCts Set of timestamps for
lient
 The sets used by di�erent
lients are disjointlast ts 0 Largest timestamp written by a parti
ular server. This is the only variablethat is maintained between fun
tion
alls (\stati
" in C).largest[℄ ; A ve
tor storing the largest timestamp re
eived from ea
h server and theasso
iated dataanswer[℄[℄ ; Sparse matrix storing at most f + 1 data and timestamps re
eived fromea
h serverS ; The set of servers from whi
h the
lient has re
eived an answerFig. 2. Client variablesof servers vou
h for the same data item and timestamp, and a noti�
ation is sent to the servers at line R14 toindi
ate the
ompletion of the read. A na��ve implementation of this te
hnique
ould result in the
lient's memoryusage being unbounded; instead, the proto
ol only retains at most f + 2 answers from ea
h server. We show inSe
tion 3.1 that the proto
ol is
orre
t.This proto
ol di�ers from previous Byzantine quorum system (BQS) proto
ols be
ause of the
ommuni
ationpattern it uses to ensure that a reader re
eives a suÆ
ient number of sound and timely values. A reader re
eivesdi�erent values from di�erent servers for two reasons. First, a server may be faulty and supply in
orre
t or oldvalues to a
lient. Se
ond,
orre
t servers may re
eive
on
urrent read and write requests and pro
ess them indi�erent orders.Traditional quorum systems use a �xed number of rounds of messages but
ommuni
ate with quorums that arelarge enough to guarantee that interse
tions of read and write quorums
ontain enough sound, timely answersfor the reader to identify a value that meets the
onsisten
y guarantee of the system (e.g., using a majority rule).Rather than using extra servers to disambiguate
on
urren
y, SBQ-L uses extra rounds of messages when serversand
lients dete
t writes
on
urrent with reads. Intuitively, other proto
ols take a \snapshot" of the situation. TheSBQ-L proto
ol looks at the evolution of the situation in time: it views a \movie".SBQ-L's approa
h uses more messages than some other proto
ols. Other than the single additionalREAD COMPLETE message sent to ea
h server at line R14, however, additional messages are only sent whenwrites are
on
urrent with a read.Figure 1 shows the proto
ol for
lients. Servers follow simpler rules: they only store a single timestamped dataversion, repla
ing it whenever they re
eive a STORE message with a newer timestamp. When re
eiving a readrequest, they send the
ontents of this storage. Servers in SBQ-L di�er from previous proto
ols in what we
allthe Listeners
ommuni
ation pattern: after sending the �rst message, the server keeps a list of
lients who havea read in progress. Later, if they re
eive a STORE message, then in addition to the normal pro
essing they e
hothe
ontents of the store message to the \listening" readers { in
luding messages with a timestamp that is not asre
ent as the data's
urrent one but more re
ent than the data's timestamp at the start of the read. This listeningpro
ess
ontinues until the server re
eives a READ COMPLETE message from the
lient indi
ating that the readhas
ompleted. Note that in pra
ti
e these messages would only be sent if the writer is authorized to modify thatvariable. Also, they need only be sent to readers a

essing the variable being written.This proto
ol requires a minimum of 3f + 1 servers and provides atomi
 semanti
s with
on�rmable writes.We prove its
orre
tness in the next se
tion. Theorem 2 of Se
tion 4 shows that 3f + 1 is the minimal number ofservers for
on�rmable proto
ols. In Se
tion 7.1 we show how to adapt this proto
ol for faulty
lients.3.1 Corre
tnessTo better understand the intuition behind the
orre
tness proofs, it helps to think about the
onstraints on theread proto
ol. The read proto
ol de
ides on a value that is proposed by a vou
her set of qw servers, so the �rst
onstraint is that after a write has
ompleted all vou
her sets mu
h
ontain at least one
orre
t server. The se
ond
onstraint pertains to liveness: the proto
ol must ensure that the reader eventually re
eives replies from qw
orre
tservers so it
an
omplete.Traditional quorum proto
ols abstra
t away the notion of group
ommuni
ation and only
on
ern themselveswith
onta
ting groups of responsive servers. Instead, our proto
ol spe
i�es to whi
h group of servers the messages

should be sent and waits for a
knowledgments from some quorum of servers within this a

ess group. The readproto
ol relies on the a
knowledged messages for safety, but it also potentially relies on the messages that are stillin transit for liveness. Be
ause the
hannels are reliable, we know that these messages will eventually rea
h theirdestination.Theorem 1. The
on�rmable f-threshold SBQ-L proto
ol provides atomi
 semanti
s.Lemma 1 (Atomi
ity). The
on�rmable threshold SBQ-L satis�es atomi
 semanti
s, assuming it is live.The SBQ-L proto
ol guarantees atomi
 semanti
s, in whi
h the writes are ordered a

ording to their timestamps.To prove this, we show that (1) after a write for a given timestamp ts1
ompletes, no read
an return a value withan earlier timestamp and (2) after a
lient
 reads a timestamp ts1, no later read
an return a value with an earliertimestamp.(1) Suppose a write for timestamp ts1 has
ompleted; then dn+f+12 e servers have a
knowledged the write. Atleast dn�f+12 e of these are
orre
t. In the worst
ase, all the remaining servers
an return the same stale or wrongreply to later reads. However there are only dn+f�12 e of them so they
annot form a quorum. Hen
e no later read
an return an earlier timestamp.(2) Suppose that at some global time t1, some
lient
 reads timestamp ts1. That means that dn+f+12 e serversreturned a value indi
ating that this timestamp has been written, and again at least dn�f+12 e of these are
orre
t:the remaining servers are too few to form a quorum. It follows that any read that starts after t1 has to return atimestamp of at least ts1. �Lemma 2 (Liveness). All fun
tions of the
on�rmable threshold SBQ-L eventually terminate.Write. The Write() fun
tion is trivially live be
ause its waits (in steps W6 and W14) expe
t qw = d(n+ f +1)=2eanswers and qw � n� f so these answers are guaranteed to eventually arrive.Read. Even though it only tra
ks f + 2 di�erent timestamps simultaneously (lines R11 and R12), the Read()fun
tion is live. Note that there are at most n entran
es. Consider the last one, i.e., the last time line R7 ofRead() is exe
uted. Consider the largest largest[℄.ts asso
iated with a
orre
t server, tsmax. The
lient has notdis
arded any data item with timestamp tsmax
oming from a
orre
t server (be
ause these data items are keptin largest[℄). tsmax is in T be
ause T
ontains the f + 1 largest timestamps in largest[℄. Sin
e all
lients are
orre
t, they send the same value to all servers and therefore all
orre
t servers will eventually see the write withtimestamp tsmax and will e
ho it to the reader.The reader will re
eive replies from qr = dn+3f+12 e servers. Be
ause qw � qr � f , there are enough
orre
tservers to guarantee that the read for that timestamp will eventually
omplete.STORE, QUERY TS. The server's STORE and QUERY TS fun
tions terminate be
ause they have no loops.READ. The server's READ fun
tion terminates be
ause the
lient's Read() terminates and
lients are
orre
t. �The liveness subproof for read also illustrates the bene�ts of the Listeners
ommuni
ation: if several writes arein progress, then ea
h server
ould initially hold a di�erent timestamp. The ongoing
ommuni
ation allows thereader to follow the writes and identify the
orre
t value.This lemma
on
ludes the
orre
tness proof. We have shown that the proto
ol always returns a
orre
t valueand that it terminates. Note that it
ould terminate before the events we des
ribe in the proof; we merely showthat the proto
ol eventually terminates.4 BoundsIn this se
tion, we prove lower bounds on the number of servers required to implement minimal
onsisten
ysemanti
s (safe semanti
s) in
on�rmable proto
ols. The bound is 3f +1 and applies to any fault-tolerant storageproto
ol be
ause the proof makes no assumption about how the proto
ol behaves. This lower bound not onlyapplies to quorum proto
ols su
h as SBQ-L, but also to any other fault-tolerant storage proto
ol, even randomizedones (i.e. proto
ols that use random
oin
ips in order to guarantee safe semanti
s). Also, the bounds hold whetheror not data are self-verifying. Sin
e the SBQ-L proto
ol of the previous se
tion meets this bound, we know it istight. Sin
e SBQ-L does not use
ryptography, we know that self-verifying data is not ne
essary for proto
ols thatuse the minimal number of servers.

4.1 Con�rmable Safe Semanti
sTheorem 2. In the authenti
ated asyn
hronous model with Byzantine failures and reliable
hannels, no live
on-�rmable proto
ol
an satisfy the safe semanti
s for distributed shared memory using 3f servers.To prove this impossibility we show that under these assumptions any proto
ol must violate either safety orliveness. If a proto
ol always relies on 2f + 1 or more servers for all read operations, it is not live. But if a liveproto
ol ever relies on 2f or fewer servers to servi
e a read request, it is not safe be
ause it
ould violate safesemanti
s. We use the de�nition below to formalize the intuition that any su
h proto
ol will have to rely on atleast one faulty server.De�nition 1. A message m is in
uen
ed by a server s i� the sending of m
ausally depends [10℄ on some messagesent by s.De�nition 2. A rea
hable quiet system state is a state that
an be rea
hed by running the proto
ol with thespe
i�ed fault model and in whi
h no read or write is in progress.Lemma 3. For all live
on�rmable write proto
ols using 3f servers, for all sets S of 2f servers, for all rea
hablequiet system states, there exists at least one exe
ution in whi
h a write is only in
uen
ed by servers in a set S0su
h that S0 � S.By
ontradi
tion: suppose that from some rea
hable quiet system state all possible exe
utions for some writer arein
uen
ed by more than 2f servers. If the f faulty servers
rash before the write then the writer
an only re
eivemessages that are in
uen
ed by the remaining 2f servers and the
on�rmable write exe
ution will not
omplete. �Note that this lemma
an easily be extended to the read proto
ol.Lemma 4. For all live read proto
ols using 3f servers, for all sets S of 2f servers, for all rea
hable quiet systemstates, there exists at least one exe
ution in whi
h a read is only in
uen
ed by servers in a set S0 su
h that S0 � S.Thus, if there are 3f servers, all read and write operations must at some point depend on 2f or fewer serversin order to be live. We now show that if we assume a proto
ol to be live it
annot be safe by showing that there isalways some
ase where the read operation fails.Lemma 5. Consider a live read proto
ol using 3f servers. There exist exe
utions for whi
h this proto
ol does notsatisfy safe semanti
s.Informally, this read proto
ol sometimes de
ides on a value after
onsulting only with 2f servers. We provethat this proto
ol is not safe by
onstru
ting a s
enario in whi
h safe semanti
s are violated.Be
ause the proto
ol is live, for ea
h write operation there exists at least one exe
ution ew that is in
uen
edby 2f or fewer servers (by Lemma 3). Without loss of generality, we number the in
uen
ing servers 0 to 2f � 1.Immediately before the write ew, the servers have states a0 : : : a3f�1 (\state A") and immediately afterwards theyhave states b0 : : : b2f�1; a2f : : : a3f�1 (\state B"). Further suppose that the shared variable had value \A" beforethe write and has value \B" after the write. If the system is in state A then all reads should return the value A; inparti
ular this holds for the reads that in
uen
e fewer than 2f + 1 servers. Consider su
h a read whose exe
utionwe
all e. Exe
ution e re
eives messages that are in
uen
ed by servers f to 3f � 1 and returns a value for the readbased on messages that are in
uen
ed by 2f or fewer servers; in this
ase, it returns A. Lemma 4 guarantees thatexe
ution e exists.Now
onsider what happens if exe
ution e were to o

ur when the system is in state B. Suppose also thatservers f to 2f � 1 are faulty and behave as if their states were af : : : a2f�1. This is possible be
ause they havebeen in these states before. In this situation, states A and B are indistinguishable for exe
ution e and thereforethe read will return A even though the
orre
t answer is B. �The last two lemmas show that in the
onditions given, no read proto
ol
an be live and safe. �

5 Self-Verifying DataIn previous work, proto
ols using self-verifying data often required f fewer servers than otherwise [11, 14℄. It is easyto understand why proto
ols using self-verifying data might be easier: the signatures make it possible to dete
tfaulty servers that lie|as long as they don't lie by replaying some older value.It was not known until now whether self-verifying data really made a fundamental di�eren
e or if proto
olsusing only generi
 (i.e. non-self-verifying) data
ould be made to perform as well. In this paper, we show thatself-verifying data has no e�e
t on the number of servers required to solve the problem. To do this we show aproto
ol, SBQ-L, that provides atomi
 semanti
s using 3f +1 servers. We then show that no fault-tolerant storageproto
ol
an mat
h these semanti
s using fewer servers|even if using self-verifying data.Although self-verifying data has no impa
t on the minimal number of servers, it may be useful for otherproperties of these proto
ols su
h as the number of messages ex
hanged or the ability to restri
t a

ess to theshared variables.It is also interesting to note that this equality in power between generi
 and self-verifying data
arries overto the non-
on�rmable proto
ols des
ribed in the next se
tion. Using that weaker guarantee, it is still the
asethat no program using self-verifying data
an satisfy safe semanti
s using fewer servers than the non-
on�rmableversion of SBQ-L.6 Non-Con�rmable Proto
olsIn Se
tions 3 and 4 we have limited ourselves to proto
ols in whi
h the writer
an determine when its writes
omplete. We now explore non-
on�rmable writes in whi
h the writer
annot lo
ally determine when its writes
omplete, even though write
ompletion is still a well-de�ned event.6.1 De�nitionIf a proto
ol de�nes the write
ompletion predi
ate so that
ompletion
an be determined lo
ally by a writer andall writes eventually
omplete, we
all the proto
ol
on�rmable. This de�nition is intuitive and therefore impli
itlyassumed in most previous work. These proto
ols typi
ally implement their Write() fun
tion so that it only returnsafter the write operation has
ompleted. Note that
on�rmable proto
ols may also
hoose to implement a non-blo
king write operation and provide a separate me
hanism (e.g., a barrier) to let the
lient determine when awrite
ompletes.If instead a proto
ol's write
ompletion predi
ate depends on the global state in su
h a way that
ompletion
annot be determined by a
lient although all writes still eventually
omplete, then we
all the proto
ol non-
on�rmable. Non-
on�rmable proto
ols
annot provide blo
king writes. The SBQ proto
ol [14℄, for example, is non-
on�rmable: writes
omplete when a quorum of
orre
t servers have �nished pro
essing the write. This
ompletionevent is well-de�ned but
lients
annot determine when it happens be
ause they la
k the knowledge of whi
h serversare faulty.As an example of a system where a non-
on�rmable proto
ol is suÆ
ient,
onsider a network of sensors measur-ing some value and writing it to the distributed shared memory. The reader always wants the most re
ent availablevalue that
orresponds to the physi
al situation and does not
are if a parti
ular write has
ompleted. Also, it isa

eptable for some writes to be repla
ed with a newer value before they are ever read. Therefore no sensor shouldwait for the
ompletion of its last write before writing a newer measured value, and non-
on�rmable semanti
s areappropriate.6.2 Proto
olThe
on�rmable SBQ-L proto
ol of Se
tion 3 requires at least 3f+1 servers. This number
an be redu
ed to 2f+1if the proto
ol is modi�ed to be
ome non-
on�rmable.Sin
e in a non-
on�rmable proto
ol the writer is not required to know when the write
ompletes, we
an removelines W11 to W14 of the Write() fun
tion in whi
h the writer waits for a
knowledgments. The STORE messagessent earlier (at line W10) are guaranteed to rea
h their destination be
ause we assume that the
hannels are

reliable. The reader
an �nd a dis
ussion of the impli
ations of assuming reliable links in Byzantine environmentsin our previous work [14℄.We then modify the size of qw (now used only in line R13) to dn+12 e instead of dn+f+12 e previously. We also
hange qr to dn+2f+12 e instead of dn+3f+12 e. These
hanges are possible be
ause eliminating the a
knowledgmentseliminates a
onstraint on the overlap of read and write quorums [14℄.Re
all that in non-
on�rmable proto
ols, the write fun
tion does not determine when the write has
ompleted:instead, the
ompletionmust be spe
i�ed by the proto
ol. We therefore spe
ify that the write
ompletes when dn+12 e
orre
t servers are done pro
essing the STORE message. Note that this de�nition ensures that write
ompletion
annot be unduly delayed by the a
tions of faulty servers in that they
annot delay writes more than
rashedservers would.This proto
ol requires only 2f + 1 servers and provides regular semanti
s. As shown in Theorem 4, 2f + 1 isthe optimal number of servers for non-
on�rmable proto
ols.Pier
e [16℄ presents a general te
hnique to transform any regular proto
ol into one that satis�es atomi
 seman-ti
s. This te
hnique, however, only works for
on�rmable proto
ols and therefore does not apply to this
ase.Due to spa
e
onstraints, we state the main theorems here. Proofs are in
luded in the Appendix.6.3 Corre
tnessTheorem 3. The non-
on�rmable threshold SBQ-L proto
ol is live and provides regular semanti
s.6.4 Lower BoundsWe prove lower bounds for non-
on�rmable proto
ols. The minimum number of servers for safe semanti
s is 2f+1,as opposed to 3f + 1 for
on�rmable proto
ols.Theorem 4. In the reliable authenti
ated asyn
hronous model with Byzantine failures, no live proto
ol
an satisfythe safe semanti
s for distributed shared memory using 2f servers.Note that the proof is not limited to the f -threshold model and makes no assumption of deterministi
 behaviorfrom the proto
ol. The proof also
overs proto
ols that use integrity
he
ks in their messages sin
e faulty servershave all the ne
essary information to
reate the messages they send.7 Pra
ti
al ConsiderationsOur basi
 Listener proto
ol allows the SBQ-L proto
ols to use the optimal number of servers but (1) it does nothandle faulty
lients, (2) the
ommuni
ation pattern it requires
auses more messages to be ex
hanged than inother proto
ols, (3) supporting a large number of
lients is
ostly and (4) the reader stores messages in memorybefore de
iding. In the next subse
tions we show how to handle faulty
lients, quantify the number of additionalmessages, experimentally measure the e�e
t of additional messages, s
ale up to large numbers of
lients, dis
ussthe proto
ol laten
y, and show an upper bound on memory usage.7.1 Faulty ClientsThe proto
ols in the previous two se
tions are sus
eptible to faulty
lients in two ways: (1) faulty
lients
an
hoosenot to follow the write proto
ol and prevent future reads from terminating, violating liveness, or (2) faulty
lients
an violate the read proto
ol to waste server resour
es.Liveness. Faulty writers
an prevent future read attempts from terminating by preventing any quorum of serversfrom having the same value (a poisonous write), for example by sending a di�erent value to ea
h server. All readswill then fail be
ause they
annot gather a quorum of identi
al answers.To avoid poisonous writes, we introdu
e a \writer" private key, shared by all the writers but not a

essible tothe servers { servers only have the
orresponding publi
 key. Clients sign their write requests with this key. The

modi�ed server proto
ol is shown in Figure 3. The written values are stored at the servers in the variables D0 andts0. As before, these variables are updated whenever a server re
eives a newer value and the servers implementtheir part of the listeners proto
ol. To handle poisonous writes, we modify servers to forward all valid requeststo all other servers in addition to the normal pro
essing. If a server re
eives two valid requests with an identi
altimestamp, it
onsiders the one whose data
omes �rst lexi
ographi
ally to have a lower timestamp (this allowsservers to agree even when the faulty writer is trying to poison the write). The variables D0 and ts0 represent theserver's storage. The variable start-listening[
℄ stores the value that ts0 had when the server re
eived a read requestfrom a parti
ular
lient
. We use the notation fxgwriter for \the message x, signed with the private key writer".The proto
ol shown is appropriate for
on�rmable writes; for non-
on�rmable writes line S3
an be omitted.This new proto
ol guarantees that the system re
overs on
e poisonous writes end. Let (ts0; D0) be the highest-valued message sent in a write by a faulty
lient. The system re
overs when dn+12 e
orre
t servers have �nishedpro
essing the (ts0; D0) message (either from the
lient dire
tly or from an e
ho message). Note that in the
aseof
orre
t
lients, re
overy unsurprisingly
oin
ides with the
ompletion of the write. With this modi�
ation, both
on�rmable and non-
on�rmable SBQ-L provide atomi
 (respe
tively regular) semanti
s despite faulty
lients.A related win is that slow writers{even writers that
rash|will not delay nor prevent the
ompletion of thewrite sin
e the servers themselves propagate the write information. With this modi�
ation all operations from
orre
t
lients will eventually
omplete even if some servers are faulty and regardless of the speed of the other
lients, even if some or all other
lients
rash.S1 Store(fD; tsgwriter) fS2 if the signature is invalid then ignore this message.S3 send (ACK,ts) ba
k to the sender, unless it is a server.S4 for ea
h listening
lient
S5 if (start-listening[
℄� ts) send (VALUE,D,ts) to
S7 if ((ts; D) > (ts0;D0)) thenS8 (ts0;D0) := (ts;D) // store the new valueS9 send (STORE,fD; tsgwriter) to all servers.S10 g Fig. 3. Server proto
ol for
on�rmable SBQ-L, adapted to handle faulty
lients
Resour
e Exhaustion. A faulty reader
an negle
t to notify the servers that the read has
ompleted and thereforefor
e the server to
ontinue that read operation forever. One way to mitigate this problem is to restri
t ea
h readerto a single read at a time. Similarly in a \real" implementation, a reader would only be allowed to a

ess a
ertainnumber of variables at a time. A faulty reader
an still
ause signi�
ant amounts of unne
essary traÆ
 by sendingthe read request for some variable that is often written.The
ause of the problem is that readers
an
ause a potentially unbounded amount of work at the servers (thepro
essing of a nonterminating read request) at the
ost of only
onstant work (a single faulty read request). Thisimbalan
e makes the denial of servi
e atta
k possible.A natural solution therefore is to allow the servers to unilaterally stop the read when they feel that they haveperformed \enough" work, for
ing the
lients to send messages if they want to
ontinue the read. The imbalan
ehas now disappeared, and instead we introdu
e a new parameter: the system designer
an de�ne how mu
h serverwork is \enough" to make the system more or less resilient to resour
e exhaustion atta
ks.In the new proto
ol, when a server de
ides that some read has worked \enough", it sends a NAK message tothe reader and stops forwarding write noti
es. If the reader has not
ompleted the read by the time it re
eives theNAK, it sends a READ message to that server to
ontinue the read (other servers are una�e
ted).The servers
an de
ide they have worked \enough" after a �xed number of messages have been forwarded tothe reader, if no message was re
eived from the reader in some time, or a
ombination of the two. The servers mayalso a

ept READ messages from an already-reading server as a \heartbeat" message to keep the read
onne
tionopen.

Be
ause of the asyn
hronous nature of the network, it is possible that
orre
t readers, too, re
eive NAKmessages. These messages do not a�e
t the safety of the proto
ol, but the liveness is now only guaranteed if thereis a \good period" during whi
h messages
ow fast enough for the read to
omplete before the reader re
eives aNAK. The designer's
hoi
e of when servers should interrupt reads in
uen
es how long that period has to last.7.2 Additional MessagesThe read proto
ol may wait for several messages before de
iding on a value. The write proto
ol su�ers from no su
hwait: writes always require the same number of messages, regardless of the level of
on
urren
y. SBQ-L's writeoperation requires 3n messages in the non-
on�rmable
ase and 4n messages in the
on�rmable
ase, where n isthe number of servers. This
ommuni
ation is identi
al to previous results: the non-
on�rmable SBQ proto
ol [14℄uses 3n messages and the
on�rmable MR proto
ol [11℄ requires 4n messages.The behavior of the SBQ-L read operation depends on the number of
on
urrent writes. Other proto
ols (bothSBQ and MR) ex
hange a maximum of 2n messages for ea
h read. SBQ-L requires up to 3n messages when thereis no
on
urren
y. In parti
ular, step R14 adds a new round of messages. Additional messages are ex
hanged whenthere is
on
urren
y be
ause the servers e
ho all
on
urrent write messages to the reader. If
 writes are
on
urrentwith a parti
ular read then that read will use 3n+
n messages.For some systems, there is little or no
on
urren
y in the
ommon
ase. Even with additional messages in the
ase of
on
urren
y, the laten
y in
rease is not as severe as one may fear be
ause most of these message ex
hangesare asyn
hronous and unidire
tional. The SBQ-L proto
ol will not wait for 3n +
n message roundtrips. This isapparent in the experimental results of the next se
tion.7.3 Experimental evaluation of overheadWe
onstru
t a simple prototype to study the overhead of the extra messages used to deal with
on
urren
y inSBQ-L, des
ribed in the Appendix. We �nd, as expe
ted, that in
reasing
on
urren
y has a measurable butmodest e�e
t on the laten
y of the reads.7.4 Maximum ThroughputA goal of a BQS ar
hite
ture is to support a high throughput for a low system
ost. The maximum throughput of aBQS ar
hite
ture is proportional to the inverse of its load fa
tor [15℄, whi
h is the minimal a

ess probability of thebusiest server, minimizing over the strategies. SBQ-L has a load fa
tor of 12n (n+dn+2f+12 e) if only non-
on�rmablewrites are supported and 12n (n + dn+3f+12 e) if
on�rmable writes are also supported, assuming that reads andwrites o

ur with equal frequen
y.There are two ways for a given quorum system to in
rease its throughput: the system
an use more powerfulservers or it
an add additional servers.First, the use of more powerful servers for a system with a given load fa
tor
an provide a linear improvement inthe system's maximum throughput. In systems that attempt to satisfy the assumption of failure independen
e by
onstru
ting di�erent servers with di�erent implementations of software, this approa
h has the signi�
ant advantageof minimizing the number of software implementations. Although in
reasing server size linearly in
reases maximumthroughput, server
ost may in
rease more than linearly with server size; furthermore, there is a �nite maximumpra
ti
al server size.Se
ond, the use of additional servers of a given power
an redu
e the load fa
tor of a BQS system. For example,a SBQ-L system that tolerates one fault and that supports
on�rmable writes has a minimum size of 4 servers;this minimum-size system has a load fa
tor of 1.0. If 16 server implementations are available, SBQ-L's load fa
tor
an be redu
ed to 0.8125, and in the limit, if a large number of servers
an be
onstru
ted, SBQ-L's load fa
torapproa
hes 0.75. Compared to the f-masking proto
ol, whi
h
an also improve its load fa
tor by adding servers,these load fa
tors are 25%, 31%, 50% higher than the 0.8, 0.62, and 0.5 load fa
tors for n = 5 (f-masking'sminimum
on�guration), n = 16, and n =1. The Grid
onstru
tion [11℄ provides a potentially better load fa
torof (2f+2)pn�(2f+1)n . At its minimum
on�guration size of n = 16, its load fa
tor of 0.8125 mat
hes that of 16-node SBQ-L, but for very large n its load fa
tor
an approa
h 2f+2pn . Although in
reasing n in
reases maximumthroughput, this in
rease is mu
h less than linear for all BQS algorithms. Thus,
ost
onsiderations may limit the

extent to whi
h this te
hnique
an be exploited in pra
ti
al systems. When
omparing a
ross algorithms,
omparingload fa
tors at small to medium n may be more relevant than
omparing asymptoti
 load fa
tors.In evaluating a system's throughput versus
ost trade-o�s, both its load fa
tor and total number of ma
hinesn must be
onsidered. If system A has a higher load fa
tor but a smaller n than system B, it may requires moreexpensive servers but require fewer of them and may have a lower total system
ost. These trade-o�s will tend tofavor system A when software
osts are high relative to hardware
osts. They will tend to favor system B whenhardware suÆ
ient to support the needed throughput under system A's load fa
tor is mu
h more expensive thanthe hardware needed for the target throughput under system B's load fa
tor.7.5 Live Lo
kIn a system su
h as SBQ-L, it must be ensured that both reads and writes will
omplete even if the system isunder a heavy load. In SBQ-L, writes
annot starve be
ause their operation is independent of
on
urrent reads.Reads, however,
an be starved if an in�nite number of writes are in progress and if the servers always
hoose toserve the writes before sending the e
ho messages.There is an easy way to guarantee this does not happen. When serving a write request while a read is inprogress, servers queue an e
ho message. The liveness of both readers and writers is guaranteed if we requireservers to send these e
hoes before pro
essing the next write request. A read will therefore eventually re
eive thene
essary e
hoes to
omplete even if an arbitrary number of writes are
on
urrent with the read.Another related
on
ern is that of laten
y:
an reads be
ome arbitrarily slow? In the asyn
hronous model, thereis no bound on the duration of reads. However, if we assume that writes never last longer than w units of timeand that there are

on
urrent writes, then in the worst
ase (taking failures into a

ount) reads will be delayedby no more than min(
w; nw). This result follows be
ause in the worst
ase, f servers are faulty and return veryhigh timestamps so that only one row of answer[℄[℄
ontains answers from
orre
t servers. Also, in the worst
ase ea
h entran
e (line R6) o

urs just before the monitored write
an be read. The se
ond term is due to thefa
t that there are at most n entran
es.7.6 Bu�er MemoryIn SBQ-L, readers maintain a bu�er in memory during ea
h read operation (the answer[℄[℄ sparse matrix).While other proto
ols only need to identify a majority and as su
h require n units of memory, the SBQ-L proto
olmaintains a short history of the values written at ea
h server. As a result, the read operation in SBQ-L requiresup to n(f +2) units of memory: the set T
ontains at most f +1 elements (line R8) and the answer[℄[℄ matrixtherefore never
ontains more than n
olumns and f+1 rows (lines R9, R11 and R12). An additional n elements arestored in largest[℄. In a system storing more than one shared variable, if multiple variables are read in parallelthen ea
h individual read requires its own bu�er of size n(f + 2).8 Related WorkAlthough both Byzantine failures [7℄ and quorums systems [6℄ have been studied for a long time, interest in quorumsystems for Byzantine failures is relatively re
ent. The subje
t was �rst explored by Malkhi and Reiter [11, 12℄.They redu
ed the number of servers involved in
ommuni
ation [13℄, but not the total number of servers; theirwork ex
lusively
overs
on�rmable systems.In previous work we introdu
ed non-
on�rmable proto
ols that require 3f +1 servers (2f + 1 for self-verifyingdata) [14℄. In the present paper we expand on that work and redu
e the bound to 2f + 1 for generi
 data andprovide regular semanti
s instead of safe by using Listeners. We also prove lower bounds on the number of serversfor these semanti
s and meet them.Bazzi [3℄ explored Byzantine quorums in a syn
hronous environment with reliable
hannels. In that
ontextit is possible to require fewer servers (f + 1 for self-verifying data, 2f + 1 otherwise). This result is not dire
tly
omparable to ours sin
e it uses a di�erent model. We leave as future work the appli
ation of the Listeners idea ofSBQ-L to the syn
hronous network model.Bazzi [4℄ de�nes non-blo
king quorum system as a quorum system in whi
h the writer does not need to identifya live quorum but instead sends a message to a quorum of servers without
on
erning himself with whether these

servers are responsive or not. A

ording to this de�nition, all the proto
ols presented here use non-blo
king quorumsystems.Several papers [4, 13, 15℄ study the load of Byzantine quorum systems, a measure of how in
reasing the numberof servers in
uen
es the amount of work ea
h individual server has to perform. A key
on
lusion of this previouswork is that the lower bound for the load fa
tor of quorum systems is O(1pn). Our work instead fo
uses on redu
ingthe number of servers ne
essary to tolerate a given fault threshold (or failure s
enarios).Phalanx [12℄ builds shared data abstra
tions and provides a lo
king servi
e, both of whi
h
an tolerate Byzantinefailure of servers or
lients. It requires
on�rmable semanti
s in order to implement lo
ks. Phalanx
an handle faulty
lients while providing safe semanti
s using 4f + 1 servers.Castro and Liskov [5℄ present a repli
ation algorithm that requires 3f + 1 servers and, unlike most of thework presented above,
an tolerate unreliable network links and faulty
lients. Their proto
ol uses
ryptographyto produ
e self-verifying data and provides linearizability and
on�rmable semanti
s. It is fast in the
ommon
ase. Our work shows that
on�rmable semanti
s
annot be provided using fewer servers. Instead, we show anon-
on�rmable proto
ol with 2f +1 servers. In the
ase of non-
on�rmable semanti
s, however, it is ne
essary toassume reliable links.Attiya, Bar-Noy and Dolev [2℄ implement an atomi
 single-writer multi-reader register over asyn
hronous net-work, while restri
ting themselves to
rash failures only. Their failure model and writer
ount are di�erent fromours. When implementing �nite-size timestamp, their proto
ol uses several rounds. The similarity stops there,however, be
ause they make no assumption of network reliability and therefore
annot leverage una
knowledgedmessages the way the Listeners proto
ol does.9 Con
lusionWe present two proto
ols for shared variables, one that provides regular semanti
s with non-
on�rmable writesusing 2f + 1 servers and the other that provides atomi
 semanti
s with
on�rmable writes using 3f + 1 servers.In the reliable asyn
hronous
ommuni
ation model when not assuming self-verifying data, our proto
ols redu
ethe number of servers needed by previous proto
ols by f . Additionally, they improve the semanti
s for the non-
on�rmable
ase. Our proto
ols are strongly inspired by quorum systems but use an original
ommuni
ationpattern, the Listeners. The proto
ols
an be adapted to either the f -threshold or the fail-prone error model.The more theoreti
al
ontribution of this paper is the proof of a tight bound on the number of servers. Weshow that 3f +1 servers are ne
essary to provide
on�rmable semanti
s and 2f +1 servers are required otherwise.Several proto
ols [5, 11, 12, 14, 17℄ use digital signatures (or MAC) to redu
e the number of servers. It is thereforesurprising that we were able to meet the minimum number of servers without using
ryptography. Instead, ourproto
ols send one additional message to all servers and other additional messages that only o

ur if
on
urrentwrites are in progress.Sin
e our proto
ols for
on�rmable and non-
on�rmable semanti
s are nearly identi
al, it is possible to useboth systems simultaneously. The server side of the proto
ols are the same, therefore the servers do not need to beaware of the model used. Instead, the
lients
an agree on whether to use
on�rmable or non-
on�rmable semanti
son a per-variable basis. The
lients that
hoose non-
on�rmable semanti
s
an tolerate more failures: this propertyis unique to the SBQ-L proto
ol.A
knowledgmentsThe authors thank Jian Yin and Mike Kistler for several interesting
onversations and Alison Smith and MariaJump for helpful
omments on the paper's presentation.Referen
es1. L. Alvisi, D. Malkhi, E. Pier
e, M. Reiter, and R. Wright. Dynami
 Byzantine quorum systems. In Pro
eedings of theInternational Conferen
e on Dependable Systems and Networks, June 2000.2. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passing systems. Journal of the ACM(JACM) Volume 42, pages 124{142, 1995.

3. R. A. Bazzi. Syn
hronous Byzantine quorum systems. In Pro
eedings of the sixteenth annual ACM symposium onPrin
iples of distributed
omputing, pages 259{266, 1997.4. R. A. Bazzi. A

ess
ost for asyn
hronous Byzantine quorum systems. Distributed Computing Journal volume 14, Issue1, pages 41{48, January 2001.5. M. Castro and NB. Liskov. Pra
ti
al Byzantine fault toleran
e. In Pro
eedings of the Third Symposium on OperatingSystems Design and Implementation (OSDI '99), New Orleans, USA, pages 173{186, February 1999.6. S. Davidson, H. Gar
ia-Molina, and D. Skeen. Consisten
y in a partitioned network: a survey. ACM Computing Surveys(CSUR) Volume 17, Issue 3, pages 341{370, September 1985.7. M. J. Fis
her, N. A. Lyn
h, and M. S. Paterson. Impossibility of distributed
onsensus with one faulty pro
ess. Te
hni
alReport MIT/LCS/TR-282, 1982.8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison Wesley, O
tober 1994. ISBN 0-201-63361-2.9. L. Lamport. On interpro
ess
ommuni
ations. Distributed Computing, pages 77{101, 1986.10. Leslie Lamport. Time,
lo
ks, and the ordering of events in a distributed system. Communi
ations of the ACM,21(7):558{565, July 1978.11. D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, pages 203{213, 1998.12. D. Malkhi and M. Reiter. Se
ure and s
alable repli
ation in Phalanx. In Pro
. 17th IEEE Symposium on ReliableDistributed Systems, West Lafayette, Indiana, USA, O
t 1998.13. D. Malkhi, M. Reiter, and A. Wool. The load and availability of Byzantine quorum systems. In Pro
eedings 16th ACMSymposium on Prin
iples of Distributed Computing (PODC), pages 249{257, August 1997.14. J-P. Martin, L. Alvisi, and M. Dahlin. Small Byzantine quorum systems. In Pro
eedings of the International Conferen
eon Dependable Systems and Networks, pages 374{383, June 2002.15. M. Naor and A. Wool. The load,
apa
ity, and availability of quorum systems. SIAM Journal on Computing, 27(2):423{447, 1998.16. E. Pier
e and L. Alvisi. A re
ipe for atomi
 semanti
s for Byzantine quorum systems. Te
hni
al report, University ofTexas at Austin, Department of Computer S
ien
es, May 2000.17. R. Rodrigues, M. Castro, and B. Liskov. BASE: Using abstra
tion to improve fault toleran
e. In Pro
eedings of the18th Symposium on Operating Systems Prin
iples (SOSP '01), O
tober 2001.

A Non-Con�rmable Semanti
sWe show the
omplete proof of the non-
on�rmable SBQ-L proto
ol and the lower bound of 2f +1 servers for safeproto
ols with non-
on�rmable writes. This proof is similar to that of Se
tion 3.1.A.1 Corre
tnessTheorem 5. The non-
on�rmable threshold SBQ-L proto
ol is live and provides regular semanti
s.Lemma 6 (Regularity). The non-
on�rmable f-threshold SBQ-L satis�es regular semanti
s, assuming it is live.When a read r
ompletes, the reader de
ides on a value that has been vou
hed for by qw = dn+12 e servers (lineR13). By de�nition, qw
orre
t servers have seen the latest
ompleted write with respe
t to r. Sin
e 2qw > n, thesetwo quorums interse
t in at least one
orre
t server C that has seen the latest
ompleted write.Sin
e C is
orre
t, it follows the proto
ol and therefore sends the value of the
ompleted write, the value ofa write with a higher timestamp, or both. As a result, subsequent reads will never return a value older than thelatest
ompleted write. �Lemma 7 (Liveness). The non-
on�rmable f-threshold SBQ-L is live.The beginning of the proof for liveness is identi
al to the proof for the
on�rmable
ase in Se
tion 3.1, showingthat all operations eventually terminate. The proof of the read operation needs to be adapted slightly. In the laststep, showing that the reader will eventually re
eive suÆ
iently many e
hos, the quorum size must be modi�edas follows. The write proto
ol eventually rea
hes all n � f
orre
t servers. The read operation
onta
ts dn+2f+12 eservers and the interse
tion of the two quorums
ontains the dn+12 e
orre
t answers required for
ompletion be
ausedn+2f+12 e+ n� f � n+ dn+12 e. �A.2 BoundsWe prove lower bounds for non-
on�rmable proto
ols. The minimum number of servers for safe semanti
s is 2f+1,as opposed to 3f + 1 for
on�rmable proto
ols.Theorem 6. In the reliable authenti
ated asyn
hronous model with Byzantine failures, no live proto
ol
an satisfythe safe semanti
s for distributed shared memory using 2f servers.To prove this impossibility, we show that under these assumptions any proto
ol must violate either safety orliveness.Lemma 8. For all live read proto
ols using 2f servers, for all sets S of f servers and for all rea
hable quiet systemstates, there exists at least one exe
ution in whi
h a read is only in
uen
ed by all servers in a set S0 su
h thatS0 � S.By
ontradi
tion: suppose there exists a live proto
ol P using 2f servers, a set S of f servers and a rea
hablequiet system state in whi
h all exe
utions of the read proto
ol are not only in
uen
ed by the servers in any S0 :S0 � S, but instead are also in
uen
ed by some other server x 62 S. Sin
e jU � Sj = f , we
an suppose that allservers in U � S are faulty. It follows that x is faulty and may
rash, therefore the proto
ol P is not live. �Lemma 9. Consider a live read proto
ol using 2f servers. There exist exe
utions for whi
h this proto
ol does notsatisfy safe semanti
s.Intuitively, whenever the reader relies on only f servers it will be fooled if all these servers are faulty. We showthis through a more formal explanation below.Consider the initial state of the system in whi
h the individual servers have states a0 : : : a2f�1 and the sharedvariable has value A. We
all this \state A". Consider now an exe
ution e of the read proto
ol in state \A" that

is only in
uen
ed by a subset of the servers 0 : : : f � 1 (Lemma 8 proves that e exists). This exe
ution
orre
tlyreturns the value A for the shared variable.Imagine a later snapshot of the same system, when no operation is in progress. The individual servers nowhave states b0 : : : b2f�1 and the shared variable has value B. We
all this \state B". A
orre
t read should returnthe value B. Suppose that servers 0 through f � 1 are faulty and behave as if they were in states a0 : : : af�1, andsuppose that a new read starts, only in
uen
ed by servers 0 : : : f �1 (again, Lemma 8 proves that this read exists).The reader will re
eive the exa
t same answers in state B as the previous reader did in state A. Be
ause the twoexe
utions are indistinguishable, the new read will return the in
orre
t value A. �The last two lemmas show that in the
onditions given, no read proto
ol
an be live and safe. �Note that the proof is not limited to the f -threshold model and makes no assumption of deterministi
 behaviorfrom the proto
ol. The proof also
overs proto
ols that use integrity
he
ks in their messages sin
e faulty servershave all the ne
essary information to
reate the messages they send.B Experimental evaluation of overheadWe
onstru
t a simple prototype to study the overhead of the extra messages used to deal with
on
urren
y in SBQ-L. The prototype is written in C++, stores data in main memory, and
ommuni
ates via TCP. We implementedthe
on�rmable f-threshold version of SBQ-L.Our testbed
onsists of 3 servers and 6
lient ma
hines, 5 of whi
h a
t as writers and 1 as a reader. The readerma
hine is a SUN Ultra10 with a 440Mhz UltraSPARC-IIi pro
essor running SunOS 8.5. The other ma
hines areDell Dimension 4100 with a 800Mhz PentiumIII pro
essor running Debian Linux 2.2.19. The network
onne
tingthese ma
hines is a 100Mbits/s swit
hed Ethernet.In this experiment, we vary the number of writers and, therefore, the level of
on
urren
y. The writers repeatedlyexe
ute the non-
on�rmable write proto
ol, writing 1000 bytes of data to all servers. The reader measures theaverage time for 20
onse
utive reads, and the servers are instrumented to measure the number of additionalmessages sent during the Listeners phase.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5

re
ad

 la
te

nc
y

(m
s)

of active writersThe above graph shows the read laten
y as a fun
tion of the number of a
tive writers. Ea
h point representsthe average duration of 20 reads.We �nd, as expe
ted, that in
reasing
on
urren
y has a measurable but modest e�e
t on the laten
y of thereads.C Generalized Con�rmable Proto
olThe
on�rmable proto
ol
an be generalized to a fail-prone system instead of the simpler f -threshold
ase presentedin Se
tion 3. For any given fail-prone system B (de�ned in Se
tion 2.1), our quorums Q 2 Q and a

ess sets A 2 Amust obey the following properties:

Consisten
y: The interse
tion of any pair of quorums
ontains one
orre
t server.8Q1; Q2 2 Q 8B 2 B : Q1 \Q2 6� BAvailability: One quorum is always available through an a

ess set.8A 2 A 8B 2 B 9Q 2 Q : Q � A�BThe Write() fun
tion is modi�ed to return on
e it re
eives an a
knowledgment from a quorum. The modi�edRead() is presented in Figure 4. It is similar to that of the f -threshold proto
ol, ex
ept for line R13 in whi
h itde
ides on a value after re
eiving the same answer from a quorum of servers.W1 Write(D) fW2 send (QUERY TS) to all serversW3 loop fW4 re
eive answer (TS, ts) from server sW5
urrent[s℄ := tsW6 g until the ts[℄ array
overs a quorum of servers.W7 max ts := maxf
urrent[℄gW8 my ts := minft 2 Cts : max ts < t ^ last ts < tg// my ts is larger than all answers and previous timestampW9 last ts := my tsW10 send (STORE, D;my ts) to all servers.W11 loop fW12 re
eive answer (ACK,my ts) from server sW13 S := S [fsgW14 g until 9Qw 2 Q :: Qw � S // a quorum servers have sent an ACKW15 gR1 (D,ts) = Read() fR2 send (READ) to all servers in some A 2 A.R3 loop fR4 re
eive answer (VALUE,D; ts) from server s // (possibly more than one answer per server)R5 if ts > largest[s℄:ts then largest[s℄ := (D; ts)R6 if s 62 S then // we
all this event an \entran
e"R7 S := S [fsgR8 T := the f + 1 largest timestamps in largest[℄R9 for all isvr, for all jtime 62 T , delete answer[isvr; jtime℄R10 for all isvr,R11 if largest[isvr℄:ts 2 T then answer[isvr; largest[isvr℄:ts℄ := largest[isvr℄R12 if ts 2 T then answer[s; ts℄ := (D; ts)R13 g until 9D0; ts0; Qr :: Qr 2 Q ^ (8i : i 2 Qr : answer[i; ts0℄ = (D0; ts0))// i.e. loop until a quorum of servers agree on a (D,ts) valueR14 send (READ COMPLETE) to all serversR15 return (D0; ts0)R16 g Fig. 4. Generalized
on�rmable SBQ-L proto
olD Generalized Non-Con�rmable Proto
olThe generalized proto
ol above
an be adapted to non-
on�rmable semanti
s, whi
h allows the number of serversto be redu
ed.In the non-
on�rmable
ase, the quorums Q 2 Q must obey the following properties:Consisten
y: All quorums interse
t 8Q1; Q2 2 Q : Q1 \Q2 6= ;

Availability: One quorum is always available through an a

ess set.8A 2 A 8B 2 B 9Q 2 Q : Q � A�BWitness Quality: No failure s
enario is a quorum8Q 2 Q 8B 2 B : Q 6� BLines W9 and W10 are removed from the Write() operation. We say that the write
ompletes when a quorum
onsisting entirely of
orre
t servers has �nished pro
essing the write message. We
all f the size of the largestfailure s
enario. The Read() operation is identi
al ex
ept that it uses the quorums de�ned in this se
tion. Althoughthe proto
ol works for any
hoi
e of fail-prone system, its memory
onsumption depends on the size of the largestfailure s
enario.E Corre
tnessE.1 Generalized Con�rmable SBQ-LTheorem 7. The
on�rmable generalized SBQ-L proto
ol provides atomi
 semanti
s.Lemma 10 (Regularity). The
on�rmable generalized SBQ-L proto
ol satis�es regular semanti
s, assuming itis live.We
all Qw the quorum of servers (not ne
essarily all
orre
t) that have seen the latest
ompleted write. Theavailability property guarantees that the reader will eventually re
eive an answer from some quorum and the
onsisten
y property guarantees that this answer will be
orre
t. If a write is in progress and the reader de
ideson a value from some quorum Q then this value has been vou
hed for by at least one
orre
t server that has seenthe latest
ompleted write sin
e the interse
tion of Q and Qw
ontains a
orre
t server. �This
on�rmable proto
ol, similar to the threshold version, guarantees atomi
 semanti
s. The serialized orderof the writes is that of the timestamps. To prove this, we simply show that after a write for a given timestamp ts1
ompletes, no read
an de
ide on a value with an earlier timestamp.Lemma 11 (Atomi
ity). The
on�rmable generalized SBQ-L proto
ol satis�es atomi
 semanti
s, assuming it islive.Suppose a write with timestamp ts1 has
ompleted: a quorum Q1 2 Q of servers agree on this timestamp.Even if the faulty and untimely servers send the same older reply ts0, they
annot form a quorum. More formally:(U �Q1) [B 62 Q, whi
h we prove by showing that O = (U �Q1) [B does not obey
onsisten
y.O \Q1 = ((U �Q1) \Q1) [(B \Q1) = B \Q1 � BThis violates Consisten
y: 8Q1; Q2 2 Q 8B 2 B : Q1 \Q2 6� BSimilarly, suppose that at some global time t1, some
lient
 reads timestamp ts1. A quorum Q1 2 Q of serversagree on this timestamp. Sin
e the faulty and remaining ma
hines
annot form a quorum, it follows that any readthat starts after t1 has to return a timestamp of at least ts1. �Lemma 12 (Liveness). All fun
tions of the
on�rmable generalized SBQ-L eventually terminate.Write. All writes eventually
omplete be
ause of the availability property.Read. Consider the last entran
e. There is a value for largest[℄ asso
iated with ea
h server. Consider the largestlargest[℄.ts asso
iated with a
orre
t server, tsmax. The
lient has not dis
arded any data item with timestamptsmax
oming from a
orre
t server (otherwise that
orre
t server would have a higher timestamp asso
iated with

it). tsmax 2 T be
ause T
ontains the f+1 largest timestamps in largest[℄. Sin
e all
lients are
orre
t, all
orre
tservers will eventually see the tsmax write and e
ho it ba
k to the reader. The availability property guarantees thatthere are enough
orre
t servers for the e
hoes to eventually form a quorum.STORE, QUERY TS. The server's STORE and QUERY TS fun
tions terminate be
ause they have no loops.READ. The server's READ fun
tion terminates be
ause the
lient's Read() terminates and
lients are
orre
t. �E.2 Generalized Non-
on�rmable SBQ-LTheorem 8. The non-
on�rmable generalized SBQ-L proto
ol provides regular semanti
s.Lemma 13 (Regularity). The non-
on�rmable generalized SBQ-L proto
ol satis�es regular semanti
s, assumingit is live.This proof is similar to that of the previous se
tion, ex
ept that it takes into a

ount the di�erent de�nition forwrite
ompletion and the di�erent quorum
onstraints. Sin
e writes
omplete when a quorum of
orre
t servers havere
eived them, the weaker
onsisten
y requirement for non-
on�rmable is suÆ
ient. This holds be
ause witnessquality guarantees that no quorum
an
onsist entirely of faulty servers.We
all Q
w the quorum of
orre
t servers that has seen the latest
ompleted write.If the reader de
ides on a value from some quorum Q then this value has been vou
hed for by at least one
orre
t server that has seen the latest
ompleted write sin
e Q and Q
w interse
t. �The proof for liveness is identi
al to that of the
on�rmable
ase. �

